
Vorlesungsskript

Graphalgorithmen
Sommersemester 2017

Prof. Dr. Johannes Köbler
Sebastian Kuhnert

Humboldt-Universität zu Berlin
Lehrstuhl Komplexität und Kryptografie

23. Juni 2017

Inhaltsverzeichnis

1 Graphentheoretische Grundlagen 1

2 Färben von Graphen 3
2.1 Färben von planaren Graphen 4
2.2 Färben von chordalen Graphen 10
2.3 Kantenfärbungen . 15
2.4 Der Satz von Brooks 18

3 Flüsse in Netzwerken 19
3.1 Der Ford-Fulkerson-Algorithmus 20
3.2 Der Edmonds-Karp-Algorithmus 24
3.3 Der Algorithmus von Dinitz 26

ii

1 Graphentheoretische Grundlagen

Definition 1.1. Ein (ungerichteter) Graph ist ein Paar G =
(V,E), wobei
V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.

Hierbei gilt
E ⊆

(
V
2

)
=
{
{u, v} ⊆ V | u 6= v

}
.

Sei v ∈ V ein Knoten.
a) Die Nachbarschaft von v ist NG(v) = {u ∈ V | {u, v} ∈ E}.
b) Der Grad von v ist degG(v) = ‖NG(v)‖.
c) Der Minimalgrad von G ist δ(G) = minv∈V degG(v) und der

Maximalgrad von G ist ∆(G) = maxv∈V degG(v).

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach
N(v), deg(v), δ usw.

Beispiel 1.2.

• Der vollständige Graph (V,E) auf n Knoten, d.h. ‖V ‖ = n und
E =

(
V
2

)
, wird mit Kn und der leere Graph (V, ∅) auf n Knoten

wird mit En bezeichnet.

K1: K2: K3: K4: K5:

• Der vollständige bipartite Graph (A,B,E) auf a+ b Knoten,
d.h. A∩B = ∅, ‖A‖ = a, ‖B‖ = b und E = {{u, v} | u ∈ A, v ∈ B}
wird mit Ka,b bezeichnet.

K1,1: K1,2: K2,2: K2,3: K3,3:

• Der Pfad mit n Knoten wird mit Pn bezeichnet.

P2: P3: P4: P5:

• Der Kreis mit n Knoten wird mit Cn bezeichnet.

C3: C4: C5: C6:

Definition 1.3. Sei G = (V,E) ein Graph.
a) Eine Knotenmenge U ⊆ V heißt unabhängig oder stabil, wenn

es keine Kante von G mit beiden Endpunkten in U gibt, d.h. es gilt
E ∩

(
U
2

)
= ∅. Die Stabilitätszahl ist

α(G) = max{‖U‖ | U ist stabile Menge in G}.

b) Eine Knotenmenge U ⊆ V heißt Clique, wenn jede Kante mit
beiden Endpunkten in U in E ist, d.h. es gilt

(
U
2

)
⊆ E. Die Cli-

quenzahl ist

ω(G) = max{‖U‖ | U ist Clique in G}.

c) Ein Graph G′ = (V ′, E ′) heißt Sub-/Teil-/Untergraph von G,
falls V ′ ⊆ V und E ′ ⊆ E ist. Im Fall V ′ = V wird G′ auch ein
(auf)spannender Teilgraph von G genannt und wir schreiben für
G′ auch G− E ′′ (bzw. G = G′∪E ′′), wobei E ′′ = E−E ′ die Menge
der aus G entfernten Kanten ist. Im Fall E ′′ = {e} schreiben wir
für G′ auch einfach G− e (bzw. G = G′ ∪ e).

d) Ein k-regulärer spannender Teilgraph von G wird auch als k-
Faktor von G bezeichnet. Ein d-regulärer Graph G heißt k-
faktorisierbar, wenn sich G in l = d/k kantendisjunkte k-Faktoren
G1, . . . , Gl zerlegen lässt.

1

1 Graphentheoretische Grundlagen

e) Ein Subgraph G′ = (V ′, E ′) heißt (durch V ′) induziert, falls
E ′ = E ∩

(
V ′

2

)
ist. Für G′ schreiben wir dann auch G[V ′] oder

G − V ′′, wobei V ′′ = V − V ′ die Menge der aus G entfernten
Knoten ist. Ist V ′′ = {v}, so schreiben wir für G′ auch einfach
G− v und im Fall V ′ = {v1, . . . , vk} auch G[v1, . . . , vk].

f) Ein Weg ist eine Folge von (nicht notwendig verschiedenen) Kno-
ten v0, . . . , v` mit {vi, vi+1} ∈ E für i = 0, . . . , `−1, der jede Kante
e ∈ E höchstens einmal durchläuft. Die Länge des Weges ist die
Anzahl der durchlaufenen Kanten, also `. Im Fall ` = 0 heißt der
Weg trivial. Ein Weg v0, . . . , v` heißt auch v0-v`-Weg.

g) Ein Graph G = (V,E) heißt zusammenhängend, falls es
für alle Paare {u, v} ∈

(
V
2

)
einen u-v-Weg gibt. G heißt k-

zusammenhängend, 1 < k < n, falls G nach Entfernen von
beliebigen l ≤ min{n− 1, k − 1} Knoten immer noch zusammen-
hängend ist.

h) Ein Zyklus ist ein u-v-Weg der Länge ` ≥ 2 mit u = v.
i) Ein Weg heißt einfach oder Pfad, falls alle durchlaufenen Knoten

verschieden sind.
j) Eine Menge von Pfaden heißt knotendisjunkt, wenn je zwei

Pfade in der Menge höchstens gemeinsame Endpunkte haben, und
kantendisjunkt, wenn sie keine gemeinsame Kanten haben.

k) Ein Kreis ist ein Zyklus v0, v1 . . . , v`−1, v0 der Länge ` ≥ 3, für
den v0, v1, . . . , v`−1 paarweise verschieden sind.

l) Ein Graph G = (V,E) heißt kreisfrei, azyklisch oder Wald,
falls er keinen Kreis enthält.

m) Ein Baum ist ein zusammenhängender Wald.
n) Jeder Knoten u ∈ V vom Grad deg(u) ≤ 1 heißt Blatt und die

übrigen Knoten (vom Grad ≥ 2) heißen innere Knoten.

Es ist leicht zu sehen, dass die Relation

Z = {(u, v) ∈ V × V | es gibt in G einen u-v-Weg}

eine Äquivalenzrelation ist. Die durch die Äquivalenzklassen von Z in-
duzierten Teilgraphen heißen die Zusammenhangskomponenten
(engl. connected components) oder einfach Komponenten von G.
Definition 1.4. Ein gerichteter Graph oder Digraph ist ein
Paar G = (V,E), wobei
V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.

Hierbei gilt
E ⊆ V × V =

{
(u, v) | u, v ∈ V

}
,

wobei E auch Schlingen (u, u) enthalten kann. Sei v ∈ V ein Knoten.
a) Die Nachfolgermenge von v ist N+(v) = {u ∈ V | (v, u) ∈ E}.
b) Die Vorgängermenge von v ist N−(v) = {u ∈ V | (u, v) ∈ E}.
c) Die Nachbarmenge von v ist N(v) = N+(v) ∪N−(v).
d) Der Ausgangsgrad von v ist deg+(v) = ‖N+(v)‖ und der Ein-

gangsgrad von v ist deg−(v) = ‖N−(v)‖. Der Grad von v ist
deg(v) = deg+(v) + deg−(v).

e) Ein (gerichteter) v0-v`-Weg ist eine Folge von Knoten
v0, . . . , v` mit (vi, vi+1) ∈ E für i = 0, . . . , ` − 1, der jede Kan-
te e ∈ E höchstens einmal durchläuft.

f) Ein (gerichteter) Zyklus ist ein gerichteter u-v-Weg der Länge
` ≥ 1 mit u = v.

g) Ein gerichteter Weg heißt einfach oder (gerichteter) Pfad, falls
alle durchlaufenen Knoten verschieden sind.

h) Ein (gerichteter) Kreis in G ist ein gerichteter Zyklus
v0, v1 . . . , v`−1, v0 der Länge ` ≥ 1, für den v0, v1, . . . , v`−1 paarwei-
se verschieden sind.

i) G heißt kreisfrei oder azyklisch, wenn es in G keinen gerichteten
Kreis gibt.

j) G heißt stark zusammenhängend, wenn es in G für jedes Kno-
tenpaar u 6= v ∈ V sowohl einen u-v-Pfad als auch einen v-u-Pfad

2

2 Färben von Graphen

gibt.

DieAdjazenzmatrix eines Graphen bzw. Digraphen G = (V,E) mit
(geordneter) Knotenmenge V = {v1, . . . , vn} ist die (n × n)-Matrix
A = (aij) mit den Einträgen

aij =

1, {vi, vj} ∈ E
0, sonst

bzw. aij =

1, (vi, vj) ∈ E
0, sonst.

Für ungerichtete Graphen ist die Adjazenzmatrix symmetrisch mit
aii = 0 für i = 1, . . . , n.
Bei der Adjazenzlisten-Darstellung wird für jeden Knoten vi eine
Liste mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet
man entweder nur die Liste der Nachfolger oder zusätzlich eine weitere
für die Vorgänger. Falls die Anzahl der Knoten statisch ist, organi-
siert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit
Index i verweist auf die Adjazenzliste von Knoten vi. Falls sich die
Anzahl der Knoten dynamisch ändert, so werden die Adjazenzlisten
typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 1.5.
Betrachte den gerichteten Graphen G = (V,E)
mit V = {1, 2, 3, 4} und E = {(2, 3),
(2, 4), (3, 1), (3, 4), (4, 4)}. Dieser hat folgende
Adjazenzmatrix- und Adjazenzlisten-Darstellung:

1 2

43

1 2 3 4
1 0 0 0 0
2 0 0 1 1
3 1 0 0 1
4 0 0 0 1

1
2
3
4

3 4
1 4
4

/

2 Färben von Graphen

Definition 2.1. Sei G = (V,E) ein Graph und sei k ∈ N.
a) Eine Abbildung f : V → N heißt Färbung von G, wenn f(u) 6=

f(v) für alle {u, v} ∈ E gilt.
b) G heißt k-färbbar, falls eine Färbung f : V → {1, . . . , k} exis-

tiert.
c) Die chromatische Zahl ist

χ(G) = min{k ∈ N | G ist k-färbbar}.

Beispiel 2.2.

χ(En) = 1, χ(Kn,m) = 2, χ(Kn) = n,

χ(Cn) =

2, n gerade
3, sonst.

Ein wichtiges Entscheidungsproblem ist, ob ein gegebener Graph
k-färbbar ist. Dieses Problem ist für jedes feste k ≥ 3 schwierig.

k-Färbbarkeit (k-Coloring):
Gegeben: Ein Graph G.
Gefragt: Ist G k-färbbar?

Satz 2.3. k-Coloring ist für k ≥ 3 NP-vollständig.

Das folgende Lemma setzt die chromatische Zahl χ(G) in Beziehung
zur Stabilitätszahl α(G).

Lemma 2.4. n/α(G) ≤ χ(G) ≤ n− α(G) + 1.

3

2 Färben von Graphen 2.1 Färben von planaren Graphen

Beweis. Sei G ein Graph und sei c eine χ(G)-Färbung von G. Da
dann die Mengen Si = {u ∈ V | c(u) = i}, i = 1, . . . , χ(G), stabil
sind, folgt ‖Si‖ ≤ α(G) und somit gilt

n =
χ(G)∑
i=1
‖Si‖ ≤ χ(G)α(G).

Für den Beweis von χ(G) ≤ n− α(G) + 1 sei S eine stabile Menge
in G mit |S| = α(G). Dann ist G− S k-färbbar für ein k ≤ n− |S|.
Da wir alle Knoten in S mit der Farbe k + 1 färben können, folgt
χ(G) ≤ k + 1 ≤ n− α(G) + 1. �

Beide Abschätzungen sind scharf, können andererseits aber auch
beliebig schlecht werden.

Lemma 2.5.
(
χ(G)

2

)
≤ m und somit χ(G) ≤ 1/2 +

√
2m+ 1/4.

Beweis. Zwischen je zwei Farbklassen einer optimalen Färbung muss
es mindestens eine Kante geben. �

Die chromatische Zahl steht auch in Beziehung zur Cliquenzahl ω(G)
und zum Maximalgrad ∆(G):

Lemma 2.6. ω(G) ≤ χ(G) ≤ ∆(G) + 1.

Beweis. Die erste Ungleichung folgt daraus, dass die Knoten einer
maximal großen Clique unterschiedliche Farben erhalten müssen.
Um die zweite Ungleichung zu erhalten, betrachte folgenden Färbungs-
algorithmus:

Algorithmus greedy-color

1 input ein Graph G = (V,E) mit V = {v1, . . . , vn}
2 c(v1) := 1
3 for i := 2 to n do
4 Fi := {c(vj) | j < i, vj ∈ N(vi)}
5 c(vi) := min{k ≥ 1 | k 6∈ F}

Da für die Farbe c(vi) von vi nur ‖Fi‖ ≤ ∆(G) Farben verboten sind,
gilt c(vi) ≤ ∆(G) + 1. �

2.1 Färben von planaren Graphen

Ein Graph G heißt planar, wenn er so in die Ebene einbettbar ist,
dass sich zwei verschiedene Kanten höchstens in ihren Endpunkten
berühren. Dabei werden die Knoten von G als Punkte und die Kanten
von G als Verbindungslinien zwischen den zugehörigen Endpunkten
dargestellt.
Bereits im 19. Jahrhundert wurde die Frage aufgeworfen, wie viele
Farben höchstens benötigt werden, um eine Landkarte so zu färben,
dass aneinander grenzende Länder unterschiedliche Farben erhalten.
Offensichtlich lässt sich eine Landkarte in einen planaren Graphen
transformieren, indem man für jedes Land einen Knoten zeichnet und
benachbarte Länder durch eine Kante verbindet. Länder, die sich nur
in einem Punkt berühren, gelten dabei nicht als benachbart.
Die Vermutung, dass 4 Farben ausreichen, wurde 1878 von Kempe
„bewiesen“ und erst 1890 entdeckte Heawood einen Fehler in Kempes
„Beweis“. Übrig blieb der 5-Farben-Satz. Der 4-Farben-Satz wurde erst
1976 von Appel und Haken bewiesen. Hierbei handelt es sich jedoch
nicht um einen Beweis im klassischen Sinne, da zur Überprüfung der
vielen auftretenden Spezialfälle Computer benötigt werden.

Satz 2.7 (Appel, Haken 1976).
Jeder planare Graph ist 4-färbbar.

Aus dem Beweis des 4-Farben-Satzes von Appel und Haken lässt sich
ein 4-Färbungsalgorithmus für planare Graphen mit einer Laufzeit
von O(n4) gewinnen.
In 1997 fanden Robertson, Sanders, Seymour und Thomas einen ein-
facheren Beweis für den 4-Farben-Satz, welcher zwar einen deutlich

4

2 Färben von Graphen 2.1 Färben von planaren Graphen

schnelleren O(n2) Algorithmus liefert, aber auch nicht ohne Computer-
Unterstützung verifizierbar ist.

Beispiel 2.8. Wie die folgenden Einbettungen von K4 und K2,3 in
die Ebene zeigen, sind K4 und K2,3 planar.

K4: K2,3:

/

Um eine Antwort auf die Frage zu finden, ob auch K5 und K3,3 pla-
nar sind, betrachten wir die Gebiete von in die Ebene eingebetteten
Graphen.
Durch die Kanten eines eingebetteten Graphen wird die Ebene in
so genannte Gebiete unterteilt. Nur eines dieser Gebiete ist unbe-
schränkt und dieses wird als äußeres Gebiet bezeichnet. Die Anzahl
der Gebiete von G bezeichnen wir mit r(G) oder kurz mit r. Die An-
zahl der an ein Gebiet g grenzenden Kanten bezeichnen wir mit d(g),
wobei Kanten {u, v}, die nur an g und kein anderes Gebiet grenzen,
doppelt gezählt werden.
Der Rand rand(g) eines Gebiets g ist die (zirkuläre) Folge aller Kan-
ten, die an g grenzen, wobei jede Kante so durchlaufen wird, dass g
„in Fahrtrichtung links“ liegt bzw. bei Erreichen eines Knotens über
eine Kante e, u über die im Uhrzeigersinn nächste Kante e′ wieder
verlassen wird. Auf diese Weise erhält jede Kante auf dem Rand von
g eine Richtung (oder Orientierung).
Da jede Kante zur Gesamtlänge ∑g d(g) aller Ränder den Wert 2
beiträgt (sie wird genau einmal in jeder Richtung durchlaufen), folgt∑

g

d(g) = i(G) = 2m(G).

Führen zwei Einbettungen von G in die Ebene auf dieselbe Randmen-
ge R, so werden sie als äquivalent angesehen. Wir nennen das Tripel

G′ = (V,E,R) eine ebene Realisierung des Graphen G = (V,E),
falls es eine Einbettung von G in die Ebene gibt, deren Gebiete die
Ränder in R haben. In diesem Fall nennen wir G′ = (V,E,R) auch
einen ebenen Graphen. Eine andere Möglichkeit, Einbettungen bis
auf Äquivalenz kombinatorisch zu beschreiben, besteht darin, für jeden
Knoten u die (zirkuläre) Ordnung πu aller mit u inzidenten Kanten
anzugeben. Man nennt π = {πu | u ∈ V } ein Rotationssystem
für G, falls es eine entsprechende Einbettung gibt. Rotationssysteme
haben den Vorteil, dass sie bei Verwendung der Adjazenzlistendar-
stellung ohne zusätzlichen Platzaufwand gespeichert werden können,
indem man die zu u adjazenten Knoten gemäß πu anordnet.

Beispiel 2.9. Die beiden nebenstehenden
Einbettungen eines Graphen G = (V,E) in
die Ebene haben jeweils 7 Gebiete und füh-
ren beide auf den ebenen Graphen G′ =
(V,E,R) mit den 7 Rändern

R = {(a, f, g), (a, j, i), (b, g, e, h), (b, c, j),
(c, h, d), (d, e, k), (f, i, l,m,m, l, k)}.

Das zugehörige Rotationssystem ist

π = {(a, f, i), (a, j, b, g), (b, c, h), (e, k, f, g),
(d, e, h), (c, j, i, l, k, d), (l,m), (m)}.

a

i

f

b

h cg
e

k

j

d
l m

a

i

f

b

h
cg

e
k

j

d
l

m

Man beachte, dass sowohl in R als auch in π jede Kante genau zweimal
vorkommt. Anstelle von Kantenfolgen kann man R und π auch durch
entsprechende Knotenfolgen beschreiben. /

Satz 2.10 (Polyederformel von Euler, 1750).
Für einen zusammenhängenden ebenen Graphen G = (V,E,R) gilt

n(G)−m(G) + r(G) = 2. (∗)

5

2 Färben von Graphen 2.1 Färben von planaren Graphen

Beweis. Wir führen den Beweis durch Induktion über die Kantenzahl
m(G) = m.
m = 0: Da G zusammenhängend ist, muss dann n = 1 sein.

Somit ist auch r = 1, also (∗) erfüllt.
m− 1 ; m: Sei G ein zusammenhängender ebener Graph mit m

Kanten.
Ist G ein Baum, so entfernen wir ein Blatt und erhalten einen
zusammenhängenden ebenen Graphen G′ mit n′ = n− 1 Kno-
ten, m′ = m − 1 Kanten und r′ = r Gebieten. Nach IV folgt
n−m+ r = (n− 1)− (m− 1) + r = n′ −m′ + r′ = 2.
Falls G kein Baum ist, entfernen wir eine Kante auf einem Kreis
in G und erhalten einen zusammenhängenden ebenen Graphen
G′ mit n′ = n Knoten, m′ = m − 1 Kanten und r′ = r − 1
Gebieten. Nach IV folgt n−m+ r = n− (m− 1) + (r − 1) =
n′ −m′ + r′ = 2. �

Korollar 2.11. Sei G = (V,E) ein planarer Graph mit n ≥ 3 Knoten.
Dann ist m ≤ 3n− 6. Falls G dreiecksfrei ist, gilt sogar m ≤ 2n− 4.

Beweis. O.B.d.A. sei G zusammenhängend. Wir betrachten eine be-
liebige planare Einbettung von G. Da n ≥ 3 ist, ist jedes Gebiet g
von d(g) ≥ 3 Kanten umgeben. Daher ist 2m = i = ∑

g d(g) ≥ 3r
bzw. r ≤ 2m/3. Eulers Formel liefert

m = n+ r − 2 ≤ n+ 2m/3− 2,

was (1− 2/3)m ≤ n− 2 und somit m ≤ 3n− 6 impliziert.
Wenn G dreiecksfrei ist, ist jedes Gebiet von d(g) ≥ 4 Kanten umge-
ben. Daher ist 2m = i = ∑

g d(g) ≥ 4r bzw. r ≤ m/2. Eulers Formel
liefert daher m = n + r − 2 ≤ n + m/2 − 2, was m/2 ≤ n − 2 und
somit m ≤ 2n− 4 impliziert. �

Korollar 2.12. K5 ist nicht planar.

Beweis. Wegen n = 5, also 3n− 6 = 9, und wegen m =
(

5
2

)
= 10 gilt

m 6≤ 3n− 6. �

Korollar 2.13. K3,3 ist nicht planar.

Beweis. Wegen n = 6, also 2n− 4 = 8, und wegen m = 3 · 3 = 9 gilt
m 6≤ 2n− 4. �

Als weitere interessante Folgerung aus der Polyederformel können wir
zeigen, dass jeder planare Graph einen Knoten v vom Grad deg(v) ≤ 5
hat.

Lemma 2.14. Jeder planare Graph hat einen Minimalgrad δ(G) ≤ 5.

Beweis. Für n ≤ 6 ist die Behauptung klar. Für n > 6 impliziert die
Annahme δ(G) ≥ 6 die Ungleichung

m = 1
2
∑
u∈V deg(u) ≥ 1

2
∑
u∈V 6 = 3n,

was im Widerspruch zu m ≤ 3n− 6 steht. �

Definition 2.15. Seien G = (V,E) und H Graphen und seien
u, v ∈ V .
• Durch Fusion von u und v entsteht aus G der Graph Guv =

(V − {v}, E ′) mit

E ′ = {e ∈ E | v 6∈ e} ∪ {{u, v′} | {v, v′} ∈ E − {u, v}}.

Ist e = {u, v} eine Kante von G (also e ∈ E), so sagen wir auch,
Guv entsteht aus G durch Kontraktion der Kante e. Hat zudem
v den Grad 2, so sagen wir auch, Guv entsteht aus G durch Über-
brückung des Knotens v.
• G heißt zu H kontrahierbar, falls H aus einer isomorphen Kopie
von G durch wiederholte Kontraktionen gewonnen werden kann.

6

2 Färben von Graphen 2.1 Färben von planaren Graphen

• G heißt Unterteilung von H, falls H aus einer isomorphen Kopie
von G durch wiederholte Überbrückungen gewonnen werden kann.
• H heißt Minor von G, wenn ein Teilgraph von G zu H kontra-
hierbar ist, und topologischer Minor, wenn ein Teilgraph von
G eine Unterteilung von H ist.
• G heißt H-frei, falls H kein Minor von G ist. Für eine Menge H
von Graphen heißt G H-frei, falls G für alle H ∈ H H-frei ist.

Beispiel 2.16. Betrachte folgende Graphen:

H: G: G′:

Offensichtlich ist G keine Unterteilung von H. Entfernen wir jedoch
die beiden dünnen Kanten aus G, so ist der resultierende Teilgraph
eine Unterteilung von H, d.h. H ist ein topologischer Minor von G.
Dagegen ist kein Teilgraph von G′ isomorph zu einer Unterteilung von
H und somit ist H kein topologischer Minor von G′. Wenn wir aber
die drei umrandeten Kanten von G′ kontrahieren, entsteht ein zu H
isomorpher Graph, d.h. H ist ein Minor von G′. /

Nach Definition lässt sich jeder (topologische) Minor H von G aus
einem zu G isomorphen Graphen durch wiederholte Anwendung fol-
gender Operationen gewinnen:
• Entfernen einer Kante oder eines Knoten,
• Kontraktion einer Kante (bzw. Überbrückung eines Knoten).
Da die Kontraktionen (bzw. Überbrückungen) o.B.d.A. auch zuletzt
ausgeführt werden können, gilt hiervon auch die Umkehrung. Zudem
ist leicht zu sehen, dass G und H genau dann (topologische) Minoren
voneinander sind, wenn sie isomorph sind.

Satz 2.17 (Kempe 1878, Heawood 1890).
Jeder planare Graph ist 5-färbbar.

Beweis. Wir beweisen den Satz durch Induktion über n.
n = 1: Klar.
n− 1 ; n: Da G planar ist, existiert ein Knoten u mit deg(u) ≤ 5.

Im Fall deg(u) ≤ 4 entfernen wir u aus G. Andernfalls hat u
zwei Nachbarn v und w, die nicht durch eine Kante verbunden
sind (andernfalls wäre K5 ein Teilgraph von G). In diesem Fall
entfernen wir alle mit u inzidenten Kanten außer {u, v} und
{u,w} und kontrahieren diese beiden Kanten zum Knoten v.
Der resultierende Graph G′ ist ein Minor von G und daher
planar. Da G′ zudem höchstens n−1 Knoten hat, existiert nach
IV eine 5-Färbung c′ für G′. Da wir im 2. Fall dem Knoten w die
Farbe c′(v) geben können, haben die Nachbarn von u höchstens
4 verschiedene Farben und wir können G 5-färben. �

Kuratowski konnte 1930 beweisen, dass jeder nichtplanare Graph G
den K3,3 oder den K5 als topologischen Minor enthält. Für den Beweis
benötigen wir noch folgende Notationen.

Definition 2.18. Sei G ein Graph und sei K ein Kreis in G. Ein
Teilgraph B von G heißt Brücke von K in G, falls
• B nur aus einer Kante besteht, die zwei Knoten von K verbindet,
aber nicht auf K liegt (solche Brücken werden auch als Sehnen
von K bezeichnet), oder
• B −K eine Zusammenhangskomponente von G−K ist und B aus
B−K durch Hinzufügen aller Kanten zwischen B−K und K (und
der zugehörigen Endpunkte auf K) entsteht.

Die Knoten von B, die auf K liegen, heißen Kontaktpunkte von
B. Zwei Brücken B und B′ von K heißen inkompatibel, falls
• B Kontaktpunkte u, v und B′ Kontaktpunkte u′, v′ hat, so dass diese
vier Punkte in der Reihenfolge u, u′, v, v′ auf K liegen, oder
• B und B′ mindestens 3 gemeinsame Kontaktpunkte haben.

Es ist leicht zu sehen, dass jeder Kreis in einem planaren Graphen

7

2 Färben von Graphen 2.1 Färben von planaren Graphen

höchstens zwei paarweise inkompatible Brücken haben kann.

Satz 2.19 (Kuratowski 1930).
Für einen Graphen G sind folgende Aussagen äquivalent:

(i) G ist planar.
(ii) G enthält weder den K3,3 noch den K5 als topologischen Minor.

Beweis. Die Implikation von i) nach ii) folgt aus der Tatsache, dass
die Klasse K der planaren Graphen unter (topologischer) Minorenbil-
dung abgeschlossen ist (d.h. wenn G ∈ K und H ein Minor von G ist,
dann folgt H ∈ K).
Die Implikation von ii) nach i) zeigen wir durch Kontraposition. Sei al-
so G = (V,E) nicht planar. Dann hat G einen 3-zusammenhängenden
nicht planaren topologischen Minor G′ = (V ′, E ′), so dass G′ − e′ für
jede Kante e′ ∈ E ′ planar ist (siehe Übungen). Wir entfernen eine
beliebige Kante e0 = {a0, b0} aus G′. Da G′ mindestens 5 Knoten hat,
ist G′ − e0 2-zusammenhängend. Daher gibt es in G′ − e0 einen Kreis
K durch die beiden Knoten a0 und b0. Wir wählen K zusammen mit
einer ebenen Realisierung H ′ von G′ − e0 so, dass K möglichst viele
Gebiete in H ′ einschließt.
Die Kanten jeder Brücke B von K in G′ − e0 verlaufen entweder alle
innerhalb oder alle außerhalb von K in H ′. Im ersten Fall nennen wir
B eine innere Brücke und im zweiten eine äußere Brücke.
Für zwei Knoten a, b auf K bezeichnen wir mit K[a, b] die Menge
aller Knoten, die auf dem Bogen von a nach b (im Uhrzeigersinn) auf
K liegen. Zudem sei K[a, b) = K[a, b] \ {b}. Die Mengen K(a, b) und
K(a, b] sind analog definiert.
Behauptung 2.20. Jede äußere Brücke B besteht aus einer Kante
{u, v}, die zwei Knoten u ∈ K(a0, b0) und v ∈ K(b0, a0) verbindet.

Zum Beweis der Behauptung nehmen wir an, dass B mindestens einen
Kontaktpunkt in {a0, b0} oder mehr als 2 Kontaktpunkte hat. Dann
liegen mindestens zwei dieser Punkte auf K[a0, b0] oder auf K[b0, a0].

Folglich kann K zu einem Kreis K ′ erweitert werden, der in H ′ mehr
Gebiete einschließt (bzw. ausschließt) als K, was der Wahl von K
und H ′ widerspricht.
Im Graphen G′ hat K außer den Brücken in G′ − e0 noch zusätzlich
die Kante e0 als Brücke. Nun wählen wir eine innere Brücke B, die so-
wohl zu e0 als auch zu mindestens einer äußeren Brücke e1 = {a1, b1}
inkompatibel ist. Eine solche Brücke B muss es geben, da wir sonst
alle mit e0 inkompatiblen inneren Brücken nach außen klappen und
e0 als innere Brücke hinzunehmen könnten, ohne die Planarität zu
verletzen.
Wir benutzen K und die drei Brücken e0, e1 und B, um eine Untertei-
lung des K3,3 oder des K5 in G′ zu finden. Hierzu geben wir entweder
zwei disjunkte Mengen A1, A2 ⊆ V ′ mit jeweils 3 Knoten an, so dass
9 knotendisjunkte Pfade zwischen allen Knoten a ∈ A1 und b ∈ A2
existieren. Oder wir geben eine Menge A ⊆ V ′ mit fünf Knoten an,
so dass 10 knotendisjunkte Pfade zwischen je zwei Knoten a, b ∈ A
existieren. Da e0 und e1 inkompatibel sind, können wir annehmen,
dass die vier Knoten a0, a1, b0, b1 in dieser Reihenfolge auf K liegen.
Fall 1: B hat einen Kontaktpunkt k1 6∈ {a0, a1, b0, b1}. Aus Symme-

triegründen können wir k1 ∈ K(a0, a1) annehmen. Da B weder
zu e0 noch zu e1 kompatibel ist, hat B weitere Kontaktpunkte
k2 ∈ K(b0, a0) und k3 ∈ K(a1, b1), wobei k2 = k3 sein kann.
Fall 1a: Ein Knoten ki ∈ {k2, k3} liegt auf dem Bogen K(b0, b1).

In diesem Fall existieren 9 knotendisjunkte Pfade zwischen
{a0, a1, ki} und {b0, b1, k1}.

Fall 1b: K(b0, b1)∩{k2, k3} = ∅. In diesem Fall ist k2 ∈ K[b1, a0)
und k3 ∈ K(a1, b0]. Dann gibt es in B einen Knoten u, von
dem aus 3 knotendisjunkte Pfade zu {k1, k2, k3} existie-
ren. Folglich gibt es 9 knotendisjunkte Pfade zwischen
{a0, a1, u} und {k1, k2, k3}.

Fall 2: Alle Kontaktpunkte von B liegen in der Menge {a0, a1, b0, b1}.
Da B inkompatibel zu e0 und e1 ist, müssen in diesem Fall alle

8

2 Färben von Graphen 2.1 Färben von planaren Graphen

vier Punkte zu B gehören. Sei P0 ein a0-b0-Pfad in B und sei
P1 ein a1-b1-Pfad in B. Sei u der erste Knoten auf P0, der auch
auf P1 liegt und sei v der letzte solche Knoten.
Fall 2a: u = v. Dann gibt es in B vier knotendisjunkte Pfa-

de von u zu {a0, a1, b0, b1} und somit existieren in G′ 10
knotendisjunkte Pfade zwischen den Knoten u, a0, a1, b0, b1.

Fall 2b: u 6= v. Durch u und v wird der Pfad P1 in drei Teil-
pfade Pxu, Puv und Pvy unterteilt, wobei die Indizes die
Endpunkte bezeichnen und {x, y} = {a1, b1} ist.
Somit gibt es in B drei Pfade zwischen u und jedem Kno-
ten in {a0, v, x} und zwei Pfade zwischen v und jedem
Knoten in {b0, y}, die alle 5 knotendisjunkt sind. Folglich
gibt es in G′ 9 knotendisjunkte Pfade zwischen {a0, v, x}
und {b0, y, u}. �

Beispiel 2.21. Der nebenstehende Graph
ist nicht planar, da wir den K5 durch Kon-
traktion der farblich unterlegten Teilgra-
phen als Minor von G erhalten.
Alternativ lässt sich der K5 auch als ein
topologischer Minor von G erhalten, in-
dem wir die dünnen Kanten entfernen
und in dem resultierenden Teilgraphen al-
le Knoten vom Grad 2 überbrücken. /

a b

c d e

f g h i

j k l

m n

a b

d

j l

Eine unmittelbare Folgerung aus dem Satz von Kuratowski ist folgende
Charakterisierung der Klasse der planaren Graphen.
Korollar 2.22 (Wagner 1937). Ein Graph ist genau dann planar,
wenn er {K3,3, K5}-frei ist.
Definition 2.23. Sei ≤ eine binäre Relation auf einer Menge A.
a) (A,.) heißt Quasiordnung, wenn . reflexiv und transitiv auf

A ist.

b) (A,.) heißt Wohlquasiordnung, wenn es zudem zu jeder un-
endlichen Folge a1, a2, . . . von Elementen aus A Indizes i < j mit
ai . aj gibt.

Beispiele für Quasiordnungen sind a . b :⇔ |a| ≤ |b| auf den ganzen
oder komplexen Zahlen. Im ersten Fall handelt es sich um eine Wohl-
quasiordnung, im zweiten nicht, da zum Beispiel die Folge ai = (i+1)/i
eine unendliche absteigende Kette bildet (d.h. ai+1 . ai und
ai 6. ai+1 für alle i ≥ 1). (N,≤) ist eine Wohlquasiordnung (sogar
eine lineare Wohlordnung, da auch antisymmetrisch und konnex).
Die Teilbarkeitsrelation auf den natürlichen Zahlen ist dagegen keine
Wohlquasiordnung, da mit der Folge der Primzahlen eine unendli-
che Antikette existiert (d.h. die Glieder der Folge sind paarweise
unvergleichbar: es gilt ai 6. aj und aj 6. ai für alle i > j ≥ 1).
Es ist leicht zu sehen, dass die Minorenrelation auf der Menge aller
endlichen ungerichteten Graphen keine unendlichen absteigenden Ket-
ten hat. Gemäß folgender Proposition ist sie daher genau dann eine
Wohlquasiordnung, wenn es auch keine unendlichen Antiketten gibt.
Proposition 2.24. Eine Quasiordnung (A,.) ist genau dann eine
Wohlquasiordnung, wenn es in (A,.) weder unendliche absteigende
Ketten noch unendliche Antiketten gibt.

Beweis. Siehe Übungen. �

Satz 2.25 (Satz von Robertson und Seymour, 1983-2004). Die Mino-
renrelation bildet auf der Menge aller endlichen ungerichteten Graphen
eine Wohlquasiordnung.
Korollar 2.26. Sei K eine Graphklasse, die unter Minorenbildung
abgeschlossen ist. Dann gibt es eine endliche Menge H von Graphen
mit

K = {G | G ist H-frei}.
Die Graphen in H sind bis auf Isomorphie eindeutig bestimmt und
heißen verbotene Minoren für die Klasse K.

9

2 Färben von Graphen 2.2 Färben von chordalen Graphen

Für den Beweis des Korollars betrachten wir die komplementäre Klas-
se K aller endlichen Graphen, die nicht zu K gehören, und zeigen, dass
K bis auf Isomorphie nur endlich viele minimale Elemente hat. Sei
M die Menge aller minimalen Elemente von K und entstehe H aus
M, indem wir aus jeder Isomorphieklasse einen Graphen auswählen.
Dann hat jeder Graph G ∈ K einen Minor in H und umgekehrt gehört
jeder Graph G, der einen Minor in H hat, zu K, d.h.

K = {G | ∃H ∈ H : H ist ein Minor von G}.

Da zudem H eine Antikette bildet, muss H nach Satz 2.25 endlich
sein, womit Korollar 2.26 bewiesen ist.
Das Problem, für zwei gegebene Graphen G und H zu entscheiden,
ob H ein Minor von G ist, ist zwar NP-vollständig (da sich das Hamil-
tonkreisproblem darauf reduzieren lässt). Für einen festen Graphen
H ist das Problem dagegen effizient entscheidbar.

Satz 2.27 (Robertson und Seymour, 1995). Für jeden Graphen H gibt
es einen O(n3)-zeitbeschränkten Algorithmus, der für einen gegebenen
Graphen G entscheidet, ob er H-frei ist.

Korollar 2.28. Die Zugehörigkeit zu jeder unter Minorenbildung
abgeschlossenen Graphklasse K ist in P entscheidbar.

Der Entscheidungsalgorithmus für K lässt sich allerdings nur ange-
ben, wenn wir die verbotenen Minoren für K kennen. Leider ist der
Beweis von Theorem 2.25 in dieser Hinsicht nicht konstruktiv, so dass
der Nachweis, dass K unter Minorenbildung abgeschlossen ist, nicht
automatisch zu einem effizienten Erkennungsalgorithmus für K führt.

2.2 Färben von chordalen Graphen

Chordalen Graphen treten in vielen Anwendungen auf, z.B. sind alle
Intervall- und alle Komparabilitätsgraphen (auch transitiv orientierba-

re Graphen genannt) chordal. Wir werden sehen, dass sich für chordale
Graphen effizient eine optimale Knotenfärbung berechnen lässt.

Definition 2.29. Sei G = (V,E) ein Graph.
a) G heißt chordal oder trianguliert, wenn jeder Kreis K =

u1, . . . , ul, u1 der Länge l ≥ 4 in G mindestens eine Sehne hat.
b) Eine Menge S ⊆ V heißt Separator von G, wenn G − S mehr

Komponenten als G hat. S heißt x-y-Separator, wenn die beiden
Knoten x und y in verschiedenen Komponenten von G− S liegen.

Ein Graph G ist also genau dann chordal, wenn er keinen induzierten
Kreis der Länge l ≥ 4 enthält (ein induzierter Kreis ist ein indu-
zierter Teilgraph G[V ′], V ′ ⊆ V, der ein Kreis ist). Dies zeigt, dass
die Klasse der chordalen Graphen unter induzierter Teilgraphbildung
abgeschlossen ist (aber nicht unter Teilgraphbildung). Jede solche
Graphklasse G ist durch eine Familie von minimalen verbotenen
induzierten Teilgraphen Hi charakterisiert, die bis auf Isomorphie
eindeutig bestimmt sind. Die Graphen Hi gehören also nicht zu G,
aber sobald wir einen Knoten daraus entfernen, erhalten wir einen
Graphen in G. Die Klasse der chordalen Graphen hat die Familie der
Kreise Cn der Länge n ≥ 4 als verbotene induzierte Teilgraphen.

Lemma 2.30. Für einen Graphen G sind folgende Aussagen äquiva-
lent.

(i) G ist chordal.
(ii) Jeder inklusionsminimale Separator von G ist eine Clique.
(iii) Jedes Paar von nicht adjazenten Knoten x und y in G hat einen

x-y-Separator S, der eine Clique ist.

Beweis. Um zu zeigen, dass die zweite Aussage aus der ersten folgt,
nehmen wir an, dass G einen minimalen Separator S hat, der zwei
nicht adjazente Knoten x und y enthält. Seien G[V1] und G[V2] zwei
Komponenten in G− S, die durch S getrennt werden. Da S minimal

10

2 Färben von Graphen 2.2 Färben von chordalen Graphen

ist, sind die beiden Knoten x und y sowohl mit G[V1] als auch mit
G[V2] verbunden. Betrachte die beiden Teilgraphen Gi = G[Vi∪{x, y}]
und wähle jeweils einen kürzesten x-y-Pfad Pi in Gi. Da diese eine
Länge ≥ 2 haben, ist K = P1 ∪P2 ein Kreis der Länge ≥ 4. Aufgrund
der Konstruktion ist zudem klar, dass K keine Sehnen in G hat.
Dass die zweite Aussage die dritte impliziert, ist klar, da jedes Paar
von nicht adjazenten Knoten x und y einen x-y-Separator S hat, und
S eine Clique sein muss, wenn wir S inklusionsminimal wählen.
Um zu zeigen, dass die erste Aussage aus der dritten folgt, nehmen wir
an, dass G nicht chordal ist. Dann gibt es in G einen induzierten Kreis
K der Länge ≥ 4. Seien x und y zwei beliebige nicht adjazente Knoten
auf K und sei S ein x-y-Separator in G. Dann muss S mindestens
zwei nicht adjazente Knoten aus K enthalten. �

Definition 2.31. Sei G = (V,E) ein Graph und sei k ≥ 0. Ein
Knoten u ∈ V vom Grad k heißt k-simplizial, wenn alle Nachbarn
von u paarweise adjazent sind. Jeder k-simpliziale Knoten wird auch
als simplizial bezeichnet.

Zusammenhängende chordale Graphen können als eine Verallgemeine-
rung von Bäumen aufgefasst werden. Ein Graph G ist ein Baum, wenn
er aus K1 durch sukzessives Hinzufügen von 1-simplizialen Knoten
erzeugt werden kann. Entsprechend heißt G k-Baum, wenn G aus
Kk durch sukzessives Hinzufügen von k-simplizialen Knoten erzeugt
werden kann. Wir werden sehen, dass ein zusammenhängender Graph
G genau dann chordal ist, wenn er aus einem isolierten Knoten (also
aus einer 1-Clique) durch sukzessives Hinzufügen von simplizialen
Knoten erzeugt werden kann. Äquivalent hierzu ist, dass G durch
sukzessives Entfernen von simplizialen Knoten auf einen isolierten
Knoten reduziert werden kann.

Definition 2.32. Sei G = (V,E) ein Graph. Eine lineare Ordnung
(u1, . . . , un) auf V heißt perfekte Eliminationsordnung (PEO)
von G, wenn ui simplizial in G[u1, . . . , ui] für i = 2, . . . , n ist.

Es ist klar dass alle Knoten eines vollständigen Graphen simplizial
sind. Das folgende Lemma verallgemeinert die bekannte Tatsache,
dass jeder Baum mindestens 2 nicht adjazente Blätter hat (abgesehen
von K1 und K2).

Lemma 2.33. Jeder nicht vollständige chordale Graph besitzt min-
destens 2 simpliziale Knoten, die nicht adjazent sind.

Beweis. Wir führen Induktion über n. Für n ≤ 2 ist die Behauptung
klar. Sei G = (V,E) ein Graph mit n ≥ 3 Knoten. Da G nicht voll-
ständig ist, enthält G zwei nichtadjazente Knoten x1 und x2. Falls
x1 und x2 in verschiedenen Komponenten von G liegen, sei S = ∅,
andernfalls sei S ein minimaler x1-x2-Separator. Im zweiten Fall ist S
nach Lemma 2.30 eine Clique in G. Seien G[V1] und G[V2] die beiden
Komponenten von G− S mit xi ∈ Vi.
Betrachte die Teilgraphen Gi = G[Vi ∪ S]. Da Gi chordal ist und
weniger als n Knoten hat, ist Gi nach IV entweder eine Clique oder
Gi enthält mindestens zwei nicht adjazente simpliziale Knoten yi, zi.
Falls Gi eine Clique ist, ist xi simplizial in Gi, und da xi keine Nach-
barn außerhalb von Vi ∪ S hat, ist xi dann auch simplizial in G.
Ist Gi keine Clique, kann höchstens einer der beiden Knoten yi, zi
zu S gehören (da S im Fall S 6= ∅ eine Clique und {yi, zi} /∈ E ist).
O.B.d.A. sei yi ∈ Vi. Dann hat yi keine Nachbarn außerhalb von Vi∪S
und somit ist yi auch simplizial in G. �

Satz 2.34. Ein Graph ist genau dann chordal, wenn er eine PEO
hat.

Beweis. Falls G chordal ist, lässt sich eine PEO gemäß Lemma 2.33
bestimmen, indem wir für i = n, . . . , 2 sukzessive einen simplizialen
Knoten ui in G− {ui+1, . . . , un} wählen.
Für die umgekehrte Richtung sei (u1, . . . , un) eine PEO von G. Wir
zeigen induktiv, dass Gi = G[u1, . . . , ui] chordal ist. Da ui+1 simplizial

11

2 Färben von Graphen 2.2 Färben von chordalen Graphen

in Gi+1 ist, enthält jeder Kreis K der Länge ≥ 4 in Gi+1, auf dem
ui+1 liegt, eine Sehne zwischen den beiden Kreisnachbarn von ui+1.
Daher ist mit Gi auch Gi+1 chordal. �

Korollar 2.35. Es gibt einen Polynomialzeitalgorithmus A, der für
einen gegebenen Graphen G eine PEO berechnet, falls G chordal ist,
und andernfalls einen induzierten Kreis der Länge ≥ 4 ausgibt.

Beweis. A versucht wie im Beweis von Theorem 2.34 beschrieben, eine
PEO zu bestimmen. Stellt sich heraus, dass Gi = G− {ui+1, . . . , un}
keinen simplizialen Knoten ui hat, so ist Gi wegen Lemma 2.33 nicht
chordal. Daher gibt es nach Lemma 2.30 in Gi zwei nicht adjazente
Knoten x und y, so dass kein x-y-Separator eine Clique ist. Wie im
Beweis von Lemma 2.30 beschrieben, lässt sich mithilfe eines mini-
malen Separators S, der keine Clique ist, ein induzierter Kreis K der
Länge ≥ 4 in Gi konstruieren. Da Gi ein induzierter Teilgraph von G
ist, ist K auch ein induzierter Kreis in G. �

Eine PEO kann verwendet werden, um einen chordalen Graphen zu
färben:

Algorithmus chordal-color(V,E)

1 berechne eine PEO (u1, . . . , un) für G = (V,E)
2 starte greedy-color mit der Knotenfolge (u1, . . . , un)

Satz 2.36. Für einen gegebenen chordalen Graphen G = (V,E) be-
rechnet der Algorithmus chordal-color eine k-Färbung c von G mit
k = χ(G) = ω(G).

Beweis. Sei ui ein beliebiger Knoten mit c(ui) = k. Da (u1, . . . , un)
eine PEO von G ist, ist ui simplizial in G[u1, . . . , ui]. Somit bilden die
Nachbarn uj von ui mit j < i eine Clique und wegen c(ui) = k bilden
sie zusammen mit ui eine k-Clique. Daher gilt χ(G) ≤ k ≤ ω(G),
woraus wegen ω(G) ≤ χ(G) die Behauptung folgt. �

Um chordal-color effizient zu implementieren, benötigen wir einen
möglichst effizienten Algorithmus zur Bestimmung einer PEO. Rose,
Tarjan und Lueker haben hierfür 1976 einen Linearzeitalgorithmus
angegeben, der auf lexikographischer Breitensuche (kurz LexBFS oder
LBFS) basiert. Bevor wir auf diese Variante der Breitensuche näher
eingehen, rekapitulieren wir an dieser Stelle nochmals kurz verschie-
dene Ansätze zum Durchsuchen von Graphen.
Der folgende Algorithmus GraphSearch(V,E) startet eine Suche in
einem beliebigen Knoten und findet zunächst alle von u aus erreich-
baren Knoten. Danach wird solange von einem noch nicht erreichten
Knoten eine neue Suche gestartet, bis alle Knoten erreicht wurden.

Algorithmus GraphSearch(V,E)

1 R← ∅ // Menge der erreichten Knoten
2 L← () // Ausgabeliste
3 repeat
4 wähle u ∈ V \R
5 R← R ∪ {u}
6 A← {u} // Menge der noch abzuarbeitenden Knoten
7 while A 6= ∅ do
8 entferne u aus A
9 append(L, u)

10 A← A ∪ (N(u)\R)
11 R← R ∪N(u)
12 until R = V
13 return(L)

Der Algorithmus GraphSearch(V,E) findet in jedem Durchlauf der
repeat-Schleife eine neue Zusammenhangskomponente des Eingabe-
graphen G = (V,E). Dies bedeutet, dass alle Knoten, die zu einer
Zusammenhangskomponente gehören, konsekutiv ausgegeben werden.
Zudem ist jeder Knoten, der nicht als erster in seiner Zusammen-
hangskomponente ausgegeben wird, mit einem zuvor ausgegebenen

12

2 Färben von Graphen 2.2 Färben von chordalen Graphen

Knoten verbunden. Die folgende Definition fasst diese Eigenschaften
der Ausgabeliste zusammen.

Definition 2.37. Sei G = (V,E) ein Graph. Eine lineare Ordnung
(u1, . . . , un) auf V heißt Suchordnung (SO) von G, wenn für jedes
Tripel j < k < l gilt:

uj ∈ N(ul) \N(uk)⇒ ∃i < k : ui ∈ N(uk).

Satz 2.38. Für jeden Graphen G = (V,E) gibt der Algorithmus
GraphSearch(V,E) eine SO von G aus.

Beweis. Siehe Übungen. �

Realisieren wir die Menge der abzuarbeitenden Knoten als einen Kel-
ler S, so erhalten wir eine Suchstrategie, die als Tiefensuche (kurz
DFS, engl. depth first search) bezeichnet wird. Die Benutzung eines
Kellers S zur Speicherung der noch abzuarbeitenden Knoten bewirkt,
dass die Suche nach unerreichten Knoten mit einem Nachbarn eines
Nachbars v des aktuellen Knotens u fortgesetzt wird, bevor die noch
nicht erreichten übrigen Nachbarn von u besucht werden.

Algorithmus DFS(V,E)

1 R← ∅ // Menge der erreichten Knoten
2 L← () // Ausgabeliste
3 repeat
4 wähle u ∈ V \R
5 R← R ∪ {u}
6 append(L, u)
7 S ← (u) // Keller der abzuarbeitenden Knoten
8 while S 6= () do
9 u← top(S)

10 if ∃v ∈ N(u)\R then
11 push(S, v)
12 append(L, v)

13 R← R ∪ {v}
14 else
15 pop(S)
16 until R = V
17 return(L)

Definition 2.39. Sei G = (V,E) ein Graph. Eine lineare Ordnung
(u1, . . . , un) auf V heißt DFS-Ordnung (DO) von G, wenn für
jedes Tripel j < k < l gilt:

uj ∈ N(ul) \N(uk)⇒ ∃i : j < i < k ∧ ui ∈ N(uk).

Satz 2.40. Für jeden Graphen G = (V,E) gibt der Algorithmus
DFS(V,E) eine DO von G aus.

Beweis. Siehe Übungen. �

Realisieren wir die Menge der abzuarbeitenden Knoten als eine Warte-
schlange Q, so findet der resultierende Algorithmus BFS(V,E) sogar
einen kürzesten Weg vom Startknoten u zu allen von u aus erreichba-
ren Knoten. Diese Suchstrategie wird als Breitensuche (kurz BFS,
engl. breadth first search) bezeichnet. Die Benutzung einer Warte-
schlange Q zur Speicherung der noch abzuarbeitenden Knoten bewirkt,
dass alle Nachbarknoten v des aktuellen Knotens u vor den bisher
noch nicht erreichten Nachbarn von v ausgegeben werden.

Algorithmus BFS(V,E)

1 R← ∅ // Menge der erreichten Knoten
2 L← () // Ausgabeliste
3 repeat
4 wähle u ∈ V \R
5 Q← (u) // Warteschlange der abzuarb. Knoten
6 while Q 6= () do
7 u← dequeue(Q)

13

2 Färben von Graphen 2.2 Färben von chordalen Graphen

8 append(L, u)
9 for all v ∈ N(u)\R do enqueue(Q, v)

10 R← R ∪N(u)
11 until R = V
12 return(L)

Definition 2.41. Sei G = (V,E) ein Graph. Eine lineare Ordnung
(u1, . . . , un) auf V heißt BFS-Ordnung (BO) von G, wenn für jedes
Tripel j < k < l gilt:

uj ∈ N(ul) \N(uk)⇒ ∃i < j : ui ∈ N(uk).

Satz 2.42. Für jeden Graphen G = (V,E) gibt der Algorithmus
BFS(V,E) eine BO von G aus.

Beweis. Siehe Übungen. �

Der Unterschied von LexBFS zur normalen Breitensuche besteht
darin, dass die zulässigen Ausgabefolgen gegenüber der BFS weiter
eingeschränkt werden. Hierzu wird die Menge der noch nicht abge-
arbeiteten Knoten in eine Folge von Teilmengen zerlegt, welche vom
Algorithmus wiederholt verfeinert wird. Der Name von LexBFS rührt
daher, dass die Knoten in einer Reihenfolge ausgegeben werden, die
auch bei einer gewöhnlichen Breitensuche auftreten kann, bei dieser
aber nicht garantiert ist. Bei einer Breitensuche werden die noch nicht
besuchten Nachbarn des aktuellen Knotens in beliebiger Reihenfol-
ge zur Warteschlange hinzugefügt und später auch wieder in dieser
Reihenfolge entfernt. Dagegen werden bei einer LexBFS die Knoten
in der Warteschlange nachträglich umsortiert, falls dies notwendig
ist, um eine lexikalische Sortierung der Knoten zu erhalten (siehe
Definition 2.43).

Algorithmus LexBFS(V,E, u)

1 L← () // Ausgabeliste

2 Q← (V) // Warteschlange von Knotenmengen
3 while Q 6= () do
4 u← Dequeue(Q)
5 append(L, u)
6 Splitqueue(Q,N(u))
7 return(L)

Prozedur Dequeue(Q)
1 entferne u aus first (Q)
2 if first (Q)= ∅ then dequeue(Q)
3 return(u)

Prozedur Splitqueue(Q,S)
1 for T in Q with T ∩ S /∈ {∅, T} do
2 ersetze (T) in Q durch (T ∩ S, T \ S)

Für eine effiziente Implementierung sollte die Schlange Q =
(S1, . . . , Sk) von Knotenmengen Si ⊆ V als doppelt verkettete Liste
realisiert werden und für jeden Knoten u in der Adjazenzliste ein
Zeiger auf die Menge Si, die u enthält und auf seinen Eintrag in
Si gespeichert werden. Zudem sollte die for-Schleife in der Prozedur
Splitqueue durch eine Schleife über die Knoten in S = N(u) ersetzt
werden.
Definition 2.43. Sei G = (V,E) ein Graph. Eine lineare Ordnung
(u1, . . . , un) auf V heißt LexBFS-Ordnung (LBO) von G, wenn
für jedes Tripel j < k < l gilt:

uj ∈ N(ul) \N(uk)⇒ ∃i < j : ui ∈ N(uk) \N(ul).

Ob eine Ordnung (u1, . . . , un) eine LBO ist, lässt sich also wie folgt
an der gemäß (u1, . . . , un) geordneten Adjazenzmatrix A ablesen: die
(verkürzten) Zeilen z1, . . . , zn unter der Diagonalen müssen lexikalisch
(also wie im Lexikon) sortiert sein: entweder ist zi ein Präfix von
zi+1 oder zi hat an der ersten Position, wo sich die beiden Strings

14

2 Färben von Graphen 2.3 Kantenfärbungen

unterscheiden, eine Eins. In den Übungen wird gezeigt, dass man sogar
eine lexikographische Ordnung auf den kompletten Zeilen von A erhält,
falls man die Diagonaleinträge von A auf 1 setzt und die Knoten in
jeder Menge der Warteschlange Q nach absteigendem Knotengrad in
G sortiert.

Satz 2.44. Für jeden Graphen G = (V,E) gibt der Algorithmus
LexBFS(V,E) eine LBO (u1, . . . , un) von G aus.

Beweis. Sei A = (aij) die Adjazenzmatrix von G mit aij = 1 ⇔
{ui, uj} ∈ E. Wir zeigen, dass die Strings zi = ai1, . . . , ai,i−1 lexika-
lisch sortiert sind. Existiert nämlich im Fall k < l eine Position j < k
mit akj = 0 und alj = 1, so muss es eine Position i < j mit aki = 1
und akl = 0 geben. Ansonsten wäre der Knoten ul spätestens beim
Besuch von uj in eine Menge vor dem Knoten uk sortiert worden und
könnte daher nicht nach dem Knoten uk ausgegeben werden. �

Lemma 2.45. Jede LBO für einen chordalen Graphen G ist eine
PEO für G.

Beweis. Sei (u1, . . . , un) eine LBO für G = (V,E) und sei A = (aij)
die Adjazenzmatrix von G mit aij = 1⇔ {ui, uj} ∈ E, wobei wir für
aij auch A[i, j] schreiben. Wir zeigen, dass G nicht chordal ist, wenn
ui nicht simplizial in Gi = G[u1, . . . , ui] ist.
Falls ui nicht simplizial in Gi ist, müssen Indizes i2 < i1 < i =: i0 mit
A[i0, i1] = A[i0, i2] = 1 und A[i1, i2] = 0 existieren. Wegen A[i1, i2] = 0
und A[i0, i2] = 1 muss es einen Index i3 < i2 geben mit A[i1, i3] = 1
und A[i2, i3] = 0, wobei wir i3 möglichst klein wählen.
Falls nun A[i2, i3] = 1 ist, haben wir einen induzierten Kreis
G[ui0 , ui1 , ui2 , ui3] der Länge 4 in G gefunden. Andernfalls muss es
wegen A[i2, i3] = 0 und A[i1, i3] = 1 einen Index i4 < i3 geben
mit A[i2, i4] = 1 und A[i1, i4] = 0, wobei wir i4 wieder möglichst

klein wählen. Da spätestens für ik = 1 kein Index ik+1 < ik exis-
tiert, also A[ik−1, ik] = 1 sein muss, erhalten wir eine Indexfolge
1 ≤ ik < · · · < i1 < i0 mit
(a) A[i0, i1] = A[ij, ij+2] = A[ik−1, ik] = 1 für j = 0, . . . , k − 2 und
(b) A[i0, i3] = A[ij, ij+1] = A[ij, ij+3] = A[ik−2, ik−1] = 0 für

j = 1, . . . , k − 3 und
(c) A[ij, l] = A[ij−1, l] für j = 1, . . . , k − 3 und l < ij+2.
Die Eigenschaften (a) und (b) ergeben sich direkt aus der Konstruk-
tion der Folge. Eigenschaft (c) folgt aus der minimalen Wahl der
Indizes i3, . . . , ik und impliziert für r = 3, . . . , k die Gleichungen
A[i0, ir] = A[i1, ir] = · · · = A[ir−3, ir], indem wir j = 1, . . . , r − 3
und l = ir setzen. Da zudem A[ir−3, ir] gemäß Eigenschaft (b) für
r = 3, . . . , k den Wert 0 hat, folgt für alle Paare 0 ≤ j < r ≤ k die
Äquivalenz

A[ij, ir] = 1⇔ r = j + 2 oder j = 0 ∧ r = 1 oder j = k − 1 ∧ r = k.

Folglich ist G[ui0 , . . . , uik] ein Kreis der Länge k + 1 ≥ 4. �

Damit haben wir einen Linearzeitalgorithmus, der für chordale Gra-
phen eine PEO berechnet. Da auch greedy-color linear zeitbe-
schränkt ist, können wir den Algorithmus chordal-color in Linear-
zeit implementieren. Diesen Algorithmus können wir leicht noch so
modifizieren, dass er zusammen mit der gefundenen k-Färbung entwe-
der eine Clique C der Größe k (als Zertifikat, dass χ(G) = k = ω(G)
ist) oder einen induzierten Kreis der Länge ≥ 4 (als Zertifikat, dass
G nicht chordal ist) ausgibt.

2.3 Kantenfärbungen

Neben der Frage, mit wievielen Farben die Knoten eines Graphen
gefärbt werden können, muss bei vielen Anwendungen auch eine Kan-
tenfärbung mit möglichst wenigen Farben gefunden werden. Neben

15

2 Färben von Graphen 2.3 Kantenfärbungen

Graphen treten hierbei auch Multigraphen G = (V,E) auf, d.h.
die Kantenmenge E ist eine Multimenge. In diesem Fall können 2
Kanten nicht nur einen, sondern sogar beide Endpunkte gemeinsam
haben. Wie bei Graphen gehen wir aber davon aus, dass jede Kante
2 verschiedene Endpunkte hat, d.h. G ist schlingenfrei.
Eine Multimenge A lässt sich durch eine Funktion vA : A → N be-
schreiben, wobei vA(a) die Anzahl der Vorkommen von a in A angibt.
Die Mächtigkeit von A ist |A| = ∑

a∈A vA(a). A ist Teilmenge einer
Multimenge B, wenn vA(a) ≤ vB(a) für alle a ∈ A gilt. Wie bei
Mengen bezeichnen wir die Menge aller k-elementigen Teilmengen
von B mit

(
B
k

)
.

Definition 2.46. Sei G = (V,E) ein Graph und sei k ∈ N.
a) Eine Abbildung c : E → N heißt Kantenfärbung von G, wenn

c(e) 6= c(e′) für alle e 6= e′ ∈ E mit e ∩ e′ 6= ∅ gilt.
b) G heißt k-kantenfärbbar, falls eine Kantenfärbung c : E →
{1, . . . , k} existiert.

c) Die kantenchromatische Zahl oder der chromatische Index
von G ist

χ′(G) = min{k ∈ N | G ist k-kantenfärbbar}.

Eine k-Kantenfärbung c : E → N muss also je 2 Kanten, die einen
gemeinsamen Endpunkt haben, verschiedene Farben zuweisen. Daher
bildet jede Farbklasse Ei = {e ∈ E | f(e) = i} ein Matching von G,
d.h. c zerlegt E in k disjunkte Matchings E1, . . . , Ek. Umgekehrt liefert
jede Zerlegung von E in k disjunkte Matchings eine k-Kantenfärbung
von G.
Ist G ein Multigraph, so können wir eine k-Kantenfärbung von G auch
durch eine Funktion c beschreiben, die jeder Kante e ∈ E eine Menge
c(e) ⊆ {1, . . . , k} von |c(e)| = vE(e) verschiedenen Farben zuordnet,
so dass c(e) ∩ c(e′) = ∅ für alle e 6= e′ ∈ E mit e ∩ e′ 6= ∅ gilt.

Beispiel 2.47.

χ′(Cn) =

2, n gerade,
3, sonst,

χ′(Kn) = 2dn/2e − 1 =

n− 1, n gerade,
n, sonst.

Das Kantenfärbungsproblem für einen Graphen G lässt sich leicht auf
das Knotenfärbungsproblem für einen Graphen G′ reduzieren.
Definition 2.48. Sei G = (V,E) ein Graph mit m ≥ 1 Kanten.
Dann heißt der Graph L(G) = (E,E ′) mit

E ′ =
{
{e, e′} ⊆

(
E

2

) ∣∣∣∣∣ e ∩ e′ 6= ∅
}

der Kantengraph oder Line-Graph von G.

Ist G ein Multigraph, so ersetzen wir die Multimenge E in L(G)
durch eine Menge derselben Mächtigkeit, die für jede Kante e ∈ E
vE(e) verschiedene Kopien von e enthält. Die folgenden Beziehungen
zwischen einem Graphen G und L(G) lassen sich leicht verifizieren.
Proposition 2.49. Sei G′ = L(G) der Line-Graph eines Graphen G.
Dann gilt

(i) n(G′) = m(G),
(ii) χ(G′) = χ′(G),
(iii) α(G′) = µ(G),
(iv) ω(G′) ≥ ∆(G),
(v) ∆(G′) = max{u,v}∈E degG(u) + degG(v)− 2 ≤ 2∆(G)− 2.

Damit erhalten wir aus den Abschätzungen ω(G) ≤ χ(G) ≤ ∆(G) + 1
und n/α(G) ≤ χ(G) ≤ n − α(G) + 1 die folgenden Abschätzungen
für χ′(G).
Lemma 2.50. Für jeden Graphen G mit m ≥ 1 Kanten gilt
∆ ≤ χ′ ≤ 2∆− 1 und m/µ ≤ χ′ ≤ m− µ+ 1.

16

2 Färben von Graphen 2.3 Kantenfärbungen

Korollar 2.51. Für jeden k-regulären Graphen mit einer ungeraden
Knotenzahl und m ≥ 1 Kanten gilt χ′(G) ≥ k + 1 ≥ 3.

Beweis. Wegen µ ≤ (n − 1)/2 und m = nk/2 folgt χ′ ≥ m/µ ≥
nk/(n− 1) > k. Da n ungerade und m ≥ 1 ist, muss k ≥ 2 sein. �

Als nächstes geben wir einen Algorithmus an, der für jeden Graphen
G eine k-Kantenfärbung mit k ≤ ∆(G) + 1 berechnet. Für den Beweis
benötigen wir folgende Begriffe.
Definition 2.52. Sei G = (V,E) ein Graph und sei c : E →
{1, . . . , k} eine k-Kantenfärbung von G. Weiter sei F ⊆ {1, . . . , k}
und 1 ≤ i 6= j ≤ k.
a) Ein Nachbar v von u heißt F -Nachbar von u, wenn c(u, v) ∈ F

ist (wobei c(u, v) für c({u, v}) steht). Im Fall F = {i} nennen wir
v auch einen i-Nachbarn von u.

b) Die Farbe i ist frei an einem Knoten u (kurz i ∈ free(u)), falls u
keinen i-Nachbarn hat.

c) Der (i, j)-Subgraph von G ist der Subgraph Gij = (V,Eij) mit
Eij =

{
e ∈ E

∣∣∣ c(e) ∈ {i, j}}.
d) Jede Zusammenhangskomponente G′ von Gij heißt (i, j)-Kom-

ponente von G. Ist G′ ein Pfad oder ein Kreis, so nennen wir G′
auch (i, j)-Pfad bzw. (i, j)-Kreis in G (bzgl. c).

Man sieht leicht, dass jede (i, j)-Komponente G′ von G entweder ein
Pfad der Länge l ≥ 0 oder ein Kreis gerader Länge ist. Zudem können
wir aus c eine weitere k-Kantenfärbung c′ von G gewinnen, indem wir
die beiden Farben i und j entlang der Kanten von G′ vertauschen.
Wir bezeichnen diese k-Kantenfärbung c′ mit switch(c, i, j, G′).
Satz 2.53 (Vizing 1964). Für jeden Graphen G gilt χ′(G) ≤ ∆(G)+1.

Beweis. Wir führen Induktion über m. Der Fall m = 0 ist trivial.
Für den IS sei G′ = (V,E ′) ein Graph mit m+ 1 Kanten. Wir wäh-
len eine beliebige Kante e1 = {y0, y1} ∈ E. Dann hat der Graph

G = G′ − e1 = (V,E) mit E = E ′ \ {e1} nur noch m Kanten
und daher hat G nach IV für k = ∆(G′) + 1 eine k-Kantenfärbung
c : E → {1, . . . , k}. Da zudem unter c an jedem Knoten u mindestens
k − degG(u) > 0 Farben frei sind, folgt free(u) 6= ∅ für alle u ∈ V .
Betrachte nun folgende Prozeduren.

Prozedur expand(G, c, e1 = {y0, y1})
1 `← 1
2 wähle α1 ∈ free(y1)
3 while α` 6∈ free(y0) ∪ {α1, . . . , α`−1} do
4 sei y`+1 der α`-Nachbar von y0
5 wähle α`+1 ∈ free(y`+1)
6 `← `+ 1
7 wähle 0 ≤ i < ` minimal mit α` ∈ free(y0) ∪ {α1, . . . , αi}
8 if i = 0 then // α` ∈ free(y0)
9 recolor(`, α`)

10 else // α` = αi
11 wähle eine Farbe α0 ∈ free(y0)
12 berechne den (α0, αi)-Pfad P mit Endknoten y`
13 c′ ← switch(c, α0, αi, P)
14 sei z der Knoten am anderen Ende von P // z = y` ist möglich
15 case
16 z = y0 : recolor(i, αi)
17 z = yi : recolor(i, α0)
18 else recolor(`, α0)
19 return c′

Prozedur recolor(i, α)
1 c′(y0, yi)← α
2 for j ← 1 to i− 1 do c′(y0, yj)← αj

Wir verifizieren, dass die Abbildung c′ eine Kantenfärbung von G′ ist.
Fall 1 α` ∈ free(y0): Da die Farbe α` an y0 und für j = 1, . . . , ` die

17

2 Färben von Graphen 2.4 Der Satz von Brooks

Farbe αj an yj frei ist, können wir {y0, yj} mit αj färben.
Fall 2 z = y0: In diesem Fall erreicht P den Knoten z = y0 über die

Kante {y0, yi+1}. Nach dem Vertauschen von α0 und αi entlang
P hat diese Kante dann die Farbe α0, weshalb wir die Kanten
{y0, yj} für j = 1, . . . , i mit αj färben können.

Fall 3 z = yi: Da αi ∈ free(yi) ∩ free(y`) ist, müssen die Endkanten
von P mit α0 gefärbt sein. Nach Vertauschen von α0 und αi ent-
lang P ist daher die Farbe α0 an y0 und yi frei, weshalb wir die
Kante {y0, yi} mit α0 und die Kanten {y0, yj} für j = 1, . . . , i−1
mit αj färben können.

Fall 4 In allen anderen Fällen ist die Farbe α0 nach Vertauschen
von α0 und αi entlang P neben y0 auch an y` frei, weshalb
wir die Kante {y0, y`} mit α0 färben können. Da zudem die
Farbe αj für j = 1, . . . , ` − 1 an yj frei bleibt (auch wenn
z ∈ {y1, . . . , yi−1, yi+1, . . . , y`} ist), können wir die Kanten
{y0, yj} für j = 1, . . . , `− 1 mit αj färben. �

Da die Prozedur expand mit Hilfe geeigneter Datenstrukturen so
implementiert werden kann, dass jeder Aufruf Zeit O(n) erfordert,
und diese Prozedur m-mal aufgerufen wird, um alle m Kanten eines
gegebenen Graphen G zu färben, ergibt sich eine Gesamtlaufzeit von
O(nm). Zudem erhalten wir aus dem Beweis des Satzes von Vizing
folgende Konsequenzen.
Korollar 2.54. Für jeden Multigraphen G = (V,E) gilt

(i) χ′(G) ≤ ∆(G) + maxe∈E vE(e).
(ii) χ′(G) ≤ 3∆(G)/2.
(iii) Falls G bipartit (d.h. χ(G) ≤ 2) ist, dann ist χ′(G) = ∆(G).

Beweis. Siehe Übungen. �

Für einen Graphen G kann χ′(G) nur einen der beiden Werte ∆(G)
oder ∆(G) + 1 annehmen. Graphen G mit χ′(G) = ∆(G) heißen
Klasse 1 und Graphen G mit χ′(G) = ∆(G) + 1 heißen Klasse 2.

Neben allen bipartiten Graphen sind auch die vollständigen Graphen
Kn für gerades n Klasse 1. Zudem sind alle planaren Graphen G mit
∆(G) ≥ 7 Klasse 1. Für 2 ≤ d ≤ 5 existieren planare Graphen G mit
∆(G) = d, die Klasse 2 sind. Für d = 6 ist dies offen.
Das Problem, für einen gegebenen Graphen G zu entscheiden, ob er
Klasse 1 ist (also χ′(G) ≤ ∆(G) gilt), ist NP-vollständig.
Zum Schluss dieses Kapitels zeigen wir, dass die entsprechende Frage
für Knotenfärbungen sehr leicht entscheidbar ist.

2.4 Der Satz von Brooks

Satz 2.55 (Brooks 1941). Für einen zusammenhängenden Graphen
G gilt χ(G) = ∆(G) + 1 genau dann, wenn G = C2n+1 oder G = Kn

für ein n ≥ 1 ist.

Beweis. Es ist klar, dass die Graphen G = C2n+1 und G = Kn, n ≥ 1,
die chromatische Zahl ∆(G) + 1 haben. Für ∆(G) ≤ 2 sind dies auch
die einzigen zusammenhängenden Graphen mit dieser Eigenschaft.
Sei nun G 6= Kd+1 ein zusammenhängender Graph mit Maximalgrad
∆(G) = d ≥ 3. Wir zeigen induktiv über n, dass χ(G) ≤ d ist. Im
Fall n ≤ 4 (IA) ist dies klar, da wir den K4 ausgeschlossen haben.
Für den IS können wir also n ≥ 5 annehmen.
Falls κ(G) ≤ 1 ist, hat G k ≥ 2 Blöcke B1, . . . Bk. Dann ist jeder
Block Bi nach IV (bzw. wegen ∆(Bi) < ∆(G) = d) d-färbbar und
somit auch χ(G) ≤ d. Es bleibt also der Fall, dass κ(G) ≥ 2 ist.
Behauptung 2.56. In G gibt es einen Knoten u1, der zwei Nachbarn
a und b mit {a, b} 6∈ E hat, so dass G− {a, b} zusammenhängend ist.

Da G 6= Kd+1 ist, gibt es einen Knoten x, der zwei Nachbarn
y, z ∈ N(x) mit {y, z} 6∈ E hat. Falls G − y 2-zusammenhängend
ist, ist G− {y, z} zusammenhängend und die Behauptung folgt für
u1 = x.

18

3 Flüsse in Netzwerken

Ist G− y nicht 2-zusammenhängend, d.h. G− y hat mindestens zwei
Blöcke, dann hat der BC-Baum T von G− y mindestens zwei Blätter.
Da κ(G) ≥ 2 ist, ist y in G zu mindestens einem Knoten in jedem
Blatt von T benachbart, der kein Schnittknoten ist. Wählen wir für a
und b zwei dieser Knoten in verschiedenen Blättern, so ist G− {a, b}
zusammenhängend und somit die Behauptung für u1 = y bewiesen.
Sei also u1 ein Knoten, der zwei Nachbarn a und b mit {a, b} 6∈ E hat,
so dass G−{a, b} zusammenhängend ist. Wir wenden auf den Graphen
G− {a, b} eine Suche mit dem Startknoten u1 an. Sei (u1, . . . , un−2)
die resultierende Suchordnung. Nun starten wir greedy-color mit
der Reihenfolge (a, b, un−2, . . . , u1).
Dann berechnet greedy-color eine d-Färbung c, da die Knoten a
und b die Farbe c(a) = c(b) = 1 erhalten. Zudem ist jeder Kno-
ten ui, i > 1, mit einem Knoten uj mit j < i verbunden, weshalb
c(ui) ≤ deg(ui) ≤ d ist. Zuletzt erhält auch u1 eine Farbe c(u1) ≤ d,
da u1 bereits zwei Nachbarn a und b mit derselben Farbe hat. �

In den Übungen wird folgende Folgerung aus dem Beweis des Satzes
von Brooks gezeigt.

Korollar 2.57. Es gibt einen Linearzeitalgorithmus, der alle Graphen
G mit ∆(G) ≤ 3 mit χ(G) Farben färbt.

3 Flüsse in Netzwerken

Definition 3.1. Ein Netzwerk N = (V,E, s, t, c) besteht aus einem
gerichteten Graphen G = (V,E) mit einer Quelle s ∈ V und einer
Senke t ∈ V sowie einer Kapazitätsfunktion c : V × V → N.
Zudem muss jede Kante (u, v) ∈ E positive Kapazität c(u, v) > 0 und
jede Nichtkante (u, v) 6∈ E muss die Kapazität c(u, v) = 0 haben.

Die folgende Abbildung zeigt ein Netzwerk N .

a b

s t

c d

16

13

12

98

20

14

4 7
4

Definition 3.2.
a) Ein Fluss in N ist eine Funktion f : V × V → Z mit

f(u, v) ≤ c(u, v), (Kapazitätsbedingung)
f(u, v) = −f(v, u), (Antisymmetrie)∑
v 6=u f(u, v) = 0 für alle u ∈ V \ {s, t} (Kontinuität)

b) Der Fluss in den Knoten u ist f−(u) = ∑
v 6=u max{0, f(v, u)}.

c) Der Fluss aus u ist f+(u) = ∑
v 6=u max{0, f(u, v)}.

d) Die Größe von f ist |f | = f+(s)− f−(s) = ∑
v 6=s f(s, v).

Die Antisymmetrie impliziert, dass f(u, u) = 0 für alle u ∈ V ist,
d.h. wir können annehmen, dass G schlingenfrei ist. Die folgende
Abbildung zeigt einen Fluss f in N .

19

3 Flüsse in Netzwerken 3.1 Der Ford-Fulkerson-Algorithmus

a b

s t

c d

11/16

8/13

12/12

4/9
8

15/20

11/14

1/4 7/7

4/4 u s a b c d t

f+(u) 19 12 19 12 11 0
f−(u) 0 12 19 12 11 19

3.1 Der Ford-Fulkerson-Algorithmus

Wie lässt sich für einen Fluss f in einem Netzwerk N entscheiden, ob
er vergrößert werden kann? Diese Frage lässt sich leicht beantworten,
falls f der konstante Nullfluss f = 0 ist: In diesem Fall genügt es, in
G = (V,E) einen Pfad von s nach t zu finden. Andernfalls können
wir zu N und f ein Netzwerk Nf konstruieren, so dass f genau dann
vergrößert werden kann, wenn sich in Nf der Nullfluss vergrößern
lässt.
Definition 3.3. Sei N = (V,E, s, t, c) ein Netzwerk und sei f ein
Fluss in N . Das zugeordnete Restnetzwerk ist Nf = (V,Ef , s, t, cf)
mit der Kapazität

cf (u, v) = c(u, v)− f(u, v)
und der Kantenmenge

Ef = {(u, v) ∈ V × V | cf (u, v) > 0}.

Zum Beispiel führt obiger Fluss auf das folgende Restnetzwerk Nf :

a b

s t

c d

5
11

5
8

12

5
49

5

15
3

11

3 7
4

Definition 3.4. Sei Nf = (V,Ef , s, t, cf) ein Restnetzwerk. Dann
heißt jeder s-t-Pfad P in (V,Ef) Zunahmepfad in Nf . Die Kapa-
zität von P in Nf ist

cf (P) = min{cf (u, v) | (u, v) liegt auf P}

und der zu P gehörige Fluss in Nf ist

fP (u, v) =


cf (P), (u, v) liegt auf P,
−cf (P), (v, u) liegt auf P,
0, sonst.

P = (u0, . . . , uk) ist also genau dann ein Zunahmepfad in Nf , falls
• u0 = s und uk = t ist,
• die Knoten u0, . . . , uk paarweise verschieden sind
• und cf (ui, ui+1) > 0 für i = 0, . . . , k − 1 ist.
Die folgende Abbildung zeigt den zum Zunahmepfad P = s, c, b, t
gehörigen Fluss fP in Nf . Die Kapazität von P ist cf (P) = 4.

a b

s t

c d

5
11

4/5
8

12

5

4/4
9

4/5
15

3

11

3 7
4

Es ist leicht zu sehen, dass fP tatsächlich ein Fluss in Nf ist. Durch Ad-
dition der beiden Flüsse f und fP erhalten wir einen Fluss f ′ = f+fP
in N der Größe |f ′| = |f |+ |fP | > |f |.

20

3 Flüsse in Netzwerken 3.1 Der Ford-Fulkerson-Algorithmus

Fluss f :

a b

s t

c d

11/16

8/13

12/12

4/9
8

15/20

11/14

1/4 7/7

4/4

Fluss f ′ = f + fP :

a b

s t

c d

11/16

12/13

12/12

9
8

19/20

11/14

1/4 7/7

4/4

Nun können wir den Ford-Fulkerson-Algorithmus angeben.

Algorithmus Ford-Fulkerson(V,E, s, t, c)
1 for all (u, v) ∈ E ∪ ER do
2 f(u, v)← 0
3 while es gibt einen Zunahmepfad P in Nf do
4 f ← f + fP

Beispiel 3.5. Für den neuen Fluss erhalten wir nun folgendes Rest-
netzwerk:

a b

s t

c d

5
11

1
12

12

99

1
19

3

11

3 7
4

In diesem existiert kein Zunahmepfad mehr. /

Um zu beweisen, dass der Algorithmus von Ford-Fulkerson tatsäch-
lich einen Maximalfluss berechnet, zeigen wir, dass es nur dann im
Restnetzwerk Nf keinen Zunahmepfad mehr gibt, wenn der Fluss f
maximal ist. Hierzu benötigen wir den Begriff des Schnitts.

Definition 3.6. Sei N = (V,E, s, t, c) ein Netzwerk und sei ∅ (
S (V . Dann heißt die Menge E(S) = {(u, v) ∈ E | u ∈ S, v /∈ S}
Kantenschnitt (oder einfach Schnitt; oft wird auch einfach S als
Schnitt bezeichnet). Die Kapazität eines Schnittes S ist

c(S) =
∑

u∈S,v /∈S
c(u, v).

Ist f ein Fluss in N , so heißt

f(S) =
∑

u∈S,v /∈S
f(u, v)

der Nettofluss (oder einfach Fluss) durch den Schnitt S. Ist
u ∈ S und v /∈ S, so heißt S auch u-v-Schnitt.

Beispiel 3.7. Betrachte folgenden Schnitt S = {s, a, c} in N :

a b

s t

c d

11/16

8/13

12/12

4/9
8

15/20

11/14

1/4 7/7

4/4

a b

s t

c d

Dieser Schnitt hat die Kapazität

c(S) = c(a, b) + c(c, d) = 12 + 14 = 26

und der Fluss f durch ihn ist

f(S) = f(a, b) + f(c, b) + f(c, d) = 12− 4 + 11 = 19.

Dagegen hat der Schnitt S ′ = {s, a, c, d}

21

3 Flüsse in Netzwerken 3.1 Der Ford-Fulkerson-Algorithmus

a b

s t

c d

11/16

12/13

12/12

9

8
19/20

11/14

1/4 7/7

4/4

a b

s t

c d

die Kapazität

c(S ′) = c(a, b)+c(d, b)+c(d, t) = 12+7+4 = 23
= f ′(a, b)+f ′(d, b)+f ′(d, t) = f ′(S ′),

die mit dem Fluss f ′ durch S ′ übereinstimmt. /

Lemma 3.8. Für jeden s-t-Schnitt S und jeden Fluss f gilt

|f | = f(S) ≤ c(S).

Beweis. Die Gleichheit |f | = f(S) zeigen wir durch Induktion über
k = ‖S‖.
k = 1: In diesem Fall ist S = {s} und somit

|f | = f+(s)− f−(s) =
∑
v 6=s

f(s, v) = f(S).

k − 1 ; k: Sei S ein Schnitt mit ‖S‖ = k > 1 und sei w ∈ S − {s}.
Betrachte den Schnitt S ′ = S − {w}. Dann gilt

f(S) =
∑

u∈S,v /∈S
f(u, v) =

∑
u∈S′,v /∈S

f(u, v) +
∑
v/∈S

f(w, v)

und

f(S ′) =
∑

u∈S′,v /∈S′
f(u, v) =

∑
u∈S′,v /∈S

f(u, v) +
∑
u∈S′

f(u,w).

Daher folgt

f(S)− f(S ′) =
∑
v 6∈S

f(w, v)−
∑
u∈S′

f(u,w) =
∑
v 6=w

f(w, v) = 0.

Nach Induktionsvoraussetzung folgt somit f(S) = f(S ′) = |f |.
Schließlich folgt wegen f(u, v) ≤ c(u, v) die Ungleichung

f(S) =
∑

(u,v)∈E(S)
f(u, v) ≤

∑
(u,v)∈E(S)

c(u, v) = c(S). �

Satz 3.9 (Min-Cut-Max-Flow-Theorem). Sei f ein Fluss in einem
Netzwerk N = (V,E, s, t, c). Dann sind folgende Aussagen äquivalent:
1. f ist maximal, d.h. für jeden Fluss f ′ in N gilt |f ′| ≤ |f |.
2. In Nf existiert kein Zunahmepfad.
3. Es gibt einen s-t-Schnitt S in N mit c(S) = |f |.

Beweis. Die Implikation „1 ⇒ 2“ ist klar, da die Existenz eines Zu-
nahmepfads in Nf zu einer Vergrößerung von f führen würde.
Für die Implikation „2 ⇒ 3“ betrachten wir den Schnitt

S = {u ∈ V | u ist in Nf von s aus erreichbar}.

Da in Nf kein Zunahmepfad existiert, gilt dann
• s ∈ S, t /∈ S und
• cf (u, v) = 0 für alle u ∈ S und v /∈ S.
Wegen cf (u, v) = c(u, v)− f(u, v) folgt somit

|f | = f(S) =
∑

u∈S,v /∈S
f(u, v) =

∑
u∈S,v /∈S

c(u, v) = c(S).

Die Implikation „3 ⇒ 1“ ergibt sich aus der Tatsache, dass im Fall
c(S) = |f | für jeden Fluss f ′ die Abschätzung |f ′| = f ′(S) ≤ c(S) =
|f | gilt. �

22

3 Flüsse in Netzwerken 3.1 Der Ford-Fulkerson-Algorithmus

Der obige Satz gilt auch für Netzwerke mit Kapazitäten in R+.
Sei c0 = c(S) die Kapazität des Schnittes S = {s}. Dann durchläuft
der Ford-Fulkerson-Algorithmus die while-Schleife höchstens c0-mal.
Bei jedem Durchlauf ist zuerst das Restnetzwerk Nf und danach ein
Zunahmepfad in Nf zu berechnen.
Die Berechnung des Zunahmepfads P kann durch Breitensuche in
Zeit O(n + m) erfolgen. Da sich das Restnetzwerk nur entlang von
P ändert, kann es in Zeit O(n) aktualisiert werden. Jeder Durch-
lauf benötigt also Zeit O(n + m), was auf eine Gesamtlaufzeit von
O(c0(n + m)) führt. Da der Wert von c0 jedoch exponentiell in der
Länge der Eingabe (also der Beschreibung des Netzwerkes N) sein
kann, ergibt dies keine polynomielle Zeitschranke. Bei Netzwerken
mit Kapazitäten in R+ kann der Ford-Fulkerson-Algorithmus sogar
unendlich lange laufen (siehe Übungen).
Bei nebenstehendem Netzwerk benö-
tigt Ford-Fulkerson zur Bestimmung
des Maximalflusses abhängig von der
Wahl der Zunahmepfade zwischen 2
und 211 Schleifendurchläufe.

a

s t

b

210

210

210

210

1

Im günstigsten Fall wird nämlich ausgehend vom Nullfluss f1 zu-
erst der Zunahmepfad P1 = (s, a, t) mit der Kapazität 210 und dann
im Restnetzwerk Nf1 der Pfad P2 = (s, b, t) mit der Kapazität 210

gewählt.
Im ungünstigsten Fall werden abwechselnd die beiden Zunahmepfade
P1 = (s, a, b, t) und P2 = (s, b, a, t) (also Pi = P1 für ungerades i und
Pi = P2 für gerades i) mit der Kapazität 1 gewählt. Dies führt auf
insgesamt 211 Schleifendurchläufe (siehe nebenstehende Tabelle).
Nicht nur in diesem Beispiel lässt sich die exponentielle Laufzeit wie
folgt vermeiden:
• Man betrachtet nur Zunahmepfade mit einer geeignet gewählten

Mindestkapazität. Dies führt auf eine Laufzeit, die polynomiell in
n, m und log c0 ist (siehe Übungen).

i Fluss fPi
in Nfi

neuer Fluss fi+1 in N

1

a

s t

b

1/210

210

210

1/210

1/1

a

s t

b

1/210

210

210

1/210

1/1

2

a

s t

b

210−1

1

1/210

1/210

210−1

11/1

a

s t

b

1/210

1/210

1/210

1/210

1

...

2j − 1,
1 < j ≤ 210

a

s t

b

1/210−j+1
j−1

210−j+1
j−1

210−j+1
j−1

1/210−j+1
j−1

1/1

a

s t

b

j/210

j−1/210

j−1/210

j/210

1/1

2j,
1 < j < 210

a

s t

b

210−j

j

1/210−j+1
j−1

1/210−j+1
j−1

210−j

j1/1

a

s t

b

j/210

j/210

j/210

j/210

1

...

211

a

s t

b

210

1/1

210−1

1/1

210−1

210
1/1

a

s t

b

210/210

210/210

210/210

210/210

1

23

3 Flüsse in Netzwerken 3.2 Der Edmonds-Karp-Algorithmus

• Man bestimmt in jeder Iteration einen kürzesten Zunahmepfad
im Restnetzwerk mittels Breitensuche in Zeit O(n + m). Diese
Vorgehensweise führt auf den Edmonds-Karp-Algorithmus, der eine
Laufzeit von O(nm2) hat (unabhängig von der Kapazitätsfunktion).
• Man bestimmt in jeder Iteration einen Fluss g im Restnetzwerk Nf ,
der nur Kanten benutzt, die auf einem kürzesten s-t-Pfad in Nf

liegen. Zudem hat g die Eigenschaft, dass g auf jedem kürzesten
s-t-Pfad P mindestens eine Kante e ∈ P sättigt (d.h. der Fluss g(e)
durch e schöpft die Restkapazität cf(e) von e vollkommen aus),
weshalb diese Kante in der nächsten Iteration fehlt. Dies führt auf
den Algorithmus von Dinitz. Da die Länge der kürzesten s-t-Pfade
im Restnetzwerk in jeder Iteration um mindestens 1 zunimmt, liegt
nach spätestens n − 1 Iterationen ein maximaler Fluss vor. Di-
nitz hat gezeigt, dass der Fluss g in Zeit O(nm) bestimmt werden
kann. Folglich hat der Algorithmus von Dinitz eine Laufzeit von
O(n2m). Malhotra, Kumar und Maheswari fanden später einen
O(n2)-Algorithmus zur Bestimmung von g. Damit lässt sich die
Gesamtlaufzeit auf O(n3) verbessern.

3.2 Der Edmonds-Karp-Algorithmus

Der Edmonds-Karp-Algorithmus ist eine spezielle Form von Ford-
Fulkerson, die nur Zunahmepfade mit möglichst wenigen Kanten
benutzt, welche mittels Breitensuche bestimmt werden.

Algorithmus Edmonds-Karp(V,E, s, t, c)
1 for all (u, v) ∈ E ∪ ER do
2 f(u, v)← 0
3 repeat
4 P ← zunahmepfad(f)
5 if P 6= ⊥ then addierepfad(f, P)
6 until P = ⊥

Prozedur zunahmepfad(f)

1 for all v ∈ V \ {s} do
2 parent(v)← ⊥
3 parent(s)← s
4 Q← (s)
5 while Q 6= () ∧ parent(t) = ⊥ do
6 u← dequeue(Q)
7 for all e = (u, v) ∈ E ∪ ER do
8 if c(e)− f(e) > 0 ∧ parent(v) = ⊥ then
9 c′(e)← c(e)− f(e)

10 parent(v)← u
11 enqueue(Q, v)
12 if parent(t) = ⊥ then
13 P ← ⊥
14 else
15 P ← parent-Pfad von s nach t
16 cf (P)← min{c′(e) | e ∈ P}
17 return P

Prozedur addierepfad(f, P)
1 for all e ∈ P do
2 f(e)← f(e) + cf (P)
3 f(eR)← f(eR)− cf (P)

Die Prozedur zunahmepfad(f) berechnet im Restnetzwerk Nf einen
(gerichteten) s-t-Pfad P , sofern ein solcher existiert. Dies ist genau
dann der Fall, wenn die while-Schleife mit parent(t) 6= ⊥ abbricht.
Der Pfad P lässt sich dann mittels parent wie folgt zurückverfolgen.
Sei

ui =

t, i = 0,
parent(ui−1), i > 0 und ui−1 6= s

und sei ` = min{i ≥ 0 | ui = s}. Dann ist u` = s und P = (u`, . . . , u0)

24

3 Flüsse in Netzwerken 3.2 Der Edmonds-Karp-Algorithmus

ein s-t-Pfad, den wir als den parent-Pfad von s nach t bezeichnen.

Satz 3.10. Der Edmonds-Karp-Algorithmus durchläuft die repeat-
Schleife höchstens nm/2-mal und hat somit eine Laufzeit von O(nm2).

Beweis. Sei f1 der triviale Nullfluss und seien P1, . . . , Pk die Zunah-
mepfade, die der Edmonds-Karp-Algorithmus der Reihe nach berech-
net, d.h. fi+1 = fi + fPi

. Eine Kante e in Pi heißt kritisch für Pi,
falls der Fluss fPi

im Restnetzwerk Nfi
die Kante e sättigt, d.h.

cfi
(e) = fPi

(e) = cfi
(Pi). Man beachte, dass eine kritische Kante e

in Pi wegen cfi+1(e) = cfi
(e)− fPi

(e) = 0 nicht in Nfi+1 enthalten ist,
wohl aber die Kante eR.
Wir überlegen uns zunächst, dass die Längen `i von Pi (schwach) mo-
noton wachsen. Hierzu zeigen wir, dass die Abstände jedes Knotens
u ∈ V von s und von t beim Übergang von Nfi

zu Nfi+1 nicht kleiner
werden können. Sei di(u, v) die minimale Länge eines Pfades von u
nach v im Restnetzwerk Nfi

.
Behauptung 3.11. Für jeden Knoten u ∈ V gilt di(s, u) ≤ di+1(s, u)
und di(u, t) ≤ di+1(u, t).

Hierzu zeigen wir folgende Behauptung.
Behauptung 3.12. Für jeden kürzesten Pfad P = (u0, . . . , uh) von
u0 = s nach uh = u in Nfi+1 gilt di(s, uj) ≤ di(s, uj−1) + 1, falls
die Kante e = (uj−1, uj) auch in Nfi

enthalten ist, und di(s, uj) =
di(s, uj−1)− 1, falls e nicht in Nfi

enthalten ist.

Falls die Kante e = (uj−1, uj) auch in Nfi
enthalten ist, ist die Be-

hauptung klar. Andernfalls muss fi+1(e) 6= fi(e) sein, d.h. e oder eR
müssen in Pi vorkommen. Da e nicht in Nfi

ist, muss eR = (uj, uj−1)
auf Pi liegen. Da Pi ein kürzester Pfad von s nach t in Nfi

ist, folgt
di(s, uj−1) = di(s, uj) + 1, was di(s, uj) = di(s, uj−1)− 1 impliziert.
Damit ist Behauptung 3.12 bewiesen und es folgt

di(s, u) ≤ di(s, uh−1) + 1 ≤ · · · ≤ di(s, s) + h = h = di+1(s, u).

Die folgende Behauptung lässt sich analog zu Behauptung 3.12 zeigen.
Behauptung 3.13. Für jeden kürzesten Pfad P = (u0, . . . , uh) von
u0 = u nach uh = t in Nfi+1 gilt di(uj−1, t) ≤ di(uj, t) + 1, falls
die Kante e = (uj−1, uj) auch in Nfi

enthalten ist, und di(uj−1, t) ≤
di(uj, t)− 1, falls e nicht in Nfi

enthalten ist.

Damit folgt

di(u, t) ≤ di(u1, t) + 1 ≤ · · · ≤ di(t, t) + h = h = di+1(u, t),

womit Behauptung 3.11 bewiesen ist. Als nächstes zeigen wir folgende
Behauptung.
Behauptung 3.14. Für 1 ≤ i < j ≤ k gilt: Falls e = (u, v) in Pi
und eR = (v, u) in Pj enthalten ist, so ist lj ≥ li + 2.

Dies folgt direkt aus Behauptung 3.11 und der Tatsache, dass Pi und
Pj kürzeste Zunahmepfade sind:

lj = dj(s, t) = dj(s, v)︸ ︷︷ ︸
≥di(s,v)

+ dj(v, t)︸ ︷︷ ︸
≥di(v,t)

≥ di(s, v)︸ ︷︷ ︸
di(s,u)+1

+ di(v, t)︸ ︷︷ ︸
di(u,t)+1

= li + 2.

Da jeder Zunahmepfad Pi mindestens eine kritische Kante enthält und
E∪ER höchstens m Kantenpaare der Form {e, eR} enthält, impliziert
schließlich folgende Behauptung, dass k ≤ mn/2 ist.
Behauptung 3.15. Zwei Kanten e und eR sind zusammen höchstens
n/2-mal kritisch.

Seien Pi1 , . . . , Pih , i1 < · · · < ih, die Pfade, in denen e oder eR kri-
tisch ist. Falls e′ ∈ {e, eR} kritisch in Pij ist, dann verschwindet e′
aus Nfij +1 . Damit also e oder eR kritisch in Pij+1 sein können, muss
ein Pfad Pj′ mit ij < j′ ≤ ij+1 existieren, der e′R enthält. Wegen
Behauptung 3.11 und Behauptung 3.14 ist `ij+1 ≥ `j′ ≥ `ij + 2. Daher
ist

n− 1 ≥ `ih ≥ `i1 + 2(h− 1) ≥ 1 + 2(h− 1) = 2h− 1,

25

3 Flüsse in Netzwerken 3.3 Der Algorithmus von Dinitz

was h ≤ n/2 impliziert. �

Man beachte, dass der Beweis auch bei Netzwerken mit reellen Kapa-
zitäten seine Gültigkeit behält.

3.3 Der Algorithmus von Dinitz

Man kann zeigen, dass sich in jedem Netzwerk ein maximaler Fluss
durch Addition von höchstens m Zunahmepfaden konstruieren lässt
(siehe Übungen). Es ist nicht bekannt, ob sich solche Pfade in Zeit
O(n+m) bestimmen lassen. Wenn ja, würde dies auf eine Gesamtlauf-
zeit von O(n+m2) führen. Für dichte Netzwerke (d.h. m = Θ(n2))
hat der Algorithmus von Dinitz die gleiche Laufzeit O(n2m) = O(n4)
und die verbesserte Version ist mit O(n3) in diesem Fall sogar noch
schneller.
Die Analyse der Laufzeit des Edmonds-Karp-Algorithmus beruht auf
der Tatsache, dass der Fluss fPi

durch den Zunahmepfad Pi, der in
jedem Schleifendurchlauf auf den aktuellen Fluss fi addiert wird, auf
mindestens einem kürzesten Pfad im Restnetzwerk Nfi

eine Kante
sättigt. Dies hat zur Folge, dass nicht mehr als nm/2 Zunahmepfade
Pi benötigt werden, um einen maximalen Fluss zu erhalten.
Dagegen addiert der Algorithmus von Dinitz in jedem Schleifendurch-
lauf auf den aktuellen Fluss fi einen Fluss gi, der auf jedem kürzesten
Pfad im Restnetzwerk Nfi

mindestens eine Kante sättigt. Wir werden
sehen, dass maximal n− 1 solche Flüsse gi benötigt werden.

Definition 3.16. Sei N = (V,E, s, t, c) ein Netzwerk und sei g ein
Fluss in N . Der Fluss g sättigt eine Kante e ∈ E, falls g(e) = c(e)
ist. g heißt blockierend, falls g mindestens eine Kante e auf jedem
Pfad P von s nach t sättigt.

Nach dem Min-Cut-Max-Flow-Theorem gibt es zu jedem maximalen
Fluss f einen Schnitt S, so dass alle Kanten in E(S) gesättigt sind.

Da jeder Pfad von s nach t mindestens eine Kante in E(S) enthalten
muss, ist jeder maximale Fluss auch blockierend. Für die Umkehrung
gibt es jedoch einfache Gegenbeispiele, wie etwa

a b

s t

c d

1/1

1

1

1/1
1

1
1/1

Ein blockierender Fluss muss also nicht unbedingt maximal sein. Tat-
sächlich ist g genau dann ein blockierender Fluss in N , wenn es im
Restnetzwerk Ng keinen Zunahmepfad gibt, der nur aus Vorwärtskan-
ten e ∈ E mit g(e) < c(e) besteht.
Der Algorithmus von Dinitz berechnet anstelle eines kürzesten Zunah-
mepfades P im aktuellen Restnetzwerk Nf einen blockierenden Fluss g
im Schichtnetzwerk N ′f . Dieses enthält nur diejenigen Kanten von Nf ,
die auf einem kürzesten Pfad mit Startknoten s liegen. Zudem werden
aus N ′f alle Knoten u 6= t entfernt, die einen Abstand d(s, u) ≥ d(s, t)
in Nf haben. Der Name rührt daher, dass jeder Knoten in N ′f einer
Schicht Sj zugeordnet wird.

Definition 3.17. Sei N = (V,E, s, t, c) ein Netzwerk. Das zugeordne-
te Schichtnetzwerk ist N ′ = (V ′, E ′, s, t, c′) mit der Knotenmenge
V ′ = S0 ∪ · · · ∪ Sr und der Kantenmenge

E ′ =
r⋃
j=1
{(u, v) ∈ E | u ∈ Sj−1 ∧ v ∈ Sj},

sowie der Kapazitätsfunktion

c′(e) =

c(e), e ∈ E ′,
0, sonst,

26

3 Flüsse in Netzwerken 3.3 Der Algorithmus von Dinitz

wobei r = 1 + max{d(s, u) < d(s, t) | u ∈ V } und

Sj =

{u ∈ V | d(s, u) = j}, 0 ≤ j ≤ r − 1,
{t}, j = r.

ist und d(x, y) die Länge eines kürzesten Pfades von x nach y in N
bezeichnet.

Der Algorithmus von Dinitz arbeitet wie folgt.

Algorithmus Dinitz(V,E, s, t, c)
1 for all (u, v) ∈ V × V do
2 f(u, v)← 0
3 while es gibt einen blockierenden Fluss g in N ′f mit |g| > 0 do
4 f ← f + g

Das zum Restnetzwerk Nf = (V,E, s, t, cf) gehörige Schichtnetzwerk
N ′f = (V ′, E ′, s, t, c′f) wird von der Prozedur schichtnetzwerk(f)
in Zeit O(n+m) berechnet. Für die Berechnung eines blockierenden
Flusses g im Schichtnetzwerk N ′f werden wir 2 Algorithmen angeben:
Eine Prozedur blockfluss1, deren Laufzeit durch O(nm) und eine
Prozedur blockfluss2, deren Laufzeit durch O(n2) beschränkt ist.
Wir beschreiben zuerst die Prozedur schichtnetzwerk. Diese Pro-
zedur führt in Nf eine modifizierte Breitensuche mit Startknoten s
durch und speichert dabei in der Menge E ′ nicht nur alle Baumkanten,
sondern zusätzlich alle Querkanten (u, v), die auf einem kürzesten Weg
von s zu v liegen. Die Suche bricht ab, sobald t am Kopf der Schlange
erscheint oder alle von s aus erreichbaren Knoten abgearbeitet wurden.
Falls t erreicht wurde, werden alle Kanten aus E ′ entfernt, die nicht
zwischen zwei Knoten aus V ′ verlaufen, wobei V ′ außer der Senke
t alle Knoten u mit einem Abstand d(s, u) < d(s, t) in Nf enthält.
Andernfalls existiert in Nf (und damit in N ′f) kein (blockierender)
Fluss g mit |g| > 0.

Prozedur schichtnetzwerk(f)
1 E ′ ← ∅
2 for all v ∈ V do niv(v)← n
3 niv(s)← 0; Q← (s)
4 while Q 6= () ∧ head(Q) 6= t do
5 u← dequeue(Q)
6 for all e = (u, v) ∈ E ∪ ER do
7 if c(e)− f(e) > 0 ∧ niv(v) > niv(u) then
8 E ′ ← E ′ ∪ {e}
9 c′(e)← c(e)− f(e)

10 if niv(v) > niv(u) + 1 then
11 niv(v)← niv(u) + 1
12 enqueue(Q, v)
13 V ′ ← {v ∈ V | niv(v) < niv(t)} ∪ {t}
14 if head(Q) = t then E ′ ← E ′ ∩ (V ′ × V ′)

Die Laufzeitschranke O(n+m) folgt aus der Tatsache, dass jede Kante
in E ∪ER höchstens einmal besucht wird und jeder Besuch mit einem
konstantem Zeitaufwand verbunden ist.
Nun kommen wir zur Beschreibung der Prozedur blockfluss1. Be-
ginnend mit dem Nullfluss g bestimmt diese in der repeat-Schleife
mittels Tiefensuche einen s-t-Pfad P im Schichtnetzwerk N ′f , addiert
den Fluss (f + g)P zum aktuellen Fluss g hinzu, aktualisiert die Rest-
kapazitäten aller Kanten e auf dem Pfad P und entfernt aus E ′ die
von g gesättigten Kanten. Der Pfad P lässt sich hierbei direkt aus dem
Inhalt des Kellers S rekonstruieren, weshalb er S-Pfad genannt wird.
Man beachte, dass die Kapazitäten der Kanten e auf dem Pfad P nur
in Vorwärtsrichtung verkleinert, aber anders als bei Ford-Fulkerson
und Edmonds-Karp nicht auch sofort in Rückwärtsrichtung angepasst
werden. Dies geschieht erst, nachdem g zu einem blockierenden Fluss
angewachsen ist.
Falls die Tiefensuche in einem Knoten u 6= s in einer Sackgasse endet
(weil E ′ keine von u aus weiterführenden Kanten enthält), wird die

27

3 Flüsse in Netzwerken 3.3 Der Algorithmus von Dinitz

zuletzt besuchte Kante (u′, u) ebenfalls aus E ′ entfernt und die Tiefen-
suche vom Startpunkt u′ dieser Kante fortgesetzt (back tracking). Die
Prozedur blockfluss1 bricht ab, sobald alle Kanten mit Startknoten
s aus E ′ entfernt wurden und somit in (V ′, E ′) keine Pfade mehr von
s nach t existieren (d.h. g ist ein blockierender Fluss in N ′f).

Prozedur blockfluss1(f)
1 for all e ∈ E ′ ∪ E ′R do g(e)← 0
2 u← s; S ← (s)
3 done← false
4 repeat
5 if ∃ e = (u, v) ∈ E ′ then
6 push(S, v)
7 c′′(e)← c′(e)− g(e)
8 u← v
9 elsif u = t then

10 P ← S-Pfad von s nach t
11 c′g(P)← min{c′′(e) | e ∈ P}
12 for all e ∈ P do
13 if c′′(e) = c′g(P) then E ′ ← E ′ \ {e}
14 g(e)← g(e) + c′g(P); g(eR)← −g(e)
15 u← s; S ← (s)
16 elsif u 6= s then
17 pop(S)
18 u′ ← top(S)
19 E ′ ← E ′ \ {(u′, u)}
20 u← u′

21 else done← true
22 until done
23 return g

Die Laufzeitschranke O(nm) folgt aus der Tatsache, dass sich die
Anzahl der aus E ′ entfernten Kanten nach spätestens n Schleifen-

durchläufen um 1 erhöht.

Satz 3.18. Der Algorithmus von Dinitz durchläuft die while-Schleife
höchstens (n− 1)-mal.

Beweis. Sei f1 der Nullfluss in N und seien g1, . . . , gk die blockieren-
den Flüsse, die der Dinitz-Algorithmus der Reihe nach berechnet, d.h.
fi+1 = fi+gi. Zudem sei di(u, v) die minimale Länge eines Pfades von
u nach v im Restnetzwerk Nfi

. Wir zeigen, dass di(s, t) < di+1(s, t)
ist. Da d1(s, t) ≥ 1 und dk(s, t) ≤ n− 1 ist, folgt k ≤ n− 1.
Behauptung 3.19. Für jeden Knoten u ∈ V gilt di(s, u) ≤
di+1(s, u).

Hierzu zeigen wir folgende Behauptung.
Behauptung 3.20. Für jeden kürzesten Pfad P = (u0, . . . , uh) von
u0 = s nach uh = u in Nfi+1 gilt di(s, uj) ≤ di(s, uj−1) + 1, falls
die Kante e = (uj−1, uj) auch in Nfi

enthalten ist, und di(s, uj) =
di(s, uj−1)− 1, falls e nicht in Nfi

enthalten ist.

Falls die Kante e = (uj−1, uj) auch in Nfi
enthalten ist, ist die Be-

hauptung klar. Andernfalls muss fi+1(e) 6= fi(e) sein, d.h. gi(e) muss
ungleich 0 sein. Da e nicht in Nfi

und somit auch nicht in N ′fi
enthalten

ist, muss eR = (uj, uj−1) in N ′fi
sein. Da N ′fi

nur Kanten auf kürzesten
Pfaden mit Startknoten s enthält, folgt di(s, uj−1) = di(s, uj) + 1, was
di(s, uj) = di(s, uj−1)− 1 impliziert.
Damit ist Behauptung 3.20 bewiesen und es folgt Behauptung 3.19:

di(s, u) ≤ di(s, uh−1) + 1 ≤ · · · ≤ di(s, s) + h = h = di+1(s, u).

Nun zeigen wir folgende Behauptung.
Behauptung 3.21. Für i = 1, . . . , k − 1 gilt di(s, t) < di+1(s, t).

Sei P = (u0, u1, . . . , uh) ein kürzester Pfad von s = u0 nach t = uh
in Nfi+1 (und somit auch in N ′fi+1

). Mit Behauptung 3.19 folgt, dass

28

3 Flüsse in Netzwerken 3.3 Der Algorithmus von Dinitz

di(s, uj) ≤ di+1(s, uj) = j für j = 0, . . . , h ist, also insbesondere
di(s, t) ≤ di+1(s, t) = h ist.
Wenn alle Knoten uj in N ′fi

enthalten sind, muss ein j mit di(s, uj) ≤
di(s, uj−1) existieren, woraus wegen Behauptung 3.20

di(s, t) ≤ di(s, uj) + h− j ≤ di(s, uj−1)︸ ︷︷ ︸
≤j−1

+h− j < h = di+1(s, t)

folgt. Würde nämlich di(s, uj) > di(s, uj−1) für j = 1, . . . , h gelten,
so wären nach Behauptung 3.20 alle Kanten (uj−1, uj) auch in N ′fi

enthalten. Dann wäre aber P ein kürzester Pfad von s nach t in Nfi

und somit ein s-t-Pfad in N ′fi
, der von gi nicht blockiert wird.

Falls mindestens ein Knoten uj nicht in N ′fi
enthalten ist, sei uj der

erste solche Knoten auf P . Da uj 6= t ist, folgt di+1(s, uj) = j <
h = di+1(s, t). Zudem liegt die Kante e = (uj−1, uj) nicht nur in
Nfi+1 , sondern wegen fi+1(e) = fi(e) (da weder e noch eR zu N ′fi

gehören) auch in Nfi
. Da somit uj−1 in N ′fi

und e in Nfi
ist, kann uj

nur aus dem Grund nicht zu N ′fi
gehören, dass di(s, uj) = di(s, t) ist.

Daher folgt wegen di(s, uj) ≤ di(s, uj−1) + 1 (Behauptung 3.20) und
di(s, uj−1) ≤ di+1(s, uj−1) (Behauptung 3.19)

di(s, t) = di(s, uj) ≤ di(s, uj−1)︸ ︷︷ ︸
≤di+1(s,uj−1)

+1 = di+1(s, uj) < di+1(s, t). �

Korollar 3.22. Der Algorithmus von Dinitz berechnet bei Verwendung
der Prozedur blockfluss1 einen maximalen Fluss in Zeit O(n2m).

Die Prozedur blockfluss2 benötigt nur Zeit O(n2), um einen blo-
ckierenden Fluss g im Schichtnetzwerk N ′f zu berechnen, was auf eine
Gesamtlaufzeit des Algorithmus von Dinitz von O(n3) führt. Zu ihrer
Beschreibung benötigen wir folgende Notation.

Definition 3.23. Sei N = (V,E, s, t, c) ein Netzwerk und sei g ein
Fluss in N sowie u ∈ V .

a) Der Fluss g sättigt den Knoten u, falls
• u = s ist und g alle Kanten (s, v) ∈ E mit Startknoten s sättigt,
oder
• u = t ist und g alle Kanten (v, t) ∈ E mit Zielknoten t sättigt,
oder
• u ∈ V − {s, t} ist und g alle Kanten (u, v) ∈ E mit Startknoten
u oder alle Kanten (v, u) ∈ E mit Zielknoten u sättigt.

b) Der Durchsatz von u ist

D(u) =


c+(u), u = s,

c−(u), u = t,

min{c+(u), c−(u)}, sonst,

wobei c+(u) = ∑
(u,v)∈E c(u, v) die Ausgangskapazität und

c−(u) = ∑
(v,u)∈E c(v, u) die Eingangskapazität von u ist.

Die Korrektheit der Prozedur blockfluss2 basiert auf folgender
Proposition.
Proposition 3.24. Sei N = (V,E, s, t, c) ein Netzwerk und sei g
ein Fluss in N . Wenn g auf jedem s-t-Pfad in N mindestens einen
Knoten u sättigt, dann ist g blockierend.

Beweis. Dies folgt aus der Tatsache, dass ein Fluss g in N , der auf
jedem s-t-Pfad P mindestens einen Knoten u sättigt, auch mindestens
eine Kante auf dem Pfad P sättigt. �

Beginnend mit dem trivialen Fluss g = 0 berechnet die Prozedur
blockfluss2 für jeden Knoten u den Durchsatz D(u) im Schicht-
netzwerk N ′f und wählt in jedem Durchlauf der repeat-Schleife einen
Knoten u mit minimalem Durchsatz D(u). Dann benutzt sie die Pro-
zeduren propagierevor und propagiererück, um den aktuellen
Fluss g um den Wert D(u) zu erhöhen und die Restkapazitäten der
betroffenen Kanten sowie die Durchsatzwerte D(v) der betroffenen
Knoten entsprechend zu aktualisieren.

29

3 Flüsse in Netzwerken 3.3 Der Algorithmus von Dinitz

Anschließend werden alle gesättigten Knoten aus V ′ und alle gesättig-
ten Kanten aus E ′ entfernt. Hierzu werden in der Menge B alle Knoten
gespeichert, deren Durchsatz durch die Erhöhungen des Flusses g auf
0 gesunken ist.

Prozedur blockfluss2(f)
1 for all e ∈ E ′ ∪ E ′R do g(e)← 0
2 for all u ∈ V ′ do
3 D+(u)← ∑

(u,v)∈E′ c
′(u, v)

4 D−(u)← ∑
(v,u)∈E′ c

′(v, u)
5 repeat
6 for all u ∈ V ′ \ {s, t} do
7 D(u)← min{D−(u), D+(u)}
8 D(s)← D+(s)
9 D(t)← D−(t)

10 wähle u ∈ V ′ mit D(u) minimal
11 B := {u}
12 propagierevor(u)
13 propagiererück(u)
14 while ∃u ∈ B \ {s, t} do
15 B ← B \ {u}; V ′ ← V ′ \ {u}
16 for all e = (u, v) ∈ E ′ do
17 D−(v)← D−(v)− c′(u, v)
18 if D−(v) = 0 then B := B ∪ {v}
19 E ′ ← E ′ \ {e}
20 for all e = (v, u) ∈ E ′ do
21 D+(v)← D+(v)− c′(v, u)
22 if D+(v) = 0 then B := B ∪ {v}
23 E ′ ← E ′ \ {e}
24 until u ∈ {s, t}
25 return g

Da in jedem Durchlauf der repeat-Schleife mindestens ein Knoten u
gesättigt und aus V ′ entfernt wird, wird nach höchstens n− 1 Itera-

tionen einer der beiden Knoten s oder t als Knoten u mit minimalem
Durchsatz D(u) gewählt und die repeat-Schleife verlassen. Da nach
Beendigung des letzten Durchlaufs der Durchsatz von s oder von t
gleich 0 ist, wird einer dieser beiden Knoten zu diesem Zeitpunkt von
g gesättigt. Nach Proposition 3.24 ist somit g ein blockierender Fluss.
Die Prozeduren propagierevor und propagiererück propagieren
den Fluss durch u in Vorwärtsrichtung hin zu t bzw. in Rückwärts-
richtung hin zu s. Dies geschieht in Form einer Breitensuche mit
Startknoten u unter Benutzung der Kanten in E ′ bzw. E ′R. Da der
Durchsatz D(u) von u unter allen Knoten minimal ist, ist sicherge-
stellt, dass der Durchsatz D(v) jedes Knotens v ausreicht, um den für
ihn ermittelten Zusatzfluss in Höhe von z(v) weiterzuleiten.

Prozedur propagierevor(u)
1 for all v ∈ V ′ do z(v)← 0
2 z(u)← D(u)
3 Q := (u)
4 while Q 6= () do
5 v ← dequeue(Q)
6 while z(v) 6= 0 ∧ ∃e = (v, w) ∈ E ′ do
7 m← min{z(v), c′(e)}; z(v)← z(v)−m; z(w)← z(w) +m
8 aktualisierekante(e,m)
9 enqueue(Q,w)

Prozedur aktualisierekante(e = (v, w),m)
1 g(e)← g(e) +m
2 c′(e)← c′(e)−m
3 if c′(e) = 0 then E ′ ← E ′ \ {e}
4 D+(v)← D+(v)−m
5 if D+(v) = 0 then B := B ∪ {v}
6 D−(w)← D−(w)−m
7 if D−(w) = 0 then B := B ∪ {w}

30

3 Flüsse in Netzwerken 3.3 Der Algorithmus von Dinitz

Die Prozedur propagiererück unterscheidet sich von der Proze-
dur propagierevor nur dadurch, dass in Zeile 5 die Bedingung
∃e = (v, w) ∈ E ′ durch die Bedingung ∃e = (w, v) ∈ E ′ ersetzt wird.
Da die repeat-Schleife von blockfluss2 maximal (n− 1)-mal durch-
laufen wird, werden die Prozeduren propagierevor und propa-
giererück höchstens (n− 1)-mal aufgerufen. Sei a die Gesamtzahl
der Durchläufe der inneren while-Schleife von propagierevor, sum-
miert über alle Aufrufe. Da in jedem Durchlauf eine Kante aus E ′
entfernt wird (falls m = c′(v, u) ist) oder der zu propagierende Fluss
z(v) durch einen Knoten v auf 0 sinkt (falls m = z(v) ist), was pro
Knoten und pro Aufruf höchstens einmal vorkommt, ist a ≤ n2 +m.
Der gesamte Zeitaufwand ist daher O(n2 +m) innerhalb der beiden
while-Schleifen und O(n2) außerhalb. Die gleichen Schranken gelten
für propagiererück.
Eine ähnliche Überlegung zeigt, dass die while-Schleife von
blockfluss2 einen Gesamtaufwand von O(n + m) hat. Folglich
ist die Laufzeit von blockfluss2 O(n2).

Korollar 3.25. Der Algorithmus von Dinitz berechnet bei Verwendung
der Prozedur blockfluss2 einen maximalen Fluss in Zeit O(n3).

31

	1 Graphentheoretische Grundlagen
	2 Färben von Graphen
	2.1 Färben von planaren Graphen
	2.2 Färben von chordalen Graphen
	2.3 Kantenfärbungen
	2.4 Der Satz von Brooks

	3 Flüsse in Netzwerken
	3.1 Der Ford-Fulkerson-Algorithmus
	3.2 Der Edmonds-Karp-Algorithmus
	3.3 Der Algorithmus von Dinitz

