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1 Kryptografische Hashverfahren

1.1 Einführung

Durch kryptographische Verfahren lassen sich unter anderem die folgenden Schutzziele
realisieren.
• Vertraulichkeit

– Geheimhaltung
– Anonymität (z.B. Mobiltelefon)
– Unbeobachtbarkeit (von Transaktionen)

• Integrität
– von Nachrichten und Daten

• Zurechenbarkeit
– Authentikation
– Unabstreitbarkeit
– Identifizierung

• Verfügbarkeit
– von Daten
– von Rechenressourcen
– von Informationsdienstleistungen

Kryptografische Hashverfahren sind ein wirksames Werkzeug zur Sicherstellung der Inte-
grität von Nachrichten oder generell von digitalisierten Daten. Sie nehmen somit beim
Schutz der Datenintegrität eine ähnlich herausragende Stellung ein wie sie Kryptosys-
temen bei der Wahrung der Vertraulichkeit zukommt. Daneben finden kryptografische
Hashfunktionen aber auch vielfach als Bausteine von komplexeren Systemen Verwendung.
Wie wir noch sehen werden, sind kryptografische Hashfunktionen etwa bei der Erstellung
von digitalen Signaturen sehr nützlich. Auf weitere Anwendungsmöglichkeiten werden
wir später eingehen.
Vielen Anwendungen von kryptografischen Hashfunktionen h liegt die Idee zugrunde,
dass sie zu einem vorgegebenen Text x eine zwar kompakte aber dennoch repräsentati-
ve Darstellung h(x) liefern, die unter praktischen Gesichtspunkten als eine eindeutige
Identifikationsnummer von x fungieren kann. Die Berechnungsvorschrift für h muss
somit „charakteristische Merkmale“ von x in den Hashwert h(x) einfließen lassen. Da
der Fingerabdruck eines Menschen ganz ähnliche Eigenschaften besitzt (was ihn für
Kriminalisten bekanntlich so wertvoll macht), wird der Hashwert h(x) auch oft als
ein digitaler Fingerabdruck von x bezeichnet. Gebräuchlich sind auch die Bezeich-
nungen kryptografische Prüfsumme oder message digest (englische Bezeichnung für
„Nachrichtenextrakt“).
Typische Schutzziele, die sich mittels Hashfunktionen realisieren lassen, sind die
Nachrichten- und Teilnehmerauthentikation.
• „Nachrichtenauthentikation“ (message authentication)
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Abbildung 1.1: Eine grobe Einteilung von kryptografischen Hashverfahren.

– Wie lässt sich sicherstellen, dass eine Nachricht (oder eine Datei) während
einer (räumlichen oder auch zeitlichen) Übertragung nicht verändert wurde?

– Wie lässt sich der Urheber (oder Absender) einer Nachricht zweifelsfrei fest-
stellen?

• „Teilnehmerauthentikation“ (entity authentication, identification)
– Wie kann sich eine Person (oder ein Gerät) anderen gegenüber zweifelsfrei

ausweisen?

Klassifikation von Hashverfahren

Kryptografische Hashverfahren lassen sich grob danach klassifizieren, ob der Hashwert
lediglich in Abhängigkeit vom Eingabetext berechnet wird oder zusätzlich von einem
symmetrischen Schlüssel abhängt (siehe Abbildung 1.1).
Kryptografische Hashfunktionen, bei deren Berechnung keine Schlüssel benutzt werden,
dienen vornehmlich der Erkennung von unbefugt vorgenommenen Manipulationen an
Dateien oder Nachrichten. Daher werden sie auch als MDC bezeichnet (Manipulation
Detection Code [englisch] = Code zur Erkennung von Manipulationen). Zuweilen wird
das Kürzel MDC auch als eine Abkürzung für Modification Detection Code verwendet.
Seltener ist dagegen die Bezeichnung MIC (message integrity codes). Abbildung 1.2
zeigt eine typische Anwendung von MDCs.

Um die Integrität eines Datensatzes x sicherzustellen, der über einen ungesi-

x x′

y
y

?= h(x′)

h h

echt

falsch

Ungesicherter Kanal

Authentisierter Kanal

Abbildung 1.2: Einsatz eines MDC h zur Überprüfung der Integrität eines Datensatzes
x.
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Abbildung 1.3: Verwendung eines MAC zur Nachrichtenauthentikation.

cherten Kanal gesendet (bzw. auf einem vor Manipulationen nicht sicheren
Webserver abgelegt) wird, kann man wie folgt verfahren. Man sendet den
MDC-Hashwert von x über einen authentisierten Kanal und prüft, ob der
Datensatz nach der Übertragung noch denselben Hashwert liefert.

Kryptografische Hashverfahren mit symmetrischen Schlüsseln finden hauptsächlich bei
der Authentifizierung von Nachrichten Verwendung. Diese werden daher auch als MAC
(message authentication code [englisch] = Code zur Nachrichtenauthentifizierung) oder
als Authentikationscode bezeichnet. Daneben gibt es auch Hashverfahren mit asym-
metrischen Schlüsseln. Diese werden jedoch der Rubrik der Signaturverfahren zugeordnet,
da mit ihnen ausschließlich digitale Unterschriften gebildet werden. Abbildung 1.3 zeigt,
wie sich Nachrichten mit einem MAC authentisieren lassen. Man beachte, dass nun auch
der Hashwert über den unsicheren Kanal gesendet wird.

Möchte Alice eine Nachricht x an Bob übermitteln, so berechnet er den
zugehörigen MAC-Hashwert y = hk(x) und fügt diesen der Nachricht x hinzu.
Bob überprüft die Echtheit der empfangenen Nachricht (x′, y′), indem sie
ihrerseits den zu x′ gehörigen Hashwert hk(x′) berechnet und das Ergebnis
mit y′ vergleicht. Der geheime Authentikationsschlüssel k muss hierbei genau
wie bei einem symmetrischen Kryptosystem über einen gesicherten Kanal
vereinbart werden.

Indem Alice seine Nachricht x um den Hashwert y = hk(x) ergänzt, gibt er Bob nicht
nur die Möglichkeit, anhand von y die empfangene Nachricht auf Manipulationen zu
überprüfen. Die Benutzung des geheimen Schlüssels k erlaubt zudem eine Überprüfung
der Herkunft der Nachricht.

1.2 Schlüssellose Hashfunktionen (MDCs)

In diesem Abschnitt betrachten wir verschiedene Sicherheitsanforderungen an einzelne
Hashfunktionen h. Dabei nehmen wir an, dass h öffentlich bekannt ist, d.h. h ist eine
schlüssellose Hashfunktion (MDC).
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Sei h : X → Y eine Hashfunktion. Ein Paar (x, y) ∈ X × Y heißt gültig für h, falls
h(x) = y ist. Ein Paar (x, x′) mit h(x) = h(x′) heißt Kollisionspaar für h. Die Anzahl
‖Y ‖ der Hashwerte bezeichnen wir mit m. Ist auch der Textraum X endlich, ‖X‖ = n,
so heißt h eine (n,m)-Hashfunktion. In diesem Fall verlangen wir meist, dass n ≥ 2m
ist, und wir nennen h dann eine Kompressionsfunktion (compression function).
Da h öffentlich bekannt ist, ist es sehr einfach, für einen vorgegebenen Text x ein gültiges
Paar (x, y) zu erzeugen. Für bestimmte kryptografische Anwendungen ist es wichtig, dass
dies nicht möglich ist, falls der Hashwert y vorgegeben wird.
Problem P1: Bestimmung eines Urbilds

Gegeben: Eine Hashfkt. h : X → Y und ein Hashwert y ∈ Y .
Gesucht: Ein Text x ∈ X mit h(x) = y.

Falls es einen immensen Aufwand erfordert, für einen vorgegebenen Hashwert y einen Text
x mit h(x) = y zu finden, so heißt h Einweg-Hashfunktion (one-way hash function bzw.
preimage resistant hash function). Diese Eigenschaft wird beispielsweise benötigt, wenn
die Hashwerte der Benutzerpasswörter in einer öffentlich zugänglichen Datei abgespeichert
werden, wie es bei manchen Unix-Systemen der Fall ist.
Problem P2: Bestimmung eines zweiten Urbilds

Gegeben: Eine Hashfkt. h : X → Y und ein Text x ∈ X.
Gesucht: Ein Text x′ ∈ X \ {x} mit h(x′) = h(x).

Falls sich für einen vorgegebenen Text x nur mit großem Aufwand ein weiterer Text x′ 6= x
mit dem gleichen Hashwert h(x′) = h(x) finden lässt, heißt h schwach kollisionsre-
sistent (weakly collision resistant bzw. second preimage resistant). Diese Eigenschaft
wird in der durch Abbildung 1.2 skizzierten Anwendung benötigt. Beim Versuch, eine
digitale Signatur zu fälschen (siehe unten), sieht sich der Gegner dagegen mit folgender
Problemstellung konfrontiert.
Problem P3: Bestimmung einer Kollision

Gegeben: Eine Hashfkt. h : X → Y .
Gesucht: Texte x 6= x′ ∈ X mit h(x′) = h(x).

Falls sich dieses Problem nur mit einem immensen Aufwand lösen lässt, heißt h (stark)
kollisionsresistent (collision resistant).
Obwohl die schwache Kollisionsresistenz eine gewisse Ähnlichkeit mit der Einweg-
Eigenschaft aufweist, sind die beiden Eigenschaften im allgemeinen unvergleichbar. So
muss eine schwach kollisionsresistente Funktion nicht notwendigerweise eine Einweg-
funktion sein, da die Bestimmung eines Urbildes gerade für diejenigen Funktionswerte
einfach sein kann, die nur ein einziges Urbild besitzen. Umgekehrt impliziert die Einweg-
Eigenschaft auch nicht die schwache Kollisionsresistenz, da die Kenntnis eines Urbildes
das Auffinden weiterer Urbilder sehr stark erleichtern kann.

1.2.1 Vergleich von Sicherheitsanforderungen

In diesem Abschnitt zeigen wir, dass stark kollisionsresistente Hashfunktionen sowohl
schwach kollisionsresistent als auch Einweghashfunktionen sind.

Satz 1. Sei h : X → Y eine (n,m)-Hashfunktion. Dann ist das Problem P3, ein Kol-
lisionspaar für h zu bestimmen, auf das Problem P2, ein zweites Urbild zu bestimmen,
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1 wähle zufällig x ∈ X
2 x′ := A(x)
3 if x′ 6= ? then return(x, x′) else return(?)

Abbildung 1.4: Reduktion des Kollisionsroblems auf das Problem, ein zweites Urbild zu
bestimmen

reduzierbar. Folglich sind stark kollisionsresistente Hashfunktionen auch schwach kollisi-
onsresistent.

Beweis. Sei A ein Las-Vegas Algorithmus, der für ein zufällig aus X gewähltes x mit
Erfolgswahrscheinlichkeit ε ein zweites Urbild x′ für h liefert und andernfalls ? aus-
gibt. Dann ist klar, dass der in Abbildung 1.4 dargestellte Las-Vegas Algorithmus mit
Wahrscheinlichkeit ε ein Kollisionspaar findet. �

Als nächstes zeigen wir, wie sich das Kollisionsproblem auf das Urbildproblem reduzieren
lässt.

Satz 2. Sei h : X → Y eine (n,m)-Hashfunktion mit n ≥ 2m. Dann ist das Problem P3,
ein Kollisionspaar für h zu bestimmen, auf das Problem P1, ein Urbild zu bestimmen,
reduzierbar.

Beweis. Sei A ein Invertierungsalgorithmus für h, d.h. A berechnet für jeden Hashwert y
in W (h) = {h(x) | x ∈ X} ein Urbild x mit h(x) = y. Betrachte den in Abbildung 1.5
dargestellten Las-Vegas Algorithmus B.
Sei C = {h−1(y) | y ∈ Y }. Dann hat B eine Erfolgswahrscheinlichkeit von

∑
C∈C

‖C‖
‖X‖

· ‖C‖ − 1
‖C‖

= 1
n

∑
C∈C

(‖C‖ − 1) = (n−m)/n ≥ 1
2 .

�

1.2.2 Das Zufallsorakelmodell (ZOM)

Das ZOM dient dazu, den Aufwand verschiedener Angriffe auf eine Hashfunktion h : X →
Y nach oben abzuschätzen. Sind X und Y vorgegeben, so können wir eine Hashfunktion
h : X → Y dadurch „konstruieren“, dass wir für jedes x ∈ X zufällig ein y ∈ Y wählen
und h(x) auf y setzen. Äquivalent hierzu ist, für h eine zufällige Funktion aus der
Klasse F (X, Y ) aller nm Funktionen von X nach Y zu wählen. Dieses Verfahren ist auf
Grund des hohen Aufwands zwar nicht mehr praktikabel, wenn n = ‖X‖ eine bestimmte
Größe übersteigt. Es liefert uns aber ein theoretisches Modell für eine Hashfunktion
mit „idealen“ kryptografischen Eigenschaften. Offensichtlich besteht für den Gegner die

1 wähle zufällig x ∈ X
2 y := h(x)
3 x′ := A(y)
4 if x 6= x′ then return(x, x′) else return(?)

Abbildung 1.5: Reduktion des Kollisionsproblems auf das Urbildproblem
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Prozedur FindPreimage(h, y, q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X
2 for each xi ∈ X0 do
3 if h(xi) = y then return(xi)
4 return(?)

Abbildung 1.6: Bestimmung eines Urbilds für einen Hashwert

einzige Möglichkeit, Informationen über h zu erhalten, darin, sich für eine Reihe von
Texten die zugehörigen Hashwerte zu besorgen (was der Befragung eines funktionalen
Zufallsorakels entspricht).
Eine Zufallsfunktion h eignet sich deshalb gut als kryptografische Hashfunktion, weil
der Hashwert h(x) für einen Text x auch dann noch schwer vorhersagbar ist, wenn der
Gegner bereits die Hashwerte einer beliebigen Zahl von anderen Texten kennt.

Proposition 3. Sei X0 = {x1, . . . , xk} eine beliebige Menge von k verschiedenen Texten
aus X und seien y1, . . . , yk ∈ Y . Dann gilt für eine zufällig aus F (X, Y ) gewählte Funktion
h und für jedes Paar (x, y) ∈ (X −X0)× Y ,

Pr[h(x) = y |h(xi) = yi für i = 1, . . . , k] = 1/m.

Um eine obere Komplexitätsschranke für das Urbildproblem im ZOM zu erhalten, be-
trachten wir den in Abbildung 1.6 dargestellten Algorithmus. Hier (und bei den beiden
folgenden Algorithmen) gibt der Parameter q die Anzahl der Hashwertberechnungen
(also die Anzahl der gestellten Orakelfragen an das Zufallsorakel h) an. Der Zeitaufwand
der Algorithmen ist dabei proportional zu q.

Satz 4. FindPreimage(h, y, q) gibt im ZOM mit Wahrscheinlichkeit ε = 1− (1−1/m)q
ein Urbild von y aus (unabhängig von der Wahl der Menge X0).

Beweis. Sei y ∈ Y fest und sei X0 = {x1, . . . , xq}. Für i = 1, . . . , q bezeichne Ei das
Ereignis “h(xi) = y”. Nach Proposition 3 sind diese Ereignisse stochastisch unabhängig
und ihre Wahrscheinlichkeit ist Pr[Ei] = 1/m (i = 1, . . . , q). Also folgt

Pr[E1 ∪ . . . ∪ Eq] = 1− Pr[E1 ∩ . . . ∩ Eq] = 1− (1− 1/m)q.
�

Der in Abbildung 1.7 dargestellte Algorithmus liefert uns eine obere Schranke für die
Komplexität des Problems, ein zweites Urbild für h(x) zu bestimmen. Die Erfolgswahr-
scheinlichkeit lässt sich vollkommen analog zum vorherigen Satz bestimmen.

Satz 5. FindSecondPreimage(h, x, q) gibt im ZOM mit Wahrscheinlichkeit ε =
1− (1− 1/m)q−1 ein zweites Urbild x0 6= x von y = h(x) aus.
Ist q vergleichsweise klein, so ist bei beiden bisher betrachteten Angriffen ε ≈ q/m. Um
also auf eine Erfolgswahrscheinlichkeit von 1/2 zu kommen, ist q ≈ m/2 zu wählen.
Geht es lediglich darum, irgendein Kollisionspaar (x, x′) aufzuspüren, so bietet sich ein
sogenannter Geburtstagsangriff an. Dieser ist deutlich zeiteffizienter zu realisieren.
Wie der Name schon andeutet, basiert dieser Angriff auf dem sogenannten Geburtstagspa-
radoxon, welches in seiner einfachsten Form folgendes besagt.
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Geburtstagsparadoxon: Bereits in einer Schulklasse mit 23 Schulkindern haben mit einer
Wahrscheinlichkeit größer 1/2 mindestens zwei Kinder am gleichen Tag Geburtstag
(dies erscheint zwar verblüffend, wird aber durch die Praxis mehr als bestätigt).

Tatsächlich zeigt der nächste Satz, dass bei q-maligem Ziehen (mit Zurücklegen) aus
einer Urne mit m Kugeln mit einer Wahrscheinlichkeit von

1− (m− 1)(m− 2) · · · (m− q + 1)/mq−1

eine Kugel zweimal gezogen wird. Für m = 365 und q = 23 ergibt dies einen Wert von
ungefähr 0,507.
Zur Kollisionsbestimmung verwenden wir den in Abbildung 1.8 dargestellten Algorithmus.
Bei einer naiven Implementierung würde zwar der Zeitaufwand für die Auswertung der if-
Bedingung quadratisch von q abhängen. Trägt man aber jeden Text x unter dem Suchwort
h(x) in eine (herkömmliche) Hashtabelle der Größe q ein, so wird der Zeitaufwand für
die Bearbeitung jedes einzelnen Textes x im wesentlichen durch die Berechnung von h(x)
bestimmt.

Satz 6. Collision(h, q) gibt im ZOM mit Erfolgswahrscheinlichkeit

ε = 1− (m− 1)(m− 2) · · · (m− q + 1)
mq−1

ein Kollisionspaar (x, x′) für h aus.

Beweis. Sei X0 = {x1, . . . , xq}. Für i = 1, . . . , q bezeichne Ei das Ereignis

“h(xi) 6∈ {h(x1, . . . , h(xi−1)}.”

Dann beschreibt E1∩. . .∩Eq das Ereignis “Collision(h, q) gibt ? aus” und für i = 1, . . . , q
gilt

Pr[Ei |E1 ∩ . . . ∩ Ei−1] = m− i+ 1
m

.

Dies führt auf die Erfolgswahrscheinlichkeit

ε = 1− Pr[E1 ∩ . . . ∩ Eq]
= 1− Pr[E1]Pr[E2 |E1] · · ·Pr[Eq |E1 ∩ . . . ∩ Eq−1]

= 1−
(
m− 1
m

)(
m− 2
m

)
· · ·

(
m− q + 1

m

)
.

�

Prozedur FindSecondPreimage(h, x, q)
1 y := h(x)
2 wähle eine beliebige Menge X0 = {x1, . . . , xq−1} ⊆ X − {x}
3 for each xi ∈ X0 do
4 if h(xi) = y then return(xi)
5 return(?)

Abbildung 1.7: Bestimmung eines 2. Urbilds für einen Hashwert
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Prozedur Collision(h, q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X
2 for each xi ∈ X0 do yi := h(xi)
3 if ∃i 6= j : yi = yj then return(xi, xj) else return(?)

Abbildung 1.8: Bestimmung eines Kollisionspaares

Mit 1− x ≈ e−x folgt

ε = 1−
q−1∏
i=1

(
1− i

m

)
≈ 1−

q−1∏
i=1

e
−i
m = 1− e− 1

m

∑q−1
i=1 i = 1− e−

q(q−1)
2m ≈ 1− e−

q2
2m ≈ q2/2m.

Somit erhalten wir die Abschätzung

q ≈ cε
√
m

mit cε =
√

2ε. Diese Abschätzung ist nur für ε-Werte nahe Null hinreichend genau. Eine
bessere Abschätzung ergibt sich aus der Approximation ε ≈ 1− e− q2

2m :

q ≈ c′ε
√
m

mit c′ε =
√

2 ln 1
1−ε . Für ε = 1/2 ergibt sich somit q ≈

√
(2 ln 2)m ≈ 1,17

√
m.

Besitzt also eine binäre Hashfunktion h : {0, 1}n → {0, 1}m die Hashwertlänge m = 128
Bit, so müssen im ZOM q ≈ 1,17 · 264 Texte gehasht werden, um mit einer Wahrschein-
lichkeit von 1/2 eine Kollision zu finden. Um einem Geburtstagsangriff widerstehen zu
können, sollte eine Hashfunktion mindestens eine Hashwertlänge von 128 oder besser 160
Bit haben.

1.2.3 Iterierte Hashfunktionen

In diesem Abschnitt beschäftigen wir uns mit der Frage, wie sich aus einer kollisionsresis-
tenten Kompressionsfunktion

h : {0, 1}m+t → {0, 1}m

eine kollisionsresistente Hashfunktion

ĥ : {0, 1}∗ → {0, 1}l

konstruieren lässt. Hierzu betrachten wir folgende kanonische Konstruktionsmethode.
Preprocessing: Transformiere x ∈ {0, 1}∗ mittels einer Funktion

y : {0, 1}∗ →
⋃
r≥1
{0, 1}rt

zu einem String y(x) mit der Eigenschaft |y(x)| ≡t 0.
Processing: Sei IV ∈ {0, 1}m ein öffentlich bekannter Initialisierungsvektor und sei

y(x) = y1 · · · yr mit |yi| = t für i = 1, . . . , r. Berechne eine Folge z0, . . . , zr von
Strings zi ∈ {0, 1}m wie folgt:

zi =

IV, i = 0,
h(zi−1yi), i = 1, . . . , r.
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Optionale Ausgabetransformation: Berechne den Hashwert ĥ(x) = g(zr), wobei
g : {0, 1}m → {0, 1}l eine öffentlich bekannte Funktion ist. (Meist wird für g
die Identität verwendet.)

Um ĥ(x) zu berechnen, muss also die Kompressionsfunktion h genau r-mal aufgeru-
fen werden. Wir formulieren nun eine für Preprocessing-Funktionen wünschenswerte
Eigenschaft.

Definition 7. Eine Funktion y : {0, 1}∗ → {0, 1}∗ heißt suffixfrei, falls es keine Strings
x 6= x̃ und z in {0, 1}∗ mit y(x̃) = zy(x) gibt (d.h. kein Funktionswert y(x) ist Suffix
eines Funktionswertes y(x̃) an einer Stelle x̃ 6= x).

Man beachte, dass jede suffixfreie Funktion insbesondere injektiv ist.

Satz 8. Falls die Preprocessing-Funktion y suffixfrei und die Ausgabetransformation g
injektiv ist, so ist mit h auch ĥ kollisionsresistent.

Beweis. Angenommen, es gelingt, ein Kollisionspaar x, x̃ für ĥ mit ĥ(x) = ĥ(x̃) zu finden.
Sei

y(x) = y1y2 . . . yk−1yk und y(x̃) = ỹ1ỹ2 . . . ỹl−1ỹl mit k ≤ l.

Da y suffixfrei ist, muss ein Index i ∈ {1, . . . , k} mit yi 6= ỹl−k+i existieren. Weiter seien
zi (i = 0, . . . , k) und z̃j (j = 0, . . . , l) die in der Processing-Phase berechneten Hashwerte.
Da g injektiv ist, muss mit g(zk) = ĥ(x) = ĥ(x̃) = g(z̃l) auch zk = z̃l gelten. Sei imax
der größte Index i ∈ {1, . . . , k} mit zi−1yi 6= z̃l−k+i−1ỹl−k+i. Dann bilden zimax−1yimax und
z̃l−k+imax−1ỹl−k+imax wegen

h(zimax−1yimax) = zimax = z̃l−k+imax = h(z̃l−k+imax−1ỹl−k+imax)

ein Kollisionspaar für h. �

1.2.4 Die Merkle-Damgaard-Konstruktion

Merkle und Damgaard schlugen 1989 folgende konkrete Realisierung ihrer Konstruktion
vor. Als Initialisierungsvektors wird der Nullvektor IV = 0m benutzt, die optionale
Ausgabetransformation entfällt, und für y(x) wird im Fall t ≥ 2 die folgende Funktion
verwendet. (Den Fall t = 1 betrachten wir später.)
Für x = ε sei y(x) = 0t und für x ∈ {0, 1}n mit n > 0 sei k = d n

t−1e und x =
x1x2 . . . xk−1xk mit |x1| = |x2| = . . . = |xk−1| = t − 1 sowie |xk| = t − 1 − d, wobei
0 ≤ d < t − 1. Im Fall k = 1 ist dann y(x) = 0x0d1bint−1(d) und für k > 1 ist
y(x) = y1 · · · yk+1, wobei

yi =



0x1, i = 1,
1xi, 2 ≤ i < k,

1xk0d, i = k,

1bint−1(d), i = k + 1,

(1.1)

und bint−1(d) die durch führende Nullen auf die Länge t− 1 aufgefüllte Binärdarstellung
von d ist.

Satz 9. Die durch (1.1) definierte Preprocessing-Funktion y ist suffixfrei.
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Beweis. Seien x 6= x̃ zwei Texte mit |x| ≤ |x̃|. Wir müssen zeigen, dass y(x) = y1y2 . . . yk+1
kein Suffix von y(x̃) = ỹ1ỹ2 . . . ỹl+1 ist. Im Fall x = ε ist dies klar. Für x 6= ε machen wir
folgende Fallunterscheidung.
1. Fall: |x| 6≡t−1 |x̃|. Dann folgt d 6= d̃ und somit yk+1 6= ỹl+1.
2. Fall: |x| = |x̃|. In diesem Fall ist k = l. Wegen x 6= x̃ existiert ein Index i ∈

{1, . . . , k} mit xi 6= x̃i. Dies impliziert yi 6= ỹi, also ist y(x) kein Suffix von y(x̃).
3. Fall: |x| 6= |x̃| und |x| ≡t−1 |x

′|. In diesem Fall ist k < l. Da y(x) mit einer Null
beginnt, aber das (l − k + 1)-te Bit von y(x̃) eine Eins ist, kann y(x) kein Suffix
von y(x̃) sein. �

Nun kommen wir zum Fall t = 1. Sei y die durch y(x) := 11f(x) definierte Funktion,
wobei f wie folgt definiert ist:

f(x1, . . . , xn) = f(x1) . . . f(x2) mit f(0) = 0 und f(1) = 01.

Dann ist leicht zu sehen, dass y suffixfrei ist. Da die Kompressionsfunktion h bei der
Berechnung von ĥ(x) im Fall t = 1 für jedes Bit von y(x) einmal aufgerufen wird, wird h
genau |y(x)| ≤ 2(n+1)-mal aufgerufen. Im Fall t > 1 werden dagegen nur k+1 = d n

t−1e+1
Aufrufe benötigt.

1.2.5 Die MD4-Hashfunktion

Die MD4-Hashfunktion (Message Digest) wurde 1990 von Rivest vorgeschlagen. Die
Bitlänge von MD4 beträgt l = 128 Bit. Bei einer Wortlänge von 32 Bit entspricht
dies 4 Wörtern. Die im Folgenden vorgestellten Hashfunktionen benutzen u.a. folgende
Operationen auf Wörtern.

Operatoren auf {0, 1}32

X ∧ Y bitweises „Und“ von X und Y
X ∨ Y bitweises „Oder“ von X und Y
X ⊕ Y bitweises „exklusives Oder“ von X und Y
¬X bitweises Komplement von X

X + Y Ganzzahl-Addition modulo 232

X → s Rechtsshift um s Stellen
X ←↩ s zirkulärer Linksshift um s Stellen

Während die Ganzzahl-Addition bei MD4 und MD5 in little endian Architektur (d.h.
ein aus 4 Bytes a3a2a1a0, 0 ≤ ai ≤ 255 zusammengesetztes Wort repräsentiert die Zahl
a0224 + a1216 + a228 + a3) ausgeführt wird, verwendet SHA-1 eine big endian Architektur
(d.h. a3a2a1a0, 0 ≤ ai ≤ 255 repräsentiert die Zahl a3224 + a2216 + a128 + a0). Der
MD4-Algorithmus benutzt die folgenden Konstanten yj, zj, sj, j = 0, . . . , 47

yj (in Hexadezimaldarstellung)
j = 0, . . . , 15 0
j = 16, . . . , 31 5a827999
j = 32, . . . , 47 6ed9eba1
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zj
j = 0, . . . , 15 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
j = 16, . . . , 31 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15
j = 32, . . . , 47 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

sj
j = 0, . . . , 15 3, 7, 11, 19, 3, 7, 11, 19, 3, 7, 11, 19, 3, 7, 11, 19
j = 16, . . . , 31 3, 5, 9, 13, 3, 5, 9, 13, 3, 5, 9, 13, 3, 5, 9, 13
j = 32, . . . , 47 3, 9, 11, 15, 3, 9, 11, 15, 3, 9, 11, 15, 3, 9, 11, 15

und folgende Funktionen fj, j = 0, . . . , 47

fj(X, Y, Z) :=


(X ∧ Y ) ∨ (¬X ∧ Z), j = 0, . . . , 15,
(X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z), j = 16, . . . , 31,
X ⊕ Y ⊕ Z, j = 32, . . . , 47.

Für MD4 konnten nach ca. 220 Hashwertberechnungen Kollisionen aufgespürt werden.
Deshalb gilt MD4 nicht mehr als kollisionsresistent.

MD4(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 (A,B,C,D) := (H1, H2, H3, H4)
8 for j := 0 to 47 do
9 (A,B,C,D) := (D, (A+ fj(B,C,D) +X[zj] + yj)←↩ sj, B, C)

10 (H1, H2, H3, H4) := (H1 + A,H2 +B,H3 + C,H4 +D)
11 output H1H2H3H4

1.2.6 Die MD5-Hashfunktion

Der MD5 ist eine 1991 von Rivest präsentierte verbesserte Version von MD4. Die Bitlänge
von MD5 beträgt wie bei MD4 l = 128 Bit. Bei einer Wortlänge von 32 Bit entspricht
dies 4 Wörtern. In MD5 werden teilweise andere Konstanten als in MD4 verwendet.
Zudem besitzt MD5 eine zusätzliche 4. Runde (j = 48, . . . , 63), in der die Funktion
fj(X, Y, Z) = Y ⊕ (X ∨ ¬Z) verwendet wird. Außerdem wurde die in Runde 2 von MD4
verwendete Funktion durch fj(X, Y, Z) := (X ∧ Z) ∨ (Y ∧ ¬Z), j = 16 . . . 31, ersetzt.
Die y-Konstanten sind definiert als yj := die ersten 32 Bit der Binärdarstellung von
abs(sin(j + 1)), 0 ≤ j ≤ 63, und für zj und sj werden folgende Konstanten benutzt.
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zj
j = 0, . . . , 15 zj = j : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
j = 16, . . . , 31 zj = (5j + 1) mod 16 : 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12
j = 32, . . . , 47 zj = (3j + 5) mod 16 : 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2
j = 48, . . . , 63 zj = 7j mod 16 : 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9

sj
j = 0, . . . , 15 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22
j = 16, . . . , 31 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20
j = 32, . . . , 47 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23
j = 48, . . . , 63 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21

Für MD5 konnten in 2004 ebenfalls Kollisionspaare gefunden werden (für die Kompressi-
onsfunktion von MD5 gelang dies bereits 1996).

MD5(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 (A,B,C,D) := (H1, H2, H3, H4)
8 for j := 0 to 63 do
9 (A,B,C,D) := (D,B + (A+ fj(B,C,D) +X[zj] + yj)←↩ sj, B, C)

10 (H1, H2, H3, H4) := (H1 + A,H2 +B,H3 + C,H4 +D)
11 output H1H2H3H4

1.2.7 Die SHA-1-Hashfunktion

Der Secure Hash Algorithm (SHA-1) ist eine Weiterentwicklung des MD4 bzw. MD5
Algorithmus. Er gilt in den USA als Standard und ist Bestandteil des von der US-Behörde
NIST (National Institute of Standards and Technology) im August 1991 veröffentlichten
DSS (Digital Signature Standard). Die Bitlänge von SHA-1 beträgt l = 160 Bit. Bei
einer Wortlänge von 32 Bit entspricht dies 5 Wörtern. SHA-1 unterscheidet sich nur
geringfügig von der SHA-0 Hashfunktion, in der eine Schwachstelle dazu führt, dass
nach Berechnung von ca. 261 Hashwerten ein Kollisionspaar gefunden werden kann
(obwohl bei einem Geburtstagsangriff auf Grund der Hashwertlänge von 160 Bit ca. 280

Berechnungen erforderlich sein müssten). Diese potentielle Schwäche von SHA-0 wurde
im SHA-1 dadurch entfernt, dass SHA-1 in Zeile 8 einen zirkulären Shift um eine Bitstelle
ausführt. Der SHA-1-Algorithmus benutzt die folgenden Konstanten Kj, j = 0, . . . , 79

Kj (in Hexadezimaldarstellung)
j = 0, . . . , 19 5a827999
j = 20, . . . , 39 6ed9eba1
j = 40, . . . , 59 8f1bbcdc
j = 60, . . . , 79 ca62c1d6
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und folgende Funktionen fj, j = 0, . . . , 79

fj(X, Y, Z) :=



(X ∧ Y ) ∨ (¬X ∧ Z), j = 0, . . . , 19,
X ⊕ Y ⊕ Z, j = 20, . . . , 39,
(X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z), j = 40, . . . , 59,
X ⊕ Y ⊕ Z, j = 60, . . . , 79.

SHA-1(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H0, H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476, c3d2e1f0)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 for t := 16 to 79 do
8 X[t] := (X[t− 3]⊕X[t− 8]⊕X[t− 14]⊕X[t− 16])←↩ 1
9 (A,B,C,D,E) := (H0, H1, H2, H3, H4)

10 for j := 0 to 79 do
11 temp := (A←↩ 5) + fj(B,C,D) + E +X[j] +Kj

12 (A,B,C,D,E) := (temp,A,B ←↩ 30, C,D)
13 (H0, H1, H2, H3, H4) := (H0 + A,H1 +B,H2 + C,H3 +D,H4 + E)
14 output H0H1H2H3H4

1.2.8 Die SHA-2-Familie

Im Jahr 2001 veröffentlichte die US-Behörde NIST drei weitere Hashfunktionen der
SHA-Familie: SHA-256, SHA-384, and SHA-512. Diese Funktionen werden auch als
SHA-2 Hashfunktionen bezeichnet. In 2004 kam noch SHA-224 als vierte Variante hinzu.
SHA-256 und SHA-512 haben denselben Aufbau, unterscheiden sich aber in erster Linie
in der benutzten Wortlänge: 32 Bit bei SHA-256 und 64 Bit bei SHA-512. Zudem werden
unterschiedliche Shift- und Summationskonstanten verwendet und auch die Rundenzahlen
differieren. SHA-224 und SHA-384 sind reduzierte Varianten von SHA-256 und SHA-
512. Der SHA-256-Algorithmus benutzt die folgenden Konstanten Kj, j = 0, . . . , 63 (in
Hexadezimaldarstellung).

428a2f98, 71374491, b5c0fbcf, e9b5dba5, 3956c25b, 59f111f1, 923f82a4, ab1c5ed5,
d807aa98, 12835b01, 243185be, 550c7dc3, 72be5d74, 80deb1fe, 9bdc06a7, c19bf174,
e49b69c1, efbe4786, 0fc19dc6, 240ca1cc, 2de92c6f, 4a7484aa, 5cb0a9dc, 76f988da,
983e5152, a831c66d, b00327c8, bf597fc7, c6e00bf3, d5a79147, 06ca6351, 14292967,
27b70a85, 2e1b2138, 4d2c6dfc, 53380d13, 650a7354, 766a0abb, 81c2c92e, 92722c85,
a2bfe8a1, a81a664b, c24b8b70, c76c51a3, d192e819, d6990624, f40e3585, 106aa070,
19a4c116, 1e376c08, 2748774c, 34b0bcb5, 391c0cb3, 4ed8aa4a, 5b9cca4f, 682e6ff3,
748f82ee, 78a5636f, 84c87814, 8cc70208, 90befffa, a4506ceb, bef9a3f7, c67178f2

Dies sind jeweils die ersten 32 Bit der binären Nachkommastellen der dritten Wurzeln
der ersten 64 Primzahlen 2, . . . , 311. SHA-256 arbeitet wie folgt.
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SHA-256(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H0, H1, H2, H3, H4, H5, H6, H7) := (6a09e667, bb67ae85, 3c6ef372, a54ff53a,
4 510e527f, 9b05688c, 1f83d9ab, 5be0cd19)
5 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
6 for i := 1 to r do
7 sei Mi = X[0] · · ·X[15]
8 for t := 16 to 63 do
9 s0 := (X[t− 15] ↪→ 7)⊕ (X[t− 15] ↪→ 18)⊕ (X[t− 15]→ 3)

10 s1 := (X[t− 2] ↪→ 17)⊕ (X[t− 2] ↪→ 19)⊕ (X[t− 2]→ 10)
11 X[t] := X[t− 16] + s0 +X[t− 7] + s1
12 (A,B,C,D,E, F,G,H) := (H0, H1, H2, H3, H4, H5, H6, H7)
13 for j := 0 to 63 do
14 s0 := (A ↪→ 2)⊕ (A ↪→ 13)⊕ (A ↪→ 22)
15 maj := (A ∧B)⊕ (A ∧ C)⊕ (B ∧ C)
16 t2 := s0 +maj
17 s1 := (E ↪→ 6)⊕ (E ↪→ 11)⊕ (E ↪→ 25)
18 ch := (E ∧ F )⊕ (¬E ∧G)
19 t1 := H + s1 + ch+Kj +X[j]
20 (A,B,C,D,E, F,G,H) := (t1 + t2, A,B,C,D + t1, E, F,G)
21 (H0, H1, H2, H3, H4, H5, H6, H7)
22 := (H0 + A,H1 +B,H2 + C,H3 +D,H4 + E,H5 + F,H6 +G,H7 +H)
23 output H0H1H2H3H4H5H6H7

Die Initialwerte von H0, . . . , H7 in den Zeilen 3 und 4 sind jeweils die ersten 32 Bit der
binären Nachkommastellen der Wurzeln der Primzahlen 2, 3, 5, 7, 11, 13, 17, 19.

1.2.9 Kryptoanalyse von Hashfunktionen

Bereits 1991 wurden von Den Boer und Bosselaers Schwächen im MD4 aufgedeckt. Im
August 2004 erschien ein Bericht [1] mit einer Anleitung, wie sich Kollisionen für MD4
mittels “hand calculation” finden lassen.
In 1993, fanden den Boer und Bosselaers einen Weg, so genannte “Pseudo-Kollisionen” für
die MD5 Kompressionsfunktion zu generieren. In 1996, fand Dobbertin ein Kollisionspaar
für die MD5 Kompressionsfunktion.
Im August 2004 wurden schließlich Kollisionen für MD5 von Xiaoyun Wang, Dengguo
Feng, Xuejia Lai und Hongbo Yu berechnet. Der benötigte Aufwand wurde mit ca. 1
Stunde auf einem IBM p690 Cluster abgeschätzt.
Im März 2005 veröffentlichten Arjen Lenstra, Xiaoyun Wang und Benne de Weger zwei
X.509 Zertifikate mit unterschiedlichen Public-keys, die auf denselben MD5-Hashwert
führten. Nur wenige Tage später beschrieb Vlastimil Klima eine Möglichkeit, Kollisionen
für MD5 innerhalb weniger Stunden auf einem Notebook zu berechnen. Mittels der so
genannten Tunneling-Methode wurde die Rechenzeit vom gleichen Autor im März 2006
auf eine Minute verkürzt.
Auf der CRYPTO 98 stellten Chabaud und Joux einen Angriff auf SHA-0 vor, der ein
Kollisionspaar mit nur 261 Hashwertberechnungen (anstelle von 280 bei einem Geburts-
tagsangriff) aufspürt.
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In 2004 fanden Biham und Chen Beinahe-Kollisionen für den SHA-0, bei denen sich die
Hashwerte nur an 18 von den 160 Bitpositionen unterschieden. Zudem legten sie volle
Kollisionen für den auf 62 Runden reduzierten SHA-0 Algorithmus vor.
Schließlich wurde im August 2004 die Berechnung einer Kollision für den vollen 80-Runden
SHA-0 Algorithmus von Joux, Carribault, Lemuet und Jalby bekannt gegeben. Hierzu
wurden lediglich 251 Hashwerte berechnet, die ca. 80 000 Stunden CPU-Rechenzeit auf
einem 2-Prozessor 256-Itanium Supercomputer benötigten.
Ebenfalls im August 2004 wurde von Wang, Feng, Lai und Yu auf der CRYPTO 2004 eine
Angriffsmethode für MD5, SHA-0 und andere Hashfunktionen vorgestellt, mit der sich die
Anzahl der Hashwertberechnungen auf 240 senken lässt. Dies wurde im Februar 2005 von
Xiaoyun Wang, Yiqun Lisa Yin und Hongbo Yu geringfügig auf 239 Hashwertberechnungen
verbessert.
Aufgrund der erfolgreichen Angriffe auf SHA-0 rieten mehrere Experten von einer weiteren
Verwendung des SHA-1 ab. Daraufhin kündigte die amerikanische Behörde NIST an,
SHA-1 in 2010 zugunsten der SHA-2 Varianten abzulösen.
Im Jahr 2005 veröffentlichten Rijmen und Oswald einen Angriff, der mit weniger als
280 Hashwertberechnungen ein Kollisionspaar für den auf 53 Runden reduzierten SHA-1
Algorithmus findet. Nur wenig später kündigten Xiaoyun Wang, Yiqun Lisa Yin und
Hongbo Yu einen Angriff auf den vollen 80-Runden SHA-1 mit 269 Hashwertberechnungen
an. Im August 2005 erfuhr der benötigte Aufwand von Xiaoyun Wang, Andrew Yao und
Frances Yao auf der CRYPTO 2005 eine weitere Reduktion auf 263 Berechnungen. In
2008 wurde von Stéphane Manuel ein Kollisionsangriff mit einem geschätzten Aufwand
von 251 bis 257 Berechnungen veröffentlicht.
Die besten bekannten Angriffe gegen SHA-2 brechen die von 64 auf 41 Runden reduzierte
Variante von SHA-256 und die von 80 auf 46 Runden reduzierte Variante von SHA-512.
Im Oktober 2012 wurde der Hash-Algorithmus Keccak als Gewinner des vom NIST aus-
geschriebenen Wettbewerbs für den SHA-3-Algorithmus ausgewählt. Die Intention dabei
war nicht, SHA-2 als Standard durch SHA-3 abzulösen, zumal bisher keine erfolgreichen
Angriffe gegen SHA-2 bekannt sind. Vielmehr ging es bei diesem Wettbewerb darum,
angesichts der erfolgreichen Angriffe gegen MD5 und SHA-0, die einen ähnlichen Aufbau
wie SHA-1 und SHA-2 haben, eine auf einem vollkommen anderen Entwurfsprinzip
basierende Alternative zur Verfügung zu stellen.

1.2.10 Die Sponge-Konstruktion

Die Konstruktionsidee hinter dem SHA-3-Gewinner Keccak wird von den Autoren als
Sponge bezeichnet. Sie ähnelt oberflächlich der in 1.2.3 vorgestellten Konstruktion, weist
aber einige Unterschiede auf. So ist ein Sponge nicht nur zur Konstruktion einer Hash-
funktion gedacht, basiert statt auf einer Kompressionsfunktion h auf einer Permutationen
oder Transformation f : {0, 1}b → {0, 1}b und besitzt einen inneren Zustand, der nicht
ausgeben wird. Die Anzahl der Bits um diesen inneren Zustand zu speichern wird als
Kapazität c des Sponges bezeichnet und ist sein wichtigster Sicherheitsparameter. Da-
gegen beschreibt die Bitrate r = b− c die Anzahl der Bits des äußeren Zustands, über
den Eingabe und Ausgabe des Sponges erfolgt.
Neben dem Kern f der Konstruktion ist auch wieder ein Preprocessing-Schritt notwendig,
die Anforderungen für diesen definieren wir vorab.
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Definition 10. Eine Funktion y : {0, 1}∗ → ⋃
c≥1{0, 1}cr heißt sponge-konformes

Padding für die Bitrate r, falls
• ∀n∀(x, x′) ∈ {0, 1}n × {0, 1}n∃z : (y(x) = xz und y(x′) = x′z) sowie
• ∀k ≥ 0∀x 6= x′ : y(x) 6= y(x′)0kr gelten.

Es ist leicht zu sehen, dass die Paddingfunktion pad10∗1r sponge-konform für r ist, wobei

pad10∗1r(x) = x10d1, d = min
{
i
∣∣∣ |x|+ 2 + i ≡r 0

}
.

Tatsächlich ist pad10∗1r sogar für jedes r′ ≥ 1 sponge-konform. Ohne die abschließende
1 wäre dies nicht der Fall.

Definition 11. Seien r ≥ 1, y ein sponge-konformes Padding für r und f : {0, 1}b →
{0, 1}b. Die Funktion Spongef,y,r : N× {0, 1}∗ → {0, 1}∗ ist wie folgt definiert:
Für x ∈ {0, 1}∗ sei y1 . . . yk := y(x) mit |yi| = r (1 ≤ i ≤ k). Wir definieren die Zustände
si, i ≥ 0:

si =


0b i = 0
f(si−1 ⊕ (yi0c)) 1 ≤ i ≤ k (Absorbtionsphase)
f(si−1) i > k (Squeezing-Phase) .

Weiter bezeichne zi die ersten r Bits von sk + i − 1, i ≥ 1, es sei c = b l
r
c und z′c+1

bezeichne die ersten l − cr Bits von zc+1. Dann ist

Spongef,y,r(l, x) = z1 . . . zcz
′
c+1 .

Für die Analyse definieren wir

Absorbf,y,r(x) = sk und Squeezef,r(l, sk) = z1 . . . zcz
′
c+1 .

Den Aufwand für festes l ein Kollisionspaar x 6= x′ mit Spongef,y,r(l, x) =
Spongef,y,r(l, x′) zu finden können wir nach oben durch den Aufwand abschätzen, ein
Paar x 6= x′ zu finden, sodass Absorbf,y,r(x) = Absorbf,y,r(x′). Da in der Absorbtions-
phase der äußere Zustand (d.h. die ersten r Bits) beliebig und somit auch identisch
gesetzt werden kann, genügt es ein inneres Kollisionspaar zu finden, d.h. solche x 6= x′

sodass Absorbi
f,y,r(x) = Absorbi

f,y,r(x′), wobei Absorbi
f,y,r(x) die letzten c Bits von

Absorbf,y,r(x) bezeichnet.
Um eine solche innere Kollision zu finden, hilft es, sich die 2c inneren Zustände als Knoten
eines gerichteten Multigraphen G vorzustellen, wobei jeder Knoten 2r ausgehende Kanten
mit Label 0r bis 1r hat. Ziel ist es dann, zwei verschiedene Pfade von 0m zu demselben
Knoten v zu finden, wobei zwei Pfade auch dann verschieden sind, wenn sich die Kanten
nur in den Labeln unterscheiden. Anders als beim ZOM für eine Hashfunktion lohnt es
sich hier für den Angreifer, die Argumente adaptiv nach einer Strategie S zu wählen. Der
Algorithmus in Abb. 1.9 fasst dieses Vorgehen zusammen. Der Einfachheit halber gibt er
ein Kollisionspaar nach den Padding aus, für pad10∗1r und alle y, deren Padding nur
von |x| mod r abhängt, lässt sich dieses aber leicht auf ein Paar vor dem Preprocessing
erweitern.

Satz 12. Für jede Strategie S gibt InnerCollision(f, r, q,S) im ZOM mit Erfolgs-
wahrscheinlichkeit höchstens

ε = 1−
q∏
i=1

(
1− 1

2c
)
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Prozedur InnerCollision(f, r, q,S)
1 c := b− r, wobei f : {0, 1}b → {0, 1}b
2 initialisiere den gerichteten Multigraphen G = (V,A) := ({0, 1}c , ∅)
3 for i := 1 to q do
4 wähle v ∈ V und x ∈ {0, 1}r nach Strategie S
5 x′v′ := f(xv)
6 A := A ∪ {(v, v′, x, x′)}
7 if ∃ verschiedene Pfade (0c, u1, x1, x

′
1), . . . , (uk−1, uk, xk, x

′
k) und

8 (0c, v1, y1, y
′
1), . . . , (vl−1, vl, yl, y

′
l) mit uk = vl in G

9 return(x1(x2 ⊕ x′1) . . . (xk ⊕ x′k−1), y1(y2 ⊕ y′1) . . . (yk ⊕ y′k−1))
10 else
11 return(?)

Abbildung 1.9: Bestimmung eines inneren Kollisionspaares

ein Kollisionspaar (x, x′) für Absorbi
f,id,r(x) aus. Wählt S nur von 0c erreichbare Knoten

v und kein Paar (v, x) mehrmals, so ist die Erfolgswahrscheinlichkeit exakt ε.

Beweis. Sei Ei das Ereignis “G enthält nach i Durchläufen keine zwei verschiedenen Pfade
von 0c zu einem Knoten v”. Da nur durch eine Kante zwischen zwei von 0c erreichbaren
Knoten ein zweiter Pfad von 0c aus geschlossen werden kann und nach i− 1 Durchläufen
höchstens i von 2c Knoten erreichbar sind, gilt (unabhängig von S):

Pr[Ei |E1 ∩ . . . ∩ Ei−1] ≥ 1− i

2c .

Wählt S nur erreichbare Knoten und keine (v, x) mehrfach, so sind unter Annahme von
E1 ∩ . . . ∩ Ei−1 auch i Knoten erreichbar (sonst gäbe es bereits zwei Pfade von 0c zu
einem Knoten in G) und es gilt Gleichheit. Analog zum Beweis vom Satz 6 folgt der
behauptete Wert ε, mit Gleichheit im Fall der Wahl erreichbarer Knoten durch S. �

Auch hier lässt sich q in Abhängigkeit von ε mittels 1− x ≈ e−x abschätzen, es folgt:

q ≈ cε2
c
2 , cε =

√
2 ln 1

1− ε .

1.2.11 SHA-3

Der Standard SHA-3 definiert die oben beschriebene Sponge-Konstruktion, 7 verschiedene
bijektive Funktionen fw, w = 2i, i ∈ {0, . . . , 6} als Kern des Sponges Spongefw,pad10∗1r,r

sowie verschiedene Kombinationen von Bitraten r und Ausgabelängen l (c ist durch
25w − r bestimmt).
Jede Funktion fw : {0, 1}5×5×w → {0, 1}5×5×w bildet ein zweidimensionales Feld A aus
w-Bit-Wörtern auf ein ebensolches Feld fw(A) ab. Dabei wird 12 + log2 w mal eine
Rundenfunktion f ′w : {0, 1}5×5×w × {0, 1}w → {0, 1}5×5×w aufgerufen, die A und eine
Rundenkonstante RCi auf A′ abbildet.
Es gilt

f ′w(A,RC) = ιRC(χ(π(ρ(θ(A))))),
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wobei θ, ρ, π, χ und ιRC Bijektionen von {0, 1}5×5×w nach {0, 1}5×5×w sind. Die Funktion
θ besteht aus ⊕-Operationen und ist so gewählt, dass sich θ−1(A) an möglichst vielen
Bits ändert, falls eines in A geflippt wird. Danach permutieren die Funktionen ρ und π
die Bits von A innerhalb und zwischen den Wörtern. Ähnlich einer S-Box im SPN ist
χ eine nichtlineare Funktion (die einzige solche in der Definition von f ′w), die nur auf
5-Bit-Blöcken arbeitet (jedes Bit hängt sogar nur von 2 anderen ab). Schlussendlich setzt
ιRC das Wort A0,0 auf A0,0 ⊕RC.
Für die Werte l ∈ {224, 256, 384, 512} definiert der Standard FIPS 202:

SHA3-l(x) = Spongef1600,pad10∗1r,r
(l, x01), wobei r = 1600− 2l.

Das zusätzliche Padding 01 soll dabei SHA-3 von anderen Anwendungen von Keccak mit
denselben Werten w, l, r unterscheiden.

1.3 Nachrichten-Authentikationscodes (MACs)

Definition 13. Eine Hashfamilie H = (X, Y,K,H) wird durch folgende Komponenten
beschrieben:
• X, eine endliche oder unendliche Menge von Texten,
• Y , endliche Menge aller möglichen Hashwerte, ‖Y ‖ ≤ ‖X‖,
• K, endlicher Schlüsselraum (key space), wobei jeder Schlüssel k ∈ K eine
Hashfunktion hk : X → Y in H spezifiziert, d.h. H = {hk | k ∈ K}.

Im folgenden werden wir die Größe ‖X‖ des Textraumes mit n, die des Hashwertbereiches
Y mit m und die des Schlüsselraumes K mit l bezeichnen. Wir nennen dann H auch eine
(n,m, l)-Hashfamilie.
Damit ein geheimer Schlüssel k für die Authentifizierung mehrerer Nachrichten benutzt
werden kann, ohne dass dies einem potentiellen Gegner zur nichtautorisierten Berechnung
von gültigen MAC-Werten verhilft, sollte folgende Bedingung erfüllt sein.
Berechnungsresistenz: Auch wenn eine Reihe von unter einem Schlüssel k generierten

Text-Hashwert-Paaren (x1, hk(x1)), . . . , (xn, hk(xn)) bekannt ist, erfordert es einen
immensen Aufwand, ohne Kenntnis von k ein weiteres Paar (x, y) mit y = hk(x)
zu finden.

Bei Verwendung einer berechnungsresistenten Hashfunktion ist es einem Gegner nicht
möglich, an Bob eine Nachricht x zu schicken, die Bob als von Alice stammend anerkennt.

Verwendung eines MAC zur Versiegelung von Software

Mithilfe einer berechnungsresistenten Hashfunktion kann der Integritätsschutz für mehrere
Datensätze auf die Geheimhaltung eines Schlüssels k zurückgeführt werden.

Um die Datensätze x1, . . . , xn gegen unbefugt vorgenommene Veränderun-
gen zu schützen, legt man sie zusammen mit ihren Hashwerten y1 =
hk(x1), . . . , yn = hk(xn) auf einem unsicheren Speichermedium ab und be-
wahrt den geheimen Schlüssel k an einem sicheren Ort auf. Bei einem späteren
Zugriff auf einen Datensatz xi lässt sich dessen Unversehrtheit durch einen
Vergleich von yi mit dem Ergebnis hk(xi) einer erneuten MAC-Berechnung
überprüfen.
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Da auf diese Weise ein wirksamer Schutz der Datensätze gegen Viren und andere
Manipulationen erreicht wird, spricht man von einer Versiegelung der gespeicherten
Datensätze.

1.3.1 Angriffe gegen symmetrische Hashfunktionen

Ein Angriff gegen einen MAC hat die unbefugte Berechnung von Hashwerten zum Ziel.
Das heißt, der Gegner versucht, Hashwerte hk(x) ohne Kenntnis des geheimen Schlüssels
k zu berechnen. Entsprechend der Art des zur Verfügung stehenden Textmaterials lassen
sich die Angriffe gegen einen MAC wie folgt klassifizieren.
Impersonation

Der Gegner kennt nur den benutzten MAC und versucht ein Paar (x, y) mit
hk(x) = y zu generieren, wobei k der (dem Gegner unbekannte) Schlüssel ist.

Substitution
Der Gegner versucht in Kenntnis eines Paares (x, hk(x)) ein Paar (x′, y′) mit x′ 6= x
und hk(x′) = y′ zu generieren.

Angriff bei bekanntem Text (known-text attack)
Der Gegner kennt für eine Reihe von Texten x1, . . . , xr (die er nicht selbst wählen
konnte) die zugehörigen MAC-Werte hk(x1), . . . , hk(xr) und versucht, ein Paar
(x′, y′) mit hk(x′) = y′ und x′ 6∈ {x1, . . . , xr} zu generieren.

Angriff bei frei wählbarem Text (chosen-text attack)
Der Gegner kann die Texte xi selbst wählen.

Angriff bei adaptiv wählbarem Text (adaptive chosen-text attack)
Der Gegner kann die Wahl des Textes xi von den zuvor erhaltenen MAC-Werten
hk(xj), j < i, abhängig machen.

Wechseln die Anwender nach jeder Hashwertberechnung den Schlüssel, so genügt es, dass
H einem Impersonationsangriff widersteht.

1.3.2 Informationstheoretische Sicherheit von MACs

Modell: Schlüssel k und Nachrichten x werden unabhängig gemäß einer Wahrscheinlich-
keitsverteilung p(k, x) = p(k)p(x) generiert, welche dem Gegner bekannt ist. Wir
nehmen o.B.d.A. an, dass p(x) > 0 und p(k) > 0 für alle x ∈ X und k ∈ K gilt.

Erfolgswahrscheinlichkeit für Impersonation

Sei α die Wahrscheinlichkeit, mit der sich ein Gegner bei optimaler Strategie als Alice
ausgeben kann, ohne dass Bob dies bemerkt.
Für ein Paar (x, y) sei p(x 7→ y) die Wahrscheinlichkeit, dass ein zufällig gewählter
Schlüssel den Text x auf den Hashwert y abbildet:

p(x 7→ y) =
∑

k∈K(x,y)
p(k).

wobei K(x, y) = {k ∈ K | hk(x) = y} alle Schlüssel enthält, die x auf y abbilden. D.h.
p(x 7→ y) ist die Wahrscheinlichkeit, dass Bob das (vom Gegner gewählte) Paar (x, y) als
echt akzeptiert. Dann gilt α = max{α(x) | x ∈ X}, wobei

α(x) = max{p(x 7→ y) | y ∈ Y }
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die Wahrscheinlichkeit ist, mit der einem Gegner bei optimaler Strategie eine Impersona-
tion mit dem Text x gelingt.

Beispiel 14. Sei K = {1, 2, 3}, X = {a, b, c, d} und Y = {0, 1}. Wir beschreiben H
durch die zugehörige Authentikationsmatrix. Die Zeilen und Spalten dieser Matrix
werden mit den Schlüsseln k ∈ K und den Texten x ∈ X indiziert und ihr Eintrag in
Zeile k und Spalte x ist der Wert hk(x).

0,1 0,2 0,3 0,4

a b c d

0,25 1 0 0 0 1
0,30 2 1 1 0 1
0,45 3 0 1 1 0

Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(x) bzw. p(k) an. Dann hat der
Gegner folgende Erfolgsaussichten α(x), falls er an Bob den Text x senden möchte.

x a b c d

p(x 7→ 0) 0,7 0,25 0,55 0,45
p(x 7→ 1) 0,3 0,75 0,45 0,55
α(x) 0,7 0,75 0,55 0,55

Folglich ist α = 0,75. /

Satz 15. Für alle x ∈ X ist α(x) ≥ 1
m

und daher gilt α ≥ 1
m
.

Beweis. Sei x ∈ X beliebig. Dann gilt∑
y∈Y

p(x 7→ y) =
∑
y∈Y

∑
k∈K(x,y)

p(k) =
∑
k∈K

p(k) = 1.

Somit existiert für jedes x ∈ X ein y ∈ Y mit p(x 7→ y) ≥ 1
m

und dies impliziert

α(x) = max
y∈Y

p(x 7→ y) ≥ 1
m
.

�

Bemerkung 16. Wie der Beweis zeigt, gilt α = 1
m

genau dann, wenn für alle Paare
(x, y) ∈ X × Y gilt, ∑

k∈K(x,y)
p(k) = 1

m
.

D.h. bei Gleichverteilung der Schlüssel muss in jeder Spalte der Authentikationsmatrix
jeder Hashwert gleich oft vorkommen. Dies lässt sich am einfachsten dadurch erreichen,
dass man K = Y setzt und für hk die konstante Funktion hk(x) = k wählt.

Das folgende Lemma benötigen wir für den Beweis des nächsten Satzes (Beweis siehe
Übungen).

Lemma 17. Sei X eine Zufallsvariable mit endlichem Wertebereich W (X ) ⊆ R+. Dann
gilt logE(X ) ≥ E(logX ).
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Satz 18. Für jeden MAC (X, Y,K,H) gilt:

α ≥ 1
2H(K)−H(K|X ,Y) (≥ 1/l).

Hierbei sind X ,Y ,K Zufallsvariablen, die die Verteilungen der Nachrichten, der Hash-
werte und der Schlüssel beschreiben.
Der Wert von α kann also um so kleiner werden, je gleichmäßiger die Schlüsselverteilung
ist und je mehr Information die Beobachtung eines gültigen Paares (x, y) über den
Schlüssel liefert.

Beweis. Bezeichne α(x, y) = p(x 7→ y) die Wahrscheinlichkeit, mit der dem Gegner eine
Impersonation mit dem Paar (x, y) gelingt. Da α = maxx,y α(x, y) ist, folgt E(α(X ,Y)) =∑
x,y p(x, y)α(x, y) ≤ α und somit folgt unter Anwendung von Lemma 17,

logα ≥ logE(α(X ,Y)) ≥ E(logα(X ,Y)) =
∑
x,y

p(x, y)︸ ︷︷ ︸
p(x)p(y|x)

log p(y |x)︸ ︷︷ ︸
− log 1

p(y|x)

= −H(Y |X ).

Wegen
H(K,Y ,X ) = H(X ) +H(Y |X ) +H(K|X ,Y)

und
H(K,Y ,X ) = H(K,X )︸ ︷︷ ︸

=H(K)+H(X )

+H(Y |K,X )︸ ︷︷ ︸
=0

.

gilt zudem H(Y |X ) = H(K)−H(K | X ,Y) und somit logα ≥ H(K | X ,Y)−H(K). �

Beispiel 19 (Fortsetzung von Beispiel 14). Es gilt

H(K) =
∑
k

p(k) log 1
p(k) = 0,45 · 1,152 + 0,3 · 1,737 + 0,25 · 2,0 = 1,54.

Um H(K|X ,Y) zu bestimmen, benötigen wir die bedingten Verteilungen Kx,y für alle
Paare (x, y) ∈ X × Y .

(x, y) (a, 0) (a, 1) (b, 0) (b, 1) (c, 0) (c, 1) (d, 0) (d, 1)
p(1|x, y) 5

14 0 1 0 5
11 0 0 5

11
p(2|x, y) 0 1 0 2

5
6
11 0 0 6

11
p(3|x, y) 9

14 0 0 3
5 0 1 1 0

H(K|x, y) ≈ 0,94 0 0 ≈ 0,97 ≈ 0,99 0 0 ≈ 0,99
p(x, y) 0,07 0,03 0,05 0,15 0,165 0,135 0,18 0,22

Hierbei gilt p(x, y) = p(x)p(y|x) = p(x)p(x 7→ y). Zusammen ergibt sich

H(K|X ,Y) =
∑
x,y

p(x, y)H(K|x, y) ≈ 0,52 .

Erfolgswahrscheinlichkeit für Substitution

Bezeichne β die Wahrscheinlichkeit, mit der ein Gegner bei optimaler Strategie eine von
Alice gesendete Nachricht durch eine andere Nachricht ersetzen kann, ohne dass Bob dies
bemerkt.
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Betrachten wir den Fall, dass der Gegner ein von Alice gesendetes Paar (x, y) durch (x′, y′)
ersetzt. Dann ist seine Erfolgswahrscheinlichkeit gleich der bedingten Wahrscheinlichkeit

p(x′ 7→ y′ |x 7→ y) = p(x 7→ y, x′ 7→ y′)
p(x 7→ y) =

∑
k∈K(x,y,x′,y′) p(k)∑
k∈K(x,y) p(k) ,

dass ein zufällig gewählter Schlüssel k den Text x′ auf y′ abbildet, wenn bereits bekannt
ist, dass hk(x) = y ist. Falls Alice also das Paar (x, y) sendet, so ist die maximale
Erfolgswahrscheinlichkeit des Gegners gleich

β(x, y) := max
x′ 6=x,y′

p(x′ 7→ y′ |x 7→ y).

Da der Gegner keinen Einfluss auf die Wahl von (x, y) hat, ist β gleich dem erwarteten
Wert von β(x, y) unter der Verteilung

p(x, y) = p(x)p(y |x) = p(x)p(x 7→ y).

unter der die Paare gesendet werden. Somit ergibt sich β zu

β = E(β(X ,Y)) =
∑

x∈X,y∈Y
p(x, y)β(x, y).

Wegen p(x, y) = p(x)p(x 7→ y) können wir β unter Verwendung der Funktion

β′(x, y) = β(x, y)p(x 7→ y) = max
x′ 6=x,y′

p(x′ 7→ y′, x 7→ y)

auch einfacher mittels der Formel β = ∑
x∈X p(x)∑y∈Y β

′(x, y) berechnen.

Beispiel 20 (Fortsetzung von Beispiel 14).

p(x′ 7→y′, x 7→y)
(x,y)

(a,0) (a,1) (b,0) (b,1) (c,0) (c,1) (d,0) (d,1)
β′(x,y) p(x 7→y) β(x,y)

(a,0) 0,25 0,45 0,25 0,45 0,45 0,25 0,45 0,7 0,643
(a,1) 0 0,3 0,3 0 0 0,3 0,3 0,3 1
(b,0) 0,25 0 0,25 0 0 0,25 0,25 0,25 1
(b,1) 0,45 0,3 0,3 0,45 0,45 0,3 0,45 0,75 0,6
(c,0) 0,25 0,3 0,25 0,3 0 0,55 0,55 0,55 1
(c,1) 0,45 0 0 0,45 0,45 0 0,45 0,45 1
(d,0) 0,45 0 0 0,45 0 0,45 0,45 0,45 1
(d,1) 0,25 0,3 0,25 0,3 0,55 0 0,55 0,55 1

Die optimalen Wahlmöglichkeiten des Gegners, ein Paar (x, y) durch ein anderes Paar
(x′, y′) zu ersetzen, sind in der Tabelle fett gedruckt. Für β erhalten wir somit den Wert

β =
∑
x∈X

p(x)
∑
y∈Y

β′(x, y)

= 0,1(0,45 + 0,3) + 0,2(0,25 + 0,45) + 0,3(0,55 + 0,45) + 0,4(0,45 + 0,55)
= 0,915.

/
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Als nächstes zeigen wir für β die gleiche untere Schranke wie für α.

Satz 21. Für alle (x, y) ∈ X ×Y mit p(x, y) > 0 ist β(x, y) ≥ 1
m

und daher gilt β ≥ 1
m
.

Beweis. Sei (x, y) ∈ X×Y ein Paar mit p(x, y) > 0. Dann gilt für beliebige x′ ∈ X−{x},

∑
y′∈Y

p(x′ 7→ y′ |x 7→ y) =
∑
y′∈Y

∑
k∈K(x′,y′;x,y) p(k)∑

k∈K(x,y) p(k) = 1.

Somit existiert ein y′ ∈ Y mit p(x′ 7→ y′ |x 7→ y) ≥ 1
m

und dies impliziert

β(x, y) = max
x′ 6=x,y′

p(x′ 7→ y′ |x 7→ y) ≥ 1
m
.

Folglich ist
β =

∑
x∈X,y∈Y

p(x, y)β(x, y) ≥ 1
m

∑
x∈X,y∈Y

p(x, y) = 1
m
.

�

Beispiel 22. Sei X = Y = {0, 1, 2} = Z3 und sei K = Z3 × Z3. Für k = (a, b) ∈ K und
x ∈ X sei

hk(x) = ax+ b mod 3.

Die zugehörige Authentikationsmatrix ist

0 1 2
(0, 0) 0 0 0
(0, 1) 1 1 1
(0, 2) 2 2 2
(1, 0) 0 1 2
(1, 1) 1 2 0
(1, 2) 2 0 1
(2, 0) 0 2 1
(2, 1) 1 0 2
(2, 2) 2 1 0

Wir nehmen an, dass der Schlüssel unter Gleichverteilung gewählt wird. Ersetzt der
Gegner ein Paar (x, y) durch ein Paar (x′, y′) mit x′ 6= x, so wird dieses Paar von
genau einem der 3 infrage kommenden Schlüssel akzeptiert. Dies liegt daran, dass in je 2
Spalten der Authentikationsmatrix jedes Hashwertpaar genau einmal vorkommt. Folglich
ist p(x′ 7→ y′ |x 7→ y) = 1/3 und somit β = 1/3. /

Lemma 23. Sei (X, Y,K,H) ein MAC mit β = 1
m
. Dann gilt

p(x′ 7→ y′ |x 7→ y) = 1/m

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′.

Beweis. Wir zeigen zuerst, dass die Behauptung unter der Voraussetzung p(x 7→ y) > 0
gilt. Wäre nämlich

p(x′ 7→ y′ |x 7→ y) > 1/m,
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dann wäre auch
β(x, y) = max

x′ 6=x,y′
p(x′ 7→ y′ |x 7→ y) > 1/m.

Da für alle Paare (u, v) mit p(u 7→ v) > 0 nach Satz 21 die Ungleichung β(u, v) ≥ 1/m
gilt und zudem p(x, y) = p(x)p(x 7→ y) > 0 ist, folgt hieraus

β =
∑

x∈X,y∈Y
p(x, y)β(x, y) > 1/m,

was im Widerspruch zur Voraussetzung des Satzes steht. Ist andererseits

p(x′ 7→ y′ |x 7→ y) < 1/m,

muss wegen ∑
y′′∈Y

p(x′ 7→ y′′ |x 7→ y) = 1

auch ein Hashwert y′′ mit p(x′ 7→ y′′ |x 7→ y) > 1/m existieren, woraus sich wie bereits
gezeigt ein Widerspruch ergibt.
Es bleibt zu zeigen, dass p(x 7→ y) > 0 für alle Paare (x, y) gilt. Wäre p(x 7→ y) = 0, so
würde für ein beliebiges Paar (u, v) mit p(u 7→ v) > 0 auch p(x 7→ y |u 7→ v) = 0 sein.
Wie bereits gezeigt, steht dies jedoch im Widerspruch zur Voraussetzung β = 1/m. �

Satz 24. Ein MAC (X, Y,K,H) erfüllt β = 1
m

genau dann, wenn

p(x 7→ y, x′ 7→ y′) = 1/m2

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′ gilt.

Beweis. Sei (X, Y,K,H) ein MAC mit β = 1
m
. Nach obigem Lemma impliziert dies, dass

p(x′ 7→ y′ |x 7→ y) = 1/m

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′ gilt. Dies impliziert nun

p(x′ 7→ y′) =
∑
y

p(x 7→ y)p(x′ 7→ y′ |x 7→ y) = 1/m

und daher
p(x 7→ y, x′ 7→ y′) = p(x′ 7→ y′)p(x 7→ y |x′ 7→ y′) = 1/m2.

Umgekehrt rechnet man leicht nach, dass die Bedingung β = 1
m

erfüllt ist, wenn für alle
Doppelpaare (x, y, x′, y′) mit x 6= x′ die Gleichheit p(x 7→ y, x′ 7→ y′) = 1/m2 gilt. �

Bemerkung 25. Nach obigem Satz gilt β = 1
m

genau dann, wenn für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ gilt,

p(x 7→ y, x′ 7→ y′) =
∑

k∈K(x,y,x′,y′)
p(k) = 1

m2 .

D.h. bei Gleichverteilung der Schlüssel gilt β = 1
m

genau dann, wenn in je zwei Spalten
der Authentikationsmatrix jedes Hashwertpaar gleich oft vorkommt.

Ab jetzt setzen wir voraus, dass der Schlüssel unter Gleichverteilung gewählt wird, d.h.
es gilt p(k) = 1

‖K‖ für alle k ∈ K.
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Definition 26. Ein MAC (X, Y,K,H) heißt 2-universal, falls für alle x, x′ ∈ X mit
x 6= x′ und alle y, y′ ∈ Y gilt:

‖K(x, y, x′, y′)‖ = ‖K‖
m2 .

Bemerkung 27. Bei der Konstruktion von 2-universalen Hashfamilien spielt der Pa-
rameter λ = ‖K‖

m2 eine wichtige Rolle. Da λ notwendigerweise positiv und ganzzahlig ist,
muss insbesondere ‖K‖ ≥ m2 gelten.

Im folgenden nennen wir eine 2-universale (n,m, l)-Hashfamilie mit λ = l/m2 kurz einen
(n,m, l, λ)-MAC.
Auf Grund von Bemerkung 25 ist klar, dass ein MAC bei gleichverteilten Schlüsseln genau
dann die Bedingung β = 1

m
erfüllt, wenn er 2-universal ist. Auf Grund von Bemerkung 16

nimmt in diesem Fall auch α den optimalen Wert 1
m

an.
Der nächste Satz zeigt eine einfache Konstruktionsmöglichkeit von 2-universalen MACs
mit dem Parameterwert λ = 1.

Satz 28. Sei p prim und für a, b, x ∈ Zp sei

ha,b(x) = ax+ b mod p.

Dann ist (X, Y,K,H) mit X = Y = Zp und K = Zp × Zp ein (p, p, p2, 1)-MAC.

Beweis. Wir müssen zeigen, dass die Größe von K(x, y, x′, y′) für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ konstant ist. Ein Schlüssel (a, b) gehört genau dann zu dieser
Menge, wenn er die beiden Kongruenzen

ax+ b ≡p y,

ax′ + b ≡p y′

erfüllt. Da dies jedoch nur auf den Schlüssel (a, b) mit

a = (y′ − y)(x′ − x)−1 mod p,
b = y − x(y′ − y)(x′ − x)−1 mod p

zutrifft, folgt ‖K(x′, y′, x, y)‖ = 1. �

Die Hashfunktionen des vorigen Satzes erfüllen wegen n = m = p nicht die Kompressi-
onseigenschaft. Zwar lässt sich n noch geringfügig von p auf p+ 1 vergrößern, ohne K
und Y (und damit λ) zu verändern (siehe Übungen). Wie der nächste Satz zeigt, lässt
sich eine stärkere Kompression mit dem Parameterwert λ = 1 jedoch nicht realisieren.

Satz 29. Für einen (n,m, l, 1)-MAC gilt

n ≤ m+ 1

und somit l = m2 ≥ (n− 1)2.

Beweis. O.B.d.A. sei ‖K‖ = {1, . . . , l} und Y = {1, . . . ,m}. Es ist leicht zu sehen, dass
eine (bijektive) Umbenennung π : Y → Y der Hashwerte in einer einzelnen Spalte der
Authentikationsmatrix A wieder auf einen 2-universalen MAC führt. Also können wir
zudem annehmen, dass die erste Zeile der Authentikationsmatrix A nur Einsen enthält.
Da A 2-universal ist, gilt:
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• In jeder Zeile i = 2, . . . ,m2 kommt höchstens eine Eins vor.
• Jede Spalte j enthält eine Eins in Zeile 1 und m− 1 Einsen in den übrigen Zeilen.

Da in den Zeilen i = 2, . . . ,m2 insgesamt genau n(m− 1) Einsen vorkommen, folgt

Anzahl der Zeilen︸ ︷︷ ︸
m2

≥ Anzahl der Zeilen mit einer Eins︸ ︷︷ ︸
1+n(m−1)

,

was m2 − 1 ≥ n(m− 1) bzw. n ≤ m+ 1 impliziert. �

Der nächste Satz liefert 2-universale MACs mit beliebig großem Kompressionsfaktor. Für
den Beweis benötigen wir das folgende Lemma.

Lemma 30. Sei A eine (k × `)-Matrix über einem endlichen Körper F, deren k Zeilen
linear unabhängig sind. Dann besitzt das lineare Gleichungssystem

Ax = y

für jedes y ∈ Fk genau ‖F‖`−k Lösungen x ∈ F`.

Beweis. Siehe Übungen. �

Satz 31. Sei p prim und für x = (x1, . . . , xd) ∈ {0, 1}d und k = (k1, . . . , kd) ∈ Zdp sei

hk(x) = kx =
d∑
i=1

kixi mod p.

Dann ist (X, Y,K,H) mit X = {0, 1}d−{0d}, Y = Zp und K = Zdp ein (2d−1, p, pd, pd−2)-
MAC.

Beweis. Wir müssen zeigen, dass die Größe von K(x, y, x′, y′) für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ konstant ist. Es gilt

k ∈ K(x, y, x′, y′) ⇔ hk(x) = y ∧ hk(x′) = y′

⇔ k · x = y ∧ k · x′ = y′.

Fassen wir x = x1 · · ·xd und x′ = x′1 · · ·x′d zu einer Matrix A zusammen, so ist dies
äquivalent zu (

x1 · · · xd
x′1 · · · x′d

)
·


k1...
kd

 =
(
y

y′

)
.

Da die beiden Zeilen von A verschieden und damit linear unabhängig sind, folgt mit
obigem Lemma, dass genau ‖K(x, y, x′, y′)‖ = pd−2 Schlüssel k = (k1, . . . , kd) mit dieser
Eigenschaft existieren. �

Bemerkung 32. Obige Konstruktion liefert einen λ-Wert von ‖K‖
m2 = pd−2. Durch

Erweiterung von X auf eine geeignete Teilmenge X ′ ⊆ Zdp lässt sich der Textraum von
2d − 1 auf pd−1

p−1 vergrößern (siehe Übungen). Dies führt auf einen beliebig groß wählbaren
Kompressionsfaktor von pd−1

p(p−1) bei einem λ-Wert von λ = pd−2. Wie der nächste Satz
zeigt, lässt sich dies nicht mit einem kleineren λ-Wert erreichen.
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Im Beweis des nächsten Satzes benötigen wir folgendes Lemma.

Lemma 33. Für beliebige reelle Zahlen b1, . . . , bm ∈ R gilt
(∑m

i=1 bi
)2
≤ m

∑m
i=1 b

2
i .

Beweis. Siehe Übungen. �

Satz 34. Für einen (n,m, l, λ)-MAC gilt

λ ≥ n(m− 1) + 1
m2

und somit l ≥ n(m− 1) + 1.

Beweis. O.B.d.A. können wir wieder ‖K‖ = {1, . . . , l} und Y = {1, . . . ,m} annehmen,
und dass die 1. Zeile der Authentikationsmatrix A nur aus Einsen besteht. Für jede Zeile
i = 1, . . . , l bezeichne ei die Anzahl der Einsen in dieser Zeile (also e1 = n). Da in jeder
Spalte jeder Hashwert genau λm-mal vorkommt, gilt

l∑
i=1

ei = λnm und
l∑

i=2
ei = λnm− n = n(λm− 1).

Sei zi die Anzahl von Indexpaaren (j, j′) mit j 6= j′ und A[i, j] = A[i, j′] = 1 in Zeile i.
Dann gibt es in den Zeilen i = 2, . . . , l insgesamt

z =
l∑

i=2
zi =

l∑
i=2

ei(ei − 1) =
l∑

i=2
e2
i −

l∑
i=2

ei =
l∑

i=2
e2
i − n(λm− 1)

solche Paare. Mit obigem Lemma ergibt sich

l∑
i=2

e2
i ≥

(∑l
i=2 ei

)2

l − 1 = (n(λm− 1))2

l − 1 .

Da andererseits in jedem Spaltenpaar das Hashwert-Paar (1, 1) in genau λ Zeilen vor-
kommt (genauer: einmal in Zeile 1 und (λ− 1)-mal in den Zeilen i = 2, . . . , l), und da
n(n− 1) solche Spaltenpaare existieren, ergibt sich andererseits die Gleichung

z = (λ− 1)n(n− 1).

Somit erhalten wir

(λ− 1)n(n− 1) =
l∑

i=2
e2
i − n(λm− 1) ≥ (n(λm− 1))2

l − 1 − n(λm− 1)

⇒ ((λ− 1)n(n− 1) + n(λm− 1))(λm2 − 1) ≥ (n(λm− 1))2

⇒ (λn− n− λ+ λm)(λm2 − 1) ≥ n(λm− 1)2

⇒ −λ2m2 + λ2m3 ≥ λnm2 + λn− λ+ λm− 2λnm
⇒ λ2(m3 −m2) ≥ λ(n(m− 1)2 +m− 1)
⇒ λm2 ≥ n(m− 1) + 1.

�
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1.3.3 MACs auf der Basis einer Kompressionsfunktion

Sei h : {0, 1}m+t → {0, 1}m die Kompressionsfunktion einer schlüssellosen Hashfunktion
ĥ (etwa MD5). Dann können wir mithilfe von h einen MAC konstruieren, indem wir als
Initialisierungsvektor IV den symmetrischen Schlüssel k ∈ K benutzen. Wir betrachten
zunächst den Fall, dass auf das Preprocessing verzichtet wird.
Sei H = (X, Y,K) die Hashfamilie mit X = ∪n≥1{0, 1}n·t, Y = {0, 1}m = K und
H = {hk | k ∈ K}, wobei hk(x) wie folgt berechnet wird:

1 Sei x = x1, . . . , xn, |xi| = t für i = 1, . . . , n
2 z0 := k
3 for i := 1 to n do
4 zi := h(zi−1xi)
5 output zn

Bei diesem MAC führt beispielsweise folgender Substitutionsangriff zum Erfolg.
Sei (x, z) ein Paar mit hk(x) = z, wobei k der dem Gegner unbekannte Schlüssel ist.
Dann lässt sich für einen beliebigen String u ∈ {0, 1}t leicht der MAC-Wert des Textes
x′ = xu mittels hk(x′) = h(zu) berechnen.
Ein ähnlicher Angriff ist auch bei Verwendung einer Preprocessing-Funktion möglich. Hat
diese beispielsweise die Form y(x) = xpad(x), so lässt sich obiger Angriff entsprechend
modifizieren (siehe Übungen).

1.3.4 CBC-MACs

Als Basis für die Konstruktion eines MAC kann auch ein symmetrisches Kryptosystem
dienen.
Sei (M,C,K,E,D) ein Kryptosystem mit M = C = {0, 1}t. Zudem sei IV := 0t und sei
k ∈ K ein geheimer Schlüssel. Sei y eine Funktion für den Preprocessing-Schritt.
Berechnung von hk(x):

1 y := y(x) = y1 . . . yn, n ≥ 1, |yi| = t
2 z0 := IV
3 for i = 1 to n do
4 zi := E(k, zi−1 ⊕ yi)
5 output hk(x) = zn

Die Hashwertlänge beträgt also t Bit. Wird auf den Preprocessing-Schritt verzichtet,
so lässt sich leicht ein Angriff mit 2 adaptiven Fragen ausführen. Kennt der Gegner
die MAC-Werte z = hk(x) und z′ = hk(x′) für die Texte x = x1 · · ·xn und x′ =
(xn+1 ⊕ IV ⊕ z)xn+2 · · ·xn+m, wobei |xi| = t für i = 1, . . . , n+m ist, so muss auch der
Text x′′ = x1 · · ·xn+m den MAC-Wert hk(x′′) = z′ haben.
Diesen Angriff kann man zwar ausschließen, indem man eine feste Länge für die Texte
x vorschreibt. Dies schränkt jedoch die Anwendbarkeit des CBC-MACS erheblich ein.
Zudem ist dann immer noch folgender Geburtstagsangriff auf den CBC-MAC möglich.
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Geburtstagsangriff auf einen CBC-MAC

Dieser Angriff ermöglicht es, mit q + 1 Hashwertfragen (wobei q ≈ 1,17 · 2 t
2 ) den MAC-

Wert hk(x) für einen zuvor nicht erfragten Text x zu finden, wobei x = x1 . . . xn ∈
{0, 1}tn abgesehen vom ersten t-Bitblock x1 ∈ {0, 1}t beliebig wählbar ist. Hierzu wählt
der Gegner zunächst n − 2 beliebige Blöcke x3, . . . , xn ∈ {0, 1}t und q ≈ 1,17 · 2 t

2

paarweise verschiedene Blöcke x1
1, . . . , x

q
1 ∈ {0, 1}t. Anschließend wählt er zufällig q

weitere Blöcke x1
2, . . . , x

q
2 ∈ {0, 1}t und erfragt die MAC-Werte zi = hk(xi) für die Texte

xi = xi1x
i
2x3 · · ·xn, i = 1, . . . , q.

Wegen xi1 6= xj1 für i 6= j sind auch die Texte x1, . . . , xq paarweise verschieden. Seien
z1

1 , . . . , z
q
1 die nach der ersten Iteration des CBC-MACs berechneten Kryptotexte zi1 =

Ek(IV ⊕ xi1). Da die Blöcke xi2 zufällig gewählt werden, sind auch die Eingangsblöcke
zi1 ⊕ xi2 für die 2. Iteration zufällig, d.h. es gilt

Pr[∃i 6= j : zi1 ⊕ xi2 = zj1 ⊕ x
j
2] = Pr[∃i 6= j : xi2 = xj2] ≈ 1

2 .

Da die Gleichheit der Eingangsblöcke zi1 ⊕ xi2 und zj1 ⊕ xj2 für die 2. Iteration mit der
Gleichheit der Ausgangsblöcke zin und zjn der n-ten Iteration und damit mit der Gleichheit
der zugehörigen MAC-Werte zi und zj äquivalent ist, kann der Gegner das Indexpaar
(i, j) mit zi1 ⊕ xi2 = zj1 ⊕ x

j
2 auch leicht finden, sofern es existiert.

Befindet sich unter den erfragten Texten ein Kollisionspaar (xi, xj) mit zi = zj, so
erfragt der Gegner für einen beliebigen Bitblock u ∈ {0, 1}t − {0t} den MAC-Wert
z̄i = hk(x̄i) für den Text x̄i = xi1(xi2⊕ u)x3 · · ·xn, welcher zugleich MAC-Wert des Textes
x̄j = xj1(xj2 ⊕ u)x3 · · ·xn ist, den er zuvor nicht erfragt hat.

Definition 35. Sei 0 ≤ ε ≤ 1 und sei q ∈ N. Ein (ε, q)-Fälscher für eine Hashfamilie
H ist ein probabilistischer Algorithmus A, der q Fragen x1, . . . , xq stellt und aus den
Antworten zi = hk(xi) mit Wahrscheinlichkeit mindestens ε (bei zufällig gewähltem
Schlüssel k) ein Paar (x, z) berechnet mit x 6∈ {x1, . . . , xq} und hk(x) = z.

Wir unterscheiden zwischen adaptiven Fragen (d.h. der Text xi darf von den Hashwerten
der Texte x1, . . . , xi−1 abhängen) und nicht-adaptiven Fragen. Zudem unterscheiden wir
zwischen selektiven Fälschungen (d.h. der Gegner kann den Hashwert für einen Text seiner
Wahl generieren) und existientiellen Fälschungen (d.h. der Gegner kann den Hashwert für
irgendeinen Text x 6∈ {x1, . . . , xq} generieren, auf dessen Wahl er keinen Einfluss hat).

Beispiel 36. Der oben beschriebene Geburtstagsangriff auf einen CBC-MAC führt auf
einen (1

2 , q + 1)-Fälscher für q ≈ 1,17 · 2 t
2 . Dabei ist nur die letzte Hashwertfrage adaptiv

und der Text x kann abgesehen vom ersten t-Bitblock beliebig vorgegeben werden. /

1.3.5 Kombination einer Hashfunktion mit einem MAC (HMAC)

Falls der Textraum einer Hashfamilie den Hashwertraum einer anderen Hashfamilie
enthält, lassen sich diese leicht komponieren (Nested-MAC).

Definition 37. Seien H1 = (X, Y,K1, F ) mit F = {fk | k ∈ K1} und H2 = (Y, Z,K2, G)
mit G = {gk | k ∈ K2} Hashfamilien. Dann ist H1 ◦ H2 = (X,Z,K,H) die Komposition
von H1 und H2, wobei K = K1 ×K2 und H = {gk2 ◦ fk1 | (k1, k2) ∈ K} ist.
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Beispiel 38. Wählt man für H2 eine 2-universale Hashfamilie und für H1 eine schlüssel-
lose Hashfunktion (etwa SHA-1), so erhält man einen so genannten HMAC (Hash-MAC).
/

Eine Variante hiervon ist der auf SHA-1 basierende HMAC, bei dem zwei Varianten
von SHA-1 mit symmetrischen Schlüsseln komponiert werden, wobei jedoch beidesmal
derselbe Schlüssel benutzt wird. Seien

ipad = 36 . . . 36︸ ︷︷ ︸
64mal

und opad = 5C . . . 5C︸ ︷︷ ︸
64mal

512 Bit Konstanten. Dann berechnet sich HMAC wie folgt:

HMACk(x) = SHA-1((k ⊕ opad)SHA-1((k ⊕ ipad)x)).

Hierbei fungiert die Funktion fk(x) = SHA-1((k⊕ ipad)x) als Hashfunktion mit Schlüssel,
die beliebig lange Texte hasht, und der MAC gk(y) = SHA-1((k ⊕ opad)y) wird nur
auf Bitstrings der Länge 512 angewendet. Wie der folgende Satz zeigt, genügt es, wenn
fk kollisionsresistent und gk berechnungsresistent ist, um einen berechnungsresistenten
HMAC zu erhalten.

Definition 39. Ein (ε, q)-Kollisionsangreifer für eine Hashfamilie H = (X, Y,K,H) ist
ein probabilistischer Algorithmus A, der q Fragen x1, . . . , xn stellt und aus den Antworten
yi = hk(xi) mit Wahrscheinlichkeit mindestens ε ein Paar (x, x′) berechnet mit hk(x) =
hk(x′), wobei k der dem Gegner unbekannte (und zufällig gewählte) Schlüssel ist.

Da der Gegner den Schlüssel k nicht kennt, ist ein Kollisionsangriff gegen eine Hashfamilie
H schwieriger zu realisieren als ein Kollisionsangriff gegen eine schlüssellose Hashfunktion.

Satz 40. Seien H1 = (X, Y,K1, F ), H2 = (X, Y,K2, G) und H = (X,Z,K,H) = H1◦H2
Hashfamilien. Falls für H1 kein adaptiver (ε1, q + 1)-Kollisionsangriff und für H2 kein
adaptiver (ε2, q)-Fälscher existieren, dann gilt für jeden adaptiven (ε, q)-Fälscher für H,
dass ε ≤ ε1 + ε2 ist.

Beweis. Sei A ein adaptiver (ε, q)-Fälscher für H. Seien x1, . . . , xq die Fragen, die A an
sein Orakel stellt, und seien zi = gk2(fk1(xi)) die erhaltenen Antworten. Zudem sei (x, z)
die Ausgabe von A. Dann ist die Erfolgswk von A

Pr[x 6∈ {x1, . . . , xq} ∧ gk2(fk1(x)) = z] ≥ ε.

Hierbei wird (k1, k2) zufällig ausK = K1×K2 gewählt. Wir müssen zeigen, dass ε ≤ ε1+ε2
ist.
Behauptung 41. Pr[fk1(x) ∈ {fk1(x1), . . . , fk1(xq)}] < ε1.

Hierzu betrachten wir folgenden adaptiven Kollisionsangreifer A′ gegen H1: A′ wählt
zufällig einen Schlüssel k2 ∈ K2 und simuliert A, wobei A′ für jede Anfrage xi von A
das Orakel fk1 (mit unbekanntem, aber zufällig gewähltem Schlüssel k1) nach dem Wert
yi = fk1(xi) fragt und an A die Antwort zi = gk2(yi) zurückgibt. Sobald A ein Paar
(x, z) ausgibt, fragt A′ das Orakel fk1 nach dem Hashwert y = fk1(x) und gibt im Fall
y ∈ {y1, . . . , yq} das Paar (x, xi) für einen beliebigen Index i mit y = yi aus.
Da A′ genau im Fall y ∈ {y1, . . . , yq} Erfolg hat, tritt dieser Fall mit Wahrscheinlichkeit
kleiner ε1 ein, womit Behauptung 41 bewiesen ist.
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Behauptung 42. Pr[fk1(x) 6∈ {fk1(x1), . . . , fk1(xq)} ∧ gk2(fk1(x)) = z] > ε− ε1.

Dies folgt direkt aus Pr[x 6∈ {x1, . . . , xq} ∧ gk2(fk1(x)) = z] ≥ ε und Behauptung 41.
Behauptung 43. Pr[fk1(x) 6∈ {fk1(x1), . . . , fk1(xq)} ∧ gk2(fk1(x)) = z] < ε2.

Hierzu betrachten wir den adaptiven Fälscher A′′ gegen H2, der zufällig einen Schlüssel
k1 ∈ K1 wählt und A wie folgt simuliert. A′′ gibt bei jeder Anfrage xi von A die
Antwort des Orakels gk2 auf die Frage yi = fk1(xi) zurück und sobald A ein Paar
(x, z) ausgibt, gibt A′′ das Paar (fk1(x), z) aus. Dann hat A′′ genau im Fall fk1(x) 6∈
{fk1(x1), . . . , fk1(xq)}∧gk2(fk1(x)) = z Erfolg. Da es nach Voraussetzung keinen adaptiven
(ε2, q)-Fälscher gegen H2 gibt, muss ε− ε1 < ε2 sein. �
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2 Elliptische Kurven

2.1 Elliptische Kurven über den reellen Zahlen

Definition 44. Seien a, b ∈ R. Eine elliptische Kurve E enthält alle Lösungen (x, y) ∈ R2

der Gleichung y2 = x3 + ax + b und zusätzlich den Punkt O (Punkt im Unendlichen;
siehe Übungen). Im Fall 4a3 + 27b2 = 0 heißt E singulär, sonst nicht-singulär.
Beispiel 45. Betrachte die durch y2 = x3 − 4x definierte elliptische Kurve E. Punkte:
(−2, 0), (0, 0), (2, 0), (−1, 2), (−1,−2).

Auf den nicht-singulären Punkten von E lässt sich eine additive Gruppenoperation +
definieren. Die Idee dabei ist, dass die Summe aller auf einer Geraden g liegenden Punkte
von E gleich dem neutralen Element O sein soll. Hierbei werden Tangentialpunkte doppelt
und Wendepunkte dreifach gezählt und nur solche Geraden g berücksichtigt, auf denen
bei dieser Zählweise 3 Punkte von E liegen, wobei im Fall, dass g parallel zur y-Achse
verläuft, zusätzlich noch der Punkt O hinzugerechnet wird.
Am einfachsten ist der Fall, dass die Gerade g parallel zur y-Achse verläuft, also g
den Punkt O enthält. Besteht die Schnittmenge S von g und E \ {O} aus 2 Punkten
P = {x1, y1} und Q = {x2, y2}, so gilt offensichtlich x1 = x2 und y1 = −y2 und wir
erhalten P + Q + O = O bzw. −P = (x1,−y1). Diese Gleichung gilt auch für den
Fall, dass S nur aus einem Punkt P = {x1, y1} besteht, da P dann wegen y1 = 0 ein
Tangentialpunkt ist und daher doppelt gezählt wird.
Es bleibt der Fall, dass g nicht parallel zur y-Achse verläuft. Hier gibt es 2 Unterfälle:
P 6= Q: In diesem Fall gilt x1 6= x2. Zudem ist g = {(x, y) ∈ R2|y = λx + µ} mit

λ = y2−y1
x2−x1

und µ = y1 − λx1 = y2 − λx2. Wir zeigen zuerst, dass

E ∩ g = {P,Q,R}

ist, wobei R = (x3, y3) folgende Koordinaten hat:

x3 = λ2 − x1 − x2 und y3 = λ(x3 − x1) + y1.

Für alle (x, y) ∈ E ∩ g gilt

(λx+ µ)2 = x3 + ax+ b

; x3 − λ2x2 + (a− 2µλ)x+ b− µ2︸ ︷︷ ︸
p(x)

= 0.

p lässt sich in C vollständig in Linearfaktoren zerlegen,

p(x) = (x− x1)(x− x2)(x− x3).

Da sich der Koeffizient −λ2 von x2 aus der linearen Zerlegung von p(x) zu

−λ2 = −x1 − x2 − x3

berechnet, muss x3 = λ2 − x1 − x2 sein. Da R auch auf g liegt, ist zudem y3 =
λ(x3 − x1) + y1.
Folglich ist P +Q = −R = (x3,−y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1).
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P = Q: In diesem Fall gilt x1 = x2 und y1 = y2 6= 0. Sei g die Tangente durch P an E.
Wir zeigen, dass es einen Punkt R = (x3, y3) ∈ R2 gibt mit

g ∩ E = {P,R},

wobei x3 = λ2 − 2x1 und y3 = λ(x3 − x1) + y1 ist. Die Steigung λ von g erhalten
wir durch implizites Differenzieren:

λ = dy

dx
=
−∂F

∂x
(x1, y1)

∂F
∂y

(x1, y1)
= 3x2

1 + a

2y1
,

wobei F (x, y) = y2 − x3 − ax− b ist. Zur Begründung sei

T (x, y) = c(x− x1) + d(y − y1)

die Tangentialebene an F (x, y) im Punkt (x1, y1, F (x1, y1)) = (x1, y1, 0). Dann gilt

c = ∂F

∂x
(x1, y1) = −3x2

1 − a

und
d = ∂F

∂y
(x1, y1) = 2y1.

Da die Tangente g sowohl in der Tangentialebene T als auch in der x, y-Ebene
verläuft, folgt

(x, y) ∈ g ⇔ T (x, y) = 0
⇔ y − y1 = − c

d
(x− x1),

woraus sich λ = − c
d
ergibt. Genau wie im 1. Fall erhalten wir nun P +Q = P +P =

2P = −R = (x3,−y3)) = (λ2 − x1 − x2, λ(x1 − x3)− y1) mit λ = 3x2
1+a

2y1
.

Satz 46. E bildet mit O als neutralem Element und + als Addition eine abelsche Gruppe,
d.h.
• + ist abgeschlossen auf E.
• + ist kommutativ
• Jeder Punkt hat ein Inverses −P . P ist selbstinvers, falls P = −P ist. Dies gilt
für P = O und alle Kurvenpunkte der Form P = (x, 0).
• + ist assoziativ. (ohne Beweis!)

2.2 Elliptische Kurven über endlichen Körpern

Definition 47. Sei Fq ein endlicher Körper mit q = pn für eine Primzahl p > 3. Für
a, b ∈ Fq mit 4a3 + 27b2 6= 0 heißt

E = {(x, y) ∈ Z2
p | y2 ≡p x3 + ax+ b} ∪ {O}

elliptische Kurve über Fq. Die Gruppenoperation + ist auf E wie folgt definiert.
• O ist neutrales Element, d.h. ∀P ∈ E − {O} : P +O = O + P = P .
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• Das Inverse zu P = (x, y) ∈ E \ {O} ist −P = P = (x,−y).
• Für P,Q ∈ E \ {O} ist

P +Q =

O, P = Q

R, sonst

wobei sich R = (x3, y3) wie folgt aus P = (x1, y1) und Q = (x2, y2) berechnet:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

wobei λ =

(y2 − y1)(x2 − x1)−1, P 6= Q

(3x2
1 + a)(2y1)−1, P = Q

Satz 48. (E,O,+) bildet eine abelsche Gruppe (ohne Beweis).

Beispiel 49. p = 11, E definiert durch y2 = x3 + x+ 6. Zur Erinnerung: Im Fall p ≡4 3
lassen sich für z ∈ QRp die Wurzeln y durch ±z p+1

4 bestimmen.

x 0 1 2 3 4 5 6 7 8 9 10
z = x3 + x+ 6 6 8 5 3 8 4 8 4 9 7 4
y = ±

√
z mod 11 − − 4; 7 5; 6 − 2; 9 − 2; 9 3; 8 − 2; 9

Da die Gruppe (E,O,+) ‖E‖ = 13 Elemente enthält, und 13 eine Primzahl ist, haben alle
Elemente entweder die Ordnung 1 oder 13. Da nur das neutrale Element O die Ordnung
1 hat, haben alle anderen Elemente P ∈ E−{O} die Ordnung 13, sind also Erzeuger der
Gruppe. Folglich ist (E,O,+) zyklisch und somit isomorph zu Z13: (E,O,+) ∼= (Z13, 0,+).
Berechnung von 2g = (2, 7) + (2, 7):

λ = (3 · 22 + 1)(2 · 7)−1 mod 11
= 2 · 3−1

= 2 · 4 = 8
x3 = 82 − 2− 2 mod 11 = 5
y3 = 8(2− 5)− 7 mod 11 = 2

⇒ 2g = (5, 2)
Berechnung von 3g = 2g + g = (5, 2) + (2, 7):

λ = (7− 2)(2− 5)−1 mod 11
= 5 · (−3)−1

= 2
x3 = 22 − 5− 2 mod 11 = 8
y3 = 2 · (5− 8)− 2 mod 11 = 3

⇒ 3g = (8, 3)

k 1 2 3 4 5 6 7 8 9 10 11 12 13
k · g (2, 7) (5, 2) (8, 3) (10, 2) (3, 6) (7, 9) (7, 2) (3, 5) (10, 9) (8, 8) (5, 9) (2, 4) O

/
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