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1 Klassische Kryptoverfahren

1.1 Einfiihrung

Kryptografische Verfahren schaffen Vertrauen in ungeschiitzten Umgebungen. Sie er-
moglichen sichere Kommunikation iiber unsichere Kanéle und kénnen verhindern, dass
sich ein Kommunikationspartner unfair verhélt. In unsicheren Umgebungen wie dem
Internet konnen sie die aus direkter Interaktion gewohnte Sicherheit herstellen. Und
auch die Interaktion in sicheren Umgebungen wird um Moglichkeiten erweitert, die ohne
Kryptografie nicht denkbar wéren.

In diesem Modul werden wir uns mit den mathematischen Grundlagen von kryptogra-
fischen Verfahren beschéftigen, wobei (symmetrische und asymmetrische) Verschliisse-
lungsverfahren im Vordergrund stehen. Im Mastermodul Kryptologie werden wir dann
auch kryptografische Verfahren und Protokolle fiir andere Schutzziele betrachten wie z.B.
Hashverfahren und digitale Signaturen sowie Pseudozufallsgeneratoren.

Kryptosysteme (Verschlisselungsverfahren) dienen der Geheimhaltung von Nachrichten
bzw. Daten. Hierzu gibt es auch andere Methoden wie z.B.

Physikalische MaBnahmen: Tresor etc.
Organisatorische MaBBnahmen: einsamer Waldspaziergang etc.
Steganografische MaBnahmen: unsichtbare Tinte etc.

Andererseits konnen durch kryptografische Verfahren weitere Schutzziele realisiert
werden.

o Vertraulichkeit
— Geheimhaltung
— Anonymitat (z.B. Mobiltelefon)
— Unbeobachtbarkeit (von Transaktionen)
o Integritat
— von Nachrichten und Daten
e Zurechenbarkeit
— Authentikation
— Unabstreitbarkeit
— Identifizierung
o Verfigbarkeit
— von Daten
— von Rechenressourcen
— von Informationsdienstleistungen
In das Umfeld der Kryptografie fallen auch die folgenden Begriffe.

Kryptografie: Lehre von der Geheimhaltung von Informationen durch Verschliisselung.
Im weiteren Sinne: Wissenschaft von der Ubermittlung, Speicherung und Verarbei-
tung von Daten in einer von potentiellen Gegnern bedrohten Umgebung.
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Kryptoanalysis: Erforschung der Methoden eines unbefugten Angriffs gegen ein Krypto-
verfahren (Zweck: Vereitelung der mit seinem Einsatz verfolgten Ziele)

Kryptoanalyse: Analyse eines Kryptoverfahrens zum Zweck der Bewertung seiner kryp-
tografischen Stéirken bzw. Schwéchen.

Kryptologie: Wissenschaft vom Entwurf, der Anwendung und der Analyse von krypto-
grafischen Verfahren (umfasst Kryptografie und Kryptoanalyse).

1.2 Kryptosysteme

Es ist wichtig, Kryptosysteme von Codesystemen zu unterscheiden.

Codesysteme

— operieren auf semantischen Einheiten,

— starre Festlegung, welche Zeichenfolge wie zu ersetzen ist.

Beispiel 1 (Ausschnitt aus einem Codebuch der deutschen Luftwaffe).

xve Bis auf weiteres Wettermeldung gemdjf3 Funkbefehl testen
yde Frage

sLk Befehl

fin beendet

eom eigene Maschinen

Kryptosysteme

— operieren auf syntaktischen Einheiten

— flexibler Mechanismus durch Schliisselvereinbarung

Definition 2. Fin Alphabet A = {ay, ..., an_1} ist eine geordnete endliche Menge von
Zeichen a;. Eine Folge v = 1 ...z, € A" heifft Wort (der Lange n). Die Menge aller
Worter diber dem Alphabet A ist A* = U,>9 A".

Beispiel 3. Das lateinische Alphabet A,,; enthdlt die 26 Zeichen A, ... ,Z. Bei der
Abfassung von Klartexten wurde meist auf den Gebrauch von Interpunktions- und Leer-
zeichen sowie auf Grof- und Kleinschreibung verzichtet (~ Verringerung der Redundanz
im Klartext). q

Definition 4. Fin Kryptosystem wird durch folgende Komponenten beschrieben:
— A, das Klartextalphabet,
— B, das Kryptotextalphabet,
— K, der Schliisselraum (key space),
— M C A*, der Klartextraum (message space),
— C C B*, der Kryptotextraum (ciphertext space),
— FE: K xM — C, die Verschliisselungsfunktion (encryption function),
— D: K xC — M, die Entschliisselungsfunktion (decryption function) und
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Chiffrier- 4 Dechiffrier-
funktion F funktion D

Sender Empfianger

Abbildung 1.1: Schematische Darstellung der Funktionsweise eines Kryptosystems

— S C K x K, eine Menge von Schlisselpaaren (k, k") mit der Eigenschaft, dass fiir
jeden Klartext x € M folgende Beziehung gilt:

D(K',E(k,x)) == (1.1)

Bei symmetrischen Kryptosystemen ist S = {(k,k) | k € K}, weshalb wir in diesem
Fall auf die Angabe von S verzichten kénnen. Zu jedem Schliissel k € K korrespondiert
also eine Chiffrierfunktion Fj : x — FE(k,z) und eine Dechiffrierfunktion Dy : y —
D(k,y). Die Gesamtheit dieser Abbildungen wird auch Chiffre (englisch cipher) genannt.
(Daneben wird der Begriff | Chiffre* auch als Bezeichnung fiir einzelne Kryptotextzeichen
oder kleinere Kryptotextsequenzen verwendet.)

Lemma 5. Fir jedes Paar (k, k") € S ist die Chiffrierfunktion Ej injektiv.

Beweis. Angenommen, fir zwei Klartexte x; und xo gilt E(k,z1) = E(k, x3). Dann folgt

(1.1

o D D, Bk, 1)) = DV, Bk, 1)) '
N——

E(k,z2) 0

1.3 Die additive Chiffre

Die Moduloarithmetik erlaubt es uns, das Klartextalphabet mit einer Addition und
Multiplikation auszustatten.

Definition 6 (teilt-Relation, modulare Kongruenz). Seien a,b,m ganze Zahlen
mit m > 1. Die Zahl a teilt b (kurz: alb), falls ein d € Z existiert mit b = ad. Teilt m
die Differenz a — b, so schreiben wir hierfir

a =, b odera=> (mod m)
(in Worten: a ist kongruent zu b modulo m). Weiterhin bezeichne
amod m = min{a —dm >0 | d € Z}

den bei der Ganzzahldivision von a durch m auftretenden Rest, also diejenige ganze Zahl
r€{0,..., m—1}, fir die eine ganze Zahl d € Z existiert mit a = dm +r. Sowohl r als
auch d sind hierbei eindeutig bestimmt (siehe Ubungen) und die Zahl d wird auch mit
a div m bezeichnet.
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Tabelle 1.1: Werte der additiven Chiffrierfunktion ROT13 (Schlissel k = 13).

x ABCDEFGHIJKLMNOPQRSTUVWXYZ
E(13,x) |lnopgrstuvwxyzabcdefghijklm

Die auf Z definierten Operationen
a®p, b= (a+b) mod m und a ®,, b := ab mod m

sind abgeschlossen auf Z,, = {0,..., m — 1} und bilden auf dieser Menge einen kom-
mutativen Ring mit Einselement, den sogenannten Restklassenring modulo m. Fiir
a ®,, —b schreiben wir auch a ©,, b. Wenn aus dem Kontext klar ist, dass a,b € Z,, sind,
schreiben wir anstelle von a ®,, b, a ©,, b und a ®,, b auch einfach a + b, a — b bzw. ab.
Durch Identifikation der Zeichen a; eines Alphabets A = {ay, ..., amy—1} mit ihren Indizes
konnen wir die auf Z,, definierten Rechenoperationen auf Buchstaben tibertragen.

Definition 7 (Buchstabenrechnung). Sei A = {ao,...,a,_1} ein Alphabet. Fir
Indizes i,j € {0,..., m — 1} und eine ganze Zahl z € Z ist

i + Qj = Qigj, @ —0j = Qi—j, QG5 = 4,
;i +2 = Qitzy, A —2 = Qj—z, Z2aj; = Qzj mod m-

Mit Hilfe dieser Notation lédsst sich die additive Chiffre , die auch als Verschiebechiffre
oder Caesar-Chiffre bezeichnet wird, leicht beschreiben.

Definition 8. Bei der additiven Chiffre ist A= B = M = C ein beliebiges Alphabet
mit m := ||Al| und K ={0,...,m —1}. Firke K, x € M undy € C gilt

E(k,x)=x+k und D(k,y) =y — k.

Im Fall des lateinischen Alphabets fithrt der Schliissel £ = 13 auf eine interessante
Chiffrierfunktion, die in UNIX-Umgebungen auch unter der Bezeichnung ROT13 bekannt
ist (siehe Tabelle 1.1). Natiirlich kann mit dieser Substitution nicht ernsthaft die Vertrau-
lichkeit von Nachrichten gewahrt werden. Vielmehr soll durch sie ein unbeabsichtigtes
Mitlesen — etwa von Rétsellosungen — verhindert werden.

ROT13 ist eine involutorische (also zu sich selbst inverse) Abbildung, d.h. fir alle
x e A gilt

ROT13(ROT13(z)) = =.
Da ROT13 zudem keinen Buchstaben auf sich selbst abbildet, ist sie sogar echt invo-
lutorisch.

1.4 Die multiplikative Chiffre

Die Buchstabenrechnung legt folgende Modifikation der Caesar-Chiffre nahe. Anstatt auf
jedes Klartextzeichen den Schliisselwert k& zu addieren, konnen wir die Klartextzeichen
auch mit & multiplizieren. Allerdings erhalten wir hierbei nicht fiir jeden Wert von k eine
injektive Chiffrierfunktion. So bildet etwa die Funktion g : A;y — A mit g(z) = 2z
sowohl A als auch N auf das Zeichen g(A) = g(N) = a ab. Um eine hinreichende und
notwendige Bedingung fiir die Zuléssigkeit eines Schliisselwerts & formulieren zu konnen,
fithren wir folgende Begriffe ein.
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Definition 9 (ggT, kgV, teilerfremd). Seien a,b € Z. Fir (a,b) # (0,0) st
ggT(a,b) = max{d € Z | d teilt die beiden Zahlen a und b}
der grofite gemeinsame Teiler von a und b und fir a # 0,b # 0 ist
kgV(a,b) = min{d € Z | d > 1 und die beiden Zahlen a und b teilen d}

das kleinste gemeinsame Vielfache von a und b. Ist ggT(a,b) = 1, so nennt man a
und b teilerfremd oder man sagt, a ist relativ prim zu b.

Lemma 10. Seien a,b,c € Z mit (a,b) # (0,0). Dann gilt ggT(a,b) = ggT(b,a + be)
und somit ggT(a,b) = ggT(b,a mod b), falls b > 1 ist.

Beweis. Jeder Teiler d von a und b ist auch ein Teiler von b und a + bc und umgekehrt. O

Euklidscher Algorithmus: Der groite gemeinsame Teiler zweier Zahlen a und b lasst
sich wie folgt bestimmen.

O.B.d. A. sei a > b > 0. Bestimme die natiirlichen Zahlen (durch Divsision mit Rest*):
ro=a>r,=b>ry>--->r;>r, =0und ds,ds, ...dsi1
mit
Tri—1 = di_,_ﬂ’i + m+1ﬁ'1r 1= 1, e, S
Hierzu sind s Divisionsschritte erforderlich. Wegen

ggT(ri—1,ms) = ggT(ry, rim1 — digars)
—_———

Ti4+1
folgt ggT(a,b) = ggT(rs,rs11) = rs.
Beispiel 11. Fiir a = 693 und b = 147 erhalten wir
o Tis1 = dig1c T+ T
1 693 = 4 -147 4 105
2 147 = 1 -105+ 42
3 106 = 2 - 424+ 21
4 42 = 2 -214+ O
und damit ggT(693,147) = ry = 21. q

Der Euklidsche Algorithmus ldsst sich sowohl iterativ als auch rekursiv implementieren.

Prozedur Euklid;ji(a,b) Prozedur Euklid,e(a,b)

I repeat 1 if b =0 then

2 r:=amod b 2 return(a)

3 a:=b 3 else

A b:=r f return(Euklid ek (b, a mod b))
5 until r=20

¢ return(a)

*Also: di+1 =Tij—1 div T und Ti4+1 = Ti—1 mod Ti.
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Zur Abschétzung von s verwenden wir die Folge der Fibonacci-Zahlen Fj,.

0, falls n =0
F,=141, falls n = 1
F,_1+F,, fallsn>2
Durch Induktion tber ¢ = s+ 1,s,...,0 folgt r; > F,;1_; und somit a = ro > Fy;.
Weiterhin lisst sich durch Induktion iiber n > 0 zeigen, dass Fj, 4, > ¢" ! ist, wobei
¢ = (1++/5)/2 der goldene Schnitt ist. Der Induktionsanfang (n = 0 oder 1) ist klar, da
Fy=F =1=¢°> ¢ !ist. Unter der Induktionsannahme F; ; > ¢! fiir i <n —1
folgt wegen ¢ = ¢ + 1

Fn+1 = Fn + anl > ¢n72 + ¢n73 = ¢n73(¢ + 1) = ¢n71'
Somit ist @ > ¢*~', d.h. s <1+ [log,al.

Satz 12. Seien a > b > 0 ganze Zahlen und sei n die Lange von a in Bindrdarstellung.
Dann fiihrt der Euklidsche Algorithmus O(n) Divisionsschritte zur Berechnung von
ggT(a,b) durch. Dies fihrt auf eine Zeitkomplezitit von O(n?), da jede Ganzzahldivision
in Zeit O(n?) durchfiihrbar ist.

Erweiterter Euklidscher bzw. Berlekamp-Algorithmus: Der Euklidsche Algorith-
mus kann so modifiziert werden, dass er eine lineare Darstellung

ggT(a,b) = Aa + pb mit A\, u € Z

des ggT liefert (Zeitkomplexitit ebenfalls O(n?)). Hierzu werden neben 7; und d; weitere
Zahlen

Pi = Pi—2 — d;p;—1 (mit po = 1 und p; = 0)

und
¢ = qi—2 — d;iq;i—1 (mit g =0 und ¢; =1
fir i = 0,...,s bestimmt. Dann gilt fiir ¢ = 0 und ¢ = 1,
ap; + bg; = ri,
und wegen

apiy1 +bqiy1 = a(pi—y — digapi) + 0(qi—1 — dis14s)
= api—1 + bgi_1 — dip1(ap; + bg;)
= (ric1 —dipami)
= Tit1
folgt induktiv iiber ¢ = 2, ..., s, dass diese Gleichung auch fiir i = s gilt:
aps + bgs = rs = ggT(a,b).

Korollar 13 (Lemma von Bezout). Der grifste gemeinsame Teiler von a und b ist in
der Form
ggT(a,b) = Xa+ pb mit \, p € Z

darstellbar.
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Beispiel 14. Fir a = 693 und b = 147 erhalten wir wegen

ioricr = digr T T Di i pi 693+ ¢;-147= 1,
0 1 0 1-693+ 0-147 =693
1 693 = 4 -147+ 105 O 1 0-693+ 1-147=147
2 147 = 1 105+ 42 1 —4 1-693 — 4-147=105
3 105 = 2 - 424 21 -1 5) —1-693+ 5-147= 42
4 42 = 2 -21+ 0 3 -—-14 3-693 —14-147= 21
die lineare Darstellung 3 - 693 — 14 - 147 = 21. N

Aus der linearen Darstellbarkeit des grofiten gemeinsamen Teilers ergeben sich eine Reihe
von niitzlichen Schlussfolgerungen.

Korollar 15. Der gréfite gemeinsame Teiler von a und b wird von allen gemeinsamen
Teilern von a und b geteilt,

zla A zlb = x|ggT(a,b).

Beweis. Seien p, A € Z mit pa + \b = ggT(a,b). Falls x sowohl a als auch b teilt, dann
teilt x auch die Produkte pa und A\b und somit auch deren Summe. O

Korollar 16. ggT(a,b) = min{ a+pub> 1|\, u € Z}.

Beweis. Sei M ={ a+pb> 1|\ p € Z}, m =min M und g = ggT(a,b). Dann folgt
g > m, da g in der Menge M enthalten ist, und ¢ < m, da g jede Zahl in M teilt. O

Korollar 17. Zwei Zahlen a und b sind genau dann zu einer Zahl m € Z teilerfremd,
wenn ithr Produkt ab teilerfremd zu m ist,

ggT(a,m) =ggT(b,m)=1 <« ggT(ab,m)=1.

Beweis. Da a und b teilerfremd zu m sind, existieren Zahlen p, A, i/, X € Z mit pa+im =
1w+ Nm = 1. Somit ergibt sich aus der Darstellung

1= (ua+ 2 m)(@'b+ Nm) = &;}L_’/ab + (uaX + p'oX + A\N'm)m

u// )\//

und Korollar 16, dass auch ab teilerfremd zu m ist.

Gilt umgekehrt ggT(ab,m) = 1, so existieren Zahlen p, A € Z mit pab + Am = 1. Mit
Korollar 16 folgt sofort ggT(a, m) = ggT(b,m) = 1. O

Korollar 18 (Lemma von Euklid). Sind a und b teilerfremd und teilt a das Produkt bc,
so teilt a auch c,
geT(a,b) =1 A albc = alc

Beweis. Wegen ggT(a,b) = 1 existieren Zahlen p, A € Z mit pa + A\b = 1. Falls a das
Produkt be teilt, muss a auch die Zahl pac 4+ \bc = ¢ teilen. O

Damit nun eine Abbildung g : A — A der Form g(z) = bx auf einem Alphabet A injektiv
(oder gleichbedeutend, surjektiv) ist, muss es zu jedem Zeichen y € A genau einen Zeichen
xr € A mit bx = y geben. Wie der folgende Satz zeigt, ist dies genau dann der Fall, wenn
b und m teilerfremd sind.
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Satz 19. Seien b, y, m ganze Zahlen mit m > 1. Die lineare Kongruenzgleichung bx =,, y
besitzt genau dann eine eindeutige Losung x € {0,..., m — 1}, wenn ggT(b,m) =1 ist.

Beweis. Angenommen, ggT(b,m) = ¢g > 1. Dann ist mit = auch 2’ = x + m/g eine
Losung von bx =, y mit = #,, 2. Folglich ist die Kongruenz bx =,, y nicht eindeutig
losbar.

Gilt umgekehrt ggT (b, m) = 1, so folgt aus den Kongruenzen

bxl =m Y

und
bw? =m Y

sofort b(zy —x2) =, 0, also m|b(x1 —x3). Wegen ggT (b, m) = 1 folgt mit dem Lemma von
Euklid m|(z1 — x2), also x; =,, xs. Folglich hat die Kongruenz bx =, y fir jedes y € Z,,
hochstens eine Losung x € {0,..., m—1}. Zudem folgt, dass die Abbildung f : Z,, — Z,,
mit f(z) = bz mod m injektiv ist. Da aber der Definitions- und der Wertebereich von f
die gleiche Machtigkeit haben, muss f dann auch surjektiv sein. Somit hat die Kongruenz
bx =, y fur jedes y € Z,, sogar genau eine Losung x € {0,..., m — 1}, O

Korollar 20. Im Fall ggT(b,m) = 1 hat die Kongruenz bx =, 1 genau eine Losung, die
das multiplikative Inverse von b modulo m genannt und mit b=' mod m (oder einfach
mit b~ ) bezeichnet wird.

Korollar 17 zeigt, dass die Menge
Loy = {b € L, | ggT(b,m) =1}

aller invertierbaren Elemente von Z,, unter der Operation ©®,, abgeschlossen ist. Mit
Korollar 20 folgt daher, dass (Z* , ®,, 1) eine multiplikative Gruppe bildet. Allgemeiner
zeigt man, dass die Multiplikation eines beliebigen Rings (R, +,-,0, 1) mit Eins auf der
Menge R* = {a € R|3b € R:ab=1=ba} aller Einheiten von R eine Gruppe bildet
(siche Ubungen). Diese Gruppe (R*,-,1) wird als Einheitengruppe von R bezeichnet.

Das multiplikative Inverse von b modulo m ergibt sich aus der linearen Darstellung
Ab+ pm = ggT(b,m) =1 zu b=* = X\ mod m. Die folgende Tabelle gibt fiir jedes b € Zi
das multiplikative Inverse b=! an.

b {1 3 5 7 9 11 15 17 19 21 23 25
b'|1 9 21 15 3 19 7 23 11 5 17 25

Bei Kenntnis von b~! kann die Kongruenz br =,, y leicht zu x = yb~! mod m gelost
werden.

Nun lasst sich die additive Chiffre leicht zur affinen Chiffre erweitern.

1.5 Die affine Chiffre

Definition 21. Bei der affinen Chiffre ist A= B = M = C ein beliebiges Alphabet
mit m = ||A]| und K =7, X Zy,. Firk = (b,c) € K, x € M und y € C gilt

E(k,x) =bx+c und D(k,y)=b"1(y—c).
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In diesem Fall liefert die Schliisselkomponente b = —1 fiir jeden Wert von ¢ € Z,, eine in-
volutorische Chiffrierfunktion x +— F(_; o(x) = ¢ — 2 (verschobenes komplementéres
Alphabet). Wihlen wir fiir ¢ ebenfalls den Wert —1, so ergibt sich die Chiffrierfunk-
tion x — —x — 1, die auch als revertiertes Alphabet bekannt ist. Offenbar ist diese
Funktion genau dann echt involutorisch, wenn m gerade ist.

x ABCDEFGHIJKLMNOPQRSTUVWXYZ
—x azyxwvutsrqgponmlkjihgfedchb
—x—1|zyxwvutsrgqponmlkjihgfedcba

Als néchstes illustrieren wir die Ver- und Entschliisselung mit der affinen Chiffre an einem
kleinen Beispiel.

Beispiel 22 (affine Chiffre). Sei A = {A,...,Z} = B, also m = 26. Weiter sei k = (9,2),
also b =9 und ¢ = 2. Um das Klartextzeichen x = F zu verschlisseln, berechnen wir

Ek,z)=br+c=9F+2=v,

da der Index von F gleich 5, der von v gleich 21 und 9 -5 + 2 = 47 =54 21 ist. Um
ein Kryptotextzeichen wieder entschliisseln zu konnen, bendtigen wir das multiplikative
Inverse von b =9, das sich wegen

i ricr = dig1emi + T pi-264+  ¢-9 = 1
0 1-26 + 0-9 = 26
1 26 = 9+ 8 0-26 + 1-9= 9
2 9 = 1 -84+ 1 1-264+(-2)-9 = 38
3 8= 8 -1+ 0 (-1):26+ 3.9= 1

2 bl = g3 = 3 ergibt. Damit erhalten wir fiir das Kryptotextzeichen y = v das
urspringliche Klartextzeichen

D(k,y)=b"(y—c)=3(v—-2)=F

zurick, da 3-19 = 57 =96 5 ist. N

1.6 Die Eulersche Phi-Funktion

Zur Berechnung der Schliisselzahl bei der multiplikativen und affinen Chiffre benotigen
wir die Funktion

e:N=N mit o(m) = |Z;,]| = [{a € Zy | gT(a,m) = 1}],

die sogenannte Fulersche p-Funktion. Die folgende Tabelle zeigt die Werte ¢(m) fiir
m =1,...,10 (fiir die Menge {1,...,n}, n € N, schreiben wir auch kurz [n]).

m |1 23 4 5 6 7 8 9 10
Zr, {0} {1} 2] {1,3} 4] {1,5}[6]{1,3,5,7}{1,2,4,5,7,8}{1,3,7,9}
em)l 1 1 2 2 4 2 6 4 6 4
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Fiir primes p gilt offensichtlich ¢(p) =p — 1, da Z; = [p — 1] ist. Wegen

Zpk — Z;k = {0,]?, 2p, ce (pk_l — 1)])}
folgt zudem
(") =pF —p" Tt =p M p — 1) fir k> 1.

Um hieraus fir beliebige Zahlen n € N eine Formel fiir ¢(n) zu erhalten, gentigt es,
w(ml) im Fall ggT(m,[l) =1 in Abhéngigkeit von ¢(m) und ¢(l) zu bestimmen. Hierzu
betrachten wir die Abbildung f : Z,,; — Z,, X Z; mit

f(x) = (z mod m, z mod [).

Beispiel 23. Sei m =5 und | = 6. Dann erhalten wir die Funktion f : Zsy — 75 X Zg
mit

T 0 1 2 3 4 ) 6 7 8 9
f(@)] (0,0)(1,1)(2,2) (3,3) (4,4) (0,5) (1,0) (2,1) (3,2) (4,3)

x| 10 11 12 13 14 15 16 17 18 19
f(x)] (0,4) (1,5) (2,0) (3,1) (4,2) (0,3) (1,4) (2,5) (3,0) (4, 1)

x| 20 21 22 23 24 25 26 27 28 29
f(x)] (0,2) (1,3) (2,4) (3,5) (4,0) (0,1) (1,2) (2,3) (3,4) (4,5)

Man beachte, dass [ eine Bijektion zwischen Zsg und Zs X Zg ist. Zudem fdllt auf, dass
ein x-Wert genau dann in Z3, liegt, wenn der Funktionswert f(x) = (y,z) zu Z§ X Z
gehort (die Werte x € Z%,, y € Z und z € Z sind fett gedruckt). Folglich bildet f
die Argumente in Z%, bijektiv auf die Werte in Z; X Z7 ab. Fir f~1 erhalten wir somit
folgende Tabelle:

U101 2 3 405

0 25 20 15 10 5
6 1 26 21 16 11
127 2 27 22 17
18 13 8 3 28 23
4 |24 19 14 9 4 29

W N = o

Die fett gedruckten Fintrdge bilden dann die Tabelle der Einschrankung ffl von f~1 auf
die Menge Z; x Z§. Das Bild dieser Einschrinkung ist genau die Menge Z3,. <

Der Chinesische Restsatz, den wir im néchsten Abschnitt beweisen, besagt, dass f im
Fall ggT(m,¢) = 1 bijektiv und damit invertierbar ist. Wegen

geT(x,ml) =1 & ggT(r,m)=geT(x,{)=1
< ggT(x mod m,m) = ggT(z mod ¢,¢) =1

ist daher die Einschrankung f von f auf den Bereich Z? , eine Bijektion zwischen Z7 ,
und Z;, x Zj;, d.h. es gilt

p(ml) = [|Zll = 12, x Zgl| = 12y, || - [ Ze]] = p(1m)(€).
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Satz 24. Die Eulersche @-Funktion ist multiplikativ, d. h. fiir teilerfremde Zahlen m und
€ gilt p(ml) = e(m)e(L).
Korollar 25. Seim = Hle pf die Primfaktorzerlegung von m. Dann gilt

V4 V4
p(m) = [[pfi’l(pi — 1) =m (i = 1)/p

Beweis. Es gilt ¢(I1_, pi*) = [izy o (p") = ica (0" — p ) = i pf Mo — 1), O

1.7 Der Chinesische Restsatz

Die beiden linearen Kongruenzen
r =3 0
r =¢ 1
besitzen je eine Losung, es gibt aber kein x, das beide Kongruenzen gleichzeitig erfillt.

Der néchste Satz zeigt, dass unter bestimmten Voraussetzungen gemeinsame Losungen
existieren, und wie sie berechnet werden kénnen.

Satz 26 (Chinesischer Restsatz (CRS)). Falls mq, ..., my paarweise teilerfremd sind,
dann hat das System

(1.2)
T =m bk

iir beliebige Zahlen by, ..., by € Z genau eine Lisung modulo m = [[%_, m,.
f g ) ) g g =1

Beweis. Zu jeder Zahl n; = m/,,. existieren wegen ggT(n;, m;) = 1 Zahlen p; und A; mit
ping 4+ Am; = ggT(ng;,m;) =1
Firi=1,... k lost daher die Zahl s; = u;n; das System

o ,{0, j#i ()

1.3
L j=1i (b) e

1.3a 1.3b
Folglich gelten fiir s = Y% | b;s; die Kongruenzen s( = znj js]-( = znj b;j, d.h. s lost das

System (1.2). Dies zeigt, dass die Funktion
fiZy = Ly X -+ X Ly, mit f(z) = (x mod my, ...,z mod my)

surjektiv ist. Da der Definitions- und der Wertebereich von f gleich grofl sind, muss f
auch injektiv sein und (1.2) ist eindeutig lésbar. O

Man beachte, dass der Beweis des Chinesischen Restsatzes konstruktiv ist und die Losung
x unter Verwendung des erweiterten Euklidschen Algorithmus’ effizient berechnet werden
kann.

Man verifiziert auch leicht, dass f ein Isomorphismus zwischen dem Ring (Z,,, ®.m, Om)
und dem direkten Produkt der Ringe (Z,,, ®m,, Om,), 1 < i < k, ist. Dies ist nicht
nur fiir theoretische Uberlegungen niitzlich, sondern hat auch praktische Konsequenzen.
Beispielsweise lasst sich dadurch die Laufzeit von bestimmten Berechnungen im Ring Z,,
deutlich reduzieren, sofern die Primzahlzerlegung von m bekannt ist.
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1.8 Die Hill-Chiffre

Die von Hill im Jahr 1929 publizierte Chiffre ist eine Erweiterung der multiplikativen
Chiffre auf Buchstabenblocke. Der Klartext wird also nicht zeichen- sondern blockweise
verarbeitet. Die Blocke haben eine feste Lange [ und sowohl Klar- als auch Kryptotextraum
bestehen aus allen Wortern z € A'. Als Schliissel dient eine (I x [)-Matrix k = (k;;)
mit Koeffizienten in Z,,. Diese transformiert einen Klartext z = x;...2; € Al in den
Kryptotext y = y1 ...y mit y; = x1ky; + -+ xky fir i =1,..., [

kll kll

(yl"'yl):(xl"'xl) : .. :
kll kll

Wir bezeichnen die Menge aller (I x [)-Matrizen (k;;) mit Koeffizienten k;; € Z,, mit
Z2t. Als Schliissel kénnen nur invertierbare Matrizen k benutzt werden, da sonst der
Chiffriervorgang nicht injektiv ist. Ob eine Matrix k € Z! invertierbar ist, ldsst sich an
ihrer Determinante erkennen.

Definition 27 (Determinante). Sei R ein kommutativer Ring mit Fins und sei A =
(a;j) € R™". Eine Funktion f : R™™ — R heifst Determinantenfunktion, falls sie
folgende drei Figenschaften erfillt
— f ist multilinear, d.h. fir jede Matric A = (ai,...,a,) € R™™ mit Spalten
ai,...,a, € (R, jeden Spaltenvektor b € (R™)T und jedes r € R gilt

flay,...;ra;+b,...,a,) =7rf(ar,...,a¢;,...,an) + flay,...,b,... a,).

— [ ist alternierend, d.h. im Fall a; = a; fir i # j gilt f(a,...,a,) =0.
— [ ist normiert, d.h. f(E) =1, wobei E die Finheitsmatriz ist.

Tatsdchlich ist f durch diese drei Figenschaften eindeutig festgelegt und wir bezeichnen
f(A) wie tblich mit det(A).

Eine explizite Darstellung fiir die Determinantenfunktion liefert der laplacesche Entwick-
lungssatz. Fir 1 <i,j <n sei A;; die durch Streichen der i-ten Zeile und j-ten Spalte
aus A hervorgehende Matrix. Dann ist det(A) = aq1, falls n = 1, und fir n > 1 ist
det(A) =Y (—1)a;det(A;),
j=1

wobei i € {1,---,n} beliebig wahlbar ist (Entwicklung nach der i-ten Zeile). Das Produkt
(—1)"* det(A;;) wird Kofaktor genannt und mit a;; bezeichnet. Aus dieser Formel lasst
sich zwar ein Algorithmus zur Berechnung der Determinante ableiten, allerdings hat
dieser eine exponentielle Laufzeit. Das Gau-Verfahren fithrt dagegen auf eine effiziente
Berechnungsmethode fiir die Determinante (sieche Ubungen).

Fiir die Dechiffrierung eines mit dem Schliissel k£ berechneten Kryptotextes wird die
inverse Matrix k=1 benétigt. Invertierbare Matrizen werden auch als regulir bezeichnet.
Eine Matrix k € ZX! ist genau dann regulir, wenn ggT(det(k), m) = 1 ist. In diesem Fall
lisst sich k7! mit dem GaufB-Jordan-Algorithmus effizient berechnen (siehe Ubungen).

Definition 28. Sei A ={aq,...,a,_1} ein beliebiges Alphabet und fiir eine natirliche
Zahl € > 2 sei M = C = A*. Bei der Hill-Chiffre ist K = {k € Z'** | ggT(det(k),m) =
1} und es gilt

E(k,x) = 2k und D(k,y) = yk™ "
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Beispiel 29 (Hill-Chiffre). Benutzen wir zur Chiffrierung von Klarteztblocken der Linge
[ = 4 diber dem lateinischen Alphabet Ay die Schlisselmatriz

11 13 8 21

J— 24 17 3 25
18 12 23 17 |’
6 15 2 15

so erhalten wir beispielsweise fiir den Klartext HILL wegen

11 13 8 21 11H+24T1418L+ 6L=n
(HILL) 24 17 3 25 —(nerx) baw. 13H+17I+12L+15L=e
18 12 23 17 8H+ 3I+23L+ 2L=r
6 15 2 15 21H+25T4+17L+15L=x

den Kryptotext E(k,HILL) = nerx. Fiir die Entschliisselung wird die inverse Matriz k=!
bendtigt. Diese wird in den Ubungen berechnet. N

1.9 Die Vigenere-Chiffre und andere Stromsysteme

Die nach dem Franzosen Blaise de Vigenere (1523-1596) benannte Chiffre ersetzt den
Klartext zeichenweise, allerdings je nach Position im Klartext unterschiedlich.

Definition 30. Sei A = B ein beliebiges Alphabet. Die Vigenére-Chiffre chiffriert
unter einem Schliissel k = ko ... kg1 € K = A* einen Klartext x = xq...x,_1 beliebiger
Linge zu

E(k,z) =y0.. . Yn—1 mit y; = & + Kimoaa) firi=1,...,n—1
und dechiffriert einen Kryptotert y = yo...Yp_1 2U
D(k,y) =xo...xp1 mit &, =y —kGmoaaq) firi=1,...,n—1.

Beispiel 31 (Vigeneére-Chiffre). Verwenden wir das lateinische Alphabet A, als Klar-
textalpabet und wahlen wir als Schliissel das Wort k = WIE, so ergibt sich fiir den Klartext
VIGENERE beispielsweise der Kryptotext

E(WIE,VIGENERE) =V+W I+I G+E E+W N+I E+E R+WE+I = rgkavinm
M Y M N Y N

r q k a v i n m 4
Um einen Klartext x zu verschliisseln, wird also das Schliisselwort k& = kg ...kg_1 so
oft wiederholt, bis der dabei entstehende Schliisselstrom k& = kok;...kq_1ko... die
Léange von x erreicht. Dann werden x und k zeichenweise addiert, um den zugehorigen
Kryptotext y zu bilden. Aus diesem kann der urspriingliche Klartext x zurtickgewonnen
werden, indem man den Schliisselstrom k wieder subtrahiert.

Beispiel 32. Vigenére-Chiffre

Chiffrierung: Dechiffrierung:
VIGENERE (Klartext x) rgkavinm (Kryptotext y)

+ WIEWIEWI (Schlisselstrom k) — WIEWIEWI (Schliisselstrom k)
rqgkavinm (Kryptotext y) VIGENERE (Klartext x)
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Die Chiffrierarbeit lasst sich durch Benutzung einer Additionstabelle erleichtern (auch
als Vigenére-Tableau bekannt).

N<KHE<OHRPOTOZEDN R~ EQEEOQW > | >

SO QEHEHUQEENLI XS <3 HOYOZEZER| R
Ao~ IQHEHUQEEN<KXI<CHnIOTOZZ 0|
CEReREEQEEOOQWENK XIS POTOZE|E
ZEOR O~ I QM EHUQWENR YIS IOWOZ |2
ZEC R =D QHEHUQ@E PN XKI<cRnBOIO|0
OZEC-FNu—~IOQHEuOUdQuWeEN<KXSI<cHwnIOT| T
OZEC R« —~IZQHEHTOQEENK XS <<CcH®RTO|O
TOZECN R —~IQREOUQWEN<R K<l no |
NHOTOZEC R« —~IZQHEHUQWENR KISl 3
HRnTOTWOZErN R« —~IQREHIQWEENK XS <a|c
CHRFOTVOZECDN R« —~IQHEHIQAE PN XS <| <
< CH®NTOTVOZZOFRu~ZDQHETIQE NS X | =

PNAAR I <A PO UOZECN R —ODQuEmoQw|w
TENRKXI<AHRIOTVOZECN R ~TDQHEHOQ|Q
AWPEPNKKRIE<<HNTIOUTVOZECN R« ~TIQHET| U
TJQWEPNRHRI<ORRTOTOZEC Ru—~IOTE|H
HOQWENHKXSI <3 TBOTOZECRa—~TQ M|
HEHIQWENK RS <O TOZE0Ru—=THO |0
QOHEHOQWENK XS <R OUvO0OZEC Ra—~T| T
TQHEHOQWEPNKXKI<<CHNTIOTOZEC R |~
FIQTHMEIQWENKR XS <R nIOTOZED R |
HOUWOZECRu~IQHEOUQEEPNR XK=<l n|n
S<CHRTOUOZECD R —IOHMETQE > NN K| X
HE<adRRTOTOZECO R —~IOHEHIQW > N | <
MH SO TOIOZECNRu~TQHEUQmE > N| N

NHHRS<CRnTOUOZEN R —~TIQHE0Q®WE |+

g
i®)

Um eine involutorische Chiffre zu erhalten, schlug Sir Francis Beaufort, ein Admiral der
britischen Marine, vor, den Schliisselstrom nicht auf den Klartext zu addieren, sondern
letzteren von ersterem zu subtrahieren.

Beispiel 33 (Beaufort-Chiffre). Verschliisseln wir den Klartext BEAUFORT beispiels-
weise unter dem Schlisselwort k = WIE, so erhalten wir den Kryptotext xmeqnsnb. Fine
erneute Verschlisselung liefert wieder den Klartext BEAUFORT:

Chiffrierung: Dechiffrierung:
WIEWIEWI (Schlisselstrom) WIEWIEWI (Schlisselstrom)
— BEAUFORT (Klartext) — veecdqfp (Kryptotext)
veecdqfp (Kryptotext) BEAUFORT (Klartext)

N

Bei den bisher betrachteten Chiffren wird aus einem Schliisselwort & = kg ... kgs_1 ein
periodischer Schliisselstrom k=ko.. kyy erzeugt, das heif3t, es gilt ki = l%i+d fir
alle t = 0,...,n —d — 1. Da eine kleine Periode das Brechen der Chiffre erleichtert,
sollte entweder ein Schliisselstrom mit sehr grofer Periode oder noch besser ein fortlau-
fender Schliisselstrom zur Chiffrierung benutzt werden. Ein solcher nichtperiodischer
Schliisselstrom lésst sich beispielsweise ohne grofien Aufwand erzeugen, indem man an
das Schlusselwort den Klartext oder den Kryptotext anhéngt (sogenannte Autokey-
Chiffrierung).!

tDie Idee, den Schliisselstrom durch Anhingen des Klartextes an ein Schliisselwort zu bilden, stammt
von Vigenere, wihrend er mit der Erfindung der nach ihm benannten Vigeneére-Chiffre ,nichts zu
tun® hatte. Diese wird vielmehr Giovan Batista Belaso (1553) zugeschrieben.
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Beispiel 34 (Autokey-Chiffre). Benutzen wir wieder das Schliisselwort WIE, um den
Schliisselstrom durch Anhdngen des Klar- bzw. Kryptotextes zu erzeugen, so erhalten wir
fuir den Klartext VIGENERE folgende Kryptotexte:

Klartext-Schliisselstrom: Kryptotext-Schliisselstrom:
VIGENERE (Klartext ) VIGENERE (Klartext )

+ WIEVIGEN (Schlisselstrom) + WIERQKVD (Schlisselstrom)
rqgkzvkvr (Kryptotext ) rgkvdomh (Kryptotext )

N

Auch die Dechiffrierung ist in beiden Féllen einfach. Bei der ersten Alternative kann der
Empfanger durch Subtraktion des Schliisselworts den Anfang des Klartextes bilden und
gleichzeitig den Schliisselstrom verlangern, so dass sich auf diese Weise Stiick fiir Stiick der
gesamte Kryptotext entschliisseln lasst. Noch einfacher gestaltet sich die Dechiffrierung im
zweiten Fall, da sich hier der Schliisselstrom vom Kryptotext nur durch das vorangestelle
Schliisselwort unterscheidet.

1.10 Der One-Time-Pad

Eine weitere Moglichkeit ist, eine Textstelle in einem Buch als Schliissel zu vereinbaren
und den dort beginnenden Text als aperiodischen Schliisselstrom zu benutzen (Lauf-
textverschliisselung). Besser ist es jedoch, mithilfe von Pseudozufallsgeneratoren aus
einem relativ kurzen Schliissel einen deutlich lingeren Schliisselstrom zu erzeugen. Noch
besser ist es, den Schliisselstrom wirklich zufallig zu erzeugen. Dies fiihrt auf eine absolut
sichere Verschliisselung, sofern der Schliisselstrom nicht mehrmals benutzt wird.? Ein
solcher Wegwerfschliissel“ (engl. One-Time-Pad oder kurz OTP; im Deutschen auch
als individueller Schliissel bezeichnet) ldsst sich fir langere Klartexte allerdings nur
mit grofem Aufwand generieren und auf einem sicheren Kanal zwischen Sender und
Empfanger verteilen, weshalb diese Chiffre nur wenig praktikabel ist.$

Beispiel 35 (One-Time-Pad). Sei A = {ag,...,amn_1} ein beliebiges Klartextalphabet.
Um einen Klartext x = xq...x,_1 zu verschlisseln, wird auf jedes Klartextzeichen x; ein
neuer, zufdllig generierter Schlisselbuchstabe k; addiert,

Y=19Yo---Yn_1, wobeiy; =x; + k;. <

Der Klartext wird also wie bei einer additiven Chiffre verschliisselt, nur dass der Schliissel
nach einmaligem Gebrauch gewechselt wird. Wie diese ist der One-Time-Pad im Binérfall
involutorisch.

Klartext Kryptotext Klartext

Schliissel Schliissel

! Diese Methode schlug der amerikanische Major Joseph O. Mauborgne im Jahr 1918 vor, nachdem
ihm ein von Gilbert S. Vernam fiir den Fernschreibverkehr entwickeltes Chiffriersystem vorgestellt
wurde.

5 Diese Methode wurde beispielsweise beim ,heifien Draht, der 1963 eingerichteten, direkten Fern-
schreibverbindung zwischen dem Weiflen Haus in Washington und dem Kreml in Moskau, angewandst.
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1.11 Die Skytale-Chiffre

Bei den bisher betrachteten Chiffrierfunktionen handelt es sich um Substitutionen, d.h.
sie bilden den Kryptotext aus dem Klartext, indem sie Klartextzeichen — einzeln oder
in Gruppen — durch Kryptotextzeichen ersetzen. Dagegen verdndern Transpositionen
lediglich die Reihenfolge der einzelnen Klartextzeichen.

Beispiel 36 (Skytale-Chiffre). Die dlteste bekannte Verschlisselungstechnik stammt aus
der Antike und wurde im 5. Jahrhundert v. Chr. von den Spartanern entwickelt: Der
Sender wickelt einen Papierstreifen spiralformig um einen Holzstab (die sogenannte
Skytale) und beschreibt ihn in Langsrichtung mit der Geheimbotschaft.

<>>>>>>>;_>>

~ lgi...bes ehv reo...ail...uml...sn...

Besitzt der Empfinger eines auf diese Weise beschrifteten Papierstreifens einen Stab mit
dem gleichen Umfang, so kann er ihn auf dieselbe Art wieder entziffern. <

Als Schliissel fungiert hier also der Stabumfang bzw. die Anzahl k der Zeilen, mit denen
der Stab beschrieben wird. Findet der gesamte Klartext x auf der Skytale Platz und
betragt seine Lénge ein Vielfaches von k, so geht x bei der Chiffrierung in den Kryptotext
E(k’, Ty--- kam) =
T1Tmi1 " T(k—1)m+1L2Tm+2 " T(k—1)m4+2 ** " TmL2m * * * Thm
iiber. Dasselbe Resultat erhéalt man, wenn x zeilenweise in eine k& x m-Matrix geschrieben
und spaltenweise wieder ausgelesen wird (sogenannte Spaltentransposition):

xl xz o e xm
Tm+1 Tm+2 s Tom
T(k—1)m+1 T(k—1)m+2 “~°° Tkm

Ist die Klartextlange kein Vielfaches von k, so kann der Klartext durch das Ein- bzw.
Anfiigen von sogenannten Blendern (Fillzeichen) verlangert werden. Damit der Emp-
fanger diese Fiillzeichen nach der Entschliisselung wieder entfernen kann, ist lediglich
darauf zu achten, dass sie im Klartext leicht als solche erkennbar sind.

Von der Methode, die letzte Zeile nur zum Teil zu fiillen, ist dagegen abzuraten. In diesem
Fall wiirden namlich auf dem abgewickelten Papierstreifen Liicken entstehen, aus deren
Anordnung man Schliisse auf den benutzten Schliissel k ziehen konnte. Andererseits ist
nichts dagegen einzuwenden, dass der Sender die letzte Spalte der Skytale nur zum Teil
beschriftet.

Eng verwandt mit der Skytale-Chiffre ist die Zick-Zack-Transposition.
Beispiel 37. Bei Ausfiihrung einer Zick-Zack-Transposition wird der Klartext in

eine Zick-Zack-Linie geschrieben und horizontal wieder ausgelesen. Die Hohe der Zick-
Zack-Linie kann als Schlissel vereinbart werden.

Z Z L E
I K A K I I [ZICKZACKLINIE ~ zzleikakiiccn]
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1.12 Die Blocktransposition

Bei einer Zick-Zack-Transposition werden Zeichen im vorderen Klartextbereich bis fast
ans Ende des Kryptotextes verlagert und umgekehrt. Dies hat den Nachteil, dass fiir
die Generierung des Kryptotextes der gesamte Klartext gepuffert werden muss. Daher
werden meist Blocktranspositionen verwendet, bei denen die Zeichen nur innerhalb
fester Blockgrenzen transponiert werden.

Definition 38. Sei A = B ein beliebiges Alphabet und fiir eine natirliche Zahl 1 > 2 sei
M = C = A’. Bei einer Blocktranspositionschiffre wird durch jeden Schliissel k € K
eine Permutation m auf [¢] beschrieben, so dass fir alle Zeichenfolgen - --xy € M und
yi-yeel
E(k, Ty xe) = xw(l) . xw(f)
und
D(k,y1+ - ye) = Y101 Yn100)

qgilt.

Eine Blocktransposition mit Blockldnge ¢ lasst sich durch eine Permutation 7= € S, (also
auf der Menge {1,...,¢}) beschreiben.

Beispiel 39. Eine Skytale, die mit 4 Zeilen der Ldnge 6 beschrieben wird, realisiert
beispielsweise folgende Blocktransposition.:

3 4

12 7 8 10 11 12 13 1516 17 18 19 20 21 22 23 24
171319

T 6 9 1 14
814203 9 1521 4 1016 22 5 11 1723 6 12 18 24

5)
(1) 2

<

Fiir die Entschliisselung muss die zu 7 inverse Permutation 7! benutzt werden. Wird
7 durch eine Folge von Zyklen (i; iy i3 ... i,) dargestellt, wobei i; auf iy, iy auf iz usw.
und schliefllich 4,, auf i; abgebildet wird, so ist 7=! sehr leicht zu bestimmen.

Beispiel 40.

i 123456 i 123456
7(i)|4 61352 7 1(i)[3 64152

Obiges T hat beispielsweise die Zyklendarstellung
T=(143)(26)(5) oder m=(143)(26),

wenn, wie allgemein ublich, Finerzyklen weggelassen werden. Daraus erhalten wir unmit-

telbar 71 zu

71 =(341)(62) oder (134)(26),

wenn wir jeden Zyklus mit seinem kleinsten Element beginnen lassen und die Zyklen nach
der Grofle dieser Elemente anordnen. <

Beispiel 41. Bei der Matriz- Transposition wird der Klartext zeilenweise in eine
k x l-Matriz eingelesen und der Kryptotext spaltenweise gemdfS einer Spaltenpermutation
7 € Sy, die als Schlissel dient, wieder ausgelesen. Fir m = (14 3) (2 6) wird also zuerst
Spalte w(1) = 4, dann Spalte w(2) = 6 und danach Spalte w(3) = 1 usw. und zuletzt Spalte
7(6) = 2 ausgelesen.
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3 6 41 5 2

DI ESER

KL ARTE DIESER KLARTEXT IST NICHT SEHR LANG
XTI S TN ) . .

I CHTSE ~» srstarenegdkxiheaihl ettsniltcr
HRLANSG

N

Beispiel 42. Bei der Weg-Transposition wird als Schlissel eine Hamiltonlinie in
einem Graphen mit den Knoten 1,... 1 benutzt. (Eine Hamiltonlinie ist eine Anordnung
aller Knoten, in der je zwei aufeinanderfolgende Knoten durch eine Kante verbunden
sind.) Der Klartextblock xy - - x; wird gemdfS der Knotennumerierung in den Graphen
eingelesen und der zugehorige Kryptotext entlang der Hamiltonlinie wieder ausgelesen.

[HAMILTON ~> timlonah]

Es ist leicht zu sehen, dass sich jede Blocktransposition durch eine Hamiltonlinie in einem
geeigneten Graphen realisieren ldsst. Der Vorteil, eine Hamiltonlinie als Schliissel zu
benutzen, besteht offenbar darin, dass man sich den Verlauf einer Hamiltonlinie bildhaft
vorstellen und daher besser einprégen kann als eine Zahlenfolge.

Sehr beliebt ist auch die Methode, sich eine Permutationen in Form eines Schliissel-
worts (oder einer aus mehreren Wortern bestehenden Schliisselphrase) ins Gedéchtnis
einzupragen. Aus einem solchen Schliisselwort lésst sich die zugehorige Permutation o
leicht rekonstruieren, indem man das Wort auf Papier schreibt und in der Zeile darunter
fiir jedes einzelne Zeichen seine Position ¢ innerhalb des Wortes vermerkt.

Schliisselwort fir o |[CAES AR

1 123456

o (i) 314625
Zyklendarstellung von o | (13465 2)

DIE BLOCKLAENGE IST SECHS ~-
edboil lcanke igsset excsyh

Die Werte (i), die o auf diesen Nummern annimmt, werden nun dadurch ermittelt,
dass man die Schliisselwort-Buchstaben in alphabetischer Reihenfolge durchzéhlt. Dabei
werden mehrfach vorkommende Zeichen geméfl ihrer Position im Schliisselwort an die
Reihe genommen. Alternativ kann man auch alle im Schliisselwort wiederholt vorkom-
menden Zeichen streichen, was im Fall des Schliisselworts CAESAR auf eine Blockldnge
von 5 fithren wiirde.

Wir wenden uns nun der Klassifikation von Substitutionen zu. Ein wichtiges Unterschei-
dungsmerkmal ist z.B. die Lange der Klartexteinheiten, auf denen die Chiffre operiert.

Monografische Substitutionen ersetzen Einzelbuchstaben.

Polygrafische Substitutionen ersetzen dagegen aus mehreren Zeichen bestehende Klar-
textsegmente auf einmal.

Eine Substitution heifit monopartit, falls sie die Klartextsegmente durch Einzelzeichen
ersetzt, sonst multipartit. Eine polygrafische Substitution, die auf Zeichenpaaren ope-
riert, wird digrafisch genannt. Wird der Kryptotext aus Zeichenpaaren zusammengesetzt,
so spricht man von einer bipartiten Substitution.
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1.13 Die Porta-Chiffre

Das élteste bekannte polygrafische Chiffrierverfahren wurde von Giovanni Porta im Jahr
1563 veroffentlicht. Dabei werden je zwei aufeinanderfolgende Klartextzeichen durch ein
einzelnes Kryptotextzeichen ersetzt.

Beispiel 43. Bei der Porta-Chiffre werden 400 (!) unterschiedliche von Por-
ta fir diesen Zweck entworfene Kryptotextzeichen wverwendet. Diese sind in einer
20 x 20-Matriz M = (y;;) angeordnet, deren Zeilen und Spalten mit den 20 Klartextzei-
chen A, ..., I,L,....T,V,Z indiziert sind. Zur Ersetzung des Zeichenpaars a;a; wird das
in Zeile i und Spalte j befindliche Kryptotextzeichen

E(M, aiaj) = yij
benutzt. q

Ein frithes (monografisches) Beispiel einer bipartiten Chiffriermethode geht auf Polybios
(circa 200—120 v. Chr.) zuriick:

0 1 2 3 4
O|/A B C D E
1|F G H I 3
2/K L M N O [POLYBIOS ~ 3024214301132433]
3/P Q RS T
40U V W X, Z

Die Polybios-Chiffre benutzt als Schliissel eine 5 x 5-Matrix, die aus sdmtlichen Klar-
textzeichen gebildet wird.Y Die Verschliisselung des Klartextes erfolgt zeichenweise, indem
man einen in Zeile ¢ und Spalte j eingetragenen Klartextzeichen durch das Koordinaten-
paar ij ersetzt. Der Kryptotextraum besteht also aus den Ziffernpaaren {00,01, ... 44}.

Die Frage, ob bei der Ersetzung der einzelnen Segmente des Klartextes eine einheitliche
Strategie verfolgt wird oder ob diese von Segment zu Segment verandert wird, fithrt uns
auf ein weiteres wichtiges Unterscheidungsmerkmal bei Substitutionen.

Monoalphabetische Substitutionen ersetzen jedes einzelne Klartextsegment unabhén-
gig von seiner Position im Klartext auf dieselbe Weise.

Polyalphabetische Substitutionen verwenden eine Ersetzungsregel, die in Abhéngigkeit
von den bereits verarbeiteten Klartextsegmenten varieren kann.

Die Bezeichnung , monoalphabetisch“ bringt zum Ausdruck, dass der Ersetzungsmecha-
nismus im monografischen Fall fiir jeden Schliissel auf einem festen Alphabet beruht.
Die von Caesar benutzte Chiffriermethode mit dem Schliissel £ = 3 kann beispielswei-
se vollstandig durch Angabe des Ersetzungsalphabets {d,e, f,g,w,...,y,z,a,b,c}
beschrieben werden.

Polyalphabetische Substitutionen greifen im Wechsel auf verschiedene Ersetzungsalpha-
bete zuriick, so dass unterschiedliche Vorkommen eines Zeichens (oder einer Zeichenkette)
auch auf unterschiedliche Art ersetzt werden kénnen. Welches Ersetzungsalphabet wann
an der Reihe ist, wird dabei in Abhédngigkeit von der Lange oder der Gestalt des bereits
verarbeiteten Klartextes bestimmt.

Da nur 25 Plitze zur Verfiigung stehen, muss bei Benutzung des lateinischen Alphabets entweder ein
Buchstabe weggelassen oder ein Platz mit zwei Zeichen besetzt werden.
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1.14 Block- und Stromchiffren

Monoalphabetische Chiffrierverfahren ersetzen meist Texteinheiten einer festen Léange
[ > 1 durch Kryptotextsegmente derselben Léange.

Definition 44. Sei A ein beliebiges Alphabet und es gelte M = C = A*, £ > 1. Eine
Blockchiffre realisiert fiir jeden Schliissel k € K eine bijektive Abbildung g auf A* und
es gilt fir alle x € M und y € C,

E(k,z) = g(z) und D(k,y) =g~ (y).
Im Fall ¢ = 1 spricht man auch von einer einfachen Substitutionschiffre.

Fast alle polyalphabetischen Chiffrierverfahren operieren — genau wie monoalphabetische
Substitutionen — auf Klartextblocken einer festen Lange [, die sie in Kryptotextblocke einer
festen Lange [’ iiberfithren, wobei meist [ = [’ ist. Da diese Blocke jedoch vergleichsweise
kurz sind, kann der Klartext der Chiffrierfunktion ungepuffert zugefiihrt werden. Man
nennt die einzelnen Klartextblocke in diesem Zusammenhang auch nicht ,Blocke® sondern
,Zeichen‘ und spricht von sequentiellen Chiffren oder von Stromchiffren.

Definition 45. Sei A ein belicbiges Alphabet und sei M = C' = Al fiir eine natiirliche
Zahll > 1. Weiterhin seien K und K Schliisselriume. Eine Stromchiffre wird durch
eine Verschlisselungsfunktion E : K x M — C und einen Schlisselstromgenerator
g: K xA" — K beschrieben. Der Generator g erzeugt aus einem externen Schlissel
k € K fir einen Klartext vt = xy...x,_1, x; € M, eine Folge .12;0, el l%n_l von internen

A

Schliisseln k; = g(k,zo...x;1) € K, unter denen x in den Kryptotext

~

Ey(k,2) = E(ko,20) ... E(kn_1,70_1)
tberfihrt wird.

Der interne Schliisselraum kann also wie bei der Blockchiffre eine maximale Grofie von
(m!)! annehmen (im hiufigen Spezialfall [ = 1 also m!). Die Aufgabe des Schliisselstrom-
generators g besteht darin, aus dem externen Schliissel £ und dem bereits verarbeiteten
Klartext zq...x;—; den aktuellen internen Schliissel /%Z zu berechnen. Die bisher betrach-
teten Stromchiffren benutzen z.B. die folgenden Schliisselstromgeneratoren.

Stromchiffre Chiffrierfunktionen Schliisselstromgenerator

Vigenére E(]%,[E) == IE—FI% g(k‘o...]{?d_l,fﬂo...l‘i_l) = k(l mod m)
Beaufort E(l;‘,{]f) = ]%_ﬁ g(kO'--kd—lny-ﬂxi—l) = k(imodm)
Autokey R A b i<d
mit Klartext- Ek,x)=x4+k glko...ka—1,20...2-1) = { i ! Ny
Schliisselstrom Ti—dst 2
Autokey A A k I oy R i<
mit Kryptotext-  F(k,z) =z + k glho - a1, %o i) Yigyi > d
Schliisselstrom = K(imod d) + ij:/ilj Ziia

Bei der Vigenere- und Beaufortchiffre hangt der Schliisselstrom nicht vom Klartext,
sondern nur vom externen Schliissel k ab, d.h. sie sind synchron. Die Autokey-Chiffren
sind dagegen asynchron (und aperiodisch).
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1.15 Gespreizte und homophone Substitutionen

Bei den bisher betrachteten Substitutionen haben die einzelnen Blocke, aus denen der
Kryptotext zusammengesetzt wird, eine einheitliche Lénge. Es liegt nahe, einem Gegner
die unbefugte Rekonstruktion des Klartextes dadurch zu erschweren, dass man Blo-
cke unterschiedlicher Lange verwendet. Man spricht hierbei auch von einer Spreizung
(straddling) des Kryptotextalphabets. Ein bekanntes Beispiel fiir diese Technik ist die
sogenannte Spionage-Chiffre, die vorzugsweise von der ehemaligen sowjetischen Geheim-
polizei NKWD (Narédny Komissariat Wnutrennich Del; zu deutsch: Volkskommissariat
des Innern) benutzt wurde.

Beispiel 46. Bei der Spionage- Chiffre wird in die erste Zeile einer 3 x 10-Matriz ein
Schliisselwort w geschrieben, welches kein Zeichen mehrfach enthdlt und eine Linge von
6 bis 8 Zeichen hat (also zum Beispiel SPTONAGE ). Danach werden die anderen beiden
Zeilen der Matriz mit den restlichen Klartextzeichen (etwa in alphabetischer Reihenfolge)
gefiillt.

w1
o

=
o

~ 274154795751

Ul ©

Twn|(p~
O 0T|F
COHMN| OO
<TQO|Oo
=Er=|o
Xud|w
<X | N
Nm|

[ GESPREIZT ]

N

Man iiberzeugt sich leicht davon, dass sich die von der Spionage-Chiffre generierten
Kryptotexte wieder eindeutig dechiffrieren lassen, da die Kryptotextsegmente 1, 2,..., 8,
01, 02, ..., 08, 91, 92, ..., 98, die fiir die Klartextzeichen eingesetzt werden, die Fano-
Bedingung erfiillen: Keines von ihnen bildet den Anfang eines anderen. Da die Nummern
5 und 8 der beiden letzten Spalten der Matrix auch als Zeilennummern verwendet werden,
liefert dies auch eine Erklarung dafiir, warum keine Schliisselwortzeichen in die beiden
letzten Spalten eingetragen werden diirfen.

Verwendung von Blendern und Homophonen

Die Verwendung von gespreizten Chiffren zielt offenbar darauf ab, die ,Fuge* zwischen
den einzelnen Kryptotextsegmenten, die von unterschiedlichen Klartextzeichen herriihren,
zu verdecken, um dem Gegner eine unbefugte Dechiffrierung zu erschweren. Dennoch bietet
die Spionage-Chiffre noch gentigend Angriffsflache, da im Klartext haufig vorkommende
Wortmuster auch im Kryptotext zu Textwiederholungen fithren.

Eine Moglichkeit, diese Muster aufzubrechen, besteht darin, Blender in den Klartext
einzustreuen. Abgesehen davon, dass das Entfernen der Blender auch fiir den rechtmaéfigen
Empfanger mit Miithe verbunden ist, muss fiir den Zugewinn an Sicherheit auch mit einer
Expansion des Kryptotextes bezahlt werden.

Ist man bereit, dies in Kauf zu nehmen, so gibt es auch noch eine wirksamere Methode,
die Ubertragung struktureller und statistischer Klartextmerkmale auf den Kryptotext
abzumildern. Die Idee dabei ist, zur Chiffrierung der einzelnen Klartextzeichen a nicht
nur jeweils eines, sondern eine Menge H (a) von Chiffrezeichen vorzusehen, und daraus
fir jedes Vorkommen von a im Klartext eines auszuwéhlen (am besten zufillig). Da
alle Zeichen in H (a) fiir dasselbe Klartextzeichen stehen, werden sie auch Homophone
genannt.
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Definition 47. Sei A ein Klartextalphabet und sei M = A. Weiter sei C' ein Krypto-
textraum der Grofe ||C|| > ||A|| = m. In einer homophonen Substitutionschiffre
beschreibt jeder Schlissel k € K eine Zerleqgung von C' in m disjunkte Mengen H(a),
a € A.

Um ein Zeichen a € A unter k zu chiffrieren, wird nach einer bestimmten Methode ein
Homophon y aus der Menge H(a) gewdhlt und fiir a eingesetzt.

Durch den Einsatz einer homophonen Substitution wird also erreicht, dass verschiedene
Vorkommen eines Klartextzeichens auch auf unterschiedliche Weise ersetzt werden kénnen.
Damit der Empfanger den Kryptotext auch wieder eindeutig dechiffrieren kann, dirfen
sich die Homophonmengen zweier verschiedener Klartextzeichen aber nicht iiberlappen.
Daher kann es nicht vorkommen, dass zwei verschiedene Klartextzeichen durch dasselbe
Geheimtextzeichen ersetzt werden. Man beachte, dass der Chiffriervorgang x — E(k, x)
nicht durch eine Funktion beschreibbar ist, da derselbe Klartext x in mehrere verschiedene
Kryptotexte y iibergehen kann.

Durch eine geringfiigige Modifikation der Polybios-Chiffre ldsst sich die folgende bipartite
homophone Chiffre erhalten.

Beispiel 48 (homophone Substitution). Set A = {A,...,Z}, B=40,...,9} und C =
{00, ...,99}.

11,0 2,9 3,8 4,7 56

16| A F K P U
27/ B 6 L Q V
3/ C H M R W
490 I N S x4 [HOMOPHON ~ 8203885317320898]
50/ E 3 0 T Z

Genau wie bei Polybios wird eine 5 x 5-Matriz M als Schliissel benutzt. Die Zeilen und
Spalten von M sind jedoch nicht nur mit jeweils einer, sondern mit zwei Ziffern versehen,
so dass jeder Klartextbuchstabe x tber vier verschiedene Koordinatenpaare ansprechbar ist.
Der Kryptotextraum wird durch M also in 25 Mengen H(a), a € A, mit je 4 Homophonen
partitioniert. N

Wie wir noch sehen werden, sind homophone Chiffrierungen auch deshalb schwerer zu
brechen, weil durch sie die charakteristische Haufigkeitsverteilung der Klartextzeichen
zerstort wird. Dieser Effekt kann dadurch noch verstérkt werden, dass man fiir haufig
vorkommende Klartextzeichen a eine entsprechend groere Menge H(a) an Homophonen
vorsieht. Damit lasst sich erreichen, dass die Verteilung der im Geheimtext auftretenden
Zeichen weitgehend nivelliert wird.

Beispiel 49 (homophone Substitution, verbesserte Version). Ist p(a) die Wahrscheinlich-
keit, mit der ein Zeichen a € A in der Klartextsprache auftritt, so sollte || H(a)|| =~ 100-p(a)
sein.

a pla) H(a)

A 0.0647 {15,26,44, 59,70, 79}
B 0.0193 {01,84}

C 0.0268 {13, 28,75}

D 0.0/83 {02, 17, 36,60, 95}
E

0.1748 {04, 08, 12, 30, 43, 46, 47, 53, 61, 67, 69, 72, 80, 86, 90, 92, 97}
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Da der Buchstabe A im Deutschen beispielsweise mit einer Wahrscheinlichkeit von p(A) =
0.0647 auftritt, sind fir ithn sechs verschiedene Homophone vorgesehen. N

Um den Suchaufwand bei der Dechiffrierung zu reduzieren, empfiehlt es sich, eine 10 x 10-

Matrix anzulegen, in der jeder Klartextbuchstabe a an allen Stellen vorkommt, deren
Koordinaten in H(a) enthalten sind.

[HOMOPHON ~ 5698633455291668]

QUOVWOWONIOAULIANWNRKR

WHI=Zm=Z2IT40 =2k
omz=zmcHIXIrom|N
SEreAexXmmHO0LO | W
munounIn—H>0=2Z20|N
ocoxXxNnxImUU=2cCc=2>|W
HXXMAUWIMO>O|d
MTMCHMWMNCO| N
MooO—dZrn=2o X | o
HON<>>M>»HZTITH]|WO
XMM>»ODAM<=Z| O

Offenbar kann man diese Matrix auch zur Chiffrierung benutzen, was sogar den positiven
Nebeneffekt hat, dass dadurch eine zufallige Wahl der Homophone begtinstigt wird.

1.16 Realisierung von Transpositionen und Substitutionen

Abschlieend mochten wir eine einfache elektronische Realisierungsmoglichkeit von Block-
transpositionen erwiahnen, die auf binir kodierten Klartexten operieren (d.h. A = {0,1}).
Um einen Binarblock x; - - - x; der Lange [ zu permutieren, miissen die einzelnen Bits ledig-
lich auf [ Leitungen gelegt und diese gemafl 7 in einer sogenannten Permutationsbox
(kurz P-Box) vertauscht werden.

Ty —y — Y1
Ty —9 — Y2
r3 — — Y3
Ty —9 — Y4
T5 —9 — Ys
Te — — Y6

Die Implementierung einer solchen P-Box kann beispielsweise auf einem VLSI-Chip
erfolgen. Allerdings kann hierbei fiir groflere Werte von [ aufgrund der hohen Zahl von
Uberkreuzungspunkten ein hoher Flichenbedarf anfallen.

Blocktranspositionen kénnen auch leicht durch Software als eine Folge von Zuweisungen
yl:=x2; y2 :=x5; ... y6 :=x4;

implementiert werden. Bei grofler Blocklange und sequentieller Abarbeitung erfordert
diese Art der Implementierung jedoch einen relativ hohen Zeitaufwand.

Von Alberti stammt die Idee, das Klartext- und Kryptotextalphabet auf zwei konzentri-
schen Scheiben unterschiedlichen Durchmessers anzuordnen. In Abbildung 1.2 ist gezeigt,
wie sich mit einer solchen Drehscheibe beispielsweise die additive Chiffre realisieren lésst.
Zur Einstellung des Schliissels k£ miissen die Scheiben so gegeneinander verdreht werden,



24 1 Klassische Kryptoverfahren

3 Volt

A —X— a
B == b
c — —&X— €
D — —X— d
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{

Abbildung 1.2: Realisierung von einfachen Substitutionen mit einer Drehscheibe und mit
Hilfe von Steckverbindungen

dass der Schliisselbuchstabe a;, auf der inneren Scheibe mit dem Klartextzeichen ag = A
auf der &uleren Scheibe zur Deckung kommt. Auf der Drehscheibe in Abbildung 1.2
ist beispielsweise der Schliissel k = 2 eingestellt, das heifit, a;, = ¢. Die Verschliisselung
geschieht nun durch blofles Ablesen der zugehorigen Kryptotextzeichen auf der inneren
Scheibe, so dass von der Drehfunktion der Scheiben nur bei einem Schliisselwechsel
Gebrauch gemacht wird.

Aufgrund ihrer engen Verwandtschaft mit der Klasse der Blocktranspositionen lassen
sich einfache Substitutionen auch mit Hilfe einer P-Box realisieren. Hierfiir konnen
beispielsweise zwei Steckkontaktleisten verwendet werden. Der aktuelle Schlissel wird
in diesem Fall durch Verbinden der entsprechenden Kontakte mit elektrischen Kabeln
eingestellt (siche Abbildung 1.2). Um etwa das Klartextzeichen E zu verschliisseln, driickt
man auf die entsprechende Taste, und das zugehorige Kryptotextzeichen b wird im selben
Moment durch ein aufleuchtendes Lampchen signalisiert.

Schliefllich lassen sich Substitutionen auch leicht durch Software realisieren. Hierzu wird
ein Feld (array) deklariert, dessen Eintrige tiber die Klartextzeichen = € A adressierbar
sind. Das mit z indizierte Feldelement enthélt das Kryptotextzeichen, durch welches x
beim Chiffriervorgang zu ersetzen ist.

Ein Nachteil hierbei ist, dass das Feld nach jedem Schliisselwechsel neu beschrieben
werden muss. Um dies zu umgehen, kann ein zweidimensionales Feld deklariert werden,
dessen Eintrage zusatzlich iiber den aktuellen Schliisselwert k adressierbar sind. Ist
geniigend Speicherplatz vorhanden, um fir alle x € A und alle k € K die zugehérigen
Kryptotextzeichen E(k, z) abspeichern zu konnen, so muss das Feld nur einmal initialisiert
und danach nicht mehr gedndert werden.

Schliissel- Klartextbuchstabe

wert A B ... yA
0 u h ... c
1 e h ... a

63 y f ... w




25

2 Analyse der klassischen Verfahren

2.1 Klassifikation von Angriffen gegen Kryptosysteme

Die Erfolgsaussichten eines Angriffs gegen ein Kryptosystem héngen sehr stark von der
Ausgangslage des Angreifers ab. Prinzipiell sollte man die Féhigkeiten des Gegners genauso
wenig unterschétzen wie die Unvorsichtigkeit der Anwender von Kryptosystemen. Bereits
vor mehr als einem Jahrhundert postulierte Kerckhoffs, dass die Frage der Sicherheit nicht
von irgendwelchen obskuren Annahmen iiber den Wissensstand des Gegners abhéngig
gemacht werden darf.

Goldene Regel fiir Kryptosystem-Designer (Kerckhoffs’ Prinzip)
Unterschdtze niemals den Kryptoanalytiker. Gehe insbesondere tmmer von der
Annahme aus, dass dem Gegner das angewandte System bekannt ist.*

In der folgenden Liste sind eine Reihe von Angriffsszenarien mit zunehmender Geféhr-
lichkeit aufgefiihrt. Auch wenn nicht alle Eventualitéten eines Angriffs vorhersehbar sind,
so vermittelt diese Aufstellung doch eine gute Vorstellung von den unterschiedlichen
Bedrohungen, denen ein Kryptosystem im praktischen Einsatz ausgesetzt sein kann.

Angriff bei bekanntem Kryptotext (ciphertext-only attack)
Der Gegner féingt Kryptotexte ab und versucht, allein aus ihrer Kenntnis Riick-
schliisse auf die zugehorigen Klartexte oder auf die benutzten Schliissel zu ziehen.

Angriff bei bekanntem Klartext (known-plaintext attack)
Der Gegner ist im Besitz von einigen zusammengehorigen Klartext-Kryptotext-
Paaren. Hierdurch wird erfahrungsgemafl die Entschliisselung weiterer Kryptotexte
oder die Bestimmung der benutzten Schliissel wesentlich erleichtert.

Angriff bei frei wahlbarem Klartext (chosen-plaintext attack)
Der Angriff des Gegners wird zusétzlich dadurch erleichtert, dass er in der Lage
ist (zumindest voriibergehend), sich zu Klartexten seiner Wahl die zugehorigen
Kryptotexte zu besorgen. Kann hierbei die Wahl der Klartexte in Abhéangigkeit
von zuvor erhaltenen Verschliisselungsergebnissen getroffen werden, so spricht
man von einem Angriff bei adaptiv wiahlbarem Klartext (adaptive chosen-
plaintext attack).

Angriff bei frei wahlbarem Kryptotext (chosen-ciphertext attack)

Vor der Beobachtung des zu entschliisselnden Kryptotextes konnte sich der Gegner
zu Kryptotexten seiner Wahl die zugehorigen Klartexte besorgen, ohne dabei jedoch
in den Besitz des Dechiffrierschliissels zu kommen (Mitternachtsattacke). Das
dabei erworbene Wissen steht ihm nun bei der Durchfithrung seines Angriffs zur
Verfiigung. Auch in diesem Fall kénnen sich die Erfolgsaussichten des Gegners
erh6hen, wenn ein Angriff bei adaptiv wiahlbarem Kryptotext (adaptive
chosen-ciphertext attack) moglich ist, also der Kryptotext in Abhéngigkeit von
den zuvor erzielten Entschliisselungsergebnissen wahlbar ist.

*Tatséchlich sind die Prinzipien fast aller heute im Einsatz befindlichen Kryptosysteme bekannt. Nur
so kann einer Vielzahl von Kryptoanalytikern die Suche nach Schwachstellen ermoglicht werden.
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Angriff bei frei (oder adaptiv) wahlbarem Text (chosen-text attack)
Sowohl Klartexte als auch Kryptotexte sind frei (oder sogar adaptiv) wéhlbar.

Ohne Frage ist ein Kryptosystem, das bereits bei einem Angriff mit bekanntem Krypto-
text Schwéchen erkennen lasst, fiir die meisten Anwendungen ungeeignet. Tatséchlich
miissen aber an ein praxistaugliches Kryptosystem noch weit hohere Anforderungen
gestellt werden. Denn héufig unterlaufen den Anwendern sogenannte Chiffrierfehler,
die einen Gegner leicht in eine sehr viel glinstigere Ausgangsposition versetzen kénnen.
So ermoglicht beispielsweise das Auftreten stereotyper Klartext-Formulierungen einen
Angriff bei bekanntem Klartext, sofern der Gegner diese Formulierungen kennt bzw. errét.
Begiinstigt durch derartige Unvorsichtigkeiten, die im praktischen Einsatz meist nicht
vermeidbar sind, konnen sich selbst winzige Konstruktionsschwéchen eines Kryptosystems
sehr schnell zu einer ernsthaften Bedrohung auswachsen. Die Geschichte der Kryptografie
belegt sehr eindrucksvoll, dass es hdufig die Anwender eines Kryptosystems selbst sind,
die — im unerschiitterlichen Glauben an seine kryptografische Stérke — einen erfolgreichen
Angriff ermdoglichen.

Zusammenfassend lasst sich also festhalten, dass die Gefahrlichkeit von Angriffen, de-
nen ein Kryptosystem im praktischen Einsatz ausgesetzt ist, kaum zu iiberschétzen ist.
Andererseits kann selbst das beste Kryptosystem keinen Schutz vor einer unbefugten
Dechiffrierung bieten, wenn es dem Gegner etwa gelingt, in den Besitz des geheimen
Schliissels zu kommen — sei es aus Unachtsamkeit der Anwender oder infolge von Manipu-
lationsversuchen von Seiten des Gegners (Social Engineering bzw. Social Hacking).
Auch Implementierungsangriffe nutzen nicht Schwachstellen des Kryptoverfahrens
aus. Vielmehr zielen sie darauf ab, durch physikalische Messungen wie bspw. des Stromver-
brauchs oder der Laufzeit von Berechnungen (sog. Seitenkanalangriffe) Informationen
iiber den unbekannten Schliissel zu gewinnen.

2.2 Kryptoanalyse von einfachen Substitutionschiffren

Durch eine H&aufigkeitsanalyse konnen insbesondere einfache Substitutionen g leicht
gebrochen werden. Der Grund dafiir ist, dass die einzelnen Zeichen a in der Klartextsprache
meist mit unterschiedlichen Wahrscheinlichkeiten p(a) auftreten (vergleiche Tabelle 2.1).
Berechnet man die relativen Haufigkeiten A der Zeichen im Kryptotext, so gilt p(a) ~
h(g(a)) (vorausgesetzt der Klartext ist gentigend lang). Fiir die Schilderung einer nach
dieser Methode durchgefiihrten Kryptoanalyse sei auf die Erzdhlung ,Der Goldkéfer
von Edgar Allan Poe verwiesen.

Tabelle 2.1: Einteilung von Buchstaben in Cliquen mit vergleichbaren Haufigkeitswerten

‘Deutsch Englisch Franzosisch
sehr hiufig E E E
héufig N|IRS | AT TIAOIN|SRH NJ|JARSITU
durchschnittlich |DHU | LGO | CM LD | CUMF LD|CMP
selten BFWKZ | PV PGWYB | VK VI IFBGQHX
sehr selten JYXQ XJQz JYZKW




2.2 Kryptoanalyse von einfachen Substitutionschiffren 27

Manche der bisher betrachteten Chiffrierverfahren verwenden einen so kleinen Schliis-
selraum, dass ohne grolen Aufwand eine vollsténdige Schliisselsuche (auch Brute-
Force Angriff genannt) ausgefiihrt werden kann.

Beispiel 50 (vollstindige Schliisselsuche). Es sei bekannt, dass das Kryptotextstiick y =
saxp mit einer additiven Chiffre erzeugt wurde (K = A = B = Ay, ). Entschlisseln wir
y probeweise mit allen moglichen Schliisselwerten, so erhalten wir folgende Zeichenketten.

k A B C D E F G H I J K L M
D(k,y)|SAXP RZWO QYVN PXUM OWTL NVSK MURJ LTQI KSPH JROG IQNF HPME GOLD

N 0 P Q R S T u v W X Y 4
FNKC EMJB DLIA CKHZ BJGY AIFX ZHEW YGDV XFCU WEBT VDAS UCZR TBYQ

Unter diesen springen vor allem die beiden Klartextkandidaten x = GOLD (Schlisselwert
k=M) und x = WEBT (k = W) ins Auge. q

Ist s = || K| die GroBe des Schliisselraums, so kann der Gegner bei bekanntem Kryptotext
y die Suche nach dem zugehorigen Klartext x auf eine Menge von maximal s Texten
x1,...,Ts beschranken. Daneben hat der Gegner ein gewisses a priori Wissen iiber den
Klartext. Weif§ er zum Beispiel, dass er in deutscher Sprache verfasst ist, kann er einen
Grofiteil der Texte z; auszuschliefen. Mit jedem Text z;, der nicht als Klartext infrage
kommt, kann auch mindestens ein Schliissel ausgeschlossen werden. Sind noch mehrere
Schliisselwerte moglich, so kann weiteres Kryptotextmaterial Klarheit bringen. Manchmal
hilft aber auch eine Inspektion der verbliebenen Schliisselwerte weiter, etwa wenn der
Schliissel nicht rein zuféllig erzeugt wurde, sondern aus einem einpragsamen Schliisselwort
ableitbar ist.

Auch wenn der Gegner die Klartextsprache nicht kennt, kann eine Haufigkeitsanalyse
erfolgreich sein. Mit zunehmender Lange gleichen sich die Haufigkeitsverteilungen der
Buchstaben in nattirlichsprachigen Texten einer ,Grenzverteilung“ an, die in erster Linie
von der benutzten Sprache und nur in geringem Umfang von der Art des Textes abhéngt.
Selbst zwischen unterschiedlichen Sprachen gibt es oft Gemeinsamkeiten. So kommt
in fast allen européischen Sprachen der Buchstabe E sehr haufig vor, wiahrend X, Y
und Z nur selten auftreten. Diese fiir natiirliche Sprachen typische Ungleichméafigkeit
der Buchstabenhaufigkeiten ist darauf zurtickzufithren, dass sie relativ viel Redundanz
enthalten.
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Abbildung 2.1: Haufigkeitsverteilung der Einzelbuchstaben im Deutschen (in %)
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Abbildung 2.2: Haufigkeitsverteilung der Buchstaben im Englischen (in %)
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Abbildung 2.3: Haufigkeitsverteilung der Buchstaben im Franzosischen (in %)

Die Abbildungen 2.1, 2.2 und 2.3, zeigen typische Verteilungen von Einzelbuchstaben
in der deutschen, englischen und franzosischen Sprache (ohne Berticksichtigung von
Interpunktions- und Leerzeichen). Ein typischer deutscher Text besteht demnach zu 62%
aus den sieben haufigsten Zeichen E, N, I, R, S, A, T (das sind nicht einmal 27% der
Klartextzeichen).

Bei additiven Chiffren reicht es oftmals, den haufigsten Buchstaben im Kryptotext zu
bestimmen, und davon den héufigsten Buchstaben der Klartextsprache zu subtrahieren,
um den Schliissel k zu erhalten. Bei affinen Chiffren miissen gewohnlich nur die beiden
héaufigsten Buchstaben bestimmt werden. Diese fithren auf zwei Gleichungen mit zwei
Unbekannten fiir den gesuchten Schliissel k = (b, ¢).

Beispiel 51 (Analyse einer affinen Chiffre mittels Buchstabenhaufigkeiten). FEs sei
bekannt, dass sich hinter dem Kryptotext

laoea ehoap hwvae ixobg jcbho thlob lokhe ixope vbcix ockix qoppo boapo
mohqgc euogk opeho jhkpl eappj seobe ixoap opmcu

ein deutscher Klartext verbirgt, der mit einer affinen Chiffre verschliisselt wurde. Berech-
nen wir fir jedes Chiffrezeichen y; die (absolute) Hdiufigkeit H,(y;) seines Auftretens in
obigem Kryptotext vy,

yy |abcde fghijk 1Umnopaqgrstuvwxyz
Hy(y;)|7 6 5010 0285344201911 2011221500

so liegt die Vermutung nahe, dass das am hdufigsten vorkommende Chiffrezeichen o fir
das Klartextzeichen E und das am zweithdufigsten vorkommende p fir N steht. Unter
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dieser Annahme kann der gesuchte Schlissel k = (b, c) als Losung der beiden Gleichungen

b-E+c = o
b-N+c =

bestimmt werden. Subtrahieren wir ndmlich die erste von der zweiten Gleichung, so
erhalten wir die Kongruenz 9 -b =96 1, woraus sich b = 3 und damit ¢ = 2 ergibt.
Tatsdchlich weist der Schliissel k = (3,2) nicht nur fir die beiden Paare (E,0) und (N,p),
sondern auch fiir alle ibrigen Paare (D(k,v;),y;) eine gute Ubereinstimmung zwischen
der Haufigkeit H,(y;) im Kryptotext y und der erwarteten Haufigkeit Hioo(D(k,y;)) auf,
mit der das Zeichen D(k,y;) in einem typischen deutschen Text der Lange 100 vorkommit
(die Tabelle zeigt die Werte von Hygy gerundet):

Yi o pe habcxilkjumgvagstwrifnzyd
Hy(yi) 191110 8 76 555 44322222111000000
Hiyopo(D(k,y:)) {1710 7 6 8 8 6 4 3 54333 111300221100
D(k,y;) ENSTIRAHCDULGMKPWOXYTFBVZAQ]J]

2.3 Kryptoanalyse von Blocktranspositionen

Mit Hilfe von Bigrammhéaufigkeiten, die manchmal auch als Kontakthaufigkeiten be-
zeichnet werden, lassen sich Blocktranspositionen sehr leicht brechen, sofern gentigend
Kryptotext vorliegt. Ist die Blockliange ¢ bekannt, so tragt man hierzu den Kryptotext
zeilenweise in eine Matrix S = (s;5) = (S1...S;) mit ¢ Spalten Sy, ..., S ein. Da jede
Zeile dieser Matrix aus dem zugehorigen Klartextblock mit derselben Permutation m
erzeugt wurde, miissen die Spalten .S; jetzt nur noch in die ,richtige” Reihenfolge gebracht
werden, um den gesuchten Klartext zu erhalten. Die Nachfolgespalte Sy von S; (bzw. die
Vorgéngerspalte S; von S) kann sehr gut anhand der Werte von p(.S;, Sk) = >; (45, Sik)
bestimmt werden.

4.09 4.00

(W (W [ e LS L8 e Les 1.47 140 122 1.19 1.16 1.12 1.02 1.02 1.01 0.99 0.94 0.93 0.89
mm’—\ml—ll—lﬁl—lﬁﬁﬁi—lﬁﬁﬁﬁﬁ[—lmm
ER EN CH DE EI ND TE IN IE GE ES NE UN ST RE HE AN BE SE NG DI SC

Abbildung 2.4: Die haufigsten Bigramme im Deutschen (Angaben in %)
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Abbildung 2.5: Die hiaufigsten Bigramme im Englischen (in %; nach O.P. Meaker, 1939)
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Abbildung 2.6: Die héufigsten Trigramme im Deutschen (in %)

3.53

L111.02  o75 0.75 073 0.69 0.68 0.66 0.64 0.63 0.62 059 0.59 0.55 0.54 0.52 0.50 0.47
— — — — — —1 —

THE ING AND ION TIO ENT ERE HER ATE VER TER THA ATI FOR HAT ERS HIS RES ILL

Abbildung 2.7: Die hdufigsten Trigramme im Englischen (in %)

Beispiel 52 (Hiufigkeitsanalyse von Bigrammen). Fir den mit einer Blocktransposition
(mit vermuteter Blocklinge 5) erzeugten Kryptotext

ihehr bwean rneii nrkeu elnzk rxtae vlotr engie

erhalten wir eine Matriz S mit den folgenden fiinf Spalten.

Sy Sy S35, S5

m<2XOmM=Z2X0mH
Z2rrXrrXx=2==I
aao—4H=22Xmmm
H—=>NMH>X>I
m>XxXmXCHZZ2X

Um die richtige Vorgdinger- oder Nachfolgerspalte von S1 zu finden, bestimmen wir fir
jede potentielle Spalte S;, j =2,...,5, wieviele der Bigramme s;;s;1 (bzw. $;18:5) zu den

20 héaufigsten (aus Abbildung 2.4) gehéren.

ol
Sy S5 Sy S5/ 51|52 S5 Sy S
HEHR[I|HEHR R
WEAN|B|/WEAN
NETITIRINETITI
RKEU|NREKE/U
L NZK|E|[LNZK
X TAE/RXTAE
LOTR[VILOTR
NGIEEINGTIE
1422|1421

Da die beiden Spaltenpaare (Ss, S1) und (S1,S3) jeweils vier hiufige Bigramme bilden,
konnen wir annehmen, dass im Klartext S1 auf Sz oder Ss auf Sy folgen muss. Entscheiden
wir uns fir die zweite Moglichkeit, so sollten wir als néichstes die Spaltenpaare (S;, S1)
und (Ss,S;), j = 2,4,5 betrachten.
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\ 3
Sy Sy S|y Ss|S2 Si S
HHR[IE|HHR
WANBE[WAN
NITIREINTITI
REUNKREU
L Z KIE N|L Z K
X AE|R T|XAE
L TRIVO/LTR
NIEEGINTIE
12 2| 115

Aufgrund des hohen Wertes von p(Ss, Ss) kénnen wir annehmen, dass auf Ss die Spalte
Ss folgt. Im ndchsten Schritt erhalten wir daher die folgende Tabelle.

b
Sy S4|S1 S S5]52 Sy

HH|/I ER|HH
W A|B E NW A
N IRETIINTI
R E|N K U/R E
L Z|E N K|L Z
X AR TE|X A
L TIVORILT
N I EGENTI
1 2] 2 1

Diese lisst die Spaltenanordnung Sy, S1, S5, S5, Se vermuten, welche tatsdachlich auf den
gesuchten Klartext fihrt:

Sy S1 85 55 Sy

HAX>NMHX>I
mM<XXM=ZX0wWH
oo—H=ZXxXmmm
MmMIXMXCHZX
Z2r-rXrx=2==T

2.4 Kryptoanalyse von polygrafischen Chiffren

Blocksysteme mit kleiner Blocklange ¢ (beispielsweise bigrafische Systeme) lassen sich
ahnlich wie einfache Substitutionen durch Héufigkeitsanalysen brechen. Wird bei Hill-
Chiffren [ sehr grofl gewéhlt, so ist eine solche statistische Analyse nicht mehr moglich.
Das Hill-System kann dann zwar einem Kryptotextangriff widerstehen, jedoch kaum
einem Angriff mit bekanntem Klartext und schon gar nicht einem Angriff mit gewdhltem
Klartext.
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Angriff mit gewdhltem Klartext O.B.d. A.sei A ={0,1,...,m—1}. Bei einem GK-Angriff
verschafft sich der Gegner den Kryptotext zu 100...0, 010...0, ..., 0...001 € A%

9(1000) == ]{5111{?12...]{1[
g(OIOO) = k21k22...]€2[

9(0001) = l{illklg...k‘”

und erhalt damit die Schlisselmatrix k.

BK-Angriff (bekannter Klartext). Ist bei einem BK-Angriff eine ausreichende Menge von
Klartext-Kryptotextpaaren bekannt, so kann das Hill-System folgendermaflen gebrochen
werden: Sind z;, y; (i = 1,..., u) Paare mit 2;k = y; und gilt ggT(det(X), m) = 1 fiir eine
aus [ Blocken x;, 7 € I, als Zeilen gebildete Matrix X, so lasst sich die Schliisselmatrix &
zu k =Y X! bestimmen (Y ist die aus den Blécken y;, @ € I, gebildete Matrix).

2.5 Kryptoanalyse von polyalphabetischen Chiffren

Die Vigenere-Chiffre galt bis ins 19. Jahrhundert als sicher. Da der Schliisselstrom bei
der Vigenere-Chiffre periodisch ist, lasst sie sich mit statistischen Methoden ebenfalls
leicht brechen, insbesondere wenn der Kryptotext im Verhéltnis zur Periode d (Lange
des Schlisselwortes) geniigend lang ist.

Bestimmung der Schliisselwortlange

Ist die Periode d bekannt, gibt es mehrere Methoden, eine Vigenere-Chiffre zu brechen. So
kann man beispielsweise den Kryptotext zeilenweise in eine d-spaltige Matrix schreiben.
Verfahrensbedingt wurden dann die einzelnen Spalten vy, ..., yq durch eine monoalpha-
betische Substitution (genauer: durch eine additive Chiffre) verschliisselt. Sie kénnen
daher einzeln durch eine Héaufigkeitsanalyse gebrochen werden. Hierbei liefert jede Spalte
y; den Buchstaben k; des Schliisselwortes.

Zur Bestimmung der Schliisselwortlange betrachten wir zwei Vorgehensweisen: den
Kasiski-Test und die Koinzidenzindex-Untersuchung.

Der Kasiski-Test. Die fritheste generelle Methode zur Bestimmung der Periode bei der
Vigenere-Chiffre stammt von Friedrich W. Kasiski (1860). Kommt ein Wort an zwei
verschiedenen Stellen im Kryptotext vor, so kann es sein, dass die gleiche Klartextsequenz
zweimal auf die gleiche Weise, d.h. mit der gleichen Schliisselsequenz, verschliisselt
wurde. In diesem Fall ist die Entfernung 6 der beiden Vorkommen ein Vielfaches der
Periode d. Werden mehrere Paare mit verschiedenen Entfernungen ¢; gefunden, so liegt
die Vermutung nahe, dass d gemeinsamer Teiler aller (oder zumindest vieler) ¢; ist, was
die Anzahl der noch in Frage kommenden Werte fiir d stark einschréankt.

Beispiel 53 (Kasiski-Test).
DERERSTEUNDLETZTEVERS. .. (Klartext x)

+ KASKASKASKASKASKASKAS. .. (Schliisselstrom k)
nejorkdemxddotrdenork... (Kryptotesty)
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Da die Textstiicke ork, bzw. de im Kryptotext in den Entfernungen 61 = 15 und d5 =9
vorkommen, liegt die Vermutung nahe, dass die Periode d = ggT(9,15) = 3 ist. N

Koinzidenzindex- Untersuchungen. Zur Bestimmung der Periode d gibt es neben heuristi-
schen Methoden auch folgenden statistischen Ansatz, der erstmals von William Frederick
Friedman im Jahr 1920 beschrieben wurde. Er basiert auf der Beobachtung, dass eine
langere Periode eine zunehmende Gldttung der Buchstabenhaufigkeiten im Kryptotext
bewirkt.

Definition 54. Der Koinzidenzindex (engl. index of coincidence) eines Textes y der
Linge n tber dem Alphabet B ist deﬁm’ert als

IC(y) = ———= - >_ Hyla (a) —1).

n- n - 1 a€B
Hierbei ist Hy(a) die absolute Hdiufigkeit des Buchstabens a im Text y.

IC(y) gibt also die Wahrscheinlichkeit an, mit der man im Text y an zwei zuféllig gewéhl-
ten Positionen den gleichen Buchstaben vorfindet. Er ist umso grofler, je ungleichméafiger
die Haufigkeiten H,(a) sind (siehe unten).

Um die Periode d einer Vigenere-Chiffre zu bestimmen, schreibt man den Kryptotext y fiir
d=1,2,3,... in eine Matrix mit d Spalten und berechnet fiir jede Spalte y; den Koinzi-
denzindex IC(y;). Fir geniigend lange Kryptotexte ist dasjenige d, welches das maximale
arithmetische Mittel der Spaltenindizes IC(y;) liefert mit hoher Wahrscheinlichkeit die
gesuchte Periode. Enthélt eine Spalte ndmlich nur Kryptozeichen, die alle mit demselben
Schliisselbuchstaben k erzeugt wurden, so stimmt der Koinzidenzindex dieser Spalte
mit dem Koinzidenzindex des zugehorigen Klartextes iiberein, nimmt also einen relativ
groffen Wert an. Wurden dagegen die Kryptozeichen einer Spalte mit unterschiedlichen
Schliisselbuchstaben generiert, so wird hierdurch eine Glattung der Haufigkeitsverteilung
bewirkt, weshalb der Spaltenindex kleiner ausfallt.

Ist die Einzelbuchstabenverteilung p : A — [0, 1] der Klartextsprache bekannt, so kann der
Suchraum fiir den Wert der Periode d erheblich eingeschrénkt werden. Hierzu berechnet
man den erwarteten Koinzidenzindex

Eqn(1C) = E(IC(Y)),

wobei Y ein mittels einer Vigenere-Chiffre mit einem zufélligen Schliisselwort der Lénge
d aus einem zufalligen Klartext der Lange n generierter Kryptotext ist. Im Fall d = 1
gilt IC(y) = IC(x). Zudem koénnen wir bei lingeren Texten von den gegenseitigen
Abhéngigkeiten der Zeichen im Text absehen und erhalten

acA

Dieser Wert wird auch als Koinzidenzindex der zugrunde liegenden Sprache bezeichnet.

Definition 55. Der Koinzidenzindex ICy, einer Sprache mit Buchstabenverteilung
p:A—[0,1] ist definiert als
ICy = Z p(a)’

a€cA

IC ist zudem ein MafB fiir die Rauheit der Verteilung p.
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Definition 56 (Rauheitsgrad; Measure of Roughness). Der Rauheitsgrad MR,
einer Sprache L mit Finzelbuchstabenverteilung p ist

MR, = 3 (p(a) = Yo = 3 p(0)? = You = IC1, — Y,

acA acA
wobei m = || A]| ist.

Beispiel 57. Fir die englische Sprache (m = 26) gilt beispielsweise ICpnglisch =~ 0.0687
und MREnglisch ~ 0.0302. <

Ubersteigt dagegen die Periode d die Klartextlinge n, so ist der Kryptotext bei zufilliger
Wahl des Schliisselswortes ebenfalls rein zuféllig, was auf einen erwarteten Koinzidenzindex
von

Eqn(IC) = > A7 =A™ = Ym, d=n>2

acA

fihrt. Allgemein gilt fiir hinreichend grofles n,

n—d
d-(n—1)

'(d_l) -1

Ed,n(]C): 'ICL+7M'm , 1<d<mn,

da von den (g) moglichen Positionspaaren ungeféhr d- (”éd) = n(n—d)/2d Paare nur eine
Spalte (was einem Anteil von (n — d)/d(n — 1) entspricht) und (‘21) (n/d)* =n?*(d—1)/2d
Paare zwei unterschiedliche Spalten betreffen (was einem Anteil von n(d —1)/d(n — 1)
entspricht).

Untenstehende Tabelle gibt den Erwartungswert Ey,,(/C) des Koinzidenzindexes fir
Kryptotexte der Lange n = 100 in Abhéngigkeit von der Periodenlénge d einer Vigenere-

Chiffre wieder (in Promille; Klartext ist ein zuféllig gewéhlter Text der englischen Sprache
mit 100 Buchstaben).

d |1 2 3 4 5 6 8 10 100
Eq100(IC) | 69 54 48 46 44 43 42 41 39

Beispiel 58. Berechnet sich der Koinzidenzindex eines Vigenere-Kryptotextes der Linge
100 zu 0.045, so liegt die Vermutung nahe, dass das verwendete Schlisselwort die Linge
vier oder finf hat, falls y aus einem Klartext der englischen Sprache erzeugt wurde. <

Der Koinzidenzindex kann auch Hinweise dafiir liefern, mit welchem Kryptoverfahren ein
vorliegender Kryptotext erzeugt wurde. Bei Transpositionschiffren sowie bei einfachen
Substitutionen bleibt ndmlich der Koinzidenzindex im Gegensatz zu polyalphabetischen
und polygrafischen Verfahren erhalten. Erstere lassen sich von letzteren zudem dadurch
unterscheiden, dass bei ihnen sogar die Buchstabenhaufigkeiten unverandert bleiben.

Zur Bestimmung des Schliisselwortes bei bekannter Periode d kann auch wie folgt
vorgegangen werden. Man schreibt den Kryptotext y in Spalten y; auf und berechnet
fir a € Aund i = 1,...,d die relativen Héufigkeiten h;(a) von a in y;. Da y; aus dem
Klartext durch Addition von k; entstanden ist, kommt die Verteilung

hi(a%—k,‘),a €A
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fiur k = k; der Klartextverteilung p(a), a € A, néher als fir k # k;. Da

= pla)hi(a+ k)

acA

ein MaB fiir die Ahnlichkeit der beiden Verteilungen p(a) und h;(a+k) ist (siehe Ubungen),
wird der Wert von «;(k) wahrscheinlich fiir £ = k; maximal werden.

Beispiel 59. Der folgende Kryptotext y

huds kuae zgxr avtf pgws wgws zhtp pbil lrtz pzhw loij vfic
vbth lugi lgpr khwm yhti uaxr bhtw ucgx ospw aoch imcs yhwq
hwcf yocg ogtz 1lbil swbf lohx zwsi zvds atgs thwi ssux lmts
mhwi kspx ogwi hrpf lsam usuv vail lhgi lhwv vivl avtw ocij
ptic mstx vii

der Lange 203 wurde von einer Vigenére-Chiffre mit Schlissellinge d = 4 aus englischem
Klartext erzeugt. Schreiben wir den Kryptotext in vier Spalten vyy, ...,ys der Ldnge
lyil = |ya| = |ys| = 51 und |ys| = 50, so ergeben sich folgende Werte fiir o;(k) (in
Promille):

k ‘O 1234567 891011121314 151617181920 2122232425

36 31 3145 38 26 42 73 44 26 36 47 30 32 36 29 28 39 48 42 42 39 42 42 35 31
4441 4051 41 31 37 43 34 28 36 26 28 43 68 45 35 27 42 43 40 35 30 24 31 45
474148 37 49 40 35 30 48 322542 31 26 43 76 37 31 39 45 35 34 37 26 30 25
384027416547 28 34 39 33 3536 30 30 48 44 354247 38 39 34 27 38 36 37

ap (k

as(k

as(k
(

(1/4]{3

— N N

Da oy (k) fir k =7 =H, as(k) fir k = 14 = 0, ag(k) fir k = 15 = P und ay(k) fir
k = 4 = E einen Maximalwert annimmdt, lautet das Schlisselwort HOPE. Damit ergibt
sich folgender Klartext (aus der Erzihlung ,Der Goldkdafer von Edgar Allan Poe).

A GOOD GLASS IN THE BISHOPS HOSTEL IN THE DEVILS SEAT

FORTYONE DEGREES AND THIRTEEN MINUTES NORTH EAST AND

BY NORTH MAIN BRANCH SEVENTH LIMB EAST SIDE SHOOT FROM

THE LEFT EYE OF THE DEATHS HEAD A BEE LINE FROM THE TREE

THROUGH THE SHOT FIFTY FEET OUT <

Zur Bestimmung des Schliisselwortes kann man auch die Methode des gegenseitigen
Koinzidenzindezes verwenden. Dabei ist die verwendete Klartextsprache (und somit deren
Héaufigkeitsverteilung) irrelevant, da die Spalten — wie der Name schon sagt — gegenseitig
in Relation gesetzt werden. Aber zuerst die Definition.

Definition 60. Der gegenseitge Koinzidenzindex von zwei Texten y und y' mit den
Langen n und n’ iber dem Alphabet B ist definiert als

;2 Hyla) - Hy(a).

a€eB

1C(y,y)

IC(y,y') ist also die Wahrscheinlichkeit, dass bei zufélliger Wahl einer Position in y und
einer Position in 3’ der gleiche Buchstabe vorgefunden wird. IC(y,y’) ist umso grofer, je
besser die Haufigkeitsverteilungen von y und ' (d.h. H, und H,/) tbereinstimmen.
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Ist nun y ein Kryptotext, der mit einem Schliisselwort bekannter Lénge d erzeugt
wurde, und sind y; (i = 1,...,d) die zugehorigen Spalten, so gibt der gegenseitige
Koinzidenzindex der Spalten y; + und y; (fiir 1 < ¢ < j < dund 0 < ¢ < 25) die
Wahrscheinlichkeit an, dass man bei zufélliger Wahl einer Position in y; + ¢ und in
y; denselben Buchstaben vorfindet. Da die Einzelzeichenverteilungen von y; — k; und
von y; — k; der der Klartextsprache entsprechen, haben y; + 6 und y; fir 6 = k; — k;
eine dhnliche Verteilung. Mit grofler Wahrscheinlichkeit nimmt also IC(y; + 9,y;) fir
0 = 0;; = k;j — k; einen relativ groen Wert an, wéhrend fiir 6 # d;; mit kleinen Werten
zu rechnen ist.

Beispiel 61. Betrachten wir den Kryptotext aus vorigem Beispiel, so ergeben sich fiir
IC(y; + 0,y;) die folgenden Werte (in Promille):

) ‘O 1234567 8 9101112131415 16171819202122 232425

(y )140 31 253825214674 50 333144433431 28 24 314445374864 44 2531
IC(y1 + 6,y3)|26 47 2521473218 49 91 422751453129 32 23 2927394546 39 58 44 24
C(y1 + 0,94)|38 40 2931 3524 32 58 42 3244 5043 39 31 20 34 36 3040452442 7847 22
IC(y2 + 0,y3) |50 854921283524 34 46 252427595050 53 51 24222643 36 35 32 24 34
( )
( )

IC(y1 + 0,92

~

IC(y2 + 0,y4)|46 53 40 37514229 23 24 3240553831 32 45 6749 25272929 34 37 38 35
IC(y3 + 0,v4)]49 36 3860362534 19 29424133 54273678 47 252933272847 32 2754

Also ist (mit grofler Wahrscheinlichkeit)
(512 = 77 513 = 87 514 = 237 523 = 15 524 = 167 534 = 15.

Wir konnen nun alle Spalten relativ zur ersten Spalte so verschieben, dass der ganze
Text eine einheitliche Verschiebung 6 hat, also die zweite Spalte um —7, die dritte um
—8 und die vierte um —23. Fir die Bestimmung von &, muss man nur den hdufigsten
Buchstaben in dem auf diese Weise erzeugten Text bestimmen (oder eine vollstindige
Suche durchfiihren). Dieserist L (16,3% ). Also ist 6 = L—E = H = 7 und das Schlisselwort
lautet HOPE H+7=0,H+8 =P, H+23 =E). q

Analyse der Lauftextverschliisselung

Zum Brechen einer Stromchiffre mit Klartextschliisselstrom kann man wie folgt vorgehen.
Man geht zunéchst davon aus, dass jedes Kryptotextzeichen durch Summation eines
Klartext- und Schliisselstromzeichens mit jeweils mittlerer bis hoher Wahrscheinlichkeit
entstanden ist. Dies sind etwa im Englischen die Zeichen E, T, A, 0, I, N, S, R, H. Zu einem
Teilwort w des Kryptotextes bestimmt man dann alle Paare von Wortern (wy, ws) mit
wy + wy = w und wy,we € {E,T,A,0,I,N,S,R,H}*. In der Regel ergeben sich nur sehr
wenige sinnvolle Paare, aus denen durch Kontextbetrachtungen und Erweitern von w
nach links und rechts der Kryptotext entschliisselt werden kann. Wird die Analyse durch
ein Computerprogramm durchgefithrt, kann an die Stelle der Kontextbetrachtungen auch
die Haufigkeitsverteilung von n-Grammen der Sprache treten. Das Programm wahlt dann
solche Wortpaare (wy, ws), die eine hohe Wahrscheinlichkeit haben.

Beispiel 62. Gegeben ist der Kryptotext mogkthcblmwxf... Wir beginnen die Untersu-
chung mit einer Wortlinge von vier Buchstaben, also w = mogk. Der erste Buchstabe m
kann nur auf eine der folgenden Arten zustande gekommen sein:
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abcde...i...t...z (Klartectzeichen)
+ MLKJI...E...T...N (Schlisselzeichen)
= MMMMM...M...M...M (Kryptotextzeichen)

Es ergeben sich folgende wahrscheinliche Paare fir die Zeichen von w:

m: (EI) o: (AO) q: (LI) k: (RT)
(1E) (HH) (S.S)
(T7T) (O,A) (T’R)

Diese fiihren auf folgende 3 -3 -1 -3 = 27 Wortpaare (wy, ws):

w; | EAIR EAIS EAIT EHIR ... THIS ... TOIT
wy | IOIT IOIS IOIR IHIT ... THIS ... TAIR
Als sinnwoll stellt sich aber nur die Wahl w; = wy = THIS heraus. <

Autokey Chiffren

Kryptotextschlisselstrom. Diese Systeme bieten so gut wie keinen Schutz, da sie ohne
Kenntnis des Schliisselwortes sehr leicht entschliisselt werden kénnen (falls die Lénge
des Schliisselwortes im Verhéltnis zur Lange des Kryptotextes relativ kurz ist). Man

subtrahiert dazu den Kryptotext y fiir 6 = 1,2, ... von dem um ¢ Positionen verschobenen
Kryptotext — also yois Y1416 Y215 Y3t - - - MINUS Yo Y1 Y2 Y3 - - . —, bis sinnvoller (Klar-) Text
erscheint:
dumsqmozkfn... (Kryptotext y)
— DUMSQMO. .. (,Kryptotextschliisselstrom*)
= ....NSCHUTZ... (Klartext z)

Klartextschlisselstrom. Neben der oben beschriebenen Analyse der Lauftextverschlisse-
lung kann das Brechen der Autokey-Systeme mit Klartextschliisselstrom auch analog
zur Kasiski-Methode erfolgen: Sei d die Lange des Schliisselwortes ky ... kg_1. Falls im
Klartext die gleiche Buchstabenfolge x; . ..x;1;—1 im Abstand 2d auftritt (beispielsweise
d=3und = 2),

U 1
TOT1XT2T3 T4 Ty TeT7Ig T9L1Q L1l T12 T13L14 - - - Klartext x
+ kokikezoxiT2 T3 Ty X5 xeTTXs T9 19 Zyy --. Klartextschliisselstrom kx
= YoY1Y2Y3Y4Ys Y6 Y7 Ys Yo Y10 Y11 Yi2 Y13 Y14 ... Kryptotext y

so tritt im Kryptotext die gleiche Buchstabenfolge im Abstand d auf, d.h. d kann
auf diese Art unter Umsténden leicht bestimmt werden. Ist d bekannt, so konnen die
Buchstaben k... k; des Schlisselwortes der Reihe nach bestimmt werden: Da durch
k; die Klartextzeichen an den Positionen i, d + i, 2d + ¢, ... eindeutig festgelegt sind,
kann jedes einzelne k; unabhéngig von den anderen Schliisselwortbuchstaben durch eine
statistische Analyse bestimmt werden.
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3 Sicherheit von Kryptosystemen

3.1 Informationstheoretische Sicherheit

Claude E. Shannon untersuchte die Sicherheit kryptografischer Systeme auf informations-
theoretischer Basis (1945, freigegeben 1949). Seinen Untersuchungen liegt das Modell einer
Nachrichtenquelle X zugrunde, die einzelne Klartextnachrichten x aus dem Klartextraum
M unter einer bestimmten Wahrscheinlichkeitsverteilung p(z) = Pr[X = xz] generiert.

Zudem nehmen wir an, dass der zur Verschliisselung benutzte Schliissel £ € K von
einem Schliisselgenerator S unter einer bekannten Wahrscheinlichkeitsverteilung p(k) =
Pr[S = k] erzeugt wird. Da der Schliissel unabhangig vom Klartext gewahlt wird, ist
p(k,z) = p(k)p(z) die Wahrscheinlichkeit dafiir, dass X den Klartext x generiert und
dieser mit dem Schliissel k£ verschliisselt wird. Dabei gehen wir davon aus, dass fiir jede
Nachricht x € M ein neuer Schliissel gewéhlt wird. Dies bedeutet, dass wir beispielsweise
bei der additiven Chiffre den Klartextraum auf M = A" vergrofern miissen, falls der
Schliissel nach n Zeichen gewechselt wird.

Die Zufallsvariablen X und S induzieren eine Verteilung auf dem Kryptotextraum, die
wir durch die Zufallsvariable Y beschreiben. Die Wahrscheinlichkeit eines Kryptotextes y
berechnet sich zu

ply) =Py =y]= > plka)

kz:E(k,x)=y

und fir einen beobachteten Kryptotext y (mit p(y) > 0) ist
p(z,y) p(k, )

P rsGm—y PW)

p(zly) =

die (bedingte) Wahrscheinlichkeit dafiir, dass sich hinter dem Kryptotext y der Klartext
x verbirgt. Da der Schliisselgenerator fiir die Sicherheit eines Kryptosystems eine wichtige
Rolle spielt, nehmen wir bei Sicherheitsbetrachtungen die Schliisselverteilung S als sechste
Komponente eines Kryptosystems hinzu.

Definition 63. Fin Kryptosystem KS = (M,C,E, D, K,S) mit Schlisselverteilung S
heifit informationstheoretisch (oder absolut) sicher, falls jede Klartextverteilung
X auf M unabhdingig von der zugehorigen Kryptotextverteilung Y auf C' ist.

Bei einem absolut sicheren Kryptosystem ist demnach die A-posteriori-Wahrscheinlichkeit
p(zly) einer Klartextnachricht = gleich der A-priori-Wahrscheinlichkeit p(z), d.h. die
Wahrscheinlichkeit von x andert sich nicht, ob nun der Kryptotext y bekannt ist oder
nicht. Die Kenntnis von y erlaubt somit keinerlei Riickschliisse auf die gesendete Nachricht.
Dies bedeutet, dass es dem Gegner nicht moglich ist, das System zu brechen; auch nicht
mit unbegrenzten Rechenressourcen. Wie wir sehen werden, lasst sich dieses Maf} an
Sicherheit nur mit einem sehr hohen Aufwand erreichen.

Sind p(x), p(y) > 0, so gilt wegen p(z|y)p(y) = p(z,y) = p(y|x)p(z) die Gleichheit

p(zly) = plylz)p(r) (Satz von Bayes)

p(y)
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und daher ist die Bedingung p(z) = p(x|y) gleichbedeutend mit p(y) = p(y|z), was
wiederum mit der Unabhangigkeit der Ereignisse X = x und Y = y gleichbedeutend ist.

Beispiel 64. Sei KS = (M,C, E, D, K) ein Kryptosystem mit M = {z1,..., x4}, K =
{k1, ... ks}, C =A{uw1,...,ys} und Verschlisselungsfunktion

E‘Jfl To T3 T4

Eilyr ya ys w0
ko ly2 y1 ya 3
ks |ys y2 y1
kalys y3s y2

Unter der Schliissel- und Klartextverteilung

ki ‘ kl ]{ZQ ]{?3 k}4 ZT; ‘ I T2 T3 Ty

) (12 U 18 s " ) |12 1/6 16 176

ergibt sich wegen p(y) = Y -p(k2)=y P(k, 7) folgende Kryptotestverteilung:

(1) = 1/2- Yo+ (1/4+1/84+1/8)-1/6=1/3
(yo) = 1/4-1/2+(1/8+1/8+1/2)-1/6=1/4
plys) = 1/8-1/24(1/8+1/241/4)-1/6 =5/24
(ya) = 1/8-1/2+ (1/2+1/4+1/8)-1/6 =15/24

plaify) = plky, 1) /p(yn) = (1/2)(1/2)/(1/3) = 3/4
p(zalyr) = plka,w2)/p(yr) = (1/4)(1/6)/(1/3) = 1/8
plaslyr) = plks,xs)/p(n) = (1/8)(1/6)/(1/3) = 1/16
plealyy) = pka, 24)/p(yr) = (1/8)(1/6)/(1/3) = 1/16
Wegen p(z1) = 1/2 # 3/4 = p(x1|y1) ist das Kryptosystem nicht absolut sicher. 4

Lasst sich das Kryptosystem KS aus obigem Beispiel unter der vorgegebenen Klartext-
verteilung durch Verwendung eines anderen Schliisselgenerators absolut sicher machen?

— KS ist genau dann absolut sicher, wenn p(y;) = p(y;|x;) fir alle (z;,y;) € M x C
gilt.

— Da es jedoch in KS fiir jedes Paar (z;,y;) genau einen Schliissel £ = k; ; € K mit
E(k,z;) = y; gibt, also p(y;|z;) = p(k;;) ist, ist dies dquivalent zur Bedingung,
dass p(y;) = p(k; ;) fur alle (x;,y,;) € M x C gilt.

— Fir j =1 bedeutet die Gleichheit p(y;) = p(k; ;) fiir alle ¢ zum Beispiel, dass alle
vier Schliissel k;; = k; (i =1,...,4) die gleiche Wahrscheinlichkeit haben miissen.

— Wegen p(y;) = Siy p(xi)p(y;lei) = Ya iy p(wi) = Ya = p(kiz) = ply;lvi) ist das
System in diesem Fall tatsachlich absolut sicher.

Demnach ist das Kryptosystem KS aus Beispiel 64 genau dann absolut sicher, wenn
der Schliissel gleichverteilt ist. In Verallgemeinerung dieses Beispiels lésst sich fiir eine
wichtige Klasse von Kryptosystemen die absolute Sicherheit wie folgt charakterisieren.
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Satz 65. Sei KS = (M,C,E,D,K,S) ein Kryptosystem mit ||M| = ||C| = [ K|,
dessen Schlisselraum K fiir jedes Klartext-Kryptotext-Paar (z,y) € M x C' genau einen
Schlissel k mit E(k,x) =y enthdlt. Dann ist KS genau dann absolut sicher, wenn S auf
K gleichverteilt ist.

Beweis. Bezeichne k, , den eindeutigen Schliissel, der den Klartext = auf den Kryptotext
y abbildet. Falls S auf K gleichverteilt ist, folgt wegen p(k,,) = || K||~* fir alle 2,y mit
p(x) > 0 zunachst
plyle) = > p(k) = plksy) = | K[I7
k:E(k,x)=y
und
)= X p@plyle) = K7 Y pla) = K]
z,p(x)>0 z

also p(x,y) = p(x)p(y|z) = p(x)p(y), d.h. KS ist absolut sicher. Die Umkehrung wird in
den Ubungen gezeigt. 0

Verwendet man beim One-Time-Pad nur Klartexte einer festen Lange n, so ist dieser
nach obigem Satz genau dann absolut sicher, wenn der Schliissel unter Gleichverteilung
gewahlt wird. Variiert die Klartextlange, so kann ein Gegner aus y nur die Lange des
zugehorigen Klartextes x ableiten. Wird jedoch derselbe Schliissel k zweimal verwendet,
so kann aus den Kryptotexten die Differenz der zugehorigen Klartexte ermittelt werden:

vy = E(ZEl,k}) = T —I—k?

~ Y=Y =T — X

Sind die Klartexte natiirlichsprachig, so kénnen aus y; — yo die beiden Nachrichten z
und x5 dhnlich wie bei der Analyse einer Lauftextverschliisselung (sieche Abschnitt 2.5)
rekonstruiert werden.

Da in einem absolut sicheren Kryptosystem der Schliisselraum K mindestens die Grofie
des Klartextraumes X haben muss (sieche Ubungen), erfordert die absolute Sicherheit
einen extrem hohen Aufwand. Vor der Kommunikation muss ein Schliissel, der mindestens
so lang wie der zu tibertragende Klartext ist, zuféllig generiert und zwischen den Partnern
auf einem sicheren Kanal ausgetauscht werden.

Fir die meisten Anwendungen ist jedoch keine absolute Sicherheit erforderlich. Wie
wir bei der Betrachtung von Stromsystemen gesehen haben, kann der Schliisselstrom
auch von einem Pseudo-Zufallsgenerator erzeugt werden. Dieser erhélt als Eingabe eine
Zufallszahl sy (den sogenannten Keim) und erzeugt daraus eine lange Folge vy vy ... von
Pseudo-Zufallszahlen. Als Schliissel muss jetzt nur noch der Keim ausgetauscht werden.

3.2 Der Entropiebegriff

In der Informationstheorie wird die Unsicherheit, mit der eine durch eine Zufallsvariable
X beschriebene Quelle ihre Nachrichten aussendet, nach ihrer Entropie bemessen. Dabei
entspricht die Unsicherheit iiber X genau dem Informationsgewinn, der sich aus der
Beobachtung der Quelle X ziehen lédsst. Intuitiv ist die in einer einzelnen Nachricht x
steckende Information umso grofler, desto unwahrscheinlicher sie ist. Tritt eine Nachricht
x mit einer positiven Wahrscheinlichkeit p(z) = Pr[X = z| > 0 auf, dann ist

Infx (z) = logy(/p())
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der Informationsgehalt von z. Ist dagegen p(z) = 0, so sei Infx(z) = 0. Diese Definition
des Informationsgehalts ergibt sich zwangslaufig aus den beiden folgenden Axiomen:

— Der (gemeinsame) Informationsgehalt Infx y (z,y) von zwei Nachrichten z und y,
die aus unabhéngigen Quellen X und Y stammen, ist Infx(z) + Infy (y).

— Eine Nachricht z, die mit Wahrscheinlichkeit Pr[X = z| = 1/ auftritt, hat den
Informationsgehalt Infy(z) = 1.

Der Informationsgehalt wird in der Einheit bit (basic indissoluble information unit)
gemessen. Die Entropie von X ist nun der erwartete Informationsgehalt einer von X
generierten Nachricht.

Definition 66. Sei X eine Zufallsvariable mit Wertebereich W(X) = {xy,...,x,} und
sei p; = Pr[X = x;]. Dann ist die Entropie von X definiert als

H Z bi Ian xz Z Di 10g2 /p sz 10g2 pZ)

=1 =1

Beispiel 67. Sei X eine Zufallsvariable mit der Verteilung

x; | sonnig leicht bewolkt bewdlkt stark bewdlkt Regen Schnee Nebel

i 1/1 1/1 1/8 1/8 1/8 1/16 1/16

Dann ergibt sich die Entropie von X zu

H(X) = s (242)+ Vs (343+3)+ Lhg- (4+4) = 2,625. .

Die Entropie nimmt fir p; = --- = p, = 1/, den Wert log,(n) an. Fir jede andere
Verteilung py, . .., p, gilt dagegen H(X) < log,(n) (Beweis siehe unten). Bei vorgegebener
GroBe des Wertebereichs von X ist die Unsicherheit iber X um so grofler, je gleichméfiger
X verteilt ist. Bringt X dagegen nur einen einzigen Wert mit positiver Wahrscheinlichkeit
hervor, dann (und nur dann) nimmt H(X) den Wert 0 an. Fiir den Nachweis von oberen
Schranken fiir die Entropie benutzen wir folgende Hilfsmittel aus der Analysis.

Definition 68. Sei I C R ein Intervall. Eine Funktion f: 1 — R heifit konkav auf I,
falls fir allex #y €I und 0 <t <1 gilt:

fltz + (1 =t)y) > tf(z)+ (1 —1)f(y).
Gilt sogar ,>“ anstelle von ,>“, so heifit f streng konkav auf I.

Beispiel 69. Die Funktion f(x) = log,(z) ist streng konkav auf (0, 00). Q

Fiir den Beweis des nédchsten Satzes bendtigen wir die Jensensche Ungleichung, die wir
ohne Beweis angeben.

Satz 70 (Jensensche Ungleichung). Sei f eine streng konkave Funktion auf I und seien

0<ay,...,a, <1 reelle Zahlen mit 37! ; a; = 1. Dann gilt fir alle x4, ..., 2, € 1,
f (Z @i%') > Z a; f(z;)
i=1 =1

Hierbei tritt Gleichheit genau dann ein, wenn alle x; den gleichen Wert haben.
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Satz 71. Sei X eine Zufallsvariable auf einer n-elementigen Menge {x, ..., x,} mit der
Verteilung p; = Pr[X =x;] firi=1,...,n. Dann ist H(X) < logy(n), wobei Gleichheit
genau im Fall p; = 1/n firi=1,... n eintritt.

Beweis. Aufgrund der Jensenschen Ungleichung gilt

H(X) = pilogy(1/pi) <logy Y pi/pi =logyn,

=1 =1

wobei Gleichheit genau im Fall 1/p; = - - - = 1/p,, eintritt. Letzteres ist mit der Bedingung
pi=1/n furi=1,... n gleichbedeutend. O

Die Entropie liefert eine sehr gute untere Schranke fiir die mittlere Codewortlange von
Binédrcodes. Ein Binércode fir X ist eine (geordnete) Menge C' = {yi,...,yn} von
bindren Codewortern y; fir die Nachrichten z; mit der Eigenschaft, dass die Abbildung
c: X* —{0,1}* mit c(zy, - - x;,) = i, - - - ¥4, injektiv ist. Die Injektivitét von c stellt
sicher, dass jede Folge v;, - - - y;, von Codewortern eindeutig decodierbar ist.

Die mittlere Codewortlinge von C' unter X ist

n

L(C) = _pi - |yil-
i=1
C heiflt optimal, wenn kein anderer Binarcode fiir X eine kiirzere mittlere Codewortlange
besitzt. Fiir einen optimalen Bindrcode C fir X gilt (ohne Beweis)

H(X) < L(C) < H(X) + 1.

Beispiel 72. Sei X die Zufallsvariable aus dem letzten Beispiel mit der Verteilung
p1=p2 = Ya, p3 = ps = p5 = s und ps = p; = Yhe. Betrachten wir die beiden Codes
C; = {001,010,011,100,101,110,111} und Cy = {00,01,100,101,110,1110, 1111},
so hat Cy die mittlere Codewortlinge L(Cy) = 3, wihrend Cy = {y1,...,yr} wegen
lyi| = logy(Yp,) den optimalen Wert L(Cy) = H(X) = 2,625 erreicht. q

Die Redundanz eines Codes fiir eine Zufallsvariable X ist um so hoher, je grofier seine
mittlere Codewortlinge im Vergleich zur Entropie von X ist. Um auch Codes tiber
unterschiedlichen Alphabeten miteinander vergleichen zu kénnen, ist es notwendig, die
Codewortlange in einer festen Einheit anzugeben. Hierzu definiert man die Bitlange
eines Wortes x tiber einem Alphabet A mit m > 2 Buchstaben zu |z|o = |z|logy(m).
Beispielsweise ist die Bitlinge von GOLD (itber dem lateinischen Alphabet) |GOLD|; =
4log,(26) = 18,8. Entsprechend berechnet sich fiir einen Code C' = {y,...,y,} unter
einer Verteilung py, ..., p, die mittlere Codewortliange (in bit) zu

Lo(C) =" pi - yilo-
i=1
Damit konnen wir die Redundanz eines Codes als den mittleren Anteil der Codewort-
buchstaben definieren, die keine Information tragen.

Definition 73. Die (relative) Redundanz cines Codes C' fiir X ist definiert als

Ly(C) — H(X)

MO =10
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Beispiel 74. Wihrend eine von X generierte Nachricht im Durchschnitt H(X) = 2.625
bit an Information enthdlt, haben die Codewdrter von Cy eine Bitlinge von 3. Der Anteil
an ,uberflissigen® Zeichen pro Codewort betrigt also

3 —2.625

R(Ch) = 3

= 12,5%,

wogegen Cy keine Redundanz besitzt. N

3.3 Redundanz von Sprachen

Auch Schriftsprachen wie Deutsch oder Englisch und Programmiersprachen wie C oder
PASCAL koénnen als eine Art Code aufgefasst werden. Es ist zu erwarten, dass eine
Sprache umso mehr Redundanz aufweist, je restriktiver die Gesetzméfigkeiten sind, unter
denen in ihr Worte und Séatze gebildet werden. Um die statistischen Eigenschaften einer
Sprache L zu erforschen, erweist es sich als zweckméfig, die Textstiicke der Lange n
(n-Gramme) von L fiir unterschiedliche n getrennt voneinander zu betrachten. Sei also
L,, die Zufallsvariable, die die Verteilung aller n-Gramme in L beschreibt. Interpretieren
wir diese n-Gramme als Codeworter einer festen Codewortlange n, so ist

_ nlogym —H(Ly,)
B nlog, m

R(Ln)

die Redundanz dieses Codes.

Definition 75 (Entropie einer Sprache). Fir eine Sprache L iber einem Alphabet
A mit ||Al| = m ist H(L,)/n die n-Gramm-Entropie von L (pro Buchstabe). Falls
dieser Wert fiir n gegen oo von oben gegen einen Grenzwert

H(L) = lim H(L,)/n

konvergiert, so wird dieser Grenzwert als die Entropie von L bezeichnet. In diesem
Fall konvergiert R(L,,) von unten gegen den Grenzwert

R(L) = lim R(L,) = logym — H(L)

n—oo 10g2 m

9

der als die (relative) Redundanz von L bezeichnet wird. Der Zihler
Rabs(L) = logym — H(L) = R(L)log, m

wird auch als absolute Redundanz von L bezeichnet (gemessen in bit/Zeichen).

Die Redundanz von natiirlichen Sprachen lésst sich ndherungsweise bestimmen, indem
man die Entropien H(L,) ihrer n-Gramme empirisch ermittelt.

Beispiel 76. Im Deutschen hat die Einzelzeichenverteilung eine Entropie von H(L1) =
4,1 bit, wihrend eine auf Ay gleichverteilte Zufallsvariable U einen Entropiewert von
H(U) = log(26) = 4,7 bit hat. Fiur die Bigramme ergibt sich ein Entropiewert von
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H(Ls2)/2 = 3,5 bit pro Buchstabe. Mit wachsender Linge sinkt die Entropie von deutsch-
sprachigen Texten weiter ab und strebt gegen einen Grenzwert H(L) von 1,5 bit pro
Buchstabe.

n H(L,) H(L,)/n Ravs(Ln) /1 R(Ly)
1 4,1 4,1 0,6 13%
2 7,0 3,9 1,2 26%
3 9.6 3.9 1.5 329%
6 12,2 2.0 2.7 57%
15 27,6 1,8 2,9

62%

o 0o H(IL)=1,5 Rus(L)=32 R(L)=67%

Deutsche Texte hinreichender Lange besitzen also eine durchschnittliche Redundanz von
ca. 67%, so dass ihre Lange bei optimaler Kodierung auf ca.1/3 komprimierbar ist. <

3.4 Die Eindeutigkeitsdistanz

Wir betrachten nun den Fall, dass mit einem Kryptosystem Klartexte einer variablen
Lénge n verschliisselt werden, ohne dabei den Schliissel zu wechseln. Die Chiffrierfunktion

hat also die Form
E,: K x A" — C,,

wobei die Klartextlange n variabel ist und wir der Einfachheit halber annehmen, dass die
Menge C,, der entsprechenden Kryptotexte die gleiche Kardinalitét ||C,|| = ||A"|| = m
wie der Klartextraum hat. Ist y ein abgefangener Kryptotext, so ist

Kly)={ke K |3z e A": E,(k,z) =y Ap(zx) >0}

die Menge aller infrage kommenden Schliissel. K (y) besteht aus einem ,echten® (d.h.
dem zur Generierung von y tatsachlich benutzten) und ||K(y)|| — 1 so genannten ,un-
echten“ Schliisseln. Aus informationstheoretischer Sicht ist das Kryptosystem unter der
Klartextverteilung X umso sicherer, desto grofler die erwartete Anzahl

= > p)-(IKWI—-1 = > p) - IKyI -1

yeCn yelly

der unechten Schliissel ist. Im besten Fall kommen fiir jeden Kryptotext alle Schliissel
infrage, d.h. 5, = || K| — 1. Ist dagegen s,, gleich 0, so liefert der abgefangene Kryptotext
dem Gegner geniigend Information, um den benutzten Schliissel und somit den zugehorigen
Klartext eindeutig bestimmen zu kénnen (sofern er tiber gentigend Ressourcen verfiigt).

Definition 77. Die Eindeutigkeitsdistanz ng eines Kryptosystems unter Klartextver-
teilung X ist der kleinste Wert von n, fir den s, = 0 wird.

Als néchstes wollen wir eine untere Schranke fiir s,, (und damit fir ng) herleiten. Hierzu
benétigen wir den Begriff der bedingten Entropie H (X 1Y) von X, wenn der Wert von Y
bereits bekannt ist.

Definition 78. Seien X,Y Zufallsvariablen. Die bedingte Entropie von X unterY
ist definiert als

HXY)= > ply) - H(X]y),

yeW(Y)
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wobei X |y die Zufallsvariable mit der Verteilung p,(x) = p(zly) = Pr[X =2 | Y =y] ist
(d-h. X|y hat die Entropie H(X|y) = Zoewx) P(2|y) - 108y (Yo(aly))-

Satz 79. Es gilt
1. H(X,Y) =H(Y) + H(X]Y) und
2. H(X,Y) <H(X)+H(Y), wobei Gleichheit genau dann eintritt, wenn X und Y
unabhdngig sind.

Beweis. s. Ubungen. O

Korollar 80. FEs gilt H(X|Y) < H(X), wobei Gleichheit genau dann eintritt, wenn X
und Y unabhdngig sind.

Satz 81. In jedem Kryptosystem gilt fir die Klartextentropie H(X), die Schliisselentropie
H(S) und die Kryptoteztentropie H(Y) die Gleichung

H(S|Y) = H(S) + H(X) — H(Y).

Beweis. Zunachst ist H(S|Y) = H(S,Y) — H(Y). Es reicht also zu zeigen, dass
H(S,Y) =H(S) + H(X)

ist. Da bei Kenntnis des Schliissels der Wert von X bereits eindeutig durch Y und der
Wert von Y eindeutig durch X festgelegt ist, folgt unter Beriicksichtigung der gemachten
Annahme, dass X und S unabhéngig sind,

H(S,Y) = H(S, X,Y) = H(X|S,Y) = H(S, X) + H(Y|S, X) = H(S) + H(X).

=0 =0

Jetzt verfiigen wir iiber alle Hilfsmittel, um die erwartete Anzahl

= > py)- 1K@ -1

yeCn
der unechten Schliissel nach unten abschétzen zu konnen.

Lemma 82. Seien X,, und Y, die Zufallsvariablen, die die Verteilungen der n-Gramme
der Klartextsprache und der zugehdrigen Kryptotexte beschreiben. Dann gilt

1. H(S|Yy) <logy(s, + 1),
2. H(S|Y,) > H(S) — nR(Ly)log, m.

Beweis.
1. Unter Verwendung der Jensenschen Ungleichung folgt

H(SIYn) = Y ply) - H(Sly) < D p(y) -logy [ K ()| < logy > py) - 1K ()|l

yeCn yeCh, yeCn
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2. Mit Satz 81 folgt
H(S[Yn) = H(S) + H(Xn) = H(Yn).

Fir die Klartextentropie H(X,,) gilt
H(X,) =H(L,) = (1 —R(L,))nlog, m,

wobei m = || Al| ist. Zudem lésst sich die Kryptotextentropie H(Y;,) wegen W (Y,,) =
C,, und [|C,|| = m"™ durch
H(Y,) < nlog,m

abschatzen. Somit ist
H(S|Y,) = H(S) + H(X,) — H(Y,) > H(S) — nR(L,) log, m u
Zusammen ergibt sich also
logy (5, + 1) > H(S) — nR(Ly) logy m > H(S) — nR(L) log, m.

Im Fall eines gleichverteilten Schliissels erreicht H(S) den maximalen Wert log, || K|,
was auf die gesuchte Abschétzung fir s,, fithrt.

Satz 83. Werden mit einem Kryptosystem (M,C, E,D,K) mit M = A" und ||C|| = m"
Klartexte einer Sprache L der festen Ldnge m mit gleichverteiltem Schlissel k € K

verschliisselt, so gilt fiir die erwartete Anzahl s, der unechten Schlissel,

Iy

S
= mnR(Ln)

— 1.

Setzen wir in obiger Abschitzung s, = 0, so erhalten wir folgende untere Schranke fiir
die Eindeutigkeitsdistanz ngy eines Kryptosystems.

Korollar 84. Unter den Bedingungen des obigen Satzes gilt

. logy [|[ K] logs [ K| _ log, || K]
= R(Ln)log,m = R(L)logym  Raps(L)

Man beachte, dass wir die Mindestmenge an Kryptotext, der zur eindeutigen Bestimmung
des Schliissels benotigt wird, nur nach unten abgeschatzt haben und die tatsachlich
benotigte Menge deutlich grofler sein kann. Natiirlich erlaubt die eindeutige Bestimmung
des Schliissels auch die eindeutige Bestimmung des Klartexts. Unter Umstédnden kann
jedoch der Klartext auch schon mit einer wesentlich geringeren Menge an Kryptotext
eindeutig rekonstruierbar sein.

Beispiel 85. Fur Substitutionen bei deutschsprachigem Klartext ergeben sich folgende
Werte logy || K||/Raps(L) als untere Schranke fir die Eindeutigkeitsdistanz ng (wobei wir
von einer absoluten Redundanz von Rus(L) = 3.2 bit/Zeichen ausgehen, was einer
relativen Redundanz von R(L) = 3,2/4,7 ~ 67% entspricht):

Kryptosystem Schliisselanzahl || K| logy || K||  logy || K||/Rabs(L)
additive Chiffre 26 4.7 % ~ 1.5
affine Chiffre 1226 = 312 8.3 2.6
einfache Substitution 26! 88.4 27.6

Vigenére-Chiffre 264 4.7-d 1.5-d
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Dagegen erhalten wir fir Blocktranspositionen folgende unteren Schranken fiir die Min-
destmenge an Kryptotext, die zur eindeutigen Schliisselbestimmung benotigt wird. Hierbei
unterscheiden wir zusdtzlich nach der Linge der bei der Hdaufigkeitsanalyse benutzten
n-Gramme. Dies entspricht der Situation, dass die Wahrscheinlichkeit jedes Zeichens im
Klartext hochstens von den n — 1 vorausgehenden bzw. nachfolgenden Zeichen abhdngt.

Untere Schranken fiir ny bei einer Analyse von Blocklinge ¢

Blocktranspositionen auf der Basis von 10 20 50 100 1000
Einzelzeichen-Hdaufigkeiten (R(Ly) =0,6) 59 165 578 1415 22986
Bigramm-Hdaufigkeiten (R(L2) =1,2) 40 111 390 954 15502
Trigramm-Haufigkeiten (R(L3) =1,5) 24 65 226 558 9473
n-Gramm-Haufigkeiten, n — oo (R(L) =3,2) 7 19 67 164 26065

3.5 Weitere Sicherheitsbegriffe

Da die Benutzung eines informationstheoretisch sicheren Kryptosystems einen immensen
Aufwand erfordert, begniigt man sich in der Praxis meist mit schwécheren Sicherheitsan-
forderungen.

— Ein Kryptosystem gilt als komplexitatstheoretisch sicher oder als berech-
nungssicher (computationally secure), falls es dem Gegner nicht moglich ist,
das System mit einem fiir ihn lohnenswerten Aufwand zu brechen. Das heifit, der
Zeitaufwand und die Kosten fiir einen erfolgreichen Angriff (sofern er tiberhaupt
moglich ist) iibersteigen den potentiellen Nutzen bei weitem.

— Ein Kryptosystem gilt als nachweisbar sicher (provably secure), wenn seine
Sicherheit mit bekannten komplexitéatstheoretischen Hypothesen verkniipft werden
kann, deren Giltigkeit gemeinhin akzeptiert wird.

— Als praktisch sicher (practically secure) werden dagegen Kryptosysteme ein-
gestuft, die iiber mehrere Jahre hinweg jedem Versuch einer erfolgreichen Krypto-
analyse widerstehen konnten, obwohl sie bereits eine weite Verbreitung gefunden
haben und allein schon deshalb ein attraktives Ziel fiir einen Angriff darstellen.

Die komplexitéitstheoretische Analyse eines Kryptosystems ist d&uflerst schwierig, da der
Aufwand fiir einen erfolgreichen Angriff unabhéngig von der dabei benutzten Technik
abgeschatzt werden muss. Es reicht also nicht, alle bekannten kryptoanalytischen Ansétze
in Betracht zu ziehen, sondern alle mdglichen. Dabei darf sich die Aufwandsanalyse nicht
ausschliefllich an einer vollstandigen Rekonstruktion des Klartextes orientieren, da bereits
ein kleiner Unterschied zwischen der A-posteriori- und A-priori-Wahrscheinlichkeit fiir
den Gegner einen Vorteil bedeuten konnte.

Aus den genannten Griinden ist noch fiir kein praktikables Kryptosystem der Nachweis
gelungen, dass es komplexitatstheoretisch sicher ist. Damit ist auch nicht so schnell zu
rechnen, zumindest nicht solange der Status fundamentaler komplexitatstheoretischer
Fragen wie etwa des bertthmten P ZNP-Problems offen ist. Dagegen gibt es eine ganze
Reihe praktikabler Kryptosysteme, die als nachweisbar sicher oder praktisch sicher gelten.

Wir schlieBen diesen Abschnitt mit einer Prézisierung des komplexitéitstheoretischen
Sicherheitsbegriffs, die unter dem Namen IND-CPA (indistinguishability under a chosen-
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plaintext attack) bekannt ist. Hierzu ist es erforderlich, die Verletzung der Vertraulichkeit
als ein algorithmisches Problem fiir den Gegner zu formulieren. Konkret lauft ein IND-
CPA-Angriff wie folgt ab.

1. Zuerst wahlt der Gegner zwei Klartexte xg # x1 € M.
2. Dann wird xg oder x; zufallig ausgewahlt und der zugehorige Kryptotext y gebildet.

3. Dem Gegner wird der Kryptotext y vorgelegt und er muss raten, welcher der beiden
Klartexte sich hinter y verbirgt.

4. Der Angriff ist erfolgreich, falls der Gegner richtig rét.

Die Erfolgsaussichten des Gegners bei diesem Angriff lassen sich wie folgt formalisieren.
Dabei gehen wir davon aus, dass das gewiinschte Mafl an Sicherheit durch einen Parameter
s € N reguliert wird. Typischerweise werden Kryptosysteme nach ihrer Schliisselldnge s =
|k| parameterisiert. Aus Praktikabilitatsgriinden sollten dann alle legalen Operationen (wie
die Chiffrierung oder die Schliisselgenerierung) effizient (d.h. in Zeit s°V)) durchfiihrbar
sein. Nattirlich darf dann auch der Aufwand des Gegners in Abhéngigkeit von s steigen,
weshalb er zusatzlich den Parameterwert s erhalt.

Definition 86 (IND-CPA Angriff). Sei (M,C,E,D,K,S) ein Kryptosystem mit
Sicherheitsparameter s € N. Ein (IND-CPA-)Gegner ist ein Tripel G = (Xo, X1,V)
von probabilistischen Algorithmen, wobei Xy, X1 bei Eingabe s zwei Klartexte aus M
generieren und V' bei Eingabe von s, xg,x1 € M undy € C ein Bit V(s,xo,z1,y) € {0,1}
ausgibt. Der Vorteil von G bei Parameterwert s ist

aa(s) = 2PV (Xo(s), X,(s), E(S, Xp(s))) = B] — 1/2).
wobei B auf {0,1} gleichverteilt und von S, Xo, X1,V unabhdingig ist.

Ist der Wert des Sicherheitsparameters s irrelevant, fest vorgegeben oder aus dem Kontext
ersichtlich, so verzichten wir meist auf seine explizite Angabe.

Wird beispielsweise eine Folge von Klartextblocken aq,as,... mit einer Blockchiffre
verschliisselt, indem die einzelnen Blécke unabhéngig voneinander mit demselben Schliissel
k zu einer Folge by, bo, ... von Kryptotextblocken b; = E(k, a;) verschliisselt werden (so
genannter ECB-Modus; electronic code book mode), so kann ein Gegner ohne grofien
Aufwand einen Vorteil von 1 erzielen (d.h. mit Wahrscheinlichkeit 1 den richtigen Klartext
raten). Hierzu wahlt er (deterministisch) zwei beliebige Klartexte xy = ajay... und
xy = ajal ... mit der Eigenschaft a; = ap und a} # a}. Dann kann er bei Vorlage eines
Kryptotextes y = b1by ... leicht erkennen, aus welchem Klartext y generiert wurde:

0, bl = b2

1, sonst.

V(zo,x1,y) = {

Erwartungsgemaf sind absolut sichere Kryptosysteme gegen IND-CPA-Angriffe resistent.

Satz 87. Der maximale Vorteil gegeniiber einem absolut sicheren Kryptosystem ist gleich
Null (d.h. ein IND-CPA-Gegner kann hichstens mit Wahrscheinlichkeit /2 den richtigen
Klartext raten, auch wenn er iber unbeschrankte Rechenressourcen verfigt).

Beweis. Bei einem absolut sicheren Kryptosystem sind der Kryptotext Y = E(S, X) und
der Klartext X unabhéngig. Daher sind auch die Zufallsvariablen V' (X, X1, E(S, X))
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und B unabhéngig und es folgt

Pr[V(XonlvE(S7 XB)) =B

= Pr[V(Xo, X1, E(S, Xp)) = B = 0] + Pr[V(Xo, X1, E(S, Xp)) = B =1]
= Pr[V(Xo, X1, E(S,X5)) = 0] - Pr[B=0|V(X,, X1, E(S, Xp)) = 0]
=Pr[B=0]=1/2
+ Pr[V(Xo, X1, E(S, X)) = 1] - Pr[B = 1| V(Xy, X1, E(S, Xp)) = 1]
=Pr[B=1]=1/2

= 1/2.
/ 0

In den Ubungen wird auch die umgekehrte Implikation bewiesen. Ein Kryptosystem ist
somit genau dann absolut sicher, wenn kein Gegner einen Vorteil grofer als 0 erzielen kann.
Fiir die Prézisierung der komplexititstheoretischen Sicherheit sind nun die folgenden
beiden Fragen von entscheidender Bedeutung:

1. Uber welche Rechenressourcen verfiigt ein Gegner realistischerweise?

2. Wie grof} darf der vom Gegner erzielbare Vorteil hochstens sein, ohne die Vertrau-
lichkeit der verschliisselten Nachricht zu verletzen?

Beziiglich Frage 1 geht man typischerweise davon aus, dass der Gegner iiber probabilisti-
sche Schaltkreise polynomieller Grofle verfiigt.
Definition 88.

a) Ein boolescher Schaltkreis der Grofie m mit Fingingen x1, ..., z, und Ausgdin-
gen iy, ..., 1 € [m] ist eine Folge ¢ = (g1, ...,9m) von Gattern

g e {0,1,21, ... 2, (= 1), (A4, k), (V, 5, k)} mit 1< g,k < L.

b) Der von c bei Fingabe a € {0,1}" am Gatter g, berechnete Wert g;(a) € {0,1} ist
induktiv wie folgt definiert:

gi 01 L (_'7j) (/\7j7k) (\/,j,k')
gi(a)|0 1 a; 1—gj(a) gjla)gr(a) gjla)+ gr(a) — g;(a)gr(a)

c¢) Die Ausgabe von c¢ bei Eingabe a € {0,1}" ist die Bitfolge c(a) = gi,(a) ... g;(a).

Beispiel 89. Der Schaltkreis
_ ()
C = (wlax27$37$47</\a1a2)7(/\7273)7
(\/7374)7(_'?5)a<_'a6)7(_‘77>7 @ @
(V,6,8),(V,9,10), (A, 11,12)) O \O O

mit den Fingdngen xq,xs, x3, x4 und Ausgingen (11,12,13) OHEONOY

gibt bei Eingabe a = 0110 die Bitfolge ¢(0110) = 100 aus. T Ty w3 my

Ein probabilistischer Schaltkreis c hat neben den reguldren Eingabegattern x4, ..., z,
noch eine beliebige Anzahl von Zufallsgattern z1, .. ., z,,,. Hierbei werden die Eingabegatter
x; wie bisher mit den Bits a; eines Eingabevektors a = a; ... a, € {0,1}" belegt, wihrend
die m Zufallsgatter unabhéngig gleichverteilte Bits Zi, ..., Z,, erzeugen (d.h. es gilt
Pr(Z,...Z, =b =27 fir alle b € {0,1}™). Dadurch wird die Ausgabe c(a, Z1, ..., Zy)
zu einer Zufallsvariablen, die wir auch kurz mit C(a) bezeichnen.
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Beziiglich der zweiten Frage verlangt man, dass der Gegner fiir jedes Polynom p hochs-
tens fiir endlich viele Parameterwerte s einen Vorteil gréfier gleich 1/p(s) erzielen darf.
Andernfalls wéare die Sicherheit gefahrdet, da er fiir jedes solche s nach polynomiell
vielen Wiederholungen der probabilistischen Berechnung von V' (s, xg, x1,y) fast sicher
den richtigen Klartext ausfindig machen konnte, indem er das mehrheitlich berechnete
Bit ausgibt.

Definition 90. Sei KS ein Kryptosystem mit variablem Sicherheitsparameter s € N.

— FEine Funktion € : N — R heifst vernachldssigbar, wenn fiir jedes Polynom p eine
Zahl ng € N ezistiert, so dass e(n) < 1/p(n) fir alle n > ng gilt.

— Fin Gegner G = (Xo, X1,V) heifit effizient, wenn probabilistische Schaltkrei-
se ¢ und ¢ der Grofe s°N mit C(s) = (Xo(s),X1(s)) und C'(s,20,21,y) =
V (s, xg,x1,y) existieren, wobei die Ein- und Ausgaben von ¢ und ¢ bindr kodiert
sind.

— KS heifit komplexitatstheoretisch sicher, wenn jeder effiziente Gegner G nur
einen vernachldssigbaren Vorteil erzielen kann (d.h. die Funktion ag(s) ist vernach-
lassigbar).
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4 Moderne symmetrische Kryptosysteme & ihre
Analyse

4.1 Produktchiffren

Produktchiffren erhdlt man durch die sequentielle Anwendung mehrerer Verschliisse-
lungsverfahren. Sie konnen extrem schwer zu brechen sein, auch wenn die einzelnen
Komponenten leicht zu brechen sind.

Definition 91. Seien KSl = (Ml, Cl, El, Dl, Kl, Sl) und KSQ = (MQ, CQ, EQ, DQ, KQ, Sg)
Kryptosysteme mit C; = Ms. Dann ist das Produktkryptosystem KS; x KSy von KS;
und KSy definiert als (My,Cy, E, D, K1 X Ky, 5) mit S = (51,52) und

E(l{il,kg;l‘) = EQ(kQ,El(kl,(L’)) sowie D(l{fl, kQ,y) = Dl(k’l, Dg(k’g,y))
fir alle x € My, y € Cy und (ky, k) € K; X K.

Der Schliisselraum von KS; x KSs umfasst also alle Paare (kq, k2) von Schliisseln ky € K,
und ky € Ky, wobei wir voraussetzen, dass die Schliissel unabhéngig gewahlt werden (d.h.

es gilt p(ky, k2) = p(k1)p(ka)).

Beispiel 92. Sei A = {ag,...,am_1}. Man sieht leicht, dass die affine Chiffre KS =
(M,C,K,E,D) mit M = C = A und K = 7, X Z, das Produkt KS = KS; x KS
der multiplikativen Chiffre KSy = (M,C, Ky, Ey, Dy) und der additiven Chiffre KSy =
(M, C, Ky, Ey, Dy) ist, da fiir jeden Schlissel k = (k1,kq) € K = Ky X Ko = Z}, X L,
gilt:

E(k,l’) = kll' + kz = EQ(kQ, El(kl,l')).
Das ist exakt die affine Chiffre. Welche Chiffre erhalten wir, wenn wir die Rethenfolge

von KS7 und KSy vertauschen? Fir KS' = KSy x KSy ergibt sich das Kryptosystem
KS"'= (M,C,K',E',D") mit K' = Ky X Ky = Z, x Z, und

E,(kg, kl,l’) = ]{?1(1' + ]{?2) = k?ll‘ + k’lkfg = E(k’l, k’lk’g; ZL‘)
fir jeden Schlissel (ko, k1) € K'. Wir sehen also, dass die Abbildung
(Ko, k1) w=> (K1, kakz)

eine Bijektion zwischen den Schlisselrdumen K' und K ist und der Schlissel (ks, ky)
im System KS' die gleiche Chiffrierfunktion realisiert wie der Schlissel (ki,kiks) in
KS. Zudem kénnen wir jeden Schliisselgenerator S” fiir KS' in einen Schlisselgenerator
S fir KS transformieren (und auch S wieder zurick in S’), so dass S in KS jede
Chiffrierfunktion mit der gleichen Wahrscheinlichkeit erzeugt wie S" in KS'. Daher
konnen wir die Kryptosysteme KS = KS; x KS, und KS' = KSy x KSi als gleich
(genauer: dquivalent, sieche Ubungen) ansehen, d.h. KS; und KSs kommutieren. N

Definition 93. Ein Kryptosystem KS = (M,C, K, D, E) mit M = C heifit endomorph.
FEin endomorphes Kryptosystem KS' heifit tdempotent, falls KS x KS dquivalent zu KS
ist (in Zeichen: KS x KS = KS).
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Beispiel 94. Fine leichte Rechnung zeigt, dass die additive Chiffre, die multiplikative
Chiffre und die affine Chiffre idempotent sind. Ebenso die Blocktransposition sowie die
Vigenére- und Hill-Chiffre. <

Will man durch mehrmalige Anwendung (Iteration) derselben Chiffriermethode eine
hohere Sicherheit erreichen, so darf diese nicht idempotent sein. Man kann beispielsweise
versuchen, ein nicht idempotentes System KS durch die Kombination KS = KS; x KS
zweier idempotenter Verfahren KS; und KS; zu erhalten. Da KS im Fall KS; x KSy =
KSy x KS, wegen

(KS; x KSy) x (KS; x KS;) = KS; x (KSy x KSy) x KSy
= KBS x (KS; x KS3) x KS,
= (KS; x KSy) x (KSy x KS5)
= KS5; x KSy

idempotent ist, diirfen hierbei KS; und KS5 jedoch nicht kommutieren.

Im Rest dieses Kapitels werden wir nur noch das Binéralphabet A = {0, 1} als Klar- und
Kryptotextalphabet benutzen und auch der Schliisselraum wird von der Form {0, 1}* sein,
wobei k die Schliissellinge bezeichnet. Einzelne Schliissel eines Kryptosystems werden
wir in diesem Kapitel mit K bezeichnen.

Eine iterierte Blockchiffre wird typischerweise durch eine Rundenfunktion (round
function) g und einen Key-Schedule Algorithmus f beschrieben. Ist N die Rundenzahl,
so erzeugt f bei Eingabe eines Schliissels K eine Folge f(K) = (K*',..., KY) von N
Rundenschliisseln K fiir g. Mit diesen wird ein Klartext x = w® durch N-malige
Anwendung der Rundenfunktion g zu einem Kryptotext y = w” verschliisselt:

w' = g(K*, ")

w? = g(KN, wN™1)
Um y wieder zu entschliisseln, muss die inverse Rundenfunktion ¢! mit umgekehrter
Rundenschliisselfolge KV, ..., K! benutzt werden:

wN=1 = g (KN, wh)

W = g (K, wh)
Beispiele fiir iterierte Chiffren sind der aus 16 Runden bestehende DES-Algorithmus und

der AES mit einer variablen Rundenzahl N € {10, 12, 14}, die wir in spateren Abschnitten
behandeln werden.

4.2 Substitutions-Permutations-Netzwerke

In diesem Abschnitt betrachten wir den prinzipiellen Aufbau von iterierten Blockchiffren.
Als Basisbausteine fiir die Rundenfunktion eignen sich Substitutionen und Transpositionen
besonders gut. Aus Effizienzgriinden sollten die Substitutionen nur eine relativ kleine
Blockldnge ¢ haben.

Definition 95. Fir ein Wort u = wuy---u, € {0,1}" und Indizes 1 < 1 < j < n
bezeichne uli, j| das Teilwort u; - - - u; von u. Im Falln = ml bezeichnen wir das Teilwort
ul(i — 1)l + 1,4l] auch einfach mit ugy, d.h. es gilt u = wqy - - - Uy, wobei |uw)| =1 ist.
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Sei og : {0,1}' — {0,1}" eine Substitution, die Bindrblocke u der Linge [ in Bindrblocke
v = og(u) der Lénge [" iiberfithrt (auch kurz als S-Box S bezeichnet, oft schreiben wir
fir og(u) auch einfach S(u).
U U Uz Uy
S-Box

V1 V2 U3 V4 Vs Vg

Durch parallele Anwendung von m Kopien der S-Box S erhalten wir die Substitution
Oms : {0,1}™ — {0,1}™ mit

Tms (1 -+ ) = 05 (uy) - - o5 (Um))-

Auch hier schreiben wir fiir o,,s(u; - - - upyy) einfach S(u - - - Uy ). Fir die Speicherung
einer S-Box o : {0,1}' — {0,1}" auf einem Speicherchip werden 12" Bit Speicherplatz
benétigt (im Fall [ = I” also (2! Bit). Fiir [ = I’ = 16 wéren dies beispielsweise 220 Bit,
was Smartcard-Anwendungen bereits ausschlieen wiirde.

Fiir eine Transposition P auf {0, 1}* bezeichnen wir die zugehérige Permutation auf [/]
mit 7p oder einfach mit 7, falls P aus dem Kontext bekannt ist, d.h.

P(u1 .. .ue> = uﬂ'(l) .. 'UW(Z)

Definition 96. Fiir natiirliche Zahlen m,l > 1 sei M = C = {0,1}* mit £ = ml.
FEin Substitutions- Permutations-Netzwerk (SPN) wird durch eine S-Boz S, eine
Blocktransposition P und durch eine Funktion f : {0,1}* — {0, 1}™®+Y peschrieben,
wobei S eine Permutation os auf {0,1}! realisiert, P die Blocklinge ¢ hat und N > 1
die Rundenzahl des SPN ist. Die Funktion f transformiert einen (externen) Schlissel
K € {0,1}* in ein Key-Schedule f(K) = (K',..., K¥*!) von N +1 Rundenschliisseln
K", r=1,...,N+1, unter denen ein Klartezt x € {0,1}* in N Runden durch folgenden
Chiffrieralgorithmus in einen Kryptotext y = Ejgp(K,x) € {0,1}* dberfihrt wird:

Chiffrierfunktion E;gp(K, )

w =1

1
o for r:=1to N—-1 do
3
|

ui=w e KT
V"= ops(u”)
5 w” = P(v")
6 ul =wN "t KN
7 N = os(ulY)
s oy i=ovN @ KN

Zu Beginn jeder Runde r € {1,..., N} wird w"~! zunéchst einer XOR-Operation mit dem
Rundenschliissel K™ unterworfen (dies wird round key mixing genannt). Das Resultat u”
wird den S-Boxen zugefiihrt und auf die Ausgabe v" wird in jeder Runde r < N — 1 die
Transposition P angewendet, was die Eingabe w" fiir die néchste Runde r + 1 liefert.

Am Ende der letzten Runde » = N wird nicht die Transposition P angewandt, sondern der
Rundenschliissel KV +1 auf vV addiert. Durch diese (whitening genannte) Vorgehensweise
wird einerseits erreicht, dass auch fiir den letzten Chiffrierschritt der Schlissel ben6tigt
und somit der Gegner von einer partiellen Entschliisselung des Kryptotexts abgehalten
wird. Zum Zweiten ermoglicht dies eine (legale) Entschliisselung nach fast demselben
Verfahren (siehe Ubungen).
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Abbildung 4.1: Ein Substitutions-Permutations-Netzwerk

Beispiel 97. Wir betrachten ein SPN SP mit Parameternl =m = N =4 und k = 32.
Fiir f wihlen wir die Funktion f(K) = (K',..., K°) mit K" = K[4(r—1)+1,4(r—1)+16].
Weiter seien og : {0,1}* — {0,1}* und 7p : {1,...,16} — {1,...,16} die folgenden
Permutationen (wobei die Argumente und Werte von og hexadezimal dargestellt sind;

siehe auch Abbildung 4.1):

z O 1 2 3 45 6 7 8 9ABCDE F
os(z)|E 4 D1 2 F B 8 3 A6 C5 9 0 7
und
1 123 4 56 7 & 9 10 11 12 13 14 15 16
mp(i)|1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Fiir den Schliissel K = 0011101010010100110101100011 1111 liefert f beispielsweise
die Rundenschliissel f(K) = (K',...,K®) mit

K'= 001110101001 0100,
K? =101010010100 1101,
K3 = 100101001101 0110,
K*=0100110101100011,
K’ =1101011000111111,



4.3 Lineare Approximationen B}

unter denen der Klartext x = 001001101011 0111 die folgenden Chiffrierschritte durch-

lauft:
x = 001001101011 0111 = w°

w® @ K1 = 000111000010 0011 = v
S(u') = 01000101 1101 0001 = o
P(v) = 0010 111000000111 = "

P(v*) = 111001000110 1110 = w?
w3 @ K* = 10101001 00001101 = u*
S(u*) = 011010101110 1001 = v*
u?® K° =101111001101 0110 = y.

4.3 Lineare Approximationen

Sei og : {0,1} — {0,1}" die funktionale Beschreibung einer S-Box S. Wihlen wir die
Eingabe U = Uy - - - U zuféllig unter Gleichverteilung, so gilt fir die zugehorige Ausgabe
V=og(U) = Vi Vi,

1 og(u) =,

0 sonst

Pr[V:v|U:u]:{

fiir alle u € {0,1} und v € {0, 1}". Wegen Pr[U = u] = 27! folgt

270 og(u) = v,

Pr[V=0,U=u] = {
0  sonst.

Ist die S-Box S linear, d.h o ist eine lineare Funktion og(u) = uA fiir eine binére

(I x I')-Matrix A (vgl. Definition 28), so ldsst sich jedes Ausgabebit v; von S tiber eine

Funktion der Form v; = u;, @ --- @ w;, fir geeignete Indizes 1 < 4; < -+ < 4 < |

berechnen. In diesem Fall wiirde also

Pr[V; =U,, ®---®U,] =1

gelten. Die Idee hinter der linearen Kryptoanalyse ist nun, etwas allgemeinere Gleichungen
der Form

Vi@ @V, =U,@ U, dc
mit 1 <i; << < 1<j < - <jw<U'undc € {0,1} zu finden, die mit
moglichst grofer Wahrscheinlichkeit gelten. Definieren wir fiir a € {0,1}' und b € {0,1}"
die Zufallsvariablen

l I
U, = @%Ui und V= @bivia
i=1 i=1

so sind wir also an solchen Werten fiir a,b und c¢ interessiert, fiir die das Ereignis
V, = U, @ ¢ (oder gleichbedeutend: U, ® V, = ¢) mit grofler Wahrscheinlichkeit eintritt.
In diesem Fall lasst sich ndmlich der Wert von V}, bei Kenntnis von U, entsprechend gut
vorhersagen. Wegen Pr[U, &V, = ¢| =1 — Pr[U, & V, = ¢ ® 1] kommt es nur darauf an,
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wie stark die Wahrscheinlichkeit Pr[U, & V}, = 0] von 1/; abweicht. Die durch das Paar
(a,b) beschriebene lineare Approximation L = U, @V} an die S-Box S ist also um so
besser, je grofier der Absolutbetrag |Pr[L = 0] — 14| ist.

Definition 98. Fiir eine Zufallsvariable X mit Wertebereich W (X) = {0,1} bezeichne
e(X) den Wert e(X) = Pr[X = 0] — Y (auch Bias von X genannt).
Unter Benutzung dieser Notation ldsst sich also die Giite einer linearen Approximation

U, ®V, an eine S-Box S durch den Absolutbetrag |e(U, ® V)| ihres Bias-Wertes bemessen.

Beispiel 99. Wir betrachten wieder die S-Box S aus Beispiel 97. Dann nimmt die
Zufallsvariable (Uy, ..., Uy, Vi,...,Vy) die 16 Werte in folgender Tabelle jeweils mit
Wahrscheinlichkeit 2= = 116 an.

U Uy Us Uy Vi Vo V3 Vy Us@Us@ ViV,

0O 0 0 0 1 1 1 0 1
0o 0 0 1 0 1 0 0 1
o 0 1 0 1 1 0 1 1
o 0 1 1 0 0 0 1 1
0o 1 0 0 O 0 1 0 0
o 1 o0 1 1 1 1 1 1
o 1 1 0 1 0 1 1 1
o 1 1 1 1 0 0 O 1
1 0 0 0 0 0 1 1 1
1 0 0 1 1 0 1 O 0
1 0 1 0 0 1 1 O 1
1 0 1 1 1 1 0 O 1
11 0 0 0 1 0 1 1
11 0 1 1 0 0 1 1
11 1 0 0 0 0 O 1
11 1 1 0 1 1 1 1

Um nun (U, ® Vp) zu berechnen, geniigt es, die Anzahl L(a,b) der Zeilen zu bestimmen,

fir die U, =V}, ist. Dann gilt Pr[U, &V, = 0] = Pr[U, = V;| = L(a,b)/16 und somit
e(U, ® V) = L(a,b)/16 —1/2 = (L(a,b) — 8)/16.

Fiir a = 0011 und b = 1001 gibt es z.B. L(a,b) = 2 Zeilen (Zeile 5 und Zeile 10) mit

U =U0U,=V,=Vi®V,, dh. e(Us® Uy &V, ® V) = (L(a,b) — 8)/16 = —3/. Die

folgende Tabelle zeigt fiir alle Werte von a und b (hexadezimal dargestellt) die Anzahlen

L(a,b).

b
a ©6 1 2345 6 7 8 9 A B CD E F
©16 8 8 8 8 8 8 8 8 8 8 & 8 8 8 8
1 8 86 6 8 8 6 14 10 10 8 8 10 10 8 8
2 8 86 6 88 6 6 8 81010 & 8 210
3 8 88 888 8 810 2 6 61010 6 6
4 810 8 6 6 4 6 8 8 6 8 10 10 4 10 8

B 812 8 412 812 8 8 8 & 8 8 8 8 8

F 8 6 46 6 810 8 8 612 6 6 &8 10 8
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4.4 Lineare Kryptoanalyse eines SPN

Wir betrachten nun das SPN SP aus Beispiel 97 und fiihren eine lineare Kryptoanalyse
durch. Dabei handelt es sich um einen Angriff bei bekanntem Klartext, d.h. es steht
eine Menge M von t Klartext-Kryptotext-Paaren (z,y) zur Verfiigung, die alle mit dem
gleichen unbekannten Schliissel K erzeugt wurden.

8 910111213141516
. 208 I O I N B
K! |
EXEEENEEE

S S S5 Si

123456
L ¥

T

56 7
vI¥
'HR’

| K |
RN AN
52 52 S2 St
| K ]
AN ENEAENEEENEEN
St S5 S3 Si
w’ K4
EEENE AR TEEENE 2R’
St Sy S5 Si
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N

Abbildung 4.2: Eine lineare Approximation an ein Substitutions-Permutations-Netzwerk

Seien K, ..., K° die zu K gehérigen Rundenschliissel (diese sind wie K unbekannt, aber
konstant). Das Ziel besteht zundchst einmal darin, eine lineare Approximation fiir die Ab-
bildung z + u* zu finden, bei der nur die ersten vier Rundenschliissel K*, ..., K* benutzt
werden (siehe Abbildung 4.2). Hierzu verwenden wir die beiden linearen Approximationen

T=U,0U;0U, &V, und T'=Us & VoV,

an die S-Box S mit den Bias-Werten ¢(T") = (L(B,4) — 8)/16 = (12 — 8)/16 = 1/, und
e(T") = (L(4,5) — 8)/16 = (4 — 8)/16 = —1/4 (also Pr[T = 0] = Pr[T" = 1] = 3/4).

Konkret verwenden wir 7' fiir die S-Box 53,

T=UloUloUiaV]
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und 7" fiir die drei S-Boxen S3, S35, S,
L=UsoWWoV, T=UsoVeaoV, Ti=UioVio Vi

Nun schalten wir diese vier linearen Approximationen an die S-Boxen S3, S3, S5 und S3
zu einer linearen Approximation

L=X;0X:0Xs@UioUioU,oUk=X, U}

X fiir a=0B0O U;l fiir b=0505

an die Abbildung z + u* zusammen und erhalten fiir ein Bit ¢ € {0,1} die Gleichung
X, oUt=T1oThol:eT,dc (4.1)

An dieser Stelle ergeben sich nun folgende drei Fragen.
1. Warum gilt (4.1)?
2. Wie gut ist die lineare Approximation L an die Abbildung z s u*?
3. Wie koénnen wir mit ihrer Hilfe einzelne Schliisselbits bestimmen?

Die Antwort auf Frage 1 ist einfach: Seien ¢y, ..., ¢4 die Schlisselbitsummen
a=KoKI QK =K c3=Ks DK}, cy=K;® K@K}, @Ky

(fir diese verwenden wir Kleinbuchstaben, da die einzelnen Schliisselbits K als konstant
vorausgesetzt werden) und sei ¢ = ¢; @ ¢2 @ ¢3 @ ¢4. Dann gilt

Xs0X; 90Xy = UloUroUi®c
= T1oVidag
= 1 oW
= iU ®c1 Doy
= TohoVieVidadae
= TTohLhoWeeoWidada
= 1oLhoUlaU,®dcdcedc
= NoeLhohol,oViaVioVieoVidadendc
= TohoThoTyoWeoWsoW,,eWlk®c ®c®dc
= 1oLhoLGoT,oUioUiaUL, U Dei Do D ez D ey

C

Nun zu Frage 2: Waren die Zufallsvariablen 71, ..., T, unabhingig, so wiirde uns das
folgende Piling-up-Lemma den Bias-Wert 23(1/4)(—1/4)3 = —1/32 fir e(Ty & - - & Ty)
bzw. (—1)“t1/32 fiir e(L) liefern. Sind namlich X7, X, unabhéngige Zufallsvariablen mit
Wertebereich W(X;) = {0,1} und Bias ¢; = ¢(X;), dann ist

PI‘[Xl EBXQ = 0] = PI'[Xl = XQ = 0] + PI'[Xl = X2 = 1]
= (Yote)(Vote)+(Vh—e)(t—e)
= 1/2—|—2€1€2

und Pr[X; & Xy = 1] = 15 — 2e169, d.h. es gilt e(X; & X3) = 2165 Diese Beobachtung
lasst sich leicht verallgemeinern.
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Lemma 100 (Piling-up Lemma).
Seien X1, ..., X, unabhdingige {0, 1}-wertige Zufallsvariablen mit Bias ¢; = £(X;). Dann
qgilt

€(X1 b---D Xn) = 2”71 HEfi.

=1

Beweis. Wir fuhren den Beweis durch Induktion uber n.
Induktionsanfang (n = 1): Klar.

Induktionsschritt (n ~ n + 1): Nach Induktionsvoraussetzung hat die Zufallsvariable Z =
X1 @+ ® X, den Bias ¢(Z) = 2" (X)) - - - £(X,,) und daher folgt

E(Xl DD Xn—i—l) = E(Z D Xn+1) = 26(Z)En+1 = 2”81 o Eptl- H

Beispiel 101. Seien X, X5, X3 unabhdngige Zufallsvariablen mit £(X;) = Yy fir i =
1,2,3. Dann liefert das Piling-up Lemma die Bias-Werte e(X; ® X;) = 15 fir1 <i<
j < 3. Man beachte, dass die Zufallsvariablen Y = X1 & Xy und Z = X5 @& X3 nicht
unabhdngig sind und somit das Piling-up-Lemma in diesem Fall nicht anwendbar ist.
Dieses wiirde ndamlich fiir Y & Z einen Bias-Wert von 2(1/5)? = 1/35 ergeben, wogegen

YOZ=(X1dX)d(Xo® X3)=X; D X3
und daher (Y @ Z) = (X1 ® X3) = s ist. q

Zwar sind die Zufallsvariablen Tj, aus denen eine lineare Approximation X, & U} =
Ty ®---® T, ®c an die Abbildung x — u" gebildet wird, in der Regel nicht unabhéngig.
Dennoch zeigt sich in praktischen Anwendungen, dass der Bias-Wert (T} @ - - - & Tj)
von Ty @ - -+ @ T}, meist nicht zu sehr von dem “hypothetischen” Wert 2F~1TI¥_, o(T})
abweicht, welcher sich aus dem Piling-up Lemma ergeben wiirde. Daher kénnen wir in
unserem Beispiel

(i@ ®Ty) ~ —1/32 bzw. Pr[Upses = Xeses] = 1/2 + (—1)°T1/32

annehmen.

Und nun zu Frage 3: Wir betrachten zuerst den (fiir den Gegner giinstigen) Fall, dass
anstelle von S eine S-Box benutzt wird, so dass die lineare Approximation L an die
Abbildung x — u? den Bias-Wert 1/ hat (d.h. wir nehmen an, dass alle Klartexte x auf
ein Zwischenergebnis u* mit x, @ u} = 0 fiihren).

Sei (x,y) € M ein Klartext-Kryptotext-Paar, das mit dem gesuchten Schliissel K erzeugt
wurde. Dann konnen wir die Teilsumme z, = x5 & 7 & xg berechnen. Da wir y und agl
kennen, kénnen wir zudem fiir jeden Subschliissel-Kandidaten (engl. candidate subkey)
(1, J) fiir den Teilschliissel (K, Kppy) von K° aus dem Kryptotext y die zugehérigen
ut-Blocke

uly(1.7) = 05"y ® 1) mnd wfy (1) = 05" () © )

zuriickrechnen (die beiden anderen Blocke ufy (I, J) und ufy (I, J) werden fiir diesen
Angriff nicht benétigt). Fiir den richtigen Kandidaten (7, J) = (K (52), K 5’4)) fallt dann der
Gleichheitstest

T = ui(I,J) (4.2)



60 4 Moderne symmetrische Kryptosysteme & ihre Analyse

fir alle Paare (z,y) € M positiv aus. Dagegen besteht von den falschen Kandida-
ten (I,J) # (Kpy, Kpy) nur etwa die Halfte diesen Test. Falls wir also alle Subkey-
Kandidaten (I,.J) dem Gleichheitstest (4.2) fir eine hinreichend grofie Anzahl von
Klartext-Kryptotext-Paaren (x,y) unterziehen, kénnen wir den richtigen Kandidaten
daran erkennen, dass er als einziger alle Tests besteht.

Im Fall, dass der Bias-Wert ¢ der linearen Approximation an die Abbildung = — u* zwar
nicht gleich 1/ ist, aber geniigend weit von Null abweicht, besteht der richtige Kandidat
(I,J) = (K, (52),K(54)) bei einer repriasentativen Auswahl M von Klartext-Kryptotext-
Paaren ungefahr einen Anteil von (144 ¢) der durchgefithrten Tests, wéhrend die falschen
Kandidaten etwa die Hélfte der Tests bestehen. Falls wir also eine hinreichende Anzahl
von Klartext-Kryptotext-Paaren haben, konnen wir den richtigen Kandidaten nun daran
erkennen, dass die Anzahl der von ihm bestandenen Tests am stérksten von || M]| /2
abweicht.

Das Programmstiick LINEARATTACK ermittelt fiir jeden Subkey-Kandidaten (7, .J) die
Anzahl o(I, J) der Klartext-Kryptotext-Paare (z,y) € M mit zegee = uj (I, J) und gibt
den Kandidaten (I, J) aus, fir den «(7, J) die stérkste Abweichung von || M| /2 aufweist.

Algorithmus LINEARATTACK

1 for (I,J):= (0,0) to (F,F) do
a(l,J) =0

3 for each (z,y) € M do

A for (1,J):= (0,0) to (F,F) do
5 vy =18y

6 0?4) = J Dy

, uj(?) = Ji@f))

8 Uy =05 (Uy)

9 if 75 @ x7 ® 3 B ug D ug ®uiy Sulg =0 then
10 all,J)=a(l,J)+1

11 max = —1

1o for (I,J):= (0,0) to (F,F) do
s BULT) =l J) —

14 if B(1,J) > max then

[\)

15 mazx = [(I,J)
16 maxkey = (I, J)
17 output (maxkey)

Im allgemeinen werden fiir eine erfolgreiche lineare Attacke circa t ~ ce=2 Klartext-
Kryptotext-Paare bendtigt, wobei ¢ eine  kleine“ Konstante ist (im Beispiel reichen
t ~ 8000 Paare, d.h. c ~ 8, da e72 = 1024 ist).

4.5 Differentielle Kryptoanalyse von SPNs

Bei der differentiellen Kryptoanalyse handelt es sich um einen Angriff bei frei wahlba-
rem Klartext. Genauer gesagt, basiert der Angriff auf einer Menge M von t Klartext-
Kryptotext-Doppelpaaren (z,z*,y,y*) mit der Eigenschaft, dass alle Klartext-Paare
(x,z*) die gleiche Differenz 2’ = x @ z* bilden.
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Definition 102. Seien u,u* € {0,1}' zwei Eingaben fiir eine S-Box og : {0,1} — {0,1}"
und seien v = og(u) und v* = og(u*) die zugehdrigen Ausgaben. Dann wird v’ = u & u*
die Eingabedifferenz (engl. input-zor) und v' = og(u) B os(u*) die Ausgabedifferenz
(engl. output-zor) des Paares (u,u*) genannt. Fir eine vorgegebene Eingabedifferenz
a’ € {0,1} sei weiter

Ald) = {(u,u) |u,u* € {0, 1}, udu* =d'} = {(u,u®d) | ue{01}}
die Menge aller Eingabepaare, die die Differenz o' realisieren.
Berechnen wir fiir alle Eingabepaare (u, u*) € A(a’) die zugehorigen Ausgabedifferenzen,
so verteilen sich diese auf die 2 méglichen Werte in {0,1}". Man beachte, dass im Fall
ciner affinen S-Box og(u) = uA @ w, wobei A eine binare (I x I')-Matrix und w € {0,1}"
ist, alle Paare (u,u*) € A(a’) auf dieselbe Ausgabedifferenz
os(u)®og(u*) = (udu)A=uA=dA

fithren. Andernfalls kann die Eingabedifferenz a’ zu unterschiedlichen Ausgabedifferenzen
os(u) @ og(u*) fihren, je nachdem, durch welches Eingabepaar (u,u*) € A(a’) die
Differenz a’ realisiert wird. Um einer differentiellen Kryptoanalyse widerstehen zu konnen,
sollten die Ausgabedifferenzen moglichst gleichméfig verteilt sein.

Definition 103. Seia’ € {0,1} eine Eingabe- und sei b’ € {0,1}" eine Ausgabedifferenz
fir eine S-Box og. Dann heifit (a',b') Differential. Die Anzahl der Eingabepaare (u,u*),

die die Eingabedifferenz a' in die Ausgabedifferenz b diberfiihren, bezeichnen wir mit
D(d',V), d.h.

D(d’, V) = [{(u,u") € A(d) [ os(u) ® os(u”) = V'}].
Der Weitergabequotient (engl. propagation ratio) von S fiir ein Differential (a',b') ist

) - 24

Q(a’,b') ist also die (bedingte) Wahrscheinlichkeit

Prlos(U) ® os(U*) =b" | U U* = d'],
v v’

dass zwei zufillig gewédhlte Eingaben U und U* die Ausgabedifferenz V' = b’ erzeugen,
wenn sie die Eingabedifferenz U’ = a’ haben.

Beispiel 104. Betrachten wir die S-Box og : {0,1}* — {0,1}* aus Beispiel 97, so
erhalten wir fir die Eingabedifferenz a’ = 1011 die Menge
A(a’) = {(0000,1011),...,(1111,0100)}

von maglichen Eingabepaaren, die auf folgende Ausgabedifferenzen v/ = v @& v* = og(u) ®
os(u*) fihren:

* * / * * /

u u (% (Y (% u u (% v (Y

0000 1011 1110 1100 0010 1000 0011 0011 0001 0010
0001 1010 0100 0110 0010 1001 0010 1010 1101 0111
0010 1001 1101 1010 0111 1010 0001 0110 0100 0010
0011 1000 0001 0011 0010 1011 0000 1100 1110 0010
0100 1111 0010 0111 0101 1100 0111 0101 1000 1101
0101 1110 1111 0000 1111 1101 0110 1001 1011 0010
0110 1101 1011 1001 0010 1110 0101 0000 1111 1111
0111 1100 1000 0101 1101 1111 0100 0111 0010 0101
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Die Ausgabedifferenz b = 0010 kommt also D(a’,0010) = 8 Mal vor, wihrend die
Differenzen 0101, 0111, 1101 und 1111 je zwei Mal und die tibrigen Werte tiberhaupt nicht
vorkommen (siehe Zeile B in nachfolgender Tabelle). Fihren wir diese Berechnungen fir
jede der 2* = 16 Eingabedifferenzen o’ € {0,1}* aus, so erhalten wir die folgenden Werte
fiir die Hdaufigkeiten D(a’,b") der Ausgabedifferenz b/ bei Fingabedifferenz a' (a' und V/
sind hexadezimal dargestellt):

b/
ad 0123456789 ABCDTEF
© 16 0 0 0 0000O0O0O0OO0OO0OO0OO0O
1 0002000202404 2¢00¢0
2 000206 2202000020
3 0020200004250 200 4

B 0080020200000 2°0 2

F 02006 00O0O04020020 4

Kénnen wir nun in einem SPN fiir bestimmte S-Boxen S! Differentiale (a/, ') finden, so
dass die Eingabedifferenzen dieser Differentiale mit den (permutierten) Ausgabediffe-
renzen in der vorhergehenden Runde iibereinstimmen (siche Abbildung 4.3), so lassen
sich diese Differentiale zu einer so genannten Differentialspur (engl. differential trail)
zusammensetzen. Unter der Annahme, dass die ausgewéhlten S-Boxen S] (diese werden
auch als aktiv bezeichnet) den zugeordneten Differentialen unabhéngig voneinander
folgen (oder nicht), ldsst sich der Weitergabequotient der Spur als das Produkt der
Weitergabequotienten der beteiligten Differentiale berechnen. Obwohl diese Annahme
i.a. nicht zutrifft, weicht der tatsichliche Wert in praktischen Anwendungen kaum von
diesem hypothetischen Wert ab.

Beispiel 105. Betrachten wir das SPN SP aus Beispiel 97, so lassen sich folgende Diffe-
rentiale zu einer Spur fir die Abbildung x — u* kombinieren (siehe auch Abbildung 4.3):

Fiir Si: das Differential (1011,0010) = (B,2) mit Q(B,2) = 1/,

fiir S2: das Differential (0100,0110) = (4,6) mit Q(4,6) = 3/s und

fiir S3 und S3: das Differential (0010,0101) = (2,5) mit Q(2,5) = 3/.
Gemdfs dieser Spur fihrt also die Klartextdifferenz

2’ = 00001011 0000 0000
mit hypothetischer Wahrscheinlichkeit 1/2(3/s)% = 27/1024 = 0,026 auf die Differenz
(v*)" = 00000101 0101 0000,
welche wiederum mit Wahrscheinlichkeit 1 auf die Differenz
(u*) = 00000110 00000110
fuhrt. Das Differential
(a’,b") = (00001011 0000 0000, 000001100000 0110)

fiir die Abbildung x — u* hat also einen hypothetischen Weitergabequotienten von & =
Q(a', V') = 27/1024. <
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Abbildung 4.3: Eine Differentialspur fiir ein Substitutions-Permutations-Netzwerk

Sei nun (d/,b') ein Differential fiir die Abbildung = +— u* mit einem hypothetischen
Weitergabequotienten € = Q(a’,b'). Weiter sei M eine Menge von ¢ Klartext-Kryptotext-
Doppelpaaren (x, z*,y, y*), die alle mit dem gleichen unbekannten Schliissel K erzeugt
wurden und zusatzlich die Eigenschaft haben, dass die Klartextdifferenz 2/ = = ® x* = d’
ist. Dann wird ca. ein e-Anteil dieser Doppelpaare der vorgegebenen Differentialspur
folgen und daher bei Verschliisselung mit K Zwischenergebnisse u* und (u*)* liefern, die
die Differenz

(u4>/ — u4 D (u4>* — b/

aufweisen. Doppelpaare mit dieser Eigenschaft werden richtige Doppelpaare (fiir das
Differential (a’,b)) genannt. Ein Grofiteil der falschen Doppelpaare lasst sich daran
erkennen, dass die Kryptotext-Differenzen nicht die erwarteten 0'-Blocke aufweisen (im
aktuellen Beispiel sind dies die Blocke ?/21) und y23))' Es empfiehlt sich, diese Doppelpaare
auszufiltern, da sie (wie alle falschen Doppelpaare) nur ,Hintergrundrauschen® erzeugen
und somit die Bestimmung des Schliissels eher behindern.

Beobachtung 106. Fir die Ausgabe vg) der S-Box SN in Runde N gilt

N N+1
v = Yo ® Ki)'
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und die Eingabe ué\{) der S-Box S in Runde N ist

uly = o5 () = o5 (ys) ® KHH)
N
Ui
gN
N 3
V(i)
N+1
K
yay | 111

Falls die S-Box SN nicht affin ist, hingt die aus den Kryptotextblicken Ya) und (Yu))*
zuriickgerechnete Fingabedifferenz

(ugy) = ufyy ® (uy)” = 05" (yo) ® Ki)™) @ 05" ((yw)™ ® KH™)

von dem Schlisselblock K(ZN)H ab. Ist also (x,x*,y,y*) ein richtiges Doppelpaar, so sind
neben den Kryptotextblocken yu) und yg; auch die FEingabedifferenzen b’(i) = (ug))’ von
SN bekannt. Folglich kommen nur solche Subkey-Werte I fiir K(JX)H infrage, fir die

o5 (Y 1) S og' (Yl ® 1) = bl (4.3)

ist. Erfillt I Gleichung (4.3), so sagen wir auch, I ist mit dem Doppelpaar (x,z*,y,y*)
konsistent.

Gemaf Beobachtung 106 kann jedes richtige Doppelpaar dazu benutzt werden, einige
Kandidaten fiir den Rundenschliisselblock K (12{)+1 auszuschliefen. Ist M hinreichend grof3,
so wird sich schliefSlich der richtige Schliisselblock als derjenige herausstellen, der mit
den meisten Doppelpaaren konsistent ist. Wir benutzen nun die Spur aus Beispiel 105
fir einen Angriff mittels differentieller Analyse.

Beispiel 107. Der Algorithmus DIFFERENTIALATTACK bestimmdt fir jeden Subschliissel-
Kandidaten (I,J) fir (K(E’z), K(54)) die Anzahl ~(I,J) aller Doppelpaare (x,z*,y,y*) in M,
die mit (I, J) konsistent sind und (in Zeile 3) nicht als falsch erkannt werden. Ausgegeben
wird der Kandidat (I, J) mit dem grofiten - Wert. q

Algorithmus DIFFERENTIALATTACK
for (I,J):= (0,0) to (F,F) do ~(/,J):=0
for each (z,2*,y,y*) € M do
if yo) = yz‘l) und ya) = y&) then
for (I,J):= (0,0) to (F,F) do

Ué) =1y

6 0?4) = J Dy
-1

{ UZ(LZ) = US ('UEE))
, Y N |
3 U(4) — US (U(4)>

10 (Viwy)* =T @y

S S
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12 (Ua))* = 051((1’214))*)

13 (U?Q))/ = Uz(l2) & (U’?Q))*

14 (U?4)>/ = Uz(l4) & (u?4))*

15 if (ufy) = 0110 und (u(y) = 0110 then (I, J) :=~(I,J) +1
16 max = —1

7 for (I,J):= (0,0) to (F,F) do
18 if ~v(I,J) > max then

19 max = y(1,J)

20 maxkey := (I, J)

21 output (maxkey)

Im allgemeinen werden fiir eine erfolgreiche differentielle Attacke circa t ~ ce~! Klartext-
Kryptotext-Doppelpaare benotigt, wobei € der Weitergabequotient der benutzten Spur
und c eine ,kleine* Konstante ist (im Beispiel reichen ¢ ~ 80 Doppelpaare, wobei ¢! ~ 38
ist, d.h. ¢ = 2).
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5.1 Der Data Encryption Standard (DES)

Der DES wurde von IBM im Zuge einer im Mai 1973 veroffentlichten Ausschreibung
des NBS (National Bureau of Standards; heute National Institute of Standards and
Technology, NIST) als ein Nachfolger von Lucifer entwickelt, im Mérz 1975 veroffentlicht,
und im Januar 1977 als Verschliisselungsstandard der US-Regierung fiir nicht geheime
Nachrichten genormt. Obwohl DES urspriinglich nur fiir einen Zeitraum von 10 bis 15
Jahren als Standard dienen sollte, wurde er circa alle 5 Jahre (zuletzt im Januar 1999)
iiberprift und als Standard fortgeschrieben.

Bereits im September 1997 veroffentlichte das NIST eine Ausschreibung fiir den AES
(Advanced Encryption Standard) genannten Nachfolger des DES. Nach einer mehrjahrigen
Auswahlprozedur wurde im November 2001 der Rijndael-Algorithmus als AES genormt
und im Mai 2002 wurde DES von AES als Standard abgelost. Allerdings wurde Triple
DES (auch TDES oder 3DES genannt) vom NIST als Standard bis 2030 fortgeschrieben.
Der DES ist eine Feistel-Chiffre mit N = 16 Runden. Die Rundenfunktion ¢ einer
Feistel-Chiffre berechnet das Zwischenergebnis w” = g(K",w"~!) € {0,1}* in Runde r
aus den beiden Hélften L™~! und R"! von w"~! € {0,1}* gemafl der Vorschrift

LT = erl und R = erl ey f(erlerL

wobei f : {0,1}%/2 x {0,1}* — {0,1}%/? eine beliebige Funktion und &’ die Linge der
Rundenschliissel K, ..., K ist (siehe auch Abb. 5.1). Aus dem letzten Zwischenergebnis
w” = LY RY in Runde N wird dann durch Vertauschung von LY und R" der Kryptotext
y = RNLY gebildet.

Aufbau der DES-Chiffrierfunktion. Die Blocklange des DES betréigt ¢ = 64 Bit
und die (effektive) Schlisselldnge ist 56 Bit. Der 56 Bit Schliissel K~ ergibt zusammen
mit 8 Paritatsbits (Bits 8, 16,. .., 64) einen ebenfalls k& = 64 Bit langen Schliisselblock K.
Es gibt somit 2°6 ~ 7.2 - 106 verschiedene Schliissel. Bei Eingabe von K und z fithrt der
DES-Algorithmus nacheinander die folgenden Chiffrierschritte aus:

1. Zuerst wird der Klartext x einer Initialpermutation IP: x1x9 - - Xg4 —> T5sT50 - - - X7
(sieche Abb. 5.2; der Werteverlauf von [P ist also zeilenweise dargestellt) unterzogen.

erl erl KT

/2 /2 %
f
_|_

L R"

Abbildung 5.1: Graphische Darstellung der Rundenfunktion g einer Feistel-Chiffre
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IP E P
58 50 42 34 26 18 10 2 321 2 3 4 5 16 7 20 21
60 52 44 36 28 20 12 4 4 5 6 7 8 9 29 12 28 17
62 54 46 38 30 22 14 6 8 9 1011 12 13 1 1523 26
64 56 48 40 32 24 16 & 12 13 14 15 16 17 5 18 31 10
5749 41 332517 9 1 16 17 18 19 20 21 2 8 2414
59 51 43 352719 11 3 20 21 22 23 24 25 3227 3 9
61 53 45 3729 21 135 24 25 26 27 28 29 19 13 30 6
63 5547393123157 2829303132 1

2211 4 25

Abbildung 5.2: Initialpermutation IP, Expansion F und Permutation P

2. Danach erfolgen 16 Runden mit einer Feistel-Rundenfunktion g und sechzehn
Rundenschliisseln K, ... K6 (die Berechnung der Schliissel K" aus K wird weiter
unten beschrieben). Die Rundenfunktion ¢ basiert auf der in Abb. 5.3 dargestellten
Funktion f:{0,1}3? x {0,1}* — {0,1}*?, die wie folgt berechnet wird.

Die Eingabe von f ist (R"!, K") (vgl. Abb. 5.1). Zuerst wird der 32-Bit Block
R™! mittels der Expansionsabbildung E (siehe Abb. 5.2) auf einen 48-Bit Block
E(R™1) erweitert. Auf diesen wird bitweise der Rundenschliissel K" addiert. Als
Ergebnis erhalten wir den 48-Bit Block B = F(R"™') @& K". Dieser wird in acht
6-Bit Blocke B = By, ..., B(g) aufgeteilt, die mit den acht S-Boxen 5i,...,Ss
auf acht 4-Bit Blocke C;y = S;(B(;)) verkleinert werden. Die S-Boxen S; sind in
Abb. 5.4 in Tabellenform dargestellt. Aus diesen lassen sich die Werte S;(B;)) wie
folgt ermitteln:
Ist By = bi---bs, so findet man S;(B(;) in Zeile bibs und Spalte
bobsbybs (in Hexadezimaldarstellung) der Tabelle fir S;. Zum Beispiel ist
S51(011010) = 1001, da in Zeile (00); = 0 und Spalte (1101); = D die die
Hexadezimalziffer 9 = (1001), steht.
Die Konkatenation der von den acht S-Boxen berechneten 4-Bit Blocke ergibt einen

32-Bit Block C' = Cjyy ... C(s), welcher noch der Permutation P (siche Abb. 5.2)
unterworfen wird.

3. Aus dem nach der 16. Runde ausgegebenen 64-Bit Block w'® = L® RS wird durch
Vertauschen der beiden Hélften und Anwendung der inversen Initialpermutation
IP~! der Kryptotext DES(K, x) = IP~(R'" L) gebildet.

f(Rr—l’ Kr)

Abbildung 5.3: Graphische Darstellung der DES-Funktion f
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Abbildung 5.4:

Generierung der Rundenschliissel.

Tabellarische Darstellung der acht im DES benutzten S-Boxen

Der Key-Schedule Algorithmus des DES berech-
net aus dem externen 64-Bit Schliissel K wie folgt die zugehorigen 16 Rundenschliissel
K',...,K' (siche Abb. 5.5). Zuerst wihlt die Funktion PC'1 (permuted choice 1) aus
dem Schliissel K die kryptografisch relevanten Bits aus und permutiert sie. Das erhaltene
Ergebnis wird in zwei 28-Bit Blocke unterteilt. Diese beiden Blocke werden dann in 16

Runden r = 1,...,16 jeweils zyklisch um LS(r) € {1,2} Bit (sieche Abb. 5.5) verschoben.

Aus den beiden Blocken nach Runde r bestimmt die Funktion PC 2 (permuted choice 2)
jeweils den Rundenschliissel K" durch Entfernen der 8 Bits an den Stellen 9, 18, 22, 25,
35, 38, 43 und 56 sowie einer Permutation der verbleibenden 48 Bits.

K
64
PC1
28 28
LS(1) LS(1)
P2
LS(2) Ls2)| K
48
P2
: : K?
| I
LS(16) LS(16)
\ \ [PC2
K16

PC1

PC?2

574941332517 9
158 5042 34 26 18
10 25951433527
1911 3605244 36
63 55 47 39 31 23 15
762 54 46 38 30 22
14 6615345 3729
2113 5282012 4

14171124 1 5
32815 62110
231912 426 8
16 7272013 2
41 52 31 37 47 55
3040 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

r 1 2 3

4 5 6 7 8

LS(r) 1 1 2

2 2 2 2 2

T 9 10 11 12 13 14 15 16

LS(r) 1 2 2

2 2 2 2 1

Abbildung 5.5: Der Key-Schedule Algorithmus des DES
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Definition 108. Ein DES-Schliissel K heifit schwach, falls alle durch ihn erzeugten
Rundenschliissel gleich sind (d.h. es gilt {K",..., K'®} = {K'}).

Der DES hat die vier schwachen Schliissel (hexadezimal)

K erzeugter Rundenschliissel
0101010101610101 000000000000
1F1F1F1FOEOEQEQGE 000000111111
EOEQEOEOF1F1F1F1 111111000000
FEFEFEFEFEFEFEFE 111111111111

Fiir jeden von ihnen gilt DES(K,DES(K,r)) = z (siche Ubungen). Neben diesen vier
schwachen Schliisseln existieren noch sechs weitere sogenannte ,,semischwache* Schliissel-
paare (K, K') mit der Eigenschaft DES(K’, DES(K, z)) = x (siche Ubungen).

Eigenschaften von DES. Der DES konnte sich nicht sofort nach seiner Veroffentli-
chung im Jahre 1975 durchsetzen. Er wurde anfangs von manchen Behérden und Banken
in den USA nicht verwendet, da folgende Sicherheitsbedenken gegen ihn geauflert wurden:

— Die 56-Bit Schliissellange bietet eventuell eine zu geringe Sicherheit gegen einen
Brute-Force Angriff bei bekanntem oder wahlbarem Klartext.

— Die Entwurfskriterien fiir die einzelnen Bestandteile, insbesondere fiir die S-Boxen,
sind nicht verdffentlicht worden. Es wurde der Verdacht gedufert, dass der DES
mit Hilfe von Falltiirinformationen leicht zu brechen sei.

— Kryptoanalytische Untersuchungen, die von IBM und der US National Securi-
ty Agency (NSA) durchgefithrt wurden, sind nicht veréffentlicht worden. Als jedoch
Biham und Shamir Anfang der 90er Jahre das Konzept der differentiellen Kryp-
toanalyse veroffentlichten, gaben die Entwickler von DES bekannt, dass sie diese
Angriffsmoglichkeit beim Entwurf von DES bereits kannten und speziell die S-Boxen
entsprechend konzipiert hatten.

Im Fall von DES ist die lineare Kryptoanalyse effizienter als die differentielle Krypto-
analyse. Da hierzu jedoch circa 2 Klartext-Kryptotext-Paare notwendig sind (deren
Generierung bei einem von Matsui, dem Erfinder der linearen Kryptoanalyse, unternom-
menen Angriff bereits 40 Tage in Anspruch nahm), stellen diese Angriffe keine realistische
Bedrohung dar.

Dagegen wurde im Juli 1998 mit einer von der Electronic Frontier Foundation (EFF) fiir
250 000 Dollar gebauten Maschine namens “DES Cracker” eine vollstandige Schliisselsuche
in circa 56 Stunden durchgefithrt (was den Gewinn der von RSA Laboratory ausgeschrie-
benen “DES Challenge I1-2” bedeutete). Und im Januar 1999 gewann Distributed.Net,
eine weltweite Vereinigung von Computerfans, den mit 10 000 Dollar dotierten “DES Chal-
lenge I11”. Durch den kombinierten Einsatz eines Supercomputer namens “Deep Crack”
von EFF und 100000 PCs, die weltweit iiber das Internet kommunizierten, wurden nur
22 Stunden und 15 Minuten benotigt, um den Schliissel fiir ein Klartext-Kryptotextpaar
mit dem Klartext ,See you in Rome (second AES Conference, March 22-23, 1999)“ zu
finden. Es gibt mittlerweile sogar kommerzielle Angebote im Internet (z.B. crack.sh),
innerhalb von 26 Stunden eine vollstdndige Schliisselsuche bei bekanntem Klartext auf
spezieller Hardware auszufithren, um alle passenden DES-Schliissel zu finden.

Als Vorbereitung zum AES-Algorithmus gehen wir im néchsten Abschnitt kurz auf die
Arithmetik in endlichen Korpern ein. Diese spielt beim AES eine sehr wichtige Rolle.
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5.2 Endliche Korper

Wie wir bereits wissen, bildet Z,, fiir primes p einen endlichen Kérper der Grofie p. Dieser
Korper lasst sich fiir jede Zahl n > 1 zu einem Korper der Grofie p" erweitern. Da bis
auf Isomorphie nur ein Korper dieser Grofie existiert, wird er einfach mit F(p™) oder Fyn
bezeichnet. Um diesen Korper zu konstruieren, betrachten wir zundchst den Polynomring
Ly|z] iber Z,.

Definition 109. Sei R ein Ring.

— Der Polynomring R[z| enthdlt fir alle n > 0 alle Polynome p(z) in der Variablen
x mit Koeffizienten in R, d.h. p(z) hat die Form

p(r) = apa™ + - -a1x + a9 mit ag,...,a, € R

Man sagt, R[z| entsteht aus R durch Adjunktion der Variablen z.

— Der Grad von p (bezeichnet mit deg(p)) ist im Fall a, # 0 gleich n und im Fall
n =a, =0 gleich —1.

— Ein Polynom q(x) teilt ein Polynom p(z) (kurz: q(x)|p(zx)), falls ein Polynom
d(z) € Rlx] ezistiert mit p(x) = d(x)q(z). Teilt q(x) die Differenz f(x) — g(x)
zweier Polynome, so schreiben wir hierfir

f(2) =q@) 9(2)

und sagen, f(x) ist kongruent zu g(x) modulo q(z).
— Weiterhin bezeichne
p(z) mod ¢(x)
das bei der Polynomdivision von p(zx) durch q(z) auftretende Restpolynom, also

dasjenige Polynom r(x) vom Grad deg(r) < deg(q), fiir das ein Polynom d(x) € R|x]
existiert mit p(x) = d(z)q(x) + r(z).

Man tiberpriift leicht, dass R[x] mit der iiblichen Polynomaddition und Polynommultipli-
kation tatsichlich einen Ring bildet. Ahnlich wie beim Ubergang von Z zum Restklassen-
ring Z,, kénnen wir fiir ein fest gewéhltes Polynom m(x) vom Grad deg(m) = n jedem
Polynom p(x) € Z,,[x] mittels

p(x) = p(x) mod m(z)

eindeutig ein Polynom vom Grad hochstens n — 1 zuordnen. Auf diese Weise erhalten wir
den endlichen Polynomring (genauer Faktorring) Z,,[x]/m(x) aller Polynome vom Grad
hochstens n — 1, wobei die Addition und Multiplikation wie in Z,,[x], gefolgt von einer
Reduktion modulo m(x), definiert ist. In den Ubungen wird gezeigt, dass Z,,[z]/m(z)
genau dann ein Korper ist, wenn m prim ist und m(x) nur triviale Teiler besitzt.

Definition 110. Ein Polynom m(x) € Z,|x], p prim, vom Gradn > 1 heifit irreduzibel
(iber Zy,), falls keine Polynome p(z), q(x) € Zy[x] vom Grad deg(p), deg(q) > 1 existieren
mat

Satz 111. Der Faktorring Z,|x]/m(x) ist genau dann ein Korper, wenn m prim und
m(x) in Ly |x] irreduzibel ist.
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Beweis. Siehe Ubungen. O

Zudem kann man zeigen, dass fiir primes p und jede Zahl n > 1 ein irreduzibles
Polynom m(z) = 2™ + X1 m;z’ vom Grad n in Z,[z] existiert. Daher lisst sich fiir jede
Primzahlpotenz p™ ein Korper Z,[z|/m(x) der GroBle p™ konstruieren. Tatsdchlich gibt es
bis auf Isomorphie nur einen Kérper mit p” Elementen, den wir mit F,» bezeichnen.

Wir kénnen Polynome a(x) = Y1~ a;2° auch als Koeffizientenvektoren @ = (a,_1, .. ., ag)
darstellen. Die Addition zweier Polynome a(r) = 7 a;2* und b(z) = Y12 bz’ in Fpn
entspricht dann der tiblichen Vektoraddition (also komponentenweisen Addition modulo
p), d.h. die Vektordarstellung ¢ von ¢(z) = a(x) + b(x) ist

(Cnfl, . 7Co) = (an,1 + bnfl, ..., Qp + bo)

Im Fall p = 2 ist dies also die bitweise Addition modulo 2 (xor). Die Multiplikation in
Zyplz]/m(x) lasst sich wegen

a(x)b(x) = 2 a;x'b(x)

auf die Addition und (iterierte) Multiplikation mit dem Polynom p(z) = x zuriickfithren.
Fiir diese gilt

n—1 n n—1
xb(r) =p(2) 2b(x) — bpym(x) = Z bttt — b, 4 Zmlxz = Z(bi_l — by_1m;)’,
i=0 i=0 i=0

wobel wir b_; = 0 setzen. Die Multiplikation von b(z) mit = entspricht somit einem
Linksshift von b um eine Stelle, dem sich im Fall b,,_; # 0 noch die Subtraktion des

Vektors (b,—1mp_1,...,b,_1mgp) anschlieft. Im Fall p = 2 erhalten wir also
ot g2t by =0
zb(z) = 21_11 e . ! ’
o (bici ®my)zt, by =1

und die Vektordarstellung ¢ von ¢(z) = xb(x) ist

(Cn—lu Ce ,Co) =

(bn727"'7b070)7 bnfl :07
(buon . b0,0) @ (s 0), by = 1

Beispiel 112. Sei p = 2 und n = 3. Zundchst bendtigen wir ein irreduzibles Polynom
m(z) € Zs[x] vom Grad 3. Setzen wir

m(z) = 23 + asx® + a1 + ag

so sehen wir, dass m(x) im Fall ag = 0 den nichttrivialen Teiler p(x) = x hat. Daher
geniigt es, die 4 Kandidaten

(z) = 2*+1

(z) = 2 +2+1
ms(r) = 2°+2°+1

() = 2*+2°+a+1
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zu betrachten. Da nun aber
Prl=(+)@*+r+1) und 2 +2° +2+1=(z+1)(z*+1)

sowte
Prr+rl=(@+1)@*+2)+1 und 2* +22+1=(z+1)2* +1

ist, gibt es in Zs|z| nur zwei irreduzible Polynome vom Grad 3, ndimlich 2* + x + 1 und
3+ 2% +1 (da sie weder x noch x + 1 als Teiler haben).

Nehmen wir m(x) = 23 +x+1, so gilt in Zs[x]/m(x) bspw. wegen 1+1 = 0 die Gleichung
>+ D)+ (z+1)=2"+2x
und wegen
(P+Dr+) ="+ +a+1=0"+ @ +2+1) =pu 2°
die Gleichung (z* 4+ 1)(z + 1) = 22 q

Wie das folgende Beispiel zeigt, lasst sich das multiplikative Inverse eines Polynoms
p(x) # 0 in Fyn mit dem erweiterten Euklidschen Algorithmus berechnen.

Beispiel 113. Seip = 2 und seien m(x) = 2®+a* +2*+x+1 und a(z) = 25+ 2+ 2 +1
zwei Polynome in Zs|x]. Dann kénnen wir mit dem Euklidschen Algorithmus den (in
Bezug auf den Grad) grifiten gemeinsamen Teiler g(x) von m(x) und a(x) wie folgt
berechnen:

1 7”2'_1(1') = di+1(I) T’Z(l') + 7’1'+1(I)

1 2+t +23+2+1 = (2241 (@ +2r +2+1) + 22

2 P+t tr+1 = (2t 4 2?)-2? +z+1

3 2 = (z+1)-(z+1) +1

4 r+1 = (z+1)-1 +0
FEs ist also g(x) = rq(x) = 1. Der erweiterte Euklidsche Algorithmus berechnet nun
Polynome p;(x) und ql(x) gemdayj$ der Vorschrift

pi(z) = pi—o(x) — di(x) - pi—1(z), wobei po(x) =1 und p1(z) =0,
und

qi(x) = gi—2(x) — di(x) - gi—1(x), wobei qo(x) =0 und ¢ (x) =1,
welche die Gleichung p;(x)m(x) + gi(z)a(x) = ri(z) erfillen. Im Fall r;(x) = 1 ist also
¢i(x) das multiplikative Inverse von a(x) modulo m(z).

i pi(x)-m(x) + gi(x)-a(z) = riz)
0 1-m(z) + 0-a(x) = m(x)
1 0-m(z) + l-a(z) = a(x
2 1-m(z) + (22 +1)-a(x) = 2?

3 (z* +9c)m(:r;)—|— (:L' +22+1)-a(z) = z+1
4 (P +at+ 3 +22+1) m(z) + (T +2+ 23 +x2)alz) = 1

Aus der letzten Zeile kinnen wir das multiplikative Inverse a ' (x) = q4(z) = 2" +2%+23+x
von a(x) modulo m(x) ablesen. N
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