Vorlesungsskript

Einfihrung in die
Komplexitatstheorie

Wintersemester 2012/13

Prof. Dr. Johannes Kobler

Humboldt-Universitat zu Berlin
Lehrstuhl Komplexitat und Kryptografie

20. November 2012

Inhaltsverzeichnis Inhaltsverzeichnis

Inhaltsverzeichnis
1 Einfiihrung 1
2 Rechenmodelle 3
2.1 Deterministische Turingmaschinen 3
2.2 Nichtdeterministische Berechnungen 4
2.3 Zeitkomplexitat)
2.4 Platzkomplexitat 6
3 Grundlegende Beziehungen 7
3.1 Robustheit von Komplexitatsklassen 7
3.2 Deterministische Simulationen von nichtdeterministi-
schen Berechnungen. 9
3.3 Der Satz von Savitch 10
3.4 Der Satz von Immerman und Szelepcsényi 11
4 Hierarchiesitze 15
4.1 Diagonalisierung und die Unentscheidbarkeit des Hal-
teproblemso oo 15
4.2 Das Gap-Theorem 16
4.3 Zeit- und Platzhierarchiesatze 17
5 Reduktionen 20
5.1 Logspace-Reduktionen 20

5.2 P-vollstindige Probleme und polynomielle Schaltkreis-
komplexitat 22

ii

1 Einfiihrung

1 Einfiihrung

In der Komplexitatstheorie werden algorithmische Probleme daraufthin
untersucht, welche Rechenressourcen zu ihrer Losung benotigt werden.
Naturgeméafl bestehen daher enge Querbeziige zu

e Algorithmen (obere Schranken)
e Automatentheorie (Rechenmodelle)
e Berechenbarkeit (Was ist tiberhaupt algorithmisch lésbar?)

e Logik (liefert viele algorithmische Probleme, mit ihrer Hilfe kann
auch die Komplexitat von Problemen charakterisiert werden)

e Kryptografie (Wieviel Rechenressourcen benétigt ein Gegner,
um ein Kryptosystem zu brechen?)

Zur weiteren Motivation betrachten wir eine Reihe von konkreten
algorithmischen Problemstellungen.

Erreichbarkeitsproblem in Graphen (REACH):
Gegeben: Ein gerichteter Graph G = (V, E) mit V = {1,...,n}
und ECV x V.
Gefragt: Gibt es in G einen Weg von Knoten 1 zu Knoten n?

Zur Erinnerung: Eine Folge (vq,...,v;) von Knoten heifit Weg in G,
falls fir j =1,...,k — 1 gilt: (v;,v;41) € E.

Da als Antwort nur “ja” oder “nein” moglich ist, handelt es sich um
ein Entscheidungsproblem. Ein solches lasst sich formal durch eine
Sprache beschreiben, die alle positiven (mit “ja” zu beantwortenden)
Problemeingaben enthalt:

REACH = {G | in G ex. ein Weg von 1 nach n}.

Hierbei setzen wir eine Kodierung von Graphen durch Worter iiber
einem geeigneten Alphabet ¥ voraus. Wir kénnen G beispielsweise
durch eine Binirfolge der Lange n? kodieren, die aus den n Zeilen der
Adjazenzmatrix von G gebildet wird.

Wir entscheiden REACH durch einen Wegsuche-Algorithmus. Dieser
markiert nach und nach alle Knoten, die vom Knoten 1 aus erreichbar
sind. Hierzu speichert er jeden markierten Knoten solange in einer
Menge S bis er samtliche Nachbarknoten markiert hat. Genaueres ist
folgendem Algorithmus zu entnehmen:

Algorithmus suche-Weg(G)
Input: Gerichteter Graph G=(V,E) mit V ={1,...,n}

1

2 S:={1}

3 markiere Knoten 1

1 repeat

5 waehle einen Knoten u e S
6 S:=8—{u}

7 for all (u,v) € E do

8 if v ist nicht markiert then
9 markiere v
10 S :=SU{v}
11 until S =0

12 if n ist markiert then accept else reject

Es ist iiblich, den Ressourcenverbrauch von Algorithmen (wie z.B.
Rechenzeit oder Speicherplatz) in Abhéangigkeit von der Grofie der
Problemeingabe zu messen. Falls die Eingabe aus einem Graphen
besteht, kann beispielsweise die Anzahl n der Knoten (und/oder die
Anzahl m der Kanten) als Bezugsgrofie dienen. Der Verbrauch hangt
auch davon ab, wie wir die Eingabe kodieren.

Komplexitatsbetrachtungen:
e REACH ist in Zeit n® entscheidbar.

1 Einfithrung

e REACH ist nichtdeterministisch in Platz logn entscheidbar (und
daher deterministisch in Platz log® n; Satz von Savitch).

Als néachstes betrachten wir das Problem, einen maximalen Fluss in
einem Netzwerk zu bestimmen.

Maximaler Flufl (MAXFLow):
Gegeben: Ein gerichteter Graph G = (V, E) mit V = {1,... n},
E CV x V und einer Kapazititsfunktion ¢: £ — N.
Gesucht: Ein Fluss f : E — N von 1 nach n in G, d.h.
e Vec E: f(e) < c(e) und
e VoeV —{l,n}: ¥ flvu= > flu,v),

(viu)eE (u,v)EE

mit maximalem Wert w(f) = > f(1,0).
(1w)eE

Da hier nach einer Losung (Fluss) mit optimalem Wert gesucht wird,
handelt es sich um ein Optimierungsproblem (genauer: Maximie-
rungsproblem). Im Gegensatz hierzu wird bei vielen Entscheidungspro-

blemen nach der Existenz einer Losung (mit gewissen Eigenschaften)
gefragt.

Komplexitatsbetrachtungen:
e MAXFLOW ist in Zeit n® losbar.
e MAXFLOW ist in Platz n? losbar.

Das folgende Problem scheint zwar auf den ersten Blick nur wenig mit
dem Problem MAXFLOW gemein zu haben. In Wirklichkeit entpuppt
es sich jedoch als ein Spezialfall von MAXFLOW.

Perfektes Matching in bipartiten Graphen (MATCHING):
Gegeben: Ein bipartiter Graph G = (U,W,E) mit UNW = 0
und eNU # () #eN W fiir alle Kanten e € E.
Gefragt: Besitzt G ein perfektes Matching?

Zur Erinnerung: FEine Kantenmenge M C E heifit Matching, falls
fiir alle Kanten e,/ € M mit e # ¢ gilt: eNe’ = 0. Gilt zudem
||M]| = n/2, so heifit M perfekt (n ist die Knotenzahl von G).

Komplexitiatsbetrachtungen:
e MATCHING ist in Zeit n3 entscheidbar.
e MATCHING ist in Platz n? entscheidbar.
Die bisher betrachteten Probleme konnen in deterministischer Poly-
nomialzeit gelost werden und gelten daher als effizient 16sbar. Zum
Schluss dieses Abschnitts betrachten wir ein Problem, fiir das vermut-
lich nur ineffiziente Algorithmen existieren.
Travelling Salesman Problem (TSP):
Gegeben: Eine symmetrische n x n-Distanzmatrix D = (d;;) mit
d;j € N.
Gesucht: Eine kiirzeste Rundreise, d.h. eine Permutation 7 € .S,
mit minimalem Wert w(r) = f:l dr(i)m(i+1), WObei wir

m(n+1) = n(1) setzen.
Komplexitiatsbetrachtungen:

e TSP ist in Zeit n! lésbar (Ausprobieren aller Rundreisen).

e TSP ist in Platz n 16sbar (mit demselben Algorithmus, der
TSP in Zeit n! 16st).

e Durch dynamisches Programmieren® lasst sich TSP in Zeit
n? . 2" 1ésen, der Platzverbrauch erhéht sich dabei jedoch auf
n - 2" (sieche Ubungen).

“Hierzu berechnen wir fiir alle Teilmengen S C {2,...,n} und alle j € S die
Lénge 1(S,) eines kiirzesten Pfades von 1 nach j, der alle Stadte in S genau
einmal besucht.

2 Rechenmodelle

2 Rechenmodelle

2.1 Deterministische Turingmaschinen

Definition 1 (Mehrband-Turingmaschine).
Fine deterministische k-Band- Turingmaschine (k-DTM oder
einfach DTM) ist ein Quadrupel M = (Q, 3,1, 4, qo). Dabei ist

e () eine endliche Menge von Zustanden,

e ¥ cine endliche Menge von Symbolen (das Eingabealphabet)
mit U, > ¢ ¥ (U heifit Blank und > heifit Anfangssymbol,

e [' das Arbeitsalphabet mit ¥ U {U,>} C T,

e : QxTI* — (QU {an Ga, Gnein}) X (L x {L, R, N})* die
Uberfiihrungsfunktion (q, heift Haltezustand, g, akzep-
tierender und ¢nei, verwerfender Endzustand

e und qy der Startzustand.

Befindet sich M im Zustand ¢ €) und stehen die Schreib-Lese-
Kopfe auf Feldern mit den Inschriften aq,...,a; (a; auf Band i),
so geht M bei Ausfithrung der Anweisung § : (q,a1,...,a;) —
(¢',ay,Dy,...,a;,Dy) in den Zustand ¢’ tber, ersetzt auf Band i
das Symbol a; durch a] und bewegt den Kopf gemafi D; (im Fall
D; = L um ein Feld nach links, im Fall D; = R um ein Feld nach
rechts und im Fall D; = N wird der Kopf nicht bewegt).

Auflerdem verlangen wir von 0, dass fiir jede Anweisung
(q,a1,...,a;) — (¢,a},D1,...,a}, Dy) mit a; = > die Bedingung
a; = > und D; = R erfillt ist (d.h. das Anfangszeichen > darf nicht
durch ein anderes Zeichen iiberschrieben werden und der Kopf muss
nach dem Lesen von > immer nach rechts bewegt werden).

Definition 2. Fine Konfiguration ist ein (2k + 1)-Tupel K =
(q,u1,v1, ..., up,) € Q x (T x TH)* und besagt, dass

e ¢ der momentane Zustand und

o wv; UU--- die Inschrift des i-ten Bandes ist, und dass

o sich der Kopf auf Band i auf dem ersten Zeichen von v; befindet.
Definition 3. Eine Konfiguration K' = (¢, u}, v}, ..., u, vy,) heifst
Folgekonfiguration von K = (q,uy, ajvy, ..., ug, axvy) (kurz: K -

K'), falls eine Anweisung
(q,a1,...,a;x) — (¢',ay, Dy,...,a), Dy)

in 6 und by, ..., b, € existieren, so dass fiiri=1,... k jeweils eine
der folgenden drei Bedingungen gilt:
1. D; = N, u, = u; und v, = ajv;,

— _ / ! __ /
2. D; =L, u; = u;b; und v, = ba;v;,

U, v, =€
3. Di=R, u,=wa, undvi=¢ " " 7
Vi, Sonst,

Wir schreiben K &—)t K’, falls Konfigurationen Ky, ..., K; existieren

mit Ko = K und K; = K’, sowie K; - Ky firi=0,...,t— 1.
Die reflexive, transitive Hiille von - bezeichnen wir mit ?*, d.h.
K 7* K’ bedeutet, dass ein t > 0 existiert mit K Vt K'.

Definition 4. Sei xz € ¥* eine Eingabe. Die zugehérige Startkonfi-
guration ist
K, = (qo,&,>x,e,>, ..., &,>).
) l
(k—1)-ma

Definition 5. Fine Konfiguration K = (q,uy,vq,..., Uk, V) mit
q € {qh Ga» tein} heifit Endkonfiguration. Im Fall ¢ = g (bzw.
4 = Guein) heifit K akzeptierende (bzw. verwerfende) Endkonfi-
guration.

2 Rechenmodelle

Definition 6.

Eine DTM M hdlt bei Eingabe x € X* (kurz: M(x) hdlt), falls es
eine Endkonfiguration K = (q,uy,vq,. .., ug, vg) gibt mit

K, —" K.
M

Weiter definieren wir das Resultat M (x) der Rechnung von M bei
Eingabe x,

ja, M(z) halt im Zustand ga,
M(z) nein, M (z) halt im Zustand Guein,
xr) =
v, M (z) halt im Zustand gy,

1 (undefiniert), sonst.

Dabei ergibt sich y aus ugvg, indem das erste Symbol > und samtliche
Blanks am Ende entfernt werden, d. h. upv, = >yl fir ein i > 0. Fiir
M (z) = ja sagen wir auch ,M(x) akzeptiert und fir M(z) = nein
M (x) verwirft”

Definition 7. Die von einer DTM M akzeptierte Sprache ist
L(M)={x € X" | M(x) akzeptiert}.

Eine DTM, die eine Sprache L akzeptiert, darf also bei Eingaben
x ¢ L unendlich lange rechnen. In diesem Fall heiffit L rekursiv
aufzdhlbar (oder semi-entscheidbar). Dagegen muss eine DTM,
die eine Sprache L entscheidet, bei jeder Eingabe halten.

Definition 8. Sei L C ¥*. Eine DTM M entscheidet L, falls fiir
alle x € X% gilt:

r € L= M(x) akz.
r ¢ L= M(x) verw.

In diesem Fall heifst L entscheidbar (oder rekursiv).

2.2 Nichtdeterministische Berechnungen

Definition 9. Sei f : ¥* — ¥* eine Funktion. Fine DTM M be-
rechnet f, falls fir alle x € ¥* gilt:

M(x) = f().
f heifit dann berechenbar (oder rekursiv).

Aus dem Grundstudium wissen wir, dass eine nichtleere Sprache
L C ¥* genau dann rekursiv aufzahlbar ist, wenn eine rekursive Funk-
tion f: ¥* — X* existiert, deren Bild range(f) = {f(x) | x € ¥*} die
Sprache L ist.

2.2 Nichtdeterministische Berechnungen

Anders als eine DTM, fiir die in jeder Konfiguration hochstens eine
Anweisung ausfithrbar ist, hat eine nichtdeterministische Turingma-
schine in jedem Rechenschritt die Wahl unter einer endlichen Anzahl
von Anweisungen.

Definition 10. Eine nichtdeterministische k-Band-Turing-
maschine (kurz k-NTM oder einfach NTM) ist ein 5-Tupel M =
(Q,%,T,0,q0), wobei Q, X, T', qo genau wie bei einer k-DTM definiert
sind und

0: Q X Fk — P(Q U {Qha QjaQnein} X (F X {R7 L7 N})k)

die Figenschaft hat, dass fir (¢',a}, Dy, ..., a}, Dg) € 0(q,a1,...,ax)
im Fall a; = > immer a; = > und D; = R gilt.

Die Begriffe Konfiguration, Start- und Endkonfiguration iiber-
tragen sich unmittelbar von DTMs auf NTMs. Der Begriff der Fol-
gekonfiguration lasst sich tibertragen, indem wir 6(q, aq,...,a;) =
(¢,ay, Dy,...,a,Dy) durch (¢,a}, Dy,...,a,,Dy) € 6(q,ay,...,ax)
ersetzen (in beiden Féllen schreiben wir auch oft

§:(q,a1,...,ar)— (¢,ay, Dy,... a5, Dy)

2 Rechenmodelle

oder einfach (q,as,...,ax) — (¢, a}, D1, ..., a}, Dy).
Wir werden NTMs nur zum Erkennen von Sprachen (d.h. als Akzep-
toren) und nicht zum Berechnen von Funktionen benutzen.

Definition 11. Sei M eine NTM.

a) Wir sagen M(x) akzeptiert, falls M(x) nur endlich lange
Rechnungen ausfihrt und eine akzeptierende Endkonfiguration
K existiert mit K, —* K.

b) Akzeptiert M(x) nicht und hat M(x) nur endlich lange Rech-
nungen, so verwirft M(x).

¢) Falls M(x) unendlich lange Rechnungen ausfihrt, ist M(x) =1
(undefiniert).

d) Die von M akzeptierte Sprache ist

L(M) ={x € X" | M(x) akzeptiert}.

e) M entscheidet L(M), falls M alle Fingaben x ¢ L(M) ver-
wirft.

2.3 Zeitkomplexitit

Der Zeitverbrauch timeys(x) einer Turingmaschine M bei Eingabe z
ist die maximale Anzahl an Rechenschritten, die M ausgehend von
der Startkonfiguration K, ausfithren kann (bzw. undefiniert oder oo,
falls unendlich lange Rechnungen existieren).

Definition 12.

a) Sei M eine TM (d.h. eine DTM oder NTM) und sei v € ¥*
eine Fingabe. Dann ist

timey (z) = max{t > 0| 3K : K, H' K}

die Rechenzeit von M bei Eingabe x, wobei max N = oo ist.

2.3 Zeitkomplexitat
b) Seit: N — N eine Funktion. Dann ist M t(n)-zeitbeschrankt,
falls fir alle n > 0 und alle x € ¥* mit |x| < n gilt:
timey (z) < t(n).

Alle Sprachen, die in (nicht-)deterministischer Zeit ¢(n) entscheidbar
sind, fassen wir in den Komplexitatsklassen

DTIME(t(n)) ={L(M) | M ist eine t(n)-zeitbeschrankte DTM}
bzw.
NTIME(t(n)) ={L(M) | M ist eine t(n)-zeitbeschrankte NTM}

zusammen. Ferner sei

f wird von einer t(n)-zeitbe- }

FTIME(t(n)) = {f schrinkten DTM berechnet

Fiir eine Klasse F' von Funktionen ¢ : N — N sei DTIME(F) =
User DTIME(f(n)). NTIME(F) und FTIME(F') sind analog definiert.
Die Klasse O(n®W) aller polynomiell beschriankten Funktionen be-
zeichnen wir mit poly(n). Die wichtigsten Zeitkomplexitatsklassen
sind

LINTIME = DTIME(O(n)) = |J DTIME(cn + ¢)

c>1

P = DTIME(poly(n)) = [J DTIME(n®+¢) ,Polynomialzeit®,

c>1
— |J DTIME(2"+¢)

c>1

E = DTIME(2°™)

EXP = DTIME(2rY (™)

c>1

Die Klassen NP, NE, NEXP und FP, FE, FEXP sind analog definiert.

,Linearzeit*,

,Lineare Exponentialzeit®,

= |JDTIME(2"*¢) ,Exponentialzeit*.

2 Rechenmodelle

2.4 Platzkomplexitat

Zur Definition von Platzkomplexitédtsklassen verwenden wir so ge-
nannte Offline-Turingmaschinen und Transducer. Diese haben die
Eigenschaft, dass sie das erste Band nur als Eingabeband (also nur
zum Lesen) bzw. das k-te Band nur als Ausgabeband (also nur zum
Schreiben) benutzen. Der Grund fir diese Einschrankungen liegt darin,
sinnvolle Definitionen fiir Komplexitétsklassen mit einem sublinearen
Platzverbrauch zu erhalten.

Definition 13. Eine TM M heifit Offline-TM, falls fir jede An-
weisung (q,ay,...,a;) — (¢,d}, Dy,...,a}, Dy) die Bedingung

ay=a;ANfa; =U = Dy =1]

gilt. Gilt weiterhin immer Dy # L und ist M eine DTM, so heifst M
Transducer.

Dies bedeutet, dass eine Offline-TM nicht auf das Eingabeband schrei-
ben darf (read-only). Beim Transducer dient das letzte Band als
Ausgabeband, auch hier kénnen keine Berechnungen durchgefiihrt
werden (write-only).

Der Zeitverbrauch timey(x) von Offline-TMs und von Transducern
ist genauso definiert wie bei DTMs. Als néchstes definieren wir den
Platzverbrauch einer TM als die Anzahl aller wihrend der Rechnung
besuchten Bandfelder.

Definition 14.

a) Sei M eine TM und sei x € ¥* eine Eingabe mit timep(x) < oo.
Dann ist

spacey () = max{s > 1 |3IK = (q,uq, vy, ..., Uk, Vg)

k
mit K, F* K und s = Y |uv;|}
i=1

2.4 Platzkomplexitat

der Platzverbrauch von M bei Fingabe x. Fiir eine Offline-
TM ersetzen wir YF_ | |uwv;| durch SF_, luwvs| und fiir einen
Transducer durch 87} Jugvy).
b) Sei s : N — N. Dann ist M s(n)-platzbeschrankt, falls fir
alle n > 0 und alle v € ¥* mit |x| < n gilt:
spacey (x) < s(|z|) und timey (x) < oo.

D.h., spacey;(z) ist undefiniert, falls timey(x) = oo undefiniert
ust.

Alle Sprachen, die in (nicht-) deterministischem Platz s(n) entscheid-
bar sind, fassen wir in den Komplexitétsklassen

M ist eine s(n)-platzbe- }

DSPACE(s(n)) = {L(M) schrankte Offline-DTM

bzw.

schrankte Offline-NTM

NSPACE(s(n)) = { ()| ML it eine s(n)-platzbe- }

zusammen. Ferner sei

f wird von einem s(n)-platzbe-
FSPACE =)
SPACE(s(n)) {f schrankten Transducer berechnet

Die wichtigsten Platzkomplexitatsklassen sind
L = LOGSPACE = DSPACE(O(logn))
L = DSPACE(O(log®n))
LINSPACE = DSPACE(O(n))
PSPACE = DSPACE(poly(n))
ESPACE = DSPACE(2°(™)
EXPSPACE = DSPACE(2p°¥(™)

Die Klassen NL, NLINSPACE und NPSPACE, sowie FL, FLINSPACE
und FPSPACE sind analog definiert, wobei NPSPACE mit PSPACE

zusammenfillt (wie wir bald sehen werden).

3 Grundlegende Beziehungen

3 Grundlegende Beziehungen

In diesem Kapitel leiten wir die wichtigsten Inklusionsbeziehungen
zwischen deterministischen und nichtdeterministischen Platz- und
Zeitkomplexititsklassen her. Zuerst befassen wir uns jedoch mit Ro-
bustheitseigenschaften dieser Klassen.

3.1 Robustheit von Komplexitiatsklassen

Wir zeigen zuerst, dass platzbeschrankte TMs nur ein Arbeitsband
benotigen.

Lemma 15 (Bandreduktion).

Zu jeder s(n)-platzbeschrinkten Offline-DTM M ex. eine s(n)-platz-
beschrinkte Offline-2-DTM M" mit L(M') = L(M).

Beweis. Sei M = (Q,%,T,6,qo) eine Offline-k-DTM mit k& > 3. Be-
trachte die Offline-2-DTM M’ = (@', 3, I",¢,¢)) mit I' =T U (T'U
[')¥=1, wobei I fiir jedes a € I' die markierte Variante @ enthélt. M’
hat dasselbe Eingabeband wie M, speichert aber die Inhalte von
(k — 1) iibereinander liegenden Feldern der Arbeitsbander von M auf
einem Feld ihres Arbeitsbandes. Zur Speicherung der Kopfpositionen
von M werden Markierungen benutzt.

Initialisierung: In den ersten beiden Rechenschritten erzeugt M’ auf
ihrem Arbeitsband (Band 2) k — 1 Spuren, die jeweils mit dem
markierten Anfangszeichen & initialisiert werden:

>
Ko =ty o) 5 (ool 3 (e ()
b3

Simulation: M’ simuliert einen Rechenschritt von M, indem sie den
Kopf auf dem Arbeitsband soweit nach rechts bewegt, bis sie
alle (k — 1) markierten Zeichen ao, ..., a; gefunden hat. Diese
speichert sie neben dem aktuellen Zustand ¢ von M in ihrem
Zustand. Wéahrend M’ den Kopf wieder nach links bewegt,
filhrt M’ folgende Aktionen durch: Ist a; das von M’ (und
von M) gelesene Eingabezeichen und ist (g, a, as, ..., a;) =
(¢'ya1, Dy,dy, Ds, ... a, D), so bewegt M’ den Eingabekopf
gemaf Dy, ersetzt auf dem Arbeitsband die markierten Zeichen
a; durch @} und verschiebt deren Marken geméfl D;, i = 2,..., k.

Akzeptanzverhalten: M’ akzeptiert genau dann, wenn M akzeptiert.

Offenbar gilt nun L(M') = L(M) und space,; (x) < spacey(z). M

In den Ubungen wird gezeigt, dass die Sprache der Palindrome
durch eine 2-DTM zwar in Linearzeit entscheidbar ist, eine 1-DTM
hierzu jedoch Zeit €(n?) bendétigt. Tatséchlich ldsst sich jede t(n)-
zeitbeschrénkte k-DTM M von einer 1-DTM M’ in Zeit O(t(n)?)
simulieren. Bei Verwendung einer 2-DTM ist die Simulation sogar
in Zeit O(t(n)logt(n)) durchfiihrbar (siche Ubungen). Als néchstes
wenden wir uns wichtigen Robustheitseigenschaften von Platz- und
Zeitkomplexitatsklassen zu.

Satz 16 (Lineare Platzkompression und Beschleunigung).
Fiir alle ¢ > 0 gilt
i) DSPACE(s(n)) € DSPACE(2 + cs(n)), (lin. space compression)

it) DTIME(t(n)) € DTIME(2 +n +c- t(n)). (linear speedup)

Beweis. i) Sei L € DSPACE(s(n)) und sei M = (Q,%,T,6,qp) eine
s(n)-platzbeschriankte Offline-k-DTM mit L(M) = L. Nach vorigem
Lemma kénnen wir k& = 2 annehmen. O.B.d.A. sei ¢ < 1. Wahle
m = [1/c] und betrachte die Offline-2-DTM

M/ = (Q X {1:---am}727FUFm,5/,(QO,m))

3 Grundlegende Beziehungen

mit
((qlal)aaa D17[>7R)7

falls b = > und 6(q, a,>) = (¢, a, D1,>, R),
6’(((],2),@, b) = ((q’,j),a, D1,<b1,...,bifl,bg,bﬂ,l,...,bm),DIQ),

falls [b = (by,...,by) oder b = U = by =
. =bp] und 0(q,a,b;) = (¢, a, D1, b}, Dy),

wobei
i, Dy =N
i+1, Dy=R;i<m L, Dy=Li=1
J=191, Dy=Ri=m und Dy,={R Dy=Ri=m
m, Dy="Li=1 N, sonst
1—1, Dy=L1>1

ist. Identifizieren wir die Zusténde (gj,?) mit ¢, und (gnein,?) mit
(nein, SO ist leicht zu sehen, dass L(M') = L(M) = L gilt. Zudem gilt

spacey, < 1+ [(spacey(x) —1)/m]
< 2+ spacey(x)/m

< 2+ ¢ spacey, () (wegen m = [1/c] > 1/c).

it) Sei L € DTIME(t(n)) und sei M = (Q,%,T',4d,q) eine t(n)-
zeitbeschrankte k-DTM mit L(M) = L, wobei wir k& > 2 an-
nehmen. Wir konstruieren eine k-DTM M’ mit L(M') = L und
timepyy (x) < 2+ |x| + ¢ - timey (x). M’ verwendet das Alphabet
I"=TUTI"™ mit m = [8/c] und simuliert M wie folgt.
Initialisierung: M’ kopiert die Eingabe x = x; ...z, in Blockform
auf das zweite Band. Hierzu fasst M’ je m Zeichen von z zu
einem Block (Zimt1,-- -, T41ym), 1 =0,...,0 = [n/m] =1, zu-
sammen, wobei der letzte Block (zyn41,...,2n, U, ..., 1) mit

3.1 Robustheit von Komplexitédtsklassen

(I + 1)m — n Blanks auf die Lange m gebracht wird. Sobald M’
das erste Blank hinter der Eingabe x erreicht, ersetzt sie dieses
durch das Zeichen >, d.h. das erste Band von M’ ist nun mit
x> und das zweite Band mit

D(Z1s s Tm) - (Bt 1s - - s Tim) (Bl 15 -+ Ty Ly L)

beschriftet. Hierzu benotigt M’ genau n+ 2 Schritte. In weiteren
[+1 = [n/m] Schritten kehrt M’ an den Beginn des 2. Bandes
zuriick. Von nun an benutzt M’ das erste Band als Arbeitsband
und das zweite als Eingabeband.

Simulation: M' simuliert jeweils eine Folge von m Schritten von M
in 6 Schritten:

M’ merkt sich in ihrem Zustand den Zustand ¢ von M vor
Ausfihrung dieser Folge und die aktuellen Kopfpositionen
i; € {1,...,m} von M innerhalb der gerade gelesenen Blocke
auf den Bandern j = 1,..., k. Die ersten 4 Schritte verwendet
M’ um die beiden Nachbarblécke auf jedem Band zu erfassen
(LRRL). Mit dieser Information kann M’ die nachsten m Schrit-
te von M vorausberechnen und die entsprechende Konfiguration
in 2 weiteren Schritten herstellen.

Akzeptanzverhalten: M’ akzeptiert genau dann, wenn M dies tut.
Es ist klar, dass L(M’) = L ist. Zudem gilt fiir jede Eingabe = der
Lange |z| =n
timeyy () <n+2+ [n/m] +6[t(n)/m]

<n+2+T7[t(n)/m]

<n+24T7ct(n)/8+7

<n+2+ct(n), falls c-t(n)/8 > 7.
Da das Ergebnis der Rechnung von M (z) im Fall ¢(n) < 56/c nur
von konstant vielen Eingabezeichen abhingt, kann M’ diese Eingaben

schon wéhrend der Initialisierungsphase (durch table-lookup) in Zeit
n + 2 entscheiden. |

3 Grundlegende Beziehungen

Korollar 17.

i) DSPACE(O(s(n))) = DSPACE(s(n)), falls s(n) > 2.

it) DTIME(O(t(n))) = DTIME(t(n)), falls t(n) > (1 4+ ¢e)n + 2 fir

ein € > 0 ust.
iii) DTIME(O(n)) = () DTIME((1 +€)n + 2).
e>

Beweis. 1) Sei L € DSPACE(cs(n) + ¢) fiir eine Konstante ¢ > 0.
Ist s(n) < 6 fiir unendlich viele n, so folgt L € DSPACE(O(1)) =
DSPACE(0). Gilt dagegen s(n) > 6 fiir fast alle n, so existiert fir
¢ = 1/2c eine Offline-k-DTM M, die L fiir fast alle Eingaben in Platz
2+ des(n) + de <3+ s(n)/2 < s(n) entscheidet. Wegen s(n) > 2
konnen wir M leicht so modifizieren, dass sie auch die endlich vielen
Ausnahmen in Platz s(n) entscheidet.
i1) Sei L € DTIME(ct(n)+c) fiir ein ¢ > 0. Nach vorigem Satz existiert
fir ¢ =¢/(2+2¢)c eine DTM M, die L in Zeit 2+n+ct(n)+cc ent-
scheidet. Wegen ’ct(n) = et(n)/(2+2¢) und da wegen t(n) > (14+¢)n
fur fast alle n gilt, dass (24¢€)t(n)/(2+2¢) > (2+¢)n/2 > 2+ c+n
ist, folgt 2+ c'c+n+ct(n) < t(n) fir fast alle n. Wegen t(n) > n+2
konnen wir M leicht so modifizieren, dass sie auch die endlich vielen
Ausnahmen in Zeit ¢(n) entscheidet.
i7i) Klar, da DTIME(O(n)) = DTIME(O((1 + ¢)n 4 2)) und letztere
Klasse nach i) fiir jedes € > 0 gleich DTIME((1 +¢)n+2) ist. W

3.2 Deterministische Simulationen von
nichtdeterministischen Berechnungen

In diesem Abschnitt betrachten wir moglichst platz- und zeiteffiziente

deterministische Simulationen von nichtdeterministischen TMs.

Satz 18.
i) NTIME(t(n)) € DSPACE(O(t(n))),

3.2 Deterministische Simulationen von nichtdeterministischen Berechnungen

ii) NSPACE(s(n)) C DTIME(20(:(m)Hlogn)),

Beweis. i) Sei L € NTIME(t(n)) und sei N = (Q,%X,I', A, q) eine
k-NTM, die L in Zeit t(n) entscheidet. Weiter sei

d = max (g a)eqQxrk 16(q, @)
der maximale Verzweigungsgrad von /N. Dann ist jede Rechnung

K,=Ky— K — ... = K;
N N N

der Léange t von N(z) eindeutig durch eine Folge (iy,...,4;) €
{1,...,d} beschreibbar. Um N zu simulieren, generiert M auf dem
Band 2 fir ¢ = 1,2,... der Reihe nach alle Folgen (i,...,i;) €
{1,...,d}". Fir jede solche Folge kopiert M die Eingabe auf Band 3
und simuliert die zugehérige Rechnung von N(z) auf den Bandern
3 bis k 4+ 2. M akzeptiert, sobald N bei einer dieser Simulationen in
den Zustand ¢;, gelangt. Wird dagegen ein ¢ erreicht, fiir das alle d*
Simulationen von N im Zustand ¢uen oder ¢, enden, so verwirft M.
Nun ist leicht zu sehen, dass L(M) = L(N) und der Platzverbrauch
von M durch

spacey(z) < timen(x) + spacen(x) < (k4 1)(timeny(z) + 1)

beschrankt ist.

i1) Sei L € NSPACE(s(n)) und sei N = (Q, %, T, 0, qo) eine Offline-2-
NTM, die L in Platz s(n) entscheidet. Bei einer Eingabe z der Lénge
n kann N

e die Kopfe des Eingabe- bzw. Arbeitsbandes auf hochstens n + 2
bzw. s(n) verschiedenen Bandfeldern positionieren,

e das Arbeitsband mit hochstens ||I']|*™ verschiedenen Beschrif-
tungen versehen und

e hochstens ||Q|| verschiedene Zustédnde annehmen.

3 Grundlegende Beziehungen

D.h. ausgehend von der Startkonfiguration K, kann N in Platz s(n)
héchstens

t(n) = (n+2)s(n)||T*M Q| < o

verschiedene Konfigurationen erreichen, wobei ¢ eine von N abhéngige
Konstante ist. Um N zu simulieren, testet M fir s =1,2,..., 0b N(x)
eine akzeptierende Endkonfiguration K = (gja, u1, v1, u2, v2) der Grifle
|ugvs| = s erreichen kann. Ist dies der Fall, akzeptiert M. Erreicht
dagegen s einen Wert, so dass N(x) keine Konfiguration der Grofie
s erreichen kann, verwirft M. Hierzu muss M fur s = 1,2,...,s(n)
jeweils alle von der Startkonfiguration K, erreichbaren Konfiguratio-
nen der GréBe s bestimmen, was in Zeit (¢ +108m)001) — 90(s(n)+logn)
moglich ist. [

Korollar 19. s(n) > logn = NSPACE(s(n)) € DTIME(2°¢()),
Es gilt somit fir jede monotone Funktion s(n) > logn,
DSPACE(s) € NSPACE(s) C DTIME(2°®))
und fiir jede monotone Funktion ¢(n) > n + 2,
DTIME(t) C NTIME(t) C DSPACE(t).

Insbesondere erhalten wir somit die Inklusionskette

L € NL C P C NP C PSPACE C NPSPACE
C EXP C NEXP C EXPSPACE C ...

Des weiteren impliziert Satz 16 fiir ¢(n) > n + 2 und s(n) > logn die
beiden Inklusionen

NTIME(t) € DTIME(2°") und NSPACE(s) € DSPACE(2°),

wovon sich letztere noch erheblich verbessern lasst, wie wir im néachs-
ten Abschnitt sehen werden.

10

3.3 Der Satz von Savitch

3.3 Der Satz von Savitch

Praktisch relevante Komplexitatsklassen werden durch Zeit- und Platz-
schranken ¢(n) und s(n) definiert, die sich mit relativ geringem Auf-
wand berechnen lassen.

Definition 20. FEine monotone Funktion f : N — N heifit echte
(engl. proper) Komplexitiatsfunktion, falls es einen Transducer M
gibt mit

o M(z)= 170D,

o spacey(z) = O(f(|a])) und

o timex(z) = O(f(|a]) + |z]).
Beispiele fiir echte Komplexitéitsfunktionen sind &, [logn], [log® n],
[n-logn], n* +k, 2", n!- |/n] (sieche Ubungen).
Satz 21 (Savitch, 1970).
Fiir jede echte Komplexitatsfunktion s(n) > logn gilt

NSPACE(s) C DSPACE(s?).

Beweis. Sei L € NSPACE(s) und sei N eine Offline-2-NTM, die L in
Platz s(n) entscheidet. Wie im Beweis von Satz 18 gezeigt, kann N
bei einer Eingabe x der Lénge n hochstens ¢*™ verschiedene Konfi-
gurationen einnehmen. Daher muss im Fall x € L eine akzeptierende
Rechnung der Linge < ¢*™ existieren. Zudem kénnen wir anneh-
men, dass N (z) kochstens eine akzeptierende Endkonfiguration K,
erreichen kann.

Sei Ki,...,K.m eine Aufzdhlung aller Konfigurationen von N(x)
die Platz hochstens s(n) benétigen. Dann ist leicht zu sehen, dass
fiir je zwei solche Konfigurationen K, K’ und jede Zahl i folgende
Aquivalenz gilt:

K=K o3K,: K=" K;ANK; == K.
N N N

Nun kénnen wir N (x) durch folgende Offline-3-DTM M (z) simulieren.

3 Grundlegende Beziehungen

Initialisierung: M (z) schreibt das Tripel (K,, K, [s(|n]) logc]) auf
das 2. Band, wobei fiir das Eingabeband nur die Kopfpo-
sition, nicht jedoch die Beschriftung notiert wird (also z.B.
K, = (qo,1,e,)). Wéahrend der Simulation wird auf dem 2.
Band ein Keller (stack) von Tripeln der Form (K, K',4) imple-
mentiert, die jeweils fir die Frage stehen, ob K VST K’ gilt.

Zur Beantwortung dieser Frage arbeitet M den Stack wie folgt
ab, wobei das 3. Band zum Kopieren von Tripeln auf dem 2.
Band und zur Berechnung von K, aus K; benutzt wird.

Simulation: Sei (K, K',i) das am weitesten rechts auf dem 2. Band
stehende Tripel (also das oberste Kellerelement).

In den Féllen K = K’ und i = 0 testet M direkt, ob K 751 K’
gilt und gibt die Antwort zurtick.

Andernfalls fiigt M fiir wachsendes j = 1,2,... das Tripel
(K, K;,©— 1) hinzu und berechnet (rekursiv) die Antwort fiir
diese Tripel.

Ist diese negativ, so wird das Tripel (K, Kj,i — 1) durch das
nichste Tripel (K, K;,1,i — 1) ersetzt (solange j < c*™ ist,
andernfalls erfahrt das Tripel (K, K, i) eine negative Antwort).
Ist die Antwort auf das Tripel (K, K, i — 1) dagegen positiv, so
ersetzt M das Tripel (K, K, i—1) durch das Tripel (K;, K',i—1)
und berechnet die zugehorige Antwort. Bei einer negativen Ant-
wort fahrt M mit dem néchsten Tripel (K, K;1q,7— 1) fort. Bei
einer positiven Antwort erhélt dagegen das Tripel (K, K’, i) eine
positive Antwort.

Akzeptanzverhalten: M akzeptiert, falls die Antwort auf das Start-
tripel (K,, K,, [s(|n|)logc]) positiv ist.

Da sich auf dem 2. Band zu jedem Zeitpunkt héchstens [s(|n|) log |

Tripel befinden und jedes Tripel O(s(|x|)) Platz benotigt, besucht M

nur O(s*(|z|)) Felder.]

11

3.4 Der Satz von Immerman und Szelepcsényi

Korollar 22.
i) NL C L?,
ii) NPSPACE = Uyso NSPACE(n*)
PSPACE,
i1i) NPSPACE ist unter Komplement abgeschlossen,
iv) CSL = NSPACE(n) C DSPACE(n?) NE.

C Uk=o DSPACE(n?)

Eine weitere Folgerung aus dem Satz von Savitch ist, dass das Kom-
plement L einer Sprache L € NSPACE(s) in DSPACE(s*) und so-
mit auch in NSPACE(s?) liegt. Wir werden gleich sehen, dass L so-
gar in NSPACE(s) liegt, d.h. die nichtdeterministischen Platzklassen
NSPACE(s) sind unter Komplementbildung abgeschlossen.

3.4 Der Satz von Immerman und Szelepcsényi

Definition 23.

a) Fir eine Sprache L € ¥* bezeichne L = X* — L das Komple-
ment von L.

b) Fiir eine Sprachklasse C bezeichne co-C = {L|L € C} die zu C
komplementdre Sprachklasse.

Beispiel 24.

1) Die zu NP komplementire Klasse ist co-NP = {L|L € NP}. Ein
Beispiel fiir ein co-NP-Problem ist TAUT:
Gegeben: Eine boolsche Formel F tiber n Variablen x+,. .., x,.
Gefragt: Ist ' eine Tautologie, d.h. gilt f(a) = 1 fur alle

Belegungen a € {0,1}"?

Die Frage ob NP unter Komplementbildung abgeschlossen ist
(d.h., ob NP = co-NP gilt), ist ahnlich wie das P = NP-Problem
ungelost.

3 Grundlegende Beziehungen

2) Wir wir gesehen haben, impliziert der Satz von Savitch den
Abschluss von NPSPACE unter Komplementbildung.

3) Dagegen wurde die Frage ob die Klasse CSL = NSPACE(n) der
kontextsensitiven Sprachen unter Komplementbildung abgeschlos-
sen ist, erst in den 80ern geldst (siehe Satz von Immerman und

Szelepcsényi), d.h. es gilt CSL = co-CSL.

4) Andererseits ist co-CFL # CFL. Dies folgt aus der Tatsache, dass
kontextfreie Sprachen zwar unter Vereinigung abgeschlossen sind,
aber nicht unter Schnitt. <

Da sich deterministische Rechnungen leicht komplementieren las-
sen (durch einfaches Vertauschen der Zustande gj, und gnein), sind
deterministische Komplexitdtsklassen unter Komplementbildung ab-
geschlossen.

Proposition 25.
i) co-DSPACE(s(n)) = DSPACE(s(n)),
i1) co-DTIME(t(n)) = DTIME(t(n)).

Damit ergibt sich folgende Inklusionsstruktur:

NTIME(f) Uco-NTIME(f)
NTIME(f) co-NTIME(f)
NTIME(f) N co-NTIME(f)

DTIME(f)

Dagegen lassen sich nichtdeterministische Berechnungen nicht ohne
weiteres komplementieren; es sei denn, man fordert gewisse Zusatzei-
genschaften.

12

3.4 Der Satz von Immerman und Szelepcsényi

Definition 26. Eine NTM N heifit strong bei Fingabe x, falls es
entweder akzeptierende oder verwerfende Rechnungen bei Eingabe x
gibt (aber nicht beides zugleich).

Satz 27 (Immerman und Szelepcsényi, 1987).
Fiir jede echte Komplexitatsfunktion s(n) > logn gilt

NSPACE(s) = co-NSPACE(s)).

Beweis. Sei L € NSPACE(s) und sei N eine s(n)-platzbeschriankte
Offline-NTM mit L(N) = L. Wir konstruieren eine O(s(n))-
platzbeschrankte Offline-NTM N’ mit L(N') = L, die bei allen
Eingaben strong ist. Hierzu zeigen wir zuerst, dass die Frage, ob
N(z) eine Konfiguration K in héchstens ¢ Schritten erreichen kann,
durch eine O(s(n))-platzbeschrankte Offline-NTM N, entscheidbar
ist, die bei Kenntnis der Anzahl

r(z,t—1) = [{K|K, 5= K}

aller in hochstens ¢t — 1 Schritten erreichbaren Konfigurationen strong
ist. Sei

Lo =A{(z,r,t, K)|t > 1 und K, ?St K}.

Behauptung 28. FEs existiert eine O(s(n))-platzbeschrankte Off-
line-NTM Ny mit L(No) = Lo, die auf allen Eingaben der Form
(x,r(z,t —1),t,K), t > 1, strong ist.

Beweis der Behauptung. No(x,r,t, K) benutzt einen mit dem Wert 0
initialisierten Zahler ¢ und rat der Reihe nach fiir jede Konfiguration
K;, die Platz < s(|x|) benoétigt, eine Rechnung von N(x) der Lange
<t —1, die in K; endet. Falls dies gelingt, erhoht Ny den Zahler ¢
um 1 und testet, ob K; 731 K gilt. Falls ja, so halt Ny im Zustand

gja- Nachdem N alle Konfigurationen K; durchlaufen hat, halt Ny im
Zustand @pein, wenn ¢ den Wert r hat, andernfalls im Zustand ¢y,.

3 Grundlegende Beziehungen 3.4 Der Satz von Immerman und Szelepcsényi

Pseudocode fiir Ny(x,r,t, K) Fall © ¢ L verifiziert, dass keine der erreichbaren Konfigurationen

akzeptierend ist.

1 if ¢t =0 then halte im Zustand ¢nein
2 ¢:=0

3 for each Konfiguration K; do

A rate eine Rechnung « der Laenge <t—1 von N(z)
5 if o endet in K, then

6 ci=c+1
7 if K, 751 K then
8 halte im Zustand gj,

9 if ¢=1r then

10 halte im Zustand gnein
11 else

12 halte im Zustand ¢,

Da Ny genau dann eine akzeptierende Rechnung hat, wenn eine
Konfiguration K; mit K, 79_1 K; und K; 731 K existiert, ist
klar, dass Ny die Sprache L, entscheidet. Da Ny zudem O(s(n))-
platzbeschrinkt ist, bleibt nur noch zu zeigen, dass Ny bei Eingaben
der Form zy = (z,r(z,t — 1),t, K), t > 1, strong ist, also Ny(xo)
genau im Fall xq € Ly eine verwerfende Endkonfiguration erreichen
kann.

Um bei Eingabe z eine verwerfende Endkonfiguration zu erreichen,
muss Ny r = r(z,t — 1) Konfigurationen K; finden, fur die zwar
K, 795_1 K; aber nicht K; 731 K gilt. Dies bedeutet jedoch, dass
K von keiner der r(x,t — 1) in ¢t — 1 Schritten erreichbaren Konfigura-
tionen in einem Schritt erreichbar ist und somit x(tatsichlich nicht
zu Ly gehort. Die Umkehrung folgt analog. |

Betrachte nun folgende NTM N’, die fir t = 1,2,... die Anzahl
r(z,t) der in hochstens ¢ Schritten erreichbaren Konfigurationen in
der Variablen r berechnet (diese Technik wird induktives Zahlen,
engl. inductive counting, genannt) und mit Hilfe dieser Anzahlen im

13

Pseudocode fir N'(x)

1 t:=0

2 r:=1

3 repeat

4 t:=t+1

5 roo=r

6 r:=0

7 for each Konfiguration K; do

8 simuliere Ny(z,r ,t, K;)

9 if Ny akzeptiert then

10 r=r+1

11 if K; ist akzeptierende Endkonfiguration then
12 halte im Zustand gj,

13 if Ny haelt im Zustand ¢, then
14 halte im Zustand ¢,

15 until (r=r")
16 halte im Zustand ¢nein

Behauptung 29. Im t-ten Durchlauf der repeat-Schleife wird r= in
Zeile 5 auf den Wert r(xz,t — 1) gesetzt. Folglich wird Ny von N' in
Zeile 8 nur mit Eingaben der Form (z,r(x,t —1),t, K;) aufgerufen.

Beweis der Behauptung. Wir fithren Induktion tber ¢:

t = 1: Im ersten Durchlauf der repeat-Schleife erhdlt »— den Wert
1 =r(z,0).

t ~»t+41: Da r~ zu Beginn des t 4+ 1-ten Durchlaufs auf den Wert
von r gesetzt wird, miissen wir zeigen, dass r im ¢-ten Durch-
lauf auf r(z,t) hochgezéhlt wird. Nach Induktionsvorausset-
zung wird Ny im ¢t-ten Durchlauf nur mit Eingaben der Form
(z,r(x,t — 1),t, K;) aufgerufen. Da Ny wegen Beh. 1 auf all

3 Grundlegende Beziehungen

diesen Eingaben strong ist und keine dieser Simulationen im
Zustand ¢, endet (andernfalls wiirde N’ sofort stoppen), wer-
den alle in < ¢ Schritten erreichbaren Konfigurationen K; als
solche erkannt und somit wird r tatsachlich auf den Wert r(z, t)
hochgezahlt.]

Behauptung 30. Bei Beendigung der repeat-Schleife in Zeile 15 gilt
r=r" = [{K[K, 2" K}

Beweis der Behauptung. Wir wissen bereits, dass im t-ten Durchlauf
der repeat-Schleife » den Wert r(z,t) und r~ den Wert r(z,t — 1)
erhalt. Wird daher die repeat-Schleife nach ¢, Durchlédufen verlassen,
sogilt r =r~ =r(z,t.) =r(z,t. — 1).

Angenommen 7(z,t.) < ||{K|K, 7* K}||. Dann gibt es eine Konfigu-
ration K, die fir ein ¢’ > ¢, in ¢’ Schritten, aber nicht in ¢, Schritten

erreichbar ist. Betrachte eine Rechnung K, = K| 7 K, 7 - 7

Ky = K minimaler Lange, die in K endet. Dann gilt K, yte K,
aber nicht K, 75“_1 K;, und daher folgt r(z,t.) > r(x,t. — 1).
Widerspruch! [|

Da N’ offenbar die Sprache L in Platz O(s(n)) entscheidet, bleibt nur
noch zu zeigen, dass N’ bei allen Eingaben strong ist. Wegen Behaup-
tung 30 hat N'(z) genau dann eine verwerfende Rechnung, wenn im
letzten Durchlauf der repeat-Schleife alle erreichbaren Konfiguratio-
nen K als solche erkannt werden und darunter keine akzeptierende
Endkonfiguration ist. Dies impliziert z ¢ L. Umgekehrt ist leicht zu
sehen, dass N'(z) im Fall x ¢ L eine verwerfende Rechnung hat. W

Korollar 31.
1. NL = co-NL,
2. CSL = NLINSPACE = co-CSL.

3.4 Der Satz von Immerman und Szelepcsényi

Damit ergibt sich folgende Inklusionsstruktur fiir (nicht)deterministische

Platz- und Zeitklassen:
DSPACE(2O(S))

NTIME(20©) co-NTIME(20))

DTIME(20) DSPACE(s?)
NSPACE(s) = co-NSPACE(s)

e DSPACE(s)

Angewandt auf die wichtigsten bisher betrachteten Komplexitatsklas-
sen erhalten wir folgende Inklusionsstruktur:

e EXP

PSPACE = NPSPACE

NP U co-NP

NLINSPACE = CSL = co-CSL
NP
LINSPACE = DCSL
NP N co-NP
|2
e P

NL = co-NL

o |

Eine zentrale Fragestellung der Komplexitatstheorie ist, welche dieser
Inklusionen echt sind. Dieser Frage gehen wir im néchsten Kapitel
nach.

14

4 Hierarchiesatze

4 Hierarchiesatze

4.1 Diagonalisierung und die Unentscheidbarkeit
des Halteproblems

Wir benutzen folgende Kodierung (Godelisierung) von 1-DTMs
M=(Q,%,T,0,q). O.B.d.A. sei Q@ ={q0,q1,---,qm}, {0,1,#} C X
und I' = {ay, ..
Dann kodieren wir jedes v € Q UT U {¢n, ¢ja, Gnein, L, R, N} wie folgt
durch eine Binarzahl ¢(a) der Lange b = [log,(||Q]| + ||T|| +6)] =
[logy(m + 1+ 7)1:

Lo [(o) |
gi,1=0,...,m bing(7)
aj, j=1,...,1 biny(m + j)
Ghs Gja, Gnein, L, R, N | bing(m + 1+ 1),..., biny(m + 1 + 6)

M wird nun durch eine Folge von Binérzahlen, die durch # getrennt
sind, kodiert:

c(gm)#c(ar) #c(Pm) # (b)) F (D) #

wobei
5(%‘,@]’) = (pi,jabi,j:Di,j)

Sar}t (also z.B. ay = U, ag =1, a3 = 0, ag = 1 ete.).

15

fire=1,...,mund j =1,...,[ist. Kodieren wir die Zeichen 0, 1, #
bindr (z.B. 0+ 00, 1 +— 11, # — 10), so gelangen wir zu einer Binér-
kodierung von M. Diese Kodierung lasst sich auch auf k&-DTM’s und
kE-NTM’s erweitern. Die Kodierung einer TM M bezeichnen wir mit
(M). Ein Paar (M, z) bestehend aus einer TM M und einer Eingabe
x € {0,1}* kodieren wir durch das Wort (M, z) = (M)#x.

Definition 32. Das Halteproblem ist
H = {(M,z)|M ist eine DTM, die bei Eingabe x hdlt}.
Satz 33. H ist rekursiv aufzdhlbar, aber nicht entscheidbar.

Beweis. Es ist klar, dass H rekursiv aufzahlbar ist, da es eine (univer-
selle) TM U gibt, die bei Eingabe (M, z) die Berechnung von M (x)
simuliert und genau dann akzeptiert, wenn M (x) halt.

Unter der Annahme, dass H entscheidbar ist, ist auch die Sprache

D = {{M)|M ist eine DTM, die die Eingabe (M) verwirft} (x)

entscheidbar. Sei also M, eine Turingmaschine, die D entscheidet,
L(My) =D (xx).

Dann verhalt sich M, ,komplementar® zur Diagonalen der Matrix,
deren Eintrag in Zeile M und Spalte (M) das Resultat von M ((M))
angibt.

(M) (M) (M) (M)
M| ja T nein nein
Ms | nein 1 nein T
Ms | ja T mnein 1
My| 1 nein T ja

’ My ‘ nein nein ja nein --- ‘

4 Hierarchiesatze

Folglich kann keine Zeile dieser Matrix mit M, iibereinstimmen:

(M) eD Y M((M)) =nein & (M) ¢ D 4
(M) ¢ D & My((My) £ nein % (M) eD 4

Satz 34. Fiir jede rekursive Funktion f : N — N existiert eine
rekursive Sprache Dy ¢ DTIME(f(n)).

Beweis. Wir definieren
Dy={(M) | M({M)) verwirft nach < f(|(M)|) Schritten} (x)

Offensichtlich ist Dy entscheidbar. Unter der Annahme, dass Dy €
DTIME(f(n)) ist, existiert eine f(n)-zeitbeschrankte DTM M,, die
Dy entscheidet, d.h.

L(My) =D (xx)
Dies fiihrt jedoch auf einen Widerspruch:

<Md> - Df = Md(<Md>> verw. <Md> ¢ Df é
(Mp) ¢ Dy ") My((M) ake. 2 (My)e Dy 4

Eine interessante Frage ist nun, wieviel Zeit eine DTM benotigt um
die Sprache Dy zu entscheiden. Im néchsten Abschnitt werden wir
sehen, dass Dy i.a. sehr hohe Komplexitat haben kann.

4.2 Das Gap-Theorem

Satz 35 (Gap-Theorem).
Es gibt eine rekursive Funktion f: N — N mit

DTIME(2/(™) = DTIME(f(n)).

16

4.2 Das Gap-Theorem

Beweis. Wir definieren f(n) > n 4 2 so, dass fiir jede 2f(-zeitb.
DTM M gilt:

timey (z) < f(|z]) fir fast alle Eingaben x.

Betrachte hierzu das Pradikat:

P(k,t): t>k+2und firi=1,...,k und alle z € 3 gilt:
timey, (x) € [t +1,2"].

Hierbei bezeichnet ¥J; das Eingabealphabet von M;. Da fiir jedes n
alle t > max{timey, (x) < oo|l <i < n,z € X} das Pradikat P(n,t)
erfilllen, kénnen wir f(n) wie folgt induktiv definieren:

n =20,

2,
fn) = {min{t > f(n—=1) +n|P(n,1)},

n > 0.

Da P entscheidbar ist, ist f rekursiv. Um zu zeigen, dass jede Spra-
che L € DTIME(27™) bereits in DTIME(f(n)) enthalten ist, sei M
eine beliebige 27(W-zeitbeschrankte DTM mit L(M) = L. Dann
muss M, alle Eingaben = mit |z| > k in Zeit timey, (z) < f(n)
(n = |z|) entscheiden, da andernfalls P(n, f(n)) verletzt wére. Folg-
lich ist L € DTIME(f(n)), da die endlich vielen Eingaben x mit
|z| < k durch table-lookup in Zeit |z| + 2 entscheidbar sind. [|

Es ist leicht zu sehen, dass der Beweis des Gap-Theorems fiir jede
rekursive Funktion ¢ eine rekursive Zeitschranke f liefert, so dass
DTIME(g(f(n))) = DTIME(f(n)) ist. Folglich ist Dy nicht in Zeit
g(f(n)) entscheidbar.

4 Hierarchiesatze

4.3 Zeit- und Platzhierarchiesatze

Wie der folgende Satz zeigt, ist Dy fir jede echte Komplexitatsfunkti-
on f mit einem relativ geringen Mehraufwand entscheidbar. Da die
Rechenressourcen bei praktisch relevanten Komplexitatsklassen durch
eine echte Komplexitatsfunktion f beschrinkt sind, lassen sich daher
mit Hilfe von D; die wichtigsten deterministischen Zeitkomplexitats-
klassen trennen.

Satz 36. Fir jede echte Komplexititsfunktion f(n) > n+ 2 gilt
Dy € DTIME(nf?(n)) — DTIME(f(n)).

Beweis. Betrachte folgende /-DTM M':

Initialisierung: M’ iiberprift bei einer Eingabe = der Lange n zuerst,
ob z die Kodierung (M) einer &-DTM M = (Q, 3, T, 9, qo) ist.
Falls ja, erzeugt M’ die Startkonfiguration K, von M bei Einga-
be x = (M), wobei sie die Inhalte von k tibereinander liegenden
Feldern der Bander von M auf ihrem 2. Band in je einem Block
von kb, b = [log,(||Q]| + ||T'|| + 6)], Feldern speichert und den
aktuellen Zustand von M zusammen mit den gerade von M
gelesenen Zeichen auf ihrem 3. Band notiert (Letztere werden
zusétzlich auf dem 2. Band markiert). Hierfiir benotigt M’ Zeit
O(kbn) = O(n?). AbschlieBend erzeugt M’ auf dem 4. Band
den String 1/ in Zeit O(f(n)).

Simulation: M' simuliert jeden Rechenschritt von M wie folgt: Zu-
nachst inspiziert M’ die auf dem 1. Band gespeicherte Kodierung
von M, um die durch den Inhalt des 3. Bandes bestimmte Akti-
on von M zu ermitteln. Diese fithrt sie sodann auf dem 2. Band
aus und aktualisert dabei auf dem 3. Band den Zustand und
die gelesenen Zeichen von M. Schliefllich vermindert M’ noch
auf dem 4. Band die Anzahl der Einsen um 1. Insgesamt be-
notigt M’ fir die Simulation eines Rechenschrittes von M Zeit

O(kbf(n)) = O(n- f(n))).

17

4.3 Zeit- und Platzhierarchiesétze

Akzeptanzverhalten:)M’ bricht die Simulation ab, sobald M stoppt
oder der Zéhler auf Band 4 den Wert 0 erreicht. M’ hélt genau
dann im Zustand g¢j,, wenn die Simulation von M im Zustand

(nein €ndet.
Nun ist leicht zu sehen, dass M’ O(n - f(n)?)-zeitbeschrankt ist und
die Sprache Dy entscheidet. |

Korollar 37. (Zeithierarchiesatz)
Fiir jede echte Komplezititsfunktion f(n) > n+ 2 gilt

DTIME(n - f(n)?) — DTIME(f(n)) # 0

Korollar 38.
PCECEXP

Beweis.

P = |J DTIME(n® + ¢) C DTIME(2")

c>0
C DTIME(n2?") C E = | J DTIME(2™) C DTIME(2"")
c>0
C DTIME(n2%*) C | J DTIME(2""*¢) = EXP
c>0

Aus dem Beweis von Satz 36 kénnen wir weiterhin die Existenz einer
universellen TM folgern.

Korollar 39. Es gibt eine universelle 3-DTM U, die bei FEingabe
(M, z) eine Simulation von M bei Eingabe x durchfihrt und dasselbe
Ergebnis liefert:

U((M,z)) = M(z)

Hierbei konnen wir annehmen, dass U verwirft, falls die Eingabe keine
zuldssige Kodierung eines Paares (M, x) mit x € ¥* darstellt.

4 Hierarchiesatze

Wir bemerken, dass sich mit Hilfe einer aufwéndigeren Simulations-
technik von k-DTMs durch eine 2-DTM in Zeit O(f(n) - log f(n))
folgende scharfere Form des Zeithierarchiesatzes erhalten lasst (ohne
Beweis).

Satz 40. Sei f(n) > n+2 eine echte Komplezititsfunktion und gelte

. .g(n)-logg(n)
hmmf—f(n)

n—oo

= 0.

Dann ist

DTIME(f(n))\DTIME(g(n)) # 0.

Fiir g(n) = n? erhalten wir beispielsweise die echten Inklusionen
DTIME(g(n)) € DTIME(f(n)) fiir die Funktionen f(n) = n? n?log?n
und n?lognloglogn. In den Ubungen zeigen wir, dass die Inklusion

DTIME(n*) C DTIME(n" log® n)

tatsdchlich fur alle £ > 1 und a > 0 echt ist. Fir Platzklassen erhalten
wir sogar eine noch feinere Hierarchie (siehe Ubungen).

Satz 41 (Platzhierarchiesatz). Sind g(n), f(n) > 2 und ist f eine
echte Komplezitatsfunktion mit

(n)

ligggolf m =0,
dann ist
DSPACE(f(n))\DSPACE(g(n)) # 0.

Damit lasst sich im Fall g(n) < f(n) die Frage, ob die Inklusion
von DSPACE(g(n)) in DSPACE(f(n)) echt ist, eindeutig beantwor-
ten: Sie ist genau dann echt, wenn liminf, ,., g(n)/f(n) = 0 ist, da
andernfalls f(n) = O(g(n)) ist und somit beide Klassen gleich sind.

18

4.3 Zeit- und Platzhierarchiesétze

Korollar 42.

L C L2 C DCSL C CSL C PSPACE C ESPACE C EXPSPACE.

Durch Kombination der Beweistechnik von Satz 41 mit der Technik
von Immerman und Szelepcsényi erhalten wir auch fiir nichtdetermi-
nistische Platzklassen eine sehr fein abgestufte Hierarchie.

Satz 43 (Nichtdeterministischer Platzhierarchiesatz). Sind

g(n), f(n) > 2 und ist f eine echte Komplexitatsfunktion mit

dann st

NSPACE(f(n))\NSPACE(g(n)) # 0.

Ob sich auch der Zeithierarchiesatz auf nichtdeterministische Klassen
iibertragen lasst, ist dagegen nicht bekannt. Hier gilt jedoch folgender
Hierarchiesatz.

Satz 44 (Nichtdeterministischer Zeithierarchiesatz). Sei f(n) > n+2
eine echte Komplezitatsfunktion und gelte

g(n+1) = o(f(n)).

Dann ist

NTIME(g(n)) € NTIME(f(n)).

Beweis. Sei My, M, ...
{0,1, #}* sei

eine Aufzdhlung aller 2-NTMs. Fir z €

x = OF#(M;)

sonst

4 Hierarchiesatze

und =™ (x7) sei der lexikografische Nachfolger (bzw. Vorgénger)
von z in {0, 1, #}*. Wir ordnen jedem x € {0,1,#}* ein Intervall
I, = [s(x), s(z") — 1] zu, wobei die Funktion s induktiv durch

r=Ee&

0,
() = {h(s(:c_) +|z|) +1, sonst

definiert ist. Hierbei ist h(n) > 2" eine monotone Funktion mit fol-
genden Eigenschaften:

e die Sprache
D = {0°#(M;) | M;(0°) akz. nicht in < f(s) Schritten}

ist von einer 2-NTM Mp in Zeit timeys, () < h(|z|) entscheid-
bar.

e die Funktion 0" — 0"™ ist von einem Transducer T in Zeit
h(n)+1 berechenbar, d.h. T'(0") schreibt in jedem Rechenschritt
(auBler dem ersten) eine weitere Null auf’s Ausgabeband.

Betrachte folgende NTM M:

I input 0"
2 ri=¢€
3 s:=0
A

while h(s+ |z])+1<n do
5 s:=h(s+|z|]) +1
6 ri=z"
7 if n<h(s+|z|) then (x s=s(z) <n<s(xt)—1 %)
f(n)

8 akz. falls M, (0"*!) in < TGn.y Schritten akz.
9 else (x n=s(z7)—1 %)
10 akz. falls 0°#(M;n.)) € D ist

Es ist leicht zu sehen, dass M O(f(n))-zeitb. und somit L = L(M) €
NTIME(f(n)) enthalten ist. Dies liegt daran, dass

19

4.3 Zeit- und Platzhierarchiesétze

e die Berechnung von z und s = s(x) mit n € I, in der while-
Schleife wegen h(n) > 2" und der Eigenschaften von 7" in Zeit
O(n) ausfithrbar, sowie
e die Frage, ob Mi(x)(on-l-l) in < |<J‘};$7(1?>>\ Schritten akz., in Zeit
O(f(n)) und
e die Frage, ob 0°#(M,,) € D enthalten ist, in Zeit
h(|0°#(M;(z))|) < h(s + |z|) = n entscheidbar ist.
L kann aber nicht in NTIME(g(n)) enthalten sein, da sonst eine
Konstante ¢ und eine 2-NTM M; ex. wiirden mit L(M;) = L und
timens,(0") < cg(n) fiir fast alle n (siche Ubungen; Simulation von
NTMs durch 2-NTMs). Wahlen wir nun &£ > 0 so grof, dass fir
x = 0% (M;) und alle n > s(x) die Ungleichung |(M;)|timey, (0"1) <
f(n) gilt, so folgt fir alle n € [s(x), s(z™) — 2]:

0" € L(M) & 0" € L(M;),
was 0°®) € I & 0°¢")~1 ¢ L impliziert. Zudem gilt
0@ e L(M) & 0*®4(M;) € D < 059 & L(M;),
was wegen L(M) = L = L(M;) ein Widerspruch ist. [

Satz 44 liefert fiir langsam wachsende Zeitschranken eine feinere Hier-
archie als Satz 40. Beispielsweise impliziert Satz 44, dass NTIME(n*)
fiir jede unbeschrankte monotone Funktion A echt in der Klasse
NTIME(n*h(n)) enthalten ist, da (n + 1)* = O(n*) = o(n*h(n)) ist.
Fiir schnell wachsende Zeitschranken liefert dagegen Satz 40 eine
feinere Hierarchie. So impliziert Satz 40 zum Beispiel, dass die Klas-
se DTIME(2%") fiir jede unbeschrinkte monotone Funktion h echt
in DTIME(h(n)2"2%") enthalten ist, wihrend sich NTIME(22") mit
Satz 44 nur von NTIME(h(n)22""") = NTIME(h(n)2%"2%") separieren
lasst.

5 Reduktionen

5 Reduktionen

5.1 Logspace-Reduktionen

Oft konnen wir die Komplexititen zweier Probleme A und B verglei-
chen, indem wir die Frage, ob x € A ist, auf eine Frage der Form
y € B zurtickfithren. Léasst sich y leicht aus x berechnen, so kann jeder
Algorithmus fiir B in einen Algorithmus fiir A verwandelt werden,
der vergleichbare Komplexitat hat.

Definition 45. Seien A und B Sprachen tiber einem Alphabet . A
ist auf B logspace-reduzierbar (in Zeichen: A <9 B oder einfach
A < B), falls eine Funktion f € FL existiert, so dass fir alle x € ¥*
qilt,

reAs f(x) e B.

Lemma 46. FL C FP.

Beweis. Sei f € FL und sei M ein logarithmisch platzbeschrankter
Transducer (kurz: FL-Transducer), der f berechnet. Da M bei ei-
ner Eingabe der Lange n nur 2°0°6™) verschiedene Konfigurationen
einnehmen kann, ist M dann auch polynomiell zeitbeschrankt. W

Beispiel 47. Wir reduzieren das Hamiltonkreisproblem auf das Er-
fullbarkeitsproblem SAT fir aussagenlogische Formeln.

Hamiltonkreisproblem (HaMm):

Gegeben: Ein Graph G = (V, E).
Gefragt: Hat G einen Hamiltonkreis?

20

Erfiillbarkeitsproblem fiir boolesche Formeln (SAT):
Gegeben: Fine boolesche Formel F' tiber n Variablen.
Gefragt: Ist F erfillbar?

Hierzu bendtigen wir eine Funktion f € FL, die einen Graphen
G = (V,E) so in eine Formel f(G) = Fg transformiert, dass Fg
genau dann erfillbar ist, wenn G hamiltonsch ist. Wir konstruieren
Fg diber den Variablen x4 1, ..., Ty, wobei x; ; fir die Aussage steht,
dass Knoten j € V = {1,...,n} in der Rundreise an i-ter Stelle
besucht wird. Betrachte nun folgende Klauseln.

a) An der i-ten Stelle wird mindestens ein Knoten besucht:
it VTiaV... V&, t=1,...,n.
b) An der i-ten Stelle wird héchstens ein Knoten besucht:
T Vg, t=1,...,n, 1 <j<k<n.
c) Jeder Knoten j wird mindestens einmal besucht:
T1; V...V, g=1,...,n.

d) Fir (i,7) ¢ E wird Knoten j nicht unmittelbar nach Knoten i
besucht:

X1V Ty, 1y V T, T VX, (4,7) € B

Die Klauseln in a) und b) stellen sicher, dass die Relation m = {(1, j) |
x;; = 1} eine Funktion w: {1,...,n} = {1,...,n} ist. Bedingung c)
besagt, dass m surjektiv (und damit auch bijektiv) ist, und d) sorgt
dafir, dass der durch w beschriebene Kreis entlang der Kanten von G
verlduft. Bilden wir daher Fg(x11,...,%n,) als Konjunktion dieser

n+n(y) +n+n((y) - I1E] = 0@

Klauseln, so ist leicht zu sehen, dass die Reduktionsfunktion f in FL
berechenbar ist und G genau dann einen Hamiltonkreis besitzt, wenn
Fq erfiillbar ist. <

5 Reduktionen

Ein zentraler Begriff in der Komplexitéatstheorie ist die Vollstandigkeit
einer Sprache fiir eine Komplexitétsklasse.
Definition 48.

a) Sei C eine Sprachklasse. Eine Sprache L heifit C-hart (bzgl. <),
falls fiir alle Sprachen A € C gilt, A < L.

b) Eine C-harte Sprache, die zur Klasse C gehort, heifit C-
vollstdandig.

c) C heifit abgeschlossen unter <, falls gilt:
BeCA<B=AecC.

Lemma 49.

1. Die <'"99-Reduzierbarkeit ist reflexiv und transitiv.

2. Die Klassen L,NL,NP,co-NP,PSPACE, EXP und EXPSPACE
sind unter < abgeschlossen.

3. Sei L wvollstandig fiir eine Klasse C, die unter < abgeschlossen
ist. Dann gilt
C={A| A< L}

Beweis. Siehe Ubungen. [|

Definition 50. Ein boolescher Schaltkreis ¢ mit n Eingdngen ist
eine Folge (g1, ..., gm) von Gattern

-y Tn,y (_'7].)7 (/\7j7 k)7 (\/7j7 k)}

mit 1 < j,k < l. Der am Gatter g; berechnete Wert bei Eingabe
a=ay---ay, ist induktiv wie folgt definiert.

(_|7]) (/\7j7k) (v7]7k>
gi(a)|| 01 a;|1—gj(a)|g;(a)gr(a)|g;(a)+ grla) — g;(a)gr(a)

g € {0,1,1’1,..

agi 01|z

Der Schaltkreis ¢ berechnet die boolesche Funktion c¢(a) = gm(a). Er
heifit erfiillbar, wenn es eine Eingabe a € {0,1}" mit c(a) =1 gibt.

21

5.1 Logspace-Reduktionen

Bemerkung: Die Anzahl der Eingénge eines Gatters g wird als Fan-
in von g bezeichnet, die Anzahl der Ausgénge (also die Anzahl der
Gatter, die g als Eingabe benutzen) als Fanout. Boolesche Formeln
entsprechen also den booleschen Schaltkreisen mit (maximalem) Fan-
out 1 und umgekehrt.

Ahnlich wie bei booleschen Formeln sind auch fiir Schaltkreise die
beiden folgenden Entscheidungsprobleme von Interesse.

Auswertungsproblem fiir boolesche Schaltkreise (CIRVAL):

Gegeben: Ein boolescher Schaltkreis ¢ mit n Eingdngen und eine
Eingabe a € {0,1}"™.
Gefragt: Ist der Wert von c¢(a) gleich 17

Erfiillbarkeitsproblem fiir boolesche Schaltkreise (CIRSAT):
Gegeben: Ein boolescher Schaltkreis ¢ mit n Eingéngen.
Gefragt: Ist c erfiillbar?

Im folgenden Beispiel fithren wir die Losung des Erreichbarkeitspro-
blems in gerichteten Graphen auf die Auswertung von booleschen
Schaltkreisen zurtick.

Beispiel 51. Fiir die Reduktion REACH < CIRVAL bendtigen wir
eine Funktion f € FL mit der Eigenschaft, dass fir alle Graphen G
qgilt:

G € REACH & f(G) € CIRVAL.

Der Schaltkreis f(G) besteht aus den Gattern
Gijar und hijp mit 1 <i,j,k <n und 0 <k <n,
wobei die Gatter g; o fir 1 <i,j < n die booleschen Konstanten

L
9i,50 = 0,

i =7 oder (i,j) € E,

sonst

5 Reduktionen

sind und firk =1,2,...,n gilt,

Gikk—1 /N Gk jk—1,
Gijk—1 V N k.

ik
givjvk =

Dann folgt

gijk =1 <& es existiert in G ein Pfad von ¢ nach j, der
nur Zwischenknoten | < k durchlduft,

hijk =1 & es existiert in G ein Pfad von i nach j, der
den Knoten k, aber keinen Knoten | > k
durchlduft.

Wahlen wir also gy, als Ausgabegatter, so liefert der aus diesen
Gattern aufgebaute Schaltkreis ¢ genau dann den Wert 1, wenn es in
G einen Weg von Knoten 1 zu Knoten n gibt. Fs ist auch leicht zu
sehen, dass die Reduktionsfunktion f in FL berechenbar ist. <

Der in Beispiel 51 konstruierte Schaltkreis hat Tiefe 2n. In den Ubun-
gen werden wir sehen, dass sich REACH auch auf die Auswertung
eines Schaltkreises der Tiefe O(log®n) reduzieren lisst. Als néichstes
leiten wir Vollstandigkeitsresultate fiir CIRVAL und CIRSAT her.

5.2 P-vollstandige Probleme und polynomielle
Schaltkreiskomplexitat

Satz 52. CIRVAL ist P-vollstindig.

Beweis. Es ist leicht zu sehen, dass CIRVAL € P ist. Um zu zeigen,
dass CIRVAL hart fiir P ist, miissen wir fir jede Sprache L € P eine
Funktion f € FL finden, die L auf CIRVAL reduziert, d.h. es muss fiir
alle Eingaben x die Aquivalenz r € L < f(x) € CIRVAL gelten.

Zu L € P existiert eine 1-DTM M = (Q, %, 1,6, qv), die L in Zeit n°+c
entscheidet. Wir beschreiben die Rechnung von M (z), |z| = n, durch

22

5.2 P-vollstindige Probleme und polynomielle Schaltkreiskomplexitét

eine Tabelle T' = (T}), (4,5) € {1,...,n°+c} x {1,...,n°+c+ 2},
mit

Tm‘ _ {(Qiaai,j)a

Qg 5,

nach ¢ Schritten besucht M das j-te Bandfeld,

sonst,

wobei ¢; der Zustand von M (x) nach i Rechenschritten ist und a; ;
das nach ¢ Schritten an Position j befindliche Zeichen auf dem Ar-
beitsband ist. T" = (7 ;) kodiert also in ihren Zeilen die von M (z) der
Reihe nach angenommenen Konfigurationen. Dabei
e iiberspringen wir jedoch alle Konfigurationen, bei denen sich
der Kopf auf dem ersten Bandfeld befindet (zur Erinnerung: In
diesem Fall wird der Kopf sofort wieder nach rechts bewegt)
und
e behalten die in einem Schritt ¢ < n®+ ¢ erreichte Endkonfigura-
tion bis zum Zeitpunkt ¢ = n°+ ¢ bei.
Da M in n®+ ¢ Schritten nicht das (n°+ ¢+ 2)-te Bandfeld erreichen
kann, ist T;; = und T; peqeqro = U fiir e = 1,...,n° 4+ c. Auflerdem
nehmen wir an, dass M bei jeder Eingabe x auf dem zweiten Bandfeld
auf einem Blank halt, d.h. es gilt

€L S Theyen = (g, L).

Da T nicht mehr als [= [|T'[| + |[(Q U{¢n, Gja; Gnein }) X I'|| verschiedene
Tabelleneintrage besitzt, konnen wir jeden Eintrag 7;; durch eine
Bitfolge ¢; ;1 - - t; jm der Lange m = [log, (] kodieren.

Da der Eintrag T; ; im Fall i € {2,... ,n+c}und j € {2,...,n+c+1}
eine Funktion T;; = ¢(Ti—1j-1,Ti—1;,Ti—1,+1) der drei Eintrage
Ti1j-1, Ti—1j; und T;_; ;4 ist, existieren fir &k = 1,...,m Schalt-
kreise ¢, mit

tije =
Ce(ticrjm11 tictjmtmy tic1g1 - it joms tic1,j41,0 " - tis1 it 1m)-

Die Reduktionsfunktion f liefert nun bei Eingabe = folgenden Schalt-
kreis ¢, mit 0 Eingéngen.

5 Reduktionen

e Fir jeden der n°+c+2+2(n°+c—1) = 3(n°+c) Randeintréige
T;; mit i = 1 oder j € {1,n°+ ¢+ 2} enthélt ¢, m konstante
Gatter ¢; jr = tijk, k= 1,...,m, die diese Eintrége kodieren.

e Fiir jeden der (n®+ ¢ — 1)(n° + ¢) tbrigen Eintrage T ;
enthalt ¢, fir & = 1,...,m je eine Kopie ¢; ;i von c,
deren 3m FEingiange mit den Ausgingen der Schaltkreise
Ci—1,5-1,1"""Ci—1,j—-1,m>Ci—-1,51 " Ci—14m> Ci—1,j+1,1 " Ci—1,j+1,m
verdrahtet sind.

o Als Ausgabegatter von ¢, fungiert das Gatter cpeyc 21, wobei
wir annehmen, dass das erste Bit der Kodierung von (g, U)
eine Eins und von (gpein, U) eine Null ist.

Nun lésst sich induktiv iiber ¢« = 1,...,n°+ ¢ zeigen, dass die von den
Schaltkreisen ¢; j 5, j = 1,...,n°+¢c, k =1,...,m berechneten Werte
die Tabelleneintrége 7T; ;, j = 1,...,n° + ¢, kodieren. Wegen

€L Theresr = (¢, U) &y =1

folgt somit die Korrektheit der Reduktion. Aulerdem ist leicht zu se-

hen, dass f in logarithmischem Platz berechenbar ist, da ein O(logn)-
platzbeschrankter Transducer existiert, der bei Eingabe x

e zuerst die 3(n°+c) konstanten Gatter von ¢, ausgibt und danach

e die m(n®+ ¢ — 1)(n° + ¢) Kopien der Schaltkreise ¢y, ..., ¢

erzeugt und diese Kopien richtig verdrahtet. [|

23

5.2 P-vollstdndige Probleme und polynomielle Schaltkreiskomplexitét

	1 Einführung
	2 Rechenmodelle
	2.1 Deterministische Turingmaschinen
	2.2 Nichtdeterministische Berechnungen
	2.3 Zeitkomplexität
	2.4 Platzkomplexität

	3 Grundlegende Beziehungen
	3.1 Robustheit von Komplexitätsklassen
	3.2 Deterministische Simulationen von nichtdeterministischen Berechnungen
	3.3 Der Satz von Savitch
	3.4 Der Satz von Immerman und Szelepcsényi

	4 Hierarchiesätze
	4.1 Diagonalisierung und die Unentscheidbarkeit des Halteproblems
	4.2 Das Gap-Theorem
	4.3 Zeit- und Platzhierarchiesätze

	5 Reduktionen
	5.1 Logspace-Reduktionen
	5.2 P-vollständige Probleme und polynomielle Schaltkreiskomplexität

