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1 Graphentheoretische Grundlagen

Definition 1.1. Ein (ungerichteter) Graph ist ein Paar G =
(V, E), wobei

V' - eine endliche Menge von Knoten/Ecken und

E - die Menge der Kanten ist.
Hierbei gilt

EC (g) = {{u,v}§V|u7év}.

Seiv € V ein Knoten.
a) Die Nachbarschaft von v ist Ng(v) = {u €V | {u,v} € E}.
b) Der Grad von v ist deg,(v) = || Ng(v)]|.

¢) Der Minimalgrad von G ist §(G) = min,ey degs(v) und der
Maximalgrad von G ist A(G) = max,ey degq(v).

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach
N(v), deg(v), § usw.

Beispiel 1.2.

e Der vollstandige Graph (V, E) auf n Knoten, d.h. ||V|| = n und
E = (V wird mit K, und der leere Graph (V,0) auf n Knoten

2/
oy

wird mit E,, bezeichnet.
—o Ks: i\ Ky:
e Der vollstindige bipartite Graph (A, B, E) auf a + b Knoten,
d.h. ANB =0, |A|| = a, |B|| = b und E = {{u,v} | u € A,v € B}
wird mit Kgqp bezeichnet.

Kl-' Kg.’

Kii:, , K < KM:X Ky g Ks: %

o Der Pfad mit n Knoten wird mit P, bezeichnet.

Py: o—e P;: o—e—e Py: ° Py: e—e—e—o—e

o Der Kreis mit n Knoten wird mit C,, bezeichnet.

Cor A O Cy: Q Cy: O

Definition 1.3. Sei G = (V, E) ein Graph.

a) Eine Knotenmenge U C 'V heifit unabhédngig oder stabil, wenn
es keine Kante von G mit beiden Endpunkten in U gibt, d.h. es gilt
EN (%) = 0. Die Stabilitéitszahl ist

a(G) = max{||U|| | U ist stabile Menge in G}.

b) Eine Knotenmenge U C V' heifit Clique, wenn jede Kante mit
beiden Endpunkten in U in E ist, d.h. es gilt (g) C E. Die Cli-
quenzahl ist

w(G) = max{||U|| | U ist Clique in G}.

c¢) Ein Graph G' = (V', E') heifit Sub-/Teil-/Untergraph von G,
falls V! CV und E' C E ist. Im Fall V' =V wird G' auch ein
(auf)spannender Teilgraph von G genannt und wir schreiben fir
G’ auch G — E" (bzw. G = G'UE"), wobei E" = E—E' die Menge
der aus G entfernten Kanten ist. Im Fall E" = {e} schreiben wir
fir G" auch einfach G — e (bzw. G = G' Ue).

d) Ein k-reguldrer spannender Teilgraph von G wird auch als k-
Faktor von G bezeichnet. Ein d-regularer Graph G heifit k-
faktorisierbar, wenn sich G in | = d/k kantendisjunkte k-Faktoren
G1,...,G; zerlegen lisst.



1 Graphentheoretische Grundlagen

e) Ein Subgraph G' = (V',E') heifit (durch V') induziert, falls
E =FEnN (‘;/) ist. Fir G' schreiben wir dann auch G[V'] oder
G — V", wobei V" =V — V' die Menge der aus G entfernten
Knoten ist. Ist V" = {v}, so schreiben wir fir G' auch einfach
G —v und im Fall V' = {vy,..., v} auch Glvy,. .., vg].

f) Ein Weg ist eine Folge von (nicht notwendig verschiedenen) Kno-
ten vy, . .., v mit {v;, v} € E fiiri =0,...,0—1, der jede Kante
e € E hdchstens einmal durchlauft. Die Lange des Weges ist die
Anzahl der durchlaufenen Kanten, also €. Im Fall ¢ = 0 heifit der
Weg trivial. Ein Weg vy, . ..,v; heifst auch vo-ve- Weg.

g) Ein Graph G = (V,E) heifit zusammenhidngend, falls es
fir alle Paare {u,v} € einen u-v-Weg gibt. G heifst k-
zusammenhingend, 1 < k < n, falls G nach Entfernen von
beliebigen | < min{n — 1,k — 1} Knoten immer noch zusammen-
hangend ist.

h) Ein Zyklus ist ein u-v-Weg der Linge ¢ > 2 mit u = v.
i) Ein Weg heifit einfach oder Pfad, falls alle durchlaufenen Knoten
verschieden sind.

j) Eine Menge von Pfaden heifst knotendisjunkt, wenn je zwei
Pfade in der Menge hichstens gemeinsame Endpunkte haben, und
kantendisjunkt, wenn sie keine gemeinsame Kanten haben.

k) Fin Kreis ist ein Zyklus vy, vy ...,ve_1,v9 der Linge ¢ > 3, fir
den vy, vy, ...,v_1 paarweise verschieden sind.

) Ein Graph G = (V, E) heifit kreisfrei, azyklisch oder Wald,
falls er keinen Kreis enthdlt.

m) Ein Baum ist ein zusammenhdngender Wald.

n) Jeder Knoten u € V vom Grad deg(u) < 1 heifst Blatt und die
ibrigen Knoten (vom Grad > 2) heiffen innere Knoten.

Es ist leicht zu sehen, dass die Relation

Z ={(u,v) € Vx V| esgibt in G einen u-v-Weg}

eine Aquivalenzrelation ist. Die durch die Aquivalenzklassen von Z in-
duzierten Teilgraphen heiflen die Zusammenhangskomponenten
(engl. connected components) oder einfach Komponenten von G.

Definition 1.4. FEin gerichteter Graph oder Digraph ist ein
Paar G = (V, E), wobei
V' - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.
Hierbei gilt
EQVXV:{(U7"U)|U,UGV},

wobei E auch Schlingen (u,u) enthalten kann. Sei v € V' ein Knoten.

a) Die Nachfolgermenge von v ist N*(v) ={u eV | (v,u) € E}.

b) Die Vorgdngermenge von v ist N~ (v) ={u €V | (u,v) € E}.

¢) Die Nachbarmenge von v ist N(v) = N*(v) U N~ (v).

d) Der Ausgangsgrad von v ist deg” (v) = ||[N*(v)|| und der Ein-
gangsgrad von v ist deg” (v) = ||[N~(v)||. Der Grad von v ist
deg(v) = deg™ (v) + deg™ (v).

e) Ein (gerichteter) wvo-v,-Weg ist eine Folge wvon Knoten
Vo, .-, mit (v, vip1) € E fiiri = 0,...,0 — 1, der jede Kan-
te e € & hochstens einmal durchlduft.

f) Ein (gerichteter) Zyklus ist ein gerichteter u-v-Weg der Linge
(>1 mitu=nwv.

g) Ein gerichteter Weg heifit einfach oder (gerichteter) Pfad, falls
alle durchlaufenen Knoten verschieden sind.

h) Ein (gerichteter) Kreis in G ist ein gerichteter Zyklus
Vo, V1 - .., Vp_1,0g der Linge £ > 1, fiir den vy, vy, ...,V,_1 paarwei-
se verschieden sind.

i) G heifit kreisfrei oder azyklisch, wenn es in G keinen gerichteten
Kreis gibt.

j) G heifit stark zusammenhidngend, wenn es in G fiir jedes Kno-
tenpaar u # v € V sowohl einen u-v-Pfad als auch einen v-u-Pfad
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qibt.

Die Adjazenzmatrix eines Graphen bzw. Digraphen G = (V| E) mit
(geordneter) Knotenmenge V' = {vy,...,v,} ist die (n x n)-Matrix
A = (a;;) mit den Eintrégen

1, i, Uiy € FE 1, i, Vi) € E
aij = {vi, v;} baw. as; = (vi, v5)
0, sonst 0, sonst.

Fir ungerichtete Graphen ist die Adjazenzmatrix symmetrisch mit
a; =0fire=1,...,n.

Bei der Adjazenzlisten-Darstellung wird fiir jeden Knoten v; eine
Liste mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet
man entweder nur die Liste der Nachfolger oder zusétzlich eine weitere
fiir die Vorgénger. Falls die Anzahl der Knoten statisch ist, organi-
siert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit
Index 7 verweist auf die Adjazenzliste von Knoten v;. Falls sich die
Anzahl der Knoten dynamisch dndert, so werden die Adjazenzlisten
typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 1.5.

Betrachte den gerichteten Graphen G = (V, E) D
mit 'V = {1,2,3,4} und E = {(2,3),
(2,4), (3,1), (3,4), (4,4)}. Dieser hat folgende O

Adjazenzmatriz- und Adjazenzlisten-Darstellung:

~3] {4l
~U el ]
~(4]]

=~ W N

O = O O
S O O O
O O~ OlWw
— = = O

N N R

Ly

2 Farben von Graphen

Definition 2.1. Sei G = (V, E) ein Graph und sei k € N.

a) Eine Abbildung f: V — N heiffit Farbung von G, wenn f(u) #
f(v) fir alle {u,v} € E gilt.

b) G heifst k-farbbar, falls eine Farbung f: V — {1,...,k} exis-
tiert.

c¢) Die chromatische Zahl ist

X(G) = min{k € N | G ist k-farbbar}.
Beispiel 2.2.

X(En) =1, X(Kmm) =2, x(K,) =n,

2, n gerade

3, sonst.

Ein wichtiges Entscheidungsproblem ist, ob ein gegebener Graph
k-farbbar ist. Dieses Problem ist fiir jedes feste & > 3 schwierig.

k-Farbbarkeit (k-COLORING):

Gegeben: Ein Graph G.
Gefragt: Ist G k-farbbar?

Satz 2.3. k-COLORING ist fiir k > 3 NP-vollstindig.

Das folgende Lemma setzt die chromatische Zahl x(G) in Beziehung
zur Stabilitatszahl o(G).

Lemma 2.4. n/a(G) < x(G) <n—a(G) + 1.
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Beweis. Sei G ein Graph und sei ¢ eine x(G)-Farbung von G. Da
dann die Mengen S; = {u € V | ¢(u) =i}, i = 1,..., x(G), stabil
sind, folgt ||.S;|| < @(G) und somit gilt

x(G)
n = ; 1Sill < x(G)a(G).

Fiir den Beweis von x(G) < n — a(G) + 1 sei S eine stabile Menge
in G mit |S| = a(G). Dann ist G — S k-farbbar fiir ein £ <n — |5].
Da wir alle Knoten in S mit der Farbe k 4 1 farben konnen, folgt
XG)<k+1<n-alG)+1. |

Beide Abschéatzungen sind scharf, konnen andererseits aber auch
beliebig schlecht werden.

Lemma 2.5. (X(f)> < m und somit X(G) < 1y + /2m + 1/,.

Beweis. Zwischen je zwei Farbklassen einer optimalen Farbung muss
es mindestens eine Kante geben. [ ]

Die chromatische Zahl steht auch in Beziehung zur Cliquenzahl w(G)
und zum Maximalgrad A(G):

Lemma 2.6. w(G) < x(G) < A(G) + 1.

Beweis. Die erste Ungleichung folgt daraus, dass die Knoten einer
maximal groflen Clique unterschiedliche Farben erhalten miissen.

Um die zweite Ungleichung zu erhalten, betrachte folgenden Farbungs-
algorithmus:

Algorithmus greedy-color

1 input ein Graph G = (V, E) mit V ={vy,...,v,}
2 c(v) =1

3 for i:=2tondo

A F,={c(v;) | j < i,v;€ N(v;)}

5 c(v;) :=min{k > 1|k ¢ F}

2.1 Féarben von planaren Graphen

Da fiir die Farbe ¢(v;) von v; nur ||F;|| < A(G) Farben verboten sind,
gilt ¢(v;) < A(G) + 1. [ ]

2.1 Farben von planaren Graphen

Ein Graph G heiit planar, wenn er so in die Ebene einbettbar ist,
dass sich zwei verschiedene Kanten hochstens in ihren Endpunkten
berithren. Dabei werden die Knoten von G als Punkte und die Kanten
von G als Verbindungslinien zwischen den zugehorigen Endpunkten
dargestellt.

Bereits im 19. Jahrhundert wurde die Frage aufgeworfen, wie viele
Farben hochstens benotigt werden, um eine Landkarte so zu farben,
dass aneinander grenzende Lander unterschiedliche Farben erhalten.
Offensichtlich lasst sich eine Landkarte in einen planaren Graphen
transformieren, indem man fiir jedes Land einen Knoten zeichnet und
benachbarte Lander durch eine Kante verbindet. Lénder, die sich nur
in einem Punkt beriihren, gelten dabei nicht als benachbart.

Die Vermutung, dass 4 Farben ausreichen, wurde 1878 von Kempe
,bewiesen“ und erst 1890 entdeckte Heawood einen Fehler in Kempes
,Beweis®. Ubrig blieb der 5-Farben-Satz. Der 4-Farben-Satz wurde erst
1976 von Appel und Haken bewiesen. Hierbei handelt es sich jedoch
nicht um einen Beweis im klassischen Sinne, da zur Uberpriifung der
vielen auftretenden Spezialfidlle Computer bendtigt werden.

Satz 2.7 (Appel, Haken 1976).
Jeder planare Graph ist 4-fdarbbar.

Aus dem Beweis des 4-Farben-Satzes von Appel und Haken lésst sich
ein 4-Farbungsalgorithmus fiir planare Graphen mit einer Laufzeit
von O(n') gewinnen.

In 1997 fanden Robertson, Sanders, Seymour und Thomas einen ein-
facheren Beweis fiir den 4-Farben-Satz, welcher zwar einen deutlich
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schnelleren O(n?) Algorithmus liefert, aber auch nicht ohne Computer-
Unterstiitzung verifizierbar ist.

Beispiel 2.8. Wie die folgenden Einbettungen von Ky und K3 in
die Ebene zeigen, sind Ky und Ky 3 planar.

K4.' K273.'

<

Um eine Antwort auf die Frage zu finden, ob auch K5 und K33 pla-
nar sind, betrachten wir die Gebiete von in die Ebene eingebetteten
Graphen.

Durch die Kanten eines eingebetteten Graphen wird die Ebene in
so genannte Gebiete unterteilt. Nur eines dieser Gebiete ist unbe-
schrinkt und dieses wird als duBeres Gebiet bezeichnet. Die Anzahl
der Gebiete von G bezeichnen wir mit 7(G) oder kurz mit . Die An-
zahl der an ein Gebiet g grenzenden Kanten bezeichnen wir mit d(g),
wobei Kanten {u, v}, die nur an g und kein anderes Gebiet grenzen,
doppelt gezahlt werden.

Der Rand rand(g) eines Gebiets ¢ ist die (zirkuldre) Folge aller Kan-
ten, die an g grenzen, wobei jede Kante so durchlaufen wird, dass g
»in Fahrtrichtung links“ liegt bzw. bei Erreichen eines Knotens tiber
eine Kante e, u iiber die im Uhrzeigersinn nachste Kante ¢’ wieder
verlassen wird. Auf diese Weise erhélt jede Kante auf dem Rand von
g eine Richtung (oder Orientierung).

Da jede Kante zur Gesamtlinge -, d(g) aller Rander den Wert 2
beitriagt (sie wird genau einmal in jeder Richtung durchlaufen), folgt

3 d(g) = i(G) = 2m(G).

Fithren zwei Einbettungen von G in die Ebene auf dieselbe Randmen-
ge R, so werden sie als aquivalent angesehen. Wir nennen das Tripel

2.1 Féarben von planaren Graphen

G' = (V, E, R) eine ebene Realisierung des Graphen G = (V, F),
falls es eine Einbettung von G in die Ebene gibt, deren Gebiete die
Rénder in R haben. In diesem Fall nennen wir G’ = (V, E, R) auch
einen ebenen Graphen. Eine andere Moglichkeit, Einbettungen bis
auf Aquivalenz kombinatorisch zu beschreiben, besteht darin, fiir jeden
Knoten u die (zirkuldre) Ordnung 7, aller mit u inzidenten Kanten
anzugeben. Man nennt 7 = {m, | v € V} ein Rotationssystem
fiir G, falls es eine entsprechende Einbettung gibt. Rotationssysteme
haben den Vorteil, dass sie bei Verwendung der Adjazenzlistendar-
stellung ohne zusatzlichen Platzaufwand gespeichert werden kénnen,
indem man die zu u adjazenten Knoten geméafl 7, anordnet.

v

Beispiel 2.9. Die beiden nebenstehenden
Einbettungen eines Graphen G = (V, E) in
die Ebene haben jeweils 7 Gebiete und fih-
ren beide auf den ebemen Graphen G' =
(V, E, R) mit den 7 Randern

R:{(a-/f‘vg)a 7({)797(27}7/)7(67@]-)7
(c,h,d), (d,e k), (fyi,l,m,m, 1 k)}.

J

[

a
'
He!

Das zugehorige Rotationssystem ist

T = {(aa f> 2)7 <a7j7 ba g)a (b7 ¢, h)? (67 k7 fa g),
(d,e, h),(c,7,4, 1, k,d), (I,m),(m)}.

Man beachte, dass sowohl in R als auch in 7 jede Kante genau zweimal
vorkommt. Anstelle von Kantenfolgen kann man R und w auch durch
entsprechende Knotenfolgen beschreiben. <

Satz 2.10 (Polyederformel von Euler, 1750).
Fiir einen zusammenhdngenden ebenen Graphen G = (V, E, R) gilt

n(G) —m(G) +r(G) = 2. (%)
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Beweis. Wir fithren den Beweis durch Induktion iiber die Kantenzahl
m(G) = m.
m = 0: Da G zusammenhéngend ist, muss dann n = 1 sein.

Somit ist auch r = 1, also () erfiillt.

m — 1~ m: Sei G ein zusammenhangender ebener Graph mit m
Kanten.

Ist G' ein Baum, so entfernen wir ein Blatt und erhalten einen
zusammenhangenden ebenen Graphen G’ mit n’ =n — 1 Kno-
ten, m’ = m — 1 Kanten und " = r Gebieten. Nach IV folgt
n—-m+r=mn-1)—m-=1)4+r=n"—m'+r' =2,

Falls G kein Baum ist, entfernen wir eine Kante auf einem Kreis
in G und erhalten einen zusammenhingenden ebenen Graphen
G' mit n’ = n Knoten, m' = m — 1 Kanten und ' = r — 1
Gebieten. Nach IV folgt n —m+r=n—(m—-1)+(r—1) =
n' —m +r' =2. |

Korollar 2.11. Sei G = (V, E) ein planarer Graph mit n > 3 Knoten.
Dann ist m < 3n — 6. Falls G dreiecksfrei ist, gilt sogar m < 2n — 4.

Beweis. O.B.d.A. sei G zusammenhéngend. Wir betrachten eine be-
liebige planare Einbettung von G. Da n > 3 ist, ist jedes Gebiet g
von d(g) > 3 Kanten umgeben. Daher ist 2m = i = >, d(g) > 3r
bzw. r < 2m/3. Eulers Formel liefert

m=n+r—2<n-+2m/3 -2,

was (1 —2/3)m < n — 2 und somit m < 3n — 6 impliziert.

Wenn G dreiecksfrei ist, ist jedes Gebiet von d(g) > 4 Kanten umge-
ben. Daher ist 2m =i = >, d(g) > 4r bzw. r < m/2. Eulers Formel
liefert daher m =n+r —2 <n+m/2 -2, was m/2 <n — 2 und
somit m < 2n — 4 impliziert. [ |

2.1 Féarben von planaren Graphen

Korollar 2.12. Kj5 ist nicht planar.

Beweis. Wegen n =5, also 3n — 6 = 9, und wegen m = (g) = 10 gilt
m £ 3n — 6. (]

Korollar 2.13. K33 ist nicht planar.

Beweis. Wegen n = 6, also 2n — 4 = 8, und wegen m = 3 -3 =9 gilt
m £ 2n — 4. |

Als weitere interessante Folgerung aus der Polyederformel kénnen wir
zeigen, dass jeder planare Graph einen Knoten v vom Grad deg(v) < 5
hat.

Lemma 2.14. Jeder planare Graph hat einen Minimalgrad 6(G) < 5.

Beweis. Fiir n < 6 ist die Behauptung klar. Fiir n > 6 impliziert die
Annahme §(G) > 6 die Ungleichung

m = %ZUEV deg(u) 2 %ZuGV 6= 3TL,

was im Widerspruch zu m < 3n — 6 steht. |

Definition 2.15. Seien G = (V,E) und H Graphen und seien
u,v € V.

e Durch Fusion von u und v entsteht aus G der Graph G,, =
(V—A{v}, E') mit

E'={ecE|vge}U{{u,v'}|{v,v'} € E—{u,v}}.

Ist e = {u,v} eine Kante von G (also e € E), so sagen wir auch,
Gy entsteht aus G durch Kontraktion der Kante e. Hat zudem
v den Grad 2, so sagen wir auch, Gy, entsteht aus G durch Uber-
briickung des Knotens v.

o (G heifit zu H kontrahierbar, falls H aus einer isomorphen Kopie
von G durch wiederholte Kontraktionen gewonnen werden kann.
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e (G heifit Unterteilung von H, falls H aus einer isomorphen Kopie
von G durch wiederholte Uberbriickungen gewonnen werden kann.

e H heifst Minor von G, wenn ein Teilgraph von G zu H kontra-
hierbar ist, und topologischer Minor, wenn ein Teilgraph von
G eine Unterteilung von H ist.

o GG heifit H-frei, falls H kein Minor von G ist. Fir eine Menge H
von Graphen heifit G ‘H-frei, falls G fiir alle H € H H-fret ist.

Beispiel 2.16. Betrachte folgende Graphen:

Offensichtlich ist G keine Unterteilung von H. Entfernen wir jedoch
die beiden diinnen Kanten aus G, so ist der resultierende Teilgraph
eine Unterteilung von H, d.h. H ist ein topologischer Minor von G.
Dagegen ist kein Teilgraph von G’ isomorph zu einer Unterteilung von
H und somit ist H kein topologischer Minor von G'. Wenn wir aber

die drei umrandeten Kanten von G’ kontrahieren, entsteht ein zu H
isomorpher Graph, d.h. H ist ein Minor von G'. <

Nach Definition lasst sich jeder (topologische) Minor H von G aus
einem zu G isomorphen Graphen durch wiederholte Anwendung fol-
gender Operationen gewinnen:

e Entfernen einer Kante oder eines Knoten,
e Kontraktion einer Kante (bzw. Uberbriickung eines Knoten).

Da die Kontraktionen (bzw. Uberbriickungen) o0.B.d.A. auch zuletzt
ausgefiithrt werden konnen, gilt hiervon auch die Umkehrung. Zudem
ist leicht zu sehen, dass G und H genau dann (topologische) Minoren
voneinander sind, wenn sie isomorph sind.

Satz 2.17 (Kempe 1878, Heawood 1890).
Jeder planare Graph ist 5-farbbar.

2.1 Farben von planaren Graphen

Beweis. Wir beweisen den Satz durch Induktion tiber n.
n = 1: Klar.

n — 1~ n: Da G planar ist, existiert ein Knoten u mit deg(u) < 5.
Im Fall deg(u) < 4 entfernen wir v aus G. Andernfalls hat u
zwei Nachbarn v und w, die nicht durch eine Kante verbunden
sind (andernfalls wire K5 ein Teilgraph von G). In diesem Fall
entfernen wir alle mit u inzidenten Kanten aufer {u,v} und
{u,w} und kontrahieren diese beiden Kanten zum Knoten v.

Der resultierende Graph G’ ist ein Minor von G und daher
planar. Da G’ zudem hochstens n — 1 Knoten hat, existiert nach
IV eine 5-Farbung ¢ fur G'. Da wir im 2. Fall dem Knoten w die
Farbe ¢(v) geben koénnen, haben die Nachbarn von u hochstens
4 verschiedene Farben und wir kénnen G 5-farben. |

Kuratowski konnte 1930 beweisen, dass jeder nichtplanare Graph G
den K33 oder den Kj als topologischen Minor enthélt. Fiir den Beweis
benotigen wir noch folgende Notationen.

Definition 2.18. Sei G ein Graph und sei K ein Kreis in G. Ein
Teilgraph B von G heifit Briicke von K in G, falls

e B nur aus einer Kante besteht, die zwei Knoten von K verbindet,
aber nicht auf K liegt (solche Briicken werden auch als Sehnen
von K bezeichnet), oder

e B — K eine Zusammenhangskomponente von G — K ist und B aus
B — K durch Hinzufigen aller Kanten zwischen B — K und K (und
der zugehorigen Endpunkte auf K ) entsteht.

Die Knoten von B, die auf K liegen, heiffen Kontaktpunkte von
B. Zwei Briicken B und B' von K heiflen inkompatibel, falls

e B Kontaktpunkte u,v und B" Kontaktpunkte u’,v’" hat, so dass diese
vier Punkte in der Reihenfolge u,u',v,v" auf K liegen, oder

e B und B" mindestens 3 gemeinsame Kontaktpunkte haben.

Es ist leicht zu sehen, dass jeder Kreis in einem planaren Graphen
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hochstens zwei paarweise inkompatible Briicken haben kann.

Satz 2.19 (Kuratowski 1930).
Fiir einen Graphen G sind folgende Aussagen dquivalent:

(i) G ist planar.
(i) G enthdlt weder den K53 noch den Ky als topologischen Minor.

Beweis. Die Implikation von i) nach i) folgt aus der Tatsache, dass
die Klasse K der planaren Graphen unter (topologischer) Minorenbil-
dung abgeschlossen ist (d.h. wenn G' € K und H ein Minor von G ist,
dann folgt H € K).

Die Implikation von ¢) nach 7) zeigen wir durch Kontraposition. Sei al-
so G = (V, E) nicht planar. Dann hat G einen 3-zusammenhéngenden
nicht planaren topologischen Minor G’ = (V’, E'), so dass G’ — ¢’ fiir
jede Kante ¢’ € E’ planar ist (siche Ubungen). Wir entfernen eine
beliebige Kante ey = {ag, bp} aus G'. Da G’ mindestens 5 Knoten hat,
ist G’ — ey 2-zusammenhéngend. Daher gibt es in G’ — ¢( einen Kreis
K durch die beiden Knoten ag und by. Wir wahlen K zusammen mit
einer ebenen Realisierung H' von G’ — ¢y so, dass K moglichst viele
Gebiete in H' einschlief3t.

Die Kanten jeder Briicke B von K in G’ — ¢ verlaufen entweder alle
innerhalb oder alle aulerhalb von K in H'. Im ersten Fall nennen wir
B eine innere Briicke und im zweiten eine &uflere Briicke.

Fiir zwei Knoten a,b auf K bezeichnen wir mit K[a,b] die Menge
aller Knoten, die auf dem Bogen von @ nach b (im Uhrzeigersinn) auf
K liegen. Zudem sei K[a,b) = Kla,b] \ {b}. Die Mengen K (a,b) und
K (a, b] sind analog definiert.

Behauptung 2.20. Jede duflere Briicke B besteht aus einer Kante
{u,v}, die zwei Knoten u € K(ag,by) und v € K(by,ag) verbindet.

Zum Beweis der Behauptung nehmen wir an, dass B mindestens einen
Kontaktpunkt in {ag, by} oder mehr als 2 Kontaktpunkte hat. Dann
liegen mindestens zwei dieser Punkte auf Kfag, by] oder auf Kby, ag).

2.1 Féarben von planaren Graphen

Folglich kann K zu einem Kreis K’ erweitert werden, der in H' mehr
Gebiete einschlieBt (bzw. ausschlieit) als K, was der Wahl von K
und H’ widerspricht.

Im Graphen G’ hat K aufler den Briicken in G’ — ey noch zusétzlich
die Kante eq als Briicke. Nun wéhlen wir eine innere Briicke B, die so-
wohl zu eq als auch zu mindestens einer dufleren Briicke e; = {ay, b1}
inkompatibel ist. Eine solche Briicke B muss es geben, da wir sonst
alle mit eg inkompatiblen inneren Briicken nach auflen klappen und
eo als innere Briicke hinzunehmen kénnten, ohne die Planaritat zu
verletzen.

Wir benutzen K und die drei Briicken ey, e; und B, um eine Untertei-
lung des K33 oder des K5 in G’ zu finden. Hierzu geben wir entweder
zwei disjunkte Mengen A;, Ay C V' mit jeweils 3 Knoten an, so dass
9 knotendisjunkte Pfade zwischen allen Knoten a € A; und b € A,
existieren. Oder wir geben eine Menge A C V'’ mit finf Knoten an,
so dass 10 knotendisjunkte Pfade zwischen je zwei Knoten a,b € A
existieren. Da ey und e; inkompatibel sind, konnen wir annehmen,
dass die vier Knoten ag, a1, by, b1 in dieser Reihenfolge auf K liegen.

Fall 1: B hat einen Kontaktpunkt k; & {ag, a1, bo, b1 }. Aus Symme-
triegriinden kénnen wir &y € K (ag, a1) annehmen. Da B weder
zu ey noch zu e; kompatibel ist, hat B weitere Kontaktpunkte
ko € K(bo,ao) und ks € K(ay,by), wobei ke = k3 sein kann.
Fall 1a: Ein Knoten k; € {ko, k3} liegt auf dem Bogen K (bo, by).

In diesem Fall existieren 9 knotendisjunkte Pfade zwischen
{ag, a1, k;} und {bg, by, k1 }.

Fall 1b: K (b, by)N{ko, k3} = 0. In diesem Fall ist ky € Kby, ao)
und k3 € K(ay, by]. Dann gibt es in B einen Knoten u, von
dem aus 3 knotendisjunkte Pfade zu {ki, ko, k3} existie-
ren. Folglich gibt es 9 knotendisjunkte Pfade zwischen
{CL(), as, u} und {]{71, ]{72, ]{?3}

Fall 2: Alle Kontaktpunkte von B liegen in der Menge {ag, a1, b, b1 }.
Da B inkompatibel zu ey und ey ist, miissen in diesem Fall alle
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vier Punkte zu B gehoren. Sei Py ein ag-bp-Pfad in B und sei
P, ein aq-b1-Pfad in B. Sei u der erste Knoten auf P, der auch
auf P; liegt und sei v der letzte solche Knoten.

Fall 2a: v = v. Dann gibt es in B vier knotendisjunkte Pfa-
de von u zu {ag, a1, by, b1} und somit existieren in G’ 10
knotendisjunkte Pfade zwischen den Knoten u, ag, ay, by, b;.

Fall 2b: u # v. Durch w und v wird der Pfad P, in drei Teil-
pfade P,,, P,, und P,, unterteilt, wobei die Indizes die
Endpunkte bezeichnen und {z,y} = {ay, b1} ist.

Somit gibt es in B drei Pfade zwischen u und jedem Kno-
ten in {ag,v,z} und zwei Pfade zwischen v und jedem
Knoten in {by, y}, die alle 5 knotendisjunkt sind. Folglich
gibt es in G’ 9 knotendisjunkte Pfade zwischen {ag, v, z}
und {by, y, u}. [ |

Beispiel 2.21. Der nebenstehende Graph
ist nicht planar, da wir den K5 durch Kon-
traktion der farblich unterlegten Teilgra-
phen als Minor von G erhalten.

Alternativ lasst sich der Ks auch als ein
topologischer Minor von G erhalten, in-
dem wir die dinnen Kanten entfernen
und in dem resultierenden Teilgraphen al-
le Knoten vom Grad 2 tberbriicken. <

Eine unmittelbare Folgerung aus dem Satz von Kuratowski ist folgende
Charakterisierung der Klasse der planaren Graphen.

Korollar 2.22 (Wagner 1937). Ein Graph ist genau dann planar,
wenn er {Ks 3, K5 }-frei ist.
Definition 2.23. Sei < eine bindre Relation auf einer Menge A.

a) (A, <) heifit Quasiordnung, wenn < reflexiv und transitiv auf
A ist.

2.1 Farben von planaren Graphen

b) (A, <) heiffit Wohlquasiordnung, wenn es zudem zu jeder un-
endlichen Folge ay,as, ... von Elementen aus A Indizes i < j mit
a; S aj gibt.

Beispiele fiir Quasiordnungen sind a < b :< |a| < |b| auf den ganzen
oder komplexen Zahlen. Im ersten Fall handelt es sich um eine Wohl-
quasiordnung, im zweiten nicht, da zum Beispiel die Folge a; = (i+1) /i
eine unendliche absteigende Kette bildet (d.h. a;41 < a; und
a; L a4 fur alle i > 1). (N, <) ist eine Wohlquasiordnung (sogar
eine lineare Wohlordnung, da auch antisymmetrisch und konnex).
Die Teilbarkeitsrelation auf den natiirlichen Zahlen ist dagegen keine
Wohlquasiordnung, da mit der Folge der Primzahlen eine unendli-
che Antikette existiert (d.h. die Glieder der Folge sind paarweise
unvergleichbar: es gilt a; € a; und a; £ a; fir alle i > j > 1).

Es ist leicht zu sehen, dass die Minorenrelation auf der Menge aller
endlichen ungerichteten Graphen keine unendlichen absteigenden Ket-
ten hat. Gemafl folgender Proposition ist sie daher genau dann eine
Wohlquasiordnung, wenn es auch keine unendlichen Antiketten gibt.

Proposition 2.24. Fine Quasiordnung (A, <) ist genau dann eine
Wohlquasiordnung, wenn es in (A, <) weder unendliche absteigende
Ketten noch unendliche Antiketten gibt.

Beweis. Siehe Ubungen. [ ]

Satz 2.25 (Satz von Robertson und Seymour, 1983-2004). Die Mino-
renrelation bildet auf der Menge aller endlichen ungerichteten Graphen
eine Wohlquasiordnung.

Korollar 2.26. Sei KC eine Graphklasse, die unter Minorenbildung
abgeschlossen ist. Dann gibt es eine endliche Menge H von Graphen
mit

K ={G |G ist H-frei}.
Die Graphen in ‘H sind bis auf Isomorphie eindeutig bestimmt und
heiffen verbotene Minoren fiir die Klasse IC.
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Fiir den Beweis des Korollars betrachten wir die komplementare Klas-
se K aller endlichen Graphen, die nicht zu K gehoren, und zeigen, dass
K bis auf Isomorphie nur endlich viele minimale Elemente hat. Sei
M die Menge aller minimalen Elemente von K und entstehe H aus
M, indem wir aus jeder Isomorphieklasse einen Graphen auswahlen.
Dann hat jeder Graph G € K einen Minor in 4 und umgekehrt gehort
jeder Graph G, der einen Minor in H hat, zu K, d.h.

K ={G|3H € H : H ist ein Minor von G}.

Da zudem H eine Antikette bildet, muss H nach Satz 2.25 endlich
sein, womit Korollar 2.26 bewiesen ist.

Das Problem, fiir zwei gegebene Graphen G und H zu entscheiden,
ob H ein Minor von G ist, ist zwar NP-vollstandig (da sich das Hamil-
tonkreisproblem darauf reduzieren lésst). Fiir einen festen Graphen
H ist das Problem dagegen effizient entscheidbar.

Satz 2.27 (Robertson und Seymour, 1995). Fir jeden Graphen H gibt
es einen O(n?)-zeitbeschrinkten Algorithmus, der fiir einen gegebenen
Graphen G entscheidet, ob er H-frei ist.

Korollar 2.28. Die Zugehérigkeit zu jeder unter Minorenbildung
abgeschlossenen Graphklasse K ist in P entscheidbar.

Der Entscheidungsalgorithmus fiir C lasst sich allerdings nur ange-
ben, wenn wir die verbotenen Minoren fiir C kennen. Leider ist der
Beweis von Theorem 2.25 in dieser Hinsicht nicht konstruktiv, so dass
der Nachweis, dass K unter Minorenbildung abgeschlossen ist, nicht
automatisch zu einem effizienten Erkennungsalgorithmus fir C fiihrt.

2.2 Farben von chordalen Graphen

Chordalen Graphen treten in vielen Anwendungen auf, z.B. sind alle
Intervall- und alle Komparabilitdatsgraphen (auch transitiv orientierba-
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re Graphen genannt) chordal. Wir werden sehen, dass sich fiir chordale
Graphen effizient eine optimale Knotenfarbung berechnen lasst.

Definition 2.29. Sei G = (V, E) ein Graph.

a) G heifit chordal oder trianguliert, wenn jeder Kreis K =
Uy, ..., u,u der Linge | > 4 in G mindestens eine Sehne hat.

b) Eine Menge S C V' heifit Separator von G, wenn G — S mehr
Komponenten als G hat. S heifit x-y-Separator, wenn die beiden
Knoten x und y in verschiedenen Komponenten von G — S liegen.

Ein Graph G ist also genau dann chordal, wenn er keinen induzierten
Kreis der Lange | > 4 enthélt (ein induzierter Kreis ist ein indu-
zierter Teilgraph G[V'], V' C V, der ein Kreis ist). Dies zeigt, dass
die Klasse der chordalen Graphen unter induzierter Teilgraphbildung
abgeschlossen ist (aber nicht unter Teilgraphbildung). Jede solche
Graphklasse G ist durch eine Familie von minimalen verbotenen
induzierten Teilgraphen H; charakterisiert, die bis auf Isomorphie
eindeutig bestimmt sind. Die Graphen H; gehoren also nicht zu G,
aber sobald wir einen Knoten daraus entfernen, erhalten wir einen
Graphen in G. Die Klasse der chordalen Graphen hat die Familie der
Kreise C,, der Lange n > 4 als verbotene induzierte Teilgraphen.

Lemma 2.30. Fir einen Graphen G sind folgende Aussagen dquiva-
lent.

(i) G ist chordal.
(ii) Jeder inklusionsminimale Separator von G ist eine Clique.

(iii) Jedes Paar von nicht adjazenten Knoten x undy in G hat einen
x-y-Separator S, der eine Clique ist.

Beweis. Um zu zeigen, dass die zweite Aussage aus der ersten folgt,
nehmen wir an, dass G einen minimalen Separator S hat, der zwei
nicht adjazente Knoten x und y enthélt. Seien G[V;] und G[V3] zwei
Komponenten in G — 5, die durch S getrennt werden. Da S minimal
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ist, sind die beiden Knoten x und y sowohl mit G[V;] als auch mit
G[V4] verbunden. Betrachte die beiden Teilgraphen G; = G[V;U{x, y}]
und wéhle jeweils einen kiirzesten z-y-Pfad P; in G;. Da diese eine
Lénge > 2 haben, ist K = P; U P, ein Kreis der Lange > 4. Aufgrund
der Konstruktion ist zudem klar, dass K keine Sehnen in G hat.

Dass die zweite Aussage die dritte impliziert, ist klar, da jedes Paar
von nicht adjazenten Knoten x und y einen z-y-Separator S hat, und
S eine Clique sein muss, wenn wir .S inklusionsminimal wéhlen.

Um zu zeigen, dass die erste Aussage aus der dritten folgt, nehmen wir
an, dass GG nicht chordal ist. Dann gibt es in G einen induzierten Kreis
K der Lange > 4. Seien = und y zwei beliebige nicht adjazente Knoten
auf K und sei S ein z-y-Separator in G. Dann muss S mindestens
zwei nicht adjazente Knoten aus K enthalten. |

Definition 2.31. Sei G = (V, E) ein Graph und sei k > 0. Ein
Knoten u € V vom Grad k heifit k-simplizial, wenn alle Nachbarn
von u paarweise adjazent sind. Jeder k-simpliziale Knoten wird auch
als simplizial bezeichnet.

Zusammenhéangende chordale Graphen konnen als eine Verallgemeine-
rung von Baumen aufgefasst werden. Ein Graph G ist ein Baum, wenn
er aus K durch sukzessives Hinzufiigen von 1-simplizialen Knoten
erzeugt werden kann. Entsprechend heifit G k-Baum, wenn G aus
K, durch sukzessives Hinzufiigen von k-simplizialen Knoten erzeugt
werden kann. Wir werden sehen, dass ein zusammenhéangender Graph
G genau dann chordal ist, wenn er aus einem isolierten Knoten (also
aus einer 1-Clique) durch sukzessives Hinzufligen von simplizialen
Knoten erzeugt werden kann. Aquivalent hierzu ist, dass G durch
sukzessives Entfernen von simplizialen Knoten auf einen isolierten
Knoten reduziert werden kann.

Definition 2.32. Sei G = (V, E) ein Graph. Fine lineare Ordnung
(u1,...,un) auf V heifst perfekte Eliminationsordnung (PEO)
von G, wenn u; simplizial in Guy, ..., w;] firi=2,...,n ist.
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Es ist klar dass alle Knoten eines vollstandigen Graphen simplizial
sind. Das folgende Lemma verallgemeinert die bekannte Tatsache,
dass jeder Baum mindestens 2 nicht adjazente Blatter hat (abgesehen
von K7 und Ks).

Lemma 2.33. Jeder nicht vollstindige chordale Graph besitzt min-
destens 2 simpliziale Knoten, die nicht adjazent sind.

Beweis. Wir fithren Induktion iiber n. Fir n < 2 ist die Behauptung
klar. Sei G = (V, F) ein Graph mit n > 3 Knoten. Da G nicht voll-
standig ist, enthdlt G zwei nichtadjazente Knoten x; und x,. Falls
x1 und z, in verschiedenen Komponenten von G liegen, sei S = 0,
andernfalls sei S ein minimaler z;-xo-Separator. Im zweiten Fall ist S
nach Lemma 2.30 eine Clique in G. Seien G[V;] und G[V3] die beiden
Komponenten von G — S mit z; € V.

Betrachte die Teilgraphen G; = G[V; U S]. Da G; chordal ist und
weniger als n Knoten hat, ist G; nach IV entweder eine Clique oder
G; enthalt mindestens zwei nicht adjazente simpliziale Knoten y;, z;.
Falls G; eine Clique ist, ist x; simplizial in G;, und da x; keine Nach-
barn auflerhalb von V; U S hat, ist x; dann auch simplizial in G.

Ist G; keine Clique, kann hochstens einer der beiden Knoten ;, 2;
zu S gehoren (da S im Fall S # () eine Clique und {y;, z;} ¢ FE ist).
0.B.d.A. sei y; € V;. Dann hat y; keine Nachbarn auflerhalb von V;US
und somit ist y; auch simplizial in G. |

Satz 2.34. FEin Graph ist genau dann chordal, wenn er eine PEO
hat.

Beweis. Falls G chordal ist, lasst sich eine PEO gemafl Lemma 2.33
bestimmen, indem wir fiir ¢ = n, ..., 2 sukzessive einen simplizialen
Knoten u; in G — {41, ..., u,} wahlen.

Fiir die umgekehrte Richtung sei (ug,...,u,) eine PEO von G. Wir
zeigen induktiv, dass G; = Gluy, ..., u;] chordal ist. Da u;1 simplizial
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in G4 ist, enthélt jeder Kreis K der Lange > 4 in G;,1, auf dem
u; 11 liegt, eine Sehne zwischen den beiden Kreisnachbarn von w;.
Daher ist mit G; auch G;,; chordal. |

Korollar 2.35. Es gibt einen Polynomialzeitalgorithmus A, der fir
einen gegebenen Graphen G eine PEQO berechnet, falls G chordal ist,
und andernfalls einen induzierten Kreis der Linge > 4 ausgqibt.

Beweis. A versucht wie im Beweis von Theorem 2.34 beschrieben, eine
PEO zu bestimmen. Stellt sich heraus, dass G; = G — {u;41, ..., u,}
keinen simplizialen Knoten u; hat, so ist G; wegen Lemma 2.33 nicht
chordal. Daher gibt es nach Lemma 2.30 in G; zwei nicht adjazente
Knoten x und y, so dass kein z-y-Separator eine Clique ist. Wie im
Beweis von Lemma 2.30 beschrieben, lasst sich mithilfe eines mini-
malen Separators S, der keine Clique ist, ein induzierter Kreis K der
Lange > 4 in G; konstruieren. Da G; ein induzierter Teilgraph von G
ist, ist K auch ein induzierter Kreis in G. [ |

Eine PEO kann verwendet werden, um einen chordalen Graphen zu
farben:
Algorithmus chordal-color(V, E)

I berechne eine PEO (uy,...,u,) fir G = (V, E)
> starte greedy-color mit der Knotenfolge (u1, ..., u,)

Satz 2.36. Fiur einen gegebenen chordalen Graphen G = (V, E) be-
rechnet der Algorithmus chordal-color eine k-Farbung ¢ von G mit
k=x(G) =w(G).

Beweis. Sei u; ein beliebiger Knoten mit ¢(u;) = k. Da (uq, ..., uy)
eine PEO von G ist, ist u; simplizial in G[uy, . .., u;]. Somit bilden die
Nachbarn u; von u; mit j < ¢ eine Clique und wegen c¢(u;) = k bilden
sie zusammen mit u; eine k-Clique. Daher gilt x(G) < k < w(G),
woraus wegen w(G) < x(G) die Behauptung folgt. |

12

2.2 Farben von chordalen Graphen

Um chordal-color effizient zu implementieren, bendtigen wir einen
moglichst effizienten Algorithmus zur Bestimmung einer PEO. Rose,
Tarjan und Lueker haben hierfiir 1976 einen Linearzeitalgorithmus
angegeben, der auf lezikographischer Breitensuche (kurz LexBFS oder
LBFS) basiert. Bevor wir auf diese Variante der Breitensuche niher
eingehen, rekapitulieren wir an dieser Stelle nochmals kurz verschie-
dene Anséatze zum Durchsuchen von Graphen.

Der folgende Algorithmus GraphSearch(V, E) startet eine Suche in
einem beliebigen Knoten und findet zunéchst alle von u aus erreich-
baren Knoten. Danach wird solange von einem noch nicht erreichten
Knoten eine neue Suche gestartet, bis alle Knoten erreicht wurden.

Algorithmus GraphSearch(V, E)

. R+ () // Menge der erreichten Knoten
L < () // Ausgabeliste

2
3 repeat
1
5

wahle v € V\ R
R+ RU{u}
i A<+ {u} // Menge der noch abzuarbeitenden Knoten
while A # () do
8 entferne u aus A
9 append(L, u)
10 A+ AU (N(u)\R)
11 R <+ RUN(u)
2 until R=V
13 return(L)

-3

Der Algorithmus GraphSearch(V, E) findet in jedem Durchlauf der
repeat-Schleife eine neue Zusammenhangskomponente des Eingabe-
graphen G = (V, E). Dies bedeutet, dass alle Knoten, die zu einer
Zusammenhangskomponente gehoren, konsekutiv ausgegeben werden.
Zudem ist jeder Knoten, der nicht als erster in seiner Zusammen-
hangskomponente ausgegeben wird, mit einem zuvor ausgegebenen
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Knoten verbunden. Die folgende Definition fasst diese Eigenschaften
der Ausgabeliste zusammen.

Definition 2.37. Sei G = (V, E) ein Graph. Eine lineare Ordnung
(u1,...,u,) auf V heifft Suchordnung (SO) von G, wenn fir jedes
Tripel 7 < k <1 gilt:

uj € N(u) \ N(ug) = Fi < k:w € N(ug).

Satz 2.38. Fir jeden Graphen G = (V,E) gibt der Algorithmus
GraphSearch(V, E) eine SO von G aus.

Beweis. Siehe Ubungen. |

Realisieren wir die Menge der abzuarbeitenden Knoten als einen Kel-
ler S, so erhalten wir eine Suchstrategie, die als Tiefensuche (kurz
DFS, engl. depth first search) bezeichnet wird. Die Benutzung eines
Kellers S zur Speicherung der noch abzuarbeitenden Knoten bewirkt,
dass die Suche nach unerreichten Knoten mit einem Nachbarn eines
Nachbars v des aktuellen Knotens u fortgesetzt wird, bevor die noch
nicht erreichten tibrigen Nachbarn von u besucht werden.

Algorithmus DFS(V, E)

I R <+ 0 // Menge der erreichten Knoten

L < () // Ausgabeliste

3 repeat

1 wiahle w € V\R

5 R+ RU{u}

6 append(L,u)

7 S < (u) // Keller der abzuarbeitenden Knoten
s while S # () do

\V]

9 u <— top(.9)

10 if Jv € N(u)\R then
11 push(.S, v)

12 append(L, v)

13
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13 R <+ RU{v}
14 else

15 pop(5)

6 until R =V

17 return(L)

Definition 2.39. Sei G = (V, E) ein Graph. Fine lineare Ordnung
(ur,...,u,) auf V heifft DFS-Ordnung (DO) von G, wenn fir
jedes Tripel 7 < k <1 gilt:

u; € N(w) \ N(ug) = Fi:j <i<kAu; €N(u).

Satz 2.40. Fir jeden Graphen G = (V,E) gibt der Algorithmus
DFS(V, E) eine DO von G aus.

Beweis. Siehe Ubungen. [ |

Realisieren wir die Menge der abzuarbeitenden Knoten als eine Warte-
schlange @, so findet der resultierende Algorithmus BFS (V) F) sogar
einen kiirzesten Weg vom Startknoten w zu allen von u aus erreichba-
ren Knoten. Diese Suchstrategie wird als Breitensuche (kurz BF'S,
engl. breadth first search) bezeichnet. Die Benutzung einer Warte-
schlange @) zur Speicherung der noch abzuarbeitenden Knoten bewirkt,
dass alle Nachbarknoten v des aktuellen Knotens u vor den bisher
noch nicht erreichten Nachbarn von v ausgegeben werden.

Algorithmus BFS(V, E)

I R+ () // Menge der erreichten Knoten
L < () // Ausgabeliste
repeat
wahle u € V\R
Q < (u) // Warteschlange der abzuarb. Knoten
;s while @ # () do
7 u <— dequeue(Q)

ot [N w no
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8 append(L, u)

9 for all v € N(u)\R do enqueue(Q, v)
10 R+ RUN(u)

11until R=V

12 return(L)

Definition 2.41. Sei G = (V, E) ein Graph. Fine lineare Ordnung
(u,...,u,) aufV heifst BFS-Ordnung (BO) von G, wenn fiir jedes
Tripel 7 < k < gilt:

u; € N(w) \ N(ug) = Fi < j:u; € N(ug).

Satz 2.42. Fir jeden Graphen G = (V,E) gibt der Algorithmus
BFS(V, E) eine BO von G aus.

Beweis. Siehe Ubungen. [ |

Der Unterschied von LexBFS zur normalen Breitensuche besteht
darin, dass die zuldssigen Ausgabefolgen gegeniiber der BFS weiter
eingeschrankt werden. Hierzu wird die Menge der noch nicht abge-
arbeiteten Knoten in eine Folge von Teilmengen zerlegt, welche vom
Algorithmus wiederholt verfeinert wird. Der Name von LexBFS riihrt
daher, dass die Knoten in einer Reihenfolge ausgegeben werden, die
auch bei einer gewohnlichen Breitensuche auftreten kann, bei dieser
aber nicht garantiert ist. Bei einer Breitensuche werden die noch nicht
besuchten Nachbarn des aktuellen Knotens in beliebiger Reihenfol-
ge zur Warteschlange hinzugefiigt und spéater auch wieder in dieser
Reihenfolge entfernt. Dagegen werden bei einer LexBFS die Knoten
in der Warteschlange nachtréiglich umsortiert, falls dies notwendig
ist, um eine lexikalische Sortierung der Knoten zu erhalten (siche
Definition 2.43).

Algorithmus LexBFS(V, E, u)
. L <« () // Ausgabeliste
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Q) < (V) // Warteschlange von Knotenmengen
while @ # () do
u < Dequeue(Q)
append(L, u)
i Splitqueue(Q, N(u))
7 return(L)

wt

Prozedur Dequeue(Q)

1 entferne wu aus first (Q)
2 if first (Q)= 0 then dequeue(Q)
3 return(u)

Prozedur Splitqueue(Q,S)

1 for T'in Q with TNS ¢ {0, T} do
> ersetze (T)in @ durch (T'NS, T\ S)

Fiir eine effiziente Implementierung sollte die Schlange @ =
(S1,...,Sk) von Knotenmengen S; C V' als doppelt verkettete Liste
realisiert werden und fiir jeden Knoten u in der Adjazenzliste ein
Zeiger auf die Menge S;, die u enthalt und auf seinen Eintrag in
S; gespeichert werden. Zudem sollte die for-Schleife in der Prozedur
Splitqueue durch eine Schleife iiber die Knoten in S = N(u) ersetzt
werden.

Definition 2.43. Sei G = (V, E) ein Graph. FEine lineare Ordnung
(u1,...,un) auf V heifst LexBFS-Ordnung (LBO) von G, wenn
fur jedes Tripel j < k < gilt:

uj € N(u) \ N(ug) = 3 < j:u; € N(ug) \ N(w).

Ob eine Ordnung (u4,...,u,) eine LBO ist, lasst sich also wie folgt
an der geméf (uq,...,u,) geordneten Adjazenzmatrix A ablesen: die
(verkiirzten) Zeilen 2y, ..., z, unter der Diagonalen miissen lexikalisch
(also wie im Lexikon) sortiert sein: entweder ist z; ein Préfix von
z;+1 oder z; hat an der ersten Position, wo sich die beiden Strings
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unterscheiden, eine Eins. In den Ubungen wird gezeigt, dass man sogar
eine lexikographische Ordnung auf den kompletten Zeilen von A erhélt,
falls man die Diagonaleintrage von A auf 1 setzt und die Knoten in
jeder Menge der Warteschlange () nach absteigendem Knotengrad in
G sortiert.

Satz 2.44. Fir jeden Graphen G = (V,E) gibt der Algorithmus
LexBFS(V, E) eine LBO (uy,...,u,) von G aus.

Beweis. Sei A = (a;;) die Adjazenzmatrix von G mit a;; = 1 &
{u;,u;} € E. Wir zeigen, dass die Strings z; = a;1,...,a;,;—1 lexika-
lisch sortiert sind. Existiert ndmlich im Fall £ < [ eine Position j < k
mit ar; = 0 und a;; = 1, so muss es eine Position ¢ < j mit ay; = 1
und ay; = 0 geben. Ansonsten wére der Knoten u; spatestens beim
Besuch von u; in eine Menge vor dem Knoten wy, sortiert worden und
konnte daher nicht nach dem Knoten wu; ausgegeben werden. |

Lemma 2.45. Jede LBO fiir einen chordalen Graphen G ist eine
PEO fir G.

Beweis. Sei (uq,...,u,) eine LBO fir G = (V, E) und sei A = (a;)
die Adjazenzmatrix von G mit a;; = 1 < {w;,u;} € E, wobei wir fiir
a;; auch A[i, j] schreiben. Wir zeigen, dass G nicht chordal ist, wenn
w; nicht simplizial in G; = Gluy, . .., u;] ist.

Falls u; nicht simplizial in G; ist, miissen Indizes io < i1 < @ =: 75 mit
Alig,i1] = Alig, i2) = 1 und Afiy, i) = 0 existieren. Wegen Aliy, is] = 0
und Alig, i) = 1 muss es einen Index i3 < iy geben mit Afiy, i3] = 1
und Alig, i3] = 0, wobei wir i3 méglichst klein wéhlen.

Falls nun Aliy, i3] = 1 ist, haben wir einen induzierten Kreis
Gluiy, wiy, iy, uiy) der Lange 4 in G gefunden. Andernfalls muss es
wegen Alis, i3] = 0 und Aliy, i3] = 1 einen Index iy < i3 geben
mit Alig, 4] = 1 und Aliy,i4] = 0, wobei wir iy wieder moglichst
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klein wahlen. Da spétestens fiir i = 1 kein Index i, < 75 exis-
tiert, also Alig_1,7x] = 1 sein muss, erhalten wir eine Indexfolge
(a) A[io, Zl] = A[ij, ij+2] = A[l'k_l,ik] =1 fur j = O, ceey k — 2 und
(b) A[io,ig] = A[ij,ij+1] - A[ij,ij+3] - A[ik_g,ik_l] =0 far
j=1,...,k—3und
(C) A[Zj,” = A[ij_l,l] firg=1,...,k—3und [ < ij+2.
Die Eigenschaften (a) und (b) ergeben sich direkt aus der Konstruk-
tion der Folge. Eigenschaft (c) folgt aus der minimalen Wahl der
Indizes 1is,...,7; und impliziert fir r = 3,...,k die Gleichungen
Alig, i) = Aliy,i,] = -+ = Aliy_3,4,], indem wir j = 1,...,r — 3
und [ = i, setzen. Da zudem Ali,_3,14,| gemaB Eigenschaft (b) fiir
r=3,...,k den Wert 0 hat, folgt fiir alle Paare 0 < 7 < r < k die
Aquivalenz

AlijiiJ=1er=j+2o0der j=0Ar=1oder j=k—1Ar=k

Folglich ist Gu;,, ..., u; ] ein Kreis der Lange k + 1 > 4. [
Damit haben wir einen Linearzeitalgorithmus, der fiir chordale Gra-
phen eine PEO berechnet. Da auch greedy-color linear zeitbe-
schrankt ist, konnen wir den Algorithmus chordal-color in Linear-
zeit implementieren. Diesen Algorithmus konnen wir leicht noch so
modifizieren, dass er zusammen mit der gefundenen k-Farbung entwe-
der eine Clique C' der Grofle k (als Zertifikat, dass x(G) = k = w(G)
ist) oder einen induzierten Kreis der Lénge > 4 (als Zertifikat, dass
G nicht chordal ist) ausgibt.

2.3 Kantenfirbungen

Neben der Frage, mit wievielen Farben die Knoten eines Graphen
geférbt werden kénnen, muss bei vielen Anwendungen auch eine Kan-
tenfdrbung mit moglichst wenigen Farben gefunden werden. Neben
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Graphen treten hierbei auch Multigraphen G = (V| E) auf, d.h.
die Kantenmenge E ist eine Multimenge. In diesem Fall konnen 2
Kanten nicht nur einen, sondern sogar beide Endpunkte gemeinsam
haben. Wie bei Graphen gehen wir aber davon aus, dass jede Kante
2 verschiedene Endpunkte hat, d.h. GG ist schlingenfrei.

Eine Multimenge A lasst sich durch eine Funktion v4: A — N be-
schreiben, wobei v4(a) die Anzahl der Vorkommen von a in A angibt.
Die Méachtigkeit von A ist |A| = > ,cava(a). A ist Teilmenge einer
Multimenge B, wenn v4(a) < wvg(a) fiir alle a € A gilt. Wie bei
Mengen bezeichnen wir die Menge aller k-elementigen Teilmengen
von B mit (l:)

Definition 2.46. Sei G = (V, E) ein Graph und sei k € N.

a) Eine Abbildung c: E — N heifst Kantenfirbung von G, wenn
c(e) # c(€') fir allee #¢ € E mitene #0 gilt.
b) G heifst k-kantenfiarbbar, falls eine Kantenfirbung c: E —
{1,...,k} existiert.
¢) Die kantenchromatische Zahl oder der chromatische Index
von G ist
X' (G) = min{k € N | G ist k-kantenfarbbar}.
Eine k-Kantenfiarbung ¢: E — N muss also je 2 Kanten, die einen
gemeinsamen Endpunkt haben, verschiedene Farben zuweisen. Daher
bildet jede Farbklasse E; = {e € E | f(e) =i} ein Matching von G,
d.h. ¢ zerlegt E in k disjunkte Matchings E7, ..., Ej. Umgekehrt liefert
jede Zerlegung von E in k disjunkte Matchings eine k-Kantenfiarbung
von G.

Ist G ein Multigraph, so konnen wir eine k-Kantenfarbung von G auch
durch eine Funktion ¢ beschreiben, die jeder Kante e € E eine Menge
cle) C{1,...,k} von |c(e)| = vg(e) verschiedenen Farben zuordnet,
so dass c(e) Ne(e') =0 fir alle e # € € E mit ene’ # () gilt.
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Beispiel 2.47.

2, n gerade,
X'(Cp) =
3, sonst,
n—1, n gerade,
X (Ky) =2[n/2] - 1= {
n, sonst.

Das Kantenfarbungsproblem fiir einen Graphen G lésst sich leicht auf
das Knotenfarbungsproblem fiir einen Graphen G’ reduzieren.

Definition 2.48. Sei G = (V, E) ein Graph mit m > 1 Kanten.
Dann heifit der Graph L(G) = (E, E') mit

= {{e,e’} C (gj) ene # @}

der Kantengraph oder Line-Graph von G.

Ist G ein Multigraph, so ersetzen wir die Multimenge E in L(G)
durch eine Menge derselben Machtigkeit, die fiir jede Kante e € F
vg(e) verschiedene Kopien von e enthélt. Die folgenden Beziehungen
zwischen einem Graphen G und L(G) lassen sich leicht verifizieren.

Proposition 2.49. Sei G’ = L(G) der Line-Graph eines Graphen G.

Dann gilt
(i) n(G') = m(G),
(it) x(G") = X'(G),
(iii) a(G') = u(G),
(iv) w(G') = A(G),

(v) A(G') = maxyyv)ep degg(u) + degg(v) — 2 < 2A(G) —

Damit erhalten wir aus den Abschitzungen w(G) < x(G) < A(G) +1
und n/a(G) < x(G) < n —a(G) + 1 die folgenden Abschétzungen
fiur x'(G).

Lemma 2.50. Fiir jeden Graphen G mit m > 1 Kanten gilt
A<y <2A—1undm/p<x"<m-—pu+1.
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Korollar 2.51. Fiir jeden k-requliren Graphen mit einer ungeraden
Knotenzahl und m > 1 Kanten gilt xX'(G) > k+1 > 3.

Beweis. Wegen p < (n — 1)/2 und m = nk/2 folgt X’ > m/u >
nk/(n —1) > k. Da n ungerade und m > 1 ist, muss £k > 2 sein. MW

Als néchstes geben wir einen Algorithmus an, der fiir jeden Graphen
G eine k-Kantenfarbung mit & < A(G) + 1 berechnet. Fir den Beweis
bendtigen wir folgende Begriffe.

Definition 2.52. Sei G = (V,E) ein Graph und sei c: E —

{1,...,k} eine k-Kantenfirbung von G. Weiter sei FF C {1,...,k}

und 1 <i#j <k.

a) Ein Nachbar v von u heifst F-Nachbar von u, wenn c(u,v) € F
ist (wobei c(u,v) fir c({u,v}) steht). Im Fall F = {i} nennen wir
v auch einen 1-Nachbarn von u.

b) Die Farbe i ist frei an einem Knoten u (kurz i € free(u)), falls u
keinen i-Nachbarn hat.

¢) Der (i, j)-Subgraph von G ist der Subgraph G;; = (V, E;;) mit
Eij = {6 S ’ 0(6) S {Z,]}}
d) Jede Zusammenhangskomponente G' von G;; heifst (¢, j)-Kom-

ponente von G. Ist G’ ein Pfad oder ein Kreis, so nennen wir G’
auch (%, j)-Pfad bzw. (i, 3)-Kreis in G (bzgl. c).

Man sieht leicht, dass jede (i, j)-Komponente G’ von G entweder ein
Pfad der Lénge [ > 0 oder ein Kreis gerader Lange ist. Zudem kénnen
wir aus c¢ eine weitere k-Kantenfiarbung ¢’ von G gewinnen, indem wir
die beiden Farben ¢ und j entlang der Kanten von G’ vertauschen.
Wir bezeichnen diese k-Kantenfarbung ¢’ mit switch(c, i, j, G").

Satz 2.53 (Vizing 1964). Fir jeden Graphen G gilt X'(G) < A(G)+1.
Beweis. Wir fithren Induktion iiber m. Der Fall m = 0 ist trivial.

Fiir den IS sei G' = (V, E’) ein Graph mit m + 1 Kanten. Wir wéih-
len eine beliebige Kante e; = {yo,71} € E. Dann hat der Graph
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G =G —¢e = (V,E) mit E = E"\ {e;} nur noch m Kanten
und daher hat G nach IV fiir £ = A(G’) + 1 eine k-Kantenférbung
c: E—{1,...,k}. Da zudem unter ¢ an jedem Knoten u mindestens
k — deg(u) > 0 Farben frei sind, folgt free(u) # 0 fir alle u € V.
Betrachte nun folgende Prozeduren.

Prozedur expand(G,c,er = {yo,y1})

10+ 1
> wahle a; € free(y,)
1

while oy & free(yo) U{a1,...,ap_1} do

sei ypy1 der ay-Nachbar von yg
5 wahle ayy 1 € free(yes1)
6 (+—0(+1
7 wahle 0 < ¢ < ¢ minimal mit oy € free(yo) U{au,...,a;}
s if i =0 then // oy € free(yo)
9 recolor(?, ay)
0 else // ap =«
11 wahle eine Farbe aq € free(yp)
12 berechne den («y, c;)-Pfad P mit Endknoten y,
13 '« switch(c, o, v, P)
14 sei z der Knoten am anderen Ende von P // z = y, ist moglich
15 case
16 z =1yo: recolor(i, ;)
17 z =y, : recolor(i,ap)
18 else recolor(, ap)
19 return ¢

Prozedur recolor(i,«)

1 c/(y07yi) —a
o for j+ 1toi—1do c(y,y;) < aj

Wir verifizieren, dass die Abbildung ¢’ eine Kantenfarbung von G’ ist.

Fall 1 «, € free(yo): Da die Farbe a; an yo und fir j = 1,...,¢ die
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Farbe a; an y; frei ist, konnen wir {yo, y;} mit «; farben.

Fall 2 z = yy: In diesem Fall erreicht P den Knoten z = y, iiber die
Kante {yo, ¥i+1}. Nach dem Vertauschen von oy und «; entlang
P hat diese Kante dann die Farbe «g, weshalb wir die Kanten
{yo,y;} fir j =1,...,7 mit o; farben konnen.

Fall 3 2 = y;: Da «; € free(y;) N free(y,) ist, miissen die Endkanten
von P mit aq gefarbt sein. Nach Vertauschen von ag und «; ent-
lang P ist daher die Farbe o an yy und y; frei, weshalb wir die
Kante {yo, y;} mit o und die Kanten {yo,y;} firj =1,...,i—1
mit o; farben konnen.

Fall 4 In allen anderen Fallen ist die Farbe ag nach Vertauschen
von oy und «; entlang P neben gy, auch an g, frei, weshalb
wir die Kante {yo,y,} mit oy farben kénnen. Da zudem die
Farbe a; fur j = 1,...,¢ — 1 an y; frei bleibt (auch wenn
z € {1, Yiz1,Yit1,---, Yo} ist), konnen wir die Kanten
{yo,y;} fir j =1,...,¢ —1 mit o farben. [

Da die Prozedur expand mit Hilfe geeigneter Datenstrukturen so
implementiert werden kann, dass jeder Aufruf Zeit O(n) erfordert,
und diese Prozedur m-mal aufgerufen wird, um alle m Kanten eines
gegebenen Graphen G zu farben, ergibt sich eine Gesamtlaufzeit von
O(nm). Zudem erhalten wir aus dem Beweis des Satzes von Vizing
folgende Konsequenzen.

Korollar 2.54. Fiir jeden Multigraphen G = (V| E) gilt
(i) X'(G) < A(G) + maxcepvg(e).
(i) X(G) < 3A(G)/2.
(7ii) Falls G bipartit (d.h. x(G) < 2) ist, dann ist X' (G) = A(G).

Beweis. Siehe Ubungen. |

Fiir einen Graphen G kann x/(G) nur einen der beiden Werte A(G)
oder A(G) + 1 annehmen. Graphen G mit x'(G) = A(G) heiflen
Klasse 1 und Graphen G mit x'(G) = A(G) 4 1 heiflen Klasse 2.
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Neben allen bipartiten Graphen sind auch die vollstandigen Graphen
K, fiir gerades n Klasse 1. Zudem sind alle planaren Graphen G mit
A(G) > 7 Klasse 1. Fiir 2 < d < 5 existieren planare Graphen G mit
A(G) = d, die Klasse 2 sind. Fir d = 6 ist dies offen.

Das Problem, fiir einen gegebenen Graphen G zu entscheiden, ob er
Klasse 1 ist (also X'(G) < A(G) gilt), ist NP-vollstandig.

Zum Schluss dieses Kapitels zeigen wir, dass die entsprechende Frage
fiir Knotenfarbungen sehr leicht entscheidbar ist.

2.4 Der Satz von Brooks

Satz 2.55 (Brooks 1941). Fir einen zusammenhdngenden Graphen
G qilt x(G) = A(G) + 1 genau dann, wenn G = Capqq oder G = K,
fur einn > 1 ist.

Beweis. Es ist klar, dass die Graphen G = (5,47 und G = K,,, n > 1,
die chromatische Zahl A(G) 4 1 haben. Fir A(G) < 2 sind dies auch
die einzigen zusammenhéngenden Graphen mit dieser Eigenschaft.

Sei nun G # K4y ein zusammenhéngender Graph mit Maximalgrad
A(G) = d > 3. Wir zeigen induktiv tber n, dass x(G) < d ist. Im
Fall n < 4 (TA) ist dies klar, da wir den K, ausgeschlossen haben.
Fur den IS kénnen wir also n > 5 annehmen.

Falls k(G) < 1 ist, hat G k > 2 Blocke By, ... By. Dann ist jeder
Block B; nach IV (bzw. wegen A(B;) < A(G) = d) d-farbbar und
somit auch y(G) < d. Es bleibt also der Fall, dass k(G) > 2 ist.

Behauptung 2.56. In G gibt es einen Knoten uy, der zwei Nachbarn
a und b mit {a,b} & E hat, so dass G — {a,b} zusammenhdingend ist.

Da G # Ky ist, gibt es einen Knoten z, der zwei Nachbarn
y,z € N(z) mit {y,z} € E hat. Falls G — y 2-zusammenhangend
ist, ist G — {y, 2} zusammenhéngend und die Behauptung folgt fiir
Uy = .
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Ist G — y nicht 2-zusammenhéngend, d.h. G — y hat mindestens zwei
Blocke, dann hat der BC-Baum 7" von G — y mindestens zwei Blétter.
Da k(G) > 2 ist, ist y in G zu mindestens einem Knoten in jedem
Blatt von T" benachbart, der kein Schnittknoten ist. Wahlen wir fiir a
und b zwei dieser Knoten in verschiedenen Blattern, so ist G — {a, b}
zusammenhédngend und somit die Behauptung fiir u; = y bewiesen.

Sei also u; ein Knoten, der zwei Nachbarn a und b mit {a, b} ¢ E hat,
so dass G —{a, b} zusammenhéngend ist. Wir wenden auf den Graphen
G — {a, b} eine Suche mit dem Startknoten uy an. Sei (uy,..., u,_2)
die resultierende Suchordnung. Nun starten wir greedy-color mit
der Reihenfolge (a, b, u,_2,...,uy).

Dann berechnet greedy-color eine d-Farbung ¢, da die Knoten a
und b die Farbe c¢(a) = ¢(b) = 1 erhalten. Zudem ist jeder Kno-
ten u;, © > 1, mit einem Knoten w; mit j < ¢ verbunden, weshalb
c(u;) < deg(u;) < d ist. Zuletzt erhélt auch u; eine Farbe c(u;) < d,
da uy bereits zwei Nachbarn a und b mit derselben Farbe hat. [ |

In den Ubungen wird folgende Folgerung aus dem Beweis des Satzes
von Brooks gezeigt.

Korollar 2.57. Es gibt einen Linearzeitalgorithmus, der alle Graphen
G mit A(G) < 3 mit x(G) Farben farbt.
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Definition 3.1. Fin Netzwerk N = (V, E, s,t, c) besteht aus einem
gerichteten Graphen G = (V, E) mit einer Quelle s € V' und einer
Senke t € V sowie einer Kapazitatsfunktion c : V x V — N.
Zudem muss jede Kante (u,v) € E positive Kapazitat c(u,v) > 0 und
jede Nichtkante (u,v) € E muss die Kapazitit c(u,v) = 0 haben.

Die folgende Abbildung zeigt ein Netzwerk V.

Definition 3.2.

a) Ein Fluss in N ist eine Funktion f:V xV — Z mit
f(u,0) < e(u,v),
flu,v) = =f(v,u), (Antisymmetrie)
Svru f(u,v) =0 fiir alle w € V' \ {s,t} (Kontinuitdt)

b) Der Fluss in den Knoten w ist f~(u) = >, max{0, f(v,u)}.

¢) Der Fluss aus w ist f*(u) =, ,, max{0, f(u,v)}.

d) Die GréBe von f ist |f| = f*(s) — f7(s) = X,z f(5,0).

(Kapazititsbedingung)

Die Antisymmetrie impliziert, dass f(u,u) = 0 fur alle u € V ist,
d.h. wir konnen annehmen, dass G schlingenfrei ist. Die folgende
Abbildung zeigt einen Fluss f in N.
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3.1 Der Ford-Fulkerson-Algorithmus

Wie léasst sich fiir einen Fluss f in einem Netzwerk N entscheiden, ob
er vergrofert werden kann? Diese Frage ldsst sich leicht beantworten,
falls f der konstante Nullfluss f = 0 ist: In diesem Fall geniigt es, in
G = (V, E) einen Pfad von s nach t zu finden. Andernfalls kénnen
wir zu N und f ein Netzwerk /N konstruieren, so dass f genau dann
vergrofiert werden kann, wenn sich in Ny der Nullfluss vergrofiern
lasst.

Definition 3.3. Sei N = (V, E,s,t,c) ein Netzwerk und sei f ein
Fluss in N. Das zugeordnete Restnetzwerk ist Ny = (V, Ey,s,t,cy)
mit der Kapazitdt

Cf(u7 U) = c(u, U) - f(ua U)
und der Kantenmenge

Er ={(u,v) € VXV |cs(u,v) > 0}.

Zum Beispiel fiihrt obiger Fluss auf das folgende Restnetzwerk Ny:

3.1 Der Ford-Fulkerson-Algorithmus

Definition 3.4. Sei Ny = (V, Ey, s,t,cy) ein Restnetzwerk. Dann
heifit jeder s-t-Pfad P in (V, E;) Zunahmepfad in N;. Die Kapa-
zitdt von P in Ny ist

cp(P) = min{cs(u,v) | (u,v) liegt auf P}
und der zu P gehorige Fluss in Ny ist

ci(P),  (u,v) liegt auf P,

fr(u,v) = —c;(P), (v,u) liegt auf P,
0, sonst.
P = (up, ..., ux) ist also genau dann ein Zunahmepfad in Ny, falls

e uy = s und ug =t ist,
e die Knoten uyg, ..., u, paarweise verschieden sind
o und cp(u;,uir1) >0 firi=0,...,k— 1 ist.

Die folgende Abbildung zeigt den zum Zunahmepfad P = s,c¢,b,t
gehorigen Fluss fp in Ny. Die Kapazitdt von P ist ¢;(P) = 4.

Es ist leicht zu sehen, dass fp tatséchlich ein Fluss in Ny ist. Durch Ad-
dition der beiden Fliisse f und fp erhalten wir einen Fluss f' = f+ fp
in N der GroBe |f'| = |f| + |fe| > | f].
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Fluss f:

11/

Nun kénnen wir den Ford-Fulkerson-Algorithmus angeben.

Algorithmus Ford-Fulkerson(V, E s, t,c)

1 for all (u,v) € EUE® do
2 flu,v) <0
1

while es gibt einen Zunahmepfad P in Ny do
f«f+/p

Beispiel 3.5. Fiir den neuen Fluss erhalten wir nun folgendes Rest-
netzwerk:

In diesem existiert kein Zunahmepfad mehr. N

Um zu beweisen, dass der Algorithmus von Ford-Fulkerson tatséch-
lich einen Maximalfluss berechnet, zeigen wir, dass es nur dann im
Restnetzwerk Ny keinen Zunahmepfad mehr gibt, wenn der Fluss f
maximal ist. Hierzu benotigen wir den Begriff des Schnitts.
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Definition 3.6. Sei N = (V, E,s,t,c) ein Netzwerk und sei ) C
S C V. Dann heifit die Menge E(S) = {(u,v) € E|u € S,v ¢ S}
Kantenschnitt (oder einfach Schnitt; oft wird auch einfach S als
Schnitt bezeichnet). Die Kapazitidt eines Schnittes S ist

> c(u,v).

ueS,vgS

c(5) =

Ist f ein Fluss in N, so heifst

f8)= > fluw)

ueSvg¢S

der Nettofluss (oder einfach Fluss) durch den Schnitt S. Ist
u€e S undv &S, so heifst S auch u-v-Schnitt.

Beispiel 3.7. Betrachte folgenden Schnitt S = {s,a,c} in N:

12/12

11/14

Dieser Schnitt hat die Kapazitdit
c(S) = c(a,b) + c(c,d) =12+ 14 = 26
und der Fluss f durch thn ist
f(S) = f(a,b) + f(c,b) + f(c,d) =12 =44+ 11 = 19.

Dagegen hat der Schnitt S" = {s.a,c,d}
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die Kapazitdit

c(S") = c(a,b)+c(d,b)+c(d,t) = 12+7+4 = 23
= f'(a,b)+f(d,b)+ f'(d,t) = f'(5"),

die mit dem Fluss f' durch S’ ibereinstimmdt. <

Lemma 3.8. Fliir jeden s-t-Schnitt S und jeden Fluss f gilt

|| = F(5) < e(5).
Beweis. Die Gleichheit | f]
k=15l
k = 1: In diesem Fall ist S = {s} und somit
= fT(s) = f7(s) = X fs,0) = f(9).

V#S

= f(9) zeigen wir durch Induktion iiber

k — 1~ k: Sei S ein Schnitt mit ||S|| =k > 1 und sei w € S — {s}.

Betrachte den Schnitt S" =S — {w}. Dann gilt
Z f(u,v): Z f(u,v)+2f(w,v)

ueSw¢sS ueS’' wgs v¢S

und

f(S,) = Z f(u7v> =

ues’ wgs’

> flu,v)+ > flu,w).

uesS’ wgsS ues’
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Daher folgt

F(8) = F(S) = X flw,w) = X Fluw) = 3 flw,v) =0.

vgS uesS’ vAEW

Nach Induktionsvoraussetzung folgt somit f(S) = f(S") = | f].
SchlieBilich folgt wegen f(u,v) < ¢(u,v) die Ungleichung

f8) = > fluv) < >

(u,v)EE(S) (u,w)EE(S)

c(u,v) = ¢(9). [ |

Satz 3.9 (Min-Cut-Max-Flow-Theorem). Sei f ein Fluss in einem
Netzwerk N = (V, E, s,t,c). Dann sind folgende Aussagen dquivalent:

1. f ist mazimal, d.h. fir jeden Fluss ' in N gilt |f'| < |f].
2. In Ny existiert kein Zunahmepfad.
3. Es gibt einen s-t-Schnitt S in N mit ¢(S) = | f|.

Beweis. Die Implikation ,,1 = 2“ ist klar, da die Existenz eines Zu-
nahmepfads in Ny zu einer Vergroflerung von f fithren wiirde.

Fir die Implikation ,,2 = 3¢ betrachten wir den Schnitt
S ={ueV|uistin N; von s aus erreichbar}.

Da in Ny kein Zunahmepfad existiert, gilt dann
e sc S, t¢ S und

o ¢f(u,v) =0firaleue Sundv ¢ S.

Wegen c¢f(u,v)

[fl=f(5) =

f(u,v) folgt somit

> ce(u,v) = (S).

ueS,vgS

= c(u,v) —

> fluw) =

ueSvgS

Die Implikation ,,3 = I ergibt sich aus der Tatsache, dass im Fall
c(S) = | f] fur jeden Fluss f" die Abschétzung |f'| = f/(S) < ¢(S) =
| f] gilt. [ |
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Der obige Satz gilt auch fir Netzwerke mit Kapazitaten in RT.

Sei ¢y = ¢(9) die Kapazitat des Schnittes S = {s}. Dann durchlauft l ‘ Fluss fp, in Ny, ‘ neuer Fluss firy in N ‘
der Ford-Fulkerson-Algorithmus die while-Schleife hochstens cop-mal.
Bei jedem Durchlauf ist zuerst das Restnetzwerk Ny und danach ein
Zunahmepfad in Ny zu berechnen. 1

Die Berechnung des Zunahmepfads P kann durch Breitensuche in
Zeit O(n + m) erfolgen. Da sich das Restnetzwerk nur entlang von
P andert, kann es in Zeit O(n) aktualisiert werden. Jeder Durch-
lauf benétigt also Zeit O(n + m), was auf eine Gesamtlaufzeit von
O(co(n +m)) fihrt. Da der Wert von ¢ jedoch exponentiell in der
Lange der Eingabe (also der Beschreibung des Netzwerkes N) sein 2
kann, ergibt dies keine polynomielle Zeitschranke. Bei Netzwerken
mit Kapazitaten in Rt kann der Ford-Fulkerson-Algorithmus sogar
unendlich lange laufen (siche Ubungen).

Bei nebenstehendem Netzwerk beno-
tigt Ford-Fulkerson zur Bestimmung
des Maximalflusses abhangig von der
Wahl der Zunahmepfade zwischen 2
und 21 Schleifendurchliufe.

Im giinstigsten Fall wird namlich ausgehend vom Nullfluss f; zu-
erst der Zunahmepfad P, = (s, a,t) mit der Kapazitit 2! und dann
im Restnetzwerk Ny, der Pfad P, = (s,b,t) mit der Kapazitat 2'°
gewdahlt.

2j — 1,
1<j <210

27,
Im ungtinstigsten Fall werden abwechselnd die beiden Zunahmepfade 1< jj< 910
Py = (s,a,b,t) und P, = (s,b,a,t) (also P, = Py fiir ungerades i und
P, = P, fur gerades i) mit der Kapazitat 1 gewdahlt. Dies fithrt auf
insgesamt 2!' Schleifendurchliufe (siehe nebenstehende Tabelle).

Nicht nur in diesem Beispiel lasst sich die exponentielle Laufzeit wie
folgt vermeiden:

210/210

210/210

210/210

210/210

e Man betrachtet nur Zunahmepfade mit einer geeignet gewéhlten 21
Mindestkapazitat. Dies fihrt auf eine Laufzeit, die polynomiell in
n, m und log ¢y ist (sieche Ubungen).

0,

23
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e Man bestimmt in jeder Iteration einen kiirzesten Zunahmepfad
im Restnetzwerk mittels Breitensuche in Zeit O(n 4+ m). Diese
Vorgehensweise fiihrt auf den Edmonds-Karp-Algorithmus, der eine
Laufzeit von O(nm?) hat (unabhéngig von der Kapazitatsfunktion).

e Man bestimmt in jeder Iteration einen Fluss g im Restnetzwerk Ny,
der nur Kanten benutzt, die auf einem kiirzesten s-t-Pfad in Ny
liegen. Zudem hat g die Eigenschaft, dass g auf jedem kiirzesten
s-t-Pfad P mindestens eine Kante e € P sdttigt (d.h. der Fluss g(e)
durch e schopft die Restkapazitit cs(e) von e vollkommen aus),
weshalb diese Kante in der nachsten Iteration fehlt. Dies fiihrt auf
den Algorithmus von Dinitz. Da die Lange der kiirzesten s-t-Pfade
im Restnetzwerk in jeder Iteration um mindestens 1 zunimmt, liegt
nach spétestens n — 1 Iterationen ein maximaler Fluss vor. Di-
nitz hat gezeigt, dass der Fluss ¢ in Zeit O(nm) bestimmt werden
kann. Folglich hat der Algorithmus von Dinitz eine Laufzeit von
O(n*m). Malhotra, Kumar und Maheswari fanden spéter einen
O(n?)-Algorithmus zur Bestimmung von g. Damit lisst sich die
Gesamtlaufzeit auf O(n?) verbessern.

3.2 Der Edmonds-Karp-Algorithmus

Der Edmonds-Karp-Algorithmus ist eine spezielle Form von Ford-
Fulkerson, die nur Zunahmepfade mit moglichst wenigen Kanten
benutzt, welche mittels Breitensuche bestimmt werden.

Algorithmus Edmonds-Karp(V, E, s,t,c)

1 for all (u,v) € FUE® do
2 f(u,v) « 0
3
1

repeat
P < zunahmepfad(f)
5 if P # | then addierepfad(f, P)
6 until P =1L

3.2 Der Edmonds-Karp-Algorithmus

Prozedur zunahmepfad(f)

1 for all ve V\{s} do

parent(v) < L

3 parent(s) < s

Q<+ ()

5 while @ # () A parent(t) = L do
6 u < dequeue(Q)

7 for all e = (u,v) € EUE"® do
8 if c¢(e) — f(e) > 0 A parent(v) = L then
9 d(e) < c(e) — f(e)

10 parent(v) < u

11 enqueue(Q,v)

12 if parent(t) = L then

13 P+ 1

11 else

15 P < parent-Pfad von s nach ¢

5 cp(P) < min{c(e) | e € P}

17 return P

V]

Prozedur addierepfad(f,P)

1 for all e € P do
> fle) < f(e) +¢(P)
5 f(e™) = f(ef) = ep(P)

Die Prozedur zunahmepfad(f) berechnet im Restnetzwerk Ny einen
(gerichteten) s-t-Pfad P, sofern ein solcher existiert. Dies ist genau
dann der Fall, wenn die while-Schleife mit parent(¢) # L abbricht.
Der Pfad P lisst sich dann mittels parent wie folgt zuriickverfolgen.
Sei

¢, i=0,
U; =
parent(u;_1), @>0und u; 1 # s

und sei £ = min{i > 0 | w; = s}. Dann ist uy = s und P = (uy, ..., ug)
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ein s-t-Pfad, den wir als den parent-Pfad von s nach t bezeichnen.

Satz 3.10. Der Edmonds-Karp-Algorithmus durchlduft die repeat-
Schleife hichstens nm/2-mal und hat somit eine Laufzeit von O(nm?).

Beweis. Sei f; der triviale Nullfluss und seien Py, ..., P, die Zunah-
mepfade, die der Edmonds-Karp-Algorithmus der Reihe nach berech-
net, d.h. fi;1 = fi + fp,. Eine Kante e in P; heiflit kritisch fiir P;,
falls der Fluss fp, im Restnetzwerk Ny die Kante e s&ttigt, d.h.
cr,(e) = fp,(e) = cy,(F;). Man beachte, dass eine kritische Kante e
in P; wegen cy,,,(e) = cy,(e) — fp,(e) = 0 nicht in Ny, enthalten ist,
wohl aber die Kante e¥.

Wir iiberlegen uns zunéchst, dass die Léngen ¢; von P; (schwach) mo-
noton wachsen. Hierzu zeigen wir, dass die Abstédnde jedes Knotens
u € V von s und von ¢ beim Ubergang von Ny, zu Ny,,, nicht kleiner
werden konnen. Sei d;(u,v) die minimale Lénge eines Pfades von u
nach v im Restnetzwerk Ny,.

Behauptung 3.11. Fir jeden Knoten u € V' gilt d;(s,u) < di+1(s,u)
und d;(u,t) < di1(u,t).

Hierzu zeigen wir folgende Behauptung.

Behauptung 3.12. Fir jeden kiirzesten Pfad P = (uo, ..., up) von
ug = s nach up, = w in Ny, gilt di(s,u;) < di(s,u;—1) + 1, falls
die Kante e = (uj_1,u;) auch in Ny, enthalten ist, und d;(s,u;) =
di(s,uj—1) — 1, falls e nicht in Ny, enthalten ist.

Falls die Kante e = (u;_1,u;) auch in Ny, enthalten ist, ist die Be-
hauptung klar. Andernfalls muss fi1(e) # fi(e) sein, d.h. e oder e®
miissen in P; vorkommen. Da e nicht in Ny, ist, muss e = (u;,u; 1)
auf P; liegen. Da P; ein kiirzester Pfad von s nach ¢ in Ny, ist, folgt
di(s,uj_1) = di(s,uj) + 1, was d;(s,u;) = d;(s,uj_1) — 1 impliziert.
Damit ist Behauptung 3.12 bewiesen und es folgt

di(s,u) S di(S,Uh_l) +1 S s S di(S, S) + h=h= di+1(s,u).
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Die folgende Behauptung lésst sich analog zu Behauptung 3.12 zeigen.

Behauptung 3.13. Fir jeden kiirzesten Pfad P = (uy, ..., up) von
ug = u nach u, =t in Ny, gilt d;(u;_1,t) < di(u;,t) + 1, falls
die Kante e = (uj_1,u;) auch in Ny, enthalten ist, und d;(u;_1,t) <
di(u;,t) — 1, falls e nicht in Ny, enthalten ist.

Damit folgt

womit Behauptung 3.11 bewiesen ist. Als néchstes zeigen wir folgende
Behauptung.

Behauptung 3.14. Fir 1 <i < j < k gilt: Falls e = (u,v) in P,
und ef' = (v,u) in P; enthalten ist, so ist l; > l; + 2.

Dies folgt direkt aus Behauptung 3.11 und der Tatsache, dass P; und
P; kiirzeste Zunahmepfade sind:
lj = dj(S,t) = dj(S, U) +dj(’l},t> Z di(S,’l}) -+ dl(’U,t) = l@ + 2.
—— —_— Y=

———

>d;(s,v) >d;(v,t) di(s,u)+1  di(u,t)+1

Da jeder Zunahmepfad P; mindestens eine kritische Kante enthélt und
E U E® hochstens m Kantenpaare der Form {e, e®} enthélt, impliziert
schlieflich folgende Behauptung, dass k < mn/2 ist.

Behauptung 3.15. Zwei Kanten e und e® sind zusammen héchstens
n/2-mal kritisch.

Seien P;,..., B, , i1 < --- < i3, die Pfade, in denen e oder et kri-
tisch ist. Falls ¢’ € {e,ef'} kritisch in P, ist, dann verschwindet ¢’
aus Ny, ., Damit also e oder et kritisch in P, sein kénnen, muss
ein Pfad Py mit i; < j/ < i;4; existieren, der €' enthilt. Wegen
Behauptung 3.11 und Behauptung 3.14 ist ¢; , > £; > {;, + 2. Daher

ist

i+1

n—1>0 >0, +2h—1)>1+2h—1)=2h—1,
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was h < n/2 impliziert. |

Man beachte, dass der Beweis auch bei Netzwerken mit reellen Kapa-
zitdten seine Giiltigkeit behalt.

3.3 Der Algorithmus von Dinitz

Man kann zeigen, dass sich in jedem Netzwerk ein maximaler Fluss
durch Addition von hoéchstens m Zunahmepfaden konstruieren lasst
(siche Ubungen). Es ist nicht bekannt, ob sich solche Pfade in Zeit
O(n+m) bestimmen lassen. Wenn ja, wiirde dies auf eine Gesamtlauf-
zeit von O(n + m?) fithren. Fiir dichte Netzwerke (d.h. m = ©(n?))
hat der Algorithmus von Dinitz die gleiche Laufzeit O(n?m) = O(n*)
und die verbesserte Version ist mit O(n?) in diesem Fall sogar noch
schneller.

Die Analyse der Laufzeit des Edmonds-Karp-Algorithmus beruht auf
der Tatsache, dass der Fluss fp, durch den Zunahmepfad F;, der in
jedem Schleifendurchlauf auf den aktuellen Fluss f; addiert wird, auf
mindestens einem kiirzesten Pfad im Restnetzwerk Ny, eine Kante
sattigt. Dies hat zur Folge, dass nicht mehr als nm/2 Zunahmepfade
P; benotigt werden, um einen maximalen Fluss zu erhalten.

Dagegen addiert der Algorithmus von Dinitz in jedem Schleifendurch-
lauf auf den aktuellen Fluss f; einen Fluss g;, der auf jedem kiirzesten
Pfad im Restnetzwerk Ny, mindestens eine Kante sattigt. Wir werden
sehen, dass maximal n — 1 solche Fliisse g; benotigt werden.

Definition 3.16. Sei N = (V, E,s,t,c) ein Netzwerk und sei g ein
Fluss in N. Der Fluss g séttigt eine Kante e € E, falls g(e) = c(e)
ist. g heifit blockierend, falls g mindestens eine Kante e auf jedem
Pfad P von s nach t sdttigt.

Nach dem Min-Cut-Max-Flow-Theorem gibt es zu jedem maximalen

Fluss f einen Schnitt S, so dass alle Kanten in E(S) gesattigt sind.
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Da jeder Pfad von s nach ¢ mindestens eine Kante in £(S) enthalten
muss, ist jeder maximale Fluss auch blockierend. Fiir die Umkehrung
gibt es jedoch einfache Gegenbeispiele, wie etwa

Ein blockierender Fluss muss also nicht unbedingt maximal sein. Tat-
sachlich ist g genau dann ein blockierender Fluss in N, wenn es im
Restnetzwerk N, keinen Zunahmepfad gibt, der nur aus Vorwartskan-
ten e € E mit g(e) < c¢(e) besteht.

Der Algorithmus von Dinitz berechnet anstelle eines kiirzesten Zunah-
mepfades P im aktuellen Restnetzwerk Ny einen blockierenden Fluss g
im Schichtnetzwerk N}. Dieses enthilt nur diejenigen Kanten von Ny,
die auf einem kiirzesten Pfad mit Startknoten s liegen. Zudem werden
aus N} alle Knoten u # t entfernt, die einen Abstand d(s,u) > d(s, )
in Ny haben. Der Name riihrt daher, dass jeder Knoten in N} einer
Schicht S; zugeordnet wird.

Definition 3.17. Sei N = (V| E, s,t,¢) ein Netzwerk. Das zugeordne-
te Schichtnetzwerk ist N' = (V' E' s, t, ) mit der Knotenmenge
Vi=5yU---US, und der Kantenmenge

E = U{(u,v) S E|u c Sj_l ANV € Sj},

J=1

sowie der Kapazitdtsfunktion
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wobei r = 1+ max{d(s,u) < d(s,t)|u €V} und

g {ueV]ds,u)=j}, 0<j<r—1,
RG] j=r.

ist und d(x,y) die Lange eines kirzesten Pfades von x nach y in N
bezeichnet.

Der Algorithmus von Dinitz arbeitet wie folgt.

Algorithmus Dinitz(V, E,s,t,c¢)

. for all (u,v) € V xV do

2 f(u,v) <0

5 while es gibt einen blockierenden Fluss g in N} mit [g| > 0 do
L fe Sty

Das zum Restnetzwerk Ny = (V, E, s,t, ¢s) gehorige Schichtnetzwerk
N = (V' E', s,t,c}) wird von der Prozedur schichtnetzwerk(f)
in Zeit O(n + m) berechnet. Fir die Berechnung eines blockierenden
Flusses g im Schichtnetzwerk N} werden wir 2 Algorithmen angeben:
Eine Prozedur blockfluss1, deren Laufzeit durch O(nm) und eine
Prozedur blockfluss2, deren Laufzeit durch O(n?) beschrankt ist.

Wir beschreiben zuerst die Prozedur schichtnetzwerk. Diese Pro-
zedur fithrt in Ny eine modifizierte Breitensuche mit Startknoten s
durch und speichert dabei in der Menge E’ nicht nur alle Baumkanten,
sondern zusétzlich alle Querkanten (u, v), die auf einem kiirzesten Weg
von s zu v liegen. Die Suche bricht ab, sobald ¢t am Kopf der Schlange
erscheint oder alle von s aus erreichbaren Knoten abgearbeitet wurden.
Falls ¢ erreicht wurde, werden alle Kanten aus E’ entfernt, die nicht
zwischen zwei Knoten aus V' verlaufen, wobei V' aufler der Senke
t alle Knoten u mit einem Abstand d(s,u) < d(s,t) in Ny enthalt.
Andernfalls existiert in Ny (und damit in N}) kein (blockierender)
Fluss g mit |g| > 0.
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Prozedur schichtnetzwerk(f)

E'

for all v €V do niv(v) < n

niv(s) < 0; Q + (s)

while @ # () A head(Q) # t do

5 u < dequeue(Q)

¢  for all e= (u,v) € EUE" do

7 if c(e) — f(e) > 0 Aniv(v) > niv(u) then

= w [\ =

8 E' + E'U{e}

9 d(e) < cle) — f(e)

10 if niv(v) > niv(u)+ 1 then
11 niv(v) <— niv(u) + 1

12 enqueue(Q,v)

13 Vi« {veV]niv(v) <niv(t)}U{t}
14 if head(Q) =t then E' < E'N (V' x V')

Die Laufzeitschranke O(n+m) folgt aus der Tatsache, dass jede Kante
in U ET hochstens einmal besucht wird und jeder Besuch mit einem
konstantem Zeitaufwand verbunden ist.

Nun kommen wir zur Beschreibung der Prozedur blockflussl. Be-
ginnend mit dem Nullfluss g bestimmt diese in der repeat-Schleife
mittels Tiefensuche einen s-t-Pfad P im Schichtnetzwerk N ]'c, addiert
den Fluss (f + g)p zum aktuellen Fluss g hinzu, aktualisiert die Rest-
kapazitaten aller Kanten e auf dem Pfad P und entfernt aus E’ die
von g gesattigten Kanten. Der Pfad P lasst sich hierbei direkt aus dem
Inhalt des Kellers S rekonstruieren, weshalb er S-Pfad genannt wird.
Man beachte, dass die Kapazitaten der Kanten e auf dem Pfad P nur
in Vorwartsrichtung verkleinert, aber anders als bei Ford-Fulkerson
und Edmonds-Karp nicht auch sofort in Riickwértsrichtung angepasst
werden. Dies geschieht erst, nachdem g zu einem blockierenden Fluss
angewachsen ist.

Falls die Tiefensuche in einem Knoten u # s in einer Sackgasse endet
(weil £’ keine von u aus weiterfithrenden Kanten enthélt), wird die
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zuletzt besuchte Kante (u/, u) ebenfalls aus £’ entfernt und die Tiefen-
suche vom Startpunkt u’ dieser Kante fortgesetzt (back tracking). Die
Prozedur blockfluss1 bricht ab, sobald alle Kanten mit Startknoten
s aus E’ entfernt wurden und somit in (V’, E’) keine Pfade mehr von
s nach t existieren (d.h. g ist ein blockierender Fluss in N}).

Prozedur blockflussl(f)

for all e € F'U E'® do g(e) + 0
u<4—s; S < (s)
done <+ false

B W N

repeat
5 if 3 e=(u,v) € E' then
6 pUSh(S, U)
T ()« dle) —gle)
8 U=V

9 elsif v = ¢ then
10 P + S-Pfad von s nach ¢
11 ¢ (P) < min{c’(e) | e € P}

g
12 for all e € P do

13 if ’(e) = c,(P) then £’ < E"\ {e}
14 gle) < gle) + cy(P); g(e®) < —gle)

15 u<4—s; 5« (s)
16 elsif u # s then

17 pop(S)

18 u' < top(9)

19 E « E'\{(u,u)}
20 u

21 else done + true
22 until done

23 return g

Die Laufzeitschranke O(nm) folgt aus der Tatsache, dass sich die
Anzahl der aus £’ entfernten Kanten nach spéatestens n Schleifen-
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durchlaufen um 1 erhoht.

Satz 3.18. Der Algorithmus von Dinitz durchliuft die while-Schleife
héchstens (n — 1)-mal.

Beweis. Sei f; der Nullfluss in N und seien gy, ..., g, die blockieren-
den Fliisse, die der Dinitz-Algorithmus der Reihe nach berechnet, d.h.
fiz1 = fi+gi- Zudem sei d;(u,v) die minimale Lange eines Pfades von
u nach v im Restnetzwerk Ny,. Wir zeigen, dass d;(s,t) < di41(s,1)
ist. Da d;(s,t) > 1 und di(s,t) <n —1ist, folgt k <n — 1.

Behauptung 3.19. Fir jeden Knoten u € V gilt di(s,u) <
diy1(s, u).

Hierzu zeigen wir folgende Behauptung.

Behauptung 3.20. Fir jeden kirzesten Pfad P = (ug, ..., up) von
up = s nach up, = w in Ny, gilt di(s,u;) < di(s,u;—1) + 1, falls
die Kante e = (uj_1,u;) auch in Ny, enthalten ist, und d;(s,u;) =
di(s,uj—1) — 1, falls e nicht in Ny, enthalten ist.

Falls die Kante e = (u;_1,u;) auch in Ny, enthalten ist, ist die Be-
hauptung klar. Andernfalls muss f;.1(e) # fi(e) sein, d.h. g;(e) muss
ungleich 0 sein. Da e nicht in Ny, und somit auch nicht in N}, enthalten
ist, muss e = (u;j,u;_1) in N}, sein. Da N}, nur Kanten auf kiirzesten
Pfaden mit Startknoten s enthalt, folgt d;(s,uj_1) = d;(s,u;) +1, was
di(s,uj) = di(s,uj_1) — 1 impliziert.

Damit ist Behauptung 3.20 bewiesen und es folgt Behauptung 3.19:

di(s,u) < di(s,up_q1) +1<---<di(s,8) +h=h=di1(s,u).
Nun zeigen wir folgende Behauptung.
Behauptung 3.21. Firi=1,...,k —1 gilt d;(s,t) < di+1(s,1).

Sei P = (ug,us,...,up) ein kiirzester Pfad von s = ug nach ¢t = wy,
in Ny,,, (und somit auch in N, ). Mit Behauptung 3.19 folgt, dass



3 Fliisse in Netzwerken

di(S,Uj) S di+1(87’u]’) = j furj = 0,...,
di(s,t) S di+1(8,t) = h ist.

Wenn alle Knoten u; in N}, enthalten sind, muss ein j mit d;(s, u;) <
d;(s,uj_1) existieren, woraus wegen Behauptung 3.20

h ist, also insbesondere

di(s, t) S di(S, Uj) + h —j S di(S, uj—l) +h —j < h= di+1<57t)
—_———
<j-1
folgt. Wiirde némlich d;(s,u;) > d;(s,u;_1) fur j = 1,..., h gelten,
so wiren nach Behauptung 3.20 alle Kanten (u;_1,u;) auch in N},
enthalten. Dann ware aber P ein kiirzester Pfad von s nach ¢ in Ny,
und somit ein s-z-Pfad in N}, der von g; nicht blockiert wird.

Falls mindestens ein Knoten u; nicht in N} enthalten ist, sei u; der
erste solche Knoten auf P. Da u; # t 1st folgt d;y1(s, u]) =j<
h = diy1(s,t). Zudem liegt die Kante e = (u;j_1,u;) nicht nur in
Ny,,,, sondern wegen fii1(e) = fi(e) (da weder e noch e zu N},
gehéren) auch in Ny,. Da somit u; 1 in N}, und e in Ny, ist, kann u;
nur aus dem Grund nicht zu N}, gehéren, dass d;(s, u;) = d;(s, ) ist.
Daher folgt wegen d;(s,u;) < d;(s,u;—1) + 1 (Behauptung 3.20) und
d;(s,uj—1) < dit1(s,u;—1) (Behauptung 3.19)

di(S,t> = di(S,Uj> < di(S,Ujfl) +1 = di+1(S,Uj) < di+1(8,t). [ |
—_——
<d;it1(s,uj—1)

Korollar 3.22. Der Algorithmus von Dinitz berechnet bei Verwendung
der Prozedur blockflussl einen mazimalen Fluss in Zeit O(n*m).

Die Prozedur blockfluss2 benétigt nur Zeit O(n?), um einen blo-
ckierenden Fluss g im Schichtnetzwerk N} zu berechnen, was auf eine
Gesamtlaufzeit des Algorithmus von Dinitz von O(n?) fithrt. Zu ihrer
Beschreibung benotigen wir folgende Notation.

Definition 3.23. Sei N =
Fluss in N sowie u € V.

(V,E,s,t,c) ein Netzwerk und sei g ein
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a) Der Fluss g sédttigt den Knoten wu, falls

o u = s ist und g alle Kanten (s,v) € E mit Startknoten s sdttigt,
oder

e u =t ist und g alle Kanten (v,t) € E mit Zielknoten t sdttigt,
oder

o ueV —{s,t} ist und g alle Kanten (u,v) € E mit Startknoten
u oder alle Kanten (v,u) € E mit Zielknoten w sdttigt.

b) Der Durchsatz von u ist

c(u), u=Ss,
D(U) = C_(U), u=t,
min{ct(u),c (u)}, sonst,

wobei ¢t (u) Y wwer c(u,v) die Ausgangskapazitéit und
c™(u) = X (puer c(v,u) die Eingangskapazitédt von w ist.

Die Korrektheit der Prozedur blockfluss2 basiert auf folgender
Proposition.

Proposition 3.24. Sei N = (V, E,s,t,c) ein Netzwerk und sei g
ein Fluss in N. Wenn g auf jedem s-t-Pfad in N mindestens einen
Knoten u sdttigt, dann ist g blockierend.

Beweis. Dies folgt aus der Tatsache, dass ein Fluss g in N, der auf
jedem s-t-Pfad P mindestens einen Knoten u sattigt, auch mindestens
eine Kante auf dem Pfad P séttigt. |

Beginnend mit dem trivialen Fluss ¢ = 0 berechnet die Prozedur
blockfluss2 fir jeden Knoten u den Durchsatz D(u) im Schicht-
netzwerk N und wihlt in jedem Durchlauf der repeat-Schleife einen
Knoten w mit minimalem Durchsatz D(u). Dann benutzt sie die Pro-
zeduren propagierevor und propagiereruck, um den aktuellen
Fluss g um den Wert D(u) zu erhohen und die Restkapazitéten der
betroffenen Kanten sowie die Durchsatzwerte D(v) der betroffenen
Knoten entsprechend zu aktualisieren.
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Anschliefend werden alle gesattigten Knoten aus V' und alle gesattig-
ten Kanten aus E’ entfernt. Hierzu werden in der Menge B alle Knoten
gespeichert, deren Durchsatz durch die Erhéhungen des Flusses g auf
0 gesunken ist.

Prozedur blockfluss2(f)

1 for all e€ F"UE" do g(e) < 0
> for all we V' do
3
!

D¥(u) <= Xuwer ¢ (u,0)
D_(u) — Z(’U,U)EE/ C/(Ua U)
5 repeat
¢  for all ue V'\ {s,t} do
7 D(u) « min{D~(u), D" (u)}
8 D(s) <+ DT (s)

9 D(t) « D~ (t)

10 wahle u € V' mit D(u) minimal
11 B = {u}

12 propagierevor(u)

13 propagiererick(u)

14 while Ju € B\ {s,t} do
15 B <+ B\ {u}; V! < V'\ {u}

16 for all e = (u,v) € £ do

17 D= (v) < D~ (v) — (u,v)

18 if D~ (v) =0 then B:= BU{v}
19 E' «+ E'"\{e}

20 for all e = (v,u) € E' do

21 DT (v) < DT (v) — (v, u)

22 if D*(v) =0 then B := BU {v}
23 E' « E'"\{e}

24 until u € {s,t}
25  return g

Da in jedem Durchlauf der repeat-Schleife mindestens ein Knoten
gesattigt und aus V' entfernt wird, wird nach héchstens n — 1 Itera-
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tionen einer der beiden Knoten s oder ¢ als Knoten v mit minimalem
Durchsatz D(u) gewahlt und die repeat-Schleife verlassen. Da nach
Beendigung des letzten Durchlaufs der Durchsatz von s oder von t
gleich 0 ist, wird einer dieser beiden Knoten zu diesem Zeitpunkt von
g geséttigt. Nach Proposition 3.24 ist somit g ein blockierender Fluss.

Die Prozeduren propagierevor und propagiererick propagieren
den Fluss durch v in Vorwartsrichtung hin zu ¢ bzw. in Rickwarts-
richtung hin zu s. Dies geschieht in Form einer Breitensuche mit
Startknoten u unter Benutzung der Kanten in £’ bzw. E'. Da der
Durchsatz D(u) von u unter allen Knoten minimal ist, ist sicherge-
stellt, dass der Durchsatz D(v) jedes Knotens v ausreicht, um den fir
ihn ermittelten Zusatzfluss in Hohe von z(v) weiterzuleiten.

Prozedur propagierevor(u)

for all v e V' do z(v) «+ 0
z(u) < D(u)
Q = (u)
while @ # () do
v < dequeue(Q)
5 while 2(v) # 0 A Je = (v,w) € E' do
m < min{z(v),d(e)}; z(v) - z(v) = m; z(w)  z(w) +m
aktualisierekante(e,m)
enqueue(Q, w)

[« ot IS w [\ —

[CINEN|

Prozedur aktualisierekante(e = (v,w),m)

1 gle) «gle)+m

2 d(e) «d(e)—m

3 if d(e) =0 then E' < E'\ {e}

. DY(v) < Dt (v) —m

5 if D*(v) =0 then B := BU {v}
6 D (w)+ D~ (w) —m

7 if D7 (w) =0 then B := BU {w}
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Die Prozedur propagiereruck unterscheidet sich von der Proze-
dur propagierevor nur dadurch, dass in Zeile 5 die Bedingung
Jde = (v,w) € E' durch die Bedingung Je = (w,v) € E’ ersetzt wird.
Da die repeat-Schleife von blockfluss2 maximal (n — 1)-mal durch-
laufen wird, werden die Prozeduren propagierevor und propa-
giereriick hochstens (n — 1)-mal aufgerufen. Sei a die Gesamtzahl
der Durchléufe der inneren while-Schleife von propagierevor, sum-
miert tiber alle Aufrufe. Da in jedem Durchlauf eine Kante aus E’
entfernt wird (falls m = ¢/(v, u) ist) oder der zu propagierende Fluss
z(v) durch einen Knoten v auf 0 sinkt (falls m = z(v) ist), was pro
Knoten und pro Aufruf hochstens einmal vorkommt, ist a < n? + m.
Der gesamte Zeitaufwand ist daher O(n? + m) innerhalb der beiden
while-Schleifen und O(n?) auflerhalb. Die gleichen Schranken gelten
fir propagiererick.

Eine ahnliche Uberlegung zeigt, dass die while-Schleife von
blockfluss2 einen Gesamtaufwand von O(n + m) hat. Folglich
ist die Laufzeit von blockfluss2 O(n?).

Korollar 3.25. Der Algorithmus von Dinitz berechnet bei Verwendung
der Prozedur blockfluss2 einen mazimalen Fluss in Zeit O(n?).
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