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1 Einführung

1 Einführung

In der Komplexitätstheorie werden algorithmische Probleme daraufhin
untersucht, welche Rechenressourcen zu ihrer Lösung benötigt werden.
Naturgemäß bestehen daher enge Querbezüge zu
• Algorithmen (obere Schranken)
• Automatentheorie (Rechenmodelle)
• Berechenbarkeit (Was ist überhaupt algorithmisch lösbar?)
• Logik (liefert viele algorithmische Probleme, mit ihrer Hilfe kann

auch die Komplexität von Problemen charakterisiert werden)
• Kryptografie (Wieviel Rechenressourcen benötigt ein Gegner,

um ein Kryptosystem zu brechen?)
Zur weiteren Motivation betrachten wir eine Reihe von konkreten
algorithmischen Problemstellungen.

Erreichbarkeitsproblem in Graphen (Reach):
Gegeben: Ein gerichteter Graph G = (V,E) mit V = {1, . . . , n}

und E ⊆ V × V .
Gefragt: Gibt es in G einen Weg von Knoten 1 zu Knoten n?

Zur Erinnerung: Eine Folge (v1, . . . , vk) von Knoten heißt Weg in G,
falls für j = 1, . . . , k − 1 gilt: (vj, vj+1) ∈ E.
Da als Antwort nur “ja” oder “nein” möglich ist, handelt es sich um
ein Entscheidungsproblem. Ein solches lässt sich formal durch eine
Sprache beschreiben, die alle positiven (mit “ja” zu beantwortenden)
Problemeingaben enthält:

Reach = {G | in G ex. ein Weg von 1 nach n}.

Hierbei setzen wir eine Kodierung von Graphen durch Wörter über
einem geeigneten Alphabet Σ voraus. Wir können G beispielsweise
durch eine Binärfolge der Länge n2 kodieren, die aus den n Zeilen der
Adjazenzmatrix von G gebildet wird.
Wir entscheiden Reach durch einen Wegsuche-Algorithmus. Dieser
markiert nach und nach alle Knoten, die vom Knoten 1 aus erreichbar
sind. Hierzu speichert er jeden markierten Knoten solange in einer
Menge S bis er sämtliche Nachbarknoten markiert hat. Genaueres ist
folgendem Algorithmus zu entnehmen:

Algorithmus suche-Weg(G)
1 Input: Gerichteter Graph G = (V,E) mit V = {1, . . . , n}
2 S := {1}
3 markiere Knoten 1
4 repeat
5 waehle einen Knoten u ∈ S
6 S := S − {u}
7 for all (u, v) ∈ E do
8 if v ist nicht markiert then
9 markiere v

10 S := S ∪ {v}
11 until S = ∅
12 if n ist markiert then accept else reject

Es ist üblich, den Ressourcenverbrauch von Algorithmen (wie z.B.
Rechenzeit oder Speicherplatz) in Abhängigkeit von der Größe der
Problemeingabe zu messen. Falls die Eingabe aus einem Graphen
besteht, kann beispielsweise die Anzahl n der Knoten (und/oder die
Anzahl m der Kanten) als Bezugsgröße dienen. Der Verbrauch hängt
auch davon ab, wie wir die Eingabe kodieren.

Komplexitätsbetrachtungen:
• Reach ist in Zeit n3 entscheidbar.
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1 Einführung

• Reach ist nichtdeterministisch in Platz log n entscheidbar (und
daher deterministisch in Platz log2 n; Satz von Savitch).

Als nächstes betrachten wir das Problem, einen maximalen Fluss in
einem Netzwerk zu bestimmen.

Maximaler Fluß (MaxFlow):
Gegeben: Ein gerichteter Graph G = (V,E) mit V = {1, . . . , n},

E ⊆ V × V und einer Kapazitätsfunktion c : E → N.
Gesucht: Ein Fluss f : E → N von 1 nach n in G, d.h.

• ∀e ∈ E : f(e) ≤ c(e) und
• ∀v ∈ V − {1, n} : ∑

(v,u)∈E
f(v, u) = ∑

(u,v)∈E
f(u, v),

mit maximalem Wert w(f) = ∑
(1,v)∈E

f(1, v).

Da hier nach einer Lösung (Fluss) mit optimalem Wert gesucht wird,
handelt es sich um ein Optimierungsproblem (genauer: Maximie-
rungsproblem). Im Gegensatz hierzu wird bei vielen Entscheidungspro-
blemen nach der Existenz einer Lösung (mit gewissen Eigenschaften)
gefragt.

Komplexitätsbetrachtungen:
• MaxFlow ist in Zeit n5 lösbar.
• MaxFlow ist in Platz n2 lösbar.

Das folgende Problem scheint zwar auf den ersten Blick nur wenig mit
dem Problem MaxFlow gemein zu haben. In Wirklichkeit entpuppt
es sich jedoch als ein Spezialfall von MaxFlow.

Perfektes Matching in bipartiten Graphen (Matching):
Gegeben: Ein bipartiter Graph G = (U,W,E) mit U ∩W = ∅

und e ∩ U 6= ∅ 6= e ∩W für alle Kanten e ∈ E.
Gefragt: Besitzt G ein perfektes Matching?

Zur Erinnerung: Eine Kantenmenge M ⊆ E heißt Matching, falls
für alle Kanten e, e′ ∈ M mit e 6= e′ gilt: e ∩ e′ = ∅. Gilt zudem
‖M‖ = n/2, so heißt M perfekt (n ist die Knotenzahl von G).

Komplexitätsbetrachtungen:
• Matching ist in Zeit n3 entscheidbar.
• Matching ist in Platz n2 entscheidbar.

Die bisher betrachteten Probleme können in deterministischer Poly-
nomialzeit gelöst werden und gelten daher als effizient lösbar. Zum
Schluss dieses Abschnitts betrachten wir ein Problem, für das vermut-
lich nur ineffiziente Algorithmen existieren.

Travelling Salesman Problem (TSP):
Gegeben: Eine symmetrische n× n-Distanzmatrix D = (dij) mit

dij ∈ N.
Gesucht: Eine kürzeste Rundreise, d.h. eine Permutation π ∈ Sn

mit minimalem Wert w(π) =
n∑
i=1

dπ(i),π(i+1), wobei wir
π(n+ 1) = π(1) setzen.

Komplexitätsbetrachtungen:

• TSP ist in Zeit n! lösbar (Ausprobieren aller Rundreisen).

• TSP ist in Platz n lösbar (mit demselben Algorithmus, der
TSP in Zeit n! löst).

• Durch dynamisches Programmierena lässt sich TSP in Zeit
n2 · 2n lösen, der Platzverbrauch erhöht sich dabei jedoch auf
n · 2n (siehe Übungen).

aHierzu berechnen wir für alle Teilmengen S ⊆ {2, . . . , n} und alle j ∈ S die
Länge l(S, j) eines kürzesten Pfades von 1 nach j, der alle Städte in S genau
einmal besucht.
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2 Rechenmodelle

2 Rechenmodelle

2.1 Deterministische Turingmaschinen

Definition 1 (Mehrband-Turingmaschine).
Eine deterministische k-Band-Turingmaschine (k-DTM oder
einfach DTM) ist ein Quadrupel M = (Q,Σ,Γ, δ, q0). Dabei ist
• Q eine endliche Menge von Zuständen,
• Σ eine endliche Menge von Symbolen (das Eingabealphabet)
mit t,� /∈ Σ (t heißt Blank und � heißt Anfangssymbol,
• Γ das Arbeitsalphabet mit Σ ∪ {t,�} ⊆ Γ,
• δ : Q × Γk → (Q ∪ {qh, qja, qnein}) × (Γ × {L,R,N})k die
Überführungsfunktion (qh heißt Haltezustand, qja akzep-
tierender und qnein verwerfender Endzustand
• und q0 der Startzustand.

Befindet sich M im Zustand q ∈ Q und stehen die Schreib-Lese-
Köpfe auf Feldern mit den Inschriften a1, . . . , ak (ai auf Band i),
so geht M bei Ausführung der Anweisung δ : (q, a1, . . . , ak) 7→
(q′, a′1, D1, . . . , a

′
k, Dk) in den Zustand q′ über, ersetzt auf Band i

das Symbol ai durch a′i und bewegt den Kopf gemäß Di (im Fall
Di = L um ein Feld nach links, im Fall Di = R um ein Feld nach
rechts und im Fall Di = N wird der Kopf nicht bewegt).
Außerdem verlangen wir von δ, dass für jede Anweisung
(q, a1, . . . , ak) 7→ (q′, a′1, D1, . . . , a

′
k, Dk) mit ai = � die Bedingung

a′i = � und Di = R erfüllt ist (d.h. das Anfangszeichen � darf nicht
durch ein anderes Zeichen überschrieben werden und der Kopf muss
nach dem Lesen von � immer nach rechts bewegt werden).

Definition 2. Eine Konfiguration ist ein (2k + 1)-Tupel K =
(q, u1, v1, . . . , uk, vk) ∈ Q× (Γ∗ × Γ+)k und besagt, dass
• q der momentane Zustand und
• uivi t t · · · die Inschrift des i-ten Bandes ist, und dass
• sich der Kopf auf Band i auf dem ersten Zeichen von vi befindet.

Definition 3. Eine Konfiguration K ′ = (q′, u′1, v′1, . . . , u′k, v′k) heißt
Folgekonfiguration von K = (q, u1, a1v1, . . . , uk, akvk) (kurz: K −→

M

K ′), falls eine Anweisung

(q, a1, . . . , ak) 7→ (q′, a′1, D1, . . . , a
′
k, Dk)

in δ und b1, . . . , bk ∈ Γ existieren, so dass für i = 1, . . . , k jeweils eine
der folgenden drei Bedingungen gilt:

1. Di = N, u′i = ui und v′i = a′ivi,
2. Di = L, ui = u′ibi und v′i = bia

′
ivi,

3. Di = R, u′i = uia
′
i und v′i =

t, vi = ε,

vi, sonst,

Wir schreiben K −→
M

t K ′, falls Konfigurationen K0, . . . , Kt existieren
mit K0 = K und Kt = K ′, sowie Ki −→

M
Ki+1 für i = 0, . . . , t − 1.

Die reflexive, transitive Hülle von −→
M

bezeichnen wir mit −→
M

∗, d.h.
K −→

M

∗ K ′ bedeutet, dass ein t ≥ 0 existiert mit K −→
M

t K ′.

Definition 4. Sei x ∈ Σ∗ eine Eingabe. Die zugehörige Startkonfi-
guration ist

Kx = (q0, ε, .x, ε, ., . . . , ε, .︸ ︷︷ ︸
(k−1)-mal

).

Definition 5. Eine Konfiguration K = (q, u1, v1, . . . , uk, vk) mit
q ∈ {qh, qja, qnein} heißt Endkonfiguration. Im Fall q = qja (bzw.
q = qnein) heißt K akzeptierende (bzw. verwerfende) Endkonfi-
guration.
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2 Rechenmodelle 2.2 Nichtdeterministische Berechnungen

Definition 6.
Eine DTM M hält bei Eingabe x ∈ Σ∗ (kurz: M(x) hält), falls es
eine Endkonfiguration K = (q, u1, v1, . . . , uk, vk) gibt mit

Kx −→
M

∗ K.

Weiter definieren wir das Resultat M(x) der Rechnung von M bei
Eingabe x,

M(x) =



ja, M(x) hält im Zustand qja,

nein, M(x) hält im Zustand qnein,

y, M(x) hält im Zustand qh,

↑ (undefiniert), sonst.

Dabei ergibt sich y aus ukvk, indem das erste Symbol � und sämtliche
Blanks am Ende entfernt werden, d. h. ukvk = �yti für ein i ≥ 0. Für
M(x) = ja sagen wir auch „M(x) akzeptiert“ und für M(x) = nein
„M(x) verwirft“.

Definition 7. Die von einer DTM M akzeptierte Sprache ist

L(M) = {x ∈ Σ∗ |M(x) akzeptiert}.

Eine DTM, die eine Sprache L akzeptiert, darf also bei Eingaben
x 6∈ L unendlich lange rechnen. In diesem Fall heißt L rekursiv
aufzählbar (oder semi-entscheidbar). Dagegen muss eine DTM,
die eine Sprache L entscheidet, bei jeder Eingabe halten.

Definition 8. Sei L ⊆ Σ∗. Eine DTM M entscheidet L, falls für
alle x ∈ Σ∗ gilt:

x ∈ L⇒M(x) akz.
x /∈ L⇒M(x) verw.

In diesem Fall heißt L entscheidbar (oder rekursiv).

Definition 9. Sei f : Σ∗ → Σ∗ eine Funktion. Eine DTM M be-
rechnet f , falls für alle x ∈ Σ∗ gilt:

M(x) = f(x).

f heißt dann berechenbar (oder rekursiv).

Aus dem Grundstudium wissen wir, dass eine nichtleere Sprache
L ⊆ Σ∗ genau dann rekursiv aufzählbar ist, wenn eine rekursive Funk-
tion f : Σ∗ → Σ∗ existiert, deren Bild range(f) = {f(x) | x ∈ Σ∗} die
Sprache L ist.

2.2 Nichtdeterministische Berechnungen

Anders als eine DTM, für die in jeder Konfiguration höchstens eine
Anweisung ausführbar ist, hat eine nichtdeterministische Turingma-
schine in jedem Rechenschritt die Wahl unter einer endlichen Anzahl
von Anweisungen.

Definition 10. Eine nichtdeterministische k-Band-Turing-
maschine (kurz k-NTM oder einfach NTM) ist ein 5-Tupel M =
(Q,Σ,Γ, δ, q0), wobei Q, Σ, Γ, q0 genau wie bei einer k-DTM definiert
sind und

δ : Q× Γk → P(Q ∪ {qh, qjaqnein} × (Γ× {R,L,N})k)

die Eigenschaft hat, dass für (q′, a′1, D1, . . . , a
′
k, Dk) ∈ δ(q, a1, . . . , ak)

im Fall ai = � immer a′i = � und Di = R gilt.

Die Begriffe Konfiguration, Start- und Endkonfiguration über-
tragen sich unmittelbar von DTMs auf NTMs. Der Begriff der Fol-
gekonfiguration lässt sich übertragen, indem wir δ(q, a1, . . . , ak) =
(q′, a′1, D1, . . . , a

′
k, Dk) durch (q′, a′1, D1, . . . , a

′
k, Dk) ∈ δ(q, a1, . . . , ak)

ersetzen (in beiden Fällen schreiben wir auch oft

δ : (q, a1, . . . , ak) 7→ (q′, a′1, D1, . . . , a
′
k, Dk)
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2 Rechenmodelle 2.3 Zeitkomplexität

oder einfach (q, a1, . . . , ak) 7→ (q′, a′1, D1, . . . , a
′
k, Dk).

Wir werden NTMs nur zum Erkennen von Sprachen (d.h. als Akzep-
toren) und nicht zum Berechnen von Funktionen benutzen.

Definition 11. Sei M eine NTM.
a) Wir sagen M(x) akzeptiert, falls M(x) nur endlich lange

Rechnungen ausführt und eine akzeptierende Endkonfiguration
K existiert mit Kx −→∗ K.

b) Akzeptiert M(x) nicht und hat M(x) nur endlich lange Rech-
nungen, so verwirft M(x).

c) Falls M(x) unendlich lange Rechnungen ausführt, ist M(x) =↑
(undefiniert).

d) Die von M akzeptierte Sprache ist

L(M) = {x ∈ Σ∗ |M(x) akzeptiert}.

e) M entscheidet L(M), falls M alle Eingaben x 6∈ L(M) ver-
wirft.

2.3 Zeitkomplexität

Der Zeitverbrauch timeM(x) einer Turingmaschine M bei Eingabe x
ist die maximale Anzahl an Rechenschritten, die M ausgehend von
der Startkonfiguration Kx ausführen kann (bzw. undefiniert oder ∞,
falls unendlich lange Rechnungen existieren).

Definition 12.
a) Sei M eine TM (d.h. eine DTM oder NTM) und sei x ∈ Σ∗

eine Eingabe. Dann ist

timeM(x) = max{t ≥ 0 | ∃K : Kx `t K}

die Rechenzeit von M bei Eingabe x, wobei maxN =∞ ist.

b) Sei t : N→ N eine Funktion. Dann ist M t(n)-zeitbeschränkt,
falls für alle n ≥ 0 und alle x ∈ Σ∗ mit |x| ≤ n gilt:

timeM(x) ≤ t(n).

Alle Sprachen, die in (nicht-)deterministischer Zeit t(n) entscheidbar
sind, fassen wir in den Komplexitätsklassen

DTIME(t(n)) = {L(M) |M ist eine t(n)-zeitbeschränkte DTM}

bzw.

NTIME(t(n)) = {L(M) |M ist eine t(n)-zeitbeschränkte NTM}

zusammen. Ferner sei

FTIME(t(n)) =
{
f
f wird von einer t(n)-zeitbe-
schränkten DTM berechnet

}
.

Für eine Klasse F von Funktionen t : N → N sei DTIME(F ) =⋃
t∈F DTIME(f(n)). NTIME(F ) und FTIME(F ) sind analog definiert.

Die Klasse O(nO(1)) aller polynomiell beschränkten Funktionen be-
zeichnen wir mit poly(n). Die wichtigsten Zeitkomplexitätsklassen
sind

LINTIME = DTIME(O(n)) =
⋃
c≥1

DTIME(cn+ c) „Linearzeit“,

P = DTIME(poly(n)) =
⋃
c≥1

DTIME(nc + c) „Polynomialzeit“,

E = DTIME(2O(n)) =
⋃
c≥1

DTIME(2cn+c)
„Lineare Exponentialzeit“,

EXP = DTIME(2poly(n)) =
⋃
c≥1

DTIME(2nc+c) „Exponentialzeit“.

Die Klassen NP,NE,NEXP und FP,FE,FEXP sind analog definiert.
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2 Rechenmodelle 2.4 Platzkomplexität

2.4 Platzkomplexität

Zur Definition von Platzkomplexitätsklassen verwenden wir so ge-
nannte Offline-Turingmaschinen und Transducer. Diese haben die
Eigenschaft, dass sie das erste Band nur als Eingabeband (also nur
zum Lesen) bzw. das k-te Band nur als Ausgabeband (also nur zum
Schreiben) benutzen. Der Grund für diese Einschränkungen liegt darin,
sinnvolle Definitionen für Komplexitätsklassen mit einem sublinearen
Platzverbrauch zu erhalten.

Definition 13. Eine TM M heißt Offline-TM, falls für jede An-
weisung (q, a1, . . . , ak) 7→ (q′, a′1, D1, . . . , a

′
k, Dk) die Bedingung

a′1 = a1 ∧ [a1 = t ⇒ D1 = L]

gilt. Gilt weiterhin immer Dk 6= L und ist M eine DTM, so heißt M
Transducer.

Dies bedeutet, dass eine Offline-TM nicht auf das Eingabeband schrei-
ben darf (read-only). Beim Transducer dient das letzte Band als
Ausgabeband, auch hier können keine Berechnungen durchgeführt
werden (write-only).
Der Zeitverbrauch timeM(x) von Offline-TMs und von Transducern
ist genauso definiert wie bei DTMs. Als nächstes definieren wir den
Platzverbrauch einer TM als die Anzahl aller während der Rechnung
besuchten Bandfelder.

Definition 14.
a) SeiM eine TM und sei x ∈ Σ∗ eine Eingabe mit timeM (x) <∞.

Dann ist

spaceM(x) = max{s ≥ 1 | ∃K = (q, u1, v1, . . . , uk, vk)

mit Kx `∗ K und s =
k∑
i=1
|uivi|}

der Platzverbrauch von M bei Eingabe x. Für eine Offline-
TM ersetzen wir ∑k

i=1 |uivi| durch
∑k
i=2 |uivi| und für einen

Transducer durch ∑k−1
i=2 |uivi|.

b) Sei s : N → N. Dann ist M s(n)-platzbeschränkt, falls für
alle n ≥ 0 und alle x ∈ Σ∗ mit |x| ≤ n gilt:

spaceM(x) ≤ s(|x|) und timeM(x) <∞.
D.h., spaceM (x) ist undefiniert, falls timeM (x) =∞ undefiniert
ist.

Alle Sprachen, die in (nicht-) deterministischem Platz s(n) entscheid-
bar sind, fassen wir in den Komplexitätsklassen

DSPACE(s(n)) =
{
L(M) M ist eine s(n)-platzbe-

schränkte Offline-DTM

}
bzw.

NSPACE(s(n)) =
{
L(M) M ist eine s(n)-platzbe-

schränkte Offline-NTM

}
zusammen. Ferner sei

FSPACE(s(n)) =
{
f

f wird von einem s(n)-platzbe-
schränkten Transducer berechnet

}
.

Die wichtigsten Platzkomplexitätsklassen sind
L = LOGSPACE = DSPACE(O(log n))

Lc = DSPACE(O(logc n))
LINSPACE = DSPACE(O(n))

PSPACE = DSPACE(poly(n))
ESPACE = DSPACE(2O(n))

EXPSPACE = DSPACE(2poly(n))
Die Klassen NL,NLINSPACE und NPSPACE, sowie FL,FLINSPACE
und FPSPACE sind analog definiert, wobei NPSPACE mit PSPACE
zusammenfällt (wie wir bald sehen werden).
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3 Grundlegende Beziehungen

3 Grundlegende Beziehungen

In diesem Kapitel leiten wir die wichtigsten Inklusionsbeziehungen
zwischen deterministischen und nichtdeterministischen Platz- und
Zeitkomplexitätsklassen her. Zuerst befassen wir uns jedoch mit Ro-
bustheitseigenschaften dieser Klassen.

3.1 Robustheit von Komplexitätsklassen

Wir zeigen zuerst, dass platzbeschränkte TMs nur ein Arbeitsband
benötigen.

Lemma 15 (Bandreduktion).
Zu jeder s(n)-platzbeschränkten Offline-DTM M ex. eine s(n)-platz-
beschränkte Offline-2-DTM M ′ mit L(M ′) = L(M).

Beweis. Sei M = (Q,Σ,Γ, δ, q0) eine Offline-k-DTM mit k ≥ 3. Be-
trachte die Offline-2 -DTM M ′ = (Q′,Σ,Γ′, δ′, q′0) mit Γ′ = Γ ∪ (Γ ∪
Γ̂)k−1, wobei Γ̂ für jedes a ∈ Γ die markierte Variante â enthält. M ′

hat dasselbe Eingabeband wie M , speichert aber die Inhalte von
(k − 1) übereinander liegenden Feldern der Arbeitsbänder von M auf
einem Feld ihres Arbeitsbandes. Zur Speicherung der Kopfpositionen
von M werden Markierungen benutzt.
Initialisierung: In den ersten beiden Rechenschritten erzeugt M ′ auf

ihrem Arbeitsband (Band 2) k − 1 Spuren, die jeweils mit dem
markierten Anfangszeichen .̂ initialisiert werden:

Kx = (q′0, ε, .x, ε, .) −→
M ′

(q′1, ., x, .,t) −→
M ′

(q′2, ε, .x, .,
(
.̂...
.̂

)
)

Simulation: M ′ simuliert einen Rechenschritt von M , indem sie den
Kopf auf dem Arbeitsband soweit nach rechts bewegt, bis sie
alle (k − 1) markierten Zeichen a2, . . . , ak gefunden hat. Diese
speichert sie neben dem aktuellen Zustand q von M in ihrem
Zustand. Während M ′ den Kopf wieder nach links bewegt,
führt M ′ folgende Aktionen durch: Ist a1 das von M ′ (und
von M) gelesene Eingabezeichen und ist δ(q, a1, a2, . . . , ak) =
(q′, a1, D1, a

′
2, D2, . . . , a

′
k, Dk), so bewegt M ′ den Eingabekopf

gemäß D1, ersetzt auf dem Arbeitsband die markierten Zeichen
ai durch a′i und verschiebt deren Marken gemäß Di, i = 2, . . . , k.

Akzeptanzverhalten: M ′ akzeptiert genau dann, wennM akzeptiert.
Offenbar gilt nun L(M ′) = L(M) und spaceM ′(x) ≤ spaceM(x). �

In den Übungen wird gezeigt, dass die Sprache der Palindrome
durch eine 2-DTM zwar in Linearzeit entscheidbar ist, eine 1-DTM
hierzu jedoch Zeit Ω(n2) benötigt. Tatsächlich lässt sich jede t(n)-
zeitbeschränkte k-DTM M von einer 1-DTM M ′ in Zeit O(t(n)2)
simulieren. Bei Verwendung einer 2-DTM ist die Simulation sogar
in Zeit O(t(n) log t(n)) durchführbar (siehe Übungen). Als nächstes
wenden wir uns wichtigen Robustheitseigenschaften von Platz- und
Zeitkomplexitätsklassen zu.

Satz 16 (Lineare Platzkompression und Beschleunigung).
Für alle c > 0 gilt

i) DSPACE(s(n)) ⊆ DSPACE(2 + cs(n)), (lin. space compression)
ii) DTIME(t(n)) ⊆ DTIME(2 + n+ c · t(n)). (linear speedup)

Beweis. i) Sei L ∈ DSPACE(s(n)) und sei M = (Q,Σ,Γ, δ, q0) eine
s(n)-platzbeschränkte Offline-k-DTM mit L(M) = L. Nach vorigem
Lemma können wir k = 2 annehmen. O.B.d.A. sei c < 1. Wähle
m = d1/ce und betrachte die Offline-2 -DTM

M ′ = (Q× {1, . . . ,m},Σ,Γ ∪ Γm, δ′, (q0,m))

7



3 Grundlegende Beziehungen 3.1 Robustheit von Komplexitätsklassen

mit

δ′((q, i), a, b) =



((q′, 1), a,D1, ., R),
falls b = . und δ(q, a, .) = (q′, a,D1, ., R),

((q′, j), a,D1, (b1, . . . , bi−1, b
′
i, bi+1, . . . , bm), D′2),

falls [b = (b1, . . . , bm) oder b = t = b1 =
. . . = bm] und δ(q, a, bi) = (q′, a,D1, b

′
i, D2),

wobei

j =



i, D2 = N

i+ 1, D2 = R, i < m

1, D2 = R, i = m

m, D2 = L, i = 1
i− 1, D2 = L, i > 1

und D′2 =


L, D2 = L, i = 1
R, D2 = R, i = m

N, sonst

ist. Identifizieren wir die Zustände (qja, i) mit qja und (qnein, i) mit
qnein, so ist leicht zu sehen, dass L(M ′) = L(M) = L gilt. Zudem gilt

spaceM ′ ≤ 1 + d(spaceM(x)− 1)/me
≤ 2 + spaceM(x)/m
≤ 2 + c · spaceM(x) (wegen m = d1/ce ≥ 1/c).

ii) Sei L ∈ DTIME(t(n)) und sei M = (Q,Σ,Γ, δ, q0) eine t(n)-
zeitbeschränkte k-DTM mit L(M) = L, wobei wir k ≥ 2 an-
nehmen. Wir konstruieren eine k-DTM M ′ mit L(M ′) = L und
timeM ′(x) ≤ 2 + |x| + c · timeM(x). M ′ verwendet das Alphabet
Γ′ = Γ ∪ Γm mit m = d8/ce und simuliert M wie folgt.
Initialisierung: M ′ kopiert die Eingabe x = x1 . . . xn in Blockform

auf das zweite Band. Hierzu fasst M ′ je m Zeichen von x zu
einem Block (xim+1, . . . , x(i+1)m), i = 0, . . . , l = dn/me − 1, zu-
sammen, wobei der letzte Block (xlm+1, . . . , xn,t, . . . ,t) mit

(l + 1)m− n Blanks auf die Länge m gebracht wird. Sobald M ′

das erste Blank hinter der Eingabe x erreicht, ersetzt sie dieses
durch das Zeichen ., d.h. das erste Band von M ′ ist nun mit
.x. und das zweite Band mit

.(x1, . . . , xm) . . . (x(l−1)m+1, . . . , xlm)(xlm+1, . . . , xn,t, . . . ,t)

beschriftet. Hierzu benötigtM ′ genau n+2 Schritte. In weiteren
l+ 1 = dn/me Schritten kehrt M ′ an den Beginn des 2. Bandes
zurück. Von nun an benutzt M ′ das erste Band als Arbeitsband
und das zweite als Eingabeband.

Simulation: M ′ simuliert jeweils eine Folge von m Schritten von M
in 6 Schritten:
M ′ merkt sich in ihrem Zustand den Zustand q von M vor
Ausführung dieser Folge und die aktuellen Kopfpositionen
ij ∈ {1, . . . ,m} von M innerhalb der gerade gelesenen Blöcke
auf den Bändern j = 1, . . . , k. Die ersten 4 Schritte verwendet
M ′, um die beiden Nachbarblöcke auf jedem Band zu erfassen
(LRRL). Mit dieser Information kannM ′ die nächsten m Schrit-
te von M vorausberechnen und die entsprechende Konfiguration
in 2 weiteren Schritten herstellen.

Akzeptanzverhalten: M ′ akzeptiert genau dann, wenn M dies tut.
Es ist klar, dass L(M ′) = L ist. Zudem gilt für jede Eingabe x der
Länge |x| = n

timeM ′(x) ≤ n+ 2 + dn/me+ 6dt(n)/me
≤ n+ 2 + 7dt(n)/me
≤ n+ 2 + 7ct(n)/8 + 7
≤ n+ 2 + ct(n), falls c · t(n)/8 ≥ 7.

Da das Ergebnis der Rechnung von M(x) im Fall t(n) < 56/c nur
von konstant vielen Eingabezeichen abhängt, kann M ′ diese Eingaben
schon während der Initialisierungsphase (durch table-lookup) in Zeit
n+ 2 entscheiden. �
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3 Grundlegende Beziehungen 3.2 Deterministische Simulationen von nichtdeterministischen Berechnungen

Korollar 17.
i) DSPACE(O(s(n))) = DSPACE(s(n)), falls s(n) ≥ 2.
ii) DTIME(O(t(n))) = DTIME(t(n)), falls t(n) ≥ (1 + ε)n+ 2 für

ein ε > 0 ist.
iii) DTIME(O(n)) = ⋂

ε>0
DTIME((1 + ε)n+ 2).

Beweis. i) Sei L ∈ DSPACE(cs(n) + c) für eine Konstante c ≥ 0.
Ist s(n) < 6 für unendlich viele n, so folgt L ∈ DSPACE(O(1)) =
DSPACE(0). Gilt dagegen s(n) ≥ 6 für fast alle n, so existiert für
c′ = 1/2c eine Offline-k-DTM M , die L für fast alle Eingaben in Platz
2 + c′cs(n) + c′c ≤ 3 + s(n)/2 ≤ s(n) entscheidet. Wegen s(n) ≥ 2
können wir M leicht so modifizieren, dass sie auch die endlich vielen
Ausnahmen in Platz s(n) entscheidet.
ii) Sei L ∈ DTIME(ct(n)+c) für ein c ≥ 0. Nach vorigem Satz existiert
für c′ = ε/(2+2ε)c eine DTMM , die L in Zeit 2+n+c′ct(n)+c′c ent-
scheidet. Wegen c′ct(n) = εt(n)/(2+2ε) und da wegen t(n) ≥ (1+ε)n
für fast alle n gilt, dass (2 + ε)t(n)/(2 + 2ε) ≥ (2 + ε)n/2 ≥ 2 + c′c+n
ist, folgt 2+ c′c+n+ c′ct(n) ≤ t(n) für fast alle n. Wegen t(n) ≥ n+2
können wir M leicht so modifizieren, dass sie auch die endlich vielen
Ausnahmen in Zeit t(n) entscheidet.
iii) Klar, da DTIME(O(n)) = DTIME(O((1 + ε)n+ 2)) und letztere
Klasse nach ii) für jedes ε > 0 gleich DTIME((1 + ε)n+ 2) ist. �

3.2 Deterministische Simulationen von
nichtdeterministischen Berechnungen

In diesem Abschnitt betrachten wir möglichst platz- und zeiteffiziente
deterministische Simulationen von nichtdeterministischen TMs.

Satz 18.
i) NTIME(t(n)) ⊆ DSPACE(O(t(n))),

ii) NSPACE(s(n)) ⊆ DTIME(2O(s(n)+logn)).

Beweis. i) Sei L ∈ NTIME(t(n)) und sei N = (Q,Σ,Γ,∆, q0) eine
k-NTM, die L in Zeit t(n) entscheidet. Weiter sei

d = max(q,~a)∈Q×Γk‖δ(q,~a)‖

der maximale Verzweigungsgrad von N . Dann ist jede Rechnung

Kx = K0 −→
N

K1 −→
N

. . . −→
N

Kt

der Länge t von N(x) eindeutig durch eine Folge (i1, . . . , it) ∈
{1, . . . , d}t beschreibbar. Um N zu simulieren, generiert M auf dem
Band 2 für t = 1, 2, . . . der Reihe nach alle Folgen (i1, . . . , it) ∈
{1, . . . , d}t. Für jede solche Folge kopiert M die Eingabe auf Band 3
und simuliert die zugehörige Rechnung von N(x) auf den Bändern
3 bis k + 2. M akzeptiert, sobald N bei einer dieser Simulationen in
den Zustand qja gelangt. Wird dagegen ein t erreicht, für das alle dt
Simulationen von N im Zustand qnein oder qh enden, so verwirft M .
Nun ist leicht zu sehen, dass L(M) = L(N) und der Platzverbrauch
von M durch

spaceM(x) ≤ timeN(x) + spaceN(x) ≤ (k + 1)(timeN(x) + 1)

beschränkt ist.
ii) Sei L ∈ NSPACE(s(n)) und sei N = (Q,Σ,Γ, δ, q0) eine Offline-2 -
NTM, die L in Platz s(n) entscheidet. Bei einer Eingabe x der Länge
n kann N
• die Köpfe des Eingabe- bzw. Arbeitsbandes auf höchstens n+ 2

bzw. s(n) verschiedenen Bandfeldern positionieren,
• das Arbeitsband mit höchstens ‖Γ‖s(n) verschiedenen Beschrif-

tungen versehen und
• höchstens ‖Q‖ verschiedene Zustände annehmen.
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3 Grundlegende Beziehungen 3.3 Der Satz von Savitch

D.h. ausgehend von der Startkonfiguration Kx kann N in Platz s(n)
höchstens

t(n) = (n+ 2)s(n)‖Γ‖s(n)‖Q‖ ≤ cs(n)+logn

verschiedene Konfigurationen erreichen, wobei c eine von N abhängige
Konstante ist. Um N zu simulieren, testetM für s = 1, 2, . . . , ob N(x)
eine akzeptierende Endkonfiguration K = (qja, u1, v1, u2, v2) der Größe
|u2v2| = s erreichen kann. Ist dies der Fall, akzeptiert M . Erreicht
dagegen s einen Wert, so dass N(x) keine Konfiguration der Größe
s erreichen kann, verwirft M . Hierzu muss M für s = 1, 2, . . . , s(n)
jeweils alle von der Startkonfiguration Kx erreichbaren Konfiguratio-
nen der Größe s bestimmen, was in Zeit (cs(n)+logn)O(1) = 2O(s(n)+logn)

möglich ist. �

Korollar 19. s(n) ≥ log n⇒ NSPACE(s(n)) ⊆ DTIME(2O(s(n))).

Es gilt somit für jede monotone Funktion s(n) ≥ log n,

DSPACE(s) ⊆ NSPACE(s) ⊆ DTIME(2O(s))

und für jede monotone Funktion t(n) ≥ n+ 2,

DTIME(t) ⊆ NTIME(t) ⊆ DSPACE(t).

Insbesondere erhalten wir somit die Inklusionskette

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE
⊆ EXP ⊆ NEXP ⊆ EXPSPACE ⊆ . . .

Des weiteren impliziert Satz 16 für t(n) ≥ n+ 2 und s(n) ≥ log n die
beiden Inklusionen

NTIME(t) ⊆ DTIME(2O(t)) und NSPACE(s) ⊆ DSPACE(2O(s)),

wovon sich letztere noch erheblich verbessern lässt, wie wir im nächs-
ten Abschnitt sehen werden.

3.3 Der Satz von Savitch

Praktisch relevante Komplexitätsklassen werden durch Zeit- und Platz-
schranken t(n) und s(n) definiert, die sich mit relativ geringem Auf-
wand berechnen lassen.
Definition 20. Eine monotone Funktion f : N → N heißt echte
(engl. proper) Komplexitätsfunktion, falls es einen Transducer M
gibt mit
• M(x) = 1f(|x|),
• spaceM(x) = O(f(|x|)) und
• timeM(x) = O(f(|x|) + |x|).

Beispiele für echte Komplexitätsfunktionen sind k, dlog ne, dlogk ne,
dn · log ne, nk + k, 2n, n! · b

√
nc (siehe Übungen).

Satz 21 (Savitch, 1970).
Für jede echte Komplexitätsfunktion s(n) ≥ log n gilt

NSPACE(s) ⊆ DSPACE(s2).

Beweis. Sei L ∈ NSPACE(s) und sei N eine Offline-2 -NTM, die L in
Platz s(n) entscheidet. Wie im Beweis von Satz 18 gezeigt, kann N
bei einer Eingabe x der Länge n höchstens cs(n) verschiedene Konfi-
gurationen einnehmen. Daher muss im Fall x ∈ L eine akzeptierende
Rechnung der Länge ≤ cs(n) existieren. Zudem können wir anneh-
men, dass N(x) köchstens eine akzeptierende Endkonfiguration K̂x

erreichen kann.
Sei K1, . . . , Kcs(n) eine Aufzählung aller Konfigurationen von N(x)
die Platz höchstens s(n) benötigen. Dann ist leicht zu sehen, dass
für je zwei solche Konfigurationen K, K ′ und jede Zahl i folgende
Äquivalenz gilt:

K −→
N

≤2i

K ′ ⇔ ∃Kj : K −→
N

≤2i−1
Kj ∧Kj −→

N

≤2i−1
K ′.

Nun können wir N(x) durch folgende Offline-3 -DTMM(x) simulieren.
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3 Grundlegende Beziehungen 3.4 Der Satz von Immerman und Szelepcsényi

Initialisierung: M(x) schreibt das Tripel (Kx, K̂x, ds(|n|) log ce) auf
das 2. Band, wobei für das Eingabeband nur die Kopfpo-
sition, nicht jedoch die Beschriftung notiert wird (also z.B.
Kx = (q0, 1, ε, .)). Während der Simulation wird auf dem 2.
Band ein Keller (stack) von Tripeln der Form (K,K ′, i) imple-
mentiert, die jeweils für die Frage stehen, ob K −→

N

≤2i
K ′ gilt.

Zur Beantwortung dieser Frage arbeitet M den Stack wie folgt
ab, wobei das 3. Band zum Kopieren von Tripeln auf dem 2.
Band und zur Berechnung von Kj+1 aus Kj benutzt wird.

Simulation: Sei (K,K ′, i) das am weitesten rechts auf dem 2. Band
stehende Tripel (also das oberste Kellerelement).
In den Fällen K = K ′ und i = 0 testet M direkt, ob K −→

N

≤1 K ′

gilt und gibt die Antwort zurück.
Andernfalls fügt M für wachsendes j = 1, 2, . . . das Tripel
(K,Kj, i − 1) hinzu und berechnet (rekursiv) die Antwort für
diese Tripel.
Ist diese negativ, so wird das Tripel (K,Kj, i − 1) durch das
nächste Tripel (K,Kj+1, i − 1) ersetzt (solange j < cs(n) ist,
andernfalls erfährt das Tripel (K,K ′, i) eine negative Antwort).
Ist die Antwort auf das Tripel (K,Kj, i− 1) dagegen positiv, so
ersetztM das Tripel (K,Kj, i−1) durch das Tripel (Kj, K

′, i−1)
und berechnet die zugehörige Antwort. Bei einer negativen Ant-
wort fährt M mit dem nächsten Tripel (K,Kj+1, i− 1) fort. Bei
einer positiven Antwort erhält dagegen das Tripel (K,K ′, i) eine
positive Antwort.

Akzeptanzverhalten: M akzeptiert, falls die Antwort auf das Start-
tripel (Kx, K̂x, ds(|n|) log ce) positiv ist.

Da sich auf dem 2. Band zu jedem Zeitpunkt höchstens ds(|n|) log ce
Tripel befinden und jedes Tripel O(s(|x|)) Platz benötigt, besucht M
nur O(s2(|x|)) Felder. �

Korollar 22.
i) NL ⊆ L2,
ii) NPSPACE = ⋃

k>0 NSPACE(nk) ⊆ ⋃
k>0 DSPACE(n2k) =

PSPACE,
iii) NPSPACE ist unter Komplement abgeschlossen,
iv) CSL = NSPACE(n) ⊆ DSPACE(n2) ∩ E.

Eine weitere Folgerung aus dem Satz von Savitch ist, dass das Kom-
plement L einer Sprache L ∈ NSPACE(s) in DSPACE(s2) und so-
mit auch in NSPACE(s2) liegt. Wir werden gleich sehen, dass L so-
gar in NSPACE(s) liegt, d.h. die nichtdeterministischen Platzklassen
NSPACE(s) sind unter Komplementbildung abgeschlossen.

3.4 Der Satz von Immerman und Szelepcsényi

Definition 23.
a) Für eine Sprache L ∈ Σ∗ bezeichne L = Σ∗ − L das Komple-

ment von L.
b) Für eine Sprachklasse C bezeichne co-C = {L|L ∈ C} die zu C

komplementäre Sprachklasse.

Beispiel 24.
1) Die zu NP komplementäre Klasse ist co-NP = {L|L ∈ NP}. Ein

Beispiel für ein co-NP-Problem ist TAUT:
Gegeben: Eine boolsche Formel F über n Variablen x1, . . . , xn.
Gefragt: Ist F eine Tautologie, d. h. gilt f(~a) = 1 für alle

Belegungen ~a ∈ {0, 1}n?
Die Frage ob NP unter Komplementbildung abgeschlossen ist
(d.h., ob NP = co-NP gilt), ist ähnlich wie das P ?= NP-Problem
ungelöst.
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3 Grundlegende Beziehungen 3.4 Der Satz von Immerman und Szelepcsényi

2) Wir wir gesehen haben, impliziert der Satz von Savitch den
Abschluss von NPSPACE unter Komplementbildung.

3) Dagegen wurde die Frage ob die Klasse CSL = NSPACE(n) der
kontextsensitiven Sprachen unter Komplementbildung abgeschlos-
sen ist, erst in den 80ern gelöst (siehe Satz von Immerman und
Szelepcsényi), d.h. es gilt CSL = co-CSL.

4) Andererseits ist co-CFL 6= CFL. Dies folgt aus der Tatsache, dass
kontextfreie Sprachen zwar unter Vereinigung abgeschlossen sind,
aber nicht unter Schnitt. /

Da sich deterministische Rechnungen leicht komplementieren las-
sen (durch einfaches Vertauschen der Zustände qja und qnein), sind
deterministische Komplexitätsklassen unter Komplementbildung ab-
geschlossen.

Proposition 25.
i) co-DSPACE(s(n)) = DSPACE(s(n)),
ii) co-DTIME(t(n)) = DTIME(t(n)).

Damit ergibt sich folgende Inklusionsstruktur:

DTIME(f)

NTIME(f) ∩ co-NTIME(f)

NTIME(f) co-NTIME(f)

NTIME(f) ∪ co-NTIME(f)

Dagegen lassen sich nichtdeterministische Berechnungen nicht ohne
weiteres komplementieren; es sei denn, man fordert gewisse Zusatzei-
genschaften.

Definition 26. Eine NTM N heißt strong bei Eingabe x, falls es
entweder akzeptierende oder verwerfende Rechnungen bei Eingabe x
gibt (aber nicht beides zugleich).

Satz 27 (Immerman und Szelepcsényi, 1987).
Für jede echte Komplexitätsfunktion s(n) ≥ log n gilt

NSPACE(s) = co-NSPACE(s)).

Beweis. Sei L ∈ NSPACE(s) und sei N eine s(n)-platzbeschränkte
Offline-NTM mit L(N) = L. Wir konstruieren eine O(s(n))-
platzbeschränkte Offline-NTM N ′ mit L(N ′) = L, die bei allen
Eingaben strong ist. Hierzu zeigen wir zuerst, dass die Frage, ob
N(x) eine Konfiguration K in höchstens t Schritten erreichen kann,
durch eine O(s(n))-platzbeschränkte Offline-NTM N0 entscheidbar
ist, die bei Kenntnis der Anzahl

r(x, t− 1) = ‖{K|Kx −→
N

≤t−1 K}‖

aller in höchstens t− 1 Schritten erreichbaren Konfigurationen strong
ist. Sei

L0 = {(x, r, t,K)|t ≥ 1 und Kx −→
N

≤t K}.

Behauptung 28. Es existiert eine O(s(n))-platzbeschränkte Off-
line-NTM N0 mit L(N0) = L0, die auf allen Eingaben der Form
(x, r(x, t− 1), t,K), t ≥ 1, strong ist.

Beweis der Behauptung. N0(x, r, t,K) benutzt einen mit dem Wert 0
initialisierten Zähler c und rät der Reihe nach für jede Konfiguration
Ki, die Platz ≤ s(|x|) benötigt, eine Rechnung von N(x) der Länge
≤ t − 1, die in Ki endet. Falls dies gelingt, erhöht N0 den Zähler c
um 1 und testet, ob Ki −→

N

≤1 K gilt. Falls ja, so hält N0 im Zustand
qja. Nachdem N0 alle Konfigurationen Ki durchlaufen hat, hält N0 im
Zustand qnein, wenn c den Wert r hat, andernfalls im Zustand qh.
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3 Grundlegende Beziehungen 3.4 Der Satz von Immerman und Szelepcsényi

Pseudocode für N0(x, r, t,K)
1 if t = 0 then halte im Zustand qnein
2 c := 0
3 for each Konfiguration Ki do
4 rate eine Rechnung α der Laenge ≤ t− 1 von N(x)
5 if α endet in Ki then
6 c := c+ 1
7 if Ki −→

N

≤1 K then
8 halte im Zustand qja
9 if c = r then

10 halte im Zustand qnein
11 else
12 halte im Zustand qh

Da N0 genau dann eine akzeptierende Rechnung hat, wenn eine
Konfiguration Ki mit Kx −→

N

≤t−1 Ki und Ki −→
N

≤1 K existiert, ist
klar, dass N0 die Sprache L0 entscheidet. Da N0 zudem O(s(n))-
platzbeschränkt ist, bleibt nur noch zu zeigen, dass N0 bei Eingaben
der Form x0 = (x, r(x, t − 1), t,K), t ≥ 1, strong ist, also N0(x0)
genau im Fall x0 6∈ L0 eine verwerfende Endkonfiguration erreichen
kann.
Um bei Eingabe x0 eine verwerfende Endkonfiguration zu erreichen,
muss N0 r = r(x, t − 1) Konfigurationen Ki finden, für die zwar
Kx −→

N

≤t−1 Ki aber nicht Ki −→
N

≤1 K gilt. Dies bedeutet jedoch, dass
K von keiner der r(x, t− 1) in t− 1 Schritten erreichbaren Konfigura-
tionen in einem Schritt erreichbar ist und somit x0 tatsächlich nicht
zu L0 gehört. Die Umkehrung folgt analog. �

Betrachte nun folgende NTM N ′, die für t = 1, 2, . . . die Anzahl
r(x, t) der in höchstens t Schritten erreichbaren Konfigurationen in
der Variablen r berechnet (diese Technik wird induktives Zählen,
engl. inductive counting, genannt) und mit Hilfe dieser Anzahlen im

Fall x 6∈ L verifiziert, dass keine der erreichbaren Konfigurationen
akzeptierend ist.

Pseudocode für N ′(x)
1 t := 0
2 r := 1
3 repeat
4 t := t+ 1
5 r− := r
6 r := 0
7 for each Konfiguration Ki do
8 simuliere N0(x, r−, t,Ki)
9 if N0 akzeptiert then

10 r := r + 1
11 if Ki ist akzeptierende Endkonfiguration then
12 halte im Zustand qja
13 if N0 haelt im Zustand qh then
14 halte im Zustand qh
15 until (r = r−)
16 halte im Zustand qnein

Behauptung 29. Im t-ten Durchlauf der repeat-Schleife wird r− in
Zeile 5 auf den Wert r(x, t− 1) gesetzt. Folglich wird N0 von N ′ in
Zeile 8 nur mit Eingaben der Form (x, r(x, t− 1), t,Ki) aufgerufen.

Beweis der Behauptung. Wir führen Induktion über t:
t = 1: Im ersten Durchlauf der repeat-Schleife erhält r− den Wert

1 = r(x, 0).
t t+ 1: Da r− zu Beginn des t + 1-ten Durchlaufs auf den Wert

von r gesetzt wird, müssen wir zeigen, dass r im t-ten Durch-
lauf auf r(x, t) hochgezählt wird. Nach Induktionsvorausset-
zung wird N0 im t-ten Durchlauf nur mit Eingaben der Form
(x, r(x, t − 1), t,Ki) aufgerufen. Da N0 wegen Beh. 1 auf all

13



3 Grundlegende Beziehungen 3.4 Der Satz von Immerman und Szelepcsényi

diesen Eingaben strong ist und keine dieser Simulationen im
Zustand qh endet (andernfalls würde N ′ sofort stoppen), wer-
den alle in ≤ t Schritten erreichbaren Konfigurationen Ki als
solche erkannt und somit wird r tatsächlich auf den Wert r(x, t)
hochgezählt. �

Behauptung 30. Bei Beendigung der repeat-Schleife in Zeile 15 gilt
r = r− = ‖{K|Kx −→

N

∗ K}‖.

Beweis der Behauptung. Wir wissen bereits, dass im t-ten Durchlauf
der repeat-Schleife r den Wert r(x, t) und r− den Wert r(x, t − 1)
erhält. Wird daher die repeat-Schleife nach te Durchläufen verlassen,
so gilt r = r− = r(x, te) = r(x, te − 1).
Angenommen r(x, te) < ‖{K|Kx −→

N

∗ K}‖. Dann gibt es eine Konfigu-
ration K, die für ein t′ > te in t′ Schritten, aber nicht in te Schritten
erreichbar ist. Betrachte eine Rechnung Kx = K0 −→

N
K1 −→

N
. . . −→

N

Kt′ = K minimaler Länge, die in K endet. Dann gilt Kx −→
N

te Kte ,
aber nicht Kx −→

N

≤te−1 Kte und daher folgt r(x, te) > r(x, te − 1).
Widerspruch! �

Da N ′ offenbar die Sprache L in Platz O(s(n)) entscheidet, bleibt nur
noch zu zeigen, dass N ′ bei allen Eingaben strong ist. Wegen Behaup-
tung 30 hat N ′(x) genau dann eine verwerfende Rechnung, wenn im
letzten Durchlauf der repeat-Schleife alle erreichbaren Konfiguratio-
nen K als solche erkannt werden und darunter keine akzeptierende
Endkonfiguration ist. Dies impliziert x /∈ L. Umgekehrt ist leicht zu
sehen, dass N ′(x) im Fall x /∈ L eine verwerfende Rechnung hat. �

Korollar 31.
1. NL = co-NL,
2. CSL = NLINSPACE = co-CSL.

Damit ergibt sich folgende Inklusionsstruktur für (nicht)deterministische
Platz- und Zeitklassen:

DSPACE(s)

NSPACE(s) = co-NSPACE(s)

DTIME(2O(s))

NTIME(2O(s)) co-NTIME(2O(s))

DSPACE(s2)

DSPACE(2O(s))

Angewandt auf die wichtigsten bisher betrachteten Komplexitätsklas-
sen erhalten wir folgende Inklusionsstruktur:

L

NL = co-NL

P

NP ∩ co-NP

NP co-NP

NP ∪ co-NP
NLINSPACE = CSL = co-CSL

LINSPACE = DCSL

L2

PSPACE = NPSPACE

EXP

Eine zentrale Fragestellung der Komplexitätstheorie ist, welche dieser
Inklusionen echt sind. Dieser Frage gehen wir im nächsten Kapitel
nach.
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4 Hierarchiesätze

4.1 Diagonalisierung und die Unentscheidbarkeit
des Halteproblems

Wir benutzen folgende Kodierung (Gödelisierung) von 1-DTMs
M = (Q,Σ,Γ, δ, q0). O.B.d.A. sei Q = {q0, q1, . . . , qm}, {0, 1,#} ⊆ Σ
und Γ = {a1, . . . , al} (also z.B. a1 = t, a2 = ., a3 = 0, a4 = 1 etc.).
Dann kodieren wir jedes α ∈ Q ∪ Γ ∪ {qh, qja, qnein, L,R,N} wie folgt
durch eine Binärzahl c(α) der Länge b = dlog2(‖Q‖ + ‖Γ‖ + 6)e =
dlog2(m+ l + 7)e:

α c(α)
qi, i = 0, . . . ,m binb(i)
aj, j = 1, . . . , l binb(m+ j)
qh, qja, qnein, L,R,N binb(m+ l + 1), . . . , binb(m+ l + 6)

M wird nun durch eine Folge von Binärzahlen, die durch # getrennt
sind, kodiert:

c(q0)#c(a1)#c(p0,1)#c(b0,1)#c(D0,1)#
c(q0)#c(a2)#c(p0,2)#c(b0,2)#c(D0,2)#

...
c(qm)#c(al)#c(pm,l)#c(bm,l)#c(Dm,l)#

wobei
δ(qi, aj) = (pi,j, bi,j, Di,j)

für i = 1, . . . ,m und j = 1, . . . , l ist. Kodieren wir die Zeichen 0, 1,#
binär (z.B. 0 7→ 00, 1 7→ 11, # 7→ 10), so gelangen wir zu einer Binär-
kodierung von M . Diese Kodierung lässt sich auch auf k-DTM’s und
k-NTM’s erweitern. Die Kodierung einer TM M bezeichnen wir mit
〈M〉. Ein Paar (M,x) bestehend aus einer TM M und einer Eingabe
x ∈ {0, 1}∗ kodieren wir durch das Wort 〈M,x〉 = 〈M〉#x.

Definition 32. Das Halteproblem ist

H = {〈M,x〉|M ist eine DTM, die bei Eingabe x hält}.

Satz 33. H ist rekursiv aufzählbar, aber nicht entscheidbar.

Beweis. Es ist klar, dass H rekursiv aufzählbar ist, da es eine (univer-
selle) TM U gibt, die bei Eingabe 〈M,x〉 die Berechnung von M(x)
simuliert und genau dann akzeptiert, wenn M(x) hält.
Unter der Annahme, dass H entscheidbar ist, ist auch die Sprache

D = {〈M〉|M ist eine DTM, die die Eingabe 〈M〉 verwirft} (∗)

entscheidbar. Sei also Md eine Turingmaschine, die D entscheidet,

L(Md) = D (∗∗).

Dann verhält sich Md „komplementär“ zur Diagonalen der Matrix,
deren Eintrag in Zeile M und Spalte 〈M〉 das Resultat von M(〈M〉)
angibt.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 ja ↑ nein nein · · ·
M2 nein ↑↑↑ nein ↑ · · ·
M3 ja ↑ nein ↑ · · ·
M4 ↑ nein ↑ ja · · ·
... ... ... ... ... . . .

Md nein nein ja nein · · ·
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4 Hierarchiesätze 4.2 Das Gap-Theorem

Folglich kann keine Zeile dieser Matrix mit Md übereinstimmen:

〈Md〉 ∈ D
(∗)⇒ Md(〈Md〉) = nein (∗∗)⇒ 〈Md〉 /∈ D  

〈Md〉 /∈ D
(∗)⇒ Md(〈Md〉) 6= nein (∗∗)⇒ 〈Md〉 ∈ D  

�

Satz 34. Für jede rekursive Funktion f : N −→ N existiert eine
rekursive Sprache Df /∈ DTIME(f(n)).

Beweis. Wir definieren

Df={〈M〉 |M(〈M〉) verwirft nach ≤ f(|〈M〉|) Schritten} (∗)

Offensichtlich ist Df entscheidbar. Unter der Annahme, dass Df ∈
DTIME(f(n)) ist, existiert eine f(n)-zeitbeschränkte DTM Md, die
Df entscheidet, d.h.

L(Md) = D (∗∗)
Dies führt jedoch auf einen Widerspruch:

〈Md〉 ∈ Df
(∗)⇒ Md(〈Md〉) verw. (∗∗)⇒ 〈Md〉 /∈ Df  

〈Md〉 /∈ Df
(∗,∗∗)⇒ Md(〈Md〉) akz. (∗∗)⇒ 〈Md〉 ∈ Df  

�

Eine interessante Frage ist nun, wieviel Zeit eine DTM benötigt um
die Sprache Df zu entscheiden. Im nächsten Abschnitt werden wir
sehen, dass Df i.a. sehr hohe Komplexität haben kann.

4.2 Das Gap-Theorem

Satz 35 (Gap-Theorem).
Es gibt eine rekursive Funktion f : N→ N mit

DTIME(2f(n)) = DTIME(f(n)).

Beweis. Wir definieren f(n) ≥ n + 2 so, dass für jede 2f(n)-zeitb.
DTM M gilt:

timeM(x) ≤ f(|x|) für fast alle Eingaben x.

Betrachte hierzu das Prädikat:

P (k, t) : t ≥ k + 2 und für i = 1, . . . , k und alle x ∈ Σk
i gilt:

timeMi
(x) /∈ [t+ 1, 2t].

Hierbei bezeichnet Σi das Eingabealphabet von Mi. Da für jedes n
alle t ≥ max{timeMi

(x) <∞|1 ≤ i ≤ n, x ∈ Σn
i } das Prädikat P (n, t)

erfüllen, können wir f(n) wie folgt induktiv definieren:

f(n) =

2, n = 0,
min{t ≥ f(n− 1) + n|P (n, t)}, n > 0.

Da P entscheidbar ist, ist f rekursiv. Um zu zeigen, dass jede Spra-
che L ∈ DTIME(2f(n)) bereits in DTIME(f(n)) enthalten ist, sei Mk

eine beliebige 2f(n)-zeitbeschränkte DTM mit L(Mk) = L. Dann
muss Mk alle Eingaben x mit |x| ≥ k in Zeit timeMk

(x) ≤ f(n)
(n = |x|) entscheiden, da andernfalls P (n, f(n)) verletzt wäre. Folg-
lich ist L ∈ DTIME(f(n)), da die endlich vielen Eingaben x mit
|x| < k durch table-lookup in Zeit |x|+ 2 entscheidbar sind. �

Es ist leicht zu sehen, dass der Beweis des Gap-Theorems für jede
rekursive Funktion g eine rekursive Zeitschranke f liefert, so dass
DTIME(g(f(n))) = DTIME(f(n)) ist. Folglich ist Df nicht in Zeit
g(f(n)) entscheidbar.
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4.3 Zeit- und Platzhierarchiesätze

Wie der folgende Satz zeigt, ist Df für jede echte Komplexitätsfunkti-
on f mit einem relativ geringen Mehraufwand entscheidbar. Da die
Rechenressourcen bei praktisch relevanten Komplexitätsklassen durch
eine echte Komplexitätsfunktion f beschränkt sind, lassen sich daher
mit Hilfe von Df die wichtigsten deterministischen Zeitkomplexitäts-
klassen trennen.

Satz 36. Für jede echte Komplexitätsfunktion f(n) ≥ n+ 2 gilt

Df ∈ DTIME(nf 2(n))− DTIME(f(n)).

Beweis. Betrachte folgende 4 -DTM M ′:
Initialisierung: M ′ überprüft bei einer Eingabe x der Länge n zuerst,

ob x die Kodierung 〈M〉 einer k-DTM M = (Q,Σ,Γ, δ, q0) ist.
Falls ja, erzeugt M ′ die Startkonfiguration Kx von M bei Einga-
be x = 〈M〉, wobei sie die Inhalte von k übereinander liegenden
Feldern der Bänder von M auf ihrem 2. Band in je einem Block
von kb, b = dlog2(‖Q‖+ ‖Γ‖+ 6)e, Feldern speichert und den
aktuellen Zustand von M zusammen mit den gerade von M
gelesenen Zeichen auf ihrem 3. Band notiert (Letztere werden
zusätzlich auf dem 2. Band markiert). Hierfür benötigt M ′ Zeit
O(kbn) = O(n2). Abschließend erzeugt M ′ auf dem 4. Band
den String 1f(n) in Zeit O(f(n)).

Simulation: M ′ simuliert jeden Rechenschritt von M wie folgt: Zu-
nächst inspiziertM ′ die auf dem 1. Band gespeicherte Kodierung
von M , um die durch den Inhalt des 3. Bandes bestimmte Akti-
on von M zu ermitteln. Diese führt sie sodann auf dem 2. Band
aus und aktualisert dabei auf dem 3. Band den Zustand und
die gelesenen Zeichen von M . Schließlich vermindert M ′ noch
auf dem 4. Band die Anzahl der Einsen um 1. Insgesamt be-
nötigt M ′ für die Simulation eines Rechenschrittes von M Zeit
O(kbf(n)) = O(n · f(n))).

Akzeptanzverhalten: M ′ bricht die Simulation ab, sobald M stoppt
oder der Zähler auf Band 4 den Wert 0 erreicht. M ′ hält genau
dann im Zustand qja, wenn die Simulation von M im Zustand
qnein endet.

Nun ist leicht zu sehen, dass M ′ O(n · f(n)2)-zeitbeschränkt ist und
die Sprache Df entscheidet. �

Korollar 37. (Zeithierarchiesatz)
Für jede echte Komplexitätsfunktion f(n) ≥ n+ 2 gilt

DTIME(n · f(n)2)− DTIME(f(n)) 6= ∅

Korollar 38.
P ( E ( EXP

Beweis.

P =
⋃
c>0

DTIME(nc + c) ⊆ DTIME(2n)

( DTIME(n22n) ⊆ E =
⋃
c>0

DTIME(2cn) ⊆ DTIME(2n2)

( DTIME(n22n2) ⊆
⋃
c>0

DTIME(2nc+c) = EXP

�

Aus dem Beweis von Satz 36 können wir weiterhin die Existenz einer
universellen TM folgern.

Korollar 39. Es gibt eine universelle 3-DTM U , die bei Eingabe
〈M,x〉 eine Simulation von M bei Eingabe x durchführt und dasselbe
Ergebnis liefert:

U(〈M,x〉) = M(x)
Hierbei können wir annehmen, dass U verwirft, falls die Eingabe keine
zulässige Kodierung eines Paares (M,x) mit x ∈ Σ∗ darstellt.
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Wir bemerken, dass sich mit Hilfe einer aufwändigeren Simulations-
technik von k-DTMs durch eine 2 -DTM in Zeit O(f(n) · log f(n))
folgende schärfere Form des Zeithierarchiesatzes erhalten lässt (ohne
Beweis).

Satz 40. Sei f(n) ≥ n+ 2 eine echte Komplexitätsfunktion und gelte

lim inf
n→∞

g(n) · log g(n)
f(n) = 0.

Dann ist
DTIME(f(n))\DTIME(g(n)) 6= ∅.

Für g(n) = n2 erhalten wir beispielsweise die echten Inklusionen
DTIME(g(n)) ( DTIME(f(n)) für die Funktionen f(n) = n3, n2 log2 n
und n2 log n log log n. In den Übungen zeigen wir, dass die Inklusion

DTIME(nk) ( DTIME(nk loga n)

tatsächlich für alle k ≥ 1 und a > 0 echt ist. Für Platzklassen erhalten
wir sogar eine noch feinere Hierarchie (siehe Übungen).

Satz 41 (Platzhierarchiesatz). Sind g(n), f(n) ≥ 2 und ist f eine
echte Komplexitätsfunktion mit

lim inf
n→∞

g(n)
f(n) = 0,

dann ist
DSPACE(f(n))\DSPACE(g(n)) 6= ∅.

Damit lässt sich im Fall g(n) ≤ f(n) die Frage, ob die Inklusion
von DSPACE(g(n)) in DSPACE(f(n)) echt ist, eindeutig beantwor-
ten: Sie ist genau dann echt, wenn lim infn→∞ g(n)/f(n) = 0 ist, da
andernfalls f(n) = O(g(n)) ist und somit beide Klassen gleich sind.

Korollar 42.

L ( L2 ( DCSL ⊆ CSL ( PSPACE ( ESPACE ( EXPSPACE.

Durch Kombination der Beweistechnik von Satz 41 mit der Technik
von Immerman und Szelepcsényi erhalten wir auch für nichtdetermi-
nistische Platzklassen eine sehr fein abgestufte Hierarchie.

Satz 43 (Nichtdeterministischer Platzhierarchiesatz). Sind
g(n), f(n) ≥ 2 und ist f eine echte Komplexitätsfunktion mit

lim inf
n→∞

g(n)
f(n) = 0,

dann ist
NSPACE(f(n))\NSPACE(g(n)) 6= ∅.

Ob sich auch der Zeithierarchiesatz auf nichtdeterministische Klassen
übertragen lässt, ist dagegen nicht bekannt. Hier gilt jedoch folgender
Hierarchiesatz.

Satz 44 (Nichtdeterministischer Zeithierarchiesatz). Sei f(n) ≥ n+2
eine echte Komplexitätsfunktion und gelte

g(n+ 1) = o(f(n)).

Dann ist
NTIME(g(n)) ( NTIME(f(n)).

Beweis. Sei M1,M2, . . . eine Aufzählung aller 2-NTMs. Für x ∈
{0, 1,#}∗ sei

i(x) =

i, x = 0k#〈Mi〉
1, sonst
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und x+ (x−) sei der lexikografische Nachfolger (bzw. Vorgänger)
von x in {0, 1,#}∗. Wir ordnen jedem x ∈ {0, 1,#}∗ ein Intervall
Ix = [s(x), s(x+)− 1] zu, wobei die Funktion s induktiv durch

s(x) =

0, x = ε

h(s(x−) + |x|) + 1, sonst

definiert ist. Hierbei ist h(n) ≥ 2n eine monotone Funktion mit fol-
genden Eigenschaften:
• die Sprache

D = {0s#〈Mi〉 |Mi(0s) akz. nicht in ≤ f(s) Schritten}

ist von einer 2-NTM MD in Zeit timeMD
(x) ≤ h(|x|) entscheid-

bar.
• die Funktion 0n → 0h(n) ist von einem Transducer T in Zeit
h(n)+1 berechenbar, d.h. T (0n) schreibt in jedem Rechenschritt
(außer dem ersten) eine weitere Null auf’s Ausgabeband.

Betrachte folgende NTM M :

1 input 0n
2 x := ε
3 s := 0
4 while h(s+ |x|) + 1 ≤ n do
5 s := h(s+ |x|) + 1
6 x := x+

7 if n < h(s+ |x|) then (∗ s = s(x) ≤ n < s(x+)− 1 ∗)
8 akz. falls Mi(x)(0n+1) in ≤ f(n)

|〈Mi(x)〉|
Schritten akz.

9 else (∗ n = s(x+)− 1 ∗)
10 akz. falls 0s#〈Mi(x)〉 ∈ D ist

Es ist leicht zu sehen, dass M O(f(n))-zeitb. und somit L = L(M) ∈
NTIME(f(n)) enthalten ist. Dies liegt daran, dass

• die Berechnung von x und s = s(x) mit n ∈ Ix in der while-
Schleife wegen h(n) ≥ 2n und der Eigenschaften von T in Zeit
O(n) ausführbar, sowie
• die Frage, ob Mi(x)(0n+1) in ≤ f(n)

|〈Mi(x)〉|
Schritten akz., in Zeit

O(f(n)) und
• die Frage, ob 0s#〈Mi(x)〉 ∈ D enthalten ist, in Zeit
h(|0s#〈Mi(x)〉|) ≤ h(s+ |x|) = n entscheidbar ist.

L kann aber nicht in NTIME(g(n)) enthalten sein, da sonst eine
Konstante c und eine 2-NTM Mi ex. würden mit L(Mi) = L und
timeMi

(0n) ≤ cg(n) für fast alle n (siehe Übungen; Simulation von
NTMs durch 2-NTMs). Wählen wir nun k ≥ 0 so groß, dass für
x = 0k#〈Mi〉 und alle n ≥ s(x) die Ungleichung |〈Mi〉|timeMi

(0n+1) ≤
f(n) gilt, so folgt für alle n ∈ [s(x), s(x+)− 2]:

0n ∈ L(M)⇔ 0n+1 ∈ L(Mi),

was 0s(x) ∈ L⇔ 0s(x+)−1 ∈ L impliziert. Zudem gilt

0s(x+)−1 ∈ L(M)⇔ 0s(x)#〈Mi〉 ∈ D ⇔ 0s(x) 6∈ L(Mi),

was wegen L(M) = L = L(Mi) ein Widerspruch ist. �

Satz 44 liefert für langsam wachsende Zeitschranken eine feinere Hier-
archie als Satz 40. Beispielsweise impliziert Satz 44, dass NTIME(nk)
für jede unbeschränkte monotone Funktion h echt in der Klasse
NTIME(nkh(n)) enthalten ist, da (n+ 1)k = O(nk) = o(nkh(n)) ist.
Für schnell wachsende Zeitschranken liefert dagegen Satz 40 eine
feinere Hierarchie. So impliziert Satz 40 zum Beispiel, dass die Klas-
se DTIME(22n) für jede unbeschränkte monotone Funktion h echt
in DTIME(h(n)2n22n) enthalten ist, während sich NTIME(22n) mit
Satz 44 nur von NTIME(h(n)22n+1) = NTIME(h(n)22n22n) separieren
lässt.

19



5 Reduktionen

5 Reduktionen

5.1 Logspace-Reduktionen

Oft können wir die Komplexitäten zweier Probleme A und B verglei-
chen, indem wir die Frage, ob x ∈ A ist, auf eine Frage der Form
y ∈ B zurückführen. Lässt sich y leicht aus x berechnen, so kann jeder
Algorithmus für B in einen Algorithmus für A verwandelt werden,
der vergleichbare Komplexität hat.

Definition 45. Seien A und B Sprachen über einem Alphabet Σ. A
ist auf B logspace-reduzierbar (in Zeichen: A ≤logm B oder einfach
A ≤ B), falls eine Funktion f ∈ FL existiert, so dass für alle x ∈ Σ∗
gilt,

x ∈ A⇔ f(x) ∈ B.

Lemma 46. FL ⊆ FP.

Beweis. Sei f ∈ FL und sei M ein logarithmisch platzbeschränkter
Transducer (kurz: FL-Transducer), der f berechnet. Da M bei ei-
ner Eingabe der Länge n nur 2O(logn) verschiedene Konfigurationen
einnehmen kann, ist M dann auch polynomiell zeitbeschränkt. �

Beispiel 47. Wir reduzieren das Hamiltonkreisproblem auf das Er-
füllbarkeitsproblem Sat für aussagenlogische Formeln.

Hamiltonkreisproblem (Ham):
Gegeben: Ein Graph G = (V,E).
Gefragt: Hat G einen Hamiltonkreis?

Erfüllbarkeitsproblem für boolesche Formeln (Sat):
Gegeben: Eine boolesche Formel F über n Variablen.
Gefragt: Ist F erfüllbar?

Hierzu benötigen wir eine Funktion f ∈ FL, die einen Graphen
G = (V,E) so in eine Formel f(G) = FG transformiert, dass FG
genau dann erfüllbar ist, wenn G hamiltonsch ist. Wir konstruieren
FG über den Variablen x1,1, . . . , xn,n, wobei xi,j für die Aussage steht,
dass Knoten j ∈ V = {1, . . . , n} in der Rundreise an i-ter Stelle
besucht wird. Betrachte nun folgende Klauseln.

a) An der i-ten Stelle wird mindestens ein Knoten besucht:

xi,1 ∨ xi,2 ∨ . . . ∨ xi,n, i = 1, . . . , n.

b) An der i-ten Stelle wird höchstens ein Knoten besucht:

¬xi,j ∨ ¬xi,k, i = 1, . . . , n, 1 ≤ j < k ≤ n.

c) Jeder Knoten j wird mindestens einmal besucht:

x1,j ∨ . . . ∨ xn,j, j = 1, . . . , n.

d) Für (i, j) /∈ E wird Knoten j nicht unmittelbar nach Knoten i
besucht:

¬x1,i ∨ ¬x2,j, . . . ,¬xn−1,i ∨ ¬xn,j,¬xn,i ∨ ¬x1,j, (i, j) /∈ E.

Die Klauseln in a) und b) stellen sicher, dass die Relation π = {(i, j) |
xi,j = 1} eine Funktion π : {1, . . . , n} → {1, . . . , n} ist. Bedingung c)
besagt, dass π surjektiv (und damit auch bijektiv) ist, und d) sorgt
dafür, dass der durch π beschriebene Kreis entlang der Kanten von G
verläuft. Bilden wir daher FG(x1,1, . . . , xn,n) als Konjunktion dieser

n+ n
(
n
2

)
+ n+ n

[(
n
2

)
− ‖E‖

]
= O(n3)

Klauseln, so ist leicht zu sehen, dass die Reduktionsfunktion f in FL
berechenbar ist und G genau dann einen Hamiltonkreis besitzt, wenn
FG erfüllbar ist. /
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Ein zentraler Begriff in der Komplexitätstheorie ist die Vollständigkeit
einer Sprache für eine Komplexitätsklasse.

Definition 48.
a) Sei C eine Sprachklasse. Eine Sprache L heißt C-hart (bzgl. ≤),

falls für alle Sprachen A ∈ C gilt, A ≤ L.
b) Eine C-harte Sprache, die zur Klasse C gehört, heißt C-

vollständig.
c) C heißt abgeschlossen unter ≤, falls gilt:

B ∈ C, A ≤ B ⇒ A ∈ C.

Lemma 49.
1. Die ≤logm -Reduzierbarkeit ist reflexiv und transitiv.
2. Die Klassen L,NL,NP, co-NP,PSPACE,EXP und EXPSPACE

sind unter ≤ abgeschlossen.
3. Sei L vollständig für eine Klasse C, die unter ≤ abgeschlossen

ist. Dann gilt
C = {A | A ≤ L}.

Beweis. Siehe Übungen. �

Definition 50. Ein boolescher Schaltkreis c mit n Eingängen ist
eine Folge (g1, . . . , gm) von Gattern

gl ∈ {0, 1, x1, . . . , xn, (¬, j), (∧, j, k), (∨, j, k)}

mit 1 ≤ j, k < l. Der am Gatter gl berechnete Wert bei Eingabe
a = a1 · · · an ist induktiv wie folgt definiert.

gl 0 1 xi (¬, j) (∧, j, k) (∨, j, k)
gl(a) 0 1 ai 1− gj(a) gj(a)gk(a) gj(a) + gk(a)− gj(a)gk(a)

Der Schaltkreis c berechnet die boolesche Funktion c(a) = gm(a). Er
heißt erfüllbar, wenn es eine Eingabe a ∈ {0, 1}n mit c(a) = 1 gibt.

Bemerkung: Die Anzahl der Eingänge eines Gatters g wird als Fan-
in von g bezeichnet, die Anzahl der Ausgänge (also die Anzahl der
Gatter, die g als Eingabe benutzen) als Fanout. Boolesche Formeln
entsprechen also den booleschen Schaltkreisen mit (maximalem) Fan-
out 1 und umgekehrt.
Ähnlich wie bei booleschen Formeln sind auch für Schaltkreise die
beiden folgenden Entscheidungsprobleme von Interesse.

Auswertungsproblem für boolesche Schaltkreise (CirVal):
Gegeben: Ein boolescher Schaltkreis c mit n Eingängen und eine

Eingabe a ∈ {0, 1}n.
Gefragt: Ist der Wert von c(a) gleich 1?

Erfüllbarkeitsproblem für boolesche Schaltkreise (CirSat):
Gegeben: Ein boolescher Schaltkreis c mit n Eingängen.
Gefragt: Ist c erfüllbar?

Im folgenden Beispiel führen wir die Lösung des Erreichbarkeitspro-
blems in gerichteten Graphen auf die Auswertung von booleschen
Schaltkreisen zurück.

Beispiel 51. Für die Reduktion Reach ≤ CirVal benötigen wir
eine Funktion f ∈ FL mit der Eigenschaft, dass für alle Graphen G
gilt:

G ∈ Reach⇔ f(G) ∈ CirVal.

Der Schaltkreis f(G) besteht aus den Gattern

gi,j,k′ und hi,j,k mit 1 ≤ i, j, k ≤ n und 0 ≤ k′ ≤ n,

wobei die Gatter gi,j,0 für 1 ≤ i, j ≤ n die booleschen Konstanten

gi,j,0 =

1, i = j oder (i, j) ∈ E,
0, sonst
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5 Reduktionen 5.2 P-vollständige Probleme und polynomielle Schaltkreiskomplexität

sind und für k = 1, 2, . . . , n gilt,

hi,j,k = gi,k,k−1 ∧ gk,j,k−1,

gi,j,k = gi,j,k−1 ∨ hi,j,k.

Dann folgt

gi,j,k = 1 ⇔ es existiert in G ein Pfad von i nach j, der
nur Zwischenknoten l ≤ k durchläuft,

hi,j,k = 1 ⇔ es existiert in G ein Pfad von i nach j, der
den Knoten k, aber keinen Knoten l > k
durchläuft.

Wählen wir also g1,n,n als Ausgabegatter, so liefert der aus diesen
Gattern aufgebaute Schaltkreis c genau dann den Wert 1, wenn es in
G einen Weg von Knoten 1 zu Knoten n gibt. Es ist auch leicht zu
sehen, dass die Reduktionsfunktion f in FL berechenbar ist. /

Der in Beispiel 51 konstruierte Schaltkreis hat Tiefe 2n. In den Übun-
gen werden wir sehen, dass sich Reach auch auf die Auswertung
eines Schaltkreises der Tiefe O(log2 n) reduzieren lässt. Als nächstes
leiten wir Vollständigkeitsresultate für CirVal und CirSat her.

5.2 P-vollständige Probleme und polynomielle
Schaltkreiskomplexität

Satz 52. CirVal ist P-vollständig.

Beweis. Es ist leicht zu sehen, dass CirVal ∈ P ist. Um zu zeigen,
dass CirVal hart für P ist, müssen wir für jede Sprache L ∈ P eine
Funktion f ∈ FL finden, die L auf CirVal reduziert, d.h. es muss für
alle Eingaben x die Äquivalenz x ∈ L⇔ f(x) ∈ CirVal gelten.
Zu L ∈ P existiert eine 1 -DTMM = (Q,Σ,Γ, δ, q0), die L in Zeit nc+c
entscheidet. Wir beschreiben die Rechnung von M(x), |x| = n, durch

eine Tabelle T = (Ti,j), (i, j) ∈ {1, . . . , nc + c} × {1, . . . , nc + c+ 2},
mit

Ti,j =

(qi, ai,j), nach i Schritten besucht M das j-te Bandfeld,
ai,j, sonst,

wobei qi der Zustand von M(x) nach i Rechenschritten ist und ai,j
das nach i Schritten an Position j befindliche Zeichen auf dem Ar-
beitsband ist. T = (Ti,j) kodiert also in ihren Zeilen die von M(x) der
Reihe nach angenommenen Konfigurationen. Dabei
• überspringen wir jedoch alle Konfigurationen, bei denen sich

der Kopf auf dem ersten Bandfeld befindet (zur Erinnerung: In
diesem Fall wird der Kopf sofort wieder nach rechts bewegt)
und
• behalten die in einem Schritt i < nc + c erreichte Endkonfigura-

tion bis zum Zeitpunkt i = nc + c bei.
Da M in nc + c Schritten nicht das (nc + c+ 2)-te Bandfeld erreichen
kann, ist Ti,1 = . und Ti,nc+c+2 = t für i = 1, . . . , nc + c. Außerdem
nehmen wir an, dassM bei jeder Eingabe x auf dem zweiten Bandfeld
auf einem Blank hält, d.h. es gilt

x ∈ L⇔ Tnc+c,2 = (qja,t).
Da T nicht mehr als l = ‖Γ‖+‖(Q∪{qh, qja, qnein})×Γ‖ verschiedene
Tabelleneinträge besitzt, können wir jeden Eintrag Ti,j durch eine
Bitfolge ti,j,1 · · · ti,j,m der Länge m = dlog2 le kodieren.
Da der Eintrag Ti,j im Fall i ∈ {2, . . . , nc+c} und j ∈ {2, . . . , nc+c+1}
eine Funktion Ti,j = g(Ti−1,j−1, Ti−1,j, Ti−1,j+1) der drei Einträge
Ti−1,j−1, Ti−1,j und Ti−1,j+1 ist, existieren für k = 1, . . . ,m Schalt-
kreise ck mit
ti,j,k =
ck(ti−1,j−1,1 · · · ti−1,j−1,m, ti−1,j,1 · · · ti−1,j,m, ti−1,j+1,1 · · · ti−1,j+1,m).

Die Reduktionsfunktion f liefert nun bei Eingabe x folgenden Schalt-
kreis cx mit 0 Eingängen.
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5 Reduktionen 5.2 P-vollständige Probleme und polynomielle Schaltkreiskomplexität

• Für jeden der nc+ c+ 2 + 2(nc+ c−1) = 3(nc+ c) Randeinträge
Ti,j mit i = 1 oder j ∈ {1, nc + c + 2} enthält cx m konstante
Gatter ci,j,k = ti,j,k, k = 1, . . . ,m, die diese Einträge kodieren.
• Für jeden der (nc + c − 1)(nc + c) übrigen Einträge Ti,j
enthält cx für k = 1, . . . ,m je eine Kopie ci,j,k von ck,
deren 3m Eingänge mit den Ausgängen der Schaltkreise
ci−1,j−1,1 · · · ci−1,j−1,m, ci−1,j,1 · · · ci−1,j,m, ci−1,j+1,1 · · · ci−1,j+1,m
verdrahtet sind.
• Als Ausgabegatter von cx fungiert das Gatter cnc+c,2,1, wobei
wir annehmen, dass das erste Bit der Kodierung von (qja,t)
eine Eins und von (qnein,t) eine Null ist.

Nun lässt sich induktiv über i = 1, . . . , nc + c zeigen, dass die von den
Schaltkreisen ci,j,k, j = 1, . . . , nc + c, k = 1, . . . ,m berechneten Werte
die Tabelleneinträge Ti,j, j = 1, . . . , nc + c, kodieren. Wegen

x ∈ L⇔ Tnc+c,2 = (qja,t)⇔ cx = 1

folgt somit die Korrektheit der Reduktion. Außerdem ist leicht zu se-
hen, dass f in logarithmischem Platz berechenbar ist, da ein O(log n)-
platzbeschränkter Transducer existiert, der bei Eingabe x
• zuerst die 3(nc+c) konstanten Gatter von cx ausgibt und danach
• die m(nc + c − 1)(nc + c) Kopien der Schaltkreise c1, . . . , ck

erzeugt und diese Kopien richtig verdrahtet. �
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