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1 Graphentheoretische Grundlagen

Definition 1.1. Ein (ungerichteter) Graph ist ein Paar G =
(V, E), wobei

V' - eine endliche Menge von Knoten/Ecken und

E - die Menge der Kanten ist.
Hierbei gilt

EC (g) = {{u,v}§V|u7év}.

Seiv € V ein Knoten.
a) Die Nachbarschaft von v ist Ng(v) = {u €V | {u,v} € E}.
b) Der Grad von v ist deg,(v) = || Ng(v)]|.

¢) Der Minimalgrad von G ist §(G) = min,ey degs(v) und der
Maximalgrad von G ist A(G) = max,ey degq(v).

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach
N(v), deg(v), § usw.
Beispiel 1.2.

e Der vollstandige Graph (V, E) auf n Knoten, d.h. ||V|| = n und
E = (V wird mit K, und der leere Graph (V,0) auf n Knoten

2/
oy

wird mit E,, bezeichnet.
Kg.'._. Ks: i\ Ky:
e Der vollstindige bipartite Graph (A, B, E) auf a + b Knoten,
d.h. ANB =0, |A|| = a, |B|| = b und E = {{u,v} | u € A,v € B}
wird mit Kgqp bezeichnet.

Kl-'

Kii:, , K < KM:X Ky g Ks: %

o Der Pfad mit n Knoten wird mit P, bezeichnet.

Py: o—e P;: o—e—e Py: ° Py: e—e—e—o—e

o Der Kreis mit n Knoten wird mit C,, bezeichnet.

Cor A O Cy: Q Cy: O

Definition 1.3. Sei G = (V, E) ein Graph.

a) Eine Knotenmenge U C'V' heifst unabhdngig oder stabil, wenn
es keine Kante von G mit beiden Endpunkten in U gibt, d.h. es gilt
EnN () =0. Die Stabilititszahl ist

a(G) =max{||U|| | U ist stabile Menge in G}.

b) Eine Knotenmenge U C V heifit Clique, wenn jede Kante mit

beiden Endpunkten in U in E ist, d.h. es gilt (g) C E. Die Cli-
quenzahl ist

w(G) = max{||U]| | U ist Clique in G}.

c) Ein Graph G' = (V', E') heifst Sub-/Teil-/Untergraph von G,
falls V! CV und E' C E ist. Im Fall V' =V schreiben wir fir G’
auch G — E" (bzw. G = G'UE"), wobei E" = E — E' die Menge
der aus G entfernten Kanten ist. Im Fall E" = {e} schreiben wir
fir G" auch einfach G — e (bzw. G =G Ue).

d) Ein Subgraph G' = (V' E') heifit (durch V') induziert, falls
E =FEn (‘;,) ist. Fir G' schreiben wir dann auch G[V'] oder
G — V", wobei V" =V — V' die Menge der aus G entfernten

Knoten ist. Ist V" = {v}, so schreiben wir fir G' auch einfach
G — v und im Fall V' = {v1,..., v} auch Gluy, ..., vg].



1 Graphentheoretische Grundlagen

e) Ein Weg ist eine Folge von (nicht notwendig verschiedenen) Kno-
ten vy, ...,ve mit {v;,v; 11} € E fiiri=0,...,0—1, der jede Kante
e € E héchstens einmal durchlduft. Die Lange des Weges ist die
Anzahl der durchlaufenen Kanten, also €. Im Fall ¢ = 0 heifst der
Weg trivial. Ein Weg vy, ..., vs heifit auch vo-ve- Weg.

f) Ein Graph G = (V,E) heifft zusammenhingend, falls es
fir alle Paare {u,v} € (‘2/) einen u-v-Weg gibt. G heifst k-
zusammenhiangend, 1 < k < n, falls G nach Entfernen von
beliebigen | < min{n — 1,k — 1} Knoten immer noch zusammen-
hdingend ist.

g) Ein Zyklus ist ein u-v-Weg der Linge ¢ > 2 mit u = v.
h) Ein Weg heifst einfach oder Pfad, falls alle durchlaufenen Knoten
verschieden sind.

i) Fine Menge von Pfaden heif$t knotendisjunkt, wenn je zwei
Pfade in der Menge héchstens gemeinsame Endpunkte haben, und
kantendisjunkt, wenn sie keine gemeinsame Kanten haben.

j) Ein Kreis ist ein Zyklus vo, vy ...,ve_1,v9 der Lange ¢ > 3, fir
den vy, v1,...,vi_1 paarweise verschieden sind.

k) Ein Graph G = (V,E) heifit kreisfrei, azyklisch oder Wald,

falls er keinen Kreis enthdlt.
) Ein Baum ist ein zusammenhdngender Wald.

m) Jeder Knoten v € V vom Grad deg(u) < 1 heifit Blatt und die
ibrigen Knoten (vom Grad > 2) heiffen innere Knoten.

Es ist leicht zu sehen, dass die Relation
Z ={(u,v) € Vx V| esgibt in G einen u-v-Weg}

eine Aquivalenzrelation ist. Die durch die Aquivalenzklassen von Z in-
duzierten Teilgraphen heiflen die Zusammenhangskomponenten
(engl. connected components) oder einfach Komponenten von G.

Definition 1.4. Ein gerichteter Graph oder Digraph ist ein
Paar G = (V, E), wobei

V' - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.

Hierbei gilt
EQVXV:{(U,UHU,UEV},

wobei E auch Schlingen (u,u) enthalten kann. Sei v € V' ein Knoten.

a) Die Nachfolgermenge von v ist N*(v) ={u eV | (v,u) € E}.

b) Die Vorgdngermenge von v ist N~ (v) ={u €V | (u,v) € E}.

¢) Die Nachbarmenge von v ist N(v) = N*(v) U N~ (v).

d) Der Ausgangsgrad von v ist deg” (v) = ||[N*(v)|| und der Ein-
gangsgrad von v ist deg” (v) = ||[N~(v)||. Der Grad von v ist
deg(v) = deg™ (v) + deg™ (v).

e) Ein (gerichteter) wvo-ve-Weg ist eine Folge wvon Knoten
Vo, .-, Up mit (v, vi11) € E firi =0,...,0 — 1, der jede Kan-
te e € E hochstens einmal durchlauft.

f) FEin (gerichteter) Zyklus ist ein gerichteter u-v-Weg der Linge
>1 mitu=nv.

g) Ein gerichteter Weg heifit einfach oder (gerichteter) Pfad, falls
alle durchlaufenen Knoten verschieden sind.

h) Ein (gerichteter) Kreis in G st ein gerichteter Zyklus
Vo, V1 - - ., V1,V der Linge £ > 1, fiir den vy, vq,...,v,_1 paarwei-
se verschieden sind.

i) G heifit kreisfrei oder azyklisch, wenn es in G keinen gerichteten
Kreis gibt.

j) G heifit stark zusammenhidngend, wenn es in G fir jedes Kno-

tenpaar u # v € V. sowohl einen u-v-Pfad als auch einen v-u-Pfad
qibt.

Die Adjazenzmatrix eines Graphen bzw. Digraphen G = (V, E') mit
(geordneter) Knotenmenge V' = {vy,...,v,} ist die (n x n)-Matrix
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A = (a;;) mit den Eintrégen

1 iy Y E 17 iy Vg E
%:{, {vi,v;} € _— %:{ (v5,v;) €

0, sonst 0, sonst.

Fir ungerichtete Graphen ist die Adjazenzmatrix symmetrisch mit
a; =0firte=1,...,n.

Bei der Adjazenzlisten-Darstellung wird fiir jeden Knoten v; eine
Liste mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet
man entweder nur die Liste der Nachfolger oder zusétzlich eine weitere
fir die Vorgénger. Falls die Anzahl der Knoten statisch ist, organi-
siert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit
Index i verweist auf die Adjazenzliste von Knoten v;. Falls sich die
Anzahl der Knoten dynamisch dndert, so werden die Adjazenzlisten
typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 1.5.

Betrachte den gerichteten Graphen G = (V, E) @ ©
mit 'V = {1,2,3,4} und E = {(2,3),
(2,4), (3,1), (3,4), (4,4)}. Dieser hat folgende ONe

Adjazenzmatriz- und Adjazenzlisten-Darstellung:

~3[ {4l
~ el ]
(4]

O = O O
S O O O
OO~ OlWw
— = = O

= W N =

T

2 Farben von Graphen

Definition 2.1. Sei G = (V, E) ein Graph und sei k € N.

a) Eine Abbildung f: V — N heiffit Farbung von G, wenn f(u) #
f(v) fir alle {u,v} € E gilt.

b) G heifst k-farbbar, falls eine Farbung f: V — {1,...,k} exis-
tiert.

c¢) Die chromatische Zahl ist

X(G) = min{k € N | G ist k-farbbar}.
Beispiel 2.2.

X(En) =1, X(Kmm) =2, x(K,) =n,

2, n gerade

3, sonst.

Ein wichtiges Entscheidungsproblem ist, ob ein gegebener Graph
k-farbbar ist. Dieses Problem ist fiir jedes feste & > 3 schwierig.

k-Farbbarkeit (k-COLORING):

Gegeben: Ein Graph G.
Gefragt: Ist G k-farbbar?

Satz 2.3. k-COLORING ist fiir k > 3 NP-vollstindig.

Das folgende Lemma setzt die chromatische Zahl x(G) in Beziehung
zur Stabilitatszahl o(G).

Lemma 2.4. n/a(G) < x(G) <n—a(G) + 1.
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Beweis. Sei G ein Graph und sei ¢ eine x(G)-Farbung von G. Da
dann die Mengen S; = {u € V | ¢(u) =i}, i = 1,..., x(G), stabil
sind, folgt ||.S;|| < @(G) und somit gilt

x(G)
n = ; 1Sill < x(G)a(G).

Fiir den Beweis von x(G) < n — a(G) + 1 sei S eine stabile Menge in
G mit ||S]| = a(G). Dann ist G — S k-farbbar fiir ein & < n — ||.S]|.
Da wir alle Knoten in S mit der Farbe k 4 1 farben konnen, folgt
XG)<k+1<n-alG)+1. |

Beide Abschéatzungen sind scharf, konnen andererseits aber auch
beliebig schlecht werden.

Lemma 2.5. (X(f)> < m und somit X(G) < 1y + /2m + 1/,.

Beweis. Zwischen je zwei Farbklassen einer optimalen Farbung muss
es mindestens eine Kante geben. [ ]

Die chromatische Zahl steht auch in Beziehung zur Cliquenzahl w(G)
und zum Maximalgrad A(G):

Lemma 2.6. w(G) < x(G) < A(G) + 1.

Beweis. Die erste Ungleichung folgt daraus, dass die Knoten einer
maximal groflen Clique unterschiedliche Farben erhalten miissen.

Um die zweite Ungleichung zu erhalten, betrachte folgenden Farbungs-
algorithmus:

Algorithmus greedy-color

I input ein Graph G = (V,E) mit V ={vy,...,v,}
2 c(vy) =1

3 for 1:=2 to n do

A F,={c(v;) | j < i,v;€ N(v;)}

5 c(v;) :=min{k > 1|k ¢ F}

2.1 Féarben von planaren Graphen

Da fiir die Farbe ¢(v;) von v; nur ||F;|| < A(G) Farben verboten sind,
gilt ¢(v;) < A(G) + 1. [ ]

2.1 Farben von planaren Graphen

Ein Graph G heiit planar, wenn er so in die Ebene einbettbar ist,
dass sich zwei verschiedene Kanten hochstens in ihren Endpunkten
berithren. Dabei werden die Knoten von G als Punkte und die Kanten
von G als Verbindungslinien zwischen den zugehorigen Endpunkten
dargestellt.

Bereits im 19. Jahrhundert wurde die Frage aufgeworfen, wie viele
Farben hochstens benotigt werden, um eine Landkarte so zu farben,
dass aneinander grenzende Lander unterschiedliche Farben erhalten.
Offensichtlich lasst sich eine Landkarte in einen planaren Graphen
transformieren, indem man fiir jedes Land einen Knoten zeichnet und
benachbarte Lander durch eine Kante verbindet. Lénder, die sich nur
in einem Punkt beriihren, gelten dabei nicht als benachbart.

Die Vermutung, dass 4 Farben ausreichen, wurde 1878 von Kempe
,bewiesen“ und erst 1890 entdeckte Heawood einen Fehler in Kempes
,Beweis®. Ubrig blieb der 5-Farben-Satz. Der 4-Farben-Satz wurde erst
1976 von Appel und Haken bewiesen. Hierbei handelt es sich jedoch
nicht um einen Beweis im klassischen Sinne, da zur Uberpriifung der
vielen auftretenden Spezialfidlle Computer bendtigt werden.

Satz 2.7 (Appel, Haken 1976).
Jeder planare Graph ist 4-fdarbbar.

Aus dem Beweis des 4-Farben-Satzes von Appel und Haken lésst sich
ein 4-Farbungsalgorithmus fiir planare Graphen mit einer Laufzeit
von O(n') gewinnen.

In 1997 fanden Robertson, Sanders, Seymour und Thomas einen ein-
facheren Beweis fiir den 4-Farben-Satz, welcher zwar einen deutlich
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schnelleren O(n?) Algorithmus liefert, aber auch nicht ohne Computer-
Unterstiitzung verifizierbar ist.

Beispiel 2.8. Wie die folgenden Einbettungen von Ky und K3 in
die Ebene zeigen, sind Ky und Ky 3 planar.

K4.' K273.'

<

Um eine Antwort auf die Frage zu finden, ob auch K5 und K33 pla-
nar sind, betrachten wir die Gebiete von in die Ebene eingebetteten
Graphen.

Durch die Kanten eines eingebetteten Graphen wird die Ebene in
so genannte Gebiete unterteilt. Nur eines dieser Gebiete ist unbe-
schrinkt und dieses wird als duBeres Gebiet bezeichnet. Die Anzahl
der Gebiete von G bezeichnen wir mit 7(G) oder kurz mit . Die An-
zahl der an ein Gebiet g grenzenden Kanten bezeichnen wir mit d(g),
wobei Kanten {u, v}, die nur an g und kein anderes Gebiet grenzen,
doppelt gezahlt werden.

Der Rand rand(g) eines Gebiets ¢ ist die (zirkuldre) Folge aller Kan-
ten, die an g grenzen, wobei jede Kante so durchlaufen wird, dass g
»in Fahrtrichtung links“ liegt bzw. bei Erreichen eines Knotens tiber
eine Kante e, u iiber die im Uhrzeigersinn nachste Kante ¢’ wieder
verlassen wird. Auf diese Weise erhélt jede Kante auf dem Rand von
g eine Richtung (oder Orientierung).

Da jede Kante zur Gesamtlinge -, d(g) aller Rander den Wert 2
beitriagt (sie wird genau einmal in jeder Richtung durchlaufen), folgt

3 d(g) = i(G) = 2m(G).

Fithren zwei Einbettungen von G in die Ebene auf dieselbe Randmen-
ge R, so werden sie als aquivalent angesehen. Wir nennen das Tripel

2.1 Féarben von planaren Graphen

G' = (V, E, R) eine ebene Realisierung des Graphen G = (V, F),
falls es eine Einbettung von G in die Ebene gibt, deren Gebiete die
Rénder in R haben. In diesem Fall nennen wir G’ = (V, E, R) auch
einen ebenen Graphen. Eine andere Moglichkeit, Einbettungen bis
auf Aquivalenz kombinatorisch zu beschreiben, besteht darin, fiir jeden
Knoten u die (zirkuldre) Ordnung 7, aller mit u inzidenten Kanten
anzugeben. Man nennt 7 = {m, | v € V} ein Rotationssystem
fiir G, falls es eine entsprechende Einbettung gibt. Rotationssysteme
haben den Vorteil, dass sie bei Verwendung der Adjazenzlistendar-
stellung ohne zusatzlichen Platzaufwand gespeichert werden kénnen,
indem man die zu u adjazenten Knoten geméafl 7, anordnet.

v

Beispiel 2.9. Die beiden nebenstehenden
Einbettungen eines Graphen G = (V, E) in
die Ebene haben jeweils 7 Gebiete und fih-
ren beide auf den ebemen Graphen G' =
(V, E, R) mit den 7 Randern

R:{(a-/f‘vg)a 7({)797(27}7/)7(67@]-)7
(c,h,d), (d,e k), (fyi,l,m,m, 1 k)}.

J

[

a
'
He!

Das zugehorige Rotationssystem ist

T = {(aa f> 2)7 <a7j7 ba g)a (b7 ¢, h)? (67 k7 fa g),
(d,e, h),(c,7,4, 1, k,d), (I,m),(m)}.

Man beachte, dass sowohl in R als auch in 7 jede Kante genau zweimal
vorkommt. Anstelle von Kantenfolgen kann man R und w auch durch
entsprechende Knotenfolgen beschreiben. <

Satz 2.10 (Polyederformel von Euler, 1750).
Fiir einen zusammenhdngenden ebenen Graphen G = (V, E, R) gilt

n(G) —m(G) +r(G) = 2. (%)
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Beweis. Wir fithren den Beweis durch Induktion iiber die Kantenzahl
m(G) = m.
m = 0: Da G zusammenhéngend ist, muss dann n = 1 sein.

Somit ist auch r = 1, also () erfiillt.

m — 1~ m: Sei G ein zusammenhangender ebener Graph mit m
Kanten.

Ist G' ein Baum, so entfernen wir ein Blatt und erhalten einen
zusammenhangenden ebenen Graphen G’ mit n’ =n — 1 Kno-
ten, m’ = m — 1 Kanten und " = r Gebieten. Nach IV folgt
n—-m+r=mn-1)—m-=1)4+r=n"—m'+r' =2,

Falls G kein Baum ist, entfernen wir eine Kante auf einem Kreis
in G und erhalten einen zusammenhingenden ebenen Graphen
G' mit n’ = n Knoten, m' = m — 1 Kanten und ' = r — 1
Gebieten. Nach IV folgt n —m+r=n—(m—-1)+(r—1) =
n' —m +r' =2. |

Korollar 2.11. Sei G = (V, E) ein planarer Graph mit n > 3 Knoten.
Dann ist m < 3n — 6. Falls G dreiecksfrei ist, gilt sogar m < 2n — 4.

Beweis. O.B.d.A. sei G zusammenhéngend. Wir betrachten eine be-
liebige planare Einbettung von G. Da n > 3 ist, ist jedes Gebiet g
von d(g) > 3 Kanten umgeben. Daher ist 2m = i = >, d(g) > 3r
bzw. r < 2m/3. Eulers Formel liefert

m=n+r—2<n-+2m/3 -2,

was (1 —2/3)m < n — 2 und somit m < 3n — 6 impliziert.

Wenn G dreiecksfrei ist, ist jedes Gebiet von d(g) > 4 Kanten umge-
ben. Daher ist 2m =i = >, d(g) > 4r bzw. r < m/2. Eulers Formel
liefert daher m =n+r —2 <n+m/2 -2, was m/2 <n — 2 und
somit m < 2n — 4 impliziert. [ |

2.1 Féarben von planaren Graphen

Korollar 2.12. Kj5 ist nicht planar.

Beweis. Wegen n =5, also 3n — 6 = 9, und wegen m = (g) = 10 gilt
m £ 3n — 6. (]

Korollar 2.13. K33 ist nicht planar.

Beweis. Wegen n = 6, also 2n — 4 = 8, und wegen m = 3 -3 =9 gilt
m £ 2n — 4. |

Als weitere interessante Folgerung aus der Polyederformel kénnen wir
zeigen, dass jeder planare Graph einen Knoten v vom Grad deg(v) < 5
hat.

Lemma 2.14. Jeder planare Graph hat einen Minimalgrad 6(G) < 5.

Beweis. Fiir n < 6 ist die Behauptung klar. Fiir n > 6 impliziert die
Annahme §(G) > 6 die Ungleichung

m = %ZUEV deg(u) 2 %ZuGV 6= 3TL,

was im Widerspruch zu m < 3n — 6 steht. |

Definition 2.15. Seien G = (V,E) und H Graphen und seien
u,v € V.

e Durch Fusion von u und v entsteht aus G der Graph G,, =
(V—A{v}, E') mit

E'={ecE|vge}U{{u,v'}|{v,v'} € E—{u,v}}.

Ist e = {u,v} eine Kante von G (also e € E), so sagen wir auch,
Gy entsteht aus G durch Kontraktion der Kante e. Hat zudem
v den Grad 2, so sagen wir auch, Gy, entsteht aus G durch Uber-
briickung des Knotens v.

o (G heifit zu H kontrahierbar, falls H aus einer isomorphen Kopie
von G durch wiederholte Kontraktionen gewonnen werden kann.
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e (G heifit Unterteilung von H, falls H aus einer isomorphen Kopie
von G durch wiederholte Uberbriickungen gewonnen werden kann.

e H heifst Minor von G, wenn ein Teilgraph von G zu H kontra-
hierbar ist, und topologischer Minor, wenn ein Teilgraph von
G eine Unterteilung von H ist.

o GG heifit H-frei, falls H kein Minor von G ist. Fir eine Menge H
von Graphen heifit G ‘H-frei, falls G fiir alle H € H H-fret ist.

Beispiel 2.16. Betrachte folgende Graphen:

Offensichtlich ist G keine Unterteilung von H. Entfernen wir jedoch
die beiden diinnen Kanten aus G, so ist der resultierende Teilgraph
eine Unterteilung von H, d.h. H ist ein topologischer Minor von G.
Dagegen ist kein Teilgraph von G’ isomorph zu einer Unterteilung von
H und somit ist H kein topologischer Minor von G'. Wenn wir aber

die drei umrandeten Kanten von G’ kontrahieren, entsteht ein zu H
isomorpher Graph, d.h. H ist ein Minor von G'. <

Nach Definition lasst sich jeder (topologische) Minor H von G aus
einem zu G isomorphen Graphen durch wiederholte Anwendung fol-
gender Operationen gewinnen:

e Entfernen einer Kante oder eines Knoten,
e Kontraktion einer Kante (bzw. Uberbriickung eines Knoten).

Da die Kontraktionen (bzw. Uberbriickungen) o0.B.d.A. auch zuletzt
ausgefiithrt werden konnen, gilt hiervon auch die Umkehrung. Zudem
ist leicht zu sehen, dass G und H genau dann (topologische) Minoren
voneinander sind, wenn sie isomorph sind.

Satz 2.17 (Kempe 1878, Heawood 1890).
Jeder planare Graph ist 5-farbbar.

2.1 Farben von planaren Graphen

Beweis. Wir beweisen den Satz durch Induktion tiber n.
n = 1: Klar.

n — 1~ n: Da G planar ist, existiert ein Knoten u mit deg(u) < 5.
Im Fall deg(u) < 4 entfernen wir v aus G. Andernfalls hat u
zwei Nachbarn v und w, die nicht durch eine Kante verbunden
sind (andernfalls wire K5 ein Teilgraph von G). In diesem Fall
entfernen wir alle mit u inzidenten Kanten aufer {u,v} und
{u,w} und kontrahieren diese beiden Kanten zum Knoten v.

Der resultierende Graph G’ ist ein Minor von G und daher
planar. Da G’ zudem hochstens n — 1 Knoten hat, existiert nach
IV eine 5-Farbung ¢ fur G'. Da wir im 2. Fall dem Knoten w die
Farbe ¢(v) geben koénnen, haben die Nachbarn von u hochstens
4 verschiedene Farben und wir kénnen G 5-farben. |

Kuratowski konnte 1930 beweisen, dass jeder nichtplanare Graph G
den K33 oder den Kj als topologischen Minor enthélt. Fiir den Beweis
benotigen wir noch folgende Notationen.

Definition 2.18. Sei G ein Graph und sei K ein Kreis in G. Ein
Teilgraph B von G heifit Briicke von K in G, falls

e B nur aus einer Kante besteht, die zwei Knoten von K verbindet,
aber nicht auf K liegt (solche Briicken werden auch als Sehnen
von K bezeichnet), oder

e B — K eine Zusammenhangskomponente von G — K ist und B aus
B — K durch Hinzufigen aller Kanten zwischen B — K und K (und
der zugehorigen Endpunkte auf K ) entsteht.

Die Knoten von B, die auf K liegen, heiffen Kontaktpunkte von
B. Zwei Briicken B und B' von K heiflen inkompatibel, falls

e B Kontaktpunkte u,v und B" Kontaktpunkte u’,v’" hat, so dass diese
vier Punkte in der Reihenfolge u,u',v,v" auf K liegen, oder

e B und B" mindestens 3 gemeinsame Kontaktpunkte haben.

Es ist leicht zu sehen, dass ein Graph genau dann planar ist, wenn
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jeder Kreis hochstens zwei paarweise inkompatible Briicken enthélt.

Satz 2.19 (Kuratowski 1930).
Fiir einen Graphen G sind folgende Aussagen dquivalent:

(i) G ist planar.
(i) G enthilt weder den K53 noch den Ky als topologischen Minor.

Beweis. Die Implikation von 7) nach i) folgt aus der Tatsache, dass
die Klasse K der planaren Graphen unter (topologischer) Minorenbil-
dung abgeschlossen ist (d.h. wenn G € K und H ein Minor von G ist,
dann folgt H € K).

Die Implikation von i7) nach i) zeigen wir durch Kontraposition. Sei al-
so G = (V, E) nicht planar. Dann hat G einen 3-zusammenhangenden
nicht planaren topologischen Minor G’ = (V', E’), so dass G’ — ¢’ fiir
jede Kante ¢’ € E’ planar ist (siche Ubungen). Wir entfernen eine
beliebige Kante ey = {ag, bo} aus G’. Da G’ mindestens 5 Knoten hat,
ist G — ey 2-zusammenhéangend. Daher gibt es in G’ — ¢( einen Kreis
K durch die beiden Knoten ag und by. Wir wéihlen K zusammen mit
einer ebenen Realisierung H' von G’ — ¢y so, dass K moglichst viele
Gebiete in H' einschlief}t.

Die Kanten jeder Briicke B von K in G’ — ¢ verlaufen entweder alle
innerhalb oder alle aufierhalb von K in H’. Im ersten Fall nennen wir
B eine innere Briicke und im zweiten eine duflere Briicke. Fiir
zwei Knoten a, b auf K bezeichnen wir mit Kla,b] die Menge aller
Knoten, die auf dem Bogen von a nach b (im Uhrzeigersinn) auf K
liegen. Zudem sei K[a,b) = KJa,b] \ {b}. Die Mengen K (a,b) und
K (a, b] sind analog definiert.

Behauptung 2.20. Jede duflere Briicke B besteht aus einer Kante
{u,v}, die zwei Knoten u € K(ag,by) und v € K(by,ag) verbindet.

Zum Beweis der Behauptung nehmen wir an, dass B mindestens einen
Kontaktpunkt in {ag, by} oder mehr als 2 Kontaktpunkte hat. Dann
liegen mindestens zwei dieser Punkte auf Kfag, by] oder auf Kby, ag).

2.1 Féarben von planaren Graphen

Folglich kann K zu einem Kreis K’ erweitert werden, der in H' mehr
Gebiete einschlieBt (bzw. ausschlieit) als K, was der Wahl von K
und H’ widerspricht.

Im Graphen G’ hat K aufler den Briicken in G’ — ey noch zusétzlich
die Kante eq als Briicke. Nun wéhlen wir eine innere Briicke B, die so-
wohl zu eq als auch zu mindestens einer dufleren Briicke e; = {ay, b1}
inkompatibel ist. Eine solche Briicke B muss es geben, da wir sonst
alle mit eg inkompatiblen inneren Briicken nach auflen klappen und
eo als innere Briicke hinzunehmen kénnten, ohne die Planaritat zu
verletzen.

Wir benutzen K und die drei Briicken ey, e; und B, um eine Untertei-
lung des K33 oder des K5 in G’ zu finden. Hierzu geben wir entweder
zwei disjunkte Mengen A;, Ay C V' mit jeweils 3 Knoten an, so dass
9 knotendisjunkte Pfade zwischen allen Knoten a € A; und b € A,
existieren. Oder wir geben eine Menge A C V'’ mit finf Knoten an,
so dass 10 knotendisjunkte Pfade zwischen je zwei Knoten a,b € A
existieren. Da ey und e; inkompatibel sind, konnen wir annehmen,
dass die vier Knoten ag, a1, by, b1 in dieser Reihenfolge auf K liegen.

Fall 1: B hat einen Kontaktpunkt k; & {ag, a1, bo, b1 }. Aus Symme-
triegriinden kénnen wir &y € K (ag, a1) annehmen. Da B weder
zu ey noch zu e; kompatibel ist, hat B weitere Kontaktpunkte
ko € K(bo,ao) und ks € K(ay,by), wobei ke = k3 sein kann.
Fall 1a: Ein Knoten k; € {ko, k3} liegt auf dem Bogen K (bo, by).

In diesem Fall existieren 9 knotendisjunkte Pfade zwischen
{ag, a1, k;} und {bg, by, k1 }.

Fall 1b: K (b, by)N{ko, k3} = 0. In diesem Fall ist ky € Kby, ao)
und k3 € K(ay, by]. Dann gibt es in B einen Knoten u, von
dem aus 3 knotendisjunkte Pfade zu {ki, ko, k3} existie-
ren. Folglich gibt es 9 knotendisjunkte Pfade zwischen
{CL(), as, u} und {]{71, ]{72, ]{?3}

Fall 2: Alle Kontaktpunkte von B liegen in der Menge {ag, a1, b, b1 }.
Da B inkompatibel zu ey und ey ist, miissen in diesem Fall alle
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vier Punkte zu B gehoren. Sei Py ein ag-bp-Pfad in B und sei
P, ein aq-b1-Pfad in B. Sei u der erste Knoten auf P, der auch
auf P; liegt und sei v der letzte solche Knoten.

Fall 2a: v = v. Dann gibt es in B vier knotendisjunkte Pfa-
de von u zu {ag, a1, by, b1} und somit existieren in G’ 10
knotendisjunkte Pfade zwischen den Knoten u, ag, ay, by, b;.

Fall 2b: u # v. Durch w und v wird der Pfad P, in drei Teil-
pfade P,,, P,, und P,, unterteilt, wobei die Indizes die
Endpunkte bezeichnen und {z,y} = {ay, b1} ist.

Somit gibt es in B drei Pfade zwischen u und jedem Kno-
ten in {ag,v,z} und zwei Pfade zwischen v und jedem
Knoten in {by, y}, die alle 5 knotendisjunkt sind. Folglich
gibt es in G’ 9 knotendisjunkte Pfade zwischen {ag, v, z}
und {by, y, u}. [ |

Beispiel 2.21. Der nebenstehende Graph
ist nicht planar, da wir den K5 durch Kon-
traktion der farblich unterlegten Teilgra-
phen als Minor von G erhalten.

Alternativ lasst sich der Ks auch als ein
topologischer Minor von G erhalten, in-
dem wir die dinnen Kanten entfernen
und in dem resultierenden Teilgraphen al-
le Knoten vom Grad 2 tberbriicken. <

Eine unmittelbare Folgerung aus dem Satz von Kuratowski ist folgende
Charakterisierung der Klasse der planaren Graphen.

Korollar 2.22 (Wagner 1937). Ein Graph ist genau dann planar,
wenn er {Ks 3, K5 }-frei ist.
Definition 2.23. Sei < eine bindre Relation auf einer Menge A.

a) (A, <) heifit Quasiordnung, wenn < reflexiv und transitiv auf
A ist.

2.1 Farben von planaren Graphen

b) (A, <) heiffit Wohlquasiordnung, wenn es zudem zu jeder un-
endlichen Folge ay,as, ... von Elementen aus A Indizes i < j mit
a; S aj gibt.

Beispiele fiir Quasiordnungen sind a < b :< |a| < |b| auf den ganzen
oder komplexen Zahlen. Im ersten Fall handelt es sich um eine Wohl-
quasiordnung, im zweiten nicht, da zum Beispiel die Folge a; = (i+1) /i
eine unendliche absteigende Kette bildet (d.h. a;41 < a; und
a; L a4 fur alle i > 1). (N, <) ist eine Wohlquasiordnung (sogar
eine lineare Wohlordnung, da auch antisymmetrisch und konnex).
Die Teilbarkeitsrelation auf den natiirlichen Zahlen ist dagegen keine
Wohlquasiordnung, da mit der Folge der Primzahlen eine unendli-
che Antikette existiert (d.h. die Glieder der Folge sind paarweise
unvergleichbar: es gilt a; € a; und a; £ a; fir alle i > j > 1).

Es ist leicht zu sehen, dass die Minorenrelation auf der Menge aller
endlichen ungerichteten Graphen keine unendlichen absteigenden Ket-
ten hat. Gemafl folgender Proposition ist sie daher genau dann eine
Wohlquasiordnung, wenn es auch keine unendlichen Antiketten gibt.

Proposition 2.24. Fine Quasiordnung (A, <) ist genau dann eine
Wohlquasiordnung, wenn es in (A, <) weder unendliche absteigende
Ketten noch unendliche Antiketten gibt.

Beweis. Siehe Ubungen. [ ]

Satz 2.25 (Satz von Robertson und Seymour, 1983-2004). Die Mino-
renrelation bildet auf der Menge aller endlichen ungerichteten Graphen
eine Wohlquasiordnung.

Korollar 2.26. Sei KC eine Graphklasse, die unter Minorenbildung
abgeschlossen ist. Dann gibt es eine endliche Menge H von Graphen
mit

K ={G |G ist H-frei}.
Die Graphen in ‘H sind bis auf Isomorphie eindeutig bestimmt und
heiffen verbotene Minoren fiir die Klasse IC.
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Fiir den Beweis des Korollars betrachten wir die komplementare Klas-
se K aller endlichen Graphen, die nicht zu K gehoren, und zeigen, dass
K bis auf Isomorphie nur endlich viele minimale Elemente hat. Sei
M die Menge aller minimalen Elemente von K und entstehe H aus
M, indem wir aus jeder Isomorphieklasse einen Graphen auswahlen.
Dann hat jeder Graph G € K einen Minor in 4 und umgekehrt gehort
jeder Graph G, der einen Minor in H hat, zu K, d.h.

K ={G|3H € H : H ist ein Minor von G}.

Da zudem H eine Antikette bildet, muss H nach Satz 2.25 endlich
sein, womit Korollar 2.26 bewiesen ist.

Das Problem, fiir zwei gegebene Graphen G und H zu entscheiden,
ob H ein Minor von G ist, ist zwar NP-vollstandig (da sich das Hamil-
tonkreisproblem darauf reduzieren lésst). Fiir einen festen Graphen
H ist das Problem dagegen effizient entscheidbar.

Satz 2.27 (Robertson und Seymour, 1995). Fir jeden Graphen H gibt
es einen O(n?)-zeitbeschrinkten Algorithmus, der fiir einen gegebenen
Graphen G entscheidet, ob er H-frei ist.

Korollar 2.28. Die Zugehérigkeit zu jeder unter Minorenbildung
abgeschlossenen Graphklasse K ist in P entscheidbar.

Der Entscheidungsalgorithmus fiir C lasst sich allerdings nur ange-
ben, wenn wir die verbotenen Minoren fiir C kennen. Leider ist der
Beweis von Theorem 2.25 in dieser Hinsicht nicht konstruktiv, so dass
der Nachweis, dass K unter Minorenbildung abgeschlossen ist, nicht
automatisch zu einem effizienten Erkennungsalgorithmus fir C fiihrt.

2.2 Farben von chordalen Graphen

Chordalen Graphen treten in vielen Anwendungen auf, z.B. sind alle
Intervall- und alle Komparabilitdatsgraphen (auch transitiv orientierba-
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re Graphen genannt) chordal. Wir werden sehen, dass sich fiir chordale
Graphen effizient eine optimale Knotenfarbung berechnen lasst.

Definition 2.29. Sei G = (V, E) ein Graph.

a) G heifit chordal oder trianguliert, wenn jeder Kreis K =
Uy, ..., u,u der Linge | > 4 in G mindestens eine Sehne hat.

b) Eine Menge S C V' heifit Separator von G, wenn G — S mehr
Komponenten als G hat. S heifit x-y-Separator, wenn die beiden
Knoten x und y in verschiedenen Komponenten von G — S liegen.

Ein Graph G ist also genau dann chordal, wenn er keinen induzierten
Kreis der Lange | > 4 enthélt (ein induzierter Kreis ist ein indu-
zierter Teilgraph G[V'], V' C V, der ein Kreis ist). Dies zeigt, dass
die Klasse der chordalen Graphen unter induzierter Teilgraphbildung
abgeschlossen ist (aber nicht unter Teilgraphbildung). Jede solche
Graphklasse G ist durch eine Familie von minimalen verbotenen
induzierten Teilgraphen H; charakterisiert, die bis auf Isomorphie
eindeutig bestimmt sind. Die Graphen H; gehoren also nicht zu G,
aber sobald wir einen Knoten daraus entfernen, erhalten wir einen
Graphen in G. Die Klasse der chordalen Graphen hat die Familie der
Kreise C,, der Lange n > 4 als verbotene induzierte Teilgraphen.

Lemma 2.30. Fir einen Graphen G sind folgende Aussagen dquiva-
lent.

(i) G ist chordal.
(ii) Jeder inklusionsminimale Separator von G ist eine Clique.

(iii) Jedes Paar von nicht adjazenten Knoten x undy in G hat einen
x-y-Separator S, der eine Clique ist.

Beweis. Wir zeigen zuerst, dass die erste Aussage die zweite impliziert.
Sei G chordal und sei S ein minimaler Separator von G. Dann hat
G — S mindestens zwei Komponenten G[V;] und G[V3]. Angenommen,
S enthélt zwei nicht adjazente Knoten x und y. Da S minimal ist,
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sind beide Knoten sowohl mit G[V;] als auch mit G[V3] verbunden.
Betrachte die beiden Teilgraphen G; = G[V;U{x, y}] und wéhle jeweils
einen kiirzesten z-y-Pfad P; in G;. Da diese eine Lange > 2 haben,
ist K = P, U P, ein Kreis der Lange > 4. Aufgrund der Konstruktion
ist klar, dass K keine Sehnen in G hat.

Dass die zweite Aussage die dritte impliziert, ist klar, da jedes Paar
von nicht adjazenten Knoten x und y einen z-y-Separator S hat.
Waéhlen wir S inklusionsminimal, muss S auch eine Clique sein.

Um zu zeigen, dass die erste Aussage aus der dritten folgt, nehmen
wir an, dass G nicht chordal ist. Dann gibt es in G einen induzierten
Kreis K der Lange > 4. Seien z und y zwei beliebige nicht adjazente
Knoten auf K und sei .S ein minimaler x-y-Separator in G. Dann muss
S mindestens zwei nicht adjazente Knoten aus K enthalten. [ |

Definition 2.31. Sei G = (V, E) ein Graph und sei k > 0. Ein
Knoten u € V vom Grad k heifit k-simplizial, wenn alle Nachbarn
von u paarweise adjazent sind. Jeder k-simpliziale Knoten wird auch
als simplizial bezeichnet.

Zusammenhéangende chordale Graphen konnen als eine Verallgemeine-
rung von Baumen aufgefasst werden. Ein Graph G ist ein Baum, wenn
er aus K durch sukzessives Hinzufiigen von 1-simplizialen Knoten
erzeugt werden kann. Entsprechend heifit G k-Baum, wenn G aus
K, durch sukzessives Hinzufiigen von k-simplizialen Knoten erzeugt
werden kann. Wir werden sehen, dass ein zusammenhéangender Graph
G genau dann chordal ist, wenn er aus einem isolierten Knoten (also
aus einer 1-Clique) durch sukzessives Hinzufligen von simplizialen
Knoten erzeugt werden kann. Aquivalent hierzu ist, dass G durch
sukzessives Entfernen von simplizialen Knoten auf einen isolierten
Knoten reduziert werden kann.

Definition 2.32. Sei G = (V, E) ein Graph. Fine lineare Ordnung
(v1,...,v,) auf V heifst perfekte Eliminationsordnung (PEO)
von G, wenn v; simplizial in Glvy, ... v firi=2,...,n ist
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Es ist klar dass alle Knoten eines vollstandigen Graphen simplizial
sind. Das folgende Lemma verallgemeinert die bekannte Tatsache,
dass jeder Baum mindestens 2 nicht adjazente Blatter hat (abgesehen
von K7 und Ks).

Lemma 2.33. Jeder nicht vollstindige chordale Graph besitzt min-
destens 2 simpliziale Knoten, die nicht adjazent sind.

Beweis. Wir fithren Induktion iiber n. Fir n < 2 ist die Behauptung
klar. Sei G = (V, F) ein Graph mit n > 3 Knoten. Da G nicht voll-
standig ist, enthdlt G zwei nichtadjazente Knoten x; und x,. Falls
x1 und z, in verschiedenen Komponenten von G liegen, sei S = 0,
andernfalls sei S ein minimaler z;-xo-Separator. Im zweiten Fall ist S
nach Lemma 2.30 eine Clique in G. Seien G[V;] und G[V3] die beiden
Komponenten von G — S mit z; € V.

Betrachte die Teilgraphen G; = G[V; U S]. Da G; chordal ist und
weniger als n Knoten hat, ist G; nach IV entweder eine Clique oder
G; enthalt mindestens zwei nicht adjazente simpliziale Knoten y;, z;.
Falls G; eine Clique ist, ist x; simplizial in G;, und da x; keine Nach-
barn auflerhalb von V; U S hat, ist x; dann auch simplizial in G.

Ist G; keine Clique, kann hochstens einer der beiden Knoten ;, 2;
zu S gehoren (da S im Fall S # () eine Clique und {y;, z;} ¢ FE ist).
0.B.d.A. sei y; € V;. Dann hat y; keine Nachbarn auflerhalb von V;US
und somit ist y; auch simplizial in G. |

Satz 2.34. FEin Graph ist genau dann chordal, wenn er eine PEO
hat.

Beweis. Falls G chordal ist, lasst sich eine PEO gemafl Lemma 2.33
bestimmen, indem wir fiir ¢ = n, ..., 2 sukzessive einen simplizialen
Knoten v; in G — {v;y1, ..., v,} wéhlen.

Fiir die umgekehrte Richtung sei (vy, ..., v,) eine PEO von G. Wir
zeigen induktiv, dass G; = G[vy, ..., v;] chordal ist. Da v;;; simplizial
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in G4 ist, enthélt jeder Kreis K der Lange > 4 in G;,1, auf dem
v;11 liegt, eine Sehne zwischen den beiden Kreisnachbarn von v;y;.
Daher ist mit G; auch G;,; chordal. |

Korollar 2.35. Es gibt einen Polynomialzeitalgorithmus A, der fir
einen gegebenen Graphen G eine PEO berechnet, falls G chordal ist,
und andernfalls einen induzierten Kreis der Linge > 4 ausgibt.

Beweis. A versucht wie im Beweis von Theorem 2.34 beschrieben, eine
PEO zu bestimmen. Stellt sich heraus, dass G; = G — {vi1, ..., 0, }
keinen simplizialen Knoten v; hat, so ist GG; wegen Lemma 2.33 nicht
chordal. Daher gibt es nach Lemma 2.30 in G; zwei nicht adjazente
Knoten z und y und einen minimalen z-y-Separator S, der keine
Clique ist. Wie im Beweis von Lemma 2.30 beschrieben, lasst sich mit-
hilfe von S ein induzierter Kreis K der Lange > 4 in G; konstruieren.

Da G; ein induzierter Teilgraph von G ist, ist K auch ein induzierter
Kreis in G. [

Eine PEO kann verwendet werden, um einen chordalen Graphen zu
farben:

Algorithmus chordal-color(V, E)

. berechne eine PEO (vy,...,v,) fur G=(V,F)
> starte greedy-color mit der Knotenfolge (vq,...,v,)

Lemma 2.36. Fir einen gegebenen chordalen Graphen G = (V, E)
berechnet der Algorithmus chordal-color eine k-Fdrbung ¢ von G
mit k = x(G) = w(Q).

Beweis. Sei v; ein beliebiger Knoten mit ¢(v;) = k. Da (vq,...,v,)
eine PEO von G ist, ist v; simplizial in G[vy, ..., v;]. Somit bilden die
Nachbarn v; von v; mit j < ¢ eine Clique und wegen c(v;) = k bilden
sie zusammen mit v; eine k-Clique. Daher gilt x(G) < k < w(G),
woraus wegen w(G) < x(G) die Behauptung folgt. |
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