
Vorlesungsskript

Einführung in die Kryptologie
Sommersemester 2020

Prof. Dr. Johannes Köbler
Humboldt-Universität zu Berlin

Lehrstuhl Komplexität und Kryptografie

9. Juli 2020

i

Inhaltsverzeichnis

1 Klassische Kryptoverfahren 1
1.1 Einführung . 1
1.2 Kryptosysteme . 2
1.3 Die additive Chiffre . 3
1.4 Die multiplikative Chiffre . 4
1.5 Die affine Chiffre . 8
1.6 Die Eulersche Phi-Funktion . 9
1.7 Der chinesische Restsatz . 11
1.8 Die Hill-Chiffre . 12
1.9 Die Vigenère-Chiffre und andere Stromsysteme 13
1.10 Der One-Time-Pad . 15
1.11 Die Skytale-Chiffre . 16
1.12 Die Blocktransposition . 17
1.13 Die Porta-Chiffre . 19
1.14 Block- und Stromchiffren . 20
1.15 Gespreizte und homophone Substitutionen 21
1.16 Realisierung von Transpositionen und Substitutionen 23

2 Analyse der klassischen Verfahren 25
2.1 Klassifikation von Angriffen gegen Kryptosysteme 25
2.2 Kryptoanalyse von einfachen Substitutionschiffren 26
2.3 Kryptoanalyse von Blocktranspositionen 29
2.4 Kryptoanalyse von polygrafischen Chiffren 31
2.5 Kryptoanalyse von polyalphabetischen Chiffren 32

3 Sicherheit von Kryptosystemen 38
3.1 Informationstheoretische Sicherheit . 38
3.2 Der Entropiebegriff . 40
3.3 Redundanz von Sprachen . 43
3.4 Die Eindeutigkeitsdistanz . 44
3.5 Weitere Sicherheitsbegriffe . 47

4 Moderne symmetrische Kryptosysteme & ihre Analyse 51
4.1 Produktchiffren . 51
4.2 Substitutions-Permutations-Netzwerke 52
4.3 Lineare Approximationen . 55
4.4 Lineare Kryptoanalyse eines SPN . 57
4.5 Differentielle Kryptoanalyse von SPNs 60

5 DES und AES 66
5.1 Der Data Encryption Standard (DES) 66

5.1.1 Geschichte des DES . 66
5.1.2 Aufbau der DES-Chiffrierfunktion. 66

ii Inhaltsverzeichnis

5.1.3 Der DES Key-Schedule Algorithmus 68
5.1.4 Eigenschaften von DES. 69

5.2 Endliche Körper . 70
5.3 Der Advanced Encryption Standard (AES) 73

5.3.1 Geschichte des AES . 73
5.3.2 Die AES S-Box SubByte . 73
5.3.3 Der AES Key-Schedule Algorithmus 75
5.3.4 Der AES Chiffrieralgorithmus . 75
5.3.5 Die AES Transposition ShiftRows 76
5.3.6 Die AES S-Box MixColumn . 76
5.3.7 Kryptoanalytische Betrachtungen 77

5.4 Betriebsarten von Blockchiffren . 77

6 Zahlentheoretische Grundlagen 80
6.1 Diskrete Logarithmen . 81
6.2 Zyklische Gruppen . 81
6.3 Effiziente Berechnung von Potenzen . 83
6.4 Der Primzahlsatz . 84
6.5 Pseudo-Primzahlen und der Fermat-Test 85
6.6 Der Miller-Rabin Test . 87

7 Asymmetrische Kryptosysteme 90
7.1 Das RSA-System . 91
7.2 Sicherheit des privaten RSA-Schlüssels 94
7.3 Sicherheit partieller Klartextinformationen 97

1

1 Klassische Kryptoverfahren

1.1 Einführung

Kryptografische Verfahren schaffen Vertrauen in ungeschützten Umgebungen. Sie er-
möglichen sichere Kommunikation über unsichere Kanäle und können verhindern, dass
sich ein Kommunikationspartner unfair verhält. In unsicheren Umgebungen wie dem
Internet können sie die aus direkter Interaktion gewohnte Sicherheit herstellen. Und
auch die Interaktion in sicheren Umgebungen wird um Möglichkeiten erweitert, die ohne
Kryptografie nicht denkbar wären.
In diesem Modul werden wir uns mit den mathematischen Grundlagen von kryptogra-
fischen Verfahren beschäftigen, wobei (symmetrische und asymmetrische) Verschlüsse-
lungsverfahren im Vordergrund stehen. Im Mastermodul Kryptologie werden wir dann
auch kryptografische Verfahren und Protokolle für andere Schutzziele betrachten wie z.B.
Hashverfahren und digitale Signaturen sowie Pseudozufallsgeneratoren.
Kryptosysteme (Verschlüsselungsverfahren) dienen der Geheimhaltung von Nachrichten
bzw. Daten. Hierzu gibt es auch andere Methoden wie z.B.
Physikalische Maßnahmen: Tresor etc.
Organisatorische Maßnahmen: einsamer Waldspaziergang etc.
Steganografische Maßnahmen: unsichtbare Tinte etc.
Andererseits können durch kryptografische Verfahren weitere Schutzziele realisiert
werden.
• Vertraulichkeit

– Geheimhaltung
– Anonymität (z.B. Mobiltelefon)
– Unbeobachtbarkeit (von Transaktionen)

• Integrität
– von Nachrichten und Daten

• Zurechenbarkeit
– Authentikation
– Unabstreitbarkeit
– Identifizierung

• Verfügbarkeit
– von Daten
– von Rechenressourcen
– von Informationsdienstleistungen

In das Umfeld der Kryptografie fallen auch die folgenden Begriffe.
Kryptografie: Lehre von der Geheimhaltung von Informationen durch Verschlüsselung.

Im weiteren Sinne: Wissenschaft von der Übermittlung, Speicherung und Verarbei-
tung von Daten in einer von potentiellen Gegnern bedrohten Umgebung.

2 1 Klassische Kryptoverfahren

Kryptoanalysis: Erforschung der Methoden eines unbefugten Angriffs gegen ein Krypto-
verfahren (Zweck: Vereitelung der mit seinem Einsatz verfolgten Ziele)

Kryptoanalyse: Analyse eines Kryptoverfahrens zum Zweck der Bewertung seiner kryp-
tografischen Stärken bzw. Schwächen.

Kryptologie: Wissenschaft vom Entwurf, der Anwendung und der Analyse von krypto-
grafischen Verfahren (umfasst Kryptografie und Kryptoanalyse).

1.2 Kryptosysteme

Es ist wichtig, Kryptosysteme von Codesystemen zu unterscheiden.

Codesysteme

– operieren auf semantischen Einheiten,
– starre Festlegung, welche Zeichenfolge wie zu ersetzen ist.

Beispiel 1 (Ausschnitt aus einem Codebuch der deutschen Luftwaffe).

xve Bis auf weiteres Wettermeldung gemäß Funkbefehl testen
yde Frage
sLk Befehl
fin beendet
eom eigene Maschinen

/

Kryptosysteme

– operieren auf syntaktischen Einheiten
– flexibler Mechanismus durch Schlüsselvereinbarung

Definition 2. Ein Alphabet A = {a0, . . . , am−1} ist eine geordnete endliche Menge von
Zeichen ai. Eine Folge x = x1 . . . xn ∈ An heißt Wort (der Länge n). Die Menge aller
Wörter über dem Alphabet A ist A∗ = ⋃

n≥0 A
n.

Beispiel 3. Das lateinische Alphabet Alat enthält die 26 Zeichen A,...,Z. Bei der
Abfassung von Klartexten wurde meist auf den Gebrauch von Interpunktions- und Leer-
zeichen sowie auf Groß- und Kleinschreibung verzichtet (; Verringerung der Redundanz
im Klartext). /

Definition 4. Ein Kryptosystem wird durch folgende Komponenten beschrieben:
– A, das Klartextalphabet,
– B, das Kryptotextalphabet,
– K, der Schlüsselraum (key space),
– M ⊆ A∗, der Klartextraum (message space),
– C ⊆ B∗, der Kryptotextraum (ciphertext space),
– E : K ×M → C, die Verschlüsselungsfunktion (encryption function),
– D : K × C →M , die Entschlüsselungsfunktion (decryption function) und

1.3 Die additive Chiffre 3

Angreifer

Klartext x Chiffrier-
funktion E

Kryptotext y Dechiffrier-
funktion D Klartext x

Schlüssel k Schlüssel k′

Sender Empfänger

Abbildung 1.1: Schematische Darstellung der Funktionsweise eines Kryptosystems

– S ⊆ K ×K, eine Menge von Schlüsselpaaren (k, k′) mit der Eigenschaft, dass für
jeden Klartext x ∈M folgende Beziehung gilt:

D(k′, E(k, x)) = x (1.1)

Bei symmetrischen Kryptosystemen ist S = {(k, k) | k ∈ K}, weshalb wir in diesem
Fall auf die Angabe von S verzichten können. Zu jedem Schlüssel k ∈ K korrespondiert
also eine Chiffrierfunktion Ek : x 7→ E(k, x) und eine Dechiffrierfunktion Dk : y 7→
D(k, y). Die Gesamtheit dieser Abbildungen wird auch Chiffre (englisch cipher) genannt.
(Daneben wird der Begriff „Chiffre“ auch als Bezeichnung für einzelne Kryptotextzeichen
oder kleinere Kryptotextsequenzen verwendet.)
Lemma 5. Für jedes Paar (k, k′) ∈ S ist die Chiffrierfunktion Ek injektiv.

Beweis. Angenommen, für zwei Klartexte x1 und x2 gilt E(k, x1) = E(k, x2). Dann folgt

x1
(1.1)= D(k′, E(k, x1)︸ ︷︷ ︸

E(k,x2)

) = D(k′, E(k, x2)) (1.1)= x2

�

1.3 Die additive Chiffre

Die Moduloarithmetik erlaubt es uns, das Klartextalphabet mit einer Addition und
Multiplikation auszustatten.
Definition 6 (teilt-Relation, modulare Kongruenz). Seien a, b,m ganze Zahlen
mit m ≥ 1. Die Zahl a teilt b (kurz: a|b), falls ein d ∈ Z existiert mit b = ad. Teilt m
die Differenz a− b, so schreiben wir hierfür

a ≡m b oder a ≡ b (mod m)

(in Worten: a ist kongruent zu b modulo m). Weiterhin bezeichne

a mod m = min{a− dm ≥ 0 | d ∈ Z}

den bei der Ganzzahldivision von a durch m auftretenden Rest, also diejenige ganze Zahl
r ∈ {0, . . . , m− 1}, für die eine ganze Zahl d ∈ Z existiert mit a = dm+ r. Sowohl r als
auch d sind hierbei eindeutig bestimmt (siehe Übungen) und die Zahl d wird auch mit
a div m bezeichnet.

4 1 Klassische Kryptoverfahren

Tabelle 1.1: Werte der additiven Chiffrierfunktion ROT13 (Schlüssel k = 13).

x A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

E(13, x) n o p q r s t u v w x y z a b c d e f g h i j k l m

Die auf Z definierten Operationen

a⊕m b := (a+ b) mod m und a�m b := ab mod m

sind abgeschlossen auf Zm = {0, . . . , m − 1} und bilden auf dieser Menge einen kom-
mutativen Ring mit Einselement, den sogenannten Restklassenring modulo m. Für
a⊕m −b schreiben wir auch a	m b. Wenn aus dem Kontext klar ist, dass a, b ∈ Zm sind,
schreiben wir anstelle von a⊕m b, a	m b und a�m b auch einfach a+ b, a− b bzw. ab.
Durch Identifikation der Zeichen ai eines Alphabets A = {a0, . . . , am−1} mit ihren Indizes
können wir die auf Zm definierten Rechenoperationen auf Buchstaben übertragen.
Definition 7 (Buchstabenrechnung). Sei A = {a0, . . . , am−1} ein Alphabet. Für
Indizes i, j ∈ {0, . . . , m− 1} und eine ganze Zahl z ∈ Z ist

ai + aj = ai+j, ai − aj = ai−j, aiaj = aij,

ai + z = ai+z, ai − z = ai−z, zaj = azj mod m.

Mit Hilfe dieser Notation lässt sich die additive Chiffre , die auch als Verschiebechiffre
oder Caesar-Chiffre bezeichnet wird, leicht beschreiben.
Definition 8. Bei der additiven Chiffre ist A = B = M = C ein beliebiges Alphabet
mit m := ‖A‖ und K = {0, . . . ,m− 1}. Für k ∈ K, x ∈M und y ∈ C gilt

E(k, x) = x+ k und D(k, y) = y − k.

Im Fall des lateinischen Alphabets führt der Schlüssel k = 13 auf eine interessante
Chiffrierfunktion, die in UNIX-Umgebungen auch unter der Bezeichnung ROT13 bekannt
ist (siehe Tabelle 1.1). Natürlich kann mit dieser Substitution nicht ernsthaft die Vertrau-
lichkeit von Nachrichten gewahrt werden. Vielmehr soll durch sie ein unbeabsichtigtes
Mitlesen – etwa von Rätsellösungen – verhindert werden.
ROT13 ist eine involutorische (also zu sich selbst inverse) Abbildung, d.h. für alle
x ∈ A gilt

ROT13(ROT13(x)) = x.

Da ROT13 zudem keinen Buchstaben auf sich selbst abbildet, ist sie sogar echt invo-
lutorisch.

1.4 Die multiplikative Chiffre

Die Buchstabenrechnung legt folgende Modifikation der Caesar-Chiffre nahe. Anstatt auf
jedes Klartextzeichen den Schlüsselwert k zu addieren, können wir die Klartextzeichen
auch mit k multiplizieren. Allerdings erhalten wir hierbei nicht für jeden Wert von k eine
injektive Chiffrierfunktion. So bildet etwa die Funktion g : Alat → Alat mit g(x) = 2x
sowohl A als auch N auf das Zeichen g(A) = g(N) = a ab. Um eine hinreichende und
notwendige Bedingung für die Zulässigkeit eines Schlüsselwerts k formulieren zu können,
führen wir folgende Begriffe ein.

1.4 Die multiplikative Chiffre 5

Definition 9 (ggT, kgV, teilerfremd). Seien a, b ∈ Z. Für (a, b) 6= (0, 0) ist

ggT(a, b) = max{d ∈ Z | d teilt die beiden Zahlen a und b}

der größte gemeinsame Teiler von a und b und für a 6= 0, b 6= 0 ist

kgV(a, b) = min{d ∈ Z | d ≥ 1 und die beiden Zahlen a und b teilen d}

das kleinste gemeinsame Vielfache von a und b. Ist ggT(a, b) = 1, so nennt man a
und b teilerfremd oder man sagt, a ist relativ prim zu b.
Lemma 10. Seien a, b, c ∈ Z mit (a, b) 6= (0, 0). Dann gilt ggT(a, b) = ggT(b, a + bc)
und somit ggT(a, b) = ggT(b, a mod b), falls b ≥ 1 ist.

Beweis. Jeder Teiler d von a und b ist auch ein Teiler von b und a+ bc und umgekehrt. �

Euklidischer Algorithmus: Der größte gemeinsame Teiler zweier Zahlen a und b
lässt sich wie folgt bestimmen.
O.B. d.A. sei a > b > 0. Bestimme die natürlichen Zahlen (durch Divsision mit Rest∗):

r0 = a > r1 = b > r2 > · · · > rs > rs+1 = 0 und d2, d3, . . . ds+1

mit
ri−1 = di+1ri + ri+1für i = 1, . . . , s.

Hierzu sind s Divisionsschritte erforderlich. Wegen

ggT(ri−1, ri) = ggT(ri, ri−1 − di+1ri︸ ︷︷ ︸
ri+1

)

folgt ggT(a, b) = ggT(rs, rs+1) = rs.
Beispiel 11. Für a = 693 und b = 147 erhalten wir

i ri−1 = di+1 · ri + ri+1

1 693 = 4 · 147 + 105
2 147 = 1 · 105 + 42
3 105 = 2 · 42 + 21
4 42 = 2 · 21 + 0

und damit ggT(693, 147) = r4 = 21. /

Der euklidische Algorithmus lässt sich sowohl iterativ als auch rekursiv implementieren.

Prozedur Euklidit(a, b)
1 repeat
2 r := a mod b
3 a := b
4 b := r
5 until r = 0
6 return(a)

Prozedur Euklidrek(a, b)
1 if b = 0 then
2 return(a)
3 else
4 return(Euklidrek(b, a mod b))

∗Also: di+1 = ri−1 div ri und ri+1 = ri−1 mod ri.

6 1 Klassische Kryptoverfahren

Zur Abschätzung von s verwenden wir die Folge der Fibonacci-Zahlen Fn.

Fn =


0, falls n = 0
1, falls n = 1
Fn−1 + Fn−2, falls n ≥ 2

Durch Induktion über i = s + 1, s, . . . , 0 folgt ri ≥ Fs+1−i und somit a = r0 ≥ Fs+1.
Weiterhin lässt sich durch Induktion über n ≥ 0 zeigen, dass Fn+1 ≥ φn−1 ist, wobei
φ = (1 +

√
5)/2 der goldene Schnitt ist. Der Induktionsanfang (n = 0 oder 1) ist klar, da

F2 = F1 = 1 = φ0 ≥ φ−1 ist. Unter der Induktionsannahme Fi+1 ≥ φi−1 für i ≤ n − 1
folgt wegen φ2 = φ+ 1

Fn+1 = Fn + Fn−1 ≥ φn−2 + φn−3 = φn−3(φ+ 1) = φn−1.

Somit ist a ≥ φs−1, d. h. s ≤ 1 + blogφ ac.

Satz 12. Seien a > b > 0 ganze Zahlen und sei n die Länge von a in Binärdarstellung.
Dann führt der euklidische Algorithmus O(n) Divisionsschritte zur Berechnung von
ggT(a, b) durch. Dies führt auf eine Zeitkomplexität von O(n3), da jede Ganzzahldivision
in Zeit O(n2) durchführbar ist.

Erweiterter euklidischer bzw. Berlekamp-Algorithmus: Der euklidische Algo-
rithmus kann so modifiziert werden, dass er eine lineare Darstellung

ggT(a, b) = λa+ µb mit λ, µ ∈ Z

des ggT liefert (Zeitkomplexität ebenfalls O(n3)). Hierzu werden neben ri und di weitere
Zahlen

pi = pi−2 − dipi−1 (mit p0 = 1 und p1 = 0)
und

qi = qi−2 − diqi−1 (mit q0 = 0 und q1 = 1
für i = 0, . . . , s bestimmt. Dann gilt für i = 0 und i = 1,

api + bqi = ri,

und wegen

api+1 + bqi+1 = a(pi−1 − di+1pi) + b(qi−1 − di+1qi)
= api−1 + bqi−1 − di+1(api + bqi)
= (ri−1 − di+1ri)
= ri+1

folgt induktiv über i = 2, . . . , s, dass diese Gleichung auch für i = s gilt:

aps + bqs = rs = ggT(a, b).

Korollar 13 (Lemma von Bezout). Der größte gemeinsame Teiler von a und b ist in
der Form

ggT(a, b) = λa+ µb mit λ, µ ∈ Z

darstellbar.

1.4 Die multiplikative Chiffre 7

Beispiel 14. Für a = 693 und b = 147 erhalten wir wegen

i ri−1 = di+1 · ri + ri+1 pi qi

0 1 0
1 693 = 4 · 147 + 105 0 1
2 147 = 1 · 105 + 42 1 −4
3 105 = 2 · 42 + 21 −1 5
4 42 = 2 · 21 + 0 3 −14

pi · 693 + qi · 147 = ri

1 · 693 + 0 · 147 = 693
0 · 693 + 1 · 147 = 147
1 · 693− 4 · 147 = 105
−1 · 693 + 5 · 147 = 42

3 · 693− 14 · 147 = 21

die lineare Darstellung 3 · 693− 14 · 147 = 21. /

Aus der linearen Darstellbarkeit des größten gemeinsamen Teilers ergeben sich eine Reihe
von nützlichen Schlussfolgerungen.

Korollar 15. Der größte gemeinsame Teiler von a und b wird von allen gemeinsamen
Teilern von a und b geteilt,

x|a ∧ x|b ⇒ x| ggT(a, b).

Beweis. Seien µ, λ ∈ Z mit µa+ λb = ggT(a, b). Falls x sowohl a als auch b teilt, dann
teilt x auch die Produkte µa und λb und somit auch deren Summe. �

Korollar 16. ggT(a, b) = min{λa+ µb ≥ 1 | λ, µ ∈ Z}.

Beweis. Sei M = {λa + µb ≥ 1 | λ, µ ∈ Z}, m = minM und g = ggT(a, b). Dann folgt
g ≥ m, da g in der Menge M enthalten ist, und g ≤ m, da g jede Zahl in M teilt. �

Korollar 17. Zwei Zahlen a und b sind genau dann zu einer Zahl m ∈ Z teilerfremd,
wenn ihr Produkt ab teilerfremd zu m ist,

ggT(a,m) = ggT(b,m) = 1 ⇔ ggT(ab,m) = 1.

Beweis. Da a und b teilerfremd zum sind, existieren Zahlen µ, λ, µ′, λ′ ∈ Z mit µa+λm =
µ′b+ λ′m = 1. Somit ergibt sich aus der Darstellung

1 = (µa+ λm)(µ′b+ λ′m) = µµ′︸︷︷︸
µ′′

ab+ (µaλ′ + µ′bλ+ λλ′m)︸ ︷︷ ︸
λ′′

m

und Korollar 16, dass auch ab teilerfremd zu m ist.
Gilt umgekehrt ggT(ab,m) = 1, so existieren Zahlen µ, λ ∈ Z mit µab + λm = 1. Mit
Korollar 16 folgt sofort ggT(a,m) = ggT(b,m) = 1. �

Korollar 18 (Lemma von Euklid). Sind a und b teilerfremd und teilt a das Produkt bc,
so teilt a auch c,

ggT(a, b) = 1 ∧ a|bc ⇒ a|c.

Beweis. Wegen ggT(a, b) = 1 existieren Zahlen µ, λ ∈ Z mit µa + λb = 1. Falls a das
Produkt bc teilt, muss a auch die Zahl µac+ λbc = c teilen. �

Damit nun eine Abbildung g : A→ A der Form g(x) = bx auf einem Alphabet A injektiv
(oder gleichbedeutend, surjektiv) ist, muss es zu jedem Zeichen y ∈ A genau einen Zeichen
x ∈ A mit bx = y geben. Wie der folgende Satz zeigt, ist dies genau dann der Fall, wenn
b und m teilerfremd sind.

8 1 Klassische Kryptoverfahren

Satz 19. Seien b, y,m ganze Zahlen mit m ≥ 1. Die lineare Kongruenzgleichung bx ≡m y
besitzt genau dann eine eindeutige Lösung x ∈ {0, . . . , m− 1}, wenn ggT(b,m) = 1 ist.

Beweis. Angenommen, ggT(b,m) = g > 1. Dann ist mit x auch x′ = x + m/g eine
Lösung von bx ≡m y mit x 6≡m x′. Folglich ist die Kongruenz bx ≡m y nicht eindeutig
lösbar.
Gilt umgekehrt ggT(b,m) = 1, so folgt aus den Kongruenzen

bx1 ≡m y

und
bx2 ≡m y

sofort b(x1−x2) ≡m 0, also m|b(x1−x2). Wegen ggT(b,m) = 1 folgt mit dem Lemma von
Euklid m|(x1 − x2), also x1 ≡m x2. Folglich hat die Kongruenz bx ≡m y für jedes y ∈ Zm
höchstens eine Lösung x ∈ {0, . . . , m−1}. Zudem folgt, dass die Abbildung f : Zm → Zm
mit f(x) = bx mod m injektiv ist. Da aber der Definitions- und der Wertebereich von f
die gleiche Mächtigkeit haben, muss f dann auch surjektiv sein. Somit hat die Kongruenz
bx ≡m y für jedes y ∈ Zm sogar genau eine Lösung x ∈ {0, . . . , m− 1}. �

Korollar 20. Im Fall ggT(b,m) = 1 hat die Kongruenz bx ≡m 1 genau eine Lösung, die
das multiplikative Inverse von b modulo m genannt und mit b−1 mod m (oder einfach
mit b−1) bezeichnet wird.

Korollar 17 zeigt, dass die Menge

Z∗m = {b ∈ Zm | ggT(b,m) = 1}

aller invertierbaren Elemente von Zm unter der Operation �m abgeschlossen ist. Mit
Korollar 20 folgt daher, dass (Z∗m,�m, 1) eine multiplikative Gruppe bildet. Allgemeiner
zeigt man, dass die Multiplikation eines beliebigen Rings (R,+, ·, 0, 1) mit Eins auf der
Menge R∗ = {a ∈ R | ∃b ∈ R : ab = 1 = ba} aller Einheiten von R eine Gruppe bildet
(siehe Übungen). Diese Gruppe (R∗, ·, 1) wird als Einheitengruppe von R bezeichnet.
Das multiplikative Inverse von b modulo m ergibt sich aus der linearen Darstellung
λb+ µm = ggT(b,m) = 1 zu b−1 = λ mod m. Die folgende Tabelle gibt für jedes b ∈ Z∗26
das multiplikative Inverse b−1 an.

b 1 3 5 7 9 11 15 17 19 21 23 25
b−1 1 9 21 15 3 19 7 23 11 5 17 25

Bei Kenntnis von b−1 kann die Kongruenz bx ≡m y leicht zu x = yb−1 mod m gelöst
werden.
Nun lässt sich die additive Chiffre leicht zur affinen Chiffre erweitern.

1.5 Die affine Chiffre

Definition 21. Bei der affinen Chiffre ist A = B = M = C ein beliebiges Alphabet
mit m := ‖A‖ und K = Z∗m × Zm. Für k = (b, c) ∈ K, x ∈M und y ∈ C gilt

E(k, x) = bx+ c und D(k, y) = b−1(y − c).

1.6 Die Eulersche Phi-Funktion 9

In diesem Fall liefert die Schlüsselkomponente b = −1 für jeden Wert von c ∈ Zm eine in-
volutorische Chiffrierfunktion x 7→ E(−1,c)(x) = c−x (verschobenes komplementäres
Alphabet). Wählen wir für c ebenfalls den Wert −1, so ergibt sich die Chiffrierfunk-
tion x 7→ −x− 1, die auch als revertiertes Alphabet bekannt ist. Offenbar ist diese
Funktion genau dann echt involutorisch, wenn m gerade ist.

x A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
−x a z y x w v u t s r q p o n m l k j i h g f e d c b
−x− 1 z y x w v u t s r q p o n m l k j i h g f e d c b a

Als nächstes illustrieren wir die Ver- und Entschlüsselung mit der affinen Chiffre an einem
kleinen Beispiel.

Beispiel 22 (affine Chiffre). Sei A = {A, . . . , Z} = B, also m = 26. Weiter sei k = (9, 2),
also b = 9 und c = 2. Um das Klartextzeichen x = F zu verschlüsseln, berechnen wir

E(k, x) = bx+ c = 9F + 2 = v,

da der Index von F gleich 5, der von v gleich 21 und 9 · 5 + 2 = 47 ≡26 21 ist. Um
ein Kryptotextzeichen wieder entschlüsseln zu können, benötigen wir das multiplikative
Inverse von b = 9, das sich wegen

i ri−1 = di+1 · ri + ri+1 pi · 26 + qi · 9 = ri

0 1 · 26 + 0 · 9 = 26
1 26 = 2 · 9 + 8 0 · 26 + 1 · 9 = 9
2 9 = 1 · 8 + 1 1 · 26 + (−2) · 9 = 8
3 8 = 8 · 1 + 0 (−1) · 26 + 3 · 9 = 1

zu b−1 = q3 = 3 ergibt. Damit erhalten wir für das Kryptotextzeichen y = v das
ursprüngliche Klartextzeichen

D(k, y) = b−1(y − c) = 3(v− 2) = F

zurück, da 3 · 19 = 57 ≡26 5 ist. /

1.6 Die Eulersche Phi-Funktion

Zur Berechnung der Schlüsselzahl bei der multiplikativen und affinen Chiffre benötigen
wir die Funktion

ϕ : N→ N mit ϕ(m) = ‖Z∗m‖ = ‖{a ∈ Zm | ggT(a,m) = 1}‖,

die sogenannte Eulersche ϕ-Funktion. Die folgende Tabelle zeigt die Werte ϕ(m) für
m = 1, . . . , 10 (für die Menge {1, . . . , n}, n ∈ N, schreiben wir auch kurz [n]).

m 1 2 3 4 5 6 7 8 9 10
Z∗m {0} {1} [2] {1, 3} [4] {1, 5} [6] {1, 3, 5, 7} {1, 2, 4, 5, 7, 8} {1, 3, 7, 9}
ϕ(m) 1 1 2 2 4 2 6 4 6 4

10 1 Klassische Kryptoverfahren

Für primes p gilt offensichtlich ϕ(p) = p− 1, da Z∗p = [p− 1] ist. Wegen

Zpk − Z∗pk = {0, p, 2p, . . . , (pk−1 − 1)p}

folgt zudem
ϕ(pk) = pk − pk−1 = pk−1(p− 1) für k ≥ 1.

Um hieraus für beliebige Zahlen n ∈ N eine Formel für ϕ(n) zu erhalten, genügt es,
ϕ(ml) im Fall ggT(m, l) = 1 in Abhängigkeit von ϕ(m) und ϕ(l) zu bestimmen. Hierzu
betrachten wir die Abbildung f : Zml → Zm × Zl mit

f(x) = (x mod m,x mod l).

Beispiel 23. Sei m = 5 und l = 6. Dann erhalten wir die Funktion f : Z30 → Z5 × Z6
mit

x 0 1 2 3 4 5 6 7 8 9
f(x) (0, 0) (1,1) (2, 2) (3, 3) (4, 4) (0,5) (1, 0) (2,1) (3, 2) (4, 3)

x 10 11 12 13 14 15 16 17 18 19
f(x) (0, 4) (1,5) (2, 0) (3,1) (4, 2) (0, 3) (1, 4) (2,5) (3, 0) (4,1)

x 20 21 22 23 24 25 26 27 28 29
f(x) (0, 2) (1, 3) (2, 4) (3,5) (4, 0) (0,1) (1, 2) (2, 3) (3, 4) (4,5)

Man beachte, dass f eine Bijektion zwischen Z30 und Z5 × Z6 ist. Zudem fällt auf, dass
ein x-Wert genau dann in Z∗30 liegt, wenn der Funktionswert f(x) = (y, z) zu Z∗5 × Z∗6
gehört (die Werte x ∈ Z∗30, y ∈ Z∗5 und z ∈ Z∗6 sind fett gedruckt). Folglich bildet f
die Argumente in Z∗30 bijektiv auf die Werte in Z∗5 × Z∗6 ab. Für f−1 erhalten wir somit
folgende Tabelle:

f−1 0 1 2 3 4 5

0 0 25 20 15 10 5
1 6 1 26 21 16 11
2 12 7 2 27 22 17
3 18 13 8 3 28 23
4 24 19 14 9 4 29

Die fett gedruckten Einträge bilden dann die Tabelle der Einschränkung f̂−1 von f−1 auf
die Menge Z∗5 × Z∗6. Das Bild dieser Einschränkung ist genau die Menge Z∗30. /

Der chinesische Restsatz, den wir im nächsten Abschnitt beweisen, besagt, dass f im
Fall ggT(m, `) = 1 bijektiv und damit invertierbar ist. Wegen

ggT(x,m`) = 1 ⇔ ggT(x,m) = ggT(x, `) = 1
⇔ ggT(x mod m,m) = ggT(x mod `, `) = 1

ist daher die Einschränkung f̂ von f auf den Bereich Z∗m` eine Bijektion zwischen Z∗m`
und Z∗m × Z∗` , d.h. es gilt

ϕ(m`) = ‖Z∗m`‖ = ‖Z∗m × Z∗`‖ = ‖Z∗m‖ · ‖Z∗`‖ = ϕ(m)ϕ(`).

1.7 Der chinesische Restsatz 11

Satz 24. Die Eulersche ϕ-Funktion ist multiplikativ, d. h. für teilerfremde Zahlen m und
` gilt ϕ(m`) = ϕ(m)ϕ(`).
Korollar 25. Sei m = ∏`

i=1 p
ki
i die Primfaktorzerlegung von m. Dann gilt

ϕ(m) =
∏̀
i=1

pki−1
i (pi − 1) = m

∏̀
i=1

(pi − 1)/pi.

Beweis. Es gilt ϕ(∏`
i=1 p

ki
i) = ∏`

i=1 ϕ(pki
i) = ∏`

i=1(pki
i − pki−1

i) = ∏`
i=1 p

ki−1
i (pi − 1). �

1.7 Der chinesische Restsatz

Die beiden linearen Kongruenzen
x ≡3 0
x ≡6 1

besitzen je eine Lösung, es gibt aber kein x, das beide Kongruenzen gleichzeitig erfüllt.
Der nächste Satz zeigt, dass unter bestimmten Voraussetzungen gemeinsame Lösungen
existieren, und wie sie berechnet werden können.
Satz 26 (Chinesischer Restsatz (CRS)). Falls m1, . . . , mk paarweise teilerfremd sind,
dann hat das System

x ≡m1 b1
... (1.2)

x ≡mk
bk

für beliebige Zahlen b1, . . . , bk ∈ Z genau eine Lösung modulo m = ∏k
i=1 mi.

Beweis. Zu jeder Zahl ni = m/mi existieren wegen ggT(ni,mi) = 1 Zahlen µi und λi mit
µini + λimi = ggT(ni,mi) = 1

Für i = 1, . . . , k löst daher die Zahl si = µini das System

x ≡mj

0, j 6= i (a)
1, j = i (b)

(1.3)

Folglich gelten für s = ∑k
i=1 bisi die Kongruenzen s

(1.3a)
≡ mj

bjsj
(1.3b)
≡ mj

bj, d.h. s löst das
System (1.2). Dies zeigt, dass die Funktion

f : Zm → Zm1 × · · · × Zmk
mit f(x) = (x mod m1, . . . , x mod mk)

surjektiv ist. Da der Definitions- und der Wertebereich von f gleich groß sind, muss f
auch injektiv sein und (1.2) ist eindeutig lösbar. �

Man beachte, dass der Beweis des chinesischen Restsatzes konstruktiv ist und die Lösung
x unter Verwendung des erweiterten euklidischen Algorithmus’ effizient berechnet werden
kann.
Man verifiziert auch leicht, dass f ein Isomorphismus zwischen dem Ring (Zm,⊕m,�m)
und dem direkten Produkt der Ringe (Zmi

,⊕mi
,�mi

), 1 ≤ i ≤ k, ist. Dies ist nicht
nur für theoretische Überlegungen nützlich, sondern hat auch praktische Konsequenzen.
Beispielsweise lässt sich dadurch die Laufzeit von bestimmten Berechnungen im Ring Zm
deutlich reduzieren, sofern die Primzahlzerlegung von m bekannt ist.

12 1 Klassische Kryptoverfahren

1.8 Die Hill-Chiffre

Die von Hill im Jahr 1929 publizierte Chiffre ist eine Erweiterung der multiplikativen
Chiffre auf Buchstabenblöcke. Der Klartext wird also nicht zeichen- sondern blockweise
verarbeitet. Die Blöcke haben eine feste Länge l und sowohl Klar- als auch Kryptotextraum
bestehen aus allen Wörtern x ∈ Al. Als Schlüssel dient eine (l × l)-Matrix k = (kij)
mit Koeffizienten in Zm. Diese transformiert einen Klartext x = x1 . . . xl ∈ Al in den
Kryptotext y = y1 . . . yl mit yi = x1k1i + · · ·+ xlkli für i = 1, . . . , l:

(y1 · · · yl) = (x1 · · · xl)


k11 . . . k1l
...
kl1 . . . kll


Wir bezeichnen die Menge aller (l × l)-Matrizen (kij) mit Koeffizienten kij ∈ Zm mit
Zl×lm . Als Schlüssel können nur invertierbare Matrizen k benutzt werden, da sonst der
Chiffriervorgang nicht injektiv ist. Ob eine Matrix k ∈ Zl×lm invertierbar ist, lässt sich an
ihrer Determinante erkennen.
Definition 27 (Determinante). Sei R ein kommutativer Ring mit Eins und sei A =
(aij) ∈ Rn×n. Eine Funktion f : Rn×n → R heißt Determinantenfunktion, falls sie
folgende drei Eigenschaften erfüllt

– f ist multilinear, d.h. für jede Matrix A = (a1, . . . , an) ∈ Rn×n mit Spalten
a1, . . . , an ∈ (Rn)T , jeden Spaltenvektor b ∈ (Rn)T und jedes r ∈ R gilt

f(a1, . . . , rai + b, . . . , an) = rf(a1, . . . , ai, . . . , an) + f(a1, . . . , b, . . . , an).

– f ist alternierend, d.h. im Fall ai = aj für i 6= j gilt f(a1, . . . , an) = 0.
– f ist normiert, d.h. f(E) = 1, wobei E die Einheitsmatrix ist.

Tatsächlich ist f durch diese drei Eigenschaften eindeutig festgelegt und wir bezeichnen
f(A) wie üblich mit det(A).

Eine explizite Darstellung für die Determinantenfunktion liefert der laplacesche Entwick-
lungssatz. Für 1 ≤ i, j ≤ n sei Aij die durch Streichen der i-ten Zeile und j-ten Spalte
aus A hervorgehende Matrix. Dann ist det(A) = a11, falls n = 1, und für n > 1 ist

det(A) =
n∑
j=1

(−1)i+jaijdet(Aij),

wobei i ∈ {1, · · · , n} beliebig wählbar ist (Entwicklung nach der i-ten Zeile). Das Produkt
(−1)i+jdet(Aij) wird Kofaktor genannt und mit ãij bezeichnet. Aus dieser Formel lässt
sich zwar ein Algorithmus zur Berechnung der Determinante ableiten, allerdings hat
dieser eine exponentielle Laufzeit. Das Gauß-Verfahren führt dagegen auf eine effiziente
Berechnungsmethode für die Determinante (siehe Übungen).
Für die Dechiffrierung eines mit dem Schlüssel k berechneten Kryptotextes wird die
inverse Matrix k−1 benötigt. Invertierbare Matrizen werden auch als regulär bezeichnet.
Eine Matrix k ∈ Zl×lm ist genau dann regulär, wenn ggT(det(k),m) = 1 ist. In diesem Fall
lässt sich k−1 mit dem Gauß-Jordan-Algorithmus effizient berechnen (siehe Übungen).
Definition 28. Sei A = {a0, . . . , am−1} ein beliebiges Alphabet und für eine natürliche
Zahl ` ≥ 2 sei M = C = A`. Bei der Hill-Chiffre ist K = {k ∈ Z`×`m | ggT(det(k),m) =
1} und es gilt

E(k, x) = xk und D(k, y) = yk−1.

1.9 Die Vigenère-Chiffre und andere Stromsysteme 13

Beispiel 29 (Hill-Chiffre). Benutzen wir zur Chiffrierung von Klartextblöcken der Länge
l = 4 über dem lateinischen Alphabet Alat die Schlüsselmatrix

k =


11 13 8 21
24 17 3 25
18 12 23 17
6 15 2 15

 ,
so erhalten wir beispielsweise für den Klartext HILL wegen

(H I L L)


11 13 8 21
24 17 3 25
18 12 23 17
6 15 2 15

 = (n e r x) bzw.

11 H+ 24 I+ 18 L+ 6 L= n

13 H+ 17 I+ 12 L+ 15 L= e

8 H+ 3 I+ 23 L+ 2 L= r

21 H+ 25 I+ 17 L+ 15 L= x

den Kryptotext E(k, HILL) = nerx. Für die Entschlüsselung wird die inverse Matrix k−1

benötigt. Diese wird in den Übungen berechnet. /

1.9 Die Vigenère-Chiffre und andere Stromsysteme

Die nach dem Franzosen Blaise de Vigenère (1523–1596) benannte Chiffre ersetzt den
Klartext zeichenweise, allerdings je nach Position im Klartext unterschiedlich.

Definition 30. Sei A = B ein beliebiges Alphabet. Die Vigenère-Chiffre chiffriert
unter einem Schlüssel k = k0 . . . kd−1 ∈ K = A∗ einen Klartext x = x0 . . . xn−1 beliebiger
Länge zu

E(k, x) = y0 . . . yn−1 mit yi = xi + k(i mod d) für i = 1, . . . , n− 1

und dechiffriert einen Kryptotext y = y0 . . . yn−1 zu

D(k, y) = x0 . . . xn−1 mit xi = yi − k(i mod d) für i = 1, . . . , n− 1.

Beispiel 31 (Vigenère-Chiffre). Verwenden wir das lateinische Alphabet Alat als Klar-
textalpabet und wählen wir als Schlüssel das Wort k = WIE, so ergibt sich für den Klartext
VIGENERE beispielsweise der Kryptotext

E(WIE, VIGENERE) = V+W︸ ︷︷ ︸
r

I+I︸ ︷︷ ︸
q

G+E︸ ︷︷ ︸
k

E+W︸ ︷︷ ︸
a

N+I︸ ︷︷ ︸
v

E+E︸ ︷︷ ︸
i

R+W︸ ︷︷ ︸
n

E+I︸ ︷︷ ︸
m

= rqkavinm

/

Um einen Klartext x zu verschlüsseln, wird also das Schlüsselwort k = k0 . . . kd−1 so
oft wiederholt, bis der dabei entstehende Schlüsselstrom k̂ = k0k1 . . . kd−1k0 . . . die
Länge von x erreicht. Dann werden x und k̂ zeichenweise addiert, um den zugehörigen
Kryptotext y zu bilden. Aus diesem kann der ursprüngliche Klartext x zurückgewonnen
werden, indem man den Schlüsselstrom k̂ wieder subtrahiert.

Beispiel 32. Vigenère-Chiffre

Chiffrierung: Dechiffrierung:
VIGENERE (Klartext x) rqkavinm (Kryptotext y)

+ WIEWIEWI (Schlüsselstrom k̂) − WIEWIEWI (Schlüsselstrom k̂)
rqkavinm (Kryptotext y) VIGENERE (Klartext x)

/

14 1 Klassische Kryptoverfahren

Die Chiffrierarbeit lässt sich durch Benutzung einer Additionstabelle erleichtern (auch
als Vigenère-Tableau bekannt).

+ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Um eine involutorische Chiffre zu erhalten, schlug Sir Francis Beaufort, ein Admiral der
britischen Marine, vor, den Schlüsselstrom nicht auf den Klartext zu addieren, sondern
letzteren von ersterem zu subtrahieren.
Beispiel 33 (Beaufort-Chiffre). Verschlüsseln wir den Klartext BEAUFORT beispiels-
weise unter dem Schlüsselwort k = WIE, so erhalten wir den Kryptotext xmeqnsnb. Eine
erneute Verschlüsselung liefert wieder den Klartext BEAUFORT:

Chiffrierung: Dechiffrierung:
WIEWIEWI (Schlüsselstrom) WIEWIEWI (Schlüsselstrom)

− BEAUFORT (Klartext) − veecdqfp (Kryptotext)
veecdqfp (Kryptotext) BEAUFORT (Klartext) /

Bei den bisher betrachteten Chiffren wird aus einem Schlüsselwort k = k0 . . . kd−1 ein
periodischer Schlüsselstrom k̂ = k̂0 . . . k̂n−1 erzeugt, das heißt, es gilt k̂i = k̂i+d für
alle i = 0, . . . , n − d − 1. Da eine kleine Periode das Brechen der Chiffre erleichtert,
sollte entweder ein Schlüsselstrom mit sehr großer Periode oder noch besser ein fortlau-
fender Schlüsselstrom zur Chiffrierung benutzt werden. Ein solcher nichtperiodischer
Schlüsselstrom lässt sich beispielsweise ohne großen Aufwand erzeugen, indem man an
das Schlüsselwort den Klartext oder den Kryptotext anhängt (sogenannte Autokey-
Chiffrierung).†

†Die Idee, den Schlüsselstrom durch Anhängen des Klartextes an ein Schlüsselwort zu bilden, stammt
von Vigenère, während er mit der Erfindung der nach ihm benannten Vigenère-Chiffre „nichts zu
tun“ hatte. Diese wird vielmehr Giovan Batista Belaso (1553) zugeschrieben.

1.10 Der One-Time-Pad 15

Beispiel 34 (Autokey-Chiffre). Benutzen wir wieder das Schlüsselwort WIE, um den
Schlüsselstrom durch Anhängen des Klar- bzw. Kryptotextes zu erzeugen, so erhalten wir
für den Klartext VIGENERE folgende Kryptotexte:

Klartext-Schlüsselstrom: Kryptotext-Schlüsselstrom:
VIGENERE (Klartext) VIGENERE (Klartext)

+ WIEVIGEN (Schlüsselstrom) + WIERQKVD (Schlüsselstrom)
rqkzvkvr (Kryptotext) rqkvdomh (Kryptotext)

/

Auch die Dechiffrierung ist in beiden Fällen einfach. Bei der ersten Alternative kann der
Empfänger durch Subtraktion des Schlüsselworts den Anfang des Klartextes bilden und
gleichzeitig den Schlüsselstrom verlängern, so dass sich auf diese Weise Stück für Stück der
gesamte Kryptotext entschlüsseln lässt. Noch einfacher gestaltet sich die Dechiffrierung im
zweiten Fall, da sich hier der Schlüsselstrom vom Kryptotext nur durch das vorangestelle
Schlüsselwort unterscheidet.

1.10 Der One-Time-Pad

Eine weitere Möglichkeit ist, eine Textstelle in einem Buch als Schlüssel zu vereinbaren
und den dort beginnenden Text als aperiodischen Schlüsselstrom zu benutzen (Lauf-
textverschlüsselung). Besser ist es jedoch, mithilfe von Pseudozufallsgeneratoren aus
einem relativ kurzen Schlüssel einen deutlich längeren Schlüsselstrom zu erzeugen. Noch
besser ist es, den Schlüsselstrom wirklich zufällig zu erzeugen. Dies führt auf eine absolut
sichere Verschlüsselung, sofern der Schlüsselstrom nicht mehrmals benutzt wird.‡ Ein
solcher „Wegwerfschlüssel“ (engl. One-Time-Pad oder kurz OTP; im Deutschen auch
als individueller Schlüssel bezeichnet) lässt sich für längere Klartexte allerdings nur
mit großem Aufwand generieren und auf einem sicheren Kanal zwischen Sender und
Empfänger verteilen, weshalb diese Chiffre nur wenig praktikabel ist.§

Beispiel 35 (One-Time-Pad). Sei A = {a0, . . . , am−1} ein beliebiges Klartextalphabet.
Um einen Klartext x = x0 . . . xn−1 zu verschlüsseln, wird auf jedes Klartextzeichen xi ein
neuer, zufällig generierter Schlüsselbuchstabe ki addiert,

y = y0 . . . yn−1, wobei yi = xi + ki. /

Der Klartext wird also wie bei einer additiven Chiffre verschlüsselt, nur dass der Schlüssel
nach einmaligem Gebrauch gewechselt wird. Wie diese ist der One-Time-Pad im Binärfall
involutorisch.

. . . 01101 + . . . 11001 + . . . 01101

. . . 10100 . . . 10100

Klartext Kryptotext Klartext

Schlüssel Schlüssel

‡ Diese Methode schlug der amerikanische Major Joseph O. Mauborgne im Jahr 1918 vor, nachdem
ihm ein von Gilbert S. Vernam für den Fernschreibverkehr entwickeltes Chiffriersystem vorgestellt
wurde.

§ Diese Methode wurde beispielsweise beim „heißen Draht“, der 1963 eingerichteten, direkten Fern-
schreibverbindung zwischen dem Weißen Haus in Washington und dem Kreml in Moskau, angewandt.

16 1 Klassische Kryptoverfahren

1.11 Die Skytale-Chiffre

Bei den bisher betrachteten Chiffrierfunktionen handelt es sich um Substitutionen, d.h.
sie bilden den Kryptotext aus dem Klartext, indem sie Klartextzeichen – einzeln oder
in Gruppen – durch Kryptotextzeichen ersetzen. Dagegen verändern Transpositionen
lediglich die Reihenfolge der einzelnen Klartextzeichen.
Beispiel 36 (Skytale-Chiffre). Die älteste bekannte Verschlüsselungstechnik stammt aus
der Antike und wurde im 5. Jahrhundert v. Chr. von den Spartanern entwickelt: Der
Sender wickelt einen Papierstreifen spiralförmig um einen Holzstab (die sogenannte
Skytale) und beschreibt ihn in Längsrichtung mit der Geheimbotschaft.

U B E R A U S
G E H E I M N
I S V O L L ...

ÜBERAUS GEHEIMNISVOLL...
; ügi...bes...ehv...reo...ail...uml...sn...

Besitzt der Empfänger eines auf diese Weise beschrifteten Papierstreifens einen Stab mit
dem gleichen Umfang, so kann er ihn auf dieselbe Art wieder entziffern. /

Als Schlüssel fungiert hier also der Stabumfang bzw. die Anzahl k der Zeilen, mit denen
der Stab beschrieben wird. Findet der gesamte Klartext x auf der Skytale Platz und
beträgt seine Länge ein Vielfaches von k, so geht x bei der Chiffrierung in den Kryptotext

E(k, x1 · · ·xkm) =
x1xm+1 · · · x(k−1)m+1x2xm+2 · · ·x(k−1)m+2 · · ·xmx2m · · · xkm

über. Dasselbe Resultat erhält man, wenn x zeilenweise in eine k×m-Matrix geschrieben
und spaltenweise wieder ausgelesen wird (sogenannte Spaltentransposition):

x1 x2 · · · xm
xm+1 xm+2 · · · x2m
...

x(k−1)m+1 x(k−1)m+2 · · · xkm

Ist die Klartextlänge kein Vielfaches von k, so kann der Klartext durch das Ein- bzw.
Anfügen von sogenannten Blendern (Füllzeichen) verlängert werden. Damit der Emp-
fänger diese Füllzeichen nach der Entschlüsselung wieder entfernen kann, ist lediglich
darauf zu achten, dass sie im Klartext leicht als solche erkennbar sind.
Von der Methode, die letzte Zeile nur zum Teil zu füllen, ist dagegen abzuraten. In diesem
Fall würden nämlich auf dem abgewickelten Papierstreifen Lücken entstehen, aus deren
Anordnung man Schlüsse auf den benutzten Schlüssel k ziehen könnte. Andererseits ist
nichts dagegen einzuwenden, dass der Sender die letzte Spalte der Skytale nur zum Teil
beschriftet.
Eng verwandt mit der Skytale-Chiffre ist die Zick-Zack-Transposition.
Beispiel 37. Bei Ausführung einer Zick-Zack-Transposition wird der Klartext in
eine Zick-Zack-Linie geschrieben und horizontal wieder ausgelesen. Die Höhe der Zick-
Zack-Linie kann als Schlüssel vereinbart werden.

ZZ Z L EE
I K A K I I
C C N

ZICKZACKLINIE ; zzleikakiiccn

/

1.12 Die Blocktransposition 17

1.12 Die Blocktransposition

Bei einer Zick-Zack-Transposition werden Zeichen im vorderen Klartextbereich bis fast
ans Ende des Kryptotextes verlagert und umgekehrt. Dies hat den Nachteil, dass für
die Generierung des Kryptotextes der gesamte Klartext gepuffert werden muss. Daher
werden meist Blocktranspositionen verwendet, bei denen die Zeichen nur innerhalb
fester Blockgrenzen transponiert werden.

Definition 38. Sei A = B ein beliebiges Alphabet und für eine natürliche Zahl l ≥ 2 sei
M = C = A`. Bei einer Blocktranspositionschiffre wird durch jeden Schlüssel k ∈ K
eine Permutation π auf [`] beschrieben, so dass für alle Zeichenfolgen x1 · · ·x` ∈M und
y1 · · · y` ∈ C

E(k, x1 · · ·x`) = xπ(1) · · ·xπ(`)

und
D(k, y1 · · · y`) = yπ−1(1) · · · yπ−1(`)

gilt.

Eine Blocktransposition mit Blocklänge ` lässt sich durch eine Permutation π ∈ S` (also
auf der Menge {1, . . . , `}) beschreiben.

Beispiel 39. Eine Skytale, die mit 4 Zeilen der Länge 6 beschrieben wird, realisiert
beispielsweise folgende Blocktransposition:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
π(i) 1 7 13 19 2 8 14 20 3 9 15 21 4 10 16 22 5 11 17 23 6 12 18 24

/

Für die Entschlüsselung muss die zu π inverse Permutation π−1 benutzt werden. Wird
π durch eine Folge von Zyklen (i1 i2 i3 . . . in) dargestellt, wobei i1 auf i2, i2 auf i3 usw.
und schließlich in auf i1 abgebildet wird, so ist π−1 sehr leicht zu bestimmen.

Beispiel 40.

i 1 2 3 4 5 6
π(i) 4 6 1 3 5 2

i 1 2 3 4 5 6
π−1(i) 3 6 4 1 5 2

Obiges π hat beispielsweise die Zyklendarstellung

π = (1 4 3) (2 6) (5) oder π = (1 4 3) (2 6),

wenn, wie allgemein üblich, Einerzyklen weggelassen werden. Daraus erhalten wir unmit-
telbar π−1 zu

π−1 = (3 4 1) (6 2) oder (1 3 4) (2 6),
wenn wir jeden Zyklus mit seinem kleinsten Element beginnen lassen und die Zyklen nach
der Größe dieser Elemente anordnen. /

Beispiel 41. Bei der Matrix-Transposition wird der Klartext zeilenweise in eine
k × l-Matrix eingelesen und der Kryptotext spaltenweise gemäß einer Spaltenpermutation
π ∈ Sl, die als Schlüssel dient, wieder ausgelesen. Für π = (1 4 3) (2 6) wird also zuerst
Spalte π(1) = 4, dann Spalte π(2) = 6 und danach Spalte π(3) = 1 usw. und zuletzt Spalte
π(6) = 2 ausgelesen.

18 1 Klassische Kryptoverfahren

3 6 4 1 5 2
D I E S E R
K L A R T E
X T I S T N
I C H T S E
H R L A N G

DIESER KLARTEXT IST NICHT SEHR LANG
; srsta reneg dkxih eaihl ettsn iltcr

/

Beispiel 42. Bei der Weg-Transposition wird als Schlüssel eine Hamiltonlinie in
einem Graphen mit den Knoten 1, . . . , l benutzt. (Eine Hamiltonlinie ist eine Anordnung
aller Knoten, in der je zwei aufeinanderfolgende Knoten durch eine Kante verbunden
sind.) Der Klartextblock x1 · · ·xl wird gemäß der Knotennumerierung in den Graphen
eingelesen und der zugehörige Kryptotext entlang der Hamiltonlinie wieder ausgelesen.

O7 N 8

L5 T 6

M3 I 4

H1 A 2

HAMILTON ; timlonah

/

Es ist leicht zu sehen, dass sich jede Blocktransposition durch eine Hamiltonlinie in einem
geeigneten Graphen realisieren lässt. Der Vorteil, eine Hamiltonlinie als Schlüssel zu
benutzen, besteht offenbar darin, dass man sich den Verlauf einer Hamiltonlinie bildhaft
vorstellen und daher besser einprägen kann als eine Zahlenfolge.
Sehr beliebt ist auch die Methode, sich eine Permutationen in Form eines Schlüssel-
worts (oder einer aus mehreren Wörtern bestehenden Schlüsselphrase) ins Gedächtnis
einzuprägen. Aus einem solchen Schlüsselwort lässt sich die zugehörige Permutation σ
leicht rekonstruieren, indem man das Wort auf Papier schreibt und in der Zeile darunter
für jedes einzelne Zeichen seine Position i innerhalb des Wortes vermerkt.

Schlüsselwort für σ C A E S A R
i 1 2 3 4 5 6

σ(i) 3 1 4 6 2 5
Zyklendarstellung von σ (1 3 4 6 5 2)

DIE BLOCKLAENGE IST SECHS ;
edboil lcanke igsset excsyh

Die Werte σ(i), die σ auf diesen Nummern annimmt, werden nun dadurch ermittelt,
dass man die Schlüsselwort-Buchstaben in alphabetischer Reihenfolge durchzählt. Dabei
werden mehrfach vorkommende Zeichen gemäß ihrer Position im Schlüsselwort an die
Reihe genommen. Alternativ kann man auch alle im Schlüsselwort wiederholt vorkom-
menden Zeichen streichen, was im Fall des Schlüsselworts CAESAR auf eine Blocklänge
von 5 führen würde.
Wir wenden uns nun der Klassifikation von Substitutionen zu. Ein wichtiges Unterschei-
dungsmerkmal ist z.B. die Länge der Klartexteinheiten, auf denen die Chiffre operiert.
Monografische Substitutionen ersetzen Einzelbuchstaben.
Polygrafische Substitutionen ersetzen dagegen aus mehreren Zeichen bestehende Klar-

textsegmente auf einmal.
Eine Substitution heißt monopartit, falls sie die Klartextsegmente durch Einzelzeichen
ersetzt, sonst multipartit. Eine polygrafische Substitution, die auf Zeichenpaaren ope-
riert, wird digrafisch genannt. Wird der Kryptotext aus Zeichenpaaren zusammengesetzt,
so spricht man von einer bipartiten Substitution.

1.13 Die Porta-Chiffre 19

1.13 Die Porta-Chiffre

Das älteste bekannte polygrafische Chiffrierverfahren wurde von Giovanni Porta im Jahr
1563 veröffentlicht. Dabei werden je zwei aufeinanderfolgende Klartextzeichen durch ein
einzelnes Kryptotextzeichen ersetzt.

Beispiel 43. Bei der Porta-Chiffre werden 400 (!) unterschiedliche von Por-
ta für diesen Zweck entworfene Kryptotextzeichen verwendet. Diese sind in einer
20× 20-Matrix M = (yij) angeordnet, deren Zeilen und Spalten mit den 20 Klartextzei-
chen A, . . . , I, L, . . . , T, V, Z indiziert sind. Zur Ersetzung des Zeichenpaars aiaj wird das
in Zeile i und Spalte j befindliche Kryptotextzeichen

E(M,aiaj) = yij

benutzt. /

Ein frühes (monografisches) Beispiel einer bipartiten Chiffriermethode geht auf Polybios
(circa 200 – 120 v.Chr.) zurück:

0 1 2 3 4

0 A B C D E
1 F G H I J
2 K L M N O
3 P Q R S T
4 U V W X/Y Z

POLYBIOS ; 3024214301132433

Die Polybios-Chiffre benutzt als Schlüssel eine 5× 5-Matrix, die aus sämtlichen Klar-
textzeichen gebildet wird.¶ Die Verschlüsselung des Klartextes erfolgt zeichenweise, indem
man einen in Zeile i und Spalte j eingetragenen Klartextzeichen durch das Koordinaten-
paar ij ersetzt. Der Kryptotextraum besteht also aus den Ziffernpaaren {00, 01, . . . , 44}.
Die Frage, ob bei der Ersetzung der einzelnen Segmente des Klartextes eine einheitliche
Strategie verfolgt wird oder ob diese von Segment zu Segment verändert wird, führt uns
auf ein weiteres wichtiges Unterscheidungsmerkmal bei Substitutionen.
Monoalphabetische Substitutionen ersetzen jedes einzelne Klartextsegment unabhän-

gig von seiner Position im Klartext auf dieselbe Weise.
Polyalphabetische Substitutionen verwenden eine Ersetzungsregel, die in Abhängigkeit

von den bereits verarbeiteten Klartextsegmenten varieren kann.
Die Bezeichnung „monoalphabetisch“ bringt zum Ausdruck, dass der Ersetzungsmecha-
nismus im monografischen Fall für jeden Schlüssel auf einem festen Alphabet beruht.
Die von Caesar benutzte Chiffriermethode mit dem Schlüssel k = 3 kann beispielswei-
se vollständig durch Angabe des Ersetzungsalphabets {d,e,f,g,w,...,y,z,a,b,c}
beschrieben werden.
Polyalphabetische Substitutionen greifen im Wechsel auf verschiedene Ersetzungsalpha-
bete zurück, so dass unterschiedliche Vorkommen eines Zeichens (oder einer Zeichenkette)
auch auf unterschiedliche Art ersetzt werden können. Welches Ersetzungsalphabet wann
an der Reihe ist, wird dabei in Abhängigkeit von der Länge oder der Gestalt des bereits
verarbeiteten Klartextes bestimmt.
¶Da nur 25 Plätze zur Verfügung stehen, muss bei Benutzung des lateinischen Alphabets entweder ein

Buchstabe weggelassen oder ein Platz mit zwei Zeichen besetzt werden.

20 1 Klassische Kryptoverfahren

1.14 Block- und Stromchiffren

Monoalphabetische Chiffrierverfahren ersetzen meist Texteinheiten einer festen Länge
l ≥ 1 durch Kryptotextsegmente derselben Länge.

Definition 44. Sei A ein beliebiges Alphabet und es gelte M = C = A`, ` ≥ 1. Eine
Blockchiffre realisiert für jeden Schlüssel k ∈ K eine bijektive Abbildung g auf A` und
es gilt für alle x ∈M und y ∈ C,

E(k, x) = g(x) und D(k, y) = g−1(y).

Im Fall ` = 1 spricht man auch von einer einfachen Substitutionschiffre.

Fast alle polyalphabetischen Chiffrierverfahren operieren – genau wie monoalphabetische
Substitutionen – auf Klartextblöcken einer festen Länge l, die sie in Kryptotextblöcke einer
festen Länge l′ überführen, wobei meist l = l′ ist. Da diese Blöcke jedoch vergleichsweise
kurz sind, kann der Klartext der Chiffrierfunktion ungepuffert zugeführt werden. Man
nennt die einzelnen Klartextblöcke in diesem Zusammenhang auch nicht ‚Blöcke‘ sondern
‚Zeichen‘ und spricht von sequentiellen Chiffren oder von Stromchiffren.

Definition 45. Sei A ein beliebiges Alphabet und sei M = C = Al für eine natürliche
Zahl l ≥ 1. Weiterhin seien K und K̂ Schlüsselräume. Eine Stromchiffre wird durch
eine Verschlüsselungsfunktion E : K̂ × M → C und einen Schlüsselstromgenerator
g : K × A∗ → K̂ beschrieben. Der Generator g erzeugt aus einem externen Schlüssel
k ∈ K für einen Klartext x = x0 . . . xn−1, xi ∈M , eine Folge k̂0, . . . , k̂n−1 von internen
Schlüsseln k̂i = g(k, x0 . . . xi−1) ∈ K̂, unter denen x in den Kryptotext

Eg(k, x) = E(k̂0, x0) . . . E(k̂n−1, xn−1)

überführt wird.

Der interne Schlüsselraum kann also wie bei der Blockchiffre eine maximale Größe von
(ml)! annehmen (im häufigen Spezialfall l = 1 also m!). Die Aufgabe des Schlüsselstrom-
generators g besteht darin, aus dem externen Schlüssel k und dem bereits verarbeiteten
Klartext x0 . . . xi−1 den aktuellen internen Schlüssel k̂i zu berechnen. Die bisher betrach-
teten Stromchiffren benutzen z.B. die folgenden Schlüsselstromgeneratoren.

Stromchiffre Chiffrierfunktionen Schlüsselstromgenerator

Vigenère E(k̂, x) = x+ k̂ g(k0 . . . kd−1, x0 . . . xi−1) = k(i mod m)

Beaufort E(k̂, x) = k̂ − x g(k0 . . . kd−1, x0 . . . xi−1) = k(i mod m)

Autokey
mit Klartext-
Schlüsselstrom

E(k̂, x) = x+ k̂ g(k0 . . . kd−1, x0 . . . xi−1) =
{
ki, i < d

xi−d,i ≥ d

Autokey
mit Kryptotext-
Schlüsselstrom

E(k̂, x) = x+ k̂
g(k0 . . . kd−1, x0 . . . xi−1) =

{
ki, i < d

yi−d,i ≥ d

= k(i mod d) +∑bi/dc
j=1 xi−jd

Bei der Vigenère- und Beaufortchiffre hängt der Schlüsselstrom nicht vom Klartext,
sondern nur vom externen Schlüssel k ab, d.h. sie sind synchron. Die Autokey-Chiffren
sind dagegen asynchron (und aperiodisch).

1.15 Gespreizte und homophone Substitutionen 21

1.15 Gespreizte und homophone Substitutionen

Bei den bisher betrachteten Substitutionen haben die einzelnen Blöcke, aus denen der
Kryptotext zusammengesetzt wird, eine einheitliche Länge. Es liegt nahe, einem Gegner
die unbefugte Rekonstruktion des Klartextes dadurch zu erschweren, dass man Blö-
cke unterschiedlicher Länge verwendet. Man spricht hierbei auch von einer Spreizung
(straddling) des Kryptotextalphabets. Ein bekanntes Beispiel für diese Technik ist die
sogenannte Spionage-Chiffre, die vorzugsweise von der ehemaligen sowjetischen Geheim-
polizei NKWD (Naródny Komissariàt Wnutrennich Del; zu deutsch: Volkskommissariat
des Innern) benutzt wurde.

Beispiel 46. Bei der Spionage-Chiffre wird in die erste Zeile einer 3× 10-Matrix ein
Schlüsselwort w geschrieben, welches kein Zeichen mehrfach enthält und eine Länge von
6 bis 8 Zeichen hat (also zum Beispiel SPIONAGE). Danach werden die anderen beiden
Zeilen der Matrix mit den restlichen Klartextzeichen (etwa in alphabetischer Reihenfolge)
gefüllt.

4 1 9 6 0 3 2 7 5 8

S P I O N A G E
8 B C D F H J K L M Q
5 R T U V W X Y Z

GESPREIZT
; 274154795751

/

Man überzeugt sich leicht davon, dass sich die von der Spionage-Chiffre generierten
Kryptotexte wieder eindeutig dechiffrieren lassen, da die Kryptotextsegmente 1, 2,. . . , 8,
01, 02, . . . , 08, 91, 92, . . . , 98, die für die Klartextzeichen eingesetzt werden, die Fano-
Bedingung erfüllen: Keines von ihnen bildet den Anfang eines anderen. Da die Nummern
5 und 8 der beiden letzten Spalten der Matrix auch als Zeilennummern verwendet werden,
liefert dies auch eine Erklärung dafür, warum keine Schlüsselwortzeichen in die beiden
letzten Spalten eingetragen werden dürfen.

Verwendung von Blendern und Homophonen

Die Verwendung von gespreizten Chiffren zielt offenbar darauf ab, die „Fuge“ zwischen
den einzelnen Kryptotextsegmenten, die von unterschiedlichen Klartextzeichen herrühren,
zu verdecken, um dem Gegner eine unbefugte Dechiffrierung zu erschweren. Dennoch bietet
die Spionage-Chiffre noch genügend Angriffsfläche, da im Klartext häufig vorkommende
Wortmuster auch im Kryptotext zu Textwiederholungen führen.
Eine Möglichkeit, diese Muster aufzubrechen, besteht darin, Blender in den Klartext
einzustreuen. Abgesehen davon, dass das Entfernen der Blender auch für den rechtmäßigen
Empfänger mit Mühe verbunden ist, muss für den Zugewinn an Sicherheit auch mit einer
Expansion des Kryptotextes bezahlt werden.
Ist man bereit, dies in Kauf zu nehmen, so gibt es auch noch eine wirksamere Methode,
die Übertragung struktureller und statistischer Klartextmerkmale auf den Kryptotext
abzumildern. Die Idee dabei ist, zur Chiffrierung der einzelnen Klartextzeichen a nicht
nur jeweils eines, sondern eine Menge H(a) von Chiffrezeichen vorzusehen, und daraus
für jedes Vorkommen von a im Klartext eines auszuwählen (am besten zufällig). Da
alle Zeichen in H(a) für dasselbe Klartextzeichen stehen, werden sie auch Homophone
genannt.

22 1 Klassische Kryptoverfahren

Definition 47. Sei A ein Klartextalphabet und sei M = A. Weiter sei C ein Krypto-
textraum der Größe ‖C‖ > ‖A‖ = m. In einer homophonen Substitutionschiffre
beschreibt jeder Schlüssel k ∈ K eine Zerlegung von C in m disjunkte Mengen H(a),
a ∈ A.
Um ein Zeichen a ∈ A unter k zu chiffrieren, wird nach einer bestimmten Methode ein
Homophon y aus der Menge H(a) gewählt und für a eingesetzt.

Durch den Einsatz einer homophonen Substitution wird also erreicht, dass verschiedene
Vorkommen eines Klartextzeichens auch auf unterschiedliche Weise ersetzt werden können.
Damit der Empfänger den Kryptotext auch wieder eindeutig dechiffrieren kann, dürfen
sich die Homophonmengen zweier verschiedener Klartextzeichen aber nicht überlappen.
Daher kann es nicht vorkommen, dass zwei verschiedene Klartextzeichen durch dasselbe
Geheimtextzeichen ersetzt werden. Man beachte, dass der Chiffriervorgang x 7→ E(k, x)
nicht durch eine Funktion beschreibbar ist, da derselbe Klartext x in mehrere verschiedene
Kryptotexte y übergehen kann.
Durch eine geringfügige Modifikation der Polybios-Chiffre lässt sich die folgende bipartite
homophone Chiffre erhalten.
Beispiel 48 (homophone Substitution). Sei A = {A, . . . , Z}, B = {0, . . . , 9} und C =
{00, . . . , 99}.

1,0 2,9 3,8 4,7 5,6

1,6 A F K P U
2,7 B G L Q V
3,8 C H M R W
4,9 D I N S X/Y
5,0 E J O T Z

HOMOPHON ; 8203885317320898

Genau wie bei Polybios wird eine 5× 5-Matrix M als Schlüssel benutzt. Die Zeilen und
Spalten von M sind jedoch nicht nur mit jeweils einer, sondern mit zwei Ziffern versehen,
so dass jeder Klartextbuchstabe x über vier verschiedene Koordinatenpaare ansprechbar ist.
Der Kryptotextraum wird durch M also in 25 Mengen H(a), a ∈ A, mit je 4 Homophonen
partitioniert. /

Wie wir noch sehen werden, sind homophone Chiffrierungen auch deshalb schwerer zu
brechen, weil durch sie die charakteristische Häufigkeitsverteilung der Klartextzeichen
zerstört wird. Dieser Effekt kann dadurch noch verstärkt werden, dass man für häufig
vorkommende Klartextzeichen a eine entsprechend größere Menge H(a) an Homophonen
vorsieht. Damit lässt sich erreichen, dass die Verteilung der im Geheimtext auftretenden
Zeichen weitgehend nivelliert wird.
Beispiel 49 (homophone Substitution, verbesserte Version). Ist p(a) die Wahrscheinlich-
keit, mit der ein Zeichen a ∈ A in der Klartextsprache auftritt, so sollte ‖H(a)‖ ≈ 100·p(a)
sein.

a p(a) H(a)

A 0.0647 {15, 26, 44, 59, 70, 79}
B 0.0193 {01, 84}
C 0.0268 {13, 28, 75}
D 0.0483 {02, 17, 36, 60, 95}
E 0.1748 {04, 08, 12, 30, 43, 46, 47, 53, 61, 67, 69, 72, 80, 86, 90, 92, 97}
...

...
...

1.16 Realisierung von Transpositionen und Substitutionen 23

Da der Buchstabe A im Deutschen beispielsweise mit einer Wahrscheinlichkeit von p(A) =
0.0647 auftritt, sind für ihn sechs verschiedene Homophone vorgesehen. /

Um den Suchaufwand bei der Dechiffrierung zu reduzieren, empfiehlt es sich, eine 10×10-
Matrix anzulegen, in der jeder Klartextbuchstabe a an allen Stellen vorkommt, deren
Koordinaten in H(a) enthalten sind.

1 2 3 4 5 6 7 8 9 0

1 N E C S A O D X I N
2 R G S N N A U C H Y
3 T L I O U D Z M N E
4 H R E A N E E S I T
5 N I E T P H S L A R
6 E U M F R J E N E D
7 N E K S C T I T A A
8 H N I B R E U G V E
9 T E L S D R E O S E
0 B D W E Q I F E I R

HOMOPHON ; 5698633455291668

Offenbar kann man diese Matrix auch zur Chiffrierung benutzen, was sogar den positiven
Nebeneffekt hat, dass dadurch eine zufällige Wahl der Homophone begünstigt wird.

1.16 Realisierung von Transpositionen und Substitutionen

Abschließend möchten wir eine einfache elektronische Realisierungsmöglichkeit von Block-
transpositionen erwähnen, die auf binär kodierten Klartexten operieren (d.h. A = {0, 1}).
Um einen Binärblock x1 · · ·xl der Länge l zu permutieren, müssen die einzelnen Bits ledig-
lich auf l Leitungen gelegt und diese gemäß π in einer sogenannten Permutationsbox
(kurz P-Box) vertauscht werden.

x6 y6

x5 y5

x4 y4

x3 y3

x2 y2

x1 y1

Die Implementierung einer solchen P-Box kann beispielsweise auf einem VLSI-Chip
erfolgen. Allerdings kann hierbei für größere Werte von l aufgrund der hohen Zahl von
Überkreuzungspunkten ein hoher Flächenbedarf anfallen.
Blocktranspositionen können auch leicht durch Software als eine Folge von Zuweisungen

y1 := x2; y2 := x5; . . . y6 := x4;

implementiert werden. Bei großer Blocklänge und sequentieller Abarbeitung erfordert
diese Art der Implementierung jedoch einen relativ hohen Zeitaufwand.
Von Alberti stammt die Idee, das Klartext- und Kryptotextalphabet auf zwei konzentri-
schen Scheiben unterschiedlichen Durchmessers anzuordnen. In Abbildung 1.2 ist gezeigt,
wie sich mit einer solchen Drehscheibe beispielsweise die additive Chiffre realisieren lässt.
Zur Einstellung des Schlüssels k müssen die Scheiben so gegeneinander verdreht werden,

24 1 Klassische Kryptoverfahren

A

A

B
B

C
C

D
D

E

E

F

F

G

G

H
H

I
IJ JK K

L L

M

M

N

N

O
O

P
P

Q
Q

R
R

S

S

T

T

U
U

V
V

W
W XX

YY

Z

Z

3 Volt

A a

B b
C c

D d
E e

Z z

...

Abbildung 1.2: Realisierung von einfachen Substitutionen mit einer Drehscheibe und mit
Hilfe von Steckverbindungen

dass der Schlüsselbuchstabe ak auf der inneren Scheibe mit dem Klartextzeichen a0 = A
auf der äußeren Scheibe zur Deckung kommt. Auf der Drehscheibe in Abbildung 1.2
ist beispielsweise der Schlüssel k = 2 eingestellt, das heißt, ak = c. Die Verschlüsselung
geschieht nun durch bloßes Ablesen der zugehörigen Kryptotextzeichen auf der inneren
Scheibe, so dass von der Drehfunktion der Scheiben nur bei einem Schlüsselwechsel
Gebrauch gemacht wird.
Aufgrund ihrer engen Verwandtschaft mit der Klasse der Blocktranspositionen lassen
sich einfache Substitutionen auch mit Hilfe einer P-Box realisieren. Hierfür können
beispielsweise zwei Steckkontaktleisten verwendet werden. Der aktuelle Schlüssel wird
in diesem Fall durch Verbinden der entsprechenden Kontakte mit elektrischen Kabeln
eingestellt (siehe Abbildung 1.2). Um etwa das Klartextzeichen E zu verschlüsseln, drückt
man auf die entsprechende Taste, und das zugehörige Kryptotextzeichen b wird im selben
Moment durch ein aufleuchtendes Lämpchen signalisiert.
Schließlich lassen sich Substitutionen auch leicht durch Software realisieren. Hierzu wird
ein Feld (array) deklariert, dessen Einträge über die Klartextzeichen x ∈ A adressierbar
sind. Das mit x indizierte Feldelement enthält das Kryptotextzeichen, durch welches x
beim Chiffriervorgang zu ersetzen ist.
Ein Nachteil hierbei ist, dass das Feld nach jedem Schlüsselwechsel neu beschrieben
werden muss. Um dies zu umgehen, kann ein zweidimensionales Feld deklariert werden,
dessen Einträge zusätzlich über den aktuellen Schlüsselwert k adressierbar sind. Ist
genügend Speicherplatz vorhanden, um für alle x ∈ A und alle k ∈ K die zugehörigen
Kryptotextzeichen E(k, x) abspeichern zu können, so muss das Feld nur einmal initialisiert
und danach nicht mehr geändert werden.

Schlüssel- Klartextbuchstabe
wert A B . . . Z

0 u h . . . c
1 e h . . . a
...

63 y f . . . w

25

2 Analyse der klassischen Verfahren

2.1 Klassifikation von Angriffen gegen Kryptosysteme

Die Erfolgsaussichten eines Angriffs gegen ein Kryptosystem hängen sehr stark von der
Ausgangslage des Angreifers ab. Prinzipiell sollte man die Fähigkeiten des Gegners genauso
wenig unterschätzen wie die Unvorsichtigkeit der Anwender von Kryptosystemen. Bereits
vor mehr als einem Jahrhundert postulierte Kerckhoffs, dass die Frage der Sicherheit nicht
von irgendwelchen obskuren Annahmen über den Wissensstand des Gegners abhängig
gemacht werden darf.

Goldene Regel für Kryptosystem-Designer (Kerckhoffs’ Prinzip)
Unterschätze niemals den Kryptoanalytiker. Gehe insbesondere immer von der
Annahme aus, dass dem Gegner das angewandte System bekannt ist.∗

In der folgenden Liste sind eine Reihe von Angriffsszenarien mit zunehmender Gefähr-
lichkeit aufgeführt. Auch wenn nicht alle Eventualitäten eines Angriffs vorhersehbar sind,
so vermittelt diese Aufstellung doch eine gute Vorstellung von den unterschiedlichen
Bedrohungen, denen ein Kryptosystem im praktischen Einsatz ausgesetzt sein kann.
Angriff bei bekanntem Kryptotext (ciphertext-only attack)

Der Gegner fängt Kryptotexte ab und versucht, allein aus ihrer Kenntnis Rück-
schlüsse auf die zugehörigen Klartexte oder auf die benutzten Schlüssel zu ziehen.

Angriff bei bekanntem Klartext (known-plaintext attack)
Der Gegner ist im Besitz von einigen zusammengehörigen Klartext-Kryptotext-
Paaren. Hierdurch wird erfahrungsgemäß die Entschlüsselung weiterer Kryptotexte
oder die Bestimmung der benutzten Schlüssel wesentlich erleichtert.

Angriff bei frei wählbarem Klartext (chosen-plaintext attack)
Der Angriff des Gegners wird zusätzlich dadurch erleichtert, dass er in der Lage
ist (zumindest vorübergehend), sich zu Klartexten seiner Wahl die zugehörigen
Kryptotexte zu besorgen. Kann hierbei die Wahl der Klartexte in Abhängigkeit
von zuvor erhaltenen Verschlüsselungsergebnissen getroffen werden, so spricht
man von einem Angriff bei adaptiv wählbarem Klartext (adaptive chosen-
plaintext attack).

Angriff bei frei wählbarem Kryptotext (chosen-ciphertext attack)
Vor der Beobachtung des zu entschlüsselnden Kryptotextes konnte sich der Gegner
zu Kryptotexten seiner Wahl die zugehörigen Klartexte besorgen, ohne dabei jedoch
in den Besitz des Dechiffrierschlüssels zu kommen (Mitternachtsattacke). Das
dabei erworbene Wissen steht ihm nun bei der Durchführung seines Angriffs zur
Verfügung. Auch in diesem Fall können sich die Erfolgsaussichten des Gegners
erhöhen, wenn ein Angriff bei adaptiv wählbarem Kryptotext (adaptive
chosen-ciphertext attack) möglich ist, also der Kryptotext in Abhängigkeit von
den zuvor erzielten Entschlüsselungsergebnissen wählbar ist.

∗Tatsächlich sind die Prinzipien fast aller heute im Einsatz befindlichen Kryptosysteme bekannt. Nur
so kann einer Vielzahl von Kryptoanalytikern die Suche nach Schwachstellen ermöglicht werden.

26 2 Analyse der klassischen Verfahren

Angriff bei frei (oder adaptiv) wählbarem Text (chosen-text attack)
Sowohl Klartexte als auch Kryptotexte sind frei (oder sogar adaptiv) wählbar.

Ohne Frage ist ein Kryptosystem, das bereits bei einem Angriff mit bekanntem Krypto-
text Schwächen erkennen lässt, für die meisten Anwendungen ungeeignet. Tatsächlich
müssen aber an ein praxistaugliches Kryptosystem noch weit höhere Anforderungen
gestellt werden. Denn häufig unterlaufen den Anwendern sogenannte Chiffrierfehler,
die einen Gegner leicht in eine sehr viel günstigere Ausgangsposition versetzen können.
So ermöglicht beispielsweise das Auftreten stereotyper Klartext-Formulierungen einen
Angriff bei bekanntem Klartext, sofern der Gegner diese Formulierungen kennt bzw. errät.
Begünstigt durch derartige Unvorsichtigkeiten, die im praktischen Einsatz meist nicht
vermeidbar sind, können sich selbst winzige Konstruktionsschwächen eines Kryptosystems
sehr schnell zu einer ernsthaften Bedrohung auswachsen. Die Geschichte der Kryptografie
belegt sehr eindrucksvoll, dass es häufig die Anwender eines Kryptosystems selbst sind,
die – im unerschütterlichen Glauben an seine kryptografische Stärke – einen erfolgreichen
Angriff ermöglichen.
Zusammenfassend lässt sich also festhalten, dass die Gefährlichkeit von Angriffen, de-
nen ein Kryptosystem im praktischen Einsatz ausgesetzt ist, kaum zu überschätzen ist.
Andererseits kann selbst das beste Kryptosystem keinen Schutz vor einer unbefugten
Dechiffrierung bieten, wenn es dem Gegner etwa gelingt, in den Besitz des geheimen
Schlüssels zu kommen – sei es aus Unachtsamkeit der Anwender oder infolge von Manipu-
lationsversuchen von Seiten des Gegners (Social Engineering bzw. Social Hacking).
Auch Implementierungsangriffe nutzen nicht Schwachstellen des Kryptoverfahrens
aus. Vielmehr zielen sie darauf ab, durch physikalische Messungen wie bspw. des Stromver-
brauchs oder der Laufzeit von Berechnungen (sog. Seitenkanalangriffe) Informationen
über den unbekannten Schlüssel zu gewinnen.

2.2 Kryptoanalyse von einfachen Substitutionschiffren

Durch eine Häufigkeitsanalyse können insbesondere einfache Substitutionen g leicht
gebrochen werden. Der Grund dafür ist, dass die einzelnen Zeichen a in der Klartextsprache
meist mit unterschiedlichen Wahrscheinlichkeiten p(a) auftreten (vergleiche Tabelle 2.1).
Berechnet man die relativen Häufigkeiten h der Zeichen im Kryptotext, so gilt p(a) ≈
h(g(a)) (vorausgesetzt der Klartext ist genügend lang). Für die Schilderung einer nach
dieser Methode durchgeführten Kryptoanalyse sei auf die Erzählung „Der Goldkäfer“
von Edgar Allan Poe verwiesen.

Tabelle 2.1: Einteilung von Buchstaben in Cliquen mit vergleichbaren Häufigkeitswerten

Deutsch Englisch Französisch

sehr häufig E E E

häufig N I R S A T T A O I N S R H N A R S I T U

durchschnittlich D H U L G O C M L D C U M F L D C M P

selten B F W K Z P V P G W Y B V K V F B G Q H X

sehr selten J Y X Q X J Q Z J Y Z K W

2.2 Kryptoanalyse von einfachen Substitutionschiffren 27

Manche der bisher betrachteten Chiffrierverfahren verwenden einen so kleinen Schlüs-
selraum, dass ohne großen Aufwand eine vollständige Schlüsselsuche (auch Brute-
Force Angriff genannt) ausgeführt werden kann.

Beispiel 50 (vollständige Schlüsselsuche). Es sei bekannt, dass das Kryptotextstück y =
saxp mit einer additiven Chiffre erzeugt wurde (K = A = B = Alat). Entschlüsseln wir
y probeweise mit allen möglichen Schlüsselwerten, so erhalten wir folgende Zeichenketten.

k A B C D E F G H I J K L M
D(k, y) SAXP RZWO QYVN PXUM OWTL NVSK MURJ LTQI KSPH JROG IQNF HPME GOLD

N O P Q R S T U V W X Y Z
FNKC EMJB DLIA CKHZ BJGY AIFX ZHEW YGDV XFCU WEBT VDAS UCZR TBYQ

Unter diesen springen vor allem die beiden Klartextkandidaten x = GOLD (Schlüsselwert
k = M) und x = WEBT (k = W) ins Auge. /

Ist s = ‖K‖ die Größe des Schlüsselraums, so kann der Gegner bei bekanntem Kryptotext
y die Suche nach dem zugehörigen Klartext x auf eine Menge von maximal s Texten
x1, . . . , xs beschränken. Daneben hat der Gegner ein gewisses a priori Wissen über den
Klartext. Weiß er zum Beispiel, dass er in deutscher Sprache verfasst ist, kann er einen
Großteil der Texte xi auszuschließen. Mit jedem Text xi, der nicht als Klartext infrage
kommt, kann auch mindestens ein Schlüssel ausgeschlossen werden. Sind noch mehrere
Schlüsselwerte möglich, so kann weiteres Kryptotextmaterial Klarheit bringen. Manchmal
hilft aber auch eine Inspektion der verbliebenen Schlüsselwerte weiter, etwa wenn der
Schlüssel nicht rein zufällig erzeugt wurde, sondern aus einem einprägsamen Schlüsselwort
ableitbar ist.
Auch wenn der Gegner die Klartextsprache nicht kennt, kann eine Häufigkeitsanalyse
erfolgreich sein. Mit zunehmender Länge gleichen sich die Häufigkeitsverteilungen der
Buchstaben in natürlichsprachigen Texten einer „Grenzverteilung“ an, die in erster Linie
von der benutzten Sprache und nur in geringem Umfang von der Art des Textes abhängt.
Selbst zwischen unterschiedlichen Sprachen gibt es oft Gemeinsamkeiten. So kommt
in fast allen europäischen Sprachen der Buchstabe E sehr häufig vor, während X, Y
und Z nur selten auftreten. Diese für natürliche Sprachen typische Ungleichmäßigkeit
der Buchstabenhäufigkeiten ist darauf zurückzuführen, dass sie relativ viel Redundanz
enthalten.

6.47

1.93
2.68

4.83

17.48

1.65
3.06

4.25

7.73

0.27
1.46

3.49
2.58

9.82

2.98

0.96
0.02

7.54
6.83

6.13

4.17

0.94 1.48
0.04 0.08

1.14

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Abbildung 2.1: Häufigkeitsverteilung der Einzelbuchstaben im Deutschen (in %)

28 2 Analyse der klassischen Verfahren

8.04

1.54
3.06

3.99

12.51

2.30 1.96

5.49

7.26

0.16 0.67

4.14
2.53

7.09 7.60

2.00

0.11

6.12 6.54

9.25

2.71

0.99
1.92

0.19
1.73

0.09

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Abbildung 2.2: Häufigkeitsverteilung der Buchstaben im Englischen (in %)

7.45

0.90

3.52
4.62

17.10

1.31 0.70 0.50

6.93

0.30 0.00

4.92

3.12

8.35

6.63

2.81

0.70

6.94 6.93 6.73 6.73

1.81

0.00 0.50 0.30 0.30

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Abbildung 2.3: Häufigkeitsverteilung der Buchstaben im Französischen (in %)

Die Abbildungen 2.1, 2.2 und 2.3, zeigen typische Verteilungen von Einzelbuchstaben
in der deutschen, englischen und französischen Sprache (ohne Berücksichtigung von
Interpunktions- und Leerzeichen). Ein typischer deutscher Text besteht demnach zu 62%
aus den sieben häufigsten Zeichen E, N, I, R, S, A, T (das sind nicht einmal 27% der
Klartextzeichen).
Bei additiven Chiffren reicht es oftmals, den häufigsten Buchstaben im Kryptotext zu
bestimmen, und davon den häufigsten Buchstaben der Klartextsprache zu subtrahieren,
um den Schlüssel k zu erhalten. Bei affinen Chiffren müssen gewöhnlich nur die beiden
häufigsten Buchstaben bestimmt werden. Diese führen auf zwei Gleichungen mit zwei
Unbekannten für den gesuchten Schlüssel k = (b, c).

Beispiel 51 (Analyse einer affinen Chiffre mittels Buchstabenhäufigkeiten). Es sei
bekannt, dass sich hinter dem Kryptotext

laoea ehoap hwvae ixobg jcbho thlob lokhe ixope vbcix ockix qoppo boapo
mohqc euogk opeho jhkpl eappj seobe ixoap opmcu

ein deutscher Klartext verbirgt, der mit einer affinen Chiffre verschlüsselt wurde. Berech-
nen wir für jedes Chiffrezeichen yi die (absolute) Häufigkeit Hy(yi) seines Auftretens in
obigem Kryptotext y,

yi a b c d e f g h i j k l m n o p q r s t u v w x y z

Hy(yi) 7 6 5 0 10 0 2 8 5 3 4 4 2 0 19 11 2 0 1 1 2 2 1 5 0 0

so liegt die Vermutung nahe, dass das am häufigsten vorkommende Chiffrezeichen o für
das Klartextzeichen E und das am zweithäufigsten vorkommende p für N steht. Unter

2.3 Kryptoanalyse von Blocktranspositionen 29

dieser Annahme kann der gesuchte Schlüssel k = (b, c) als Lösung der beiden Gleichungen

b · E + c = o

b · N + c = p

bestimmt werden. Subtrahieren wir nämlich die erste von der zweiten Gleichung, so
erhalten wir die Kongruenz 9 · b ≡26 1, woraus sich b = 3 und damit c = 2 ergibt.
Tatsächlich weist der Schlüssel k = (3, 2) nicht nur für die beiden Paare (E, o) und (N, p),
sondern auch für alle übrigen Paare (D(k, yi), yi) eine gute Übereinstimmung zwischen
der Häufigkeit Hy(yi) im Kryptotext y und der erwarteten Häufigkeit H100(D(k, yi)) auf,
mit der das Zeichen D(k, yi) in einem typischen deutschen Text der Länge 100 vorkommt
(die Tabelle zeigt die Werte von H100 gerundet):

yi o p e h a b c x i l k j u m g v q s t w r f n z y d

Hy(yi) 19 11 10 8 7 6 5 5 5 4 4 3 2 2 2 2 2 1 1 1 0 0 0 0 0 0
H100(D(k, yi)) 17 10 7 6 8 8 6 4 3 5 4 3 3 3 1 1 1 3 0 0 2 2 1 1 0 0

D(k, yi) E N S T I R A H C D U L G M K P W O X Y F B V Z Q J

/

2.3 Kryptoanalyse von Blocktranspositionen

Mit Hilfe von Bigrammhäufigkeiten, die manchmal auch als Kontakthäufigkeiten be-
zeichnet werden, lassen sich Blocktranspositionen sehr leicht brechen, sofern genügend
Kryptotext vorliegt. Ist die Blocklänge ` bekannt, so trägt man hierzu den Kryptotext
zeilenweise in eine Matrix S = (sij) = (S1 . . . S`) mit ` Spalten S1, . . . , S` ein. Da jede
Zeile dieser Matrix aus dem zugehörigen Klartextblock mit derselben Permutation π
erzeugt wurde, müssen die Spalten Sj jetzt nur noch in die „richtige“ Reihenfolge gebracht
werden, um den gesuchten Klartext zu erhalten. Die Nachfolgespalte Sk von Sj (bzw. die
Vorgängerspalte Sj von Sk) kann sehr gut anhand der Werte von p̂(Sj, Sk) = ∑

i p(sij, sik)
bestimmt werden.

4.09 4.00
2.42 2.27 1.93 1.87 1.85 1.68 1.63 1.47 1.40 1.22 1.19 1.16 1.12 1.02 1.02 1.01 0.99 0.94 0.93 0.89

ER EN CH DE EI ND TE IN IE GE ES NE UN ST RE HE AN BE SE NG DI SC

Abbildung 2.4: Die häufigsten Bigramme im Deutschen (Angaben in %)

3.15 2.51
1.72 1.69 1.54 1.48 1.45 1.45 1.28 1.24 1.21 1.20 1.13 1.18 1.11 1.10 1.07 1.06 1.01 0.96 0.94 0.94

TH HE AN IN ER RE ON ES TI AT ST EN OR ND TO NT ED IS AR OU OF TE

Abbildung 2.5: Die häufigsten Bigramme im Englischen (in %; nach O.P. Meaker, 1939)

30 2 Analyse der klassischen Verfahren

1.22 1.11 0.89 0.87 0.87 0.86 0.75 0.75 0.71 0.66 0.61 0.57 0.53 0.52 0.48 0.48 0.47 0.47 0.46

EIN ICH NDE DIE UND DER CHE END GEN SCH CHT DEN INE NGE NUN UNG DAS HEN IND

Abbildung 2.6: Die häufigsten Trigramme im Deutschen (in %)

3.53

1.11 1.02 0.75 0.75 0.73 0.69 0.68 0.66 0.64 0.63 0.62 0.59 0.59 0.55 0.54 0.52 0.50 0.47

THE ING AND ION TIO ENT ERE HER ATE VER TER THA ATI FOR HAT ERS HIS RES ILL

Abbildung 2.7: Die häufigsten Trigramme im Englischen (in %)

Beispiel 52 (Häufigkeitsanalyse von Bigrammen). Für den mit einer Blocktransposition
(mit vermuteter Blocklänge 5) erzeugten Kryptotext

ihehr bwean rneii nrkeu elnzk rxtae vlotr engie

erhalten wir eine Matrix S mit den folgenden fünf Spalten.

S1 S2 S3 S4 S5

I H E H R
B W E A N
R N E I I
N R K E U
E L N Z K
R X T A E
V L O T R
E N G I E

Um die richtige Vorgänger- oder Nachfolgerspalte von S1 zu finden, bestimmen wir für
jede potentielle Spalte Sj, j = 2, . . . , 5, wieviele der Bigramme sijsi1 (bzw. si1sij) zu den
20 häufigsten (aus Abbildung 2.4) gehören.

↓ ↓
S2 S3 S4 S5 S1 S2 S3 S4 S5

H E H R I H E H R
W E A N B W E A N
N E I I R N E I I
R K E U N R K E U
L N Z K E L N Z K
X T A E R X T A E
L O T R V L O T R
N G I E E N G I E

1 4 2 2 1 4 2 1

Da die beiden Spaltenpaare (S3, S1) und (S1, S3) jeweils vier häufige Bigramme bilden,
können wir annehmen, dass im Klartext S1 auf S3 oder S3 auf S1 folgen muss. Entscheiden
wir uns für die zweite Möglichkeit, so sollten wir als nächstes die Spaltenpaare (Sj, S1)
und (S3, Sj), j = 2, 4, 5 betrachten.

2.4 Kryptoanalyse von polygrafischen Chiffren 31

↓ ↓

S2 S4 S5 S1 S3 S2 S4 S5

H H R I E H H R
W A N B E W A N
N I I R E N I I
R E U N K R E U
L Z K E N L Z K
X A E R T X A E
L T R V O L T R
N I E E G N I E

1 2 2 1 1 5

Aufgrund des hohen Wertes von p̂(S3, S5) können wir annehmen, dass auf S3 die Spalte
S5 folgt. Im nächsten Schritt erhalten wir daher die folgende Tabelle.

↓ ↓ ↓ ↓

S2 S4 S1 S3 S5 S2 S4

H H I E R H H
W A B E N W A
N I R E I N I
R E N K U R E
L Z E N K L Z
X A R T E X A
L T V O R L T
N I E G E N I

1 2 2 1

Diese lässt die Spaltenanordnung S4, S1, S3, S5, S2 vermuten, welche tatsächlich auf den
gesuchten Klartext führt:

S4 S1 S3 S5 S2

H I E R H
A B E N W
I R E I N
E N K U R
Z E N K L
A R T E X
T V O R L
I E G E N

/

2.4 Kryptoanalyse von polygrafischen Chiffren

Blocksysteme mit kleiner Blocklänge ` (beispielsweise bigrafische Systeme) lassen sich
ähnlich wie einfache Substitutionen durch Häufigkeitsanalysen brechen. Wird bei Hill-
Chiffren l sehr groß gewählt, so ist eine solche statistische Analyse nicht mehr möglich.
Das Hill-System kann dann zwar einem Kryptotextangriff widerstehen, jedoch kaum
einem Angriff mit bekanntem Klartext und schon gar nicht einem Angriff mit gewähltem
Klartext.

32 2 Analyse der klassischen Verfahren

Angriff mit gewähltem Klartext O.B. d.A. sei A = {0, 1, . . . ,m−1}. Bei einem GK-Angriff
verschafft sich der Gegner den Kryptotext zu 100 . . . 0, 010 . . . 0, . . . , 0 . . . 001 ∈ Al:

g(100 . . . 0) = k1 1 k1 2 . . . k1 l

g(010 . . . 0) = k2 1 k2 2 . . . k2 l
...

g(0 . . . 001) = kl 1 kl 2 . . . kl l

und erhält damit die Schlüsselmatrix k.

BK-Angriff (bekannter Klartext). Ist bei einem BK-Angriff eine ausreichende Menge von
Klartext-Kryptotextpaaren bekannt, so kann das Hill-System folgendermaßen gebrochen
werden: Sind xi, yi (i = 1, . . . , µ) Paare mit xik = yi und gilt ggT(det(X),m) = 1 für eine
aus l Blöcken xi, i ∈ I, als Zeilen gebildete Matrix X, so lässt sich die Schlüsselmatrix k
zu k = Y X−1 bestimmen (Y ist die aus den Blöcken yi, i ∈ I, gebildete Matrix).

2.5 Kryptoanalyse von polyalphabetischen Chiffren

Die Vigenère-Chiffre galt bis ins 19. Jahrhundert als sicher. Da der Schlüsselstrom bei
der Vigenère-Chiffre periodisch ist, lässt sie sich mit statistischen Methoden ebenfalls
leicht brechen, insbesondere wenn der Kryptotext im Verhältnis zur Periode d (Länge
des Schlüsselwortes) genügend lang ist.

Bestimmung der Schlüsselwortlänge

Ist die Periode d bekannt, gibt es mehrere Methoden, eine Vigenère-Chiffre zu brechen. So
kann man beispielsweise den Kryptotext zeilenweise in eine d-spaltige Matrix schreiben.
Verfahrensbedingt wurden dann die einzelnen Spalten y1, . . . , yd durch eine monoalpha-
betische Substitution (genauer: durch eine additive Chiffre) verschlüsselt. Sie können
daher einzeln durch eine Häufigkeitsanalyse gebrochen werden. Hierbei liefert jede Spalte
yi den Buchstaben ki des Schlüsselwortes.
Zur Bestimmung der Schlüsselwortlänge betrachten wir zwei Vorgehensweisen: den
Kasiski-Test und die Koinzidenzindex-Untersuchung.
Der Kasiski-Test. Die früheste generelle Methode zur Bestimmung der Periode bei der
Vigenère-Chiffre stammt von Friedrich W. Kasiski (1860). Kommt ein Wort an zwei
verschiedenen Stellen im Kryptotext vor, so kann es sein, dass die gleiche Klartextsequenz
zweimal auf die gleiche Weise, d. h. mit der gleichen Schlüsselsequenz, verschlüsselt
wurde. In diesem Fall ist die Entfernung δ der beiden Vorkommen ein Vielfaches der
Periode d. Werden mehrere Paare mit verschiedenen Entfernungen δi gefunden, so liegt
die Vermutung nahe, dass d gemeinsamer Teiler aller (oder zumindest vieler) δi ist, was
die Anzahl der noch in Frage kommenden Werte für d stark einschränkt.

Beispiel 53 (Kasiski-Test).

DERERSTEUNDLETZTEVERS... (Klartext x)
+ KASKASKASKASKASKASKAS... (Schlüsselstrom k̂)

nej
:::
orkdemxddotrden

:::
ork... (Kryptotext y)

2.5 Kryptoanalyse von polyalphabetischen Chiffren 33

Da die Textstücke ork, bzw. de im Kryptotext in den Entfernungen δ1 = 15 und δ2 = 9
vorkommen, liegt die Vermutung nahe, dass die Periode d = ggT(9, 15) = 3 ist. /

Koinzidenzindex-Untersuchungen. Zur Bestimmung der Periode d gibt es neben heuristi-
schen Methoden auch folgenden statistischen Ansatz, der erstmals von William Frederick
Friedman im Jahr 1920 beschrieben wurde. Er basiert auf der Beobachtung, dass eine
längere Periode eine zunehmende Glättung der Buchstabenhäufigkeiten im Kryptotext
bewirkt.

Definition 54. Der Koinzidenzindex (engl. index of coincidence) eines Textes y der
Länge n über dem Alphabet B ist definiert als

IC (y) = 1
n · (n− 1) ·

∑
a∈B

Hy(a) · (Hy(a)− 1).

Hierbei ist Hy(a) die absolute Häufigkeit des Buchstabens a im Text y.

IC (y) gibt also die Wahrscheinlichkeit an, mit der man im Text y an zwei zufällig gewähl-
ten Positionen den gleichen Buchstaben vorfindet. Er ist umso größer, je ungleichmäßiger
die Häufigkeiten Hy(a) sind (siehe unten).
Um die Periode d einer Vigenère-Chiffre zu bestimmen, schreibt man den Kryptotext y für
d = 1, 2, 3, . . . in eine Matrix mit d Spalten und berechnet für jede Spalte yi den Koinzi-
denzindex IC (yi). Für genügend lange Kryptotexte ist dasjenige d, welches das maximale
arithmetische Mittel der Spaltenindizes IC (yi) liefert mit hoher Wahrscheinlichkeit die
gesuchte Periode. Enthält eine Spalte nämlich nur Kryptozeichen, die alle mit demselben
Schlüsselbuchstaben k erzeugt wurden, so stimmt der Koinzidenzindex dieser Spalte
mit dem Koinzidenzindex des zugehörigen Klartextes überein, nimmt also einen relativ
großen Wert an. Wurden dagegen die Kryptozeichen einer Spalte mit unterschiedlichen
Schlüsselbuchstaben generiert, so wird hierdurch eine Glättung der Häufigkeitsverteilung
bewirkt, weshalb der Spaltenindex kleiner ausfällt.
Ist die Einzelbuchstabenverteilung p : A→ [0, 1] der Klartextsprache bekannt, so kann der
Suchraum für den Wert der Periode d erheblich eingeschränkt werden. Hierzu berechnet
man den erwarteten Koinzidenzindex

Ed,n(IC) = E(IC (Y)),

wobei Y ein mittels einer Vigenère-Chiffre mit einem zufälligen Schlüsselwort der Länge
d aus einem zufälligen Klartext der Länge n generierter Kryptotext ist. Im Fall d = 1
gilt IC (y) = IC (x). Zudem können wir bei längeren Texten von den gegenseitigen
Abhängigkeiten der Zeichen im Text absehen und erhalten

E1,∞(IC) =
∑
a∈A

p(a)2.

Dieser Wert wird auch als Koinzidenzindex der zugrunde liegenden Sprache bezeichnet.

Definition 55. Der Koinzidenzindex ICL einer Sprache mit Buchstabenverteilung
p : A→ [0, 1] ist definiert als

ICL =
∑
a∈A

p(a)2.

ICL ist zudem ein Maß für die Rauheit der Verteilung p.

34 2 Analyse der klassischen Verfahren

Definition 56 (Rauheitsgrad; Measure of Roughness). Der Rauheitsgrad MRL

einer Sprache L mit Einzelbuchstabenverteilung p ist

MRL =
∑
a∈A

(p(a)− 1/m)2 =
∑
a∈A

p(a)2 − 1/m = ICL − 1/m,

wobei m = ‖A‖ ist.

Beispiel 57. Für die englische Sprache (m = 26) gilt beispielsweise IC Englisch ≈ 0.0687
und MREnglisch ≈ 0.0302. /

Übersteigt dagegen die Periode d die Klartextlänge n, so ist der Kryptotext bei zufälliger
Wahl des Schlüsselswortes ebenfalls rein zufällig, was auf einen erwarteten Koinzidenzindex
von

Ed,n(IC) =
∑
a∈A
‖A‖−2 = ‖A‖−1 = 1/m, d ≥ n ≥ 2

führt. Allgemein gilt für hinreichend großes n,

Ed,n(IC) = n− d
d · (n− 1) · ICL + n · (d− 1)

d · (n− 1) ·m
−1, 1 ≤ d ≤ n,

da von den
(
n
2

)
möglichen Positionspaaren ungefähr d ·

(
n/d

2

)
= n(n−d)/2d Paare nur eine

Spalte (was einem Anteil von (n− d)/d(n− 1) entspricht) und
(
d
2

)
(n/d)2 = n2(d− 1)/2d

Paare zwei unterschiedliche Spalten betreffen (was einem Anteil von n(d− 1)/d(n− 1)
entspricht).
Untenstehende Tabelle gibt den Erwartungswert Ed,n(IC) des Koinzidenzindexes für
Kryptotexte der Länge n = 100 in Abhängigkeit von der Periodenlänge d einer Vigenère-
Chiffre wieder (in Promille; Klartext ist ein zufällig gewählter Text der englischen Sprache
mit 100 Buchstaben).

d 1 2 3 4 5 6 8 10 100
Ed,100(IC) 69 54 48 46 44 43 42 41 39

Beispiel 58. Berechnet sich der Koinzidenzindex eines Vigenère-Kryptotextes der Länge
100 zu 0.045, so liegt die Vermutung nahe, dass das verwendete Schlüsselwort die Länge
vier oder fünf hat, falls y aus einem Klartext der englischen Sprache erzeugt wurde. /

Der Koinzidenzindex kann auch Hinweise dafür liefern, mit welchem Kryptoverfahren ein
vorliegender Kryptotext erzeugt wurde. Bei Transpositionschiffren sowie bei einfachen
Substitutionen bleibt nämlich der Koinzidenzindex im Gegensatz zu polyalphabetischen
und polygrafischen Verfahren erhalten. Erstere lassen sich von letzteren zudem dadurch
unterscheiden, dass bei ihnen sogar die Buchstabenhäufigkeiten unverändert bleiben.

Zur Bestimmung des Schlüsselwortes bei bekannter Periode d kann auch wie folgt
vorgegangen werden. Man schreibt den Kryptotext y in Spalten yi auf und berechnet
für a ∈ A und i = 1, . . . , d die relativen Häufigkeiten hi(a) von a in yi. Da yi aus dem
Klartext durch Addition von ki entstanden ist, kommt die Verteilung

hi(a+ k), a ∈ A

2.5 Kryptoanalyse von polyalphabetischen Chiffren 35

für k = ki der Klartextverteilung p(a), a ∈ A, näher als für k 6= ki. Da

αi(k) :=
∑
a∈A

p(a)hi(a+ k)

ein Maß für die Ähnlichkeit der beiden Verteilungen p(a) und hi(a+k) ist (siehe Übungen),
wird der Wert von αi(k) wahrscheinlich für k = ki maximal werden.

Beispiel 59. Der folgende Kryptotext y
huds kuae zgxr avtf pgws wgws zhtp pbil lrtz pzhw loij vfic
vbth lugi lgpr khwm yhti uaxr bhtw ucgx ospw aoch imcs yhwq
hwcf yocg ogtz lbil swbf lohx zwsi zvds atgs thwi ssux lmts
mhwi kspx ogwi hrpf lsam usuv vail lhgi lhwv vivl avtw ocij
ptic mstx vii

der Länge 203 wurde von einer Vigenère-Chiffre mit Schlüssellänge d = 4 aus englischem
Klartext erzeugt. Schreiben wir den Kryptotext in vier Spalten y1, . . . , y4 der Länge
|y1| = |y2| = |y3| = 51 und |y4| = 50, so ergeben sich folgende Werte für αi(k) (in
Promille):

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

α1(k) 36 31 31 45 38 26 42 73 44 26 36 47 30 32 36 29 28 39 48 42 42 39 42 42 35 31
α2(k) 44 41 40 51 41 31 37 43 34 28 36 26 28 43 68 45 35 27 42 43 40 35 30 24 31 45
α3(k) 47 41 48 37 49 40 35 30 48 32 25 42 31 26 43 76 37 31 39 45 35 34 37 26 30 25
α4(k) 38 40 27 41 65 47 28 34 39 33 35 36 30 30 48 44 35 42 47 38 39 34 27 38 36 37

Da α1(k) für k = 7 = H, α2(k) für k = 14 = O, α3(k) für k = 15 = P und α4(k) für
k = 4 = E einen Maximalwert annimmt, lautet das Schlüsselwort HOPE. Damit ergibt
sich folgender Klartext (aus der Erzählung „Der Goldkäfer“ von Edgar Allan Poe).

A GOOD GLASS IN THE BISHOPS HOSTEL IN THE DEVILS SEAT
FORTYONE DEGREES AND THIRTEEN MINUTES NORTH EAST AND
BY NORTH MAIN BRANCH SEVENTH LIMB EAST SIDE SHOOT FROM
THE LEFT EYE OF THE DEATHS HEAD A BEE LINE FROM THE TREE
THROUGH THE SHOT FIFTY FEET OUT /

Zur Bestimmung des Schlüsselwortes kann man auch die Methode des gegenseitigen
Koinzidenzindexes verwenden. Dabei ist die verwendete Klartextsprache (und somit deren
Häufigkeitsverteilung) irrelevant, da die Spalten – wie der Name schon sagt – gegenseitig
in Relation gesetzt werden. Aber zuerst die Definition.

Definition 60. Der gegenseitge Koinzidenzindex von zwei Texten y und y′ mit den
Längen n und n′ über dem Alphabet B ist definiert als

IC (y, y′) = 1
n · n′

·
∑
a∈B

Hy(a) ·Hy′(a).

IC (y, y′) ist also die Wahrscheinlichkeit, dass bei zufälliger Wahl einer Position in y und
einer Position in y′ der gleiche Buchstabe vorgefunden wird. IC (y, y′) ist umso größer, je
besser die Häufigkeitsverteilungen von y und y′ (d. h. Hy und Hy′) übereinstimmen.

36 2 Analyse der klassischen Verfahren

Ist nun y ein Kryptotext, der mit einem Schlüsselwort bekannter Länge d erzeugt
wurde, und sind yi (i = 1, . . . , d) die zugehörigen Spalten, so gibt der gegenseitige
Koinzidenzindex der Spalten yi + δ und yj (für 1 ≤ i < j ≤ d und 0 ≤ δ ≤ 25) die
Wahrscheinlichkeit an, dass man bei zufälliger Wahl einer Position in yi + δ und in
yj denselben Buchstaben vorfindet. Da die Einzelzeichenverteilungen von yi − ki und
von yj − kj der der Klartextsprache entsprechen, haben yi + δ und yj für δ = kj − ki
eine ähnliche Verteilung. Mit großer Wahrscheinlichkeit nimmt also IC (yi + δ, yj) für
δ = δij = kj − ki einen relativ großen Wert an, während für δ 6= δij mit kleinen Werten
zu rechnen ist.

Beispiel 61. Betrachten wir den Kryptotext aus vorigem Beispiel, so ergeben sich für
IC (yi + δ, yj) die folgenden Werte (in Promille):

δ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

IC (y1 + δ, y2) 40 31 25 38 25 21 46 74 50 33 31 44 43 34 31 28 24 31 44 45 37 48 64 44 25 31
IC (y1 + δ, y3) 26 47 25 21 47 32 18 49 91 42 27 51 45 31 29 32 23 29 27 39 45 46 39 58 44 24
IC (y1 + δ, y4) 38 40 29 31 35 24 32 58 42 32 44 50 43 39 31 20 34 36 30 40 45 24 42 78 47 22
IC (y2 + δ, y3) 50 85 49 21 28 35 24 34 46 25 24 27 59 50 50 53 51 24 22 26 43 36 35 32 24 34
IC (y2 + δ, y4) 46 53 40 37 51 42 29 23 24 32 40 55 38 31 32 45 67 49 25 27 29 29 34 37 38 35
IC (y3 + δ, y4) 49 36 38 60 36 25 34 19 29 42 41 33 54 27 36 78 47 25 29 33 27 28 47 32 27 54

Also ist (mit großer Wahrscheinlichkeit)

δ1 2 = 7, δ1 3 = 8, δ1 4 = 23, δ2 3 = 1, δ2 4 = 16, δ3 4 = 15.

Wir können nun alle Spalten relativ zur ersten Spalte so verschieben, dass der ganze
Text eine einheitliche Verschiebung δ hat, also die zweite Spalte um −7, die dritte um
−8 und die vierte um −23. Für die Bestimmung von δ, muss man nur den häufigsten
Buchstaben in dem auf diese Weise erzeugten Text bestimmen (oder eine vollständige
Suche durchführen). Dieser ist L (16, 3%). Also ist δ = L−E = H = 7 und das Schlüsselwort
lautet HOPE (H + 7 = O, H + 8 = P, H + 23 = E). /

Analyse der Lauftextverschlüsselung

Zum Brechen einer Stromchiffre mit Klartextschlüsselstrom kann man wie folgt vorgehen.
Man geht zunächst davon aus, dass jedes Kryptotextzeichen durch Summation eines
Klartext- und Schlüsselstromzeichens mit jeweils mittlerer bis hoher Wahrscheinlichkeit
entstanden ist. Dies sind etwa im Englischen die Zeichen E, T, A, O, I, N, S, R, H. Zu einem
Teilwort w des Kryptotextes bestimmt man dann alle Paare von Wörtern (w1, w2) mit
w1 + w2 = w und w1, w2 ∈ {E, T, A, O, I, N, S, R, H}∗. In der Regel ergeben sich nur sehr
wenige sinnvolle Paare, aus denen durch Kontextbetrachtungen und Erweitern von w
nach links und rechts der Kryptotext entschlüsselt werden kann. Wird die Analyse durch
ein Computerprogramm durchgeführt, kann an die Stelle der Kontextbetrachtungen auch
die Häufigkeitsverteilung von n-Grammen der Sprache treten. Das Programm wählt dann
solche Wortpaare (w1, w2), die eine hohe Wahrscheinlichkeit haben.

Beispiel 62. Gegeben ist der Kryptotext moqkthcblmwxf. . .Wir beginnen die Untersu-
chung mit einer Wortlänge von vier Buchstaben, also w = moqk. Der erste Buchstabe m
kann nur auf eine der folgenden Arten zustande gekommen sein:

2.5 Kryptoanalyse von polyalphabetischen Chiffren 37

abcde...i...t...z (Klartextzeichen)
+ MLKJI...E...T...N (Schlüsselzeichen)
= MMMMM...M...M...M (Kryptotextzeichen)

Es ergeben sich folgende wahrscheinliche Paare für die Zeichen von w:

m: (E,I) o: (A,O) q: (I,I) k: (R,T)
(I,E) (H,H) (S,S)
(T,T) (O,A) (T,R)

Diese führen auf folgende 3 · 3 · 1 · 3 = 27 Wortpaare (w1, w2):

w1 EAIR EAIS EAIT EHIR . . . THIS . . . TOIT
w2 IOIT IOIS IOIR IHIT . . . THIS . . . TAIR

Als sinnvoll stellt sich aber nur die Wahl w1 = w2 = THIS heraus. /

Autokey Chiffren

Kryptotextschlüsselstrom. Diese Systeme bieten so gut wie keinen Schutz, da sie ohne
Kenntnis des Schlüsselwortes sehr leicht entschlüsselt werden können (falls die Länge
des Schlüsselwortes im Verhältnis zur Länge des Kryptotextes relativ kurz ist). Man
subtrahiert dazu den Kryptotext y für δ = 1, 2, . . . von dem um δ Positionen verschobenen
Kryptotext – also y0+δ y1+δ y2+δ y3+δ . . . minus y0 y1 y2 y3 . . . –, bis sinnvoller (Klar-) Text
erscheint:

dumsqmozkfn... (Kryptotext y)
− DUMSQMO... („Kryptotextschlüsselstrom“)
=NSCHUTZ... (Klartext x)

Klartextschlüsselstrom. Neben der oben beschriebenen Analyse der Lauftextverschlüsse-
lung kann das Brechen der Autokey-Systeme mit Klartextschlüsselstrom auch analog
zur Kasiski-Methode erfolgen: Sei d die Länge des Schlüsselwortes k0 . . . kd−1. Falls im
Klartext die gleiche Buchstabenfolge xi . . . xi+l−1 im Abstand 2d auftritt (beispielsweise
d = 3 und l = 2),

↓ ↓ ↓ ↓
x0 x1 x2 x3 :::::

x4 x5 x6 x7 x8 x9 :::::::
x10 x11 x12 x13 x14 . . . Klartext x

+ k0 k1 k2 x0 x1 x2 x3 :::::
x4 x5 x6 x7 x8 x9 :::::::

x10 x11 . . . Klartextschlüsselstrom kx

= y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 . . . Kryptotext y

so tritt im Kryptotext die gleiche Buchstabenfolge im Abstand d auf, d. h. d kann
auf diese Art unter Umständen leicht bestimmt werden. Ist d bekannt, so können die
Buchstaben k1 . . . kd des Schlüsselwortes der Reihe nach bestimmt werden: Da durch
ki die Klartextzeichen an den Positionen i, d + i, 2d + i, . . . eindeutig festgelegt sind,
kann jedes einzelne ki unabhängig von den anderen Schlüsselwortbuchstaben durch eine
statistische Analyse bestimmt werden.

38

3 Sicherheit von Kryptosystemen

3.1 Informationstheoretische Sicherheit

Claude E. Shannon untersuchte die Sicherheit kryptografischer Systeme auf informations-
theoretischer Basis (1945, freigegeben 1949). Seinen Untersuchungen liegt das Modell einer
Nachrichtenquelle X zugrunde, die einzelne Klartextnachrichten x aus dem Klartextraum
M unter einer bestimmten Wahrscheinlichkeitsverteilung p(x) = Pr[X = x] generiert.
Zudem nehmen wir an, dass der zur Verschlüsselung benutzte Schlüssel k ∈ K von
einem Schlüsselgenerator S unter einer bekannten Wahrscheinlichkeitsverteilung p(k) =
Pr[S = k] erzeugt wird. Da der Schlüssel unabhängig vom Klartext gewählt wird, ist
p(k, x) = p(k)p(x) die Wahrscheinlichkeit dafür, dass X den Klartext x generiert und
dieser mit dem Schlüssel k verschlüsselt wird. Dabei gehen wir davon aus, dass für jede
Nachricht x ∈M ein neuer Schlüssel gewählt wird. Dies bedeutet, dass wir beispielsweise
bei der additiven Chiffre den Klartextraum auf M = An vergrößern müssen, falls der
Schlüssel nach n Zeichen gewechselt wird.
Die Zufallsvariablen X und S induzieren eine Verteilung auf dem Kryptotextraum, die
wir durch die Zufallsvariable Y beschreiben. Die Wahrscheinlichkeit eines Kryptotextes y
berechnet sich zu

p(y) = Pr[Y = y] =
∑

k,x:E(k,x)=y
p(k, x)

und für einen beobachteten Kryptotext y (mit p(y) > 0) ist

p(x|y) = p(x, y)
p(y) =

∑
k:E(k,x)=y

p(k, x)
p(y)

die (bedingte) Wahrscheinlichkeit dafür, dass sich hinter dem Kryptotext y der Klartext
x verbirgt. Da der Schlüsselgenerator für die Sicherheit eines Kryptosystems eine wichtige
Rolle spielt, nehmen wir bei Sicherheitsbetrachtungen die Schlüsselverteilung S als sechste
Komponente eines Kryptosystems hinzu.
Definition 63. Ein Kryptosystem KS = (M,C,E,D,K, S) mit Schlüsselverteilung S
heißt informationstheoretisch (oder absolut) sicher, falls jede Klartextverteilung
X auf M unabhängig von der zugehörigen Kryptotextverteilung Y auf C ist.

Bei einem absolut sicheren Kryptosystem ist demnach die A-posteriori-Wahrscheinlichkeit
p(x|y) einer Klartextnachricht x gleich der A-priori-Wahrscheinlichkeit p(x), d.h. die
Wahrscheinlichkeit von x ändert sich nicht, ob nun der Kryptotext y bekannt ist oder
nicht. Die Kenntnis von y erlaubt somit keinerlei Rückschlüsse auf die gesendete Nachricht.
Dies bedeutet, dass es dem Gegner nicht möglich ist, das System zu brechen; auch nicht
mit unbegrenzten Rechenressourcen. Wie wir sehen werden, lässt sich dieses Maß an
Sicherheit nur mit einem sehr hohen Aufwand erreichen.
Sind p(x), p(y) > 0, so gilt wegen p(x|y)p(y) = p(x, y) = p(y|x)p(x) die Gleichheit

p(x|y) = p(y|x)p(x)
p(y) (Satz von Bayes)

3.1 Informationstheoretische Sicherheit 39

und daher ist die Bedingung p(x) = p(x|y) gleichbedeutend mit p(y) = p(y|x), was
wiederum mit der Unabhängigkeit der Ereignisse X = x und Y = y gleichbedeutend ist.

Beispiel 64. Sei KS = (M,C,E,D,K) ein Kryptosystem mit M = {x1, . . . , x4}, K =
{k1, . . . , k4}, C = {y1, . . . , y4} und Verschlüsselungsfunktion

E x1 x2 x3 x4

k1 y1 y4 y3 y2
k2 y2 y1 y4 y3
k3 y3 y2 y1 y4
k4 y4 y3 y2 y1

Unter der Schlüssel- und Klartextverteilung

ki k1 k2 k3 k4

p(ki) 1/2 1/4 1/8 1/8
bzw.

xi x1 x2 x3 x4

p(xi) 1/2 1/6 1/6 1/6

ergibt sich wegen p(y) = ∑
k,x:E(k,x)=y p(k, x) folgende Kryptotextverteilung:

p(y1) = 1/2 · 1/2 + (1/4 + 1/8 + 1/8) · 1/6 = 1/3
p(y2) = 1/4 · 1/2 + (1/8 + 1/8 + 1/2) · 1/6 = 1/4
p(y3) = 1/8 · 1/2 + (1/8 + 1/2 + 1/4) · 1/6 = 5/24
p(y4) = 1/8 · 1/2 + (1/2 + 1/4 + 1/8) · 1/6 = 5/24

Die bedingten Wahrscheinlichkeiten p(x|y1) berechnen sich wie folgt:

p(x1|y1) = p(k1, x1)/p(y1) = (1/2)(1/2)/(1/3) = 3/4
p(x2|y1) = p(k2, x2)/p(y1) = (1/4)(1/6)/(1/3) = 1/8
p(x3|y1) = p(k3, x3)/p(y1) = (1/8)(1/6)/(1/3) = 1/16
p(x4|y1) = p(k4, x4)/p(y1) = (1/8)(1/6)/(1/3) = 1/16

Wegen p(x1) = 1/2 6= 3/4 = p(x1|y1) ist das Kryptosystem nicht absolut sicher. /

Lässt sich das Kryptosystem KS aus obigem Beispiel unter der vorgegebenen Klartext-
verteilung durch Verwendung eines anderen Schlüsselgenerators absolut sicher machen?

– KS ist genau dann absolut sicher, wenn p(yj) = p(yj|xi) für alle (xi, yj) ∈M × C
gilt.

– Da es jedoch in KS für jedes Paar (xi, yj) genau einen Schlüssel k = ki,j ∈ K mit
E(k, xi) = yj gibt, also p(yj|xi) = p(ki,j) ist, ist dies äquivalent zur Bedingung,
dass p(yj) = p(ki,j) für alle (xi, yj) ∈M × C gilt.

– Für j = 1 bedeutet die Gleichheit p(yj) = p(ki,j) für alle i zum Beispiel, dass alle
vier Schlüssel ki,1 = ki (i = 1, . . . , 4) die gleiche Wahrscheinlichkeit haben müssen.

– Wegen p(yj) = ∑4
i=1 p(xi)p(yj|xi) = 1/4

∑4
i=1 p(xi) = 1/4 = p(ki,j) = p(yj|xi) ist das

System in diesem Fall tatsächlich absolut sicher.
Demnach ist das Kryptosystem KS aus Beispiel 64 genau dann absolut sicher, wenn
der Schlüssel gleichverteilt ist. In Verallgemeinerung dieses Beispiels lässt sich für eine
wichtige Klasse von Kryptosystemen die absolute Sicherheit wie folgt charakterisieren.

40 3 Sicherheit von Kryptosystemen

Satz 65. Sei KS = (M,C,E,D,K, S) ein Kryptosystem mit ‖M‖ = ‖C‖ = ‖K‖,
dessen Schlüsselraum K für jedes Klartext-Kryptotext-Paar (x, y) ∈M × C genau einen
Schlüssel k mit E(k, x) = y enthält. Dann ist KS genau dann absolut sicher, wenn S auf
K gleichverteilt ist.

Beweis. Bezeichne kx,y den eindeutigen Schlüssel, der den Klartext x auf den Kryptotext
y abbildet. Falls S auf K gleichverteilt ist, folgt wegen p(kx,y) = ‖K‖−1 für alle x, y mit
p(x) > 0 zunächst

p(y|x) =
∑

k:E(k,x)=y
p(k) = p(kx,y) = ‖K‖−1

und
p(y) =

∑
x,p(x)>0

p(x)p(y|x) = ‖K‖−1∑
x

p(x) = ‖K‖−1,

also p(x, y) = p(x)p(y|x) = p(x)p(y), d.h. KS ist absolut sicher. Die Umkehrung wird in
den Übungen gezeigt. �

Verwendet man beim One-Time-Pad nur Klartexte einer festen Länge n, so ist dieser
nach obigem Satz genau dann absolut sicher, wenn der Schlüssel unter Gleichverteilung
gewählt wird. Variiert die Klartextlänge, so kann ein Gegner aus y nur die Länge des
zugehörigen Klartextes x ableiten. Wird jedoch derselbe Schlüssel k zweimal verwendet,
so kann aus den Kryptotexten die Differenz der zugehörigen Klartexte ermittelt werden:

y1 = E(x1, k) = x1 + k

y2 = E(x2, k) = x2 + k

}
; y1 − y2 = x1 − x2

Sind die Klartexte natürlichsprachig, so können aus y1 − y2 die beiden Nachrichten x1
und x2 ähnlich wie bei der Analyse einer Lauftextverschlüsselung (siehe Abschnitt 2.5)
rekonstruiert werden.
Da in einem absolut sicheren Kryptosystem der Schlüsselraum K mindestens die Größe
des Klartextraumes X haben muss (siehe Übungen), erfordert die absolute Sicherheit
einen extrem hohen Aufwand. Vor der Kommunikation muss ein Schlüssel, der mindestens
so lang wie der zu übertragende Klartext ist, zufällig generiert und zwischen den Partnern
auf einem sicheren Kanal ausgetauscht werden.
Für die meisten Anwendungen ist jedoch keine absolute Sicherheit erforderlich. Wie
wir bei der Betrachtung von Stromsystemen gesehen haben, kann der Schlüsselstrom
auch von einem Pseudo-Zufallsgenerator erzeugt werden. Dieser erhält als Eingabe eine
Zufallszahl s0 (den sogenannten Keim) und erzeugt daraus eine lange Folge v0 v1 . . . von
Pseudo-Zufallszahlen. Als Schlüssel muss jetzt nur noch der Keim ausgetauscht werden.

3.2 Der Entropiebegriff

In der Informationstheorie wird die Unsicherheit, mit der eine durch eine Zufallsvariable
X beschriebene Quelle ihre Nachrichten aussendet, nach ihrer Entropie bemessen. Dabei
entspricht die Unsicherheit über X genau dem Informationsgewinn, der sich aus der
Beobachtung der Quelle X ziehen lässt. Intuitiv ist die in einer einzelnen Nachricht x
steckende Information umso größer, desto unwahrscheinlicher sie ist. Tritt eine Nachricht
x mit einer positiven Wahrscheinlichkeit p(x) = Pr[X = x] > 0 auf, dann ist

InfX(x) = log2(1/p(x))

3.2 Der Entropiebegriff 41

der Informationsgehalt von x. Ist dagegen p(x) = 0, so sei InfX(x) = 0. Diese Definition
des Informationsgehalts ergibt sich zwangsläufig aus den beiden folgenden Axiomen:

– Der (gemeinsame) Informationsgehalt InfX,Y (x, y) von zwei Nachrichten x und y,
die aus unabhängigen Quellen X und Y stammen, ist InfX(x) + InfY (y).

– Eine Nachricht x, die mit Wahrscheinlichkeit Pr[X = x] = 1/2 auftritt, hat den
Informationsgehalt InfX(x) = 1.

Der Informationsgehalt wird in der Einheit bit (basic indissoluble information unit)
gemessen. Die Entropie von X ist nun der erwartete Informationsgehalt einer von X
generierten Nachricht.

Definition 66. Sei X eine Zufallsvariable mit Wertebereich W (X) = {x1, . . . , xn} und
sei pi = Pr[X = xi]. Dann ist die Entropie von X definiert als

H(X) =
n∑
i=1

pi InfX(xi) =
n∑
i=1

pi log2(1/pi) = −
n∑
i=1

pi log2(pi).

Beispiel 67. Sei X eine Zufallsvariable mit der Verteilung

xi sonnig leicht bewölkt bewölkt stark bewölkt Regen Schnee Nebel
pi 1/4 1/4 1/8 1/8 1/8 1/16 1/16

Dann ergibt sich die Entropie von X zu

H(X) = 1/4 · (2 + 2) + 1/8 · (3 + 3 + 3) + 1/16 · (4 + 4) = 2,625. /

Die Entropie nimmt für p1 = · · · = pn = 1/n den Wert log2(n) an. Für jede andere
Verteilung p1, . . . , pn gilt dagegen H(X) < log2(n) (Beweis siehe unten). Bei vorgegebener
Größe des Wertebereichs von X ist die Unsicherheit über X um so größer, je gleichmäßiger
X verteilt ist. Bringt X dagegen nur einen einzigen Wert mit positiver Wahrscheinlichkeit
hervor, dann (und nur dann) nimmt H(X) den Wert 0 an. Für den Nachweis von oberen
Schranken für die Entropie benutzen wir folgende Hilfsmittel aus der Analysis.

Definition 68. Sei I ⊆ R ein Intervall. Eine Funktion f : I → R heißt konkav auf I,
falls für alle x 6= y ∈ I und 0 ≤ t ≤ 1 gilt:

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y).

Gilt sogar „>“ anstelle von „≥“, so heißt f streng konkav auf I.

Beispiel 69. Die Funktion f(x) = log2(x) ist streng konkav auf (0,∞). /

Für den Beweis des nächsten Satzes benötigen wir die Jensensche Ungleichung, die wir
ohne Beweis angeben.

Satz 70 (Jensensche Ungleichung). Sei f eine streng konkave Funktion auf I und seien
0 < a1, . . . , an < 1 reelle Zahlen mit ∑n

i=1 ai = 1. Dann gilt für alle x1, . . . , xn ∈ I,

f

(
n∑
i=1

aixi

)
≥

n∑
i=1

aif(xi).

Hierbei tritt Gleichheit genau dann ein, wenn alle xi den gleichen Wert haben.

42 3 Sicherheit von Kryptosystemen

Satz 71. Sei X eine Zufallsvariable auf einer n-elementigen Menge {x1, . . . , xn} mit der
Verteilung pi = Pr[X=xi] für i = 1, . . . , n. Dann ist H(X) ≤ log2(n), wobei Gleichheit
genau im Fall pi = 1/n für i = 1, . . . , n eintritt.

Beweis. Aufgrund der Jensenschen Ungleichung gilt

H(X) =
n∑
i=1

pi log2(1/pi) ≤ log2

n∑
i=1

pi/pi = log2 n,

wobei Gleichheit genau im Fall 1/p1 = · · · = 1/pn eintritt. Letzteres ist mit der Bedingung
pi = 1/n für i = 1, . . . , n gleichbedeutend. �

Die Entropie liefert eine sehr gute untere Schranke für die mittlere Codewortlänge von
Binärcodes. Ein Binärcode für X ist eine (geordnete) Menge C = {y1, . . . , yn} von
binären Codewörtern yi für die Nachrichten xi mit der Eigenschaft, dass die Abbildung
c : X∗ → {0, 1}∗ mit c(xi1 · · ·xik) = yi1 · · · yik injektiv ist. Die Injektivität von c stellt
sicher, dass jede Folge yi1 · · · yik von Codewörtern eindeutig decodierbar ist.
Die mittlere Codewortlänge von C unter X ist

L(C) =
n∑
i=1

pi · |yi|.

C heißt optimal, wenn kein anderer Binärcode fürX eine kürzere mittlere Codewortlänge
besitzt. Für einen optimalen Binärcode C für X gilt (ohne Beweis)

H(X) ≤ L(C) < H(X) + 1.

Beispiel 72. Sei X die Zufallsvariable aus dem letzten Beispiel mit der Verteilung
p1 = p2 = 1/4, p3 = p4 = p5 = 1/8 und p6 = p7 = 1/16. Betrachten wir die beiden Codes
C1 = {001, 010, 011, 100, 101, 110, 111} und C2 = {00, 01, 100, 101, 110, 1110, 1111},
so hat C1 die mittlere Codewortlänge L(C1) = 3, während C2 = {y1, . . . , y7} wegen
|yi| = log2(1/pi) den optimalen Wert L(C2) = H(X) = 2,625 erreicht. /

Die Redundanz eines Codes für eine Zufallsvariable X ist um so höher, je größer seine
mittlere Codewortlänge im Vergleich zur Entropie von X ist. Um auch Codes über
unterschiedlichen Alphabeten miteinander vergleichen zu können, ist es notwendig, die
Codewortlänge in einer festen Einheit anzugeben. Hierzu definiert man die Bitlänge
eines Wortes x über einem Alphabet A mit m > 2 Buchstaben zu |x|2 = |x| log2(m).
Beispielsweise ist die Bitlänge von GOLD (über dem lateinischen Alphabet) |GOLD|2 =
4 log2(26) = 18, 8. Entsprechend berechnet sich für einen Code C = {y1, . . . , yn} unter
einer Verteilung p1, . . . , pn die mittlere Codewortlänge (in bit) zu

L2(C) =
n∑
i=1

pi · |yi|2.

Damit können wir die Redundanz eines Codes als den mittleren Anteil der Codewort-
buchstaben definieren, die keine Information tragen.

Definition 73. Die (relative) Redundanz eines Codes C für X ist definiert als

R(C) = L2(C)−H(X)
L2(C) .

3.3 Redundanz von Sprachen 43

Beispiel 74. Während eine von X generierte Nachricht im Durchschnitt H(X) = 2.625
bit an Information enthält, haben die Codewörter von C1 eine Bitlänge von 3. Der Anteil
an „überflüssigen“ Zeichen pro Codewort beträgt also

R(C1) = 3− 2.625
3 = 12, 5%,

wogegen C2 keine Redundanz besitzt. /

3.3 Redundanz von Sprachen

Auch Schriftsprachen wie Deutsch oder Englisch und Programmiersprachen wie C oder
PASCAL können als eine Art Code aufgefasst werden. Es ist zu erwarten, dass eine
Sprache umso mehr Redundanz aufweist, je restriktiver die Gesetzmäßigkeiten sind, unter
denen in ihr Worte und Sätze gebildet werden. Um die statistischen Eigenschaften einer
Sprache L zu erforschen, erweist es sich als zweckmäßig, die Textstücke der Länge n
(n-Gramme) von L für unterschiedliche n getrennt voneinander zu betrachten. Sei also
Ln die Zufallsvariable, die die Verteilung aller n-Gramme in L beschreibt. Interpretieren
wir diese n-Gramme als Codewörter einer festen Codewortlänge n, so ist

R(Ln) = n log2 m−H(Ln)
n log2 m

die Redundanz dieses Codes.

Definition 75 (Entropie einer Sprache). Für eine Sprache L über einem Alphabet
A mit ‖A‖ = m ist H(Ln)/n die n-Gramm-Entropie von L (pro Buchstabe). Falls
dieser Wert für n gegen ∞ von oben gegen einen Grenzwert

H(L) = lim
n→∞

H(Ln)/n

konvergiert, so wird dieser Grenzwert als die Entropie von L bezeichnet. In diesem
Fall konvergiert R(Ln) von unten gegen den Grenzwert

R(L) = lim
n→∞

R(Ln) = log2 m−H(L)
log2 m

,

der als die (relative) Redundanz von L bezeichnet wird. Der Zähler

Rabs(L) = log2 m−H(L) = R(L) log2 m

wird auch als absolute Redundanz von L bezeichnet (gemessen in bit/Zeichen).

Die Redundanz von natürlichen Sprachen lässt sich näherungsweise bestimmen, indem
man die Entropien H(Ln) ihrer n-Gramme empirisch ermittelt.

Beispiel 76. Im Deutschen hat die Einzelzeichenverteilung eine Entropie von H(L1) =
4, 1 bit, während eine auf Alat gleichverteilte Zufallsvariable U einen Entropiewert von
H(U) = log(26) = 4, 7 bit hat. Für die Bigramme ergibt sich ein Entropiewert von

44 3 Sicherheit von Kryptosystemen

H(L2)/2 = 3, 5 bit pro Buchstabe. Mit wachsender Länge sinkt die Entropie von deutsch-
sprachigen Texten weiter ab und strebt gegen einen Grenzwert H(L) von 1, 5 bit pro
Buchstabe.

n H(Ln) H(Ln)/n Rabs(Ln)/n R(Ln)
1 4, 1 4, 1 0, 6 13%
2 7, 0 3, 5 1, 2 26%
3 9, 6 3, 2 1, 5 32%
6 12, 2 2, 0 2, 7 57%
15 27, 6 1, 8 2, 9 62%
...
∞ ∞ H(L) = 1, 5 Rabs(L) = 3, 2 R(L) = 67%

Deutsche Texte hinreichender Länge besitzen also eine durchschnittliche Redundanz von
ca. 67%, so dass ihre Länge bei optimaler Kodierung auf ca. 1/3 komprimierbar ist. /

3.4 Die Eindeutigkeitsdistanz

Wir betrachten nun den Fall, dass mit einem Kryptosystem Klartexte einer variablen
Länge n verschlüsselt werden, ohne dabei den Schlüssel zu wechseln. Die Chiffrierfunktion
hat also die Form

En : K × An → Cn,

wobei die Klartextlänge n variabel ist und wir der Einfachheit halber annehmen, dass die
Menge Cn der entsprechenden Kryptotexte die gleiche Kardinalität ‖Cn‖ = ‖An‖ = mn

wie der Klartextraum hat. Ist y ein abgefangener Kryptotext, so ist

K(y) = {k ∈ K | ∃x ∈ An : En(k, x) = y ∧ p(x) > 0}

die Menge aller infrage kommenden Schlüssel. K(y) besteht aus einem „echten“ (d. h.
dem zur Generierung von y tatsächlich benutzten) und ‖K(y)‖ − 1 so genannten „un-
echten“ Schlüsseln. Aus informationstheoretischer Sicht ist das Kryptosystem unter der
Klartextverteilung X umso sicherer, desto größer die erwartete Anzahl

s̄n =
∑
y∈Cn

p(y) · (‖K(y)‖ − 1) =
∑
y∈Cn

p(y) · ‖K(y)‖ − 1

der unechten Schlüssel ist. Im besten Fall kommen für jeden Kryptotext alle Schlüssel
infrage, d.h. s̄n = ‖K‖− 1. Ist dagegen s̄n gleich 0, so liefert der abgefangene Kryptotext
dem Gegner genügend Information, um den benutzten Schlüssel und somit den zugehörigen
Klartext eindeutig bestimmen zu können (sofern er über genügend Ressourcen verfügt).

Definition 77. Die Eindeutigkeitsdistanz n0 eines Kryptosystems unter Klartextver-
teilung X ist der kleinste Wert von n, für den s̄n = 0 wird.

Als nächstes wollen wir eine untere Schranke für s̄n (und damit für n0) herleiten. Hierzu
benötigen wir den Begriff der bedingten Entropie H(X|Y) von X, wenn der Wert von Y
bereits bekannt ist.

Definition 78. Seien X, Y Zufallsvariablen. Die bedingte Entropie von X unter Y
ist definiert als

H(X|Y) =
∑

y∈W (Y)
p(y) · H(X|y),

3.4 Die Eindeutigkeitsdistanz 45

wobei X|y die Zufallsvariable mit der Verteilung py(x) = p(x|y) = Pr[X = x | Y = y] ist
(d.h. X|y hat die Entropie H(X|y) = ∑

x∈W (X) p(x|y) · log2(1/p(x|y)).

Satz 79. Es gilt
1. H(X, Y) = H(Y) +H(X|Y) und
2. H(X, Y) ≤ H(X) +H(Y), wobei Gleichheit genau dann eintritt, wenn X und Y

unabhängig sind.

Beweis. s. Übungen. �

Korollar 80. Es gilt H(X|Y) ≤ H(X), wobei Gleichheit genau dann eintritt, wenn X
und Y unabhängig sind.

Satz 81. In jedem Kryptosystem gilt für die Klartextentropie H(X), die Schlüsselentropie
H(S) und die Kryptotextentropie H(Y) die Gleichung

H(S|Y) = H(S) +H(X)−H(Y).

Beweis. Zunächst ist H(S|Y) = H(S, Y)−H(Y). Es reicht also zu zeigen, dass

H(S, Y) = H(S) +H(X)

ist. Da bei Kenntnis des Schlüssels der Wert von X bereits eindeutig durch Y und der
Wert von Y eindeutig durch X festgelegt ist, folgt unter Berücksichtigung der gemachten
Annahme, dass X und S unabhängig sind,

H(S, Y) = H(S,X, Y)−H(X|S, Y)︸ ︷︷ ︸
=0

= H(S,X) +H(Y |S,X)︸ ︷︷ ︸
=0

= H(S) +H(X).

�

Jetzt verfügen wir über alle Hilfsmittel, um die erwartete Anzahl

s̄n =
∑
y∈Cn

p(y) · ‖K(y)‖ − 1

der unechten Schlüssel nach unten abschätzen zu können.

Lemma 82. Seien Xn und Yn die Zufallsvariablen, die die Verteilungen der n-Gramme
der Klartextsprache und der zugehörigen Kryptotexte beschreiben. Dann gilt

1. H(S|Yn) ≤ log2(s̄n + 1),
2. H(S|Yn) ≥ H(S)− nR(Ln) log2 m.

Beweis.
1. Unter Verwendung der Jensenschen Ungleichung folgt

H(S|Yn) =
∑
y∈Cn

p(y) · H(S|y) ≤
∑
y∈Cn

p(y) · log2 ‖K(y)‖ ≤ log2
∑
y∈Cn

p(y) · ‖K(y)‖

= log2(s̄n + 1).

46 3 Sicherheit von Kryptosystemen

2. Mit Satz 81 folgt
H(S|Yn) = H(S) +H(Xn)−H(Yn).

Für die Klartextentropie H(Xn) gilt

H(Xn) = H(Ln) = (1−R(Ln))n log2 m,

wobei m = ‖A‖ ist. Zudem lässt sich die Kryptotextentropie H(Yn) wegenW (Yn) =
Cn und ‖Cn‖ = mn durch

H(Yn) ≤ n log2 m

abschätzen. Somit ist

H(S|Yn) = H(S) +H(Xn)−H(Yn) ≥ H(S)− nR(Ln) log2 m �

Zusammen ergibt sich also

log2(s̄n + 1) ≥ H(S)− nR(Ln) log2 m ≥ H(S)− nR(L) log2 m.

Im Fall eines gleichverteilten Schlüssels erreicht H(S) den maximalen Wert log2 ‖K‖,
was auf die gesuchte Abschätzung für s̄n führt.

Satz 83. Werden mit einem Kryptosystem (M,C,E,D,K) mit M = An und ‖C‖ = mn

Klartexte einer Sprache L der festen Länge n mit gleichverteiltem Schlüssel k ∈ K
verschlüsselt, so gilt für die erwartete Anzahl s̄n der unechten Schlüssel,

s̄n ≥
‖K‖

mnR(Ln) − 1.

Setzen wir in obiger Abschätzung s̄n = 0, so erhalten wir folgende untere Schranke für
die Eindeutigkeitsdistanz n0 eines Kryptosystems.

Korollar 84. Unter den Bedingungen des obigen Satzes gilt

n0 ≥
log2 ‖K‖
R(Ln) log2 m

≥ log2 ‖K‖
R(L) log2 m

= log2 ‖K‖
Rabs(L) .

Man beachte, dass wir die Mindestmenge an Kryptotext, der zur eindeutigen Bestimmung
des Schlüssels benötigt wird, nur nach unten abgeschätzt haben und die tatsächlich
benötigte Menge deutlich größer sein kann. Natürlich erlaubt die eindeutige Bestimmung
des Schlüssels auch die eindeutige Bestimmung des Klartexts. Unter Umständen kann
jedoch der Klartext auch schon mit einer wesentlich geringeren Menge an Kryptotext
eindeutig rekonstruierbar sein.

Beispiel 85. Für Substitutionen bei deutschsprachigem Klartext ergeben sich folgende
Werte log2 ‖K‖/Rabs(L) als untere Schranke für die Eindeutigkeitsdistanz n0 (wobei wir
von einer absoluten Redundanz von Rabs(L) = 3.2 bit/Zeichen ausgehen, was einer
relativen Redundanz von R(L) = 3, 2/4, 7 ≈ 67% entspricht):

Kryptosystem Schlüsselanzahl ‖K‖ log2 ‖K‖ log2 ‖K‖/Rabs(L)

additive Chiffre 26 4.7 4.7
3.2 ≈ 1.5

affine Chiffre 12 · 26 = 312 8.3 2.6
einfache Substitution 26! 88.4 27.6
Vigenère-Chiffre 26d 4.7 · d 1.5 · d

3.5 Weitere Sicherheitsbegriffe 47

Dagegen erhalten wir für Blocktranspositionen folgende unteren Schranken für die Min-
destmenge an Kryptotext, die zur eindeutigen Schlüsselbestimmung benötigt wird. Hierbei
unterscheiden wir zusätzlich nach der Länge der bei der Häufigkeitsanalyse benutzten
n-Gramme. Dies entspricht der Situation, dass die Wahrscheinlichkeit jedes Zeichens im
Klartext höchstens von den n− 1 vorausgehenden bzw. nachfolgenden Zeichen abhängt.

Untere Schranken für n0 bei einer Analyse von Blocklänge `
Blocktranspositionen auf der Basis von 10 20 50 100 1 000

Einzelzeichen-Häufigkeiten (R(L1) = 0, 6) 59 165 578 1415 22 986
Bigramm-Häufigkeiten (R(L2) = 1, 2) 40 111 390 954 15 502
Trigramm-Häufigkeiten (R(L3) = 1, 5) 24 65 226 553 9 473
n-Gramm-Häufigkeiten, n→∞ (R(L) = 3, 2) 7 19 67 164 2 665

/

3.5 Weitere Sicherheitsbegriffe

Da die Benutzung eines informationstheoretisch sicheren Kryptosystems einen immensen
Aufwand erfordert, begnügt man sich in der Praxis meist mit schwächeren Sicherheitsan-
forderungen.

– Ein Kryptosystem gilt als komplexitätstheoretisch sicher oder als berech-
nungssicher (computationally secure), falls es dem Gegner nicht möglich ist,
das System mit einem für ihn lohnenswerten Aufwand zu brechen. Das heißt, der
Zeitaufwand und die Kosten für einen erfolgreichen Angriff (sofern er überhaupt
möglich ist) übersteigen den potentiellen Nutzen bei weitem.

– Ein Kryptosystem gilt als nachweisbar sicher (provably secure), wenn seine
Sicherheit mit bekannten komplexitätstheoretischen Hypothesen verknüpft werden
kann, deren Gültigkeit gemeinhin akzeptiert wird.

– Als praktisch sicher (practically secure) werden dagegen Kryptosysteme ein-
gestuft, die über mehrere Jahre hinweg jedem Versuch einer erfolgreichen Krypto-
analyse widerstehen konnten, obwohl sie bereits eine weite Verbreitung gefunden
haben und allein schon deshalb ein attraktives Ziel für einen Angriff darstellen.

Die komplexitätstheoretische Analyse eines Kryptosystems ist äußerst schwierig, da der
Aufwand für einen erfolgreichen Angriff unabhängig von der dabei benutzten Technik
abgeschätzt werden muss. Es reicht also nicht, alle bekannten kryptoanalytischen Ansätze
in Betracht zu ziehen, sondern alle möglichen. Dabei darf sich die Aufwandsanalyse nicht
ausschließlich an einer vollständigen Rekonstruktion des Klartextes orientieren, da bereits
ein kleiner Unterschied zwischen der A-posteriori- und A-priori-Wahrscheinlichkeit für
den Gegner einen Vorteil bedeuten könnte.
Aus den genannten Gründen ist noch für kein praktikables Kryptosystem der Nachweis
gelungen, dass es komplexitätstheoretisch sicher ist. Damit ist auch nicht so schnell zu
rechnen, zumindest nicht solange der Status fundamentaler komplexitätstheoretischer
Fragen wie etwa des berühmten P ?=NP-Problems offen ist. Dagegen gibt es eine ganze
Reihe praktikabler Kryptosysteme, die als nachweisbar sicher oder praktisch sicher gelten.
Wir schließen diesen Abschnitt mit einer Präzisierung des komplexitätstheoretischen
Sicherheitsbegriffs, die unter dem Namen IND-CPA (indistinguishability under a chosen-

48 3 Sicherheit von Kryptosystemen

plaintext attack) bekannt ist. Hierzu ist es erforderlich, die Verletzung der Vertraulichkeit
als ein algorithmisches Problem für den Gegner zu formulieren. Konkret läuft ein IND-
CPA-Angriff wie folgt ab.

1. Zuerst wählt der Gegner zwei Klartexte x0 6= x1 ∈M .
2. Dann wird x0 oder x1 zufällig ausgewählt und der zugehörige Kryptotext y gebildet.
3. Dem Gegner wird der Kryptotext y vorgelegt und er muss raten, welcher der beiden

Klartexte sich hinter y verbirgt.
4. Der Angriff ist erfolgreich, falls der Gegner richtig rät.

Die Erfolgsaussichten des Gegners bei diesem Angriff lassen sich wie folgt formalisieren.
Dabei gehen wir davon aus, dass das gewünschte Maß an Sicherheit durch einen Parameter
s ∈ N reguliert wird. Typischerweise werden Kryptosysteme nach ihrer Schlüssellänge s =
|k| parameterisiert. Aus Praktikabilitätsgründen sollten dann alle legalen Operationen (wie
die Chiffrierung oder die Schlüsselgenerierung) effizient (d.h. in Zeit sO(1)) durchführbar
sein. Natürlich darf dann auch der Aufwand des Gegners in Abhängigkeit von s steigen,
weshalb er zusätzlich den Parameterwert s erhält.

Definition 86 (IND-CPA Angriff). Sei (M,C,E,D,K, S) ein Kryptosystem mit
Sicherheitsparameter s ∈ N. Ein (IND-CPA-)Gegner ist ein Tripel G = (X0, X1, V)
von probabilistischen Algorithmen, wobei X0, X1 bei Eingabe s zwei Klartexte aus M
generieren und V bei Eingabe von s, x0, x1 ∈M und y ∈ C ein Bit V (s, x0, x1, y) ∈ {0, 1}
ausgibt. Der Vorteil von G bei Parameterwert s ist

αG(s) = 2(Pr[V (X0(s), X1(s), E(S,XB(s))) = B]− 1/2),

wobei B auf {0, 1} gleichverteilt und von S,X0, X1, V unabhängig ist.

Ist der Wert des Sicherheitsparameters s irrelevant, fest vorgegeben oder aus dem Kontext
ersichtlich, so verzichten wir meist auf seine explizite Angabe.
Wird beispielsweise eine Folge von Klartextblöcken a1, a2, . . . mit einer Blockchiffre
verschlüsselt, indem die einzelnen Blöcke unabhängig voneinander mit demselben Schlüssel
k zu einer Folge b1, b2, . . . von Kryptotextblöcken bi = E(k, ai) verschlüsselt werden (so
genannter ECB-Modus; electronic code book mode), so kann ein Gegner ohne großen
Aufwand einen Vorteil von 1 erzielen (d.h. mit Wahrscheinlichkeit 1 den richtigen Klartext
raten). Hierzu wählt er (deterministisch) zwei beliebige Klartexte x0 = a1a2 . . . und
x1 = a′1a

′
2 . . . mit der Eigenschaft a1 = a2 und a′1 6= a′2. Dann kann er bei Vorlage eines

Kryptotextes y = b1b2 . . . leicht erkennen, aus welchem Klartext y generiert wurde:

V (x0, x1, y) =

0, b1 = b2

1, sonst.

Erwartungsgemäß sind absolut sichere Kryptosysteme gegen IND-CPA-Angriffe resistent.

Satz 87. Der maximale Vorteil gegenüber einem absolut sicheren Kryptosystem ist gleich
Null (d.h. ein IND-CPA-Gegner kann höchstens mit Wahrscheinlichkeit 1/2 den richtigen
Klartext raten, auch wenn er über unbeschränkte Rechenressourcen verfügt).

Beweis. Bei einem absolut sicheren Kryptosystem sind der Kryptotext Y = E(S,X) und
der Klartext X unabhängig. Daher sind auch die Zufallsvariablen V (X0, X1, E(S,XB))

3.5 Weitere Sicherheitsbegriffe 49

und B unabhängig und es folgt

Pr[V (X0, X1, E(S,XB)) = B]
= Pr[V (X0, X1, E(S,XB)) = B = 0] + Pr[V (X0, X1, E(S,XB)) = B = 1]
= Pr[V (X0, X1, E(S,XB)) = 0] · Pr[B = 0 | V (X0, X1, E(S,XB)) = 0]︸ ︷︷ ︸

= Pr[B=0] = 1/2

+ Pr[V (X0, X1, E(S,XB)) = 1] · Pr[B = 1 | V (X0, X1, E(S,XB)) = 1]︸ ︷︷ ︸
= Pr[B=1] = 1/2

= 1/2.
�

In den Übungen wird auch die umgekehrte Implikation bewiesen. Ein Kryptosystem ist
somit genau dann absolut sicher, wenn kein Gegner einen Vorteil größer als 0 erzielen kann.
Für die Präzisierung der komplexitätstheoretischen Sicherheit sind nun die folgenden
beiden Fragen von entscheidender Bedeutung:

1. Über welche Rechenressourcen verfügt ein Gegner realistischerweise?
2. Wie groß darf der vom Gegner erzielbare Vorteil höchstens sein, ohne die Vertrau-

lichkeit der verschlüsselten Nachricht zu verletzen?
Bezüglich Frage 1 geht man typischerweise davon aus, dass der Gegner über probabilisti-
sche Schaltkreise polynomieller Größe verfügt.

Definition 88.
a) Ein boolescher Schaltkreis der Größe m mit Eingängen x1, . . . , xn und Ausgän-

gen i1, . . . , il ∈ [m] ist eine Folge c = (g1, . . . , gm) von Gattern

gl ∈ {0, 1, x1, . . . , xn, (¬, j), (∧, j, k), (∨, j, k)} mit 1 ≤ j, k < l.

b) Der von c bei Eingabe a ∈ {0, 1}n am Gatter gl berechnete Wert gl(a) ∈ {0, 1} ist
induktiv wie folgt definiert:

gl 0 1 xi (¬, j) (∧, j, k) (∨, j, k)
gl(a) 0 1 ai 1− gj(a) gj(a)gk(a) gj(a) + gk(a)− gj(a)gk(a)

c) Die Ausgabe von c bei Eingabe a ∈ {0, 1}n ist die Bitfolge c(a) = gi1(a) . . . gil(a).

Beispiel 89. Der Schaltkreis
c = (x1, x2, x3, x4, (∧, 1, 2), (∧, 2, 3),

(∨, 3, 4), (¬, 5), (¬, 6), (¬, 7),
(∨, 6, 8), (∨, 9, 10), (∧, 11, 12))

mit den Eingängen x1, x2, x3, x4 und Ausgängen (11, 12, 13)
gibt bei Eingabe a = 0110 die Bitfolge c(0110) = 100 aus.

∧
∨∨
¬¬¬
∨∧∧
x4x3x2x1 /

Ein probabilistischer Schaltkreis c hat neben den regulären Eingabegattern x1, . . . , xn
noch eine beliebige Anzahl von Zufallsgattern z1, . . . , zm. Hierbei werden die Eingabegatter
xi wie bisher mit den Bits ai eines Eingabevektors a = a1 . . . an ∈ {0, 1}n belegt, während
die m Zufallsgatter unabhängig gleichverteilte Bits Z1, . . . , Zm erzeugen (d.h. es gilt
Pr[Z1 . . . Zm = b] = 2−m für alle b ∈ {0, 1}m). Dadurch wird die Ausgabe c(a, Z1, . . . , Zm)
zu einer Zufallsvariablen, die wir auch kurz mit C(a) bezeichnen.

50 3 Sicherheit von Kryptosystemen

Bezüglich der zweiten Frage verlangt man, dass der Gegner für jedes Polynom p höchs-
tens für endlich viele Parameterwerte s einen Vorteil größer gleich 1/p(s) erzielen darf.
Andernfalls wäre die Sicherheit gefährdet, da er für jedes solche s nach polynomiell
vielen Wiederholungen der probabilistischen Berechnung von V (s, x0, x1, y) fast sicher
den richtigen Klartext ausfindig machen könnte, indem er das mehrheitlich berechnete
Bit ausgibt.

Definition 90. Sei KS ein Kryptosystem mit variablem Sicherheitsparameter s ∈ N.
– Eine Funktion ε : N→ R heißt vernachlässigbar, wenn für jedes Polynom p eine
Zahl n0 ∈ N existiert, so dass ε(n) < 1/p(n) für alle n ≥ n0 gilt.

– Ein Gegner G = (X0, X1, V) heißt effizient, wenn probabilistische Schaltkrei-
se c und c′ der Größe sO(1) mit C(s) = (X0(s), X1(s)) und C ′(s, x0, x1, y) =
V (s, x0, x1, y) existieren, wobei die Ein- und Ausgaben von c und c′ binär kodiert
sind.

– KS heißt komplexitätstheoretisch sicher, wenn jeder effiziente Gegner G nur
einen vernachlässigbaren Vorteil erzielen kann (d.h. die Funktion αG(s) ist vernach-
lässigbar).

51

4 Moderne symmetrische Kryptosysteme & ihre
Analyse

4.1 Produktchiffren

Produktchiffren erhält man durch die sequentielle Anwendung mehrerer Verschlüsse-
lungsverfahren. Sie können extrem schwer zu brechen sein, auch wenn die einzelnen
Komponenten leicht zu brechen sind.

Definition 91. Seien KS1 = (M1, C1, E1, D1, K1, S1) und KS2 = (M2, C2, E2, D2, K2, S2)
Kryptosysteme mit C1 = M2. Dann ist das Produktkryptosystem KS1×KS2 von KS1
und KS2 definiert als (M1, C2, E,D,K1 ×K2, S) mit S = (S1, S2) und

E(k1, k2;x) = E2(k2, E1(k1, x)) sowie D(k1, k2; y) = D1(k1, D2(k2, y))

für alle x ∈M1, y ∈ C2 und (k1, k2) ∈ K1 ×K2.

Der Schlüsselraum von KS1×KS2 umfasst also alle Paare (k1, k2) von Schlüsseln k1 ∈ K1
und k2 ∈ K2, wobei wir voraussetzen, dass die Schlüssel unabhängig gewählt werden (d.h.
es gilt p(k1, k2) = p(k1)p(k2)).

Beispiel 92. Sei A = {a0, . . . , am−1}. Man sieht leicht, dass die affine Chiffre KS =
(M,C,K,E,D) mit M = C = A und K = Z∗m × Zm das Produkt KS = KS1 × KS2
der multiplikativen Chiffre KS1 = (M,C,K1, E1, D1) und der additiven Chiffre KS2 =
(M,C,K2, E2, D2) ist, da für jeden Schlüssel k = (k1, k2) ∈ K = K1 ×K2 = Z∗m × Zm
gilt:

E(k, x) = k1x+ k2 = E2(k2, E1(k1, x)).
Das ist exakt die affine Chiffre. Welche Chiffre erhalten wir, wenn wir die Reihenfolge
von KS1 und KS2 vertauschen? Für KS ′ = KS2 × KS1 ergibt sich das Kryptosystem
KS ′ = (M,C,K ′, E ′, D′) mit K ′ = K2 ×K1 = Zm × Z∗m und

E ′(k2, k1;x) = k1(x+ k2) = k1x+ k1k2 = E(k1, k1k2;x)

für jeden Schlüssel (k2, k1) ∈ K ′. Wir sehen also, dass die Abbildung

(k2, k1) 7→ (k1, k1k2)

eine Bijektion zwischen den Schlüsselräumen K ′ und K ist und der Schlüssel (k2, k1)
im System KS ′ die gleiche Chiffrierfunktion realisiert wie der Schlüssel (k1, k1k2) in
KS. Zudem können wir jeden Schlüsselgenerator S ′ für KS ′ in einen Schlüsselgenerator
S für KS transformieren (und auch S wieder zurück in S ′), so dass S in KS jede
Chiffrierfunktion mit der gleichen Wahrscheinlichkeit erzeugt wie S ′ in KS ′. Daher
können wir die Kryptosysteme KS = KS1 × KS2 und KS ′ = KS2 × KS1 als gleich
(genauer: äquivalent, siehe Übungen) ansehen, d.h. KS1 und KS2 kommutieren. /

Definition 93. Ein Kryptosystem KS = (M,C,K,D,E) mitM = C heißt endomorph.
Ein endomorphes Kryptosystem KS heißt idempotent, falls KS ×KS äquivalent zu KS
ist (in Zeichen: KS ×KS = KS).

52 4 Moderne symmetrische Kryptosysteme & ihre Analyse

Beispiel 94. Eine leichte Rechnung zeigt, dass die additive Chiffre, die multiplikative
Chiffre und die affine Chiffre idempotent sind. Ebenso die Blocktransposition sowie die
Vigenère- und Hill-Chiffre. /

Will man durch mehrmalige Anwendung (Iteration) derselben Chiffriermethode eine
höhere Sicherheit erreichen, so darf diese nicht idempotent sein. Man kann beispielsweise
versuchen, ein nicht idempotentes System KS durch die Kombination KS = KS1 ×KS2
zweier idempotenter Verfahren KS1 und KS2 zu erhalten. Da KS im Fall KS1 ×KS2 =
KS2 ×KS1 wegen

(KS1 ×KS2)× (KS1 ×KS2) = KS1 × (KS2 ×KS1)×KS2

= KS1 × (KS1 ×KS2)×KS2

= (KS1 ×KS1)× (KS2 ×KS2)
= KS1 ×KS2

idempotent ist, dürfen hierbei KS1 und KS2 jedoch nicht kommutieren.
Im Rest dieses Kapitels werden wir nur noch das Binäralphabet A = {0, 1} als Klar- und
Kryptotextalphabet benutzen und auch der Schlüsselraum wird von der Form {0, 1}k sein,
wobei k die Schlüssellänge bezeichnet. Einzelne Schlüssel eines Kryptosystems werden
wir in diesem Kapitel mit K bezeichnen.
Eine iterierte Blockchiffre wird typischerweise durch eine Rundenfunktion (round
function) g und einenKey-Schedule Algorithmus f beschrieben. IstN die Rundenzahl,
so erzeugt f bei Eingabe eines Schlüssels K eine Folge f(K) = (K1, . . . , KN) von N
Rundenschlüsseln Ki für g. Mit diesen wird ein Klartext x = w0 durch N -malige
Anwendung der Rundenfunktion g zu einem Kryptotext y = wN verschlüsselt:

w1 := g(K1, w0)
...
wN := g(KN , wN−1)

Um y wieder zu entschlüsseln, muss die inverse Rundenfunktion g−1 mit umgekehrter
Rundenschlüsselfolge KN , . . . , K1 benutzt werden:

wN−1 := g−1(KN , wN)
...
w0 := g−1(K1, w1)

Beispiele für iterierte Chiffren sind der aus 16 Runden bestehende DES-Algorithmus und
der AES mit einer variablen Rundenzahl N ∈ {10, 12, 14}, die wir in späteren Abschnitten
behandeln werden.

4.2 Substitutions-Permutations-Netzwerke

In diesem Abschnitt betrachten wir den prinzipiellen Aufbau von iterierten Blockchiffren.
Als Basisbausteine für die Rundenfunktion eignen sich Substitutionen und Transpositionen
besonders gut. Aus Effizienzgründen sollten die Substitutionen nur eine relativ kleine
Blocklänge ` haben.

Definition 95. Für ein Wort u = u1 · · ·un ∈ {0, 1}n und Indizes 1 ≤ i ≤ j ≤ n
bezeichne u[i, j] das Teilwort ui · · ·uj von u. Im Fall n = ml bezeichnen wir das Teilwort
u[(i− 1)l + 1, il] auch einfach mit u(i), d.h. es gilt u = u(1) · · ·u(m), wobei |u(i)| = l ist.

4.2 Substitutions-Permutations-Netzwerke 53

Sei σS : {0, 1}l → {0, 1}l′ eine Substitution, die Binärblöcke u der Länge l in Binärblöcke
v = σS(u) der Länge l′ überführt (auch kurz als S-Box S bezeichnet, oft schreiben wir
für σS(u) auch einfach S(u).

u1u2u3u4

v1 v2 v3 v4 v5 v6

S-Box

Durch parallele Anwendung von m Kopien der S-Box S erhalten wir die Substitution
σmS : {0, 1}ml → {0, 1}ml′ mit

σmS(u1 · · ·uml) = σS(u(1)) · · ·σS(u(m)).

Auch hier schreiben wir für σmS(u1 · · ·uml) einfach S(u1 · · ·uml). Für die Speicherung
einer S-Box σS : {0, 1}l → {0, 1}l′ auf einem Speicherchip werden l′2l Bit Speicherplatz
benötigt (im Fall l = l′ also l2l Bit). Für l = l′ = 16 wären dies beispielsweise 220 Bit,
was Smartcard-Anwendungen bereits ausschließen würde.
Für eine Transposition P auf {0, 1}` bezeichnen wir die zugehörige Permutation auf [`]
mit πP oder einfach mit π, falls P aus dem Kontext bekannt ist, d.h.

P (u1 · · ·u`) = uπ(1) · · ·uπ(`).

Definition 96. Für natürliche Zahlen m, l ≥ 1 sei M = C = {0, 1}` mit ` = ml.
Ein Substitutions-Permutations-Netzwerk (SPN) wird durch eine S-Box S, eine
Blocktransposition P und durch eine Funktion f : {0, 1}k → {0, 1}ml(N+1) beschrieben,
wobei S eine Permutation σS auf {0, 1}l realisiert, P die Blocklänge ` hat und N ≥ 1
die Rundenzahl des SPN ist. Die Funktion f transformiert einen (externen) Schlüssel
K ∈ {0, 1}k in ein Key-Schedule f(K) = (K1, . . . , KN+1) von N + 1 Rundenschlüsseln
Kr, r = 1, . . . , N + 1, unter denen ein Klartext x ∈ {0, 1}` in N Runden durch folgenden
Chiffrieralgorithmus in einen Kryptotext y = Ef,S,P (K, x) ∈ {0, 1}` überführt wird:

Chiffrierfunktion Ef,S,P (K, x)
1 w0 := x
2 for r := 1 to N − 1 do
3 ur := wr−1 ⊕Kr

4 vr := σmS(ur)
5 wr := P (vr)
6 uN := wN−1 ⊕KN

7 vN := σmS(uN)
8 y := vN ⊕KN+1

Zu Beginn jeder Runde r ∈ {1, . . . , N} wird wr−1 zunächst einer XOR-Operation mit dem
Rundenschlüssel Kr unterworfen (dies wird round key mixing genannt). Das Resultat ur
wird den S-Boxen zugeführt und auf die Ausgabe vr wird in jeder Runde r ≤ N − 1 die
Transposition P angewendet, was die Eingabe wr für die nächste Runde r + 1 liefert.
Am Ende der letzten Runde r = N wird nicht die Transposition P angewandt, sondern der
Rundenschlüssel KN+1 auf vN addiert. Durch diese (whitening genannte) Vorgehensweise
wird einerseits erreicht, dass auch für den letzten Chiffrierschritt der Schlüssel benötigt
und somit der Gegner von einer partiellen Entschlüsselung des Kryptotexts abgehalten
wird. Zum Zweiten ermöglicht dies eine (legale) Entschlüsselung nach fast demselben
Verfahren (siehe Übungen), was speziell für Hardware-Implementierungen nützlich ist.

54 4 Moderne symmetrische Kryptosysteme & ihre Analyse

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

K1

S1
1 S1

2 S1
3 S1

4

K2

S2
1 S2

2 S2
3 S2

4

K3

S3
1 S3

2 S3
3 S3

4

K4

S4
1 S4

2 S4
3 S4

4

K5

x

u1

v1

w1

u2

v2

w2

u3

v3

w3

u4

v4

y

Abbildung 4.1: Ein Substitutions-Permutations-Netzwerk

Beispiel 97. Wir betrachten ein SPN SP mit Parametern l = m = N = 4 und k = 32.
Für f wählen wir die Funktion f(K) = (K1, . . . , K5) mit Kr = K[4(r−1)+1, 4(r−1)+16].
Weiter seien σS : {0, 1}4 → {0, 1}4 und πP : {1, . . . , 16} → {1, . . . , 16} die folgenden
Permutationen (wobei die Argumente und Werte von σS hexadezimal dargestellt sind;
siehe auch Abbildung 4.1):

z 0 1 2 3 4 5 6 7 8 9 A B C D E F
σS(z) E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

und

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
πP (i) 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Für den Schlüssel K = 0011 1010 1001 0100 1101 0110 0011 1111 liefert f beispielsweise
die Rundenschlüssel f(K) = (K1, . . . , K5) mit

K1 = 0011 1010 1001 0100,
K2 = 1010 1001 0100 1101,
K3 = 1001 0100 1101 0110,
K4 = 0100 1101 0110 0011,
K5 = 1101 0110 0011 1111,

4.3 Lineare Approximationen 55

unter denen der Klartext x = 0010 0110 1011 0111 die folgenden Chiffrierschritte durch-
läuft:

x = 0010 0110 1011 0111 = w0

w0 ⊕K1 = 0001 1100 0010 0011 = u1

S(u1) = 0100 0101 1101 0001 = v1

P (v1) = 0010 1110 0000 0111 = w1

...
P (v3) = 1110 0100 0110 1110 = w3

w3 ⊕K4 = 1010 1001 0000 1101 = u4

S(u4) = 0110 1010 1110 1001 = v4

u4 ⊕K5 = 1011 1100 1101 0110 = y. /

4.3 Lineare Approximationen

Sei σS : {0, 1}l → {0, 1}l′ die funktionale Beschreibung einer S-Box S. Wählen wir die
Eingabe U = U1 · · ·Ul zufällig unter Gleichverteilung, so gilt für die zugehörige Ausgabe
V = σS(U) = V1 · · ·Vl′ ,

Pr[V = v | U = u] =

1 σS(u) = v,

0 sonst

für alle u ∈ {0, 1}l und v ∈ {0, 1}l′ . Wegen Pr[U = u] = 2−l folgt

Pr[V = v, U = u] =

2−l σS(u) = v,

0 sonst.

Ist die S-Box S linear, d.h σ ist eine lineare Funktion σS(u) = uA für eine binäre
(l × l′)-Matrix A (vgl. Definition 28), so lässt sich jedes Ausgabebit vj von S über eine
Funktion der Form vj = ui1 ⊕ · · · ⊕ uik für geeignete Indizes 1 ≤ i1 < · · · < ik ≤ l
berechnen. In diesem Fall würde also

Pr[Vj = Ui1 ⊕ · · · ⊕ Uik] = 1

gelten. Die Idee hinter der linearen Kryptoanalyse ist nun, etwas allgemeinere Gleichungen
der Form

Vj1 ⊕ · · · ⊕ Vjk′ = Ui1 ⊕ · · · ⊕ Uik ⊕ c

mit 1 ≤ i1 < · · · < ik ≤ l, 1 ≤ j1 < · · · < jk′ ≤ l′ und c ∈ {0, 1} zu finden, die mit
möglichst großer Wahrscheinlichkeit gelten. Definieren wir für a ∈ {0, 1}l und b ∈ {0, 1}l′

die Zufallsvariablen

Ua =
l⊕

i=1
aiUi und Vb =

l′⊕
i=1

biVi,

so sind wir also an solchen Werten für a, b und c interessiert, für die das Ereignis
Vb = Ua ⊕ c (oder gleichbedeutend: Ua ⊕ Vb = c) mit großer Wahrscheinlichkeit eintritt.
In diesem Fall lässt sich nämlich der Wert von Vb bei Kenntnis von Ua entsprechend gut
vorhersagen. Wegen Pr[Ua ⊕ Vb = c] = 1− Pr[Ua ⊕ Vb = c⊕ 1] kommt es nur darauf an,

56 4 Moderne symmetrische Kryptosysteme & ihre Analyse

wie stark die Wahrscheinlichkeit Pr[Ua ⊕ Vb = 0] von 1/2 abweicht. Die durch das Paar
(a, b) beschriebene lineare Approximation L = Ua ⊕ Vb an die S-Box S ist also um so
besser, je größer der Absolutbetrag |Pr[L = 0]− 1/2| ist.
Definition 98. Für eine Zufallsvariable X mit Wertebereich W (X) = {0, 1} bezeichne
ε(X) den Wert ε(X) = Pr[X = 0]− 1/2 (auch Bias von X genannt).

Unter Benutzung dieser Notation lässt sich also die Güte einer linearen Approximation
Ua⊕Vb an eine S-Box S durch den Absolutbetrag |ε(Ua⊕Vb)| ihres Bias-Wertes bemessen.
Beispiel 99. Wir betrachten wieder die S-Box S aus Beispiel 97. Dann nimmt die
Zufallsvariable (U1, . . . , U4, V1, . . . , V4) die 16 Werte in folgender Tabelle jeweils mit
Wahrscheinlichkeit 2−4 = 1/16 an.

U1 U2 U3 U4 V1 V2 V3 V4 U3 ⊕ U4 ⊕ V1 ⊕ V4

0 0 0 0 1 1 1 0 1
0 0 0 1 0 1 0 0 1
0 0 1 0 1 1 0 1 1
0 0 1 1 0 0 0 1 1
0 1 0 0 0 0 1 0 0
0 1 0 1 1 1 1 1 1
0 1 1 0 1 0 1 1 1
0 1 1 1 1 0 0 0 1
1 0 0 0 0 0 1 1 1
1 0 0 1 1 0 1 0 0
1 0 1 0 0 1 1 0 1
1 0 1 1 1 1 0 0 1
1 1 0 0 0 1 0 1 1
1 1 0 1 1 0 0 1 1
1 1 1 0 0 0 0 0 1
1 1 1 1 0 1 1 1 1

Um nun ε(Ua ⊕ Vb) zu berechnen, genügt es, die Anzahl L(a, b) der Zeilen zu bestimmen,
für die Ua = Vb ist. Dann gilt Pr[Ua ⊕ Vb = 0] = Pr[Ua = Vb] = L(a, b)/16 und somit

ε(Ua ⊕ Vb) = L(a, b)/16− 1/2 = (L(a, b)− 8)/16.
Für a = 0011 und b = 1001 gibt es z.B. L(a, b) = 2 Zeilen (Zeile 5 und Zeile 10) mit
Ua = U3 ⊕ U4 = Vb = V1 ⊕ V4, d.h. ε(U3 ⊕ U4 ⊕ V1 ⊕ V4) = (L(a, b)− 8)/16 = −3/8. Die
folgende Tabelle zeigt für alle Werte von a und b (hexadezimal dargestellt) die Anzahlen
L(a, b).

b

a 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 8 8 6 6 8 8 6 14 10 10 8 8 10 10 8 8
2 8 8 6 6 8 8 6 6 8 8 10 10 8 8 2 10
3 8 8 8 8 8 8 8 8 10 2 6 6 10 10 6 6
4 8 10 8 6 6 4 6 8 8 6 8 10 10 4 10 8...
B 8 12 8 4 12 8 12 8 8 8 8 8 8 8 8 8...
F 8 6 4 6 6 8 10 8 8 6 12 6 6 8 10 8

/

4.4 Lineare Kryptoanalyse eines SPN 57

4.4 Lineare Kryptoanalyse eines SPN

Wir betrachten nun das SPN SP aus Beispiel 97 und führen eine lineare Kryptoanalyse
durch. Dabei handelt es sich um einen Angriff bei bekanntem Klartext, d.h. es steht
eine Menge M von t Klartext-Kryptotext-Paaren (x, y) zur Verfügung, die alle mit dem
gleichen unbekannten Schlüssel K erzeugt wurden.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

K1

S1
1 S1

2 S1
3 S1

4

K2

S2
1 S2

2 S2
3 S2

4

K3

S3
1 S3

2 S3
3 S3

4

K4

S4
1 S4

2 S4
3 S4

4

K5

x

u1

v1

w1

u2

v2

w2

u3

v3

w3

u4

v4

y

Abbildung 4.2: Eine lineare Approximation an ein Substitutions-Permutations-Netzwerk

Seien K1, . . . , K5 die zu K gehörigen Rundenschlüssel (diese sind wie K unbekannt, aber
konstant). Das Ziel besteht zunächst einmal darin, eine lineare Approximation für die Ab-
bildung x 7→ u4 zu finden, bei der nur die ersten vier Rundenschlüssel K1, . . . , K4 benutzt
werden (siehe Abbildung 4.2). Hierzu verwenden wir die beiden linearen Approximationen

T = U1 ⊕ U3 ⊕ U4 ⊕ V2 und T ′ = U2 ⊕ V2 ⊕ V4

an die S-Box S mit den Bias-Werten ε(T) = (L(B, 4)− 8)/16 = (12− 8)/16 = 1/4 und
ε(T ′) = (L(4, 5)− 8)/16 = (4− 8)/16 = −1/4 (also Pr[T = 0] = Pr[T ′ = 1] = 3/4).
Konkret verwenden wir T für die S-Box S1

2 ,

T1 = U1
5 ⊕ U1

7 ⊕ U1
8 ⊕ V 1

6

58 4 Moderne symmetrische Kryptosysteme & ihre Analyse

und T ′ für die drei S-Boxen S2
2 , S3

2 , S3
4 ,

T2 = U2
6 ⊕ V 2

6 ⊕ V 2
8 , T3 = U3

6 ⊕ V 3
6 ⊕ V 3

8 , T4 = U3
14 ⊕ V 3

14 ⊕ V 3
16.

Nun schalten wir diese vier linearen Approximationen an die S-Boxen S1
2 , S2

2 , S3
2 und S3

4
zu einer linearen Approximation

L = X5 ⊕X7 ⊕X8︸ ︷︷ ︸
Xa für a=0B00

⊕U4
6 ⊕ U4

8 ⊕ U4
14 ⊕ U4

16︸ ︷︷ ︸
U4

b
für b=0505

= Xa ⊕ U4
b

an die Abbildung x 7→ u4 zusammen und erhalten für ein Bit c ∈ {0, 1} die Gleichung

Xa ⊕ U4
b = T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ c (4.1)

An dieser Stelle ergeben sich nun folgende drei Fragen.
1. Warum gilt (4.1)?
2. Wie gut ist die lineare Approximation L an die Abbildung x 7→ u4?
3. Wie können wir mit ihrer Hilfe einzelne Schlüsselbits bestimmen?

Die Antwort auf Frage 1 ist einfach: Seien c1, . . . , c4 die Schlüsselbitsummen

c1 = K1
5 ⊕K1

7 ⊕K1
8 , c2 = K2

6 , c3 = K3
6 ⊕K3

14, c4 = K4
6 ⊕K4

8 ⊕K4
14 ⊕K4

16

(für diese verwenden wir Kleinbuchstaben, da die einzelnen Schlüsselbits Kr
i als konstant

vorausgesetzt werden) und sei c = c1 ⊕ c2 ⊕ c3 ⊕ c4. Dann gilt

X5 ⊕X7 ⊕X8 = U1
5 ⊕ U1

7 ⊕ U1
8 ⊕ c1

= T1 ⊕ V 1
6 ⊕ c1

= T1 ⊕W 1
6 ⊕ c1

= T1 ⊕ U2
6 ⊕ c1 ⊕ c2

= T1 ⊕ T2 ⊕ V 2
6 ⊕ V 2

8 ⊕ c1 ⊕ c2
= T1 ⊕ T2 ⊕W 2

6 ⊕W 2
14 ⊕ c1 ⊕ c2

= T1 ⊕ T2 ⊕ U3
6 ⊕ U3

14 ⊕ c1 ⊕ c2 ⊕ c3
= T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ V 3

6 ⊕ V 3
8 ⊕ V 3

14 ⊕ V 3
16 ⊕ c1 ⊕ c2 ⊕ c3

= T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕W 3
6 ⊕W 3

8 ⊕W 3
14 ⊕W 3

16 ⊕ c1 ⊕ c2 ⊕ c3
= T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ U4

6 ⊕ U4
8 ⊕ U4

14 ⊕ U4
16 ⊕ c1 ⊕ c2 ⊕ c3 ⊕ c4︸ ︷︷ ︸

c

Nun zu Frage 2: Wären die Zufallsvariablen T1, . . . , T4 unabhängig, so würde uns das
folgende Piling-up-Lemma den Bias-Wert 23(1/4)(−1/4)3 = −1/32 für ε(T1 ⊕ · · · ⊕ T4)
bzw. (−1)c+1/32 für ε(L) liefern. Sind nämlich X1, X2 unabhängige Zufallsvariablen mit
Wertebereich W (Xi) = {0, 1} und Bias εi = ε(Xi), dann ist

Pr[X1 ⊕X2 = 0] = Pr[X1 = X2 = 0] + Pr[X1 = X2 = 1]
= (1/2 + ε1)(1/2 + ε2) + (1/2− ε1)(1/2− ε2)
= 1/2 + 2ε1ε2

und Pr[X1 ⊕X2 = 1] = 1/2− 2ε1ε2, d.h. es gilt ε(X1 ⊕X2) = 2ε1ε2. Diese Beobachtung
lässt sich leicht verallgemeinern.

4.4 Lineare Kryptoanalyse eines SPN 59

Lemma 100 (Piling-up Lemma).
Seien X1, . . . , Xn unabhängige {0, 1}-wertige Zufallsvariablen mit Bias εi = ε(Xi). Dann
gilt

ε(X1 ⊕ · · · ⊕Xn) = 2n−1
n∏
i=1

εi.

Beweis. Wir führen den Beweis durch Induktion über n.
Induktionsanfang (n = 1): Klar.
Induktionsschritt (n ; n+ 1): Nach Induktionsvoraussetzung hat die Zufallsvariable Z =

X1 ⊕ · · · ⊕Xn den Bias ε(Z) = 2n−1ε(X1) · · · ε(Xn) und daher folgt

ε(X1 ⊕ · · · ⊕Xn+1) = ε(Z ⊕Xn+1) = 2ε(Z)εn+1 = 2nε1 · · · εn+1. �

Beispiel 101. Seien X1, X2, X3 unabhängige Zufallsvariablen mit ε(Xi) = 1/4 für i =
1, 2, 3. Dann liefert das Piling-up Lemma die Bias-Werte ε(Xi ⊕Xj) = 1/8 für 1 ≤ i <
j ≤ 3. Man beachte, dass die Zufallsvariablen Y = X1 ⊕ X2 und Z = X2 ⊕ X3 nicht
unabhängig sind und somit das Piling-up-Lemma in diesem Fall nicht anwendbar ist.
Dieses würde nämlich für Y ⊕ Z einen Bias-Wert von 2(1/8)2 = 1/32 ergeben, wogegen

Y ⊕ Z = (X1 ⊕X2)⊕ (X2 ⊕X3) = X1 ⊕X3

und daher ε(Y ⊕ Z) = ε(X1 ⊕X3) = 1/8 ist. /

Zwar sind die Zufallsvariablen Ti, aus denen eine lineare Approximation Xa ⊕ UN
b =

T1 ⊕ · · · ⊕ Tk ⊕ c an die Abbildung x 7→ uN gebildet wird, in der Regel nicht unabhängig.
Dennoch zeigt sich in praktischen Anwendungen, dass der Bias-Wert ε(T1 ⊕ · · · ⊕ Tk)
von T1 ⊕ · · · ⊕ Tk meist nicht zu sehr von dem “hypothetischen” Wert 2k−1∏k

i=1 ε(Ti)
abweicht, welcher sich aus dem Piling-up Lemma ergeben würde. Daher können wir in
unserem Beispiel

ε(T1 ⊕ · · · ⊕ T4) ≈ −1/32 bzw. Pr[U4
0505 = X0B00] ≈ 1/2 + (−1)c+1/32

annehmen.
Und nun zu Frage 3: Wir betrachten zuerst den (für den Gegner günstigen) Fall, dass
anstelle von S eine S-Box benutzt wird, so dass die lineare Approximation L an die
Abbildung x 7→ u4 den Bias-Wert 1/2 hat (d.h. wir nehmen an, dass alle Klartexte x auf
ein Zwischenergebnis u4 mit xa ⊕ u4

b = 0 führen).
Sei (x, y) ∈M ein Klartext-Kryptotext-Paar, das mit dem gesuchten Schlüssel K erzeugt
wurde. Dann können wir die Teilsumme xa = x5 ⊕ x7 ⊕ x8 berechnen. Da wir y und σ−1

S

kennen, können wir zudem für jeden Subschlüssel-Kandidaten (engl. candidate subkey)
(I, J) für den Teilschlüssel (K5

(2), K
5
(4)) von K5 aus dem Kryptotext y die zugehörigen

u4-Blöcke
u4

(2)(I, J) = σ−1
S (y(2) ⊕ I) und u4

(4)(I, J) = σ−1
S (y(4) ⊕ J)

zurückrechnen (die beiden anderen Blöcke u4
(1)(I, J) und u4

(3)(I, J) werden für diesen
Angriff nicht benötigt). Für den richtigen Kandidaten (I, J) = (K5

(2), K
5
(4)) fällt dann der

Gleichheitstest

xa = u4
b(I, J) (4.2)

60 4 Moderne symmetrische Kryptosysteme & ihre Analyse

für alle Paare (x, y) ∈ M positiv aus. Dagegen besteht von den falschen Kandida-
ten (I, J) 6= (K5

(2), K
5
(4)) nur etwa die Hälfte diesen Test. Falls wir also alle Subkey-

Kandidaten (I, J) dem Gleichheitstest (4.2) für eine hinreichend große Anzahl von
Klartext-Kryptotext-Paaren (x, y) unterziehen, können wir den richtigen Kandidaten
daran erkennen, dass er als einziger alle Tests besteht.
Im Fall, dass der Bias-Wert ε der linearen Approximation an die Abbildung x 7→ u4 zwar
nicht gleich 1/2 ist, aber genügend weit von Null abweicht, besteht der richtige Kandidat
(I, J) = (K5

(2), K
5
(4)) bei einer repräsentativen Auswahl M von Klartext-Kryptotext-

Paaren ungefähr einen Anteil von (1/2 +ε) der durchgeführten Tests, während die falschen
Kandidaten etwa die Hälfte der Tests bestehen. Falls wir also eine hinreichende Anzahl
von Klartext-Kryptotext-Paaren haben, können wir den richtigen Kandidaten nun daran
erkennen, dass die Anzahl der von ihm bestandenen Tests am stärksten von ‖M‖ /2
abweicht.
Das Programmstück LinearAttack ermittelt für jeden Subkey-Kandidaten (I, J) die Anzahl
α(I, J) der Klartext-Kryptotext-Paare (x, y) ∈ M mit x0B00 = u4

b(I, J) und gibt den
Kandidaten (I, J) aus, für den α(I, J) die stärkste Abweichung von ‖M‖ /2 aufweist.

Algorithmus LinearAttack
1 for (I, J) := (0,0) to (F,F) do
2 α(I, J) := 0
3 for each (x, y) ∈M do
4 for (I, J) := (0,0) to (F,F) do
5 v4

(2) := I ⊕ y(2)
6 v4

(4) := J ⊕ y(4)
7 u4

(2) := σ−1
S (v4

(2))
8 u4

(4) := σ−1
S (v4

(4))
9 if x5 ⊕ x7 ⊕ x8 ⊕ u4

6 ⊕ u4
8 ⊕ u4

14 ⊕ u4
16 = 0 then

10 α(I, J) := α(I, J) + 1
11 max := −1
12 for (I, J) := (0,0) to (F,F) do
13 β(I, J) := |α(I, J)− t/2|
14 if β(I, J) > max then
15 max := β(I, J)
16 maxkey := (I, J)
17 output(maxkey)

Im allgemeinen werden für eine erfolgreiche lineare Attacke circa t ≈ cε−2 Klartext-
Kryptotext-Paare benötigt, wobei c eine „kleine“ Konstante ist (im Beispiel reichen
t ≈ 8000 Paare, d.h. c ≈ 8, da ε−2 = 1024 ist).

4.5 Differentielle Kryptoanalyse von SPNs

Bei der differentiellen Kryptoanalyse handelt es sich um einen Angriff bei frei wählba-
rem Klartext. Genauer gesagt, basiert der Angriff auf einer Menge M von t Klartext-
Kryptotext-Doppelpaaren (x, x∗, y, y∗) mit der Eigenschaft, dass alle Klartext-Paare
(x, x∗) die gleiche Differenz x′ = x⊕ x∗ bilden.

4.5 Differentielle Kryptoanalyse von SPNs 61

Definition 102. Seien u, u∗ ∈ {0, 1}l zwei Eingaben für eine S-Box σS : {0, 1}l → {0, 1}l′

und seien v = σS(u) und v∗ = σS(u∗) die zugehörigen Ausgaben. Dann wird u′ = u⊕ u∗
die Eingabedifferenz (engl. input-xor) und v′ = σS(u)⊕σS(u∗) die Ausgabedifferenz
(engl. output-xor) des Paares (u, u∗) genannt. Für eine vorgegebene Eingabedifferenz
a′ ∈ {0, 1}l sei weiter

∆(a′) = {(u, u∗) | u, u∗ ∈ {0, 1}l, u⊕ u∗ = a′} = {(u, u⊕ a′) | u ∈ {0, 1}l}

die Menge aller Eingabepaare, die die Differenz a′ realisieren.

Berechnen wir für alle Eingabepaare (u, u∗) ∈ ∆(a′) die zugehörigen Ausgabedifferenzen,
so verteilen sich diese auf die 2l′ möglichen Werte in {0, 1}l′ . Man beachte, dass im Fall
einer affinen S-Box σS(u) = uA⊕w, wobei A eine binäre (l× l′)-Matrix und w ∈ {0, 1}l′

ist, alle Paare (u, u∗) ∈ ∆(a′) auf dieselbe Ausgabedifferenz

σS(u)⊕ σS(u∗) = (u⊕ u∗)A = u′A = a′A

führen. Andernfalls kann die Eingabedifferenz a′ zu unterschiedlichen Ausgabedifferenzen
σS(u) ⊕ σS(u∗) führen, je nachdem, durch welches Eingabepaar (u, u∗) ∈ ∆(a′) die
Differenz a′ realisiert wird. Um einer differentiellen Kryptoanalyse widerstehen zu können,
sollten die Ausgabedifferenzen möglichst gleichmäßig verteilt sein.
Definition 103. Sei a′ ∈ {0, 1}l eine Eingabe- und sei b′ ∈ {0, 1}l′ eine Ausgabedifferenz
für eine S-Box σS. Dann heißt (a′, b′) Differential. Die Anzahl der Eingabepaare (u, u∗),
die die Eingabedifferenz a′ in die Ausgabedifferenz b′ überführen, bezeichnen wir mit
D(a′, b′), d.h.

D(a′, b′) = ‖{(u, u∗) ∈ ∆(a′) | σS(u)⊕ σS(u∗) = b′}‖.

Der Weitergabequotient (engl. propagation ratio) von S für ein Differential (a′, b′) ist

Q(a′, b′) = D(a′, b′)
2l .

Q(a′, b′) ist also die (bedingte) Wahrscheinlichkeit

Pr[σS(U)⊕ σS(U∗)︸ ︷︷ ︸
V ′

= b′ | U ⊕ U∗︸ ︷︷ ︸
U ′

= a′],

dass zwei zufällig gewählte Eingaben U und U∗ die Ausgabedifferenz V ′ = b′ erzeugen,
wenn sie die Eingabedifferenz U ′ = a′ haben.
Beispiel 104. Betrachten wir die S-Box σS : {0, 1}4 → {0, 1}4 aus Beispiel 97, so
erhalten wir für die Eingabedifferenz a′ = 1011 die Menge

∆(a′) = {(0000, 1011), . . . , (1111, 0100)}

von möglichen Eingabepaaren, die auf folgende Ausgabedifferenzen v′ = v ⊕ v∗ = σS(u)⊕
σS(u∗) führen:

u u∗ v v∗ v′

0000 1011 1110 1100 0010
0001 1010 0100 0110 0010
0010 1001 1101 1010 0111
0011 1000 0001 0011 0010
0100 1111 0010 0111 0101
0101 1110 1111 0000 1111
0110 1101 1011 1001 0010
0111 1100 1000 0101 1101

u u∗ v v∗ v′

1000 0011 0011 0001 0010
1001 0010 1010 1101 0111
1010 0001 0110 0100 0010
1011 0000 1100 1110 0010
1100 0111 0101 1000 1101
1101 0110 1001 1011 0010
1110 0101 0000 1111 1111
1111 0100 0111 0010 0101

62 4 Moderne symmetrische Kryptosysteme & ihre Analyse

Die Ausgabedifferenz b′ = 0010 kommt also D(a′, 0010) = 8 Mal vor, während die
Differenzen 0101, 0111, 1101 und 1111 je zwei Mal und die übrigen Werte überhaupt nicht
vorkommen (siehe Zeile B in nachfolgender Tabelle). Führen wir diese Berechnungen für
jede der 24 = 16 Eingabedifferenzen a′ ∈ {0, 1}4 aus, so erhalten wir die folgenden Werte
für die Häufigkeiten D(a′, b′) der Ausgabedifferenz b′ bei Eingabedifferenz a′ (a′ und b′
sind hexadezimal dargestellt):

b′

a′ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 0 0 0 2 0 2 4 0 4 2 0 0
2 0 0 0 2 0 6 2 2 0 2 0 0 0 0 2 0
3 0 0 2 0 2 0 0 0 0 4 2 0 2 0 0 4... ...
B 0 0 8 0 0 2 0 2 0 0 0 0 0 2 0 2... ...
F 0 2 0 0 6 0 0 0 0 4 0 2 0 0 2 0

/

Können wir nun in einem SPN für bestimmte S-Boxen Sri Differentiale (a′, b′) finden, so
dass die Eingabedifferenzen dieser Differentiale mit den (permutierten) Ausgabedifferenzen
in der vorhergehenden Runde übereinstimmen (siehe Abbildung 4.3), so lassen sich diese
Differentiale zu einer so genannten Differentialspur (engl. differential trail) für die
Abbildung x 7→ u4 zusammensetzen. Unter der Annahme, dass die ausgewählten S-Boxen
Sri (diese werden auch als aktiv bezeichnet) den zugeordneten Differentialen unabhängig
voneinander folgen (oder nicht), lässt sich der Weitergabequotient der Spur als das
Produkt der Weitergabequotienten der beteiligten Differentiale berechnen. Obwohl diese
Annahme i.a. nicht zutrifft, weicht der tatsächliche Wert in praktischen Anwendungen
kaum von diesem hypothetischen Wert ab.
Beispiel 105. Betrachten wir das SPN SP aus Beispiel 97, so lassen sich folgende Diffe-
rentiale zu einer Spur für die Abbildung x 7→ u4 kombinieren (siehe auch Abbildung 4.3):

Für S1
2 : das Differential (1011, 0010) = (B,2) mit Q(B,2) = 1/2,

für S2
3 : das Differential (0100, 0110) = (4,6) mit Q(4,6) = 3/8 und

für S3
2 und S3

3 : das Differential (0010, 0101) = (2,5) mit Q(2,5) = 3/8.
Gemäß dieser Spur führt also die Klartextdifferenz

x′ = 0000 1011 0000 0000
mit hypothetischer Wahrscheinlichkeit 1/2(3/8)3 = 27/1024 ≈ 0, 026 auf die Differenz

(v3)′ = 0000 0101 0101 0000,
welche wiederum mit Wahrscheinlichkeit 1 auf die Differenz

(u4)′ = 0000 0110 0000 0110
führt. Das Differential

(a′, b′) = (0000 1011 0000 0000, 0000 0110 0000 0110)
für die Abbildung x 7→ u4 hat also einen hypothetischen Weitergabequotienten von ε =
Q(a′, b′) = 27/1024. /

4.5 Differentielle Kryptoanalyse von SPNs 63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

K1

S1
1 S1

2 S1
3 S1

4

K2

S2
1 S2

2 S2
3 S2

4

K3

S3
1 S3

2 S3
3 S3

4

K4

S4
1 S4

2 S4
3 S4

4

K5

x

u1

v1

w1

u2

v2

w2

u3

v3

w3

u4

v4

y

Abbildung 4.3: Eine Differentialspur für ein Substitutions-Permutations-Netzwerk

Sei nun (a′, b′) ein Differential für die Abbildung x 7→ u4 mit einem hypothetischen
Weitergabequotienten ε = Q(a′, b′). Weiter sei M eine Menge von t Klartext-Kryptotext-
Doppelpaaren (x, x∗, y, y∗), die alle mit dem gleichen unbekannten Schlüssel K erzeugt
wurden und zusätzlich die Eigenschaft haben, dass die Klartextdifferenz x′ = x⊕ x∗ = a′

ist. Dann wird ca. ein ε-Anteil dieser Doppelpaare der vorgegebenen Differentialspur
folgen und daher bei Verschlüsselung mit K Zwischenergebnisse u4 und (u4)∗ liefern, die
die Differenz

(u4)′ = u4 ⊕ (u4)∗ = b′

aufweisen. Doppelpaare mit dieser Eigenschaft werden richtige Doppelpaare (für das
Differential (a′, b′)) genannt. Ein Großteil der falschen Doppelpaare lässt sich daran
erkennen, dass die Kryptotext-Differenzen nicht die erwarteten 0l-Blöcke aufweisen (im
aktuellen Beispiel sind dies die Blöcke y′(1) und y′(3)). Es empfiehlt sich, diese Doppelpaare
auszufiltern, da sie (wie alle falschen Doppelpaare) nur „Hintergrundrauschen“ erzeugen
und somit die Bestimmung des Schlüssels eher behindern.

Beobachtung 106. Für die Ausgabe vN(i) der S-Box SNi in Runde N gilt

vN(i) = y(i) ⊕KN+1
(i)

64 4 Moderne symmetrische Kryptosysteme & ihre Analyse

und die Eingabe uN(i) der S-Box SNi in Runde N ist

uN(i) = σ−1
S (vN(i)) = σ−1

S (y(i) ⊕KN+1
(i))

y(i)

vN(i)

uN(i)

SNi

KN+1
(i)

Falls die S-Box SNi nicht affin ist, hängt die aus den Kryptotextblöcken y(i) und (y(i))∗
zurückgerechnete Eingabedifferenz

(uN(i))′ = uN(i) ⊕ (uN(i))∗ = σ−1
S (y(i) ⊕KN+1

(i))⊕ σ−1
S ((y(i))∗ ⊕KN+1

(i))

von dem Schlüsselblock KN+1
(i) ab. Ist also (x, x∗, y, y∗) ein richtiges Doppelpaar, so sind

neben den Kryptotextblöcken y(i) und y∗(i) auch die Eingabedifferenzen b′(i) = (uN(i))′ von
SNi bekannt. Folglich kommen nur solche Subkey-Werte I für KN+1

(i) infrage, für die

σ−1
S (y(i) ⊕ I)⊕ σ−1

S (y∗(i) ⊕ I) = b′(i) (4.3)

ist. Erfüllt I Gleichung (4.3), so sagen wir auch, I ist mit dem Doppelpaar (x, x∗, y, y∗)
konsistent.

Gemäß Beobachtung 106 kann jedes richtige Doppelpaar dazu benutzt werden, einige
Kandidaten für den Rundenschlüsselblock KN+1

(i) auszuschließen. Ist M hinreichend groß,
so wird sich schließlich der richtige Schlüsselblock als derjenige herausstellen, der mit
den meisten Doppelpaaren konsistent ist. Wir benutzen nun die Spur aus Beispiel 105
für einen Angriff mittels differentieller Analyse.

Beispiel 107. Der Algorithmus DifferentialAttack bestimmt für jeden Subschlüssel- Kan-
didaten (I, J) für (K5

(2), K
5
(4)) die Anzahl γ(I, J) aller Doppelpaare (x, x∗, y, y∗) in M , die

mit (I, J) konsistent sind und (in Zeile 3) nicht als falsch erkannt werden. Ausgegeben
wird der Kandidat (I, J) mit dem größten γ-Wert. /

Algorithmus DifferentialAttack
1 for (I, J) := (0,0) to (F,F) do γ(I, J) := 0
2 for each (x, x∗, y, y∗) ∈M do
3 if y(1) = y∗(1) und y(3) = y∗(3) then
4 for (I, J) := (0,0) to (F,F) do
5 v4

(2) := I ⊕ y(2)
6 v4

(4) := J ⊕ y(4)
7 u4

(2) := σ−1
S (v4

(2))
8 u4

(4) := σ−1
S (v4

(4))
9 (v4

(2))∗ := I ⊕ y∗(2)
10 (v4

(4))∗ := J ⊕ y∗(4)
11 (u4

(2))∗ := σ−1
S ((v4

(2))∗)

4.5 Differentielle Kryptoanalyse von SPNs 65

12 (u4
(4))∗ := σ−1

S ((v4
(4))∗)

13 (u4
(2))′ := u4

(2) ⊕ (u4
(2))∗

14 (u4
(4))′ := u4

(4) ⊕ (u4
(4))∗

15 if (u4
(2))′ = 0110 und (u4

(4))′ = 0110 then γ(I, J) := γ(I, J) + 1
16 max := −1
17 for (I, J) := (0,0) to (F,F) do
18 if γ(I, J) > max then
19 max := γ(I, J)
20 maxkey := (I, J)
21 output(maxkey)

Im allgemeinen werden für eine erfolgreiche differentielle Attacke circa t ≈ cε−1 Klartext-
Kryptotext-Doppelpaare benötigt, wobei ε der Weitergabequotient der benutzten Spur
und c eine „kleine“ Konstante ist (im Beispiel reichen t ≈ 80 Doppelpaare, wobei ε−1 ≈ 38
ist, d.h. c ≈ 2).

66

5 DES und AES

5.1 Der Data Encryption Standard (DES)

5.1.1 Geschichte des DES

Der DES wurde von IBM im Zuge einer im Mai 1973 veröffentlichten Ausschreibung
des NBS (National Bureau of Standards; heute National Institute of Standards and
Technology, NIST) als ein Nachfolger von Lucifer entwickelt, im März 1975 veröffentlicht,
und im Januar 1977 als Verschlüsselungsstandard der US-Regierung für nicht geheime
Nachrichten genormt. Obwohl DES ursprünglich nur für einen Zeitraum von 10 bis 15
Jahren als Standard dienen sollte, wurde er circa alle 5 Jahre (zuletzt im Januar 1999)
überprüft und als Standard fortgeschrieben.
Bereits im September 1997 veröffentlichte das NIST eine Ausschreibung für den AES
(Advanced Encryption Standard) genannten Nachfolger des DES. Nach einer mehrjährigen
Auswahlprozedur wurde im November 2001 der Rijndael-Algorithmus als AES genormt
und im Mai 2002 wurde DES von AES als Standard abgelöst. Allerdings wurde Triple
DES (auch TDES oder 3DES genannt) vom NIST als Standard bis 2030 fortgeschrieben.
Der DES ist eine Feistel-Chiffre mit N = 16 Runden. Die Rundenfunktion g einer
Feistel-Chiffre berechnet das Zwischenergebnis wr = g(Kr, wr−1) ∈ {0, 1}` in Runde r
aus den beiden Hälften Lr−1 und Rr−1 von wr−1 ∈ {0, 1}` gemäß der Vorschrift

Lr = Rr−1 und Rr = Lr−1 ⊕ f(Rr−1, Kr),

wobei f : {0, 1}`/2 × {0, 1}k′ → {0, 1}`/2 eine beliebige Funktion und k′ die Länge der
Rundenschlüssel K1, . . . , KN ist (siehe auch Abb. 5.1). Aus der Ausgabe wN = LNRN in
Runde N wird durch Vertauschung von LN und RN der Kryptotext y = RNLN gebildet.

5.1.2 Aufbau der DES-Chiffrierfunktion.

Die Blocklänge des DES beträgt ` = 64 Bit und die (effektive) Schlüssellänge ist 56 Bit.
Der 56 Bit Schlüssel K− ergibt zusammen mit 8 Paritätsbits (Bits 8, 16,. . . , 64) einen
ebenfalls k = 64 Bit langen Schlüsselblock K. Es gibt somit 256 ≈ 7.2 · 1016 verschiedene
Schlüssel. Bei Eingabe von K und x führt der DES-Algorithmus nacheinander die
folgenden Chiffrierschritte aus:

Lr−1

`/2

Rr−1

`/2

Lr Rr

Kr

k′

f

+

Abbildung 5.1: Graphische Darstellung der Rundenfunktion g einer Feistel-Chiffre

5.1 Der Data Encryption Standard (DES) 67

IP

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

E

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

P

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

Abbildung 5.2: Initialpermutation IP , Expansion E und Permutation P

1. Zuerst wird der Klartext x einer Initialpermutation IP : x1x2 · · ·x64 7→ x58x50 · · ·x7
(siehe Abb. 5.2; der Werteverlauf von IP ist also zeilenweise dargestellt) unterzogen.

2. Danach erfolgen 16 Runden mit einer Feistel-Rundenfunktion g und sechzehn
Rundenschlüsseln K1, . . . , K16 (die Berechnung der Schlüssel Kr aus K wird weiter
unten beschrieben). Die Rundenfunktion g basiert auf der in Abb. 5.3 dargestellten
Funktion f : {0, 1}32 × {0, 1}48 → {0, 1}32, die wie folgt berechnet wird.
Die Eingabe von f ist (Rr−1, Kr) (vgl. Abb. 5.1). Zuerst wird der 32-Bit Block
Rr−1 mittels der Expansionsabbildung E (siehe Abb. 5.2) auf einen 48-Bit Block
E(Rr−1) erweitert. Auf diesen wird bitweise der Rundenschlüssel Kr addiert. Als
Ergebnis erhalten wir den 48-Bit Block B = E(Rr−1) ⊕Kr. Dieser wird in acht
6-Bit Blöcke B = B(1), . . . , B(8) aufgeteilt, die mit den acht S-Boxen S1, . . . , S8 auf
acht 4-Bit Blöcke C(i) = Si(B(i)) verkleinert werden. Die Tabellen der S-Boxen Si
sind in Abb. 5.4 dargestellt. Aus diesen erhält man die Werte Si(B(i)) wie folgt:

Ist B(i) = b1 · · · b6, so findet man Si(B(i)) in Zeile b1b6 und Spalte
b2b3b4b5 (in Hexadezimaldarstellung) der Tabelle für Si. Zum Beispiel ist
S1(011010) = 1001, da in Zeile (00)2 = 0 und Spalte (1101)2 = D die die
Hexadezimalziffer 9 = (1001)2 steht.

Die Konkatenation der von den acht S-Boxen berechneten 4-Bit Blöcke ergibt einen
32-Bit Block C = C(1) . . . C(8), welcher noch der Permutation P (siehe Abb. 5.2)
unterworfen wird.

3. Aus dem nach der 16. Runde ausgegebenen 64-Bit Block w16 = L16R16 wird durch
Vertauschen der beiden Hälften und Anwendung der inversen Initialpermutation
IP−1 der Kryptotext DES(K, x) = IP−1(R16L16) gebildet.

Rr−1

E

B

C

P

f(Rr−1, Kr)

Kr

S1 S2 S3 S4 S5 S6 S7 S8

Abbildung 5.3: Graphische Darstellung der DES-Funktion f

68 5 DES und AES

0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F
S1: E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7 S2: F 1 8 E 6 B 3 4 9 7 2 D C 0 5 A

0 F 7 4 E 2 D 1 A 6 C B 9 5 3 8 3 D 4 7 F 2 8 E C 0 1 A 6 9 B 5
4 1 E 8 D 6 2 B F C 9 7 3 A 5 0 0 E 7 B A 4 D 1 5 8 C 6 9 3 2 F
F C 8 2 4 9 1 7 5 B 3 E A 0 6 D D 8 A 1 3 F 4 2 B 6 7 C 0 5 E 9

S3: A 0 9 E 6 3 F 5 1 D C 7 B 4 2 8 S4: 7 D E 3 0 6 9 A 1 2 8 5 B C 4 F
D 7 0 9 3 4 6 A 2 8 5 E C B F 1 D 8 B 5 6 F 0 3 4 7 2 C 1 A E 9
D 6 4 9 8 F 3 0 B 1 2 C 5 A E 7 A 6 9 0 C B 7 D F 1 3 E 5 2 8 4
1 A D 0 6 9 8 7 4 F E 3 B 5 2 C 3 F 0 6 A 1 D 8 9 4 5 B C 7 2 E

S5: 2 C 4 1 7 A B 6 8 5 3 F D 0 E 9 S6: C 1 A F 9 2 6 8 0 D 3 4 E 7 5 B
E B 2 C 4 7 D 1 5 0 F A 3 9 8 6 A F 4 2 7 C 9 5 6 1 D E 0 B 3 8
4 2 1 B A D 7 8 F 9 C 5 6 3 0 E 9 E F 5 2 8 C 3 7 0 4 A 1 D B 6
B 8 C 7 1 E 2 D 6 F 0 9 A 4 5 3 4 3 2 C 9 5 F A B E 1 7 6 0 8 D

S7: 4 B 2 E F 0 8 D 3 C 9 7 5 A 6 1 S8: D 2 8 4 6 F B 1 A 9 3 E 5 0 C 7
D 0 B 7 4 9 1 A E 3 5 C 2 F 8 6 1 F D 8 A 3 7 4 C 5 6 B 0 E 9 2
1 4 B D C 3 7 E A F 6 8 0 5 9 2 7 B 4 1 9 C E 2 0 6 A D F 3 5 8
6 B D 8 1 4 A 7 9 5 0 F E 2 3 C 2 1 E 7 4 A 8 D F C 9 0 3 5 6 B

Abbildung 5.4: Tabellarische Darstellung der acht im DES benutzten S-Boxen

5.1.3 Der DES Key-Schedule Algorithmus

Der Key-Schedule Algorithmus des DES berechnet aus dem externen 64-Bit Schlüssel
K wie folgt die zugehörigen 16 Rundenschlüssel K1, . . . , K16 (siehe Abb. 5.5). Zuerst
wählt die Funktion PC 1 (permuted choice 1) aus dem Schlüssel K die kryptografisch
relevanten Bits aus und permutiert sie. Das erhaltene Ergebnis wird in zwei 28-Bit Blöcke
unterteilt. Diese beiden Blöcke werden dann in 16 Runden r = 1, . . . , 16 jeweils zyklisch
um LS(r) ∈ {1, 2} Bit (siehe Abb. 5.5) verschoben.
Aus den beiden Blöcken nach Runde r bestimmt die Funktion PC 2 (permuted choice 2)
jeweils den Rundenschlüssel Kr durch Entfernen der 8 Bits an den Stellen 9, 18, 22, 25,
35, 38, 43 und 56 sowie einer Permutation der verbleibenden 48 Bits.

K
64

K1

48

K2

K16

28 28

PC1

PC2

PC2

PC2

LS(1) LS(1)

LS(2) LS(2)

...
...

LS(16) LS(16)

PC 1 PC 2
57 49 41 33 25 17 9 14 17 11 24 1 5
1 58 50 42 34 26 18 3 28 15 6 21 10

10 2 59 51 43 35 27 23 19 12 4 26 8
19 11 3 60 52 44 36 16 7 27 20 13 2
63 55 47 39 31 23 15 41 52 31 37 47 55
7 62 54 46 38 30 22 30 40 51 45 33 48

14 6 61 53 45 37 29 44 49 39 56 34 53
21 13 5 28 20 12 4 46 42 50 36 29 32

r 1 2 3 4 5 6 7 8
LS(r) 1 1 2 2 2 2 2 2

r 9 10 11 12 13 14 15 16
LS(r) 1 2 2 2 2 2 2 1

Abbildung 5.5: Der Key-Schedule Algorithmus des DES

5.1 Der Data Encryption Standard (DES) 69

Definition 108. Ein DES-Schlüssel K heißt schwach, falls alle durch ihn erzeugten
Rundenschlüssel gleich sind (d.h. es gilt {K1,. . . , K16} = {K1}).

Der DES hat die vier schwachen Schlüssel (hexadezimal)

K erzeugter Rundenschlüssel
0101010101010101 000000000000
1F1F1F1F0E0E0E0E 000000111111
E0E0E0E0F1F1F1F1 111111000000
FEFEFEFEFEFEFEFE 111111111111

Für jeden von ihnen gilt DES(K,DES(K, x)) = x (siehe Übungen). Neben diesen vier
schwachen Schlüsseln existieren noch sechs weitere sogenannte „semischwache“ Schlüssel-
paare (K,K ′) mit der Eigenschaft DES(K ′,DES(K, x)) = x (siehe Übungen).

5.1.4 Eigenschaften von DES.

Der DES konnte sich nicht sofort nach seiner Veröffentlichung im Jahre 1975 durchsetzen.
Er wurde anfangs von manchen Behörden und Banken in den USA nicht verwendet, da
folgende Sicherheitsbedenken gegen ihn geäußert wurden:

– Die 56-Bit Schlüssellänge bietet eventuell eine zu geringe Sicherheit gegen einen
Brute-Force Angriff bei bekanntem oder wählbarem Klartext.

– Die Entwurfskriterien für die einzelnen Bestandteile, insbesondere für die S-Boxen,
sind nicht veröffentlicht worden. Es wurde der Verdacht geäußert, dass der DES
mit Hilfe von Falltürinformationen leicht zu brechen sei.

– Kryptoanalytische Untersuchungen, die von IBM und der US National Securi-
ty Agency (NSA) durchgeführt wurden, sind nicht veröffentlicht worden. Als jedoch
Biham und Shamir Anfang der 90er Jahre das Konzept der differentiellen Kryp-
toanalyse veröffentlichten, gaben die Entwickler von DES bekannt, dass sie diese
Angriffsmöglichkeit beim Entwurf von DES bereits kannten und speziell die S-Boxen
entsprechend konzipiert hätten.

Im Fall von DES ist die lineare Kryptoanalyse effizienter als die differentielle Krypto-
analyse. Da hierzu jedoch circa 243 Klartext-Kryptotext-Paare notwendig sind (deren
Generierung bei einem von Matsui, dem Erfinder der linearen Kryptoanalyse, unternom-
menen Angriff bereits 40 Tage in Anspruch nahm), stellen diese Angriffe keine realistische
Bedrohung dar.
Dagegen wurde im Juli 1998 mit einer von der Electronic Frontier Foundation (EFF) für
250 000 Dollar gebauten Maschine namens “DES Cracker” eine vollständige Schlüsselsuche
in circa 56 Stunden durchgeführt (was den Gewinn der von RSA Laboratory ausgeschrie-
benen “DES Challenge II-2” bedeutete). Und im Januar 1999 gewann Distributed.Net,
eine weltweite Vereinigung von Computerfans, den mit 10 000 Dollar dotierten “DES Chal-
lenge III”. Durch den kombinierten Einsatz eines Supercomputer namens “Deep Crack”
von EFF und 100 000 PCs, die weltweit über das Internet kommunizierten, wurden nur
22 Stunden und 15 Minuten benötigt, um den Schlüssel für ein Klartext-Kryptotextpaar
mit dem Klartext „See you in Rome (second AES Conference, March 22-23, 1999)“ zu
finden. Es gibt mittlerweile sogar kommerzielle Angebote im Internet (z.B. crack.sh),
innerhalb von 26 Stunden eine vollständige Schlüsselsuche bei bekanntem Klartext auf
spezieller Hardware auszuführen, um alle passenden DES-Schlüssel zu finden.
Als Vorbereitung zum AES-Algorithmus gehen wir im nächsten Abschnitt kurz auf die
Arithmetik in endlichen Körpern ein. Diese spielt beim AES eine sehr wichtige Rolle.

70 5 DES und AES

5.2 Endliche Körper

Wie wir bereits wissen, bildet Zp für primes p einen endlichen Körper der Größe p. Dieser
Körper lässt sich für jede Zahl n ≥ 1 zu einem Körper der Größe pn erweitern. Da bis
auf Isomorphie nur ein Körper dieser Größe existiert, wird er einfach mit F(pn) oder Fpn

bezeichnet. Um diesen Körper zu konstruieren, betrachten wir zunächst den Polynomring
Zp[x] über Zp.

Definition 109. Sei R ein Ring.
– Der Polynomring R[x] enthält für alle n ≥ 0 alle Polynome p(x) in der Variablen
x mit Koeffizienten in R, d.h. p(x) hat die Form

p(x) = anx
n + · · · a1x+ a0 mit a0, . . . , an ∈ R

Man sagt, R[x] entsteht aus R durch Adjunktion der Variablen x.
– Der Grad von p (bezeichnet mit deg(p)) ist im Fall an 6= 0 gleich n und im Fall
n = an = 0 gleich −1.

– Ein Polynom q(x) teilt ein Polynom p(x) (kurz: q(x)|p(x)), falls ein Polynom
d(x) ∈ R[x] existiert mit p(x) = d(x)q(x). Teilt q(x) die Differenz f(x) − g(x)
zweier Polynome, so schreiben wir hierfür

f(x) ≡q(x) g(x)

und sagen, f(x) ist kongruent zu g(x) modulo q(x).
– Weiterhin bezeichne

p(x) mod q(x)
das bei der Polynomdivision von p(x) durch q(x) auftretende Restpolynom, also
dasjenige Polynom r(x) vom Grad deg(r) < deg(q), für das ein Polynom d(x) ∈ R[x]
existiert mit p(x) = d(x)q(x) + r(x).

Man überprüft leicht, dass R[x] mit der üblichen Polynomaddition und Polynommultipli-
kation tatsächlich einen Ring bildet. Ähnlich wie beim Übergang von Z zum Restklassen-
ring Zm können wir für ein fest gewähltes Polynom m(x) vom Grad deg(m) = n jedem
Polynom p(x) ∈ Zm[x] mittels

p(x) 7→ p(x) mod m(x)

eindeutig ein Polynom vom Grad höchstens n− 1 zuordnen. Auf diese Weise erhalten wir
den endlichen Polynomring (genauer Faktorring) Zm[x]/m(x) aller Polynome vom Grad
höchstens n− 1, wobei die Addition und Multiplikation wie in Zm[x], gefolgt von einer
Reduktion modulo m(x), definiert ist. In den Übungen wird gezeigt, dass Zm[x]/m(x)
genau dann ein Körper ist, wenn m prim ist und m(x) nur triviale Teiler besitzt.

Definition 110. Ein Polynom m(x) ∈ Zp[x], p prim, vom Grad n ≥ 1 heißt irreduzibel
(über Zp), falls keine Polynome p(x), q(x) ∈ Zp[x] vom Grad deg(p), deg(q) ≥ 1 existieren
mit

m(x) = p(x)q(x).

Satz 111. Der Faktorring Zm[x]/m(x) ist genau dann ein Körper, wenn m prim und
m(x) in Zm[x] irreduzibel ist.

5.2 Endliche Körper 71

Beweis. Siehe Übungen. �

Zudem kann man zeigen, dass für primes p und jede Zahl n ≥ 1 ein irreduzibles
Polynom m(x) = xn +∑n−1

i=0 mix
i vom Grad n in Zp[x] existiert. Daher lässt sich für jede

Primzahlpotenz pn ein Körper Zp[x]/m(x) der Größe pn konstruieren. Tatsächlich gibt es
bis auf Isomorphie nur einen Körper mit pn Elementen, den wir mit Fpn bezeichnen.
Wir können Polynome a(x) = ∑n−1

i=0 aix
i auch als Koeffizientenvektoren ~a = (an−1, . . . , a0)

darstellen. Die Addition zweier Polynome a(x) = ∑n−1
i=0 aix

i und b(x) = ∑n−1
i=0 bix

i in Fpn

entspricht dann der üblichen Vektoraddition (also komponentenweisen Addition modulo
p), d.h. die Vektordarstellung ~c von c(x) = a(x) + b(x) ist

(cn−1, . . . , c0) = (an−1 + bn−1, . . . , a0 + b0).

Im Fall p = 2 ist dies also die bitweise Addition modulo 2 (xor). Die Multiplikation in
Zp[x]/m(x) lässt sich wegen

a(x)b(x) =
n−1∑
i=0

aix
ib(x)

auf die Addition und (iterierte) Multiplikation mit dem Polynom p(x) = x zurückführen.
Da m(x) die Form m(x) = ∑n

i=0 mix
i mit mn = 1 hat, gilt für diese

xb(x) ≡m(x) xb(x)− bn−1m(x) =
n∑
i=1

bi−1x
i − bn−1

n∑
i=0

mix
i =

n−1∑
i=0

(bi−1 − bn−1mi)xi,

wobei wir b−1 = 0 setzen. Die Multiplikation von b(x) mit x entspricht somit einem
Linksshift von ~b um eine Stelle, dem sich im Fall bn−1 6= 0 noch die Subtraktion des
Vektors (bn−1mn−1, . . . , bn−1m0) anschließt. Im Fall p = 2 erhalten wir also

xb(x) =


∑n−1
i=1 bi−1x

i, bn−1 = 0,∑n−1
i=0 (bi−1 ⊕mi)xi, bn−1 = 1

und die Vektordarstellung ~c von c(x) = xb(x) ist

(cn−1, . . . , c0) =

(bn−2, . . . , b0, 0), bn−1 = 0,
(bn−2, . . . , b0, 0)⊕ (mn−1, . . . ,m0), bn−1 = 1.

Beispiel 112. Sei p = 2 und n = 3. Zunächst benötigen wir ein irreduzibles Polynom
m(x) ∈ Z2[x] vom Grad 3. Setzen wir

m(x) = x3 + a2x
2 + a1x+ a0

so sehen wir, dass m(x) im Fall a0 = 0 den nichttrivialen Teiler p(x) = x hat. Daher
genügt es, die 4 Kandidaten

m1(x) = x3 + 1
m2(x) = x3 + x+ 1
m3(x) = x3 + x2 + 1
m4(x) = x3 + x2 + x+ 1

72 5 DES und AES

zu betrachten. Da nun aber

x3 + 1 = (x+ 1)(x2 + x+ 1) und x3 + x2 + x+ 1 = (x+ 1)(x2 + 1)

sowie
x3 + x+ 1 = (x+ 1)(x2 + x) + 1 und x3 + x2 + 1 = (x+ 1)x2 + 1

ist, gibt es in Z2[x] nur zwei irreduzible Polynome vom Grad 3, nämlich x3 + x+ 1 und
x3 + x2 + 1 (da sie weder x noch x+ 1 als Teiler haben).
Nehmen wir m(x) = x3 +x+1, so gilt in Z2[x]/m(x) bspw. wegen 1+1 = 0 die Gleichung

(x2 + 1) + (x+ 1) = x2 + x

und wegen

(x2 + 1)(x+ 1) = x3 + x2 + x+ 1 = x2 + (x3 + x+ 1) ≡m(x) x
2

die Gleichung (x2 + 1)(x+ 1) = x2. /

Wie das folgende Beispiel zeigt, lässt sich das multiplikative Inverse eines Polynoms
p(x) 6= 0 in Fpn mit dem erweiterten euklidischen Algorithmus berechnen.

Beispiel 113. Sei p = 2 und seien m(x) = x8 +x4 +x3 +x+1 und a(x) = x6 +x4 +x+1
zwei Polynome in Z2[x]. Dann können wir mit dem euklidischen Algorithmus den (in
Bezug auf den Grad) größten gemeinsamen Teiler g(x) von m(x) und a(x) wie folgt
berechnen:

i ri−1(x) = di+1(x) · ri(x) + ri+1(x)

1 x8 + x4 + x3 + x+ 1 = (x2 + 1) · (x6 + x4 + x+ 1) + x2

2 x6 + x4 + x+ 1 = (x4 + x2) ·x2 + x+ 1
3 x2 = (x+ 1) · (x+ 1) + 1
4 x+ 1 = (x+ 1) ·1 + 0

Es ist also g(x) = r4(x) = 1. Der erweiterte euklidische Algorithmus berechnet nun
Polynome pi(x) und qi(x) gemäß der Vorschrift

pi(x) = pi−2(x)− di(x) · pi−1(x), wobei p0(x) = 1 und p1(x) = 0,

und
qi(x) = qi−2(x)− di(x) · qi−1(x), wobei q0(x) = 0 und q1(x) = 1,

welche die Gleichung pi(x)m(x) + qi(x)a(x) = ri(x) erfüllen. Im Fall ri(x) = 1 ist also
qi(x) das multiplikative Inverse von a(x) modulo m(x).

i pi(x) ·m(x) + qi(x) · a(x) = ri(x)

0 1 ·m(x) + 0 · a(x) = m(x)
1 0 ·m(x) + 1 · a(x) = a(x)
2 1 ·m(x) + (x2 + 1) · a(x) = x2

3 (x4 + x2) ·m(x) + (x6 + x2 + 1) · a(x) = x+ 1
4 (x5 + x4 + x3 + x2 + 1) ·m(x) + (x7 + x6 + x3 + x) · a(x) = 1

Aus der letzten Zeile können wir das multiplikative Inverse a−1(x) = q4(x) = x7+x6+x3+x
von a(x) modulo m(x) ablesen. /

5.3 Der Advanced Encryption Standard (AES) 73

5.3 Der Advanced Encryption Standard (AES)

5.3.1 Geschichte des AES

– Im September 1997 veröffentlichte das NIST eine Ausschreibung für den AES, in
der eine Blocklänge von 128 Bit und variable Schlüssellängen von 128, 192 und 256
Bit gefordert wurden. Einreichungsschluss war der 15. Juni 1998.

– Von den 21 Einreichungen erfüllten 15 die geforderten Kriterien. Diese stammten
aus den Ländern Australien, Belgien, Costa Rica, Deutschland, Frankreich, Groß-
britannien, Israel, Japan, Korea, Norwegen sowie den USA und wurden auf der 1.
AES-Konferenz am 20. August 1998 als AES-Kandidaten akzeptiert.

– Im August 1999 wählte NIST auf der 2. AES-Konferenz in Rom die Finalisten
MARS, RC6, Rijndael, Serpent und Twofish aus.

– Im April 2000 wurde der Rijndael-Algorithmus auf der 3. AES-Konferenz zum
Sieger erklärt und im November 2001 als AES genormt.

Die wichtigsten Entscheidungskriterien waren
– Sicherheit,
– Kosten (Effizienz bei Software-, Hardware- und Smartcard-Implementationen) sowie
– Algorithmen- und Implementations-Charakeristika (unter anderem Flexibilität und

Einfachheit des Designs).
Die Blocklänge und die Schlüssellänge können beim Rijndael unabhängig voneinander im
Bereich 128, 160, 192, 224 oder 256 Bit gewählt werden. Die Rundenzahl N des Rijndael
hängt wie folgt von der Blocklänge ` und der gewählten Schlüssellänge k ab:

k

` 128 160 192 224 256
128 10 11 12 13 14
160 11 11 12 13 14
192 12 12 12 13 14
224 13 13 13 13 14
256 14 14 14 14 14

Beim AES-Standard wurde die Blocklänge auf 128 Bit fixiert und die Schlüssellänge auf die
Werte 128, 192 oder 256 Bit beschränkt. Wir beschränken uns hier auf die Beschreibung
des 10-Runden AES mit ` = 128 Bit Blocklänge und k = 128 Bit Schlüssellänge.

5.3.2 Die AES S-Box SubByte

Die Elemente a(x) = ∑7
i=0 aix

i des Körpers F28 = Z2[x]/(x8 + x4 + x3 + x+ 1) können
jeweils durch ein Byte a7 . . . a0 dargestellt werden. Zur expliziten Konvertierung dieser
beiden Darstellungen verwenden wir die Funktionen FieldToBinary und BinaryToField, die
wie folgt definiert sind:

– BinaryToField: {0, 1}8 → F28 überführt die Byte-Darstellung a7 . . . a0 in das zugehö-
rige Polynom a(x) = ∑7

i=0 aix
i.

– FieldToBinary: F28 → {0, 1}8 ist die Umkehrfunktion von BinaryToField.

74 5 DES und AES

Sowohl der Key-Schedule Algoritmus als auch die AES-Chiffrierfunktion verwenden eine
S-Box SubByte. Diese benutzt als nicht-linearen Bestandteil die Funktion

FieldInv : F∗28 → F∗28 ,

die das multiplikative Inverse aller Einheiten des Körpers F28 berechnet. Konkret wird
SubByte durch folgenden Algorithmus berechnet.

SubByte(a7 · · · a0)
1 input a7 · · · a0
2 z := BinaryToField(a7 · · · a0)
3 if z 6= 0 then z := FieldInv(z)
4 a7 · · · a0 := FieldToBinary(z)
5 c7 · · · c0 := 01100011
6 for i := 0 to 7 do
7 bi := ai ⊕ ai+4 ⊕ ai+5 ⊕ ai+6 ⊕ ai+7 ⊕ ci
8 output b7 · · · b0

Die Indexrechnung in Zeile 7 erfolgt modulo 8. Die Zeilen 5-8 realisieren eine affine
Hill-Chiffrierfunktion.
Beispiel 114.

– Bei Eingabe 01010011 liefert die Funktion BinaryToField in Zeile 2 das zugehörige
Polynom z = BinaryToField(01010011) = x6 + x4 + x+ 1.

– Die Funktion FieldInv berechnet das multiplikative Inverse FieldInv(z) = z−1 =
x7 + x6 + x3 + x von z in F28 (siehe Beispiel 113).

– Die Funktion FieldToBinary liefert die zugehörige Koeffizienten-Darstellung
a7 . . . a0 = FieldToBinary(x7 + x6 + x3 + x) = 11001010.

– Es folgt die Berechnung der Ausgabe b7 . . . b0 mittels

b7 . . . b0 = 11001010



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⊕ 01100011 = 11101101

– Somit ist SubByte(01010011) = 11101101 oder hexadezimal: SubByte(53) = ED. /

Wir können die AES S-Box SubByte in Form einer (16× 16)-Matrix angeben, wobei der
Eintrag in Zeile X und Spalte Y den Wert SubByte(XY) enthält:

Y

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

...
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

5.3 Der Advanced Encryption Standard (AES) 75

5.3.3 Der AES Key-Schedule Algorithmus

Beim 10-Runden AES mit Block- und Schlüssellänge l = k = 128 werden 11 Runden-
schlüssel K0, . . . , K10 der Länge 128 benutzt. Jedes Ki besteht also aus 16 Bytes bzw.
4 Worten mit jeweils 4 Bytes. Bei der Berechnung der Rundenschlüssel werden Wort-
Konstanten RCon[1], . . . , RCon[10] mit RCon[i] = FieldToBinary(xi−1)024 ∈ {0, 1}32

benutzt. In Hexadezimal-Darstellung ergeben sich folgende Werte:

i 1 2 3 4 5
RCon[i] 01000000 02000000 04000000 08000000 10000000

i 6 7 8 9 10
RCon[i] 20000000 40000000 80000000 1B000000 36000000

Reihen wir die 11 Rundenschlüssel K0, . . . , K10 aneinander, so entsteht ein Array
K0 . . . K10 = w[0] . . . w[43] von 44 Worten w[i], die gemäß folgendem Algorithmus aus
dem 128-Bit Schlüssel K berechnet werden.

KeyExpansion(K)
1 input K = K[0] · · ·K[15]
2 for i := 0 to 3 do
3 w[i] := K[4i]K[4i+ 1]K[4i+ 2]K[4i+ 3]
4 for i := 4 to 43 do
5 temp := w[i− 1]
6 if i ≡4 0 then temp := SubWord(RotWord(temp))⊕RCon[i/4]
7 w[i] := w[i− 4]⊕ temp
8 output w[0] . . . w[43]

Die hierbei benutzten Funktionen sind wie folgt definiert:
– RotWord: eine 32-Bit Transposition, die die 4 Eingabebytes zyklisch um ein Byte

nach links verschiebt: RotWord(B0B1B2B3) = B1B2B3B0.
– SubWord: eine 32-Bit Substitution, die durch 4 parallel geschaltete SubByte S-Boxen

realisiert wird.

5.3.4 Der AES Chiffrieralgorithmus

Unter Benutzung der 11 Rundenschlüssel K0, . . . , K10 wird der 128 Bit Klartextblock
wie folgt chiffriert:

Chiffrierfunktion AES(K, x)
1 AddRoundKey(K0)
2 for r := 1 to 9 do
3 SubBytes
4 ShiftRows
5 MixColumns
6 AddRoundKey(Kr)
7 SubBytes
8 ShiftRows
9 AddRoundKey(K10)

76 5 DES und AES

Im einzelnen werden also die folgenden Chiffrierschritte ausgeführt:
– Zuerst wird der Klartextblock x einer Addition mit dem 128-Bit Rundenschlüssel
K0 unterworfen. Diese Operation wird mit AddRoundKey(K0) bezeichnet.

– Danach werden 9 Runden ausgeführt, wobei in jeder Runde r der Reihe nach
folgende Operationen ausgeführt werden:
– SubBytes: eine nichtlineare 128-Bit Substitution, die durch 16 parallel geschal-

tete S-Boxen SubByte realisiert wird,
– ShiftRows: eine 128-Bit Transposition (siehe unten)
– MixColumns: eine lineare 128-Bit Substitution (siehe unten) und
– AddRoundKey(Kr): eine Schlüsseladdition mit dem Rundenschlüssel Kr.

– Es folgt Runde 10 mit den Operationen SubBytes, ShiftRows und AddRound-
Key(K10).

Abgesehen von der zusätzlichen linearen Substitution MixColumns entspricht der Aufbau
des AES also exakt dem in Abschnitt 4.2 beschriebenen Aufbau eines SPNs.

5.3.5 Die AES Transposition ShiftRows

Um die beiden Operationen ShiftRows und MixColumns zu beschreiben, stellen wir den
Klartext x = x0 · · ·x15, xi ∈ {0, 1}8, und alle daraus berechneten Zwischenergebnisse in
Form einer Matrix M ∈ F(4×4)

28 dar. Diese wird wie folgt initialisiert:

x0 x4 x8 x12
x1 x5 x9 x13
x2 x6 x10 x14
x3 x7 x11 x15

Die Operation ShiftRows ist eine 128-Bit Transposition, die wie folgt definiert ist:

ShiftRows :
s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

7→
s0,0 s0,1 s0,2 s0,3
s1,1 s1,2 s1,3 s1,0
s2,2 s2,3 s2,0 s2,1
s3,3 s3,0 s3,1 s3,2

5.3.6 Die AES S-Box MixColumn

Die Operation MixColumns basiert auf einer linearen 32-Bit S-Box MixColumn, die
parallel auf den vier Spalten des aktuellen Zwischenergebnisses ausgeführt wird. Bei ihrer
Berechnung wird die Multiplikation FieldMult: F28 × F28 → F28 im Körper F28 benutzt.

MixColumn(s3,j, s2,j, s1,j, s0,j)
1 for i := 0 to 3 do ti := BinaryToField(sij)
2 u0 := FieldMult(x, t0) + FieldMult(x+ 1, t1) + t2 + t3
3 u1 := FieldMult(x, t1) + FieldMult(x+ 1, t2) + t3 + t0
4 u2 := FieldMult(x, t2) + FieldMult(x+ 1, t3) + t0 + t1
5 u3 := FieldMult(x, t3) + FieldMult(x+ 1, t0) + t1 + t2
6 for i := 0 to 3 do s′ij := FieldToBinary(ui)
7 output (s′3,j, s′2,j, s′1,j, s′0,j)

5.4 Betriebsarten von Blockchiffren 77

Die Operation MixColumn führt also eine lineare Transformation in dem Vektorraum
(F28)4 aus, die sich auch wie folgt beschreiben lässt (hierbei repräsentieren wir die
Elemente des Körpers F28 als Koeffizientenvektoren in Hexadezimaldarstellung, d.h. 03
steht für x+ 1 usw.):

MixColumn : (c3, . . . , c0) 7→ (c3, . . . , c0)


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


︸ ︷︷ ︸

Z

= (c′3, . . . , c′0).

Die S-Box MixColumn realisiert somit eine lineare 32-Bit Substitution c 7→ cZ auf dem
Vektorraum (F28)4. Zudem ist jede Zeile von Z relativ zur darüber liegenden Zeile um
eine Position zyklisch nach rechts verschoben. Aufgrund dieser speziellen Form von Z
lässt sich MixColumn im Faktorring R = F28 [y]/(y4 +1) als multiplikative Chifrierfunktion
c(y) 7→ z(y)c(y) beschreiben. Stellen wir nämlich einen Vektor (c3, c2, c1, c0) ∈ (F28)4

als ein Polynom c(y) = ∑3
i=0 ciy

i in R dar und wählen wir für z(y) das Polynom
z(y) = 03y3 + 01y2 + 01y + 02 in R, so gilt (siehe Übungen)

MixColumn(c(y)) = z(y)c(y).

Der Ring F28 [y]/(y4 + 1) ist zwar kein Körper, da das Polynom y4 + 1 in F28 [y] nicht
irreduzibel ist (siehe Übungen). Da aber die Matrix Z invertierbar ist, kann die inverse
Abbildung MixColumn−1 von MixColumn mittels c 7→ cZ−1 berechnet werden. Somit hat
auch das Polynom z(y) im Ring F28 [y]/(y4 + 1) ein multiplikatives Inverses z−1(y).

5.3.7 Kryptoanalytische Betrachtungen

Bis heute konnten keine Schwachstellen gefunden werden, d.h. alle bekannten Angrif-
fe gegen den AES bringen keinen signifikanten Vorteil gegenüber einer vollständigen
Schlüsselsuche. Die Tatsache, dass für die S-Box SubByte die Inversenbildung in einem
endlichen Körper benutzt wird, führt dazu, dass die Tabellen für die Güte der linearen
Approximationen und für die Weitergabequotienten der Differenzenpaare einen hohen
Grad an Uniformität aufweisen. Dadurch wird die S-Box resistent gegen lineare und
differentielle Analysen. Zudem verhindert die lineare Substitution MixColumns lineare
und differentielle Angriffe mit nur wenigen aktiven S-Boxen (diese Technik wird von den
AES-Entwicklern als wide trail strategy bezeichnet).

5.4 Betriebsarten von Blockchiffren

Für den DES wurden vier verschiedene Betriebsarten vorgeschlagen, in denen grundsätz-
lich jede Blockchiffre E mit beliebiger Blocklänge ` betrieben werden kann. Bei den ersten
beiden Betriebsarten (ECB und CBC) werden Kryptotextblöcke der Länge ` übertragen.
Mit einer Blockchiffre kann aber auch ein Stromsystem realisiert werden, mit dem sich
Kryptotextblöcke einer beliebigen Länge t, 1 ≤ t ≤ `, übertragen lassen (siehe OFB-,
CFB- und CTR-Modus).
Der ECB-Modus ist die naheliegendste Betriebsart, wird aber in der Praxis so gut wie
nie benutzt, da sie eine Reihe von Angriffsmöglichkeiten bietet (vgl. z.B. Abschnitt 3.5).

78 5 DES und AES

ECB-Modus (electronic codebook; elektronisches Codebuch). Die Binärnach-
richt x wird in Klartextblöcke xi der Länge ` zerlegt. Der letzte Block xn wird, falls nötig,
mit einer vorher vereinbarten Bitfolge aufgefüllt. Die Blöcke werden nacheinander mit
demselben Schlüssel K einzeln verschlüsselt, übertragen und auf Empfängerseite mittels
der zu E gehörigen Dechiffrierfunktion D wieder entschlüsselt.

x1 x2 xn

EK EK EK

y1 y2 yn

. . .

. . .

x1 x2 xn

DK DK DK

y1 y2 yn

Sender
Empfänger

CBC-Modus (cipher block chaining; Blockverkettung des Schlüsseltextes).
Um zu verhindern, dass ein Eindringling den Kryptotext verändert, ohne dass der
Empfänger dies bemerkt, wird beim CBC-Modus jeder Kryptotextblock nicht nur von
dem zugehörigen Klartextblock, sondern auch von allen vorausgehenden Blöcken abhängig
gemacht. Dies hat auch zur Folge, dass gleiche Klartextblöcke auf unterschiedliche
Kryptotextblöcke abgebildet werden.

iv x1 x2 x3

+ + +

EK EK EK

y1 y2 y3

iv

x1 x2 x3

+ + +

DK DK DK

. . .

. . .

y1 y2 y3

Sender
Empfänger

Jeder Klartextblock xi wird mit dem Kryptotextblock EK(xi−1) bitweise (modulo 2)
addiert, bevor er verschlüsselt wird (zur Verschlüsselung von x1 wird ein Initialisie-
rungsvektor iv verwendet. Der Initialisierungsvektor wird üblicherweise unverschlüsselt
übertragen, sollte aber nicht mehrmals verwendet werden. Er wird meist durch einen
Pseudozufallsgenerator erzeugt.
Der CBC-Modus verhindert auch, dass sich bestimmte Klartextmuster direkt auf den
Kryptotext übertragen (was beim ECB-Modus der Fall ist). Ein extremes Beispiel ist

5.4 Betriebsarten von Blockchiffren 79

die Verschlüsselung einer Graphikdatei x, deren Pixel durch `-Bit Blöcke kodiert sind.
Zwar werden dann beim ECB-Modus die Pixel substituiert, aber ansonsten stellt der
Kryptotext y exakt dieselbe Graphik wie der Klartext x dar. Dadurch wird eine „visuelle
Entschlüsselung“ durch Betrachten der verschlüsselten Graphikdatei y ermöglicht.

OFB-Modus (output feedback; Rückführung der Ausgabe). Die Binärnachricht
x wird in t-Bit Blöcke (für festes t: 1 ≤ t ≤ `) zerlegt. Die Chiffrierfunktion EK dient zur
Erzeugung einer pseudozufälligen Folge von t-Bit Blöcken zi, die bitweise (modulo 2) auf
die entsprechenden Klartextblöcke xi addiert werden. Als Eingabe für die Chiffrierfunktion
EK dient ein Schieberegister, das anfangs mit einem Initialisierungsvektor iv geladen
wird. Zur Verschlüsselung jedes t-Bit Klartextblockes xi erzeugt die Chiffrierfunktion EK
zunächst einen Ausgabevektor, von dem nur die ersten t Bits verwendet werden. Dieser
t-Bit Block zi dient sowohl zur Berechnung des Kryptoxtblocks yi = xi ⊕ zi, als auch zur
Modifikation des Eingaberegisters von EK , in das sie von rechts geschoben werden.

``−t

EK

`t

+xi yi

zi

``−t

EK

`t

+yi xi

zi

CFB-Modus (cipher feedback; Rückführung des Kryptotextes). Ähnlich zum
OFB-Modus, nur dass zur Erneuerung des Eingaberegisters nicht die ersten t Bits zi der
EK-Ausgabe, sondern der zugehörige t-Bit Kryptotextblock yi = xi ⊕ zi verwendet wird.

``−t

EK

`t

+xi yi

zi

``−t

EK

`t

+yi xi

zi

CTR-Modus (counter mode). Eine weitere Variante des OFB-Modus’ ist der CTR-
Modus, bei dem die Pseudozufallsfolge mit Hilfe von EK aus einer fortlaufenden Binär-
blockfolge c0, c1, . . . mit ci+1 = ci + 1 mod 2` erzeugt wird. Dies hat den Vorteil, dass
spätere Blöcke der Pseudozufallsfolge nicht von den vorhergehenden abhängen, und daher
mehrere Blöcke EK(ci) parallel berechnet werden können.

EK

`t

+xi yi

zi

ci

EK

`t

+yi xi

zi

ci

80

6 Zahlentheoretische Grundlagen

In diesem Abschnitt stellen wir die Hilfsmittel aus der Zahlentheorie bereit, die wir zum
Verständnis der Public-Key Verfahren benötigen, die im nächsten Abschnitt vorgestellt
werden.
Nehmen wir ein beliebiges Element a einer endlichen Gruppe G und betrachten die Folge
der Potenzen a0 = 1, a1 = a, a2, a3, . . . , so stellt sich die Frage, ob es einen Exponenten
n ≥ 1 mit an = 1 gibt. In den Übungen werden wir sehen, dass das so ist und bis dahin
alle Potenzen paarweise verschieden sind.

Definition 115. Sei G eine endliche Gruppe. Die Ordnung von G ist die Anzahl ‖G‖
ihrer Elemente. Die Ordnung eines Elements a ∈ G ist

ordG(a) = min{n ≥ 1 | an = 1}.

Im Fall G = Z∗m schreiben wir auch einfach ordm(a) anstelle von ordZ∗m(a). Die von a in
G erzeugte Untergruppe {an | n ≥ 0} = {a0, . . . , aordG(a)−1} bezeichnen wir mit 〈a〉G oder
mit 〈a〉, wenn G aus dem Kontext ersichtlich ist.

Für beliebige ganze Zahlen i, j ∈ Z gilt

ai = aj ⇔ i ≡ord(a) j

(siehe Übungen). Da ord(a) = ‖〈a〉‖ die Ordnung einer Untergruppe von G ist, muss
ord(a) ein Teiler der Gruppenordnung ‖G‖ sein (Satz von Lagrange).

Beispiel 116. Wir betrachten die Gruppe G = Z∗7. Die folgende Tabelle zeigt für jedes
Element a ∈ G die von a erzeugte Untergruppe 〈a〉 sowie dessen Ordnung ordG(a) = ‖〈a〉‖:

a 1 2 3 4 5 6
〈a〉 {1} {1, 2, 4} {1, 3, 2, 6, 4, 5} {1, 4, 2} {1, 5, 4, 6, 2, 3} {1, 6}

ordG(a) 1 3 6 3 6 2

a 1 2 3 4 5 6 7 8 9 10 11 12
〈a〉 {1} {1, 2, 4, 8, 3, 6, 12...} {1, 3, 9} {1, 4, 3, 12, 9, 10} {1, 5, 12, 8} {1, 6, 10, 8, 9, 2, 12...}

ordG(a) 1 12 3 6 4 12
/

Satz 117 (Euler-Fermat). In jeder endlichen Gruppe (G, ·, 1) der Ordnung ‖G‖ = m
gilt am = 1 für alle a ∈ G.

Beweis. Wir betrachten hier nur den Fall, dass G kommutativ ist. Der allgemeine Fall
wird in den Übungen bewiesen.
Sei also G = {b1, . . . , bm} abelsch und sei a ∈ G beliebig. Wegen abi 6= abj für i 6= j folgt
G = {ab1, . . . , abm}. Dies impliziert ∏m

i=1 bi = ∏m
i=1 abi = am

∏m
i=1 bi. Also muss am = 1

sein. �

Korollar 118 (Kleiner Satz von Fermat). Für jede Primzahl p und jede Zahl a mit
a 6≡p 0 gilt ap−1 ≡p 1.

6.1 Diskrete Logarithmen 81

6.1 Diskrete Logarithmen

Für ein beliebiges Gruppenelement a ∈ G ist die Exponentiation expG,a : x 7→ ax in G
zur Basis a eine Bijektion zwischen der Menge Zord(a) = {0, 1, . . . , ord(a)− 1} und und
der Untergruppe 〈a〉. Die zugehörige Umkehrabbildung spielt in der Kryptografie eine
wichtige Rolle.

Definition 119. Seien a, b ∈ G mit b ∈ 〈a〉. Dann heißt der eindeutig bestimmte
Exponent x ∈ Zord(a) mit ax = b Index oder diskreter Logarithmus von b zur
Basis a in G, kurz

x = logG,a(b).

Im Fall G = Z∗m schreiben wir auch einfach x = logm,a(b) anstelle von logZ∗m,a(b).

Während die diskrete Exponentialfunktion expm,a : x 7→ ax für alle m ≥ 2 durch
wiederholtes Quadrieren und Multiplizieren (siehe nächsten Abschnitt) effizient
berechenbar ist, sind bis heute keine effizienten Verfahren zur Berechnung von logm,a(b)
bekannt (falls die Parameter a und m geeignet gewählt werden).

Beispiel 120. Das Element a = 2 hat in der Gruppe G = Z∗11 die maximal mögliche
Ordnung ord11(2) = ‖G‖ = 10. Die folgenden Tabellen zeigen den Werteverlauf der
Funktionen exp11,2 und log11,2.

x 0 1 2 3 4 5 6 7 8 9
2x 1 2 4 8 5 10 9 7 3 6

b 1 2 3 4 5 6 7 8 9 10
log11,2(b) 0 1 8 2 4 9 7 3 6 5

/

6.2 Zyklische Gruppen

Für manche Anwendungen sind Elemente a ∈ G nützlich, mit denen sich die gesamte
Gruppe erzeugen lässt.

Definition 121 (Primitivwurzel/Erzeuger). Sei G eine endliche Gruppe der Ord-
nung ‖G‖ = m. Ein Element g ∈ G der Ordnung ordG(g) = m heißt Erzeuger von G.
G heißt zyklisch, falls G mindestens einen Erzeuger besitzt.

Ein Element a ∈ G ist also genau dann ein Erzeuger, wenn die von a erzeugte Untergruppe
〈a〉 die gesamte Gruppe G umfasst.

Satz 122 (Gauß). Genau für m ∈ {1, 2, 4, pk, 2pk | 2 < p prim} ist die Gruppe Z∗m
zyklisch (ohne Beweis).
Das folgende Lemma benötigen wir für den Beweis des nächsten Satzes, der eine Charak-
terisierung von zyklischen Gruppen erlaubt.

Lemma 123 (Euler). Für alle m ≥ 1 gilt∑
d|m

ϕ(d) = m,

wobei die Summe über alle Teiler d ≥ 1 von m läuft.

82 6 Zahlentheoretische Grundlagen

Beweis. Für jeden Teiler d ≥ 1 von m sei Td := {a ∈ Zm | ggT(a,m) = d}. Dann folgen
wegen

ϕ(m/d) = ‖{b ∈ Zm/d | ggT(b,m/d) = 1︸ ︷︷ ︸
⇔ ggT(bd,m) = d

}‖ = ‖Td‖

die Gleichungen ∑
d|m

ϕ(d) =
∑
d|m

ϕ(m/d) =
∑
d|m
‖Td‖ = ‖Zm‖ = m

�

Wir zeigen nun, dass G genau dann zyklisch ist, wenn jede Gleichung der Form xn = 1
höchstens n verschiedene Lösungen in G hat.

Satz 124. Eine endliche Gruppe G der Ordnung ‖G‖ = m ist genau dann zyklisch, wenn
jede Gleichung der Form xn = 1 (1 ≤ n ≤ m) höchstens n verschiedene Lösungen a ∈ G
hat. In diesem Fall hat G genau ϕ(m) Erzeuger.

Beweis. Falls G zyklisch und a ein Erzeuger von G ist, so ist G = {ak | k ∈ Zm}.
Eine Potenz ak ∈ G ist genau dann eine Lösung von xn = 1, wenn akn = 1 ist. Sei
g = ggT(n,m) und seien n′ = n/g sowie m′ = m/g. Da ggT(n′,m′) = 1 ist, existiert ein
Inverses (n′)−1 von n′ modulo m′. Wegen

akn = 1⇔ kn ≡m 0⇔ kn′ ≡m′ 0⇔ kn′(n′)−1 ≡m′ 0⇔ k ≡m′ 0.

hat also xn = 1 nur die g ≤ n Lösungen ak = ajm
′ , j = 0, 1, . . . , g − 1.

Für die Rückrichtung betrachten wir für jeden Teiler d von m die Menge

Sd = {a ∈ G | ord(a) = d}

aller Elemente der Ordnung d in G. Es ist klar, dass jedes Element a ∈ Sd eine Lösung
von xd = 1 ist, d.h. es gilt Sd ⊆ {x ∈ G | xd = 1}. Daher kann Sd nach Voraussetzung
nicht mehr als d Elemente enthalten. Wir zeigen, dass die Größe von Sd sogar durch ϕ(d)
beschränkt ist. Da jedes Element a ∈ Sd eine Untergruppe 〈a〉 der Größe d erzeugt, folgt
nach dem Satz von Euler-Fermat für jedes a ∈ Sd die Inklusion 〈a〉 ⊆ {x ∈ G | xd = 1},
die sogar eine Gleichheit ist, da xd = 1 nicht mehr als d Lösungen hat:

∀a ∈ Sd : Sd ⊆ 〈a〉.

Zudem hat ai genau dann die Ordnung ord(ai) = ord(a) = d, wenn ggT(i, d) = 1 ist
(siehe Übungen), was für jedes a ∈ Sd die Gleichheit Sd = {ai | i ∈ Z∗d} und somit
‖Sd‖ ≤ ϕ(d) impliziert.
Da die Mengen Sd, d|m, eine Partition von G bilden, folgt ∑d|m ‖Sd‖ = m. Andererseits
gilt ∑d|m ϕ(d) = m nach Lemma 123, woraus∑

d|m
‖Sd‖ =

∑
d|m

ϕ(d)

folgt. Da aber, wie gerade gezeigt, Sd entweder 0 oder ϕ(d) Elemente enthält, muss Sd
für jedes d genau ϕ(d) und insbesondere Sm genau ϕ(m) Elemente enthalten. �

6.3 Effiziente Berechnung von Potenzen 83

In den Übungen wird gezeigt, dass die Gleichung xn = 1 in einem Körper höchstens n
verschiedene Lösungen hat. Daher ist die Einheitengruppen F∗q jedes endlichen Körpers
Fq zyklisch und hat genau ϕ(q − 1) Erzeuger. Insbesondere sind auch die Gruppen Z∗p, p
prim, zyklisch (vgl. Satz 122).
Sofern die Primfaktorzerlegung der Gruppenordnung m bekannt ist, lässt sich effizient
überprüfen, ob ein Gruppenelement a ∈ G ein Erzeuger ist oder nicht.

Satz 125. Sei G eine endliche Gruppe der Ordnung ‖G‖ = m. Ein Element a ∈ G ist
genau dann ein Erzeuger, wenn für jeden Primteiler p von m gilt:

am/p 6= 1.

Beweis. Falls a ein Erzeuger vonG ist, so gilt ae 6= 1 für alle Exponenten e ∈ {1, . . . ,m−1}
und somit auch für alle Exponenten e der Form m/p, p prim.
Ist dagegen a ∈ G kein Erzeuger, so ist ord(a) < m, und da ord(a) ein Teiler von m ist,
existiert eine Zahl d ≥ 2 mit d · ord(a) = m. Sei p ein beliebiger Primteiler von d. Dann
gilt

am/p = ad ord(a)/p = (aord(a))d/p = 1. �

Der folgende probabilistische Algorithmus ComputeGenerator berechnet einen Erzeuger a
für eine zyklische Gruppe G, falls alle Primteiler p von m = ‖G‖ bekannt sind und sich
die Elemente von G zufällig generieren lassen.

ComputeGenerator(G, p1, . . . , pk)
1 input zyklische Gruppe G und alle Primteiler p1, . . . , pk von m = ‖G‖
2 repeat
3 guess randomly a ∈ G
4 until am/pi 6= 1 für alle i = 1, . . . , k
5 output a

Da ϕ(m) ≥ m/(2 ln lnm) für hinreichend große m gilt, findet der Algorithmus in jedem
Schleifendurchlauf mit Wahrscheinlichkeit ϕ(m)/m ≥ 1/(2 ln lnm) einen Erzeuger. Die
erwartete Anzahl der Schleifendurchläufe ist also O(ln lnm).

6.3 Effiziente Berechnung von Potenzen

Falls sich in einer Halbgruppe oder einem Ring das Produkt zweier Elemente effizient
berechnen lässt, sind auch die Potenzen ae durch wiederholtes Quadrieren und Mul-
tiplizieren effizient berechenbar. Hierzu sind maximal 2dlog ee Multiplikationen erfor-
derlich.

Pot(a, e)
1 x := a; y := ae0

2 for i := 1 to r do
3 x := x2; y := y · xei

4 return(y)

HornerPot(a, e)
1 z := a
2 for i := r − 1 downto 0 do
3 z := z2 · aei

4 return(z)

84 6 Zahlentheoretische Grundlagen

Sei e = ∑r
i=0 ei · 2i mit r = blog2 ec die Binärdarstellung von e. Dann können wir den

Exponenten e sukzessive mittels b0 = e0 und bi = bi−1 + ei2i = ∑i
j=0 ej ·2j für i = 1, . . . , r

zu br = e berechnen. Der Algorithmus Pot berechnet nach diesem Schema in der Variablen
y die Potenzen abi für i = 0, . . . , r.
Alternativ können wir auch das Horner-Schema zur Berechnung von e benutzen. Sei
cr = er = 1 und sei ci−1 = 2ci + ei−1 für i = r, . . . , 1. Dann ist ci = ∑r

j=i ej · 2j−i, also
c0 = ∑r

j=0 ej · 2j = e. Dies führt auf den Algorithmus HornerPot, der in der Variablen z
die Potenzen aci für i = r, . . . , 0 berechnet.

Beispiel 126. Wir berechnen die Potenz ae für a = 1920 und e = 19 im Ring Z2773:

Pot(1920, 19) HornerPot(1920, 19)
i ei bi xi = a2i

yi = abi i ei ci zi = aci

0 1 1 19201 = 1920 19201 = 1920 4 1 1 19201 = 1920
1 1 3 19202 = 1083 1920 · 10831 = 2383 3 0 2 19202 · 19200 = 1083
2 0 3 10832 = 2683 2383 · 26830 = 2383 2 0 4 10832 · 19200 = 2683
3 0 3 26832 = 2554 2383 · 25540 = 2383 1 1 9 26832 · 19201 = 1016
4 1 19 25542 = 820 2383 · 8201 = 1868 0 1 19 10162 · 19201 = 1868

/

6.4 Der Primzahlsatz

Bezeichne P die Menge der Primzahlen und sei π die Funktion, die jeder Teilmenge
A ⊆ N die Anzahl

π(A) = ‖A ∩ P‖

der Primzahlen in der Menge A zuweist. Zudem bezeichnen wir die Zahl π([1, n]) auch
einfach mit π(n) und für c ∈ Zm sei

πc,m(n) = π({p ∈ P | p ≡m c}).

Satz 127. (Hadamard und de la Vallée Poussin, 1896)
Es gilt π(n) ∼ n/lnn und für c ∈ Z∗m gilt πc,m(n) ∼ n/(ϕ(m) lnn).

Hierbei bedeutet f(n) ∼ g(n), dass die beiden Funktionen f und g asymptotisch äqui-
valent sind (d.h. es gilt limn→∞ f(n)/g(n) = 1). Wie folgende Tabelle zeigt, liefert die
Funktion Li(n) =

∫ n
2 (ln x)−1dx im Vergleich zu n/ lnn eine deutlich bessere Abschätzung

von π(n).

6.5 Pseudo-Primzahlen und der Fermat-Test 85

n π(n) π(n)− n/ lnn Li(n)− π(n)
10 4 −0.3 2.2

100 25 3.3 5.1
1 000 168 23 10

10 000 1 229 143 17
10 100 1 240 144 18

106 78 498 6 116 130
109 50 847 534 2 592 592 1 701

1012 37 607 912 018 1 416 705 193 38 263
1015 29 844 570 422 669 891 604 962 452 1 052 619
1018 24 739 954 287 740 860 612 483 070 893 536 21 949 555
1021 21 127 269 486 018 731 928 446 579 871 578 168 707 597 394 254

Beispiel 128. Verwenden wir die Abschätzung π(n) ≈
∫ n

2 (ln x)−1dx, so erhalten wir für
die Anzahl π([a, b]) der Primzahlen in einem Intervall [a, b] den Näherungswert

π([a,b]) ≈
∫ b

a
(ln x)−1dx ≥ (b− a)/ ln b.

Für das Intervall I = [a, b] = [10 000, 10 100] ergibt sich z. B. der Näherungswert
∫ b

a
(ln x)−1dx ≥ 100/ ln 10 100 ≈ 10,85

während der exakte Wert π(10 100)− π(10 000) = 11 ist.
Für die Anzahl aller 100-stelligen Primzahlen (in Dezimaldarstellung), also aller Prim-
zahlen im Intervall I ′ = [a, b] = [1099, 10100] erhalten wir den Näherungswert

∫ b

a
(ln x)−1dx ≥ 9 ∗ 1099/ ln 10100 = 9 ∗ 1097/ ln 10 ≈ 3,91 · 1097

Vergleicht man diese Zahl mit der Anzahl 10100 − 1099 = 9 · 1099 aller 100-stelligen Dezi-
malzahlen, so sehen wir, dass ungefähr jede 900/3,91 ≈ 230-te 100-stellige Dezimalzahl
prim ist.
Für die Anzahl aller 1000-stelligen Primzahlen (in Dezimaldarstellung), also aller Prim-
zahlen im Intervall I ′ = [a, b] = [10999, 101000] erhalten wir dagegen den Näherungswert

∫ b

a
(ln x)−1dx ≥ 9 ∗ 10999/ ln 101000 = 9 ∗ 10996/ ln 10 ≈ 3,91 · 10996

Hier sehen wir, dass ungefähr jede 9000/3,91 ≈ 2303-te der 101000 − 10999 = 9 · 10999

1000-stelligen Dezimalzahlen prim ist. /

6.5 Pseudo-Primzahlen und der Fermat-Test

Bei der Konstruktion eines probabilistischen Monte-Carlo Primzahltests geht man üb-
licherweise so vor, dass man eine Folge von Teilmengen An ⊆ Z∗n definiert, die für
hinreichend großes n (d.h. für alle n ≥ n0, wobei n0 eine Konstante ist) folgende drei
Bedingungen erfüllen:

86 6 Zahlentheoretische Grundlagen

T1: Für gegebene Zahlen a, n ∈ N kann effizient, d. h. in Polynomialzeit getestet werden,
ob a ∈ An ist.

T2: Für primes n ist An = Z∗n.
T3: Für (ungerades) zusammengesetztes n ist ein konstanter Anteil aller Elemente von

Z∗n nicht in An enthalten, d. h. ‖An‖ ≤ (1− ε)ϕ(n) für eine Konstante ε > 0.
Typischerweise wählt man für An daher eine Eigenschaft, die für alle Elemente a ∈ Z∗n
gilt, falls n prim ist. Der zugehörige generische Primzahltest GT arbeitet dann wie folgt.

GT(n, k), k ≥ 1
1 for j := 1 to k do
2 guess randomly a ∈ {1, . . . , n− 1}
3 if a 6∈ An then return(zusammengesetzt)
4 return(prim)

Hierbei steuert der Parameter k die maximale Fehlerwahrscheinlichkeit von GT(n, k).
Gilt nämlich ‖An‖ ≤ (1− ε)ϕ(n) für zusammengesetztes n und eine Konstante ε > 0, so
gibt GT(n, k) für zusammengesetztes n mit Wahrscheinlichkeit

p = (an/(n− 1))k < (an/ϕ(n))k ≤ (1− ε)k

„prim“ aus, wobei an = ‖An‖ ist. Für primes n gibt GT(n, k) dagegen immer „prim“ aus.
Da der Algorithmus (mit beliebig kleiner Wahrscheinlichkeit) eine falsche Ausgabe pro-
duzieren kann, handelt es sich um einen sogenannten Monte-Carlo-Algorithmus (mit
einseitigem Fehler, da es nur im Fall n zusammengesetzt zu einer falschen Ausgabe
kommen kann). Im Gegensatz hierzu gibt ein sogenannter Las-Vegas-Algorithmus nie
eine falsche Antwort. Allerdings darf ein Las-Vegas-Algorithmus (mit kleiner Wahrschein-
lichkeit) die Antwort schuldig bleiben, also „?“ ausgeben.
Es liegt nahe, den Satz von Fermat zur Konstruktion einer „Testmengensequenz“

AFT
n = {a ∈ Z∗n | an−1 ≡n 1}

zu verwenden. Dies führt auf folgenden Fermat-Test (FT).

FT(n, k), n ≥ 3 ungerade und k ≥ 1
1 berechne die Binärdarstellung n− 1 = ∑r

i=0 ei · 2i mit er = 1
2 for j := 1 to k do
3 guess randomly a ∈ {1, . . . , n− 1}
4 z := a
5 for i := r − 1 downto 0 do
6 z := z2 mod n
7 if ei = 1 then z := z · a mod n
8 if z 6≡n 1 then return(zusammengesetzt)
9 return(prim)

Der Fermat-Test berechnet also die Potenz z0 = an−1 genau wie der Algorithmus HornerPot
ausgehend von zr = a iterativ mittels zi−1 = z2

i a
ei−1 mod n für i = r−1, . . . , 0. Er erkennt

n als zusammengesetzt, falls z0 6= 1 ist.
Man nennt eine zusammengesetzte Zahl n, die den Fermat-Test bei Wahl von a ∈ Z∗n
besteht (d. h. es gilt an−1 ≡n 1) eine Fermat-Pseudo-Primzahl oder einfach Pseudo-
Primzahl zur Basis a. Man sagt auch, a ist ein (falscher) Primzahlzeuge für n.

6.6 Der Miller-Rabin Test 87

Zum Beispiel ist die Zahl 91 pseudo-prim zur Basis 3. Es gibt sogar Zahlen (z. B. n = 561)
die pseudo-prim zu jeder Basis a ∈ Z∗n sind (sogenannte Carmichael-Zahlen). Für diese
Zahlen ist Bedingung T3 in obiger Aufzählung nicht erfüllt, weshalb der Fermat-Test
als Pseudo-Primzahltest bezeichnet wird. Es ist leicht zu sehen, dass Bedingung T3
für jede zusammengesetzte Zahl, die keine Carmichael-Zahl ist, mit ε = 1/2 erfüllt ist.
Carmichael-Zahlen kommen nur sehr selten vor (erst 1992 konnte die Existenz unendlich
vieler Carmichael-Zahlen nachgewiesen werden).

6.6 Der Miller-Rabin Test

Der Fermat-Pseudoprimzahltest kann zu einem Monte-Carlo Primzahltest (dem sogenann-
ten Miller-Rabin Test, kurz MRT) erweitert werden. Wie wir gesehen haben, berechnet
der Fermat-Test die Potenz an−1 = z0 über eine Folge zr, . . . , z0 von Potenzen mit zr = a
und zi−1 = z2

i a
ei−1 mod n für i = r − 1, . . . , 0. Er erkennt n als zusammengesetzt, falls

z0 6= 1 ist. Der Miller-Rabin Test überprüft nun zusätzlich bei jeder Quadrierung, ob
z2
i ≡n 1 und zi 6≡n ±1 ist. Ist dies der Fall, so muss n zusammengesetzt sein, da zi eine
nichttriviale Lösung der Kongruenz x2 ≡n 1 in Z∗n ist. Die MRT-Testmenge ist also

AMRT
n = {a ∈ AFT

n | für alle i = r, . . . , 1 mit z2
i ≡n 1 gilt zi ≡n ±1}.

Es ist klar, dass diese Testmengen die Bedingungen T1 und T2 erfüllen. Mit etwas
zahlentheoretischem Aufwand lässt sich zeigen, dass auch Bedingung T3 für ε = 3/4 erfüllt
ist. Weiter unten werden wir dies für ε = 1/2 zeigen.
Der Miller-Rabin Test lässt sich in Pseudocode wie folgt implementieren.

MRT(n, k), n ≥ 3 ungerade und k ≥ 1
1 berechne die Binärdarstellung n− 1 = ∑r

i=0 ei · 2i mit er = 1
2 for j := 1 to k do
3 guess randomly a ∈ {1, . . . , n− 1}
4 z := a
5 for i := r − 1 downto 0 do
6 y := z
7 z := z2 mod n
8 if z ≡n 1 ∧ y 6≡n ±1 then return(zusammengesetzt)
9 if ei = 1 then z := z · a mod n

10 if z 6≡n 1 then return(zusammengesetzt)
11 return(prim)

Beispiel 129. Sei n = 221 = 13 · 17. Dann berechnet der Miller-Rabin Test für a = 137,
a′ = 18 und a′′ = 174 die folgenden Werte zi, z′i bzw. z′′i (die dünn gedruckten Werte

88 6 Zahlentheoretische Grundlagen

werden nur vom Fermat-Test berechnet, da der Miller-Rabin Test vorher abbricht).

i ei zi ≡n (zi+1)2aei z2
i z′i ≡n (z′i+1)2(a′)ei (z′i)2 z′′i ≡n (z′′i+1)2(a′′)ei (z′′i)2

7 1 137 205 18 103 174 220
6 1 205 · 137 = 18 103 103 · 18 = 86 103 220 · 174 = 47 220
5 0 103 1 103 1 220 1
4 1 1 · 137 = 137 205 1 · 18 = 18 103 1 · 174 = 174 220
3 1 205 · 137 = 18 103 103 · 18 = 86 103 220 · 174 = 47 220
2 1 103 · 137 = 188 205 103 · 18 = 86 103 220 · 174 = 47 220
1 0 205 35 103 1 220 1
0 0 35 1 1

Bei Wahl von a = 137 erkennen also beide Tests die Zahl n = 221 als zusammengesetzt.
Bei Wahl von a′ = 18 tut dies nur der Miller-Rabin Test und bei Wahl von a′′ = 174
keiner von beiden. /

Die Zahlen a ∈ AMRT
n werden starke Primzahlzeugen für n genannt. Falls n zusam-

mengesetzt ist, sagt man auch, n ist eine starke Pseudo-Primzahl zur Basis a. Es gibt
nur eine Zahl n < 2, 5 · 1010, die stark pseudo-prim zu den Basen 2, 3, 5 und 7 ist:
n = 3 215 031 751 = 151 · 751 · 28 351.
Wir zeigen nun, dass jede ungerade zusammengesetzte Zahl n > 2 höchstens ϕ(n)/2
starke Primzahlzeugen hat. Sei n− 1 = 2mu mit u ungerade, d.h. m ist der kleinste Index
i mit ei = 1 bzw. m− 1 der größte Index i, so dass e0 = · · · = ei = 0 ist. Zudem wählen
wir ` als den kleinsten Index i ≥ 0, so dass ein a ∈ Z∗n existiert mit zi ≡n aci ≡n −1, d.h.
für alle i < ` gilt zi 6≡n −1. Da zm für a = n− 1 den Wert zm ≡n (−1)u ≡n −1 hat, ist
` ≤ m. Sei nun Un = {a ∈ Z∗n | a2ju ≡n ±1}, wobei j = m− ` ist.

i ei ci aci ≡n zi
r 1 1 a...
m 1 u au

m− 1 0 2u a2u
...
` = m− j 0 2ju a2ju

≡n −1 ist möglich

`− 1 0 2j+1u a2j+1u
...
0 0 2mu a2mu

 6≡n −1

Behauptung 130. Un ist eine Untergruppe von Z∗n.

Es genügt zu zeigen, dass Un unter Multiplikation abgeschlossen ist: Für a, b ∈ Un gilt
(ab)2ju = a2jub2ju ≡n (±1)(±1) = ±1. �

Behauptung 131. AMRT
n ⊆ Un.

Sei a ∈ AMRT
n und sei zr, . . . , z0 die zugehörige Folge. Dann gilt z0 ≡n an−1 ≡n a2mu ≡n 1

und für alle i = r, . . . , 1 mit z2
i ≡n 1 gilt zi ≡n ±1. Wegen zm−i ≡n a2iu für i = 0, . . . ,m

folgt also
∀i ∈ [m] : a2iu ≡n 1⇒ a2i−1u ≡n ±1 (*)

6.6 Der Miller-Rabin Test 89

Zudem folgt aus der Definition von ` (= m− j),

∀i ∈ {j + 1, . . . ,m} : a2iu 6≡n −1 (**)

Insgesamt erhalten wir also aus (*) und (**) die Implikationen

a2mu ≡n 1 (∗,∗∗)⇒ a2m−1u ≡n 1 (∗,∗∗)⇒ · · · (∗,∗∗)⇒ a2j+1u ≡n 1 (∗)⇒ a2ju ≡n ±1

und somit folgt a ∈ Un. �

Behauptung 132. Für zusammengesetztes n≡2 1 ist Un eine echte Untergruppe von Z∗n.

Falls n = pk eine Primzahlpotenz mit p > 2 und k ≥ 2 ist, gilt (pk−1 + 1)pk−1 6≡pk ±1
(siehe Übungen) und somit a = pk−1 + 1 6∈ Un. Andernfalls können wir n in teilerfremde
Faktoren n = n1n2 mit n1, n2 > 2 zerlegen. Zudem existiert nach Definition von j eine
Zahl b ∈ Z∗n mit b2ju ≡n −1. Dann ist aber die eindeutige Lösung a ∈ Z∗n von

x ≡n1 b,
x ≡n2 1

wegen

a2ju ≡n1 b
2ju ≡n1 −1⇒ a2ju 6≡n 1 und a2ju ≡n2 12ju = 1⇒ a2ju 6≡n −1

nicht in Un enthalten. �

Da Un als echte Untergruppe von Z∗n höchstens halb so groß wie Z∗n sein kann, folgt also
für ungerades zusammengesetztes n,∥∥∥AMRT

n

∥∥∥ ≤ ‖Un‖ ≤ ϕ(n)/2.

Damit ist gezeigt, dass der Miller-Rabin Test die Bedingung T3 für ε = 1/2 erfüllt.
Unter Verwendung der verallgemeinerten Riemannschen Hypothese kann man sogar
zeigen, dass es keine Zahl n gibt, die stark pseudo-prim zu allen Basen a mit a <
2 · (lnn)2 ist. Unter dieser Hypothese kann der Miller-Rabin Test daher zu einem
deterministischen Polynomialzeit-Algorithmus derandomisiert werden (mit der Folge,
dass das Primzahlproblem in P lösbar ist). Erst 2002 fanden Agrawal, Kayal und Saxena
einen Algorithmus, der das Primzahlproblem auch ohne diese Voraussetzung in P löst.

90

7 Asymmetrische Kryptosysteme

Diffie und Hellman hatten 1976 die Idee, dass ein Kryptosystem auch dann noch sicher sein
könnte, wenn der Chiffrierschlüssel öffentlich bekannt ist. Natürlich setzt dies voraus, dass
Sender und Empfänger verschiedene Schlüssel k 6= k′ verwenden und dass insbesondere
der Dechiffrierschlüssel k′ nicht mit vertretbarem Aufwand aus dem Chiffrierschlüssel k
berechnet werden kann. Ist dies der Fall, so kann sich jeder Kommunikationsteilnehmer
X ein Schlüsselpaar kX , k′X erzeugen lassen. X kann dann seinen Chiffrierschlüssel kX
öffentlich bekannt geben und muss nur seinen Dechiffrierschlüssel k′X geheim halten. Dies
hat den großen Vorteil, dass kX über einen authentisierten Kanal (anstatt über einen
sicheren Kanal) zum Sender gelangen kann (d.h. der Empfänger muss nur die Herkunft
und Originalität von kX verifizieren können).

– Von einem symmetrischen Kryptosystem spricht man, wenn die Kenntnis des
Chiffrierschlüssels gleichbedeutend mit der Kenntnis des Dechiffrierschlüssels ist,
der eine also leicht aus dem anderen berechnet werden kann.

– Dagegen sind bei einem asymmetrischen Kryptosystem nur die Dechiffrier-
schlüssel geheimzuhalten, während die Chiffrierschlüssel öffentlich bekanntgegeben
werden können.

Ein symmetrisches Kryptosystem wird auch als konventionell oder als Kryptosystem
mit geheimen Schlüsseln bzw. Secret-Key-Kryptosystem bezeichnet. Dagegen
spricht man bei asymmetrischen Kryptosystemen auch von Kryptosystemen mit
öffentlichen Schlüsseln oder von Public-Key-Kryptosystemen.
Wie der Name schon sagt, sind bei einem symmetrischen Kryptosystem die Rollen von
Sender und Empfänger untereinander austauschbar: Die Vertraulichkeit der Nachrichten
beruht auf einem gemeinsamen Geheimnis in Form des symmetrischen Schlüssels.
Der Unterschied zwischen symmetrischer und asymmetrischer Verschlüsselung lässt
sich sehr schön durch folgende Analogie verdeutlichen, bei der ein Bankschließfach zur
Übergabe von Geheiminformationen benutzt wird.
Symmetrische Verschlüsselung: Alice und Bob sind im Besitz eines Schlüssels k für das

Schließfach und dieses lässt sich mit k sowohl auf- als auch zuschließen. Alice
schließt die Nachricht in den Tresor ein und Bob öffnet danach das Schließfach
wieder und liest die Nachricht.

Asymmetrische Verschlüsselung: Das Schließfach ist mit einem Zahlenschloß ausgestattet
und nur Bob ist im Besitz der zugehörigen Zahlenkombination k′B. Alice, die nur die
Schließfachnummer kB kennt, legt ihre Nachricht in das unverschlossene Schließfach
und verdreht anschließend das Schloß. Danach öffnet Bob das Schließfach mit
seinem „privaten“ Schlüssel k′B wieder und liest die Nachricht.

An dieser Analogie wird auch deutlich, warum für die Übermittlung des öffentlichen
Schlüssels kB von Bob an Alice ein authentisierter Kanal benutzt werden muss. Andernfalls
könnte nämlich ein Angreifer Bobs Schlüssel kB gegen seinen eigenen austauschen und er
könnte dann die für Bob bestimmte Nachricht lesen (und ggf. mit kB verschlüsselt an
Bob weiterleiten ohne dass Alice und Bob dies bemerken).
Da Alice bei der asymmetrischen Verschlüsselung nicht im Besitz von Bobs privatem

7.1 Das RSA-System 91

Schlüssel k′B ist, kann sie im Gegensatz zu Bob keine der mit kB verschlüsselten Nachrich-
ten entschlüsseln, also auch keine Kryptotexte, die Bob von anderen Teilnehmern erhält.
Dies hat den Vorteil, dass für jeden Teilnehmer nur ein asymmetrisches Schlüsselpaar
generiert werden muss, während für die Kommunikation zwischen n Teilnehmern bis zu(
n
2

)
symmetrische Schlüssel nötig wären. Zu beachten ist auch, dass mit Bobs Schlüssel-

paar (kB, k′B) nur eine Nachrichtenübermittlung (von Alice oder anderen Teilnehmern)
an Bob möglich ist, und für die Übermittlung an Alice das Schlüsselpaar (kA, k′A) von
Alice benutzt werden muss.
Die Tatsache, dass bei der Verschlüsselung kein geheimer Schlüssel benutzt wird, hat
andererseits aber den Nachteil, dass ein asymmetrisches Kryptosystem nicht absolut sicher
sein kann (siehe Übungen). Da die Chiffrierfunktion EkB

von Bob öffentlich bekannt und
zudem effizient berechenbar ist, kann ein Gegner bei bekanntem Kryptotext alle Klartexte
ausprobieren. Damit das System dennoch sicher ist, muss EkB

eine Einwegfunktion
(engl. one-way function) sein, d.h. die inverse Funktion Dk′B

darf ohne Kenntnis von Bobs
privatem Schlüssel k′B nicht effizient berechenbar sein. Da es aber ein Geheimnis (nämlich
k′B) gibt, dessen Kenntnis eine effiziente Invertierung ermöglicht, spricht man von einer
Falltürfunktion (engl. trapdoor one-way function). Da EkB

zudem bijektiv ist, handelt
es sich genauer um eine Falltürpermutation (engl. trapdoor one-way permutation). Es
ist leicht zu sehen (siehe Übungen), dass mit deterministischen Public-Key Verfahren
keine komplexitätstheoretische Sicherheit erreicht werden kann. Dies ist nur möglich, wenn
der Wegfall eines geheimen Chiffrierschlüssels durch Verwendung von Zufall kompensiert
wird (siehe Abschnitt über probabilistische Kryptosysteme).

7.1 Das RSA-System

Das RSA-Kryptosystem basiert auf dem Faktorisierungsproblem und wurde 1978 von
seinen Erfindern Rivest, Shamir und Adleman veröffentlicht. Während beim Primzahl-
problem nur eine Ja-Nein-Antwort auf die Frage „Ist n prim?“ gesucht wird, muss ein
Algorithmus für das Faktorisierungsproblem im Falle einer zusammengesetzten Zahl
mindestens einen nicht-trivialen Faktor berechnen. Genauer gesagt beruht das RSA-
Verfahren darauf, dass die Primzahleigenschaft effizient getestet werden kann, aber keine
effizienten Faktorisierungsalgorithmen bekannt sind.
Für jeden Teilnehmer des RSA-Kryptosystems werden zwei große Primzahlen p, q sowie
zwei Exponenten e, d mit ed ≡ϕ(n) 1 generiert, wobei n = pq und ϕ(n) = (p− 1)(q − 1)
ist.

Öffentlicher Schlüssel: k = (e, n),
Privater Schlüssel: k′ = (d, n).

Jede Nachricht x wird durch eine Folge x1, x2, . . . von Zahlen xi ∈ Zn dargestellt, die
einzeln wie folgt ver- und entschlüsselt werden:

RSA((e, n), x) = xe mod n,
RSA−1((d, n), y) = yd mod n.

Die Chiffrierfunktionen RSA(e,n) und RSA−1
(d,n) können durch „Wiederholtes Quadrieren

und Multiplizieren“ effizient berechnet werden.
Der Schlüsselraum ist also

K = {(c, n) | es gibt Primzahlen p und q mit n = pq und c ∈ Z∗ϕ(n)}

92 7 Asymmetrische Kryptosysteme

und
S = {((e, n), (d, n)) ∈ K ×K | ed ≡ϕ(n) 1}

ist die Menge aller zueinander passenden Schlüsselpaare. Der folgende Satz garantiert
die Korrektheit des RSA-Systems.

Satz 133. Für jedes Schlüsselpaar ((e, n), (d, n)) ∈ S und alle x ∈ Zn gilt

xed ≡n x.

Beweis. Sei n = pq und sei z eine natürliche Zahl mit ed = zϕ(n)+1. Wir zeigen xed ≡p x.
Die Kongruenz xed ≡q x folgt analog und beide Kongruenzen zusammen implizieren
xed ≡n x.
Wegen ϕ(n) = (p− 1)(q − 1) und wegen

xp−1 ≡p

0, x ≡p 0,
1, x 6≡p 0

folgt

xed = xzϕ(n)+1 = xz(p−1)(q−1)x = (xp−1)z(q−1)x ≡p x �

Praktische Durchführung

Bestimmung von p und q: Man wählt zufällig eine Zahl x der Form 30z und der verlang-
ten Größenordnung (z. B. x ∈ I = [10500, 10501)) und führt einen Primzahltest für
die Zahlen x+1, x+7, x+11, x+13, x+17, x+19, x+23, x+29, x+30+1, x+30+7,
. . . durch, bis eine Primzahl p gefunden ist. Wegen π(I)/ ‖I‖ ≈ 1/(ln p) und da
nur 8 von 30 Zahlen getestet werden, sind hierzu ungefähr 8/30 ln p Primzahltests
durchzuführen (bei 500-stelligen Dezimalzahlen sind das ca. 300 Tests).

Bestimmung von d: d soll teilerfremd zu ϕ(n) = (p − 1)(q − 1) sein. Diese Bedingung
wird z. B. von jeder Primzahl größer als max{p, q} erfüllt.

Bestimmung von e: Da ggT(d, ϕ(n)) = 1 ist, liefert der erweiterte euklidische Algorith-
mus das multiplikative Inverse e von d modulo ϕ(n).

Ver- und Entschlüsselung: Modulares Exponentieren durch wiederholtes Quadrieren und
Multiplizieren. Im Vergleich zu symmetrischen Verfahren wie z.B. 3DES oder AES
ist RSA aber mindestens um den Faktor 100 langsamer. Daher wird RSA meist nur
zum Ver- und Entschlüsseln eines symmetrischen Schlüssels (auch Sitzungsschlüssel
genannt) benutzt, mit dem dann größere Datenmengen chiffriert und dechiffriert
werden (sogenannte hybride Verschlüsselung).

Kryptoanalytische Betrachtungen
1. Es ist klar, dass das RSA-Verfahren gebrochen ist, falls es dem Gegner gelingt, den

Modul n zu faktorisieren. In diesem Fall kann er ϕ(n) und damit auch den privaten
Dechiffrierexponenten aus dem öffentlichen Exponenten e berechnen. Es ist auch
möglich, die Primfaktoren p, q bei Kenntnis von ϕ(n) zu berechnen. Sei n = pq
(mit p, q ∈ P ; p > q). Wegen

ϕ(n) = (p− 1)(q − 1) = (p− 1)(n/p− 1) = −p+ n+ 1− n/p

7.1 Das RSA-System 93

erhalten wir die Gleichung

p− (n+ 1− ϕ(n))︸ ︷︷ ︸
c

+n/p = 0,

die auf die quadratische Gleichung p2 − cp+ n = 0 führt, aus der sich p und q zu
c±
√
c2−n
2 bestimmen lassen.

2. Die Primfaktoren p und q sollten nicht zu nahe beieinander liegen, da n sonst leicht
faktorisiert werden kann. Sei p > q. Dann gilt q <

√
n < a < p, wobei a = (p+q)

2
das arithmetische Mittel von p und q ist. Sei b = (p−q)

2 die Entfernung zwischen a
und q. Ist nun p− q klein, so ist auch b

√
nc − q < a− q = b klein und daher kann

q ausgehend von b
√
nc nach höchstens b Schritten gefunden werden. Um dies zu

verhindern, genügt es, p > 2q zu wählen, da dann
√
n−q = √pq−q >

√
2q−q > q/3

ist.
Mit dem Verfahren der Differenz der Quadrate lässt sich q sogar in a − d

√
ne

Schritten finden. Wegen

n = pq = (a+ b)(a− b) = a2 − b2

genügt es nämlich, eine Zahl a >
√
n zu finden, so dass a2−n = b2 eine Quadratzahl

ist. Für n = 124 711 ist zum Beispiel d
√
ne = 353. Bereits für a = 356 ist

a2 − n = 126 736− 124 711 = 2025 = 452 eine Quadratzahl, woraus wir die beiden
Faktoren p = a+ 45 = 401 und q = a− 45 = 311 erhalten.
Der Aufwand für die Suche ist proportional zur Differenz a−

√
n, die sich wegen√

x+ y ≤
√
x+ y

2
√
x
wie folgt nach unten abschätzen lässt:

a−
√
n = a−

√
a2 − b2 ≥ b2

2a.

Im Fall p ≥ 2q gilt jedoch wegen b = (p−q)/2 = (p+q)/6+(p−2q)/3 ≥ (p+q)/6 =
a/3 (also 3b/a ≥ 1),

a−
√
n ≥ b2

2a = 3b
a
· b6 ≥

b

6 ≥
q

12 .

Daher bringt dieser Angriff in diesem Fall keinen nennenswerten Vorteil gegenüber
obiger Faktorisierungsmethode.

3. Für unterschiedliche Teilnehmer sollten verschiedene Module n = pq gewählt werden.
Wie wir später sehen werden, erlaubt nämlich die Kenntnis eines Schlüsselpaares
(e, n), (d, n) mit ed ≡ϕ(n) 1 die effiziente Faktorisierung von n (siehe Satz 136).

4. Aus Effizienzgründen wird der Verschlüsselungsexponent e meist klein gewählt.
Kleinere Werte als z.B. die vierte Fermat-Zahl 216+1 = 65537 sollte man jedoch nicht
verwenden, da dies zu Angriffsmöglichkeiten führt. Wird etwa dieselbe Nachricht
an mehrere Empfänger gesendet, kann eine Dechiffrierung mithilfe des chinesischen
Restsatzes möglich sein (Angriff von Hastad, siehe Übungen).

5. Auch die Wahl des Entschlüsselungsexponenten d sollte nicht zu klein ausfallen.
Beträgt die Bitlänge von d weniger als ein Viertel der Bitlänge von n, kann d unter
Umständen mit einem auf Kettenbrüchen basierenden Verfahren effizient berechnet
werden (Angriff von Wiener).

94 7 Asymmetrische Kryptosysteme

7.2 Sicherheit des privaten RSA-Schlüssels

Wie wir gesehen haben, ist das RSA-System gebrochen, falls die Faktorisierung des
Moduls n bekannt ist. Das Brechen von RSA ist daher höchstens so schwer wie das
Faktorisieren von n.
Dagegen ist nicht bekannt, ob auch umgekehrt aus einem effizienten Algorithmus, der
bei Eingabe von (e, n) und y ein x mit xe ≡n y berechnet, ein effizienter Faktorisierungs-
algorithmus für n gewonnen werden kann. Es ist also nach heutigem Kenntnisstand nicht
ausgeschlossen, dass RSA leichter zu brechen ist als n zu faktorisieren.
Wie der folgende Satz zeigt, erfordert die Bestimmung des geheimen Schlüssels dagegen
den gleichen Aufwand wie das Faktorisieren von n. Bei Kenntnis von d kann nämlich leicht
ein Vielfaches v = ed− 1 von k = kgV(p− 1, q − 1) bestimmt und somit n faktorisiert
werden. Zunächst beweisen wir jedoch folgendes Lemma, auf welchem die Faktorisierung
von n bei Kenntnis von v beruht.

Lemma 134. Sei m ≥ 1 und seien y, z zwei Lösungen der Kongruenz x2 ≡m a mit
y 6≡m ±z. Dann ist ggT(y + z,m) ein nicht-trivialer Faktor von m.

Beweis. Wegen y2 ≡m z2 existiert ein t ∈ Z mit

(y + z)(y − z) = y2 − z2 = tm.

Da m also das Produkt (y + z)(y − z) teilt, aber wegen y 6≡m ±z keiner der beiden
Faktoren y + z und y − z durch m teilbar ist, müssen sich die Faktoren von m auf y + z
und y − z verteilen, was 1 < ggT(y + z,m) < m impliziert. �

Um nun n bei Kenntnis des privaten Dechiffrierexponenten d zu faktorisieren, betrachten
wir folgenden Las-Vegas Algorithmus RSA-Factorize, der durch eine leichte Modifikation
aus dem Miller-Rabin Primzahltest hervorgeht.

MRT(n), n ungerade
1 sei

∑r
i=0 ei · 2i, er = 1, die

Binärdarstellung von n− 1
2 guess randomly a ∈ {1, . . . , n− 1}
3 z := a
4 for i := r − 1 downto 0 do
5 y := z
6 z := z2 mod n
7 if z ≡n 1 ∧ y 6≡n ±1 then
8 return(zusammengesetzt)
9 if ei = 1 then z := z · a mod n

10 if z 6≡n 1 then return(zus.gesetzt)
11 else return(prim)

RSA-Factorize(n, v)
1 sei

∑r
i=0 ei · 2i, er = 1, die

Binärdarstellung von v
2 guess randomly a ∈ {1, . . . , n− 1}
3 z := a
4 for i := r − 1 downto 0 do
5 y := z
6 z := z2 mod n
7 if z ≡n 1 ∧ y 6≡n ±1 then
8 return(ggT(y + 1, n))
9 if ei = 1 then z := z · a mod n

10 if ggT(z, n) > 1 then
return(ggT(z, n))

11 else return(?)

Beispiel 135. Sei n = 221 = 13 · 17. Dann ist ϕ(221) = 12 · 16 = 192 und k =
kgV(12, 16) = kgV(223, 24) = 3 · 24 = 48. Angenommen, der Gegner könnte zu dem
öffentlichen Schlüssel (e, n) = (25, 221) den zugehörigen privaten Schlüssel (d, n) =

7.2 Sicherheit des privaten RSA-Schlüssels 95

(169, 221) bestimmen. Dann ergibt sich v = ed − 1 zu v = 4224 und RSA-Factorize
berechnet für a = 174, a′ = 111 und a′′ = 137 die folgenden Werte zi, z′i bzw. z′′i :

i ei ci zi = 174ci (zi)2 z′i = 111ci (z′i)2 z′′i = 137ci (z′′i)2

12 1 1 174 220 111 166 137 205
11 0 2 220 1 166 152 205 35
10 0 4 1 1 152 120 35 120
9 0 8 1 1 120 35 120 35
8 0 16 1 1 35 120 35 120
7 1 33 174 220 120 · 111 = 60 64 120 · 137 = 86 103
6 0 66 220 1 64 118 103 1
5 0 132 1 1 118 1
4 0 264 1 1
3 0 528 1 1
2 0 1056 1 1
1 0 2112 1 1
0 0 4224 1

RSA-Factorize gelingt also die Faktorisierung von n = 221 bei Wahl von a = 174 nicht,
wohl aber bei Wahl von a′ = 111 und a′′ = 137. Im ersten Fall findet RSA-Factorize den
Faktor ggT(118 + 1, 221) = 17 und im zweiten den Faktor ggT(103 + 1, 221) = 13. /

Satz 136. Sei n = pq (p, q ≥ 3 prim) und v > 0 ein Vielfaches von k = kgV(p−1, q−1).
Dann gibt RSA-Factorize(n, v) mit Wahrscheinlichkeit größer 1/2 einen Primfaktor von n
aus.

Beweis. Es ist klar, dass jede Ausgabe von RSA-Factorize in Zeile 10 ein nichttrivialer
Faktor von n sein muss. Mit Lemma 134 folgt

y 6≡n ±1, y2 ≡n 1 ⇒ ggT(y + 1, n) ∈ {p, q},

womit auch die Korrektheit jeder Ausgabe in Zeile 8 gezeigt ist.
Wir schätzen nun die Wahrscheinlichkeit ab, dass die Faktorisierung von n nicht gelingt
und RSA-Factorize ein Fragezeichen ausgibt.
Sei v = 2mu, p − 1 = 2iu1 und q − 1 = 2ju2 mit u, u1, u2 ungerade und sei o. B. d.A.
i ≤ j. Zudem sei F (n) die Menge aller Basen a ∈ Z∗n, bei deren Wahl RSA-Factorize ein
Fragezeichen ausgibt und sei S(n) die Menge

S(n) = {a ∈ Z∗n | au ≡n 1 ∨ ∃t ≥ 0 : a2tu ≡n −1}.

Wegen F (n) ⊆ S(n) folgt nun

Pr[RSA-Factorize(n, v) = ?] ≤ σ(n)/(n− 1),

wobei σ(n) = ‖S(n)‖ ist. Sei weiterhin α(n) = ‖{a ∈ Z∗n | au ≡n 1}‖ und für t ≥ 0 sei
αt(n) = ‖{a ∈ Z∗n | a2tu ≡n −1}‖.

Behauptung 137. Es gilt ggT(2tu, p− 1) = 2min(t,i)u1 und ggT(2tu, q − 1) = 2min(t,j)u2.

Wegen
k = kgV(p− 1, q − 1) = kgV(2iu1, 2ju2) = 2max(i,j) kgV(u1, u2)

96 7 Asymmetrische Kryptosysteme

und k | v=2mu folgt u1|u und u2|u. Da u ungerade ist, folgt somit

ggT(2tu, p− 1) = ggT(2tu, 2iu1) = 2min(t,i)u1

und
ggT(2tu, q − 1) = ggT(2tu, 2ju2) = 2min(t,j)u2. �

Behauptung 138. α(n) = u1u2.

Mit dem chinesischen Restsatz folgt

α(n) = ‖{a ∈ Z∗p | au ≡p 1}‖︸ ︷︷ ︸
=:β(n)

· ‖{a ∈ Z∗q | au ≡q 1}‖︸ ︷︷ ︸
=:γ(n)

.

Sei nun g ein Erzeuger von Z∗p. Dann gilt

gku ≡p 1 ⇔ ku ≡p−1 0.

Dies zeigt β(n) = ggT(u, p− 1) Beh. 137= u1. Analog folgt γ(n) = u2. �

Behauptung 139. Für t = 0, . . . , i− 1 ist αt(n) = 22tu1u2 und für t ≥ i ist αt(n) = 0.

Mit dem chinesischen Restsatz folgt zunächst

αt(n) = ‖{a ∈ Z∗p | a2tu ≡p −1}‖︸ ︷︷ ︸
=:βt(n)

· ‖{a ∈ Z∗q | a2tu ≡q −1}‖︸ ︷︷ ︸
=:γt(n)

.

Sei nun g ein Erzeuger von Z∗p. Dann gilt

gk2tu ≡p −1 ⇔ k2tu ≡p−1 (p− 1)/2.

Da ggT(2tu, p− 1) Beh. 137= 2tu1 genau dann ein Teiler von (p− 1)/2 = 2i−1u1 ist, wenn
t ≤ i− 1 ist, folgt βt(n) = 2tu1 für t = 0, . . . , i− 1 und βt(n) = 0 für alle t ≥ i.
Analog folgt γt(n) = 2tu2 für t = 0, . . . , j − 1 und γt(n) = 0 für alle t ≥ j und damit die
Behauptung. �

Behauptung 140. Es gilt σ(n) ≤ ϕ(n)/2.

Wegen σ(n) = α(n) +∑
t≥0 αt(n) folgt mit obigen Behauptungen

σ(n) = u1u2 +
i−1∑
t=0

22tu1u2 = u1u2(1 +
i−1∑
t=0

22t)

= u1u2(1 + (22i − 1)/3) = u1u2(22i + 2)/3

≤ u1u2(2i+j + 2i+j−1)/3 = ϕ(n)(1 + 2−1)/3 = ϕ(n)/2. �

Wegen ϕ(n) = n − p − q + 1 < n − 1 folgt nun σ(n)/(n − 1) ≤ ϕ(n)/2(n − 1) < 1/2,
womit der Satz bewiesen ist. �

7.3 Sicherheit partieller Klartextinformationen 97

7.3 Sicherheit partieller Klartextinformationen

Als nächstes gehen wir der Frage nach, wie sicher einzelne Bits der Klartextnachricht
sind. Falls es möglich wäre, dem Kryptotext y und dem öffentlichen Schlüssel (e, n) die
Parität des Klartextes x effizient zu bestimmen, so könnte auch der gesamte Klartext
x effizient berechnet werden. Das letzte Bit des Klartextes ist also genau so sicher wie
der gesamte Klartext. Einem Angreifer ist es daher nicht möglich, das letzte Bit des
Klartextes zu ermitteln, außer wenn es ihm gelingt, RSA vollständig zu brechen. Wir
werden später sehen, dass andere Eigenschaften des Klartextes sehr wohl durch den
zugehörigen Kryptotext preisgegeben werden.
Für x, y ∈ Zn mit y ≡n xe sei

klartext-parity(y) = parity(x) =

1 falls x ungerade,
0 falls x gerade.

und

klartext-half(y) = half(x) =

0 falls 0 ≤ x < n/2,
1 falls n/2 ≤ x < n

Wegen

2x mod n =

2x half(x) = 0,
2x− n sonst

gilt dann (2x mod n) ≡2 half(x) und somit half(x) = parity(2x mod n). Daher lässt sich
die Berechnung von klartext-half(y) auf die Berechnung von klartext-parity(y) reduzieren:

klartext-half(y) = half(x) = parity(2x mod n) = klartext-parity(2ey mod n).

Stellen wir die Zahl x/n in der Form

x/n =
∞∑
i=1

bi2−i

dar, so berechnet sich die Bitfolge bi, i = 1, 2, . . . wegen

2i−1x = n(2i−2b1 + · · ·+ bi−1 + bi/2 + bi+1/4 + · · ·) ≡n n(bi/2 + bi+1/4 + · · ·)

zu

bi = half(2i−1x mod n) = parity(2ix mod n) = klartext-parity(2iey mod n).

Setzen wir zi = n
∑i
j=1 bj2−j, so gilt für alle i > log2 n

0 ≤ x− zi = n
∞∑

j=i+1
bj2−j ≤ n

∞∑
j=i+1

2−i = n/2i < 1,

d.h. x = dzdlog2 nee. Daher lässt sich x mit Orakelfragen an klartext-parity durch folgenden
Algorithmus unter Berechnung der Bits bi für i = 1, 2, . . . , dlog2 ne bestimmen:
1 z := 0
2 for i := 1 to dlog2 ne do
3 y := 2ey mod n
4 bi := klartext-parity(y)
5 if bi then z := z + n2−i
6 output dze

98 7 Asymmetrische Kryptosysteme

Beispiel 141. Sei n = 1 457, e = 779 und y = 722. Angenommen, das Orakel klartext-
parity liefert die in folgender Tabelle angegebenen Werte bi = klartext-parity(yi) für die
Kryptotexte yi = 2iey mod n. Dann berechnet obiger Algorithmus die folgenden Werte
zi = n

∑i
j=1 bi2−i:

i 1 2 3 4 5 6 7 8 9 10 11
yi 1136 847 1369 1258 1156 826 444 408 1320 71 144
bi 1 0 1 0 1 1 1 1 1 0 0
n2−i 728, 5 364, 3 182, 1 91, 1 45, 5 22, 8 11, 4 5, 7 2, 8 1, 4 0, 7
zi 728, 5 728, 5 910, 6 910, 6 956, 2 978, 9 990, 3 996 998, 8 998, 8 998, 8
xi 541 1082 707 1414 1371 1285 1113 769 81 162 324

Der gesuchte Klartext ist also x = dz11e = d998, 8e = 999. Dass x tatsächlich die vorgege-
bene Paritätsbitfolge (bi) generiert, lässt sich durch Berechnung der zu den Kryptotexten
yi gehörigen Klartexte xi = 2ix mod n verifizieren (siehe letzte Tabellenzeile). /

	1 Klassische Kryptoverfahren
	1.1 Einführung
	1.2 Kryptosysteme
	1.3 Die additive Chiffre
	1.4 Die multiplikative Chiffre
	1.5 Die affine Chiffre
	1.6 Die Eulersche Phi-Funktion
	1.7 Der chinesische Restsatz
	1.8 Die Hill-Chiffre
	1.9 Die Vigenère-Chiffre und andere Stromsysteme
	1.10 Der One-Time-Pad
	1.11 Die Skytale-Chiffre
	1.12 Die Blocktransposition
	1.13 Die Porta-Chiffre
	1.14 Block- und Stromchiffren
	1.15 Gespreizte und homophone Substitutionen
	1.16 Realisierung von Transpositionen und Substitutionen

	2 Analyse der klassischen Verfahren
	2.1 Klassifikation von Angriffen gegen Kryptosysteme
	2.2 Kryptoanalyse von einfachen Substitutionschiffren
	2.3 Kryptoanalyse von Blocktranspositionen
	2.4 Kryptoanalyse von polygrafischen Chiffren
	2.5 Kryptoanalyse von polyalphabetischen Chiffren

	3 Sicherheit von Kryptosystemen
	3.1 Informationstheoretische Sicherheit
	3.2 Der Entropiebegriff
	3.3 Redundanz von Sprachen
	3.4 Die Eindeutigkeitsdistanz
	3.5 Weitere Sicherheitsbegriffe

	4 Moderne symmetrische Kryptosysteme & ihre Analyse
	4.1 Produktchiffren
	4.2 Substitutions-Permutations-Netzwerke
	4.3 Lineare Approximationen
	4.4 Lineare Kryptoanalyse eines SPN
	4.5 Differentielle Kryptoanalyse von SPNs

	5 DES und AES
	5.1 Der Data Encryption Standard (DES)
	5.1.1 Geschichte des DES
	5.1.2 Aufbau der DES-Chiffrierfunktion.
	5.1.3 Der DES Key-Schedule Algorithmus
	5.1.4 Eigenschaften von DES.

	5.2 Endliche Körper
	5.3 Der Advanced Encryption Standard (AES)
	5.3.1 Geschichte des AES
	5.3.2 Die AES S-Box SubByte
	5.3.3 Der AES Key-Schedule Algorithmus
	5.3.4 Der AES Chiffrieralgorithmus
	5.3.5 Die AES Transposition ShiftRows
	5.3.6 Die AES S-Box MixColumn
	5.3.7 Kryptoanalytische Betrachtungen

	5.4 Betriebsarten von Blockchiffren

	6 Zahlentheoretische Grundlagen
	6.1 Diskrete Logarithmen
	6.2 Zyklische Gruppen
	6.3 Effiziente Berechnung von Potenzen
	6.4 Der Primzahlsatz
	6.5 Pseudo-Primzahlen und der Fermat-Test
	6.6 Der Miller-Rabin Test

	7 Asymmetrische Kryptosysteme
	7.1 Das RSA-System
	7.2 Sicherheit des privaten RSA-Schlüssels
	7.3 Sicherheit partieller Klartextinformationen

