Vorlesungsskript
Kryptologie

Sommersemester 2016

Prof. Dr. Johannes Kobler

Humboldt-Universitat zu Berlin
Lehrstuhl Komplexitat und Kryptografie

25. Mai 2016

1

Inhaltsverzeichnis

1 Kryptografische Hashverfahren
1.1 Einfihrung
1.2 Schlissellose Hashfunktionen (MDCs) . . .

1.2.1 Vergleich von Sicherheitsanforderungen

1.2.2 Das Zufallsorakelmodell (ZOM) . .
1.2.3 Iterierte Hashfunktionen
1.2.4 Die Merkle-Damgaard-Konstruktion
1.2.5 Die MD4-Hashfunktion
1.2.6 Die MD5-Hashfunktion
1.2.7 Die SHA-1-Hashfunktion
1.2.8 Die SHA-2-Familie
1.2.9 Kryptoanalyse von Hashfunktionen
1.2.10 Die Sponge-Konstruktion
1.2.11 SHA-3
1.3 Nachrichten-Authentikationscodes (MACs)

1.3.1 Angriffe gegen symmetrische Hashfunktionen
1.3.2 Informationstheoretische Sicherheit von MACs
1.3.3 MACs auf der Basis einer Kompressionsfunktion

1.34 CBC-MACs

1.3.5 Kombination einer Hashfunktion mit einem MAC (HMAC)

2 Elliptische Kurven
2.1 Elliptische Kurven tiber den reellen Zahlen
2.2 Elliptische Kurven tiber endlichen Kérpern

29

1 Kryptografische Hashverfahren

1.1 Einfiihrung

Durch kryptographische Verfahren lassen sich unter anderem die folgenden Schutzziele
realisieren.
o Vertraulichkeit
— Geheimhaltung
— Anonymitat (z.B. Mobiltelefon)
— Unbeobachtbarkeit (von Transaktionen)
o Integritat
— von Nachrichten und Daten
e Jurechenbarkeit
— Authentikation
— Unabstreitbarkeit
— Identifizierung
o Verfigbarkeit
— von Daten
— von Rechenressourcen
— von Informationsdienstleistungen
Kryptografische Hashverfahren sind ein wirksames Werkzeug zur Sicherstellung der Inte-
gritdt von Nachrichten oder generell von digitalisierten Daten. Sie nehmen somit beim
Schutz der Datenintegritéit eine dhnlich herausragende Stellung ein wie sie Kryptosys-
temen bei der Wahrung der Vertraulichkeit zukommt. Daneben finden kryptografische
Hashfunktionen aber auch vielfach als Bausteine von komplexeren Systemen Verwendung.
Wie wir noch sehen werden, sind kryptografische Hashfunktionen etwa bei der Erstellung
von digitalen Signaturen sehr niitzlich. Auf weitere Anwendungsmoglichkeiten werden
wir spater eingehen.
Vielen Anwendungen von kryptografischen Hashfunktionen h liegt die Idee zugrunde,
dass sie zu einem vorgegebenen Text z eine zwar kompakte aber dennoch représentati-
ve Darstellung h(z) liefern, die unter praktischen Gesichtspunkten als eine eindeutige
Identifikationsnummer von x fungieren kann. Die Berechnungsvorschrift fiir A muss
somit ,charakteristische Merkmale“ von x in den Hashwert h(z) einflielen lassen. Da
der Fingerabdruck eines Menschen ganz dhnliche Eigenschaften besitzt (was ihn fiir
Kriminalisten bekanntlich so wertvoll macht), wird der Hashwert h(z) auch oft als
ein digitaler Fingerabdruck von x bezeichnet. Gebrauchlich sind auch die Bezeich-
nungen kryptografische Priifsumme oder message digest (englische Bezeichnung fiir
,Nachrichtenextrakt*).
Typische Schutzziele, die sich mittels Hashfunktionen realisieren lassen, sind die
Nachrichten- und Teilnehmerauthentikation.

e Nachrichtenauthentikation“ (message authentication)

2 1 Kryptografische Hashverfahren
Kryptografische
Hashverfahren
Sonstige
Hashverfahren

Abbildung 1.1: Eine grobe Einteilung von kryptografischen Hashverfahren.

(Integritatsschutz) (Authentikation)

— Wie lasst sich sicherstellen, dass eine Nachricht (oder eine Datei) wiahrend
einer (rdumlichen oder auch zeitlichen) Ubertragung nicht verindert wurde?

— Wie lésst sich der Urheber (oder Absender) einer Nachricht zweifelsfrei fest-
stellen?

e Teilnehmerauthentikation® (entity authentication, identification)

— Wie kann sich eine Person (oder ein Gerat) anderen gegeniiber zweifelsfrei
ausweisen?

Klassifikation von Hashverfahren

Kryptografische Hashverfahren lassen sich grob danach klassifizieren, ob der Hashwert
lediglich in Abhéngigkeit vom Eingabetext berechnet wird oder zusétzlich von einem
symmetrischen Schliissel abhéangt (siehe Abbildung 1.1).

Kryptografische Hashfunktionen, bei deren Berechnung keine Schliissel benutzt werden,
dienen vornehmlich der Erkennung von unbefugt vorgenommenen Manipulationen an
Dateien oder Nachrichten. Daher werden sie auch als MDC bezeichnet (Manipulation
Detection Code [englisch] = Code zur Erkennung von Manipulationen). Zuweilen wird
das Kiirzel MDC auch als eine Abkiirzung fiir Modification Detection Code verwendet.
Seltener ist dagegen die Bezeichnung MIC (message integrity codes). Abbildung 1.2
zeigt eine typische Anwendung von MDCs.

Um die Integritéit eines Datensatzes = sicherzustellen, der iiber einen ungesi-

@ ======================> @
h h
é Authentisierter Kanal A 4 (echt)
> y L h(z'

Abbildung 1.2: Einsatz eines MDC h zur Uberpriifung der Integritit eines Datensatzes
x.

1.2 Schliissellose Hashfunktionen (MDCs) 3

Ungesicherter !
hk hk
é) Kanal l (echt)
S-S S-S S-S S-S CSCSCSCSESSES=S=S=S=S=S=S=CS =) h x/ ; /
@)=y falsch
<) > O

Gesicherter Kanal

k: Symmetrischer Authentikationsschliissel
y = hi(x): MAC-Hashwert fiir 2 unter k

Abbildung 1.3: Verwendung eines MAC zur Nachrichtenauthentikation.

cherten Kanal gesendet (bzw. auf einem vor Manipulationen nicht sicheren
Webserver abgelegt) wird, kann man wie folgt verfahren. Man sendet den
MDC-Hashwert von x tiber einen authentisierten Kanal und priift, ob der
Datensatz nach der Ubertragung noch denselben Hashwert liefert.

Kryptografische Hashverfahren mit symmetrischen Schliisseln finden hauptséachlich bei
der Authentifizierung von Nachrichten Verwendung. Diese werden daher auch als MAC
(message authentication code [englisch] = Code zur Nachrichtenauthentifizierung) oder
als Authentikationscode bezeichnet. Daneben gibt es auch Hashverfahren mit asym-
metrischen Schliisseln. Diese werden jedoch der Rubrik der Signaturverfahren zugeordnet,
da mit ihnen ausschlieflich digitale Unterschriften gebildet werden. Abbildung 1.3 zeigt,
wie sich Nachrichten mit einem MAC authentisieren lassen. Man beachte, dass nun auch
der Hashwert tiber den unsicheren Kanal gesendet wird.

Mochte Alice eine Nachricht x an Bob tibermitteln, so berechnet er den
zugehorigen MAC-Hashwert y = hy(2) und figt diesen der Nachricht x hinzu.
Bob tberpriift die Echtheit der empfangenen Nachricht (2/,y'), indem sie
ihrerseits den zu z’ gehorigen Hashwert hy(x’) berechnet und das Ergebnis
mit y’ vergleicht. Der geheime Authentikationsschliissel k£ muss hierbei genau
wie bei einem symmetrischen Kryptosystem tiber einen gesicherten Kanal
vereinbart werden.

Indem Alice seine Nachricht z um den Hashwert y = hy(x) ergénzt, gibt er Bob nicht
nur die Moglichkeit, anhand von y die empfangene Nachricht auf Manipulationen zu
iiberpriifen. Die Benutzung des geheimen Schliissels k erlaubt zudem eine Uberpriifung
der Herkunft der Nachricht.

1.2 Schliissellose Hashfunktionen (MDCs)

In diesem Abschnitt betrachten wir verschiedene Sicherheitsanforderungen an einzelne
Hashfunktionen h. Dabei nehmen wir an, dass h 6ffentlich bekannt ist, d.h. h ist eine
schliissellose Hashfunktion (MDC).

4 1 Kryptografische Hashverfahren

Sei h: X — Y eine Hashfunktion. Ein Paar (z,y) € X x Y heifit giiltig fur h, falls
h(z) =y ist. Ein Paar (z,2') mit h(z) = h(z') heifit Kollisionspaar fiir h. Die Anzahl
||Y|| der Hashwerte bezeichnen wir mit m. Ist auch der Textraum X endlich, || X|| = n,
so heifit h eine (n, m)-Hashfunktion. In diesem Fall verlangen wir meist, dass n > 2m
ist, und wir nennen h dann eine Kompressionsfunktion (compression function).

Da h offentlich bekannt ist, ist es sehr einfach, fiir einen vorgegebenen Text x ein giiltiges
Paar (z,y) zu erzeugen. Fiur bestimmte kryptografische Anwendungen ist es wichtig, dass
dies nicht moglich ist, falls der Hashwert y vorgegeben wird.

Problem P1: Bestimmung eines Urbilds
Gegeben: Eine Hashfkt. h: X — Y und ein Hashwert y € Y.
Gesucht: Ein Text z € X mit h(z) = y.

Falls es einen immensen Aufwand erfordert, fiir einen vorgegebenen Hashwert y einen Text
x mit h(xz) = y zu finden, so heifit h Einweg-Hashfunktion (one-way hash function bzw.
preimage resistant hash function). Diese Eigenschaft wird beispielsweise benotigt, wenn
die Hashwerte der Benutzerpassworter in einer 6ffentlich zuganglichen Datei abgespeichert
werden, wie es bei manchen Unix-Systemen der Fall ist.

Problem P2: Bestimmung eines zweiten Urbilds
Gegeben: Fine Hashfkt. h: X — Y und ein Text z € X.
Gesucht: Ein Text 2’ € X \ {z} mit h(2') = h(z).

Falls sich fiir einen vorgegebenen Text x nur mit grofem Aufwand ein weiterer Text &’ # x
mit dem gleichen Hashwert h(z') = h(z) finden lésst, heifit h schwach kollisionsre-
sistent (weakly collision resistant bzw. second preimage resistant). Diese Eigenschaft
wird in der durch Abbildung 1.2 skizzierten Anwendung benétigt. Beim Versuch, eine
digitale Signatur zu filschen (siehe unten), sieht sich der Gegner dagegen mit folgender
Problemstellung konfrontiert.

Problem P3: Bestimmung einer Kollision
Gegeben: Fine Hashtkt. h: X — Y.
Gesucht: Texte x # ' € X mit h(z") = h(z).

Falls sich dieses Problem nur mit einem immensen Aufwand l6sen lésst, heifit h (stark)
kollisionsresistent (collision resistant).

Obwohl die schwache Kollisionsresistenz eine gewisse Ahnlichkeit mit der Einweg-
Eigenschaft aufweist, sind die beiden Eigenschaften im allgemeinen unvergleichbar. So
muss eine schwach kollisionsresistente Funktion nicht notwendigerweise eine Einweg-
funktion sein, da die Bestimmung eines Urbildes gerade fiir diejenigen Funktionswerte
einfach sein kann, die nur ein einziges Urbild besitzen. Umgekehrt impliziert die Einweg-
Eigenschaft auch nicht die schwache Kollisionsresistenz, da die Kenntnis eines Urbildes
das Auffinden weiterer Urbilder sehr stark erleichtern kann.

1.2.1 Vergleich von Sicherheitsanforderungen

In diesem Abschnitt zeigen wir, dass stark kollisionsresistente Hashfunktionen sowohl
schwach kollisionsresistent als auch Einweghashfunktionen sind.

Satz 1. Sei h: X — Y eine (n,m)-Hashfunktion. Dann ist das Problem P3, ein Kol-
listonspaar fir h zu bestimmen, auf das Problem P2, ein zweites Urbild zu bestimmen,

1.2 Schliissellose Hashfunktionen (MDCs) 5

1 wahle zufallig z € X
2 2= Ax)
5 if 2’ #7 then return(z,2’) else return(?)

Abbildung 1.4: Reduktion des Kollisionsroblems auf das Problem, ein zweites Urbild zu
bestimmen

reduzierbar. Folglich sind stark kollisionsresistente Hashfunktionen auch schwach kollisi-
onsresistent.

Beweis. Sei A ein Las-Vegas Algorithmus, der fiir ein zufillig aus X gewahltes x mit
Erfolgswahrscheinlichkeit ¢ ein zweites Urbild a’ fiir h liefert und andernfalls 7 aus-
gibt. Dann ist klar, dass der in Abbildung 1.4 dargestellte Las-Vegas Algorithmus mit
Wahrscheinlichkeit € ein Kollisionspaar findet. O

Als néchstes zeigen wir, wie sich das Kollisionsproblem auf das Urbildproblem reduzieren
lasst.

Satz 2. Sei h: X — Y eine (n, m)-Hashfunktion mit n > 2m. Dann ist das Problem P3,
ein Kollisionspaar fiir h zu bestimmen, auf das Problem P1, ein Urbild zu bestimmen,
reduzierbar.

Beweis. Sei A ein Invertierungsalgorithmus fir h, d.h. A berechnet fiir jeden Hashwert y
in W(h) = {h(z) | € X} ein Urbild z mit h(x) = y. Betrachte den in Abbildung 1.5
dargestellten Las-Vegas Algorithmus B.

Sei C = {h~'(y) | y € Y}. Dann hat B eine Erfolgswahrscheinlichkeit von

Il fel-1_ 1 —1)=(n—m)/n
ZHXH] ==> (Icl-1)=()/n=

ceC ceC

N —

1.2.2 Das Zufallsorakelmodell (ZOM)

Das ZOM dient dazu, den Aufwand verschiedener Angriffe auf eine Hashfunktion h: X —
Y nach oben abzuschatzen. Sind X und Y vorgegeben, so konnen wir eine Hashfunktion
h: X — Y dadurch ,konstruieren®, dass wir fiir jedes x € X zufallig ein y € Y wahlen
und h(z) auf y setzen. Aquivalent hierzu ist, fiir h eine zufillige Funktion aus der
Klasse FI(X,Y) aller n™ Funktionen von X nach Y zu wéihlen. Dieses Verfahren ist auf
Grund des hohen Aufwands zwar nicht mehr praktikabel, wenn n = || X|| eine bestimmte
Grofle iibersteigt. Es liefert uns aber ein theoretisches Modell fiir eine Hashfunktion
mit ,idealen® kryptografischen Eigenschaften. Offensichtlich besteht fiir den Gegner die

I wahle zufallig r € X

2y = h(x)

3 2= Aly)

1 if z # 2’ then return(z,2’) else return(?)

Abbildung 1.5: Reduktion des Kollisionsproblems auf das Urbildproblem

6 1 Kryptografische Hashverfahren

Prozedur FindPreimage(h,v,q)

1 wahle eine beliebige Menge Xy = {zy,...,2,} CX
2 for each z; € Xy do

3 if h(z;) =y then return(z;)

1 return(?)

Abbildung 1.6: Bestimmung eines Urbilds fiir einen Hashwert

einzige Moglichkeit, Informationen iiber A zu erhalten, darin, sich fiir eine Reihe von
Texten die zugehorigen Hashwerte zu besorgen (was der Befragung eines funktionalen
Zufallsorakels entspricht).

Eine Zufallsfunktion A eignet sich deshalb gut als kryptografische Hashfunktion, weil
der Hashwert h(x) fiir einen Text = auch dann noch schwer vorhersagbar ist, wenn der
Gegner bereits die Hashwerte einer beliebigen Zahl von anderen Texten kennt.

Proposition 3. Sei Xo = {x1,..., 2z} eine beliebige Menge von k verschiedenen Texten
aus X und seien yy, ..., yx € Y. Dann gilt fir eine zufallig aus F(X,Y") gewdhlte Funktion
h und fiir jedes Paar (z,y) € (X — Xo) X Y,

Prih(x) = y|h(z;) = y; furi=1,... k] =1/m.

Um eine obere Komplexitéitsschranke fiir das Urbildproblem im ZOM zu erhalten, be-
trachten wir den in Abbildung 1.6 dargestellten Algorithmus. Hier (und bei den beiden
folgenden Algorithmen) gibt der Parameter ¢ die Anzahl der Hashwertberechnungen
(also die Anzahl der gestellten Orakelfragen an das Zufallsorakel h) an. Der Zeitaufwand
der Algorithmen ist dabei proportional zu q.

Satz 4. FINDPREIMAGE(h, y,q) gibt im ZOM mit Wahrscheinlichkeit e =1 —(1—1/m)4
ein Urbild von y aus (unabhdingig von der Wahl der Menge X).

Beweis. Sei y € Y fest und sei Xo = {z1,...,2,}. Fiir i = 1,..., ¢ bezeichne E; das
Ereignis “h(z;) = y”. Nach Proposition 3 sind diese Ereignisse stochastisch unabhéangig
und ihre Wahrscheinlichkeit ist Pr[E;| = 1/m (i =1,...,¢q). Also folgt

PrlEyU...UE,|=1-Pr[EiN...NE,]=1—(1—-1/m)".
O

Der in Abbildung 1.7 dargestellte Algorithmus liefert uns eine obere Schranke fiir die
Komplexitat des Problems, ein zweites Urbild fir A(x) zu bestimmen. Die Erfolgswahr-
scheinlichkeit lésst sich vollkommen analog zum vorherigen Satz bestimmen.

Satz 5. FINDSECONDPREIMAGE(h, x,q) gibt im ZOM mit Wahrscheinlichkeit € =
1—(1—1/m)? "t ein zweites Urbild xy # = von y = h(x) aus.

Ist ¢ vergleichsweise klein, so ist bei beiden bisher betrachteten Angriffen € ~ ¢/m. Um
also auf eine Erfolgswahrscheinlichkeit von 1/2 zu kommen, ist ¢ &~ m /2 zu wéhlen.

Geht es lediglich darum, irgendein Kollisionspaar (z, ") aufzusptiren, so bietet sich ein
sogenannter Geburtstagsangriff an. Dieser ist deutlich zeiteffizienter zu realisieren.
Wie der Name schon andeutet, basiert dieser Angriff auf dem sogenannten Geburtstagspa-
radoxon, welches in seiner einfachsten Form folgendes besagt.

1.2 Schliissellose Hashfunktionen (MDCs) 7

Geburtstagsparadoxon: Bereits in einer Schulklasse mit 23 Schulkindern haben mit einer
Wahrscheinlichkeit grofler 1/2 mindestens zwei Kinder am gleichen Tag Geburtstag
(dies erscheint zwar verbliiffend, wird aber durch die Praxis mehr als bestétigt).

Tatsédchlich zeigt der néchste Satz, dass bei g-maligem Ziehen (mit Zuriicklegen) aus
einer Urne mit m Kugeln mit einer Wahrscheinlichkeit von

I—(m—1)(m—-2)---(m—q+1)/m?!

eine Kugel zweimal gezogen wird. Fiir m = 365 und ¢ = 23 ergibt dies einen Wert von
ungefahr 0,507.

Zur Kollisionsbestimmung verwenden wir den in Abbildung 1.8 dargestellten Algorithmus.
Bei einer naiven Implementierung wiirde zwar der Zeitaufwand fiir die Auswertung der if-
Bedingung quadratisch von ¢ abhéngen. Trigt man aber jeden Text x unter dem Suchwort
h(z) in eine (herkémmliche) Hashtabelle der GroBe ¢ ein, so wird der Zeitaufwand fiir
die Bearbeitung jedes einzelnen Textes x im wesentlichen durch die Berechnung von h(zx)
bestimmt.

Satz 6. COLLISION(h, q) gibt im ZOM mit Erfolgswahrscheinlichkeit

(m—1)(m—2)---(m—q+1)

e=1- —

ma

ein Kollisionspaar (xz,x") fir h aus.

Beweis. Sei Xo = {x1,...,2,}. Fir i =1,...,q bezeichne E; das Ereignis

“h(x;) & {h(xy,...,h(x;1)}.”

Dann beschreibt E1N...NE, das Ereignis “COLLISION(h, ¢) gibt 7 aus” und fiiri = 1,...,¢
gilt
i1
PI'[E,L‘El n...N Eifl] = u
m
Dies fithrt auf die Erfolgswahrscheinlichkeit

e = 1-Pr[EyN...NE,]
= 1- Pr[El]Pr[EQ ’El] te PI‘[Eq ’ El N...N qul]

() (2 ().

Prozedur FindSecondPreimage(h,z,q)

1 y:=h(x)
> wahle eine beliebige Menge X, = {z1,...,741} C X —{z}
1

for each z; € Xy do
if h(z;) =y then return(x;)
5 return(?)

Abbildung 1.7: Bestimmung eines 2. Urbilds fiir einen Hashwert

8 1 Kryptografische Hashverfahren

Prozedur Collision(h,q)

1 wahle eine beliebige Menge X, = {zy,...,2,} C X
> for each z; € Xy do y; := h(z;)
3 if Ji#j:y; =y; then return(z;,z;) else return(?)

Abbildung 1.8: Bestimmung eines Kollisionspaares

Mit 1 — z ~ e~ * folgt

q—1 ; -1 2
2 —i 1 Na-1, _a(g—1) _ 9
€:1_||<1_>%1—||em :1—@771 i:llzl—e 2m %1—6 2m%q2/2m.
. m ‘
=1 =1

Somit erhalten wir die Abschiatzung

q = co/m

mit c. = v/2¢. Diese Abschiatzung ist nur fiir e-Werte nahe Null hinreichend genau. Eine
2

bessere Abschétzung ergibt sich aus der Approximation e &~ 1 — ¢~ 2m:

q =~ dm

mit ¢, = ,/2In 7. Fiir ¢ = 1/2 ergibt sich somit ¢ ~ /(2In2)m ~ 1,17/m.

Besitzt also eine bindre Hashfunktion h: {0,1}" — {0, 1}™ die Hashwertlange m = 128
Bit, so miissen im ZOM ¢ ~ 1,17 - 25* Texte gehasht werden, um mit einer Wahrschein-
lichkeit von 1/2 eine Kollision zu finden. Um einem Geburtstagsangriff widerstehen zu

konnen, sollte eine Hashfunktion mindestens eine Hashwertlénge von 128 oder besser 160
Bit haben.

1.2.3 Iterierte Hashfunktionen

In diesem Abschnitt beschéftigen wir uns mit der Frage, wie sich aus einer kollisionsresis-
tenten Kompressionsfunktion

h:{0,1}" — {0,1}™
eine kollisionsresistente Hashfunktion
h:{0,1}* — {0, 1}
konstruieren lésst. Hierzu betrachten wir folgende kanonische Konstruktionsmethode.

Preprocessing: Transformiere x € {0,1}* mittels einer Funktion
y:{0.1}" — (J{o,1}"
r>1

zu einem String y(z) mit der Eigenschaft |y(z)| =, 0.

Processing: Sei IV € {0,1}™ ein offentlich bekannter Initialisierungsvektor und sei
y(x) = y1 -+ -y, mit |y;| =t fiir ¢ = 1,...,r. Berechne eine Folge z, ...,z von
Strings z; € {0,1}™ wie folgt:

1V, 1 =0,
Zi =
h(ZZ‘,lyi), 1= 1, e, T

1.2 Schliissellose Hashfunktionen (MDCs) 9

Optionale Ausgabetransformation: Berechne den Hashwert h(z) = g(z,), wobei
g: {0,1}™ — {0,1}" eine offentlich bekannte Funktion ist. (Meist wird fiir ¢
die Identitat verwendet.)

Um h(x) zu berechnen, muss also die Kompressionsfunktion h genau r-mal aufgeru-
fen werden. Wir formulieren nun eine fiir Preprocessing-Funktionen wiinschenswerte
Eigenschaft.

Definition 7. Eine Funktion y: {0,1}* — {0, 1}* heifst suffizfrei, falls es keine Strings
x # & und z in {0,1}* mit y(Z) = zy(z) gibt (d.h. kein Funktionswert y(x) ist Suffix
eines Funktionswertes y(Z) an einer Stelle T # x).

Man beachte, dass jede suffixfreie Funktion insbesondere injektiv ist.

Satz 8. Fulls die Preprocessing-Funktion y suffizfrei und die Ausgabetransformation g
injektiv ist, so ist mit h auch h kollisionsresistent.

Beweis. Angenommen, es gelingt, ein Kollisionspaar z, # fiir h mit fz(:v) = ﬁ(:%) zu finden.
Sei
y(x) =y Y—1yr und y(Z) = $1Ys - . . Y1y mit k < L.

Da y suffixfrei ist, muss ein Index i € {1,...,k} mit y; # 4;_x4; existieren. Weiter seien
2 (i=0,....k)und 2; (j =0,...,1) die in der Processing-Phase berechneten Hashwerte.
Da g injektiv ist, muss mit g(z;) = iL(x) = iL(:i‘) = g(Z) auch z, = Z; gelten. Sei i,,4,
der grofite Index i € {1,...,k} mit z;_1y; # Zi_k+i—1U1—k+i- Dann bilden z;,_ 1y, . und
Zl—ktimaz—1Yl—k-+imas WEZEN

h(zimaz_lyimam) = Zima,z = 2l—k+lmaz = h(gl_k+imaz_1gl—k+imaz>

ein Kollisionspaar fiir h. O

1.2.4 Die Merkle-Damgaard-Konstruktion

Merkle und Damgaard schlugen 1989 folgende konkrete Realisierung ihrer Konstruktion
vor. Als Initialisierungsvektors wird der Nullvektor IV = 0™ benutzt, die optionale
Ausgabetransformation entfillt, und fiir y(z) wird im Fall t > 2 die folgende Funktion
verwendet. (Den Fall ¢ = 1 betrachten wir spéter.)

Fir z = ¢ sei y(r) = 0" und fiir x € {0,1}" mit n > 0 sei k = [%5] und = =
T1Ty. .. Tp_1Zg it |x1| = |zo| = ... = |xp_q| = t — 1 sowie |z = t — 1 — d, wobei
0 <d<t—1 Im Fall kK = 1 ist dann y(z) = 0x0%1bin;_1(d) und fir k > 1 ist
y(x) = Y1 Y41, wobei

Oxl, 1= 1,
lz;, 2 <1<k,
124,09, 1=k,

Lbing_1(d), i=k+1,

und bin;_1(d) die durch fithrende Nullen auf die Lange ¢t — 1 aufgefiillte Binardarstellung
von d ist.

Satz 9. Die durch (1.1) definierte Preprocessing-Funktion y ist suffizfrei.

10 1 Kryptografische Hashverfahren

Beweis. Seien x # T zwei Texte mit |x| < |Z|. Wir miissen zeigen, dass y(z) = y1ya - . - Ypr1
kein Suffix von y(Z) = 9192 . . . §i41 ist. Im Fall = ¢ ist dies klar. Fiir x # & machen wir
folgende Fallunterscheidung.

1. Fall: |z| #,_, |Z|. Dann folgt d # d und somit Y41 # Jis1-

2. Fall: |z| = |Z|. In diesem Fall ist &k = [. Wegen = # 7 existiert ein Index ¢ €
{1,...,k} mit z; # Z;. Dies impliziert y; # @, also ist y(x) kein Suffix von y(Z).

3. Fall: |2| # |Z| und |z| =, |2|. In diesem Fall ist & < [. Da y(z) mit einer Null
beginnt, aber das (I — k 4+ 1)-te Bit von y(Z) eine Eins ist, kann y(z) kein Suffix
von y(Z) sein. 0

Nun kommen wir zum Fall ¢ = 1. Sei y die durch y(x) := 11f(z) definierte Funktion,
wobei f wie folgt definiert ist:

flxy,...,x,) = f(x1) ... f(z2) mit f(0) =0 und f(1) = 01.

Dann ist leicht zu sehen, dass y suffixfrei ist. Da die Kompressionsfunktion A bei der
Berechnung von ﬁ(m) im Fall ¢ = 1 fur jedes Bit von y(x) einmal aufgerufen wird, wird h
genau |y(z)| < 2(n+1)-mal aufgerufen. Im Fall ¢ > 1 werden dagegen nur k+1 = [;%5]+1
Aufrufe benotigt.

1.2.5 Die MD4-Hashfunktion

Die MD4-Hashfunktion (Message Digest) wurde 1990 von Rivest vorgeschlagen. Die
Bitlange von MD4 betragt [= 128 Bit. Bei einer Wortlange von 32 Bit entspricht
dies 4 Wortern. Die im Folgenden vorgestellten Hashfunktionen benutzen u.a. folgende
Operationen auf Wortern.

Operatoren auf {0,1}3
X AY | bitweises ,,Und“ von X und Y
X VY | bitweises ,,Oder” von X und Y
X @Y | bitweises ,,exklusives Oder® von X und Y
=X | bitweises Komplement von X
X +Y | Ganzzahl-Addition modulo 232
X — s | Rechtsshift um s Stellen
X « s | zirkuldrer Linksshift um s Stellen

Wiéhrend die Ganzzahl-Addition bei MD4 und MD5 in little endian Architektur (d.h.
ein aus 4 Bytes azasaqag, 0 < a; < 255 zusammengesetztes Wort représentiert die Zahl
a02** + a12'% + a92® + a3) ausgefiihrt wird, verwendet SHA-1 eine big endian Architektur
(d.h. azasaiag, 0 < a; < 255 reprasentiert die Zahl a32?* + @520 + ;2% + ag). Der
MD4-Algorithmus benutzt die folgenden Konstanten y;, 2;,s;, j = 0,...,47

y; (in Hexadezimaldarstellung)
i =0,...,15 0

i —=16,...,31 50827999

g =32,...,47 6ed9ebal

1.2 Schliissellose Hashfunktionen (MDCs) 11

“j

j=0,...,15 | 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15
j=16,...,31| 0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15
j=32,...,47| 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15
Sj

j=0,...,15 | 3,7,11,19,3,7,11,19,3,7,11,19,3,7,11,19
j=16,...,31]3,5,9,13, 3,5,9,13, 3,5, 9,13, 3,5, 9, 13
j=32,...,473,9,11,15,3,9,11,15,3,9,11,15,3,9,11, 15

und folgende Funktionen f;, 7 =0,...,47

(X AY)V (~X A Z), j= 0,...,15,
(XY, Z) = ((XAY)V(XAZ)V(YANZ), j=16,...,31,
XpY ez J=32,...,47.

Fiir MD4 konnten nach ca. 22 Hashwertberechnungen Kollisionen aufgespiirt werden.
Deshalb gilt MD4 nicht mehr als kollisionsresistent.

MD4(x)

1 input z € {0,1}*, |z| =n

oy :=x10%bing(n), k€ {0,1,...,511} mit n+1+k+64=0 (mod 512)
s (Hy, Hy, Hs, Hy) := (67452301, e fcdab89, 98badc fe, 10325476)

i sel y=»M,---M,, r=(n+1+k+64)/512

5 for 1:=1 to r do

6 seli M,; = X|[0]--- X[15]

7 (A,B,C, D) = (Hl,HQ,H3,H4)

8 for j:=0 to 47 do

9 (A,B,C,D) := (D,(A+ f;(B,C,D) + X[z] +v;) < s;,B,C)
10 (Hy,Hy, H3, Hy) == (H1 + A,Hy + B,Hs + C,Hy + D)
11 output H H,H3;H,

1.2.6 Die MD5-Hashfunktion

Der MD?5 ist eine 1991 von Rivest prasentierte verbesserte Version von MD4. Die Bitlange
von MD5 betragt wie bei MD4 [= 128 Bit. Bei einer Wortlange von 32 Bit entspricht
dies 4 Wortern. In MD5 werden teilweise andere Konstanten als in MD4 verwendet.
Zudem besitzt MD5 eine zusitzliche 4. Runde (j = 48,...,63), in der die Funktion
[i(X,Y,Z) =Y & (X V~Z) verwendet wird. Auflerdem wurde die in Runde 2 von MD4
verwendete Funktion durch f;(X,Y,Z) := (X ANZ)V (Y AN=Z), j = 16...31, ersetzt.
Die y-Konstanten sind definiert als y; := die ersten 32 Bit der Binardarstellung von
abs(sin(j + 1)), 0 < j < 63, und fiir z; und s; werden folgende Konstanten benutzt.

12 1 Kryptografische Hashverfahren

Zj
j=0,...,15 |z =7 0,1,2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15
j=16,...,31 | z;=(5j+1)mod 16 : 1,6,11,0,5,10,15,4,9,14,3,8,13,2,7,12

j=232,...,47 |z =(3j+5) mod 16 : 5,8 11,14,1,4,7,10,13,0,3,6,9,12, 15, 2

j=48,...,63 |z = 7j mod 16 : 0,7,14,5,12,3,10,1,8,15,6,13,4,11,2,9
5

j=0,...,15 7,12,17,22,7,12,17,22,7,12,17,22,7,12,17, 22

j=16,...,31 5,9,14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20

j=232,... 47 4,11,16,23,4,11,16,23,4, 11, 16,23, 4, 11, 16, 23

j=48,...,63 6,10, 15,21,6, 10,15, 21,6, 10, 15,21, 6, 10, 15, 21

Fiir MD5 konnten in 2004 ebenfalls Kollisionspaare gefunden werden (fiir die Kompressi-
onsfunktion von MD5 gelang dies bereits 1996).

MD5(z)

1 input z € {0,1}*, |z| =n

oy :=z10%bings(n), k€ {0,1,...,511} mit n+1+k+64 =0 (mod 512)
3 (Hy, Hy, Hy, Hy) := (67452301, e fcdab89, 98badc fe, 10325476)

. seiy=M;---M,, r=(n+1+k+64)/512

5 for i:=1 to r do

6 sei M; = X|[0]--- X[15]

7 (A,B,C,D) = (Hl,HQ,Hg,H4>

8 for j:=0 to 63 do

) (A,B,C,D) = (D,B +(A+ f;(B,C,D) + X|2] + ;) < ;. B,C)
10 (Hy,Hy,Hs, Hy) := (Hi+ A,Hy+ B,H; + C,H, + D)

11 output H HyH3;H,

1.2.7 Die SHA-1-Hashfunktion

Der Secure Hash Algorithm (SHA-1) ist eine Weiterentwicklung des MD4 bzw. MD5
Algorithmus. Er gilt in den USA als Standard und ist Bestandteil des von der US-Behorde
NIST (National Institute of Standards and Technology) im August 1991 vero6ffentlichten
DSS (Digital Signature Standard). Die Bitlinge von SHA-1 betrigt [= 160 Bit. Bei
einer Wortlange von 32 Bit entspricht dies 5 Wortern. SHA-1 unterscheidet sich nur
geringfiigig von der SHA-0 Hashfunktion, in der eine Schwachstelle dazu fithrt, dass
nach Berechnung von ca. 26! Hashwerten ein Kollisionspaar gefunden werden kann
(obwohl bei einem Geburtstagsangriff auf Grund der Hashwertlénge von 160 Bit ca. 2%
Berechnungen erforderlich sein miissten). Diese potentielle Schwéche von SHA-0 wurde
im SHA-1 dadurch entfernt, dass SHA-1 in Zeile 8 einen zirkuldren Shift um eine Bitstelle
ausfiihrt. Der SHA-1-Algorithmus benutzt die folgenden Konstanten K, j =0,...,79

K; (in Hexadezimaldarstellung)

j=0,...,19 50827999
J=20,...,39 6ed9ebal
J=40,...,59 8 f1bbedc

Jj=260,...,79 ca62c1d6

1.2 Schliissellose Hashfunktionen (MDCs) 13

und folgende Funktionen f;, 7 =0,...,79

(XAY)V (=X AZ), j= 0,...,19,
XY a7, j=20,...,39,
L(XY, 2) = .
(XAY)V(XANZ)V(YANZ), j=40,...,59,
XpYadZ, Jj =60,...,79.
SHA-1(x)

input = € {0,1}*, |z| =n

y:=x10%bings(n), k€ {0,1,...,511} mit n+1+k+64 =0 (mod 512)
(Hy, Hy, Hy, H3, Hy) := (67452301, e fcdab89, 98badc fe, 10325476, c3d2el f0)
sei y=M,---M,, r=(n+1+k+64)/512

5 for i:=1 to r do

6 seli M; = X|[0]--- X[15]

7 for t:=16 to 79 do

8 X[t =X[t-3]eX[t—-8 e X[t—14]eX[t—-16]) 1

9 (A,B,C,D,E) = (Hy,Hy,Hs, H3, Hy)

10 for j:=0 to 79 do

11 temp := (A< 5)+ f;(B,C,D) + E+ X[j] + K;

12 (A,B,C,D, E) := (temp, A, B <> 30,C, D)

13 (Hy,Hy,Hy, H3, Hy) := (Hy+ A ,Hi+ B,Hy + C,Hs + D,Hy + F)

14 output HOH1H2H3H4

BW N =

1.2.8 Die SHA-2-Familie

Im Jahr 2001 veroffentlichte die US-Behorde NIST drei weitere Hashfunktionen der
SHA-Familie: SHA-256, SHA-384, and SHA-512. Diese Funktionen werden auch als
SHA-2 Hashfunktionen bezeichnet. In 2004 kam noch SHA-224 als vierte Variante hinzu.
SHA-256 und SHA-512 haben denselben Aufbau, unterscheiden sich aber in erster Linie
in der benutzten Wortldnge: 32 Bit bei SHA-256 und 64 Bit bei SHA-512. Zudem werden
unterschiedliche Shift- und Summationskonstanten verwendet und auch die Rundenzahlen
differieren. SHA-224 und SHA-384 sind reduzierte Varianten von SHA-256 und SHA-
512. Der SHA-256-Algorithmus benutzt die folgenden Konstanten K, j =0,...,63 (in
Hexadezimaldarstellung).

428a2 98, 71374491, b5c0 focf, e9bbdbab, 3956¢25b, 59111 1,923 f82a4, ablchedb,
d807aa98, 12835001, 243185be, 550c7dc3, T2bebd74, 80debl fe, 9bdc06a7, c19bf174,
e49b69cl, efbed786, 0fc19dc6, 240calce, 2de92¢6 f, 4aT7484aa, 5cb0a9de, 76 fI88da,
983e5152, a831c¢66d, b00327¢8, bf597 fc7, c6e00bf3, d5a79147, 06ca6351, 14292967,
27b70a85, 2e1b2138, 4d2c6df ¢, 53380d13, 650a7354, 766a0abb, 81c2c92e, 92722¢85,
a2bfe8al, a81a664b, c24b8b70, c76¢H1a3, d192e819, d6990624, f40e3585, 106aa070,
19a4¢116, 1e376¢08, 2748774c, 34b0bcbb, 391c0cb3, 4ed8aada, 509ccad f, 682¢6 f f3,
748 f82ee, T8a5636 f, 84c87814, 8cc70208, 90be f f fa, a4506ceb, be f9ad f7, c6T178f2

Dies sind jeweils die ersten 32 Bit der bindren Nachkommastellen der dritten Wurzeln
der ersten 64 Primzahlen 2,...,311. SHA-256 arbeitet wie folgt.

14 1 Kryptografische Hashverfahren

SHA-256(x)

1 input z € {0,1}, |z| =n

> y:=x10%bings(n), k€ {0,1,...,511} mit n+1+k+64=0 (mod 512)
3 (Ho, Hy, Hy, H3, Hy, Hs, Hg, H7) := (6a09e¢667, bb67ae85, 3cbe f372, ab4 f f53a,
A 510527 f, 9b05688¢, 1 f83d9ab, bbeOcd19)

5 sely=»M;---M,, r=(n+1+k+64)/512

¢ for ::=1 to r do

7 sei M; = X][0]--- X[15]

8 for t:=16 to 63 do

9 s0:= (X[t —15] = T7)® (X[t — 15] — 18) @ (X[t — 15] — 3)
10 sl:i=(X[t—2]—=17) & (X[t —2] — 19) & (X[t — 2] — 10)
11 Xt] == X[t —16] 4+ s0+ X[t — 7] + s1

12 (A,B,C,D,E,F,G,H) := (Hy, H, Hy, H3, Hy, H5, Hg, H7)

13 for j:=0 to 63 do

14 s0:=(A—=2)&(A—13)d (A — 22)

15 maj = (ANB)@ (ANC)@ (BAC)
16 t2 := s0+ may

17 sl:=(F—=6)® (F<—11)® (E < 25)
18 ch:=(EANF)® (-ENG)

tl:=H+sl+ch+ K; + X[j]
(A,B,C,D,E,F,G,H) = (1l + 12, A, B,C,D +t1, B, F,G)

21 (H07HlaHQaH3aH47H5aH67H7>
22 = (Hy+A,Hi+B,Hy+C,Hy+ D,H,+ E,Hs + F,Hs + G,H; + H)
23 output H0H1H2H3H4H5H6H7

Die Initialwerte von Hy, ..., H; in den Zeilen 3 und 4 sind jeweils die ersten 32 Bit der
bindren Nachkommastellen der Wurzeln der Primzahlen 2,3,5,7,11,13,17, 19.

1.2.9 Kryptoanalyse von Hashfunktionen

Bereits 1991 wurden von Den Boer und Bosselaers Schwéchen im MD4 aufgedeckt. Im
August 2004 erschien ein Bericht [1] mit einer Anleitung, wie sich Kollisionen fiir MD4
mittels “hand calculation” finden lassen.

In 1993, fanden den Boer und Bosselaers einen Weg, so genannte “Pseudo-Kollisionen” fiir
die MD5 Kompressionsfunktion zu generieren. In 1996, fand Dobbertin ein Kollisionspaar
fiir die MD5 Kompressionsfunktion.

Im August 2004 wurden schlielich Kollisionen fiir MD5 von Xiaoyun Wang, Dengguo
Feng, Xuejia Lai und Hongbo Yu berechnet. Der benétigte Aufwand wurde mit ca. 1
Stunde auf einem IBM p690 Cluster abgeschatzt.

Im Marz 2005 veroffentlichten Arjen Lenstra, Xiaoyun Wang und Benne de Weger zwei
X.509 Zertifikate mit unterschiedlichen Public-keys, die auf denselben MD5-Hashwert
fithrten. Nur wenige Tage spéter beschrieb Vlastimil Klima eine Moglichkeit, Kollisionen
fiir MD5 innerhalb weniger Stunden auf einem Notebook zu berechnen. Mittels der so
genannten Tunneling-Methode wurde die Rechenzeit vom gleichen Autor im Mérz 2006
auf eine Minute verkiirzt.

Auf der CRYPTO 98 stellten Chabaud und Joux einen Angriff auf SHA-0 vor, der ein
Kollisionspaar mit nur 2°' Hashwertberechnungen (anstelle von 2% bei einem Geburts-
tagsangriff) aufsptrt.

1.2 Schliissellose Hashfunktionen (MDCs) 15

In 2004 fanden Biham und Chen Beinahe-Kollisionen fiir den SHA-0, bei denen sich die
Hashwerte nur an 18 von den 160 Bitpositionen unterschieden. Zudem legten sie volle
Kollisionen fiir den auf 62 Runden reduzierten SHA-0 Algorithmus vor.

Schliefflich wurde im August 2004 die Berechnung einer Kollision fiir den vollen 80-Runden
SHA-0 Algorithmus von Joux, Carribault, Lemuet und Jalby bekannt gegeben. Hierzu
wurden lediglich 2°! Hashwerte berechnet, die ca. 80000 Stunden CPU-Rechenzeit auf
einem 2-Prozessor 256-Itanium Supercomputer benotigten.

Ebenfalls im August 2004 wurde von Wang, Feng, Lai und Yu auf der CRYPTO 2004 eine
Angriffsmethode fiir MD5, SHA-0 und andere Hashfunktionen vorgestellt, mit der sich die
Anzahl der Hashwertberechnungen auf 2%° senken lisst. Dies wurde im Februar 2005 von
Xiaoyun Wang, Yiqun Lisa Yin und Hongbo Yu geringfiigig auf 2%° Hashwertberechnungen
verbessert.

Aufgrund der erfolgreichen Angriffe auf SHA-0 rieten mehrere Experten von einer weiteren
Verwendung des SHA-1 ab. Darauthin kiindigte die amerikanische Behorde NIST an,
SHA-1 in 2010 zugunsten der SHA-2 Varianten abzulésen.

Im Jahr 2005 veroffentlichten Rijmen und Oswald einen Angriff, der mit weniger als
280 Hashwertberechnungen ein Kollisionspaar fiir den auf 53 Runden reduzierten SHA-1
Algorithmus findet. Nur wenig spéater kiindigten Xiaoyun Wang, Yiqun Lisa Yin und
Hongbo Yu einen Angriff auf den vollen 80-Runden SHA-1 mit 2%° Hashwertberechnungen
an. Im August 2005 erfuhr der benétigte Aufwand von Xiaoyun Wang, Andrew Yao und
Frances Yao auf der CRYPTO 2005 eine weitere Reduktion auf 2% Berechnungen. In
2008 wurde von Stéphane Manuel ein Kollisionsangriff mit einem geschatzten Aufwand
von 2% bis 2°7 Berechnungen veroffentlicht.

Die besten bekannten Angriffe gegen SHA-2 brechen die von 64 auf 41 Runden reduzierte
Variante von SHA-256 und die von 80 auf 46 Runden reduzierte Variante von SHA-512.

Im Oktober 2012 wurde der Hash-Algorithmus Keccak als Gewinner des vom NIST aus-
geschriebenen Wettbewerbs fiir den SHA-3-Algorithmus ausgewéhlt. Die Intention dabei
war nicht, SHA-2 als Standard durch SHA-3 abzul6sen, zumal bisher keine erfolgreichen
Angriffe gegen SHA-2 bekannt sind. Vielmehr ging es bei diesem Wettbewerb darum,
angesichts der erfolgreichen Angriffe gegen MD5 und SHA-0, die einen dhnlichen Aufbau
wie SHA-1 und SHA-2 haben, eine auf einem vollkommen anderen Entwurfsprinzip
basierende Alternative zur Verfligung zu stellen.

1.2.10 Die Sponge-Konstruktion

Die Konstruktionsidee hinter dem SHA-3-Gewinner Keccak wird von den Autoren als
Sponge bezeichnet. Sie d&hnelt oberflichlich der in 1.2.3 vorgestellten Konstruktion, weist
aber einige Unterschiede auf. So ist ein Sponge nicht nur zur Konstruktion einer Hash-
funktion gedacht, basiert statt auf einer Kompressionsfunktion h auf einer Permutationen
oder Transformation f : {0,1}* — {0,1}" und besitzt einen inneren Zustand, der nicht
ausgeben wird. Die Anzahl der Bits um diesen inneren Zustand zu speichern wird als
Kapazitat ¢ des Sponges bezeichnet und ist sein wichtigster Sicherheitsparameter. Da-
gegen beschreibt die Bitrate r = b — ¢ die Anzahl der Bits des dufleren Zustands, tiber
den Eingabe und Ausgabe des Sponges erfolgt.

Neben dem Kern f der Konstruktion ist auch wieder ein Preprocessing-Schritt notwendig,
die Anforderungen fiir diesen definieren wir vorab.

16 1 Kryptografische Hashverfahren

Definition 10. Eine Funktion y: {0,1}* — U.1{0,1} heifit sponge-konformes
Padding fir die Bitrate r, falls

o Vn¥(z,z') € {0,1}" x{0,1}"3z: (y(x) = xz und y(2') = 2'z) sowie

o Vk > OVx # 2’ : y(x) # y(x')0F gelten.

Es ist leicht zu sehen, dass die Paddingfunktion pad10*1, sponge-konform fiir r ist, wobei
pad10°1,(z) = x10"1, d=min{i||z|+2+i=, 0}.

Tatséachlich ist pad10*1, sogar fiir jedes ' > 1 sponge-konform. Ohne die abschlieBende
1 ware dies nicht der Fall.

Definition 11. Seien r > 1, y ein sponge-konformes Padding fir r und f : {0, 1}b —
{0,1}". Die Funktion Sponge;, . : N x {0,1}" — {0,1}" ist wie folgt definiert:

Firx € {0,1}" seiyy...yx := y(x) mit |y;| =r (1 < i < k). Wir definieren die Zustinde
Si,Z' Z 0:

0° 1=10
Si =19 f(si-1 @ (y:0°) 1<i<k (Absorbtionsphase)
f(si-1) i>k (Squeezing-Phase)

Weiter bezeichne z; die ersten r Bits von s, +1— 1,1 > 1, es sei ¢ = L%J und z,
bezeichne die ersten | — cr Bits von z..1. Dann ist

Sponge;, (I, x) = z1... 2204,
Fiir die Analyse definieren wir
Absorby, . (z) = sp und Squeeze; (I, sk) = 21... 22y,

Den Aufwand fiir festes [ein Kollisionspaar z # 2’ mit Sponge;, .(l,z) =
Sponge;, (I, ') zu finden kénnen wir nach oben durch den Aufwand abschétzen, ein
Paar x # 2’ zu finden, sodass Absorby, .(x) = Absorby, .(z’). Da in der Absorbtions-
phase der duflere Zustand (d.h. die ersten r Bits) beliebig und somit auch identisch
gesetzt werden kann, geniigt es ein inneres Kollisionspaar zu finden, d.h. solche x #
sodass Absorbl () = Absorb} . (z'), wobei Absorby () die letzten ¢ Bits von
Absorby, .(z) bezeichnet.

Um eine solche innere Kollision zu finden, hilft es, sich die 2¢ inneren Zustédnde als Knoten
eines gerichteten Multigraphen G vorzustellen, wobei jeder Knoten 2" ausgehende Kanten
mit Label 0" bis 1" hat. Ziel ist es dann, zwei verschiedene Pfade von 0™ zu demselben
Knoten v zu finden, wobei zwei Pfade auch dann verschieden sind, wenn sich die Kanten
nur in den Labeln unterscheiden. Anders als beim ZOM fiir eine Hashfunktion lohnt es
sich hier fiir den Angreifer, die Argumente adaptiv nach einer Strategie S zu wahlen. Der
Algorithmus in Abb. 1.9 fasst dieses Vorgehen zusammen. Der Einfachheit halber gibt er
ein Kollisionspaar nach den Padding aus, fir pad10*1, und alle y, deren Padding nur
von |x| mod r abhdngt, lisst sich dieses aber leicht auf ein Paar vor dem Preprocessing
erweitern.

Satz 12. Fir jede Strategie S gibt INNERCOLLISION(f,7,q,S) im ZOM mit Erfolgs-
wahrscheinlichkeit hochstens
1] (1 !)
€= 5

i=1

1.2 Schliissellose Hashfunktionen (MDCs) 17

Prozedur InnerCollision(f,r,q,S)

I c:=b—r, wobei f:{0,1}* = {0,1}"

> initialisiere den gerichteten Multigraphen G = (V,A):= ({0,1}",0)
3 for 1:=1 to ¢q do

i wahle veV und x €{0,1}" nach Strategie S

5 2 = f(av)

6 A=AU{(v,V,x,2)}

7 if 3 verschiedene Pfade (0° uy,xq,2)),..., (ug_1, ug, Tk, x}) und
8 (OC,Ul,yl,yi),...,(Ul,l,vl,yl,yl’) mit up,=v in G
o return(z(z2 @ 1) ... (2% D 7)), 1 (Y2 D Y1) - (Y6 D Yioy))

0 else

11 return(?)

Abbildung 1.9: Bestimmung eines inneren Kollisionspaares

ein Kollisionspaar (x,x') fir Absorbf, .(x) aus. Wihit S nur von 0° erreichbare Knoten
v und kein Paar (v, x) mehrmals, so ist die Erfolgswahrscheinlichkeit exakt .

Beweis. Sei E; das Ereignis “G enthélt nach ¢ Durchlédufen keine zwei verschiedenen Pfade
von 0° zu einem Knoten v”. Da nur durch eine Kante zwischen zwei von 0° erreichbaren
Knoten ein zweiter Pfad von 0¢ aus geschlossen werden kann und nach ¢ — 1 Durchldufen
hochstens i von 2¢ Knoten erreichbar sind, gilt (unabhéngig von S):

Wahlt S nur erreichbare Knoten und keine (v, x) mehrfach, so sind unter Annahme von
EyN...N E;_; auch ¢ Knoten erreichbar (sonst giabe es bereits zwei Pfade von 0¢ zu
einem Knoten in GG) und es gilt Gleichheit. Analog zum Beweis vom Satz 6 folgt der
behauptete Wert ¢, mit Gleichheit im Fall der Wahl erreichbarer Knoten durch §. 0O

Auch hier lasst sich ¢ in Abhéngigkeit von ¢ mittels 1 — z &~ e~* abschéatzen, es folgt:

c / 1
q~c22, c.=4/2In
1—c¢

Der Standard SHA-3 definiert die oben beschriebene Sponge-Konstruktion, 7 verschiedene
bijektive Funktionen f,,,w = 2',i € {0,...,6} als Kern des Sponges Sponge;, i.q1071
sowie verschiedene Kombinationen von Bitraten r und Ausgabeliangen [(c ist durch
25w — r bestimmt).

Jede Funktion f,, : {0,1}>*>* — {0,1}°*>** bildet ein zweidimensionales Feld A aus
w-Bit-Wortern auf ein ebensolches Feld f,(A) ab. Dabei wird 12 4 log, w mal eine
Rundenfunktion f/ : {0,1}°°*" x {0,1}" — {0,1}>*>** aufgerufen, die A und eine
Rundenkonstante RC; auf A’ abbildet.

Es gilt

1.2.11 SHA-3

fulA, RC) = tre(X(m(p(0(A))))),

18 1 Kryptografische Hashverfahren

wobei 0, p, , x und tpc Bijektionen von {0, 1}°*°** nach {0, 1}°**** sind. Die Funktion
6 besteht aus @-Operationen und ist so gewihlt, dass sich §7!(A) an moglichst vielen
Bits dndert, falls eines in A geflippt wird. Danach permutieren die Funktionen p und 7
die Bits von A innerhalb und zwischen den Wortern. Ahnlich einer S-Box im SPN ist
X eine nichtlineare Funktion (die einzige solche in der Definition von f]), die nur auf
5-Bit-Blocken arbeitet (jedes Bit hangt sogar nur von 2 anderen ab). Schlussendlich setzt
tre das Wort Ag auf Ago @ RC.

Fir die Werte [€ {224, 256,384,512} definiert der Standard FIPS 202:
SHA3-[(x) = Spongey, . vadie-1, ([, 701), wobei r = 1600 — 21.

Das zusétzliche Padding 01 soll dabei SHA-3 von anderen Anwendungen von Keccak mit
denselben Werten w, [, r unterscheiden.

1.3 Nachrichten-Authentikationscodes (MACs)

Definition 13. Fine Hashfamilie H = (X,Y, K, H) wird durch folgende Komponenten
beschrieben.:

e X, eine endliche oder unendliche Menge von Texten,
e Y, endliche Menge aller moglichen Hashwerte, ||Y]| < || X/,

e K, endlicher Schliisselraum (key space), wobei jeder Schlissel k € K eine
Hashfunktion hy: X —Y in H spezifiziert, d.h. H = {hy | k € K}.

Im folgenden werden wir die Grofie || X || des Textraumes mit n, die des Hashwertbereiches
Y mit m und die des Schliisselraumes K mit [bezeichnen. Wir nennen dann H auch eine
(n, m, l)-Hashfamilie.

Damit ein geheimer Schliissel £ fiir die Authentifizierung mehrerer Nachrichten benutzt
werden kann, ohne dass dies einem potentiellen Gegner zur nichtautorisierten Berechnung
von giiltigen MAC-Werten verhilft, sollte folgende Bedingung erfiillt sein.

Berechnungsresistenz: Auch wenn eine Reihe von unter einem Schliissel k£ generierten

Text-Hashwert-Paaren (x1, hg(z1)), .. ., (Zn, hx(z,)) bekannt ist, erfordert es einen
immensen Aufwand, ohne Kenntnis von k ein weiteres Paar (z,y) mit y = hy(x)
zu finden.

Bei Verwendung einer berechnungsresistenten Hashfunktion ist es einem Gegner nicht
moglich, an Bob eine Nachricht x zu schicken, die Bob als von Alice stammend anerkennt.

Verwendung eines MAC zur Versiegelung von Software

Mithilfe einer berechnungsresistenten Hashfunktion kann der Integritdtsschutz fiir mehrere
Datensatze auf die Geheimhaltung eines Schliissels k zurtickgefiithrt werden.

Um die Datensétze x1,...,x, gegen unbefugt vorgenommene Veranderun-
gen zu schiitzen, legt man sie zusammen mit ihren Hashwerten y; =
hi(x1),...,yn = hg(x,) auf einem unsicheren Speichermedium ab und be-
wahrt den geheimen Schliissel k£ an einem sicheren Ort auf. Bei einem spateren
Zugriff auf einen Datensatz x; lasst sich dessen Unversehrtheit durch einen
Vergleich von y; mit dem Ergebnis hy(z;) einer erneuten MAC-Berechnung
iiberpriifen.

1.3 Nachrichten-Authentikationscodes (MACs) 19

Da auf diese Weise ein wirksamer Schutz der Datensdtze gegen Viren und andere
Manipulationen erreicht wird, spricht man von einer Versiegelung der gespeicherten
Datensatze.

1.3.1 Angriffe gegen symmetrische Hashfunktionen

Ein Angriff gegen einen MAC hat die unbefugte Berechnung von Hashwerten zum Ziel.
Das heifit, der Gegner versucht, Hashwerte hy(x) ohne Kenntnis des geheimen Schliissels
k zu berechnen. Entsprechend der Art des zur Verfiigung stehenden Textmaterials lassen
sich die Angriffe gegen einen MAC wie folgt klassifizieren.

Impersonation
Der Gegner kennt nur den benutzten MAC und versucht ein Paar (z,y) mit
hi(z) = y zu generieren, wobei k der (dem Gegner unbekannte) Schliissel ist.
Substitution
Der Gegner versucht in Kenntnis eines Paares (x, hy(x)) ein Paar (2/,y') mit 2’ # x
und hy(z') =y zu generieren.
Angriff bei bekanntem Text (known-text attack)

Der Gegner kennt fiir eine Reihe von Texten 1, ..., x, (die er nicht selbst wahlen
konnte) die zugehorigen MAC-Werte hy(z1), ..., hg(z,) und versucht, ein Paar
(',y") mit hp(2') =o' und 2’ & {x1,...,z,.} zu generieren.

Angriff bei frei wahlbarem Text (chosen-text attack)
Der Gegner kann die Texte x; selbst wahlen.

Angriff bei adaptiv wahlbarem Text (adaptive chosen-text attack)
Der Gegner kann die Wahl des Textes x; von den zuvor erhaltenen MAC-Werten
hi(x;), j < i, abhidngig machen.
Wechseln die Anwender nach jeder Hashwertberechnung den Schliissel, so geniigt es, dass
‘H einem Impersonationsangriff widersteht.

1.3.2 Informationstheoretische Sicherheit von M ACs

Modell: Schliissel £ und Nachrichten x werden unabhéngig gemafl einer Wahrscheinlich-
keitsverteilung p(k, x) = p(k)p(x) generiert, welche dem Gegner bekannt ist. Wir
nehmen 0.B.d.A. an, dass p(z) > 0 und p(k) > 0 fur alle z € X und k € K gilt.

Erfolgswahrscheinlichkeit fiir Impersonation

Sei o die Wahrscheinlichkeit, mit der sich ein Gegner bei optimaler Strategie als Alice
ausgeben kann, ohne dass Bob dies bemerkt.

Fiir ein Paar (z,y) sei p(x +— y) die Wahrscheinlichkeit, dass ein zuféllig gewéhlter
Schliissel den Text z auf den Hashwert y abbildet:

px=y) = > k).
ke K (z,y)

wobei K (z,y) = {k € K | hg(z) = y} alle Schliissel enthélt, die auf y abbilden. D.h.
p(x — y) ist die Wahrscheinlichkeit, dass Bob das (vom Gegner gewéhlte) Paar (x,y) als
echt akzeptiert. Dann gilt @ = max{a(x) | v € X'}, wobei

a(z) = max{p(x —y) |y €Y}

20 1 Kryptografische Hashverfahren

die Wahrscheinlichkeit ist, mit der einem Gegner bei optimaler Strategie eine Impersona-
tion mit dem Text = gelingt.

Beispiel 14. Sei K = {1,2,3}, X = {a,b,¢,d} und Y = {0,1}. Wir beschreiben H
durch die zugehorige Authentikationsmatrix. Die Zeilen und Spalten dieser Matriz

werden mit den Schlisseln k € K und den Texten v € X indiziert und ihr Eintrag in
Zeile k und Spalte x ist der Wert hy(x).

10,1] [0,2] 03] |0,4]

‘ a b c d
025/ 1| 0 0 0 1
0,30 2| 1 1 0 1
0,45 3| O 1 1 0

Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(z) bzw. p(k) an. Dann hat der
Gegner folgende Erfolgsaussichten o(x), falls er an Bob den Text x senden mdchte.

T a b c d
p(z+—0) 0,7 0,25 0,555 045
plz—1)103 0,75 045 0,55

a(x) 0,7 0,75 0,55 0,55

Folglich ist o = 0,75. <

Satz 15. Fir alle x € X ist a(z) > - und daher gilt a >

1 1
m m’

Beweis. Sei x € X beliebig. Dann gilt

Yop=y)=> > plk)=) pk) =1L

yey yeY keK(z,y) keK

Somit existiert fir jedes x € X ein y € Y mit p(x — y) > % und dies impliziert

1
= > —
a(z) = maxp(z = y) 2 —

O

Bemerkung 16. Wie der Beweis zeigt, gilt o = % genau dann, wenn fir alle Paare
(x,y) € X XY gilt,

keK (z,y)

D.h. bei Gleichverteilung der Schliissel muss in jeder Spalte der Authentikationsmatrizx
jeder Hashwert gleich oft vorkommen. Dies ldsst sich am einfachsten dadurch erreichen,
dass man K =Y setzt und fir hy die konstante Funktion hy(x) = k wdhlt.

Das folgende Lemma bendétigen wir fiir den Beweis des néchsten Satzes (Beweis siehe
Ubungen).

Lemma 17. Sei X eine Zufallsvariable mit endlichem Wertebereich W (X) C R*. Dann
gilt log E(X) > E(log X).

1.3 Nachrichten-Authentikationscodes (MACs) 21

Satz 18. Fir jeden MAC (X,Y, K, H) gilt:

1
O Z SHR-HKEY) (= 1/0).
Hierbei sind X,Y, K Zufallsvariablen, die die Verteilungen der Nachrichten, der Hash-

werte und der Schliissel beschreiben.

Der Wert von «a kann also um so kleiner werden, je gleichmafBiger die Schliisselverteilung
ist und je mehr Information die Beobachtung eines giiltigen Paares (x,y) tiber den
Schliissel liefert.

Beweis. Bezeichne «o(z,y) = p(z — y) die Wahrscheinlichkeit, mit der dem Gegner eine
Impersonation mit dem Paar (z,y) gelingt. Da a = max, , a(x,y) ist, folgt E(a(X,))) =
ey P(x,y)a(z,y) < o und somit folgt unter Anwendung von Lemma 17,

loga > log E(a(X,Y)) > E(loga(X,Y)) =Y p(z,y) logp(y|z) = —H(V|X).
z,y W—/%’_/
p@)p(ylz) —log ool
Wegen
HK,Y,X)=HX)+HY|X)+ HKI|X,Y)
und
H(K,Y,X) = H(CX) +HY|K,X).
—H(K)+H(X) =0

gilt zudem H(Y|X) = H(K) — H(K | X,)) und somit loga > H(K | X,Y) — H(K). O

Beispiel 19 (Fortsetzung von Beispiel 14). Es gilt
1
H(K) =3 p(k) log Sy = 04 1152403 13T 40,2520 = 154,
p p

Um H(K|X,Y) zu bestimmen, bendtigen wir die bedingten Verteilungen IC,, fir alle
Paare (z,y) € X x Y.

(z.y) | (a,0) (a1) (b,0) (b1) (¢0) (¢1) (d,0) (d,1)
p(l|x,y) = 0 1 0 z 0 0 =
p(2|z,y) 0 1 0 2 2 0 0 £
p(3|x,y) = 0 0 2 0 1 1 0
H(Kz,y) |~094 0 0 ~097 ~099 0 0~ 0,99

p(z,y) 0,0r 0,03 0,05 0,15 0,165 0,135 0,18 0,22

Hierbei gilt p(z,y) = p(z)p(y|z) = p(z)p(x — y). Zusammen ergibt sich

H(K|x,Y) = pry (Klz,y) ~ 0,52.

Erfolgswahrscheinlichkeit fiir Substitution

Bezeichne [die Wahrscheinlichkeit, mit der ein Gegner bei optimaler Strategie eine von
Alice gesendete Nachricht durch eine andere Nachricht ersetzen kann, ohne dass Bob dies
bemerkt.

22 1 Kryptografische Hashverfahren

Betrachten wir den Fall, dass der Gegner ein von Alice gesendetes Paar (x,y) durch (2, y')
ersetzt. Dann ist seine Erfolgswahrscheinlichkeit gleich der bedingten Wahrscheinlichkeit

plx =y, = Y) Ciekyary) PK)

pla' =y e y) = -
= S R Ve (o

dass ein zuféllig gewahlter Schliissel k& den Text z” auf ¥’ abbildet, wenn bereits bekannt
ist, dass hi(x) = y ist. Falls Alice also das Paar (x,y) sendet, so ist die maximale
Erfolgswahrscheinlichkeit des Gegners gleich

B(x,y) = mr,r;%,p(ﬂf’ =y y).

Da der Gegner keinen Einfluss auf die Wahl von (x,y) hat, ist § gleich dem erwarteten
Wert von §(z,y) unter der Verteilung

p(x,y) = p@)p(y|z) = p(x)p(z = y).

unter der die Paare gesendet werden. Somit ergibt sich 3 zu

B=EBX,Y)= > plzypby).

zeX,yeY

Wegen p(z,y) = p(x)p(x — y) kénnen wir S unter Verwendung der Funktion

B'(z,y) = Bz, y)p(z = y) = ;,g%,p(x’ =y z)

auch einfacher mittels der Formel 5 = 3>, c x p(x) ¥, ey 8'(7,y) berechnen.

Beispiel 20 (Fortsetzung von Beispiel 14).

(2) Pl o) By | pay) | Blew)
@) (@b | b0) 61 | @) @) | @0 @
(@0) 0.25 0,45 0,25 0,45 | 0,45 0.25 | 045 | 0,7 | 0,643
@1) 0 03| 03 0 0 03| 03| 03 | 1
®0) | 0,25 0 0,25 0 0 0,25]| 0.25 | 025 | 1
w1 | 0,45 0,3 0,3 0,45| 0,45 03 | 045 | 0,75 | 06
o | 0,25 03] 025 03 0 0,55 0,55 0,55 | 1
ey | 0,45 0| 0 0,45 045 0 | 045 045 | 1
@0 | 0,45 0 | 0 045 0 0,45 045 | 045 | 1
@n | 0.25 0302 03055 0 0,55 | 0,55 | 1

Die optimalen Wahlmaoglichkeiten des Gegners, ein Paar (z,y) durch ein anderes Paar
(@', y") zu ersetzen, sind in der Tabelle fett gedruckt. Fir 5 erhalten wir somit den Wert

B o= > plx)d Bxy)

zeX yey
0,1(0,45 4 0,3) 4 0,2(0,25 + 0,45) + 0,3(0,55 + 0,45) + 0,4(0,45 + 0,55)
= 0,915.

1.3 Nachrichten-Authentikationscodes (MACs) 23

Als néachstes zeigen wir fur 3 die gleiche untere Schranke wie fir a.
Satz 21. Fir alle (z,y) € X XY mit p(z,y) > 0 ist f(z,y) > + und daher gilt § > L.

Beweis. Sei (x,y) € X XY ein Paar mit p(x,y) > 0. Dann gilt fiir beliebige 2’ € X —{z},

=1.

Z ‘€Y Z 'y x k

E p(w’|—>y’\$._>y) ye keK(z'y'"; ,y)p()
Y > k

y'e kEK (z,y) p()

Somit existiert ein ' € Y mit p(a’ — ¢/ |z — y) > L und dies impliziert

1
Blx,y) = max p(a' =y lr=y) > —.
! m

R
Folglich ist
1

zeX,yeYy zeX,yeY
O

Beispiel 22. Sei X =Y ={0,1,2} = Zs3 und sei K = 7Z3 X Zs3. Fir k = (a,b) € K und
r e X sei
hi(x) = ax + b mod 3.

Die zugehérige Authentikationsmatrix ist

N = O N~ O N OO
— O N O NN = O
O N = = O NN OIN

R R e I e e N i
N NN R =B~ O OO
N R ON R O N+~ O

~— N N N N~ N

Wir nehmen an, dass der Schliissel unter Gleichverteilung gewdhlt wird. Ersetzt der
Gegner ein Paar (z,y) durch ein Paar (2',y") mit ' # x, so wird dieses Paar von
genau einem der 3 infrage kommenden Schliissel akzeptiert. Dies liegt daran, dass in je 2
Spalten der Authentikationsmatriz jedes Hashwertpaar genau einmal vorkommt. Folglich
ist p(x’ — |z — y) = 1/3 und somit § = 1/3. Q

Lemma 23. Sei (X,Y,K, H) ein MAC mit 3 = =. Dann gilt
p(@’ =y |z y)=1/m
fir alle Doppelpaare (z,y,x',y’) mit x # x'.

Beweis. Wir zeigen zuerst, dass die Behauptung unter der Voraussetzung p(z +— y) > 0
gilt. Ware nédmlich
pla’ =y |z = y) > 1/m,

24 1 Kryptografische Hashverfahren

dann wire auch

Blz,y) = Joax, p@’ =y lz = y)>1/m.

Da fur alle Paare (u,v) mit p(u +— v) > 0 nach Satz 21 die Ungleichung 5(u,v) > 1/m
gilt und zudem p(z,y) = p(x)p(x — y) > 0 ist, folgt hieraus

B= > pley)bxy) >1/m,

zeX,yeyY

was im Widerspruch zur Voraussetzung des Satzes steht. Ist andererseits
p(x' =y |z —y) <1/m,

muss wegen

Z pla’ =y |lr—y) =1
Y€y

auch ein Hashwert y” mit p(2’ — ¢ |x +— y) > 1/m existieren, woraus sich wie bereits
gezeigt ein Widerspruch ergibt.

Es bleibt zu zeigen, dass p(x +— y) > 0 fiir alle Paare (x,y) gilt. Ware p(z — y) = 0, so
wiirde fiir ein beliebiges Paar (u,v) mit p(u — v) > 0 auch p(z — y|u +— v) = 0 sein.
Wie bereits gezeigt, steht dies jedoch im Widerspruch zur Voraussetzung 5= 1/m. O

Satz 24. Ein MAC (X,Y, K, H) erfillt 5 = % genau dann, wenn
p(z =y, —y) =1/m?
fiir alle Doppelpaare (z,y,x',y") mit x # ' gilt.
Beweis. Sei (X,Y, K, H) ein MAC mit § = % Nach obigem Lemma impliziert dies, dass
pla’ =y |z y) =1/m
fir alle Doppelpaare (z,y,2’,y') mit # 2’ gilt. Dies impliziert nun
p(z’ — o) pr&—ﬂy)p(x' =y |z —y)=1/m

und daher
plx =y, —=y)=pl — y)plr—yla —) =1/m>

Umgekehrt rechnet man leicht nach, dass die Bedingung § = % erfiillt ist, wenn fiir alle
Doppelpaare (z,y,z’,y') mit # 2’ die Gleichheit p(z — y, 2’ — 3/) = 1/m? gilt. O

Bemerkung 25. Nach obigem Satz gilt f = % genau dann, wenn fir alle Doppelpaare
(z,y, 2, y") mit v # 2’ gilt,

ple=yd =y)= > pk)=—3
keK (zy,z'y")

D.h. bei Gleichverteilung der Schliissel gilt f = % genau dann, wenn in je zwei Spalten
der Authentikationsmatriz jedes Hashwertpaar gleich oft vorkommt.

Ab jetzt setzen wir voraus, dass der Schliissel unter Gleichverteilung gewéhlt wird, d.h.
es gilt p(k) = m fir alle k € K.

1.3 Nachrichten-Authentikationscodes (MACs) 25

Definition 26. Fin MAC (X,Y, K, H) heifit 2-universal, falls fir alle z,x' € X mit
x £ 2 und alle y,y €Y gilt:

K|

1K Gty =

Bemerkung 27. Bei der Konstruktion von 2-universalen Hashfamilien spielt der Pa-
rameter \ = HmLQ” eine wichtige Rolle. Da \ notwendigerweise positiv und ganzzahlig ist,
muss insbesondere || K| > m? gelten.

Im folgenden nennen wir eine 2-universale (n, m,)-Hashfamilie mit A = [/m? kurz einen
(n,m,l, \)-MAC.

Auf Grund von Bemerkung 25 ist klar, dass ein MAC bei gleichverteilten Schliisseln genau
dann die Bedingung 3 = % erfiillt, wenn er 2-universal ist. Auf Grund von Bemerkung 16

nimmt in diesem Fall auch « den optimalen Wert % an.
Der néchste Satz zeigt eine einfache Konstruktionsmoglichkeit von 2-universalen MACs
mit dem Parameterwert A\ = 1.

Satz 28. Sei p prim und fir a,b,x € Z, sei
hap(z) = ax + b mod p.
Dann ist (X,Y,K,H) mit X =Y =7, und K = 7Z, X Z, ein (p, p,p*,1)-MAC.

Beweis. Wir miissen zeigen, dass die GroBle von K (z,y,z’,y') fur alle Doppelpaare
(x,y,2',y") mit x # 2’ konstant ist. Ein Schliissel (a,b) gehort genau dann zu dieser
Menge, wenn er die beiden Kongruenzen

ar+b =, v,
ar’' +b =,

erfiilllt. Da dies jedoch nur auf den Schliissel (a,b) mit

/

= (¥ —y)(@' —z)" mod p,

b = y—a(y —y)(=' —2)"" mod p

zutrifft, folgt || K(2', v/, x,y)| = 1. -

Die Hashfunktionen des vorigen Satzes erfiillen wegen n = m = p nicht die Kompressi-
onseigenschaft. Zwar ldsst sich n noch geringfiigig von p auf p + 1 vergroflern, ohne K
und Y (und damit \) zu verdndern (sieche Ubungen). Wie der néchste Satz zeigt, lisst
sich eine stiarkere Kompression mit dem Parameterwert A = 1 jedoch nicht realisieren.

Satz 29. Fir einen (n,m,l,1)-MAC gilt
n<m+1
und somit | = m?* > (n —1)2.

Beweis. O.B.d.A. sei [|[K| ={1,...,{} und Y = {1,...,m}. Es ist leicht zu sehen, dass
eine (bijektive) Umbenennung 7: Y — Y der Hashwerte in einer einzelnen Spalte der
Authentikationsmatrix A wieder auf einen 2-universalen MAC fithrt. Also kénnen wir
zudem annehmen, dass die erste Zeile der Authentikationsmatrix A nur Einsen enthélt.
Da A 2-universal ist, gilt:

26 1 Kryptografische Hashverfahren

e In jeder Zeile i = 2,...,m? kommt héchstens eine Eins vor.
e Jede Spalte j enthélt eine Eins in Zeile 1 und m — 1 Einsen in den iibrigen Zeilen.

Da in den Zeilen i = 2,...,m? insgesamt genau n(m — 1) Einsen vorkommen, folgt

Anzahl der Zeilen > Anzahl der Zeilen mit einer Eins,

m2 1+n(m—1)
was m? — 1 > n(m — 1) bzw. n < m + 1 impliziert. O

Der néachste Satz liefert 2-universale MACs mit beliebig groBem Kompressionsfaktor. Fiir
den Beweis benotigen wir das folgende Lemma.

Lemma 30. Sei A eine (k x {)-Matriz tiber einem endlichen Korper F, deren k Zeilen
linear unabhdngig sind. Dann besitzt das lineare Gleichungssystem

Ar =y
fiir jedes y € F* genau ||F||** Lésungen x € F-.
Beweis. Siehe Ubungen. 0

Satz 31. Sei p prim und fir x = (z1,...,74) € {0,1}* und k = (ky,..., kq) € Z;l sei

d
hi(x) = kx = Z k;x; mod p.

=1

Dann ist (X, Y, K, H) mit X = {0,1}*—{07}, Y = Z,, und K = Z{ ein (2°—1,p, p*,p*?)-
MAC.

Beweis. Wir miissen zeigen, dass die Grofle von K(z,y,2’,y’) fir alle Doppelpaare
(z,y,2',y) mit x # z’ konstant ist. Es gilt

k€ K(r,y2y) & h)=yAh)=y
s k-x=ynNk-2' =9,

Fassen wir « = x;---x4 und 2’ = 2 --- 2/, zu einer Matrix A zusammen, so ist dies
dquivalent zu

ki
xl . Id) . _ y
Ty Ty k'd y')
Da die beiden Zeilen von A verschieden und damit linear unabhéngig sind, folgt mit

obigem Lemma, dass genau ||K (x,y,2’,y')|| = p®~2 Schliissel k = (ki, ..., kq) mit dieser
Eigenschaft existieren. O

Bemerkung 32. Obige Konstruktion liefert einen \-Wert von % = p%2. Durch
Erweiterung von X auf eine geeignete Teilmenge X' C Z;f lasst sich der Textraum von
24 — 1 auf ppd%ll vergréfiern (siehe Ubungen). Dies fiihrt auf einen beliebig grof$ wihlbaren

Kompressionsfaktor von pdj bei einem \-Wert von A = p®~2. Wie der ndichste Satz

zeigt, lasst sich dies nicht mit einem kleineren \-Wert erreichen.

1.3 Nachrichten-Authentikationscodes (MACs) 27

Im Beweis des néchsten Satzes benotigen wir folgendes Lemma.

Lemma 33. Fir beliebige reelle Zahlen by, ..., b, € R gilt (Z?;l bi)z <m¥m. b2

=11
Beweis. Siehe Ubungen. O

Satz 34. Fir einen (n,m,l,\)-MAC gilt

und somit | > n(m —1) 4+ 1.

Beweis. O.B.d.A. kénnen wir wieder || K|| = {1,...,{} und Y = {1,...,m} annehmen,
und dass die 1. Zeile der Authentikationsmatrix A nur aus Einsen besteht. Fiir jede Zeile
i =1,...,1 bezeichne e; die Anzahl der Einsen in dieser Zeile (also e; = n). Da in jeder
Spalte jeder Hashwert genau Am-mal vorkommt, gilt

l l
Y eg=Mm und Y e =Anm—n=n(Am-—1).
i=1 =2

Sei z; die Anzahl von Indexpaaren (j, ') mit j # 5/ und A[i, j] = A[i, j'] = 1 in Zeile i.
Dann gibt es in den Zeilen ¢ = 2, ..., [insgesamt

l l ! l
2= zi=> efles—1)=>e=>e=Y e —n(Am—1)
=2 ;

l
1=2 =2 1=2 i=2

solche Paare. Mit obigem Lemma ergibt sich

Lol (Zhoe)” (- 1))
D = ey e

1=2

Da andererseits in jedem Spaltenpaar das Hashwert-Paar (1, 1) in genau A Zeilen vor-
kommt (genauer: einmal in Zeile 1 und (A — 1)-mal in den Zeilen i = 2,...,[), und da
n(n — 1) solche Spaltenpaare existieren, ergibt sich andererseits die Gleichung

z=A=1Dn(n-1).
Somit erhalten wir

A= Dn(n—1) =3¢ — n(Am—1) > W
(A =Dnn—1)+n(dm —1)(Am* — 1) > (n(Am — 1))?
(A —n — X+ dm)(Am? — 1) > n(Am — 1)?

“N2m2 4+ N2m3 > dnm® + \n— X+ dm — 2 nm

N (m® —m?) > An(m —1)>+m —1)

Am? > n(m—1) + 1.

—n(Am —1)

L

28 1 Kryptografische Hashverfahren

1.3.3 MACs auf der Basis einer Kompressionsfunktion

Sei h: {0,1}™* — {0,1}™ die Kompressionsfunktion einer schliissellosen Hashfunktion
h (etwa MD5). Dann kénnen wir mithilfe von A einen MAC konstruieren, indem wir als
Initialisierungsvektor IV den symmetrischen Schliissel k£ € K benutzen. Wir betrachten
zunachst den Fall, dass auf das Preprocessing verzichtet wird.

Sei H = (X,Y, K) die Hashfamilie mit X = U,>;{0,1}"*, Y = {0,1}" = K und
H = {hy | k € K}, wobei hy(x) wie folgt berechnet wird:

Sei x=uxy,...,xp, |z =t fir i=1,....n
20 =k
for i:=1 to n do
zi = h(zi_12;)
output z,

[R N

Bei diesem MAC fithrt beispielsweise folgender Substitutionsangriff zum Erfolg.

Sei (x,z) ein Paar mit hy(xz) = z, wobei k der dem Gegner unbekannte Schliissel ist.
Dann lasst sich fiir einen beliebigen String u € {0, 1} leicht der MAC-Wert des Textes
x’ = zu mittels hg(z") = h(zu) berechnen.

Ein dhnlicher Angriff ist auch bei Verwendung einer Preprocessing-Funktion moglich. Hat
diese beispielsweise die Form y(z) = xpad(x), so lasst sich obiger Angriff entsprechend
modifizieren (siehe Ubungen).

1.3.4 CBC-MACs

Als Basis fiir die Konstruktion eines MAC kann auch ein symmetrisches Kryptosystem
dienen.

Sei (M,C, K, E, D) ein Kryptosystem mit M = C = {0, 1}. Zudem sei IV := 0" und sei
k € K ein geheimer Schliissel. Sei y eine Funktion fiir den Preprocessing-Schritt.

Berechnung von Ay (z):

Cy=y@) =gy, 21,y =t
2 zp:=1V

3 for 1=1 to n do

2 = E(k, Zi—1 D yz)

5 output hi(x) = z,

i

Die Hashwertlange betragt also ¢t Bit. Wird auf den Preprocessing-Schritt verzichtet,
so léasst sich leicht ein Angriff mit 2 adaptiven Fragen ausfiihren. Kennt der Gegner
die MAC-Werte z = hg(z) und 2/ = hi(2') fir die Texte 2 = z;-- 2, und 2’ =
(X1 ® IV @ 2)xpi9 -+ Tym, Wobel |x;| =t firi =1,...,n 4+ m ist, so muss auch der
Text " = x1 -+ Ty den MAC-Wert hy(2”) = 2’ haben.

Diesen Angriff kann man zwar ausschliefen, indem man eine feste Lange fiir die Texte
x vorschreibt. Dies schrankt jedoch die Anwendbarkeit des CBC-MACS erheblich ein.
Zudem ist dann immer noch folgender Geburtstagsangriff auf den CBC-MAC moglich.

1.3 Nachrichten-Authentikationscodes (MACs) 29

Geburtstagsangriff auf einen CBC-MAC

Dieser Angriff ermoglicht es, mit ¢ + 1 Hashwertfragen (wobei g ~ 1,17 - 2%) den MAC-
Wert hy(x) fiir einen zuvor nicht erfragten Text = zu finden, wobei z = z;...x, €
{0, 1} abgesehen vom ersten ¢-Bitblock z1 € {0, 1} beliebig wéihlbar ist. Hierzu wéhlt
der Gegner zunéchst n — 2 beliebige Blocke s, ..., z, € {0,1} und ¢ ~ 1,17 - 2%
paarweise verschiedene Blocke z1,...,2f € {0,1}". Anschliefend wihlt er zufillig ¢
weitere Blocke xd, ... x4 € {0,1}' und erfragt die MAC-Werte z; = hy,(z") fiir die Texte
vt =axizbrs - w,,i=1,...,q.

Wegen % # #] fiir i # j sind auch die Texte z', ..., 29 paarweise verschieden. Seien
zi,...,2{ die nach der ersten Iteration des CBC-MACSs berechneten Kryptotexte zi =
E,(IV & 2}). Da die Blocke 7%, zufillig gewahlt werden, sind auch die Eingangsblocke
2t @ 2 fir die 2. Iteration zufillig, d.h. es gilt

DN | —

PrRi#£j:2 @ab=2 @al]=Pr[Fi#j: i =1l ~

Da die Gleichheit der Eingangsblocke 2! @ x} und 2] @ 23 fiir die 2. Tteration mit der
Gleichheit der Ausgangsblécke 2% und zJ der n-ten Iteration und damit mit der Gleichheit
der zugehorigen MAC-Werte 2* und 27 dquivalent ist, kann der Gegner das Indexpaar
(4,7) mit zi @ x} = 2] ® 27 auch leicht finden, sofern es existiert.

Befindet sich unter den erfragten Texten ein Kollisionspaar (z¢,27) mit 2z = 27, so
erfragt der Gegner fiir einen beliebigen Bitblock u € {0,1}* — {0’} den MAC-Wert
Z; = hi(z%) fir den Text ' = x%(x D u)zs - - - z,, welcher zugleich MAC-Wert des Textes
T = &} (x) ® u)xs- - - x, ist, den er zuvor nicht erfragt hat.

Definition 35. Sei 0 < e <1 und sei q € N. Ein (g,q)-Falscher fir eine Hashfamilie
H ist ein probabilistischer Algorithmus A, der q Fragen x1,...,x, stellt und aus den
Antworten z; = hyi(x;) mit Wahrscheinlichkeit mindestens e (bei zufdllig gewdhltem
Schlissel k) ein Paar (z,z) berechnet mit x & {x1,...,x,} und hy(z) = .

Wir unterscheiden zwischen adaptiven Fragen (d.h. der Text x; darf von den Hashwerten
der Texte x1,...,x;_1 abhidngen) und nicht-adaptiven Fragen. Zudem unterscheiden wir
zwischen selektiven Falschungen (d.h. der Gegner kann den Hashwert fiir einen Text seiner
Wahl generieren) und existientiellen Falschungen (d.h. der Gegner kann den Hashwert fiir
irgendeinen Text x & {x1,...,2,} generieren, auf dessen Wahl er keinen Einfluss hat).

Beispiel 36. Der oben beschriebene Geburtstagsangriff auf einen CBC-MAC fihrt auf
einen (%, q + 1)-Falscher fir ¢ ~ 1,17 - 23. Dabei ist nur die letzte Hashwertfrage adaptiv
und der Text x kann abgesehen vom ersten t-Bitblock beliebig vorgegeben werden. <

1.3.5 Kombination einer Hashfunktion mit einem MAC (HMAC)

Falls der Textraum einer Hashfamilie den Hashwertraum einer anderen Hashfamilie
enthalt, lassen sich diese leicht komponieren (Nested-MAC).

Definition 37. Seien H1 = (X, Y, K1, F) mit F = {fy | k € K1} und Ho = (Y, Z, K>, G)
mit G = {gx | k € Ky} Hashfamilien. Dann ist Hy o He = (X, Z, K, H) die Komposition
von Hy und Hy, wobei K = K; X Ky und H = {gk, © fr, | (k1,k2) € K} ist.

30 1 Kryptografische Hashverfahren

Beispiel 38. Wihit man fiir Ho eine 2-universale Hashfamilie und fiir H, eine schliissel-
lose Hashfunktion (etwa SHA-1), so erhdlt man einen so genannten HMAC (Hash-MAC).
q

Eine Variante hiervon ist der auf SHA-1 basierende HMAC, bei dem zwei Varianten
von SHA-1 mit symmetrischen Schliisseln komponiert werden, wobei jedoch beidesmal
derselbe Schliissel benutzt wird. Seien

tpad = 36 ...36 und opad = 5C'...5C

64mal 64mal

512 Bit Konstanten. Dann berechnet sich HMAC wie folgt:
HMAC(z) = SHA-1((k & opad)SHA-1((k & ipad)zx)).

Hierbei fungiert die Funktion fi(z) = SHA-1((k @ ipad)x) als Hashfunktion mit Schliissel,
die beliebig lange Texte hasht, und der MAC gx(y) = SHA-1((k & opad)y) wird nur
auf Bitstrings der Lange 512 angewendet. Wie der folgende Satz zeigt, gentigt es, wenn
fr kollisionsresistent und g5 berechnungsresistent ist, um einen berechnungsresistenten

HMAC zu erhalten.

Definition 39. Fin (g, q)-Kollisionsangreifer fir eine Hashfamilie H = (X,Y, K, H) ist
ein probabilistischer Algorithmus A, der q Fragen x+, ..., x, stellt und aus den Antworten
y; = hg(z;) mit Wahrscheinlichkeit mindestens € ein Paar (zv,z") berechnet mit hy(z) =
hi.(x'), wobei k der dem Gegner unbekannte (und zufillig gewdhlte) Schliissel ist.

Da der Gegner den Schliissel k nicht kennt, ist ein Kollisionsangriff gegen eine Hashfamilie
‘H schwieriger zu realisieren als ein Kollisionsangriff gegen eine schliissellose Hashfunktion.

Satz 40. SeienH, = (X, Y, K1, F), Ho = (X, Y, K3, G) und H = (X, Z, K, H) = Hi0H>
Hashfamilien. Falls fir Hy kein adaptiver (e1,q + 1)-Kollisionsangriff und fir Hy kein
adaptiver (g, q)-Falscher existieren, dann gilt fir jeden adaptiven (e, q)-Fdlscher fir H,
dass € < &1 + €9 ist.

Beweis. Sei A ein adaptiver (e, ¢)-Félscher fiir . Seien z, ..., z, die Fragen, dic A an
sein Orakel stellt, und seien z; = gx, (fx, (z;)) die erhaltenen Antworten. Zudem sei (z, 2)
die Ausgabe von A. Dann ist die Erfolgswk von A

Priz & {x1,..., 2.} A g, (fr, (2)) = 2] > €.

Hierbei wird (kq, k) zufillig aus K = K7 x K5 gewéhlt. Wir mtssen zeigen, dass ¢ < e1+¢5
ist.

Behauptung 41. Pr(fy, (z) € {fi, (x1),. .., fi,(zg)}] < 1.

Hierzu betrachten wir folgenden adaptiven Kollisionsangreifer A’ gegen H;: A’ wihlt
zufillig einen Schliissel ks € K5 und simuliert A, wobei A’ fiir jede Anfrage x; von A
das Orakel f, (mit unbekanntem, aber zuféllig gewéhltem Schlissel ki) nach dem Wert
Yi = fr,(x;) fragt und an A die Antwort z; = g, (y;) zurtickgibt. Sobald A ein Paar
(x, z) ausgibt, fragt A" das Orakel f;, nach dem Hashwert y = fi, () und gibt im Fall
y € {y1,...,y,} das Paar (z,z;) fiir einen beliebigen Index ¢ mit y = y; aus.

Da A’ genau im Fall y € {y1,...,y,} Erfolg hat, tritt dieser Fall mit Wahrscheinlichkeit
kleiner £; ein, womit Behauptung 41 bewiesen ist.

1.3 Nachrichten-Authentikationscodes (MACs) 31

Behauptung 42. Pr{fi, (2) & (i (71), - fis (7)) A gy (fin (2)) = 2] > € — 1.
Dies folgt direkt aus Prjz & {z1,..., 24} A gk, (fk, (2)) = 2] > £ und Behauptung 41.
Behauptung 43. Pr[fo, () € {fis (11).. .- fis ()} A sy (2)) = 2] < 2.

Hierzu betrachten wir den adaptiven Félscher A” gegen Hs, der zufillig einen Schliissel
ki € K; wahlt und A wie folgt simuliert. A” gibt bei jeder Anfrage z; von A die
Antwort des Orakels gx, auf die Frage y; = fi, (z;) zuriick und sobald A ein Paar
(x, z) ausgibt, gibt A” das Paar (fy,(z),2) aus. Dann hat A” genau im Fall fy, (z) &
{fe, (1), -, [y () }AGry (fiy () = 2 Erfolg. Da es nach Voraussetzung keinen adaptiven
(€9, q)-Falscher gegen Hy gibt, muss € — &1 < €5 sein. O

32

2 Elliptische Kurven

2.1 Elliptische Kurven iiber den reellen Zahlen

Definition 44. Seien a,b € R. Eine elliptische Kurve E enthilt alle Lésungen (x,y) € R?
der Gleichung y* = 23 + ax + b und zusdtzlich den Punkt O (Punkt im Unendlichen;
siche Ubungen). Im Fall 4a3 + 27b* = 0 heifit E singuldr, sonst nicht-singuldr.

Beispiel 45. Betrachte die durch y?> = 2% — 4x definierte elliptische Kurve E. Punkte:
<_27 0)7 (07 0)7 (27 0)7 <_17 2)7 (_17 _2)-

Auf den nicht-singuldren Punkten von E lasst sich eine additive Gruppenoperation +
definieren. Die Idee dabei ist, dass die Summe aller auf einer Geraden g liegenden Punkte
von F gleich dem neutralen Element O sein soll. Hierbei werden Tangentialpunkte doppelt
und Wendepunkte dreifach gezédhlt und nur solche Geraden g berticksichtigt, auf denen
bei dieser Zahlweise 3 Punkte von E liegen, wobei im Fall, dass g parallel zur y-Achse
verlauft, zuséatzlich noch der Punkt O hinzugerechnet wird.

Am einfachsten ist der Fall, dass die Gerade g parallel zur y-Achse verliduft, also ¢
den Punkt O enthélt. Besteht die Schnittmenge S von g und £\ {O} aus 2 Punkten
P = {x1,11} und Q = {x2, 42}, so gilt offensichtlich z; = x5 und y; = —ys und wir
erhalten P+ Q + O = O bzw. —P = (z1,—v1). Diese Gleichung gilt auch fir den
Fall, dass S nur aus einem Punkt P = {x,y;} besteht, da P dann wegen 3; = 0 ein
Tangentialpunkt ist und daher doppelt gezahlt wird.

Es bleibt der Fall, dass g nicht parallel zur y-Achse verlauft. Hier gibt es 2 Unterfalle:

P # Q: In diesem Fall gilt x; # xo. Zudem ist ¢ = {(z,y) € R?ly = Az + pu} mit
A=L2"9 yund p =y — A\ry = yo — Axg. Wir zeigen zuerst, dass

Eng={PQ,R}
ist, wobei R = (z3,ys3) folgende Koordinaten hat:
x5 =X\ — 11 — 2o und y3 = Nz3 — 1) + 1.
Fir alle (z,y) € ENg gilt
(A +p)? =2°+azx + b
~2® = N2 4 (@ —2u\)r + b — = 0.

p(z)
p lasst sich in C vollstdndig in Linearfaktoren zerlegen,

p(z) = (z = 21)(x — z2) (2 — 23).
Da sich der Koeffizient —\? von 22 aus der linearen Zerlegung von p(x) zu
—/\2 = —T1 — T2 — XT3

berechnet, muss 3 = A\? — z; — x5 sein. Da R auch auf g liegt, ist zudem y3 =
Mxs —21) + 41
Folglich ist P+ Q = —R = (23, —y3) = (A2 — 21 — 29, M1 — 23) — 91).

2.2 Elliptische Kurven tiber endlichen Kérpern 33

P = Q: In diesem Fall gilt 1 = x5 und y; = y, # 0. Sei g die Tangente durch P an F.
Wir zeigen, dass es einen Punkt R = (z3,y3) € R? gibt mit

gNE ={P R},

wobei x3 = \? — 22, und y3 = A(z3 — 11) + y1 ist. Die Steigung X von g erhalten
wir durch implizites Differenzieren:

B d7y B —%(%,yl) B 313 +a

N\ = _
dx %(351,91) 241

Y

3

wobei F(x,y) = y* — 2% — ax — b ist. Zur Begriindung sei

T(z,y) = c(z — 1) + d(y — y1)
die Tangentialebene an F'(z,y) im Punkt (x1,y1, F(x1,y1)) = (21,91,0). Dann gilt
oF

c= %(xl,yl) =377 —a
und OF
d= @(xlvyl) =2y.

Da die Tangente g sowohl in der Tangentialebene 7' als auch in der z,y-Ebene
verlauft, folgt

(z,y)eg & T(r,y)=0
C

<~ Y—hn= —g(x—ﬂh);

woraus sich A = —% ergibt. Genau wie im 1. Fall erhalten wir nun P+Q = P+ P =

2P = —R = (3, ~y3)) = (* — 21 — 22, M1 — 23) — 1) mit A = 3213/?.

Satz 46. E bildet mit O als neutralem Element und + als Addition eine abelsche Gruppe,
d.h.

o + ist abgeschlossen auf E.
o + ist kommutativ

e Jeder Punkt hat ein Inverses —P. P ist selbstinvers, falls P = —P ist. Dies gilt
fiir P = 0O und alle Kurvenpunkte der Form P = (x,0).

e + ist assoziativ. (ohne Beweis!)

2.2 Elliptische Kurven iiber endlichen Korpern

Definition 47. Sei F, ein endlicher Kérper mit ¢ = p™ fiir eine Primzahl p > 3. Fiir
a,b € F, mit 4a® + 276 # 0 heifst

E={(z,y) € Z2 | y* =, 2° + axz + b} U{O}

elliptische Kurve iber Fy. Die Gruppenoperation + ist auf E' wie folgt definiert.
e O ist neutrales Element, d.h. VP € E—{0} : P+ O =0+ P =P,

34 2 FElliptische Kurven

e Das Inverse zu P = (z,y) € E\{O} ist =P = P = (z, —y).
o Fir P.QQ € E\{O} ist

O, P=Q

R, sonst

rio-

wobei sich R = (x3,y3) wie folgt aus P = (x1,y1) und Q = (x2,y2) berechnet:
r3 = /\2 — X1 — X9
ys = Maz1—13) —u
_ -l
wobei \ — (Y2 =) (22 — 1), P#Q
(32% + a)(2y1) ", P=Q
Satz 48. (E,O,+) bildet eine abelsche Gruppe (ohne Beweis).

Beispiel 49. p = 11, E definiert durch y* = 2° + x+6. Zur Erinnerung: Im Fallp =4 3
lassen sich fiir z € QR,, die Wurzeln y durch 4251 bestimmen.

T 0|11 2 3 14| 5 |67 8 9] 10
z2=23+2+6 68| 5 3 18] 4 |8] 4 9 | 7] 4
y=*+yvzmod 11| — | —[47[56|—]29|—12;,9]3;8]—12;9

Da die Gruppe (E,O,+) ||E|| = 13 Elemente enthdlt, und 13 eine Primzahl ist, haben alle
Elemente entweder die Ordnung 1 oder 13. Da nur das neutrale Element O die Ordnung
1 hat, haben alle anderen Elemente P € E—{QO} die Ordnung 13, sind also Erzeuger der
Gruppe. Folglich ist (E, O, +) zyklisch und somit isomorph zu Z3: (E,O,+) = (Z13,0,+).
Berechnung von 2g = (2,7) + (2,7):

A= (3-2241)(2-7) ' mod 11
= 2.371
= 2.4=8
r3 = 8 —-2—-2modl1l=5
ys = 8(2—5)—Tmod 11 =2

= 29 = (5,2)
Berechnung von 3g = 2g+ g = (5,2) + (2,7):

A= (7T-2)(2-5)"mod 11
= 5. (-3)"

r3 = 22—5—2mod 11 =8

y3 = 2-(5—8)—2mod 11 =3

= 39 = (8,3)

k-gl(2,7)](5,2)[(8,3)[(10,2)[(3,6)[(7,9)[(7,2)|(3,5)|(10,9)[(8, 8)[(5,9) [(2,4) [O

	1 Kryptografische Hashverfahren
	1.1 Einführung
	1.2 Schlüssellose Hashfunktionen (MDCs)
	1.2.1 Vergleich von Sicherheitsanforderungen
	1.2.2 Das Zufallsorakelmodell (ZOM)
	1.2.3 Iterierte Hashfunktionen
	1.2.4 Die Merkle-Damgaard-Konstruktion
	1.2.5 Die MD4-Hashfunktion
	1.2.6 Die MD5-Hashfunktion
	1.2.7 Die SHA-1-Hashfunktion
	1.2.8 Die SHA-2-Familie
	1.2.9 Kryptoanalyse von Hashfunktionen
	1.2.10 Die Sponge-Konstruktion
	1.2.11 SHA-3

	1.3 Nachrichten-Authentikationscodes (MACs)
	1.3.1 Angriffe gegen symmetrische Hashfunktionen
	1.3.2 Informationstheoretische Sicherheit von MACs
	1.3.3 MACs auf der Basis einer Kompressionsfunktion
	1.3.4 CBC-MACs
	1.3.5 Kombination einer Hashfunktion mit einem MAC (HMAC)

	2 Elliptische Kurven
	2.1 Elliptische Kurven über den reellen Zahlen
	2.2 Elliptische Kurven über endlichen Körpern

