
Vorlesungsskript

Kryptologie
Sommersemester 2016

Prof. Dr. Johannes Köbler
Humboldt-Universität zu Berlin

Lehrstuhl Komplexität und Kryptografie

21. Juli 2016

ii

Inhaltsverzeichnis

1 Kryptografische Hashverfahren 1
1.1 Einführung . 1
1.2 Schlüssellose Hashfunktionen (MDCs) . 3

1.2.1 Vergleich von Sicherheitsanforderungen 4
1.2.2 Das Zufallsorakelmodell (ZOM) 5
1.2.3 Iterierte Hashfunktionen . 8
1.2.4 Die Merkle-Damgaard-Konstruktion 9
1.2.5 Die MD4-Hashfunktion . 10
1.2.6 Die MD5-Hashfunktion . 11
1.2.7 Die SHA-1-Hashfunktion . 12
1.2.8 Die SHA-2-Familie . 13
1.2.9 Kryptoanalyse von Hashfunktionen 14
1.2.10 Die Sponge-Konstruktion . 15
1.2.11 SHA-3 . 17

1.3 Nachrichten-Authentikationscodes (MACs) 18
1.3.1 Angriffe gegen symmetrische Hashfunktionen 19
1.3.2 Informationstheoretische Sicherheit von MACs 19
1.3.3 MACs auf der Basis einer Kompressionsfunktion 28
1.3.4 CBC-MACs . 28
1.3.5 Kombination einer Hashfunktion mit einem MAC (HMAC) 29

2 Elliptische Kurven 32
2.1 Elliptische Kurven über den reellen Zahlen 32
2.2 Elliptische Kurven über endlichen Körpern 33

3 Digitale Signaturverfahren 37
3.1 Das ElGamal-Signaturverfahren . 39
3.2 Das Schnorr-Signaturverfahren . 40
3.3 Der Digital Signature Algorithm (DSA) 41
3.4 ECDSA (Elliptic Curve DSA) . 42
3.5 One-time Signatur (Lamport) . 43
3.6 Full Domain Hash (FDH) Signaturen . 45
3.7 Verbindliche Signaturen (undeniable signatures) 47
3.8 Fail-Stop-Signaturen . 50

4 Pseudozufallszahlen-Generatoren 54
4.1 Kryptografische Sicherheit von Pseudozufallsgeneratoren 54
4.2 Quadratische Reste . 57
4.3 Quadratische Pseudoreste . 59
4.4 Der BBS-Generator . 60

5 Berechnung des diskreten Logarithmus und Ganzzahl-Faktorisierung 63
5.1 Der Algorithmus von Shanks . 64

Inhaltsverzeichnis iii

5.2 Der Pohlig-Hellman-Algorithmus . 64
5.3 Der Rho-Faktorisierungsalgorithmus . 66
5.4 Der Rho-DLP-Algorithmus . 66
5.5 Die Index-Calculus-Methode . 67
5.6 Die Methode der zufälligen Quadrate . 68

1

1 Kryptografische Hashverfahren

1.1 Einführung

Durch kryptographische Verfahren lassen sich unter anderem die folgenden Schutzziele
realisieren.
• Vertraulichkeit

– Geheimhaltung
– Anonymität (z.B. Mobiltelefon)
– Unbeobachtbarkeit (von Transaktionen)

• Integrität
– von Nachrichten und Daten

• Zurechenbarkeit
– Authentikation
– Unabstreitbarkeit
– Identifizierung

• Verfügbarkeit
– von Daten
– von Rechenressourcen
– von Informationsdienstleistungen

Kryptografische Hashverfahren sind ein wirksames Werkzeug zur Sicherstellung der Inte-
grität von Nachrichten oder generell von digitalisierten Daten. Sie nehmen somit beim
Schutz der Datenintegrität eine ähnlich herausragende Stellung ein wie sie Kryptosys-
temen bei der Wahrung der Vertraulichkeit zukommt. Daneben finden kryptografische
Hashfunktionen aber auch vielfach als Bausteine von komplexeren Systemen Verwendung.
Wie wir noch sehen werden, sind kryptografische Hashfunktionen etwa bei der Erstellung
von digitalen Signaturen sehr nützlich. Auf weitere Anwendungsmöglichkeiten werden
wir später eingehen.
Vielen Anwendungen von kryptografischen Hashfunktionen h liegt die Idee zugrunde,
dass sie zu einem vorgegebenen Text x eine zwar kompakte aber dennoch repräsentati-
ve Darstellung h(x) liefern, die unter praktischen Gesichtspunkten als eine eindeutige
Identifikationsnummer von x fungieren kann. Die Berechnungsvorschrift für h muss
somit „charakteristische Merkmale“ von x in den Hashwert h(x) einfließen lassen. Da
der Fingerabdruck eines Menschen ganz ähnliche Eigenschaften besitzt (was ihn für
Kriminalisten bekanntlich so wertvoll macht), wird der Hashwert h(x) auch oft als
ein digitaler Fingerabdruck von x bezeichnet. Gebräuchlich sind auch die Bezeich-
nungen kryptografische Prüfsumme oder message digest (englische Bezeichnung für
„Nachrichtenextrakt“).
Typische Schutzziele, die sich mittels Hashfunktionen realisieren lassen, sind die
Nachrichten- und Teilnehmerauthentikation.
• „Nachrichtenauthentikation“ (message authentication)

2 1 Kryptografische Hashverfahren

Kryptografische
Hashverfahren

schlüssellos symmetrisch

MDCs
(Integritätsschutz)

Sonstige
Hashverfahren

MACs
(Authentikation)

Abbildung 1.1: Eine grobe Einteilung von kryptografischen Hashverfahren.

– Wie lässt sich sicherstellen, dass eine Nachricht (oder eine Datei) während
einer (räumlichen oder auch zeitlichen) Übertragung nicht verändert wurde?

– Wie lässt sich der Urheber (oder Absender) einer Nachricht zweifelsfrei fest-
stellen?

• „Teilnehmerauthentikation“ (entity authentication, identification)
– Wie kann sich eine Person (oder ein Gerät) anderen gegenüber zweifelsfrei

ausweisen?

Klassifikation von Hashverfahren

Kryptografische Hashverfahren lassen sich grob danach klassifizieren, ob der Hashwert
lediglich in Abhängigkeit vom Eingabetext berechnet wird oder zusätzlich von einem
symmetrischen Schlüssel abhängt (siehe Abbildung 1.1).
Kryptografische Hashfunktionen, bei deren Berechnung keine Schlüssel benutzt werden,
dienen vornehmlich der Erkennung von unbefugt vorgenommenen Manipulationen an
Dateien oder Nachrichten. Daher werden sie auch als MDC bezeichnet (Manipulation
Detection Code [englisch] = Code zur Erkennung von Manipulationen). Zuweilen wird
das Kürzel MDC auch als eine Abkürzung für Modification Detection Code verwendet.
Seltener ist dagegen die Bezeichnung MIC (message integrity codes). Abbildung 1.2
zeigt eine typische Anwendung von MDCs.

Um die Integrität eines Datensatzes x sicherzustellen, der über einen ungesi-

x x′

y
y

?= h(x′)

h h

echt

falsch

Ungesicherter Kanal

Authentisierter Kanal

Abbildung 1.2: Einsatz eines MDC h zur Überprüfung der Integrität eines Datensatzes
x.

1.2 Schlüssellose Hashfunktionen (MDCs) 3

x x′

y
hk(x′)

?= y′

hk hk

echt

falsch

Ungesicherter

Kanal

Gesicherter Kanal
Alice Bobk

k: Symmetrischer Authentikationsschlüssel
y = hk(x): MAC-Hashwert für x unter k

Abbildung 1.3: Verwendung eines MAC zur Nachrichtenauthentikation.

cherten Kanal gesendet (bzw. auf einem vor Manipulationen nicht sicheren
Webserver abgelegt) wird, kann man wie folgt verfahren. Man sendet den
MDC-Hashwert von x über einen authentisierten Kanal und prüft, ob der
Datensatz nach der Übertragung noch denselben Hashwert liefert.

Kryptografische Hashverfahren mit symmetrischen Schlüsseln finden hauptsächlich bei
der Authentifizierung von Nachrichten Verwendung. Diese werden daher auch als MAC
(message authentication code [englisch] = Code zur Nachrichtenauthentifizierung) oder
als Authentikationscode bezeichnet. Daneben gibt es auch Hashverfahren mit asym-
metrischen Schlüsseln. Diese werden jedoch der Rubrik der Signaturverfahren zugeordnet,
da mit ihnen ausschließlich digitale Unterschriften gebildet werden. Abbildung 1.3 zeigt,
wie sich Nachrichten mit einem MAC authentisieren lassen. Man beachte, dass nun auch
der Hashwert über den unsicheren Kanal gesendet wird.

Möchte Alice eine Nachricht x an Bob übermitteln, so berechnet er den
zugehörigen MAC-Hashwert y = hk(x) und fügt diesen der Nachricht x hinzu.
Bob überprüft die Echtheit der empfangenen Nachricht (x′, y′), indem sie
ihrerseits den zu x′ gehörigen Hashwert hk(x′) berechnet und das Ergebnis
mit y′ vergleicht. Der geheime Authentikationsschlüssel k muss hierbei genau
wie bei einem symmetrischen Kryptosystem über einen gesicherten Kanal
vereinbart werden.

Indem Alice seine Nachricht x um den Hashwert y = hk(x) ergänzt, gibt er Bob nicht
nur die Möglichkeit, anhand von y die empfangene Nachricht auf Manipulationen zu
überprüfen. Die Benutzung des geheimen Schlüssels k erlaubt zudem eine Überprüfung
der Herkunft der Nachricht.

1.2 Schlüssellose Hashfunktionen (MDCs)

In diesem Abschnitt betrachten wir verschiedene Sicherheitsanforderungen an einzelne
Hashfunktionen h. Dabei nehmen wir an, dass h öffentlich bekannt ist, d.h. h ist eine
schlüssellose Hashfunktion (MDC).

4 1 Kryptografische Hashverfahren

Sei h : X → Y eine Hashfunktion. Ein Paar (x, y) ∈ X × Y heißt gültig für h, falls
h(x) = y ist. Ein Paar (x, x′) mit h(x) = h(x′) heißt Kollisionspaar für h. Die Anzahl
‖Y ‖ der Hashwerte bezeichnen wir mit m. Ist auch der Textraum X endlich, ‖X‖ = n,
so heißt h eine (n,m)-Hashfunktion. In diesem Fall verlangen wir meist, dass n ≥ 2m
ist, und wir nennen h dann eine Kompressionsfunktion (compression function).
Da h öffentlich bekannt ist, ist es sehr einfach, für einen vorgegebenen Text x ein gültiges
Paar (x, y) zu erzeugen. Für bestimmte kryptografische Anwendungen ist es wichtig, dass
dies nicht möglich ist, falls der Hashwert y vorgegeben wird.
Problem P1: Bestimmung eines Urbilds

Gegeben: Eine Hashfkt. h : X → Y und ein Hashwert y ∈ Y .
Gesucht: Ein Text x ∈ X mit h(x) = y.

Falls es einen immensen Aufwand erfordert, für einen vorgegebenen Hashwert y einen Text
x mit h(x) = y zu finden, so heißt h Einweg-Hashfunktion (one-way hash function bzw.
preimage resistant hash function). Diese Eigenschaft wird beispielsweise benötigt, wenn
die Hashwerte der Benutzerpasswörter in einer öffentlich zugänglichen Datei abgespeichert
werden, wie es bei manchen Unix-Systemen der Fall ist.
Problem P2: Bestimmung eines zweiten Urbilds

Gegeben: Eine Hashfkt. h : X → Y und ein Text x ∈ X.
Gesucht: Ein Text x′ ∈ X \ {x} mit h(x′) = h(x).

Falls sich für einen vorgegebenen Text x nur mit großem Aufwand ein weiterer Text x′ 6= x
mit dem gleichen Hashwert h(x′) = h(x) finden lässt, heißt h schwach kollisionsre-
sistent (weakly collision resistant bzw. second preimage resistant). Diese Eigenschaft
wird in der durch Abbildung 1.2 skizzierten Anwendung benötigt. Beim Versuch, eine
digitale Signatur zu fälschen (siehe unten), sieht sich der Gegner dagegen mit folgender
Problemstellung konfrontiert.
Problem P3: Bestimmung einer Kollision

Gegeben: Eine Hashfkt. h : X → Y .
Gesucht: Texte x 6= x′ ∈ X mit h(x′) = h(x).

Falls sich dieses Problem nur mit einem immensen Aufwand lösen lässt, heißt h (stark)
kollisionsresistent (collision resistant).
Obwohl die schwache Kollisionsresistenz eine gewisse Ähnlichkeit mit der Einweg-
Eigenschaft aufweist, sind die beiden Eigenschaften im allgemeinen unvergleichbar. So
muss eine schwach kollisionsresistente Funktion nicht notwendigerweise eine Einweg-
funktion sein, da die Bestimmung eines Urbildes gerade für diejenigen Funktionswerte
einfach sein kann, die nur ein einziges Urbild besitzen. Umgekehrt impliziert die Einweg-
Eigenschaft auch nicht die schwache Kollisionsresistenz, da die Kenntnis eines Urbildes
das Auffinden weiterer Urbilder sehr stark erleichtern kann.

1.2.1 Vergleich von Sicherheitsanforderungen

In diesem Abschnitt zeigen wir, dass stark kollisionsresistente Hashfunktionen sowohl
schwach kollisionsresistent als auch Einweghashfunktionen sind.

Satz 1. Sei h : X → Y eine (n,m)-Hashfunktion. Dann ist das Problem P3, ein Kol-
lisionspaar für h zu bestimmen, auf das Problem P2, ein zweites Urbild zu bestimmen,

1.2 Schlüssellose Hashfunktionen (MDCs) 5

1 wähle zufällig x ∈ X
2 x′ := A(x)
3 if x′ 6= ? then return(x, x′) else return(?)

Abbildung 1.4: Reduktion des Kollisionsroblems auf das Problem, ein zweites Urbild zu
bestimmen

reduzierbar. Folglich sind stark kollisionsresistente Hashfunktionen auch schwach kollisi-
onsresistent.

Beweis. Sei A ein Las-Vegas Algorithmus, der für ein zufällig aus X gewähltes x mit
Erfolgswahrscheinlichkeit ε ein zweites Urbild x′ für h liefert und andernfalls ? aus-
gibt. Dann ist klar, dass der in Abbildung 1.4 dargestellte Las-Vegas Algorithmus mit
Wahrscheinlichkeit ε ein Kollisionspaar findet. �

Als nächstes zeigen wir, wie sich das Kollisionsproblem auf das Urbildproblem reduzieren
lässt.

Satz 2. Sei h : X → Y eine (n,m)-Hashfunktion mit n ≥ 2m. Dann ist das Problem P3,
ein Kollisionspaar für h zu bestimmen, auf das Problem P1, ein Urbild zu bestimmen,
reduzierbar.

Beweis. Sei A ein Invertierungsalgorithmus für h, d.h. A berechnet für jeden Hashwert y
in W (h) = {h(x) | x ∈ X} ein Urbild x mit h(x) = y. Betrachte den in Abbildung 1.5
dargestellten Las-Vegas Algorithmus B.
Sei C = {h−1(y) | y ∈ Y }. Dann hat B eine Erfolgswahrscheinlichkeit von

∑
C∈C

‖C‖
‖X‖

· ‖C‖ − 1
‖C‖

= 1
n

∑
C∈C

(‖C‖ − 1) = (n−m)/n ≥ 1
2 .

�

1.2.2 Das Zufallsorakelmodell (ZOM)

Das ZOM dient dazu, den Aufwand verschiedener Angriffe auf eine Hashfunktion h : X →
Y nach oben abzuschätzen. Sind X und Y vorgegeben, so können wir eine Hashfunktion
h : X → Y dadurch „konstruieren“, dass wir für jedes x ∈ X zufällig ein y ∈ Y wählen
und h(x) auf y setzen. Äquivalent hierzu ist, für h eine zufällige Funktion aus der
Klasse F (X, Y) aller nm Funktionen von X nach Y zu wählen. Dieses Verfahren ist auf
Grund des hohen Aufwands zwar nicht mehr praktikabel, wenn n = ‖X‖ eine bestimmte
Größe übersteigt. Es liefert uns aber ein theoretisches Modell für eine Hashfunktion
mit „idealen“ kryptografischen Eigenschaften. Offensichtlich besteht für den Gegner die

1 wähle zufällig x ∈ X
2 y := h(x)
3 x′ := A(y)
4 if x 6= x′ then return(x, x′) else return(?)

Abbildung 1.5: Reduktion des Kollisionsproblems auf das Urbildproblem

6 1 Kryptografische Hashverfahren

Prozedur FindPreimage(h, y, q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X
2 for each xi ∈ X0 do
3 if h(xi) = y then return(xi)
4 return(?)

Abbildung 1.6: Bestimmung eines Urbilds für einen Hashwert

einzige Möglichkeit, Informationen über h zu erhalten, darin, sich für eine Reihe von
Texten die zugehörigen Hashwerte zu besorgen (was der Befragung eines funktionalen
Zufallsorakels entspricht).
Eine Zufallsfunktion h eignet sich deshalb gut als kryptografische Hashfunktion, weil
der Hashwert h(x) für einen Text x auch dann noch schwer vorhersagbar ist, wenn der
Gegner bereits die Hashwerte einer beliebigen Zahl von anderen Texten kennt.

Proposition 3. Sei X0 = {x1, . . . , xk} eine beliebige Menge von k verschiedenen Texten
aus X und seien y1, . . . , yk ∈ Y . Dann gilt für eine zufällig aus F (X, Y) gewählte Funktion
h und für jedes Paar (x, y) ∈ (X −X0)× Y ,

Pr[h(x) = y |h(xi) = yi für i = 1, . . . , k] = 1/m.

Um eine obere Komplexitätsschranke für das Urbildproblem im ZOM zu erhalten, be-
trachten wir den in Abbildung 1.6 dargestellten Algorithmus. Hier (und bei den beiden
folgenden Algorithmen) gibt der Parameter q die Anzahl der Hashwertberechnungen
(also die Anzahl der gestellten Orakelfragen an das Zufallsorakel h) an. Der Zeitaufwand
der Algorithmen ist dabei proportional zu q.

Satz 4. FindPreimage(h, y, q) gibt im ZOM mit Wahrscheinlichkeit ε = 1− (1−1/m)q
ein Urbild von y aus (unabhängig von der Wahl der Menge X0).

Beweis. Sei y ∈ Y fest und sei X0 = {x1, . . . , xq}. Für i = 1, . . . , q bezeichne Ei das
Ereignis “h(xi) = y”. Nach Proposition 3 sind diese Ereignisse stochastisch unabhängig
und ihre Wahrscheinlichkeit ist Pr[Ei] = 1/m (i = 1, . . . , q). Also folgt

Pr[E1 ∪ . . . ∪ Eq] = 1− Pr[E1 ∩ . . . ∩ Eq] = 1− (1− 1/m)q.
�

Der in Abbildung 1.7 dargestellte Algorithmus liefert uns eine obere Schranke für die
Komplexität des Problems, ein zweites Urbild für h(x) zu bestimmen. Die Erfolgswahr-
scheinlichkeit lässt sich vollkommen analog zum vorherigen Satz bestimmen.

Satz 5. FindSecondPreimage(h, x, q) gibt im ZOM mit Wahrscheinlichkeit ε =
1− (1− 1/m)q−1 ein zweites Urbild x0 6= x von y = h(x) aus.
Ist q vergleichsweise klein, so ist bei beiden bisher betrachteten Angriffen ε ≈ q/m. Um
also auf eine Erfolgswahrscheinlichkeit von 1/2 zu kommen, ist q ≈ m/2 zu wählen.
Geht es lediglich darum, irgendein Kollisionspaar (x, x′) aufzuspüren, so bietet sich ein
sogenannter Geburtstagsangriff an. Dieser ist deutlich zeiteffizienter zu realisieren.
Wie der Name schon andeutet, basiert dieser Angriff auf dem sogenannten Geburtstagspa-
radoxon, welches in seiner einfachsten Form folgendes besagt.

1.2 Schlüssellose Hashfunktionen (MDCs) 7

Geburtstagsparadoxon: Bereits in einer Schulklasse mit 23 Schulkindern haben mit einer
Wahrscheinlichkeit größer 1/2 mindestens zwei Kinder am gleichen Tag Geburtstag
(dies erscheint zwar verblüffend, wird aber durch die Praxis mehr als bestätigt).

Tatsächlich zeigt der nächste Satz, dass bei q-maligem Ziehen (mit Zurücklegen) aus
einer Urne mit m Kugeln mit einer Wahrscheinlichkeit von

1− (m− 1)(m− 2) · · · (m− q + 1)/mq−1

eine Kugel zweimal gezogen wird. Für m = 365 und q = 23 ergibt dies einen Wert von
ungefähr 0,507.
Zur Kollisionsbestimmung verwenden wir den in Abbildung 1.8 dargestellten Algorithmus.
Bei einer naiven Implementierung würde zwar der Zeitaufwand für die Auswertung der if-
Bedingung quadratisch von q abhängen. Trägt man aber jeden Text x unter dem Suchwort
h(x) in eine (herkömmliche) Hashtabelle der Größe q ein, so wird der Zeitaufwand für
die Bearbeitung jedes einzelnen Textes x im wesentlichen durch die Berechnung von h(x)
bestimmt.

Satz 6. Collision(h, q) gibt im ZOM mit Erfolgswahrscheinlichkeit

ε = 1− (m− 1)(m− 2) · · · (m− q + 1)
mq−1

ein Kollisionspaar (x, x′) für h aus.

Beweis. Sei X0 = {x1, . . . , xq}. Für i = 1, . . . , q bezeichne Ei das Ereignis

“h(xi) 6∈ {h(x1, . . . , h(xi−1)}.”

Dann beschreibt E1∩. . .∩Eq das Ereignis “Collision(h, q) gibt ? aus” und für i = 1, . . . , q
gilt

Pr[Ei |E1 ∩ . . . ∩ Ei−1] = m− i+ 1
m

.

Dies führt auf die Erfolgswahrscheinlichkeit

ε = 1− Pr[E1 ∩ . . . ∩ Eq]
= 1− Pr[E1]Pr[E2 |E1] · · ·Pr[Eq |E1 ∩ . . . ∩ Eq−1]

= 1−
(
m− 1
m

)(
m− 2
m

)
· · ·

(
m− q + 1

m

)
.

�

Prozedur FindSecondPreimage(h, x, q)
1 y := h(x)
2 wähle eine beliebige Menge X0 = {x1, . . . , xq−1} ⊆ X − {x}
3 for each xi ∈ X0 do
4 if h(xi) = y then return(xi)
5 return(?)

Abbildung 1.7: Bestimmung eines 2. Urbilds für einen Hashwert

8 1 Kryptografische Hashverfahren

Prozedur Collision(h, q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X
2 for each xi ∈ X0 do yi := h(xi)
3 if ∃i 6= j : yi = yj then return(xi, xj) else return(?)

Abbildung 1.8: Bestimmung eines Kollisionspaares

Mit 1− x ≈ e−x folgt

ε = 1−
q−1∏
i=1

(
1− i

m

)
≈ 1−

q−1∏
i=1

e
−i
m = 1− e− 1

m

∑q−1
i=1 i = 1− e−

q(q−1)
2m ≈ 1− e−

q2
2m ≈ q2/2m.

Somit erhalten wir die Abschätzung

q ≈ cε
√
m

mit cε =
√

2ε. Diese Abschätzung ist nur für ε-Werte nahe Null hinreichend genau. Eine
bessere Abschätzung ergibt sich aus der Approximation ε ≈ 1− e− q2

2m :

q ≈ c′ε
√
m

mit c′ε =
√

2 ln 1
1−ε . Für ε = 1/2 ergibt sich somit q ≈

√
(2 ln 2)m ≈ 1,17

√
m.

Besitzt also eine binäre Hashfunktion h : {0, 1}n → {0, 1}m die Hashwertlänge m = 128
Bit, so müssen im ZOM q ≈ 1,17 · 264 Texte gehasht werden, um mit einer Wahrschein-
lichkeit von 1/2 eine Kollision zu finden. Um einem Geburtstagsangriff widerstehen zu
können, sollte eine Hashfunktion mindestens eine Hashwertlänge von 128 oder besser 160
Bit haben.

1.2.3 Iterierte Hashfunktionen

In diesem Abschnitt beschäftigen wir uns mit der Frage, wie sich aus einer kollisionsresis-
tenten Kompressionsfunktion

h : {0, 1}m+t → {0, 1}m

eine kollisionsresistente Hashfunktion

ĥ : {0, 1}∗ → {0, 1}l

konstruieren lässt. Hierzu betrachten wir folgende kanonische Konstruktionsmethode.
Preprocessing: Transformiere x ∈ {0, 1}∗ mittels einer Funktion

y : {0, 1}∗ →
⋃
r≥1
{0, 1}rt

zu einem String y(x) mit der Eigenschaft |y(x)| ≡t 0.
Processing: Sei IV ∈ {0, 1}m ein öffentlich bekannter Initialisierungsvektor und sei

y(x) = y1 · · · yr mit |yi| = t für i = 1, . . . , r. Berechne eine Folge z0, . . . , zr von
Strings zi ∈ {0, 1}m wie folgt:

zi =

IV, i = 0,
h(zi−1yi), i = 1, . . . , r.

1.2 Schlüssellose Hashfunktionen (MDCs) 9

Optionale Ausgabetransformation: Berechne den Hashwert ĥ(x) = g(zr), wobei
g : {0, 1}m → {0, 1}l eine öffentlich bekannte Funktion ist. (Meist wird für g
die Identität verwendet.)

Um ĥ(x) zu berechnen, muss also die Kompressionsfunktion h genau r-mal aufgeru-
fen werden. Wir formulieren nun eine für Preprocessing-Funktionen wünschenswerte
Eigenschaft.

Definition 7. Eine Funktion y : {0, 1}∗ → {0, 1}∗ heißt suffixfrei, falls es keine Strings
x 6= x̃ und z in {0, 1}∗ mit y(x̃) = zy(x) gibt (d.h. kein Funktionswert y(x) ist Suffix
eines Funktionswertes y(x̃) an einer Stelle x̃ 6= x).

Man beachte, dass jede suffixfreie Funktion insbesondere injektiv ist.

Satz 8. Falls die Preprocessing-Funktion y suffixfrei und die Ausgabetransformation g
injektiv ist, so ist mit h auch ĥ kollisionsresistent.

Beweis. Angenommen, es gelingt, ein Kollisionspaar x, x̃ für ĥ mit ĥ(x) = ĥ(x̃) zu finden.
Sei

y(x) = y1y2 . . . yk−1yk und y(x̃) = ỹ1ỹ2 . . . ỹl−1ỹl mit k ≤ l.

Da y suffixfrei ist, muss ein Index i ∈ {1, . . . , k} mit yi 6= ỹl−k+i existieren. Weiter seien
zi (i = 0, . . . , k) und z̃j (j = 0, . . . , l) die in der Processing-Phase berechneten Hashwerte.
Da g injektiv ist, muss mit g(zk) = ĥ(x) = ĥ(x̃) = g(z̃l) auch zk = z̃l gelten. Sei imax
der größte Index i ∈ {1, . . . , k} mit zi−1yi 6= z̃l−k+i−1ỹl−k+i. Dann bilden zimax−1yimax und
z̃l−k+imax−1ỹl−k+imax wegen

h(zimax−1yimax) = zimax = z̃l−k+imax = h(z̃l−k+imax−1ỹl−k+imax)

ein Kollisionspaar für h. �

1.2.4 Die Merkle-Damgaard-Konstruktion

Merkle und Damgaard schlugen 1989 folgende konkrete Realisierung ihrer Konstruktion
vor. Als Initialisierungsvektors wird der Nullvektor IV = 0m benutzt, die optionale
Ausgabetransformation entfällt, und für y(x) wird im Fall t ≥ 2 die folgende Funktion
verwendet. (Den Fall t = 1 betrachten wir später.)
Für x = ε sei y(x) = 0t und für x ∈ {0, 1}n mit n > 0 sei k = d n

t−1e und x =
x1x2 . . . xk−1xk mit |x1| = |x2| = . . . = |xk−1| = t − 1 sowie |xk| = t − 1 − d, wobei
0 ≤ d < t − 1. Im Fall k = 1 ist dann y(x) = 0x0d1bint−1(d) und für k > 1 ist
y(x) = y1 · · · yk+1, wobei

yi =



0x1, i = 1,
1xi, 2 ≤ i < k,

1xk0d, i = k,

1bint−1(d), i = k + 1,

(1.1)

und bint−1(d) die durch führende Nullen auf die Länge t− 1 aufgefüllte Binärdarstellung
von d ist.

Satz 9. Die durch (1.1) definierte Preprocessing-Funktion y ist suffixfrei.

10 1 Kryptografische Hashverfahren

Beweis. Seien x 6= x̃ zwei Texte mit |x| ≤ |x̃|. Wir müssen zeigen, dass y(x) = y1y2 . . . yk+1
kein Suffix von y(x̃) = ỹ1ỹ2 . . . ỹl+1 ist. Im Fall x = ε ist dies klar. Für x 6= ε machen wir
folgende Fallunterscheidung.
1. Fall: |x| 6≡t−1 |x̃|. Dann folgt d 6= d̃ und somit yk+1 6= ỹl+1.
2. Fall: |x| = |x̃|. In diesem Fall ist k = l. Wegen x 6= x̃ existiert ein Index i ∈

{1, . . . , k} mit xi 6= x̃i. Dies impliziert yi 6= ỹi, also ist y(x) kein Suffix von y(x̃).
3. Fall: |x| 6= |x̃| und |x| ≡t−1 |x

′|. In diesem Fall ist k < l. Da y(x) mit einer Null
beginnt, aber das (l − k + 1)-te Bit von y(x̃) eine Eins ist, kann y(x) kein Suffix
von y(x̃) sein. �

Nun kommen wir zum Fall t = 1. Sei y die durch y(x) := 11f(x) definierte Funktion,
wobei f wie folgt definiert ist:

f(x1, . . . , xn) = f(x1) . . . f(x2) mit f(0) = 0 und f(1) = 01.

Dann ist leicht zu sehen, dass y suffixfrei ist. Da die Kompressionsfunktion h bei der
Berechnung von ĥ(x) im Fall t = 1 für jedes Bit von y(x) einmal aufgerufen wird, wird h
genau |y(x)| ≤ 2(n+1)-mal aufgerufen. Im Fall t > 1 werden dagegen nur k+1 = d n

t−1e+1
Aufrufe benötigt.

1.2.5 Die MD4-Hashfunktion

Die MD4-Hashfunktion (Message Digest) wurde 1990 von Rivest vorgeschlagen. Die
Bitlänge von MD4 beträgt l = 128 Bit. Bei einer Wortlänge von 32 Bit entspricht
dies 4 Wörtern. Die im Folgenden vorgestellten Hashfunktionen benutzen u.a. folgende
Operationen auf Wörtern.

Operatoren auf {0, 1}32

X ∧ Y bitweises „Und“ von X und Y
X ∨ Y bitweises „Oder“ von X und Y
X ⊕ Y bitweises „exklusives Oder“ von X und Y
¬X bitweises Komplement von X

X + Y Ganzzahl-Addition modulo 232

X → s Rechtsshift um s Stellen
X ←↩ s zirkulärer Linksshift um s Stellen

Während die Ganzzahl-Addition bei MD4 und MD5 in little endian Architektur (d.h.
ein aus 4 Bytes a3a2a1a0, 0 ≤ ai ≤ 255 zusammengesetztes Wort repräsentiert die Zahl
a0224 + a1216 + a228 + a3) ausgeführt wird, verwendet SHA-1 eine big endian Architektur
(d.h. a3a2a1a0, 0 ≤ ai ≤ 255 repräsentiert die Zahl a3224 + a2216 + a128 + a0). Der
MD4-Algorithmus benutzt die folgenden Konstanten yj, zj, sj, j = 0, . . . , 47

yj (in Hexadezimaldarstellung)
j = 0, . . . , 15 0
j = 16, . . . , 31 5a827999
j = 32, . . . , 47 6ed9eba1

1.2 Schlüssellose Hashfunktionen (MDCs) 11

zj
j = 0, . . . , 15 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
j = 16, . . . , 31 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15
j = 32, . . . , 47 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

sj
j = 0, . . . , 15 3, 7, 11, 19, 3, 7, 11, 19, 3, 7, 11, 19, 3, 7, 11, 19
j = 16, . . . , 31 3, 5, 9, 13, 3, 5, 9, 13, 3, 5, 9, 13, 3, 5, 9, 13
j = 32, . . . , 47 3, 9, 11, 15, 3, 9, 11, 15, 3, 9, 11, 15, 3, 9, 11, 15

und folgende Funktionen fj, j = 0, . . . , 47

fj(X, Y, Z) :=


(X ∧ Y) ∨ (¬X ∧ Z), j = 0, . . . , 15,
(X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z), j = 16, . . . , 31,
X ⊕ Y ⊕ Z, j = 32, . . . , 47.

Für MD4 konnten nach ca. 220 Hashwertberechnungen Kollisionen aufgespürt werden.
Deshalb gilt MD4 nicht mehr als kollisionsresistent.

MD4(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 (A,B,C,D) := (H1, H2, H3, H4)
8 for j := 0 to 47 do
9 (A,B,C,D) := (D, (A+ fj(B,C,D) +X[zj] + yj)←↩ sj, B, C)

10 (H1, H2, H3, H4) := (H1 + A,H2 +B,H3 + C,H4 +D)
11 output H1H2H3H4

1.2.6 Die MD5-Hashfunktion

Der MD5 ist eine 1991 von Rivest präsentierte verbesserte Version von MD4. Die Bitlänge
von MD5 beträgt wie bei MD4 l = 128 Bit. Bei einer Wortlänge von 32 Bit entspricht
dies 4 Wörtern. In MD5 werden teilweise andere Konstanten als in MD4 verwendet.
Zudem besitzt MD5 eine zusätzliche 4. Runde (j = 48, . . . , 63), in der die Funktion
fj(X, Y, Z) = Y ⊕ (X ∨ ¬Z) verwendet wird. Außerdem wurde die in Runde 2 von MD4
verwendete Funktion durch fj(X, Y, Z) := (X ∧ Z) ∨ (Y ∧ ¬Z), j = 16 . . . 31, ersetzt.
Die y-Konstanten sind definiert als yj := die ersten 32 Bit der Binärdarstellung von
abs(sin(j + 1)), 0 ≤ j ≤ 63, und für zj und sj werden folgende Konstanten benutzt.

12 1 Kryptografische Hashverfahren

zj
j = 0, . . . , 15 zj = j : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
j = 16, . . . , 31 zj = (5j + 1) mod 16 : 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12
j = 32, . . . , 47 zj = (3j + 5) mod 16 : 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2
j = 48, . . . , 63 zj = 7j mod 16 : 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9

sj
j = 0, . . . , 15 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22
j = 16, . . . , 31 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20
j = 32, . . . , 47 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23
j = 48, . . . , 63 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21

Für MD5 konnten in 2004 ebenfalls Kollisionspaare gefunden werden (für die Kompressi-
onsfunktion von MD5 gelang dies bereits 1996).

MD5(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 (A,B,C,D) := (H1, H2, H3, H4)
8 for j := 0 to 63 do
9 (A,B,C,D) := (D,B + (A+ fj(B,C,D) +X[zj] + yj)←↩ sj, B, C)

10 (H1, H2, H3, H4) := (H1 + A,H2 +B,H3 + C,H4 +D)
11 output H1H2H3H4

1.2.7 Die SHA-1-Hashfunktion

Der Secure Hash Algorithm (SHA-1) ist eine Weiterentwicklung des MD4 bzw. MD5
Algorithmus. Er gilt in den USA als Standard und ist Bestandteil des von der US-Behörde
NIST (National Institute of Standards and Technology) im August 1991 veröffentlichten
DSS (Digital Signature Standard). Die Bitlänge von SHA-1 beträgt l = 160 Bit. Bei
einer Wortlänge von 32 Bit entspricht dies 5 Wörtern. SHA-1 unterscheidet sich nur
geringfügig von der SHA-0 Hashfunktion, in der eine Schwachstelle dazu führt, dass
nach Berechnung von ca. 261 Hashwerten ein Kollisionspaar gefunden werden kann
(obwohl bei einem Geburtstagsangriff auf Grund der Hashwertlänge von 160 Bit ca. 280

Berechnungen erforderlich sein müssten). Diese potentielle Schwäche von SHA-0 wurde
im SHA-1 dadurch entfernt, dass SHA-1 in Zeile 8 einen zirkulären Shift um eine Bitstelle
ausführt. Der SHA-1-Algorithmus benutzt die folgenden Konstanten Kj, j = 0, . . . , 79

Kj (in Hexadezimaldarstellung)
j = 0, . . . , 19 5a827999
j = 20, . . . , 39 6ed9eba1
j = 40, . . . , 59 8f1bbcdc
j = 60, . . . , 79 ca62c1d6

1.2 Schlüssellose Hashfunktionen (MDCs) 13

und folgende Funktionen fj, j = 0, . . . , 79

fj(X, Y, Z) :=



(X ∧ Y) ∨ (¬X ∧ Z), j = 0, . . . , 19,
X ⊕ Y ⊕ Z, j = 20, . . . , 39,
(X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z), j = 40, . . . , 59,
X ⊕ Y ⊕ Z, j = 60, . . . , 79.

SHA-1(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H0, H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476, c3d2e1f0)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 for t := 16 to 79 do
8 X[t] := (X[t− 3]⊕X[t− 8]⊕X[t− 14]⊕X[t− 16])←↩ 1
9 (A,B,C,D,E) := (H0, H1, H2, H3, H4)

10 for j := 0 to 79 do
11 temp := (A←↩ 5) + fj(B,C,D) + E +X[j] +Kj

12 (A,B,C,D,E) := (temp,A,B ←↩ 30, C,D)
13 (H0, H1, H2, H3, H4) := (H0 + A,H1 +B,H2 + C,H3 +D,H4 + E)
14 output H0H1H2H3H4

1.2.8 Die SHA-2-Familie

Im Jahr 2001 veröffentlichte die US-Behörde NIST drei weitere Hashfunktionen der
SHA-Familie: SHA-256, SHA-384, and SHA-512. Diese Funktionen werden auch als
SHA-2 Hashfunktionen bezeichnet. In 2004 kam noch SHA-224 als vierte Variante hinzu.
SHA-256 und SHA-512 haben denselben Aufbau, unterscheiden sich aber in erster Linie
in der benutzten Wortlänge: 32 Bit bei SHA-256 und 64 Bit bei SHA-512. Zudem werden
unterschiedliche Shift- und Summationskonstanten verwendet und auch die Rundenzahlen
differieren. SHA-224 und SHA-384 sind reduzierte Varianten von SHA-256 und SHA-
512. Der SHA-256-Algorithmus benutzt die folgenden Konstanten Kj, j = 0, . . . , 63 (in
Hexadezimaldarstellung).

428a2f98, 71374491, b5c0fbcf, e9b5dba5, 3956c25b, 59f111f1, 923f82a4, ab1c5ed5,
d807aa98, 12835b01, 243185be, 550c7dc3, 72be5d74, 80deb1fe, 9bdc06a7, c19bf174,
e49b69c1, efbe4786, 0fc19dc6, 240ca1cc, 2de92c6f, 4a7484aa, 5cb0a9dc, 76f988da,
983e5152, a831c66d, b00327c8, bf597fc7, c6e00bf3, d5a79147, 06ca6351, 14292967,
27b70a85, 2e1b2138, 4d2c6dfc, 53380d13, 650a7354, 766a0abb, 81c2c92e, 92722c85,
a2bfe8a1, a81a664b, c24b8b70, c76c51a3, d192e819, d6990624, f40e3585, 106aa070,
19a4c116, 1e376c08, 2748774c, 34b0bcb5, 391c0cb3, 4ed8aa4a, 5b9cca4f, 682e6ff3,
748f82ee, 78a5636f, 84c87814, 8cc70208, 90befffa, a4506ceb, bef9a3f7, c67178f2

Dies sind jeweils die ersten 32 Bit der binären Nachkommastellen der dritten Wurzeln
der ersten 64 Primzahlen 2, . . . , 311. SHA-256 arbeitet wie folgt.

14 1 Kryptografische Hashverfahren

SHA-256(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H0, H1, H2, H3, H4, H5, H6, H7) := (6a09e667, bb67ae85, 3c6ef372, a54ff53a,
4 510e527f, 9b05688c, 1f83d9ab, 5be0cd19)
5 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
6 for i := 1 to r do
7 sei Mi = X[0] · · ·X[15]
8 for t := 16 to 63 do
9 s0 := (X[t− 15] ↪→ 7)⊕ (X[t− 15] ↪→ 18)⊕ (X[t− 15]→ 3)

10 s1 := (X[t− 2] ↪→ 17)⊕ (X[t− 2] ↪→ 19)⊕ (X[t− 2]→ 10)
11 X[t] := X[t− 16] + s0 +X[t− 7] + s1
12 (A,B,C,D,E, F,G,H) := (H0, H1, H2, H3, H4, H5, H6, H7)
13 for j := 0 to 63 do
14 s0 := (A ↪→ 2)⊕ (A ↪→ 13)⊕ (A ↪→ 22)
15 maj := (A ∧B)⊕ (A ∧ C)⊕ (B ∧ C)
16 t2 := s0 +maj
17 s1 := (E ↪→ 6)⊕ (E ↪→ 11)⊕ (E ↪→ 25)
18 ch := (E ∧ F)⊕ (¬E ∧G)
19 t1 := H + s1 + ch+Kj +X[j]
20 (A,B,C,D,E, F,G,H) := (t1 + t2, A,B,C,D + t1, E, F,G)
21 (H0, H1, H2, H3, H4, H5, H6, H7)
22 := (H0 + A,H1 +B,H2 + C,H3 +D,H4 + E,H5 + F,H6 +G,H7 +H)
23 output H0H1H2H3H4H5H6H7

Die Initialwerte von H0, . . . , H7 in den Zeilen 3 und 4 sind jeweils die ersten 32 Bit der
binären Nachkommastellen der Wurzeln der Primzahlen 2, 3, 5, 7, 11, 13, 17, 19.

1.2.9 Kryptoanalyse von Hashfunktionen

Bereits 1991 wurden von Den Boer und Bosselaers Schwächen im MD4 aufgedeckt. Im
August 2004 erschien ein Bericht [1] mit einer Anleitung, wie sich Kollisionen für MD4
mittels “hand calculation” finden lassen.
In 1993, fanden den Boer und Bosselaers einen Weg, so genannte “Pseudo-Kollisionen” für
die MD5 Kompressionsfunktion zu generieren. In 1996, fand Dobbertin ein Kollisionspaar
für die MD5 Kompressionsfunktion.
Im August 2004 wurden schließlich Kollisionen für MD5 von Xiaoyun Wang, Dengguo
Feng, Xuejia Lai und Hongbo Yu berechnet. Der benötigte Aufwand wurde mit ca. 1
Stunde auf einem IBM p690 Cluster abgeschätzt.
Im März 2005 veröffentlichten Arjen Lenstra, Xiaoyun Wang und Benne de Weger zwei
X.509 Zertifikate mit unterschiedlichen Public-keys, die auf denselben MD5-Hashwert
führten. Nur wenige Tage später beschrieb Vlastimil Klima eine Möglichkeit, Kollisionen
für MD5 innerhalb weniger Stunden auf einem Notebook zu berechnen. Mittels der so
genannten Tunneling-Methode wurde die Rechenzeit vom gleichen Autor im März 2006
auf eine Minute verkürzt.
Auf der CRYPTO 98 stellten Chabaud und Joux einen Angriff auf SHA-0 vor, der ein
Kollisionspaar mit nur 261 Hashwertberechnungen (anstelle von 280 bei einem Geburts-
tagsangriff) aufspürt.

1.2 Schlüssellose Hashfunktionen (MDCs) 15

In 2004 fanden Biham und Chen Beinahe-Kollisionen für den SHA-0, bei denen sich die
Hashwerte nur an 18 von den 160 Bitpositionen unterschieden. Zudem legten sie volle
Kollisionen für den auf 62 Runden reduzierten SHA-0 Algorithmus vor.
Schließlich wurde im August 2004 die Berechnung einer Kollision für den vollen 80-Runden
SHA-0 Algorithmus von Joux, Carribault, Lemuet und Jalby bekannt gegeben. Hierzu
wurden lediglich 251 Hashwerte berechnet, die ca. 80 000 Stunden CPU-Rechenzeit auf
einem 2-Prozessor 256-Itanium Supercomputer benötigten.
Ebenfalls im August 2004 wurde von Wang, Feng, Lai und Yu auf der CRYPTO 2004 eine
Angriffsmethode für MD5, SHA-0 und andere Hashfunktionen vorgestellt, mit der sich die
Anzahl der Hashwertberechnungen auf 240 senken lässt. Dies wurde im Februar 2005 von
Xiaoyun Wang, Yiqun Lisa Yin und Hongbo Yu geringfügig auf 239 Hashwertberechnungen
verbessert.
Aufgrund der erfolgreichen Angriffe auf SHA-0 rieten mehrere Experten von einer weiteren
Verwendung des SHA-1 ab. Daraufhin kündigte die amerikanische Behörde NIST an,
SHA-1 in 2010 zugunsten der SHA-2 Varianten abzulösen.
Im Jahr 2005 veröffentlichten Rijmen und Oswald einen Angriff, der mit weniger als
280 Hashwertberechnungen ein Kollisionspaar für den auf 53 Runden reduzierten SHA-1
Algorithmus findet. Nur wenig später kündigten Xiaoyun Wang, Yiqun Lisa Yin und
Hongbo Yu einen Angriff auf den vollen 80-Runden SHA-1 mit 269 Hashwertberechnungen
an. Im August 2005 erfuhr der benötigte Aufwand von Xiaoyun Wang, Andrew Yao und
Frances Yao auf der CRYPTO 2005 eine weitere Reduktion auf 263 Berechnungen. In
2008 wurde von Stephane Manuel ein Kollisionsangriff mit einem geschätzten Aufwand
von 251 bis 257 Berechnungen veröffentlicht.
Die besten bekannten Angriffe gegen SHA-2 brechen die von 64 auf 41 Runden reduzierte
Variante von SHA-256 und die von 80 auf 46 Runden reduzierte Variante von SHA-512.
Im Oktober 2012 wurde der Hash-Algorithmus Keccak als Gewinner des vom NIST aus-
geschriebenen Wettbewerbs für den SHA-3-Algorithmus ausgewählt. Die Intention dabei
war nicht, SHA-2 als Standard durch SHA-3 abzulösen, zumal bisher keine erfolgreichen
Angriffe gegen SHA-2 bekannt sind. Vielmehr ging es bei diesem Wettbewerb darum,
angesichts der erfolgreichen Angriffe gegen MD5 und SHA-0, die einen ähnlichen Aufbau
wie SHA-1 und SHA-2 haben, eine auf einem vollkommen anderen Entwurfsprinzip
basierende Alternative zur Verfügung zu stellen.

1.2.10 Die Sponge-Konstruktion

Die Konstruktionsidee hinter dem SHA-3-Gewinner Keccak wird von den Autoren als
Sponge bezeichnet. Sie ähnelt oberflächlich der in 1.2.3 vorgestellten Konstruktion, weist
aber einige Unterschiede auf. So ist ein Sponge nicht nur zur Konstruktion einer Hash-
funktion gedacht, basiert statt auf einer Kompressionsfunktion h auf einer Permutation
(oder Transformation) f : {0, 1}b → {0, 1}b und besitzt einen inneren Zustand, der nicht
ausgegeben wird. Die Anzahl der Bits, die benötigt wird, um diesen inneren Zustand
zu speichern, wird als Kapazität c des Sponges bezeichnet und ist sein wichtigster
Sicherheitsparameter. Dagegen beschreibt die Bitrate r = b− c die Anzahl der Bits des
äußeren Zustands, über den Eingabe und Ausgabe des Sponges erfolgt.
Neben dem Kern f der Konstruktion ist auch wieder ein Preprocessing-Schritt notwendig.
Die Anforderungen für diesen definieren wir vorab.

16 1 Kryptografische Hashverfahren

Definition 10. Eine Funktion y : {0, 1}∗ → ⋃
c≥1{0, 1}cr heißt sponge-konformes

Padding für die Bitrate r, falls gilt:
• ∀n∀(x, x′) ∈ {0, 1}n × {0, 1}n ∃z : y(x) = xz ∧ y(x′) = x′z,
• ∀k ≥ 0 ∀x 6= x′ : y(x) 6= y(x′)0kr.

Es ist leicht zu sehen, dass die Paddingfunktion pad10∗1r sponge-konform für r ist, wobei

pad10∗1r(x) = x10d1, d = min
{
i
∣∣∣ |x|+ 2 + i ≡r 0

}
.

Tatsächlich ist pad10∗1r sogar für jedes r′ ≥ 1 sponge-konform. Ohne die abschließende
1 wäre dies nicht der Fall.

Definition 11. Seien r ≥ 1, y ein sponge-konformes Padding für r und f : {0, 1}b →
{0, 1}b. Die Funktion Spongef,y,r : N× {0, 1}∗ → {0, 1}∗ ist wie folgt definiert:
Für x ∈ {0, 1}∗ sei y1 . . . yk := y(x) mit |yi| = r (1 ≤ i ≤ k). Wir definieren die Zustände
si, i ≥ 0:

si =


0b i = 0
f(si−1 ⊕ (yi0c)) 1 ≤ i ≤ k (Absorbtionsphase)
f(si−1) i > k (Squeezing-Phase) .

Weiter bezeichne zi die ersten r Bits von sk + i − 1, i ≥ 1, es sei c = b l
r
c und z′c+1

bezeichne die ersten l − cr Bits von zc+1. Dann ist

Spongef,y,r(l, x) = z1 . . . zcz
′
c+1 .

Für die Analyse definieren wir

Absorbf,y,r(x) = sk und Squeezef,r(l, sk) = z1 . . . zcz
′
c+1 .

Den Aufwand, für festes l ein Kollisionspaar x 6= x′ mit Spongef,y,r(l, x) =
Spongef,y,r(l, x′) zu finden, können wir nach oben durch den Aufwand abschätzen, ein
Paar x 6= x′ zu finden, so dass Absorbf,y,r(x) = Absorbf,y,r(x′). Da in der Absorbtions-
phase der äußere Zustand (d.h. die Folge der ersten r Bits) beliebig und somit auch
identisch gesetzt werden kann, genügt es, ein inneres Kollisionspaar zu finden, d.h.
solche x 6= x′ so dass Absorbi

f,y,r(x) = Absorbi
f,y,r(x′), wobei Absorbi

f,y,r(x) die Folge
der letzten c Bits von Absorbf,y,r(x) bezeichnet.
Um eine solche innere Kollision zu finden, hilft es, sich die 2c inneren Zustände als Knoten
eines gerichteten Multigraphen G vorzustellen, wobei jeder Knoten 2r ausgehende Kanten
mit Label 0r bis 1r hat. Ziel ist es dann, zwei verschiedene Pfade von 0m zu demselben
Knoten v zu finden, wobei zwei Pfade auch dann verschieden sind, wenn sich die Kanten
nur in den Labeln unterscheiden. Anders als beim ZOM für eine Hashfunktion lohnt es
sich hier für den Angreifer, die Argumente adaptiv nach einer Strategie S zu wählen. Der
Algorithmus in Abb. 1.9 fasst dieses Vorgehen zusammen. Der Einfachheit halber gibt er
ein Kollisionspaar nach dem Padding aus; für pad10∗1r und alle y, deren Padding nur
von |x| mod r abhängt, lässt sich dieses aber leicht auf ein Paar vor dem Preprocessing
erweitern.

Satz 12. Für jede Strategie S gibt InnerCollision(f, r, q,S) im ZOM mit Erfolgs-
wahrscheinlichkeit höchstens

ε = 1−
q∏
i=1

(
1− 1

2c
)

1.2 Schlüssellose Hashfunktionen (MDCs) 17

Prozedur InnerCollision(f, r, q,S)
1 c := b− r, wobei f : {0, 1}b → {0, 1}b
2 initialisiere den gerichteten Multigraphen G = (V,A) := ({0, 1}c , ∅)
3 for i := 1 to q do
4 wähle v ∈ V und x ∈ {0, 1}r nach Strategie S
5 x′v′ := f(xv)
6 A := A ∪ {(v, v′, x, x′)}
7 if ∃ verschiedene Pfade (0c, u1, x1, x

′
1), . . . , (uk−1, uk, xk, x

′
k) und

8 (0c, v1, y1, y
′
1), . . . , (vl−1, vl, yl, y

′
l) mit uk = vl in G

9 return(x1(x2 ⊕ x′1) . . . (xk ⊕ x′k−1), y1(y2 ⊕ y′1) . . . (yk ⊕ y′k−1))
10 else
11 return(?)

Abbildung 1.9: Bestimmung eines inneren Kollisionspaares

ein Kollisionspaar (x, x′) für Absorbi
f,id,r(x) aus. Wählt S nur von 0c erreichbare Knoten

v und kein Paar (v, x) mehrmals, so ist die Erfolgswahrscheinlichkeit exakt ε.

Beweis. Sei Ei das Ereignis “G enthält nach i Durchläufen keine zwei verschiedenen
Pfade von 0c zu einem Knoten v”. Da nur durch eine Kante zwischen zwei von 0c aus
erreichbaren Knoten ein zweiter Pfad von 0c aus geschlossen werden kann und nach i− 1
Durchläufen höchstens i von 2c Knoten erreichbar sind, gilt (unabhängig von S):

Pr[Ei |E1 ∩ . . . ∩ Ei−1] ≥ 1− i

2c .

Wählt S nur erreichbare Knoten und keine (v, x) mehrfach, so sind unter Annahme von
E1 ∩ . . . ∩ Ei−1 auch i Knoten erreichbar (sonst gäbe es bereits zwei Pfade von 0c zu
einem Knoten in G) und es gilt Gleichheit. Analog zum Beweis vom Satz 6 folgt der
behauptete Wert ε, mit Gleichheit im Fall der Wahl erreichbarer Knoten durch S. �

Auch hier lässt sich q in Abhängigkeit von ε mittels 1− x ≈ e−x abschätzen und es folgt:

q ≈ cε2
c
2 , cε =

√
2 ln 1

1− ε .

1.2.11 SHA-3

Der Standard SHA-3 definiert die oben beschriebene Sponge-Konstruktion, 7 verschiedene
bijektive Funktionen fw, w = 2i, i ∈ {0, . . . , 6} als Kern des Sponges Spongefw,pad10∗1r,r

,
sowie verschiedene Kombinationen von Bitraten r und Ausgabelängen l (c ist durch
25w − r bestimmt).
Jede Funktion fw : {0, 1}5×5×w → {0, 1}5×5×w bildet ein zweidimensionales Feld A aus
w-Bit-Wörtern auf ein ebensolches Feld fw(A) ab. Dabei wird (12 + log2 w)-mal eine
Rundenfunktion f ′w : {0, 1}5×5×w × {0, 1}w → {0, 1}5×5×w aufgerufen, die A und eine
Rundenkonstante RCi auf A′ abbildet.
Es gilt

f ′w(A,RC) = ιRC(χ(π(ρ(θ(A))))),

18 1 Kryptografische Hashverfahren

wobei θ, ρ, π, χ und ιRC Bijektionen von {0, 1}5×5×w nach {0, 1}5×5×w sind. Die Funktion
θ besteht aus ⊕-Operationen und ist so gewählt, dass sich θ−1(A) an möglichst vielen
Bits ändert, falls eines in A geflippt wird. Danach permutieren die Funktionen ρ und π
die Bits von A innerhalb und zwischen den Wörtern. Ähnlich einer S-Box im SPN ist
χ eine nichtlineare Funktion (die einzige solche in der Definition von f ′w), die nur auf
5-Bit-Blöcken arbeitet (jedes Bit hängt sogar nur von 2 anderen ab). Schlussendlich setzt
ιRC das Wort A0,0 auf A0,0 ⊕RC.
Für die Werte l ∈ {224, 256, 384, 512} definiert der Standard FIPS 202:

SHA3-l(x) = Spongef1600,pad10∗1r,r
(l, x01), wobei r = 1600− 2l.

Das zusätzliche Padding 01 soll dabei SHA-3 von anderen Anwendungen von Keccak mit
denselben Werten w, l, r unterscheiden.

1.3 Nachrichten-Authentikationscodes (MACs)

Definition 13. Eine Hashfamilie H = (X, Y,K,H) wird durch folgende Komponenten
beschrieben:
• X, eine endliche oder unendliche Menge von Texten,
• Y , endliche Menge aller möglichen Hashwerte, ‖Y ‖ ≤ ‖X‖,
• K, endlicher Schlüsselraum (key space), wobei jeder Schlüssel k ∈ K eine
Hashfunktion hk : X → Y in H spezifiziert, d.h. H = {hk | k ∈ K}.

Im folgenden werden wir die Größe ‖X‖ des Textraumes mit n, die des Hashwertbereiches
Y mit m und die des Schlüsselraumes K mit l bezeichnen. Wir nennen dann H auch eine
(n,m, l)-Hashfamilie.
Damit ein geheimer Schlüssel k für die Authentifizierung mehrerer Nachrichten benutzt
werden kann, ohne dass dies einem potentiellen Gegner zur nichtautorisierten Berechnung
von gültigen MAC-Werten verhilft, sollte folgende Bedingung erfüllt sein.
Berechnungsresistenz: Auch wenn eine Reihe von unter einem Schlüssel k generierten

Text-Hashwert-Paaren (x1, hk(x1)), . . . , (xn, hk(xn)) bekannt ist, erfordert es einen
immensen Aufwand, ohne Kenntnis von k ein weiteres Paar (x, y) mit y = hk(x)
zu finden.

Bei Verwendung einer berechnungsresistenten Hashfunktion ist es einem Gegner nicht
möglich, an Bob eine Nachricht x zu schicken, die Bob als von Alice stammend anerkennt.

Verwendung eines MAC zur Versiegelung von Software

Mithilfe einer berechnungsresistenten Hashfunktion kann der Integritätsschutz für mehrere
Datensätze auf die Geheimhaltung eines Schlüssels k zurückgeführt werden.

Um die Datensätze x1, . . . , xn gegen unbefugt vorgenommene Veränderun-
gen zu schützen, legt man sie zusammen mit ihren Hashwerten y1 =
hk(x1), . . . , yn = hk(xn) auf einem unsicheren Speichermedium ab und be-
wahrt den geheimen Schlüssel k an einem sicheren Ort auf. Bei einem späteren
Zugriff auf einen Datensatz xi lässt sich dessen Unversehrtheit durch einen
Vergleich von yi mit dem Ergebnis hk(xi) einer erneuten MAC-Berechnung
überprüfen.

1.3 Nachrichten-Authentikationscodes (MACs) 19

Da auf diese Weise ein wirksamer Schutz der Datensätze gegen Viren und andere
Manipulationen erreicht wird, spricht man von einer Versiegelung der gespeicherten
Datensätze.

1.3.1 Angriffe gegen symmetrische Hashfunktionen

Ein Angriff gegen einen MAC hat die unbefugte Berechnung von Hashwerten zum Ziel.
Das heißt, der Gegner versucht, Hashwerte hk(x) ohne Kenntnis des geheimen Schlüssels
k zu berechnen. Entsprechend der Art des zur Verfügung stehenden Textmaterials lassen
sich die Angriffe gegen einen MAC wie folgt klassifizieren.
Impersonation

Der Gegner kennt nur den benutzten MAC und versucht ein Paar (x, y) mit
hk(x) = y zu generieren, wobei k der (dem Gegner unbekannte) Schlüssel ist.

Substitution
Der Gegner versucht in Kenntnis eines Paares (x, hk(x)) ein Paar (x′, y′) mit x′ 6= x
und hk(x′) = y′ zu generieren.

Angriff bei bekanntem Text (known-text attack)
Der Gegner kennt für eine Reihe von Texten x1, . . . , xr (die er nicht selbst wählen
konnte) die zugehörigen MAC-Werte hk(x1), . . . , hk(xr) und versucht, ein Paar
(x′, y′) mit hk(x′) = y′ und x′ 6∈ {x1, . . . , xr} zu generieren.

Angriff bei frei wählbarem Text (chosen-text attack)
Der Gegner kann die Texte xi selbst wählen.

Angriff bei adaptiv wählbarem Text (adaptive chosen-text attack)
Der Gegner kann die Wahl des Textes xi von den zuvor erhaltenen MAC-Werten
hk(xj), j < i, abhängig machen.

Wechseln die Anwender nach jeder Hashwertberechnung den Schlüssel, so genügt es, dass
H einem Impersonationsangriff widersteht.

1.3.2 Informationstheoretische Sicherheit von MACs

Modell: Schlüssel k und Nachrichten x werden unabhängig gemäß einer Wahrscheinlich-
keitsverteilung p(k, x) = p(k)p(x) generiert, welche dem Gegner bekannt ist. Wir
nehmen o.B.d.A. an, dass p(x) > 0 und p(k) > 0 für alle x ∈ X und k ∈ K gilt.

Erfolgswahrscheinlichkeit für Impersonation

Sei α die Wahrscheinlichkeit, mit der sich ein Gegner bei optimaler Strategie als Alice
ausgeben kann, ohne dass Bob dies bemerkt.
Für ein Paar (x, y) sei p(x 7→ y) die Wahrscheinlichkeit, dass ein zufällig gewählter
Schlüssel den Text x auf den Hashwert y abbildet:

p(x 7→ y) =
∑

k∈K(x,y)
p(k).

wobei K(x, y) = {k ∈ K | hk(x) = y} alle Schlüssel enthält, die x auf y abbilden. D.h.
p(x 7→ y) ist die Wahrscheinlichkeit, dass Bob das (vom Gegner gewählte) Paar (x, y) als
echt akzeptiert. Dann gilt α = max{α(x) | x ∈ X}, wobei

α(x) = max{p(x 7→ y) | y ∈ Y }

20 1 Kryptografische Hashverfahren

die Wahrscheinlichkeit ist, mit der einem Gegner bei optimaler Strategie eine Impersona-
tion mit dem Text x gelingt.

Beispiel 14. Sei K = {1, 2, 3}, X = {a, b, c, d} und Y = {0, 1}. Wir beschreiben H
durch die zugehörige Authentikationsmatrix. Die Zeilen und Spalten dieser Matrix
werden mit den Schlüsseln k ∈ K und den Texten x ∈ X indiziert und ihr Eintrag in
Zeile k und Spalte x ist der Wert hk(x).

0,1 0,2 0,3 0,4

a b c d

0,25 1 0 0 0 1
0,30 2 1 1 0 1
0,45 3 0 1 1 0

Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(x) bzw. p(k) an. Dann hat der
Gegner folgende Erfolgsaussichten α(x), falls er an Bob den Text x senden möchte.

x a b c d

p(x 7→ 0) 0,7 0,25 0,55 0,45
p(x 7→ 1) 0,3 0,75 0,45 0,55
α(x) 0,7 0,75 0,55 0,55

Folglich ist α = 0,75. /

Satz 15. Für alle x ∈ X ist α(x) ≥ 1
m

und daher gilt α ≥ 1
m
.

Beweis. Sei x ∈ X beliebig. Dann gilt∑
y∈Y

p(x 7→ y) =
∑
y∈Y

∑
k∈K(x,y)

p(k) =
∑
k∈K

p(k) = 1.

Somit existiert für jedes x ∈ X ein y ∈ Y mit p(x 7→ y) ≥ 1
m

und dies impliziert

α(x) = max
y∈Y

p(x 7→ y) ≥ 1
m
.

�

Bemerkung 16. Wie der Beweis zeigt, gilt α = 1
m

genau dann, wenn für alle Paare
(x, y) ∈ X × Y gilt, ∑

k∈K(x,y)
p(k) = 1

m
.

D.h. bei Gleichverteilung der Schlüssel muss in jeder Spalte der Authentikationsmatrix
jeder Hashwert gleich oft vorkommen. Dies lässt sich am einfachsten dadurch erreichen,
dass man K = Y setzt und für hk die konstante Funktion hk(x) = k wählt.

Das folgende Lemma benötigen wir für den Beweis des nächsten Satzes (Beweis siehe
Übungen).

Lemma 17. Sei X eine Zufallsvariable mit endlichem Wertebereich W (X) ⊆ R+. Dann
gilt logE(X) ≥ E(logX).

1.3 Nachrichten-Authentikationscodes (MACs) 21

Satz 18. Für jeden MAC (X, Y,K,H) gilt:

α ≥ 1
2H(K)−H(K|X ,Y) (≥ 1/l).

Hierbei sind X ,Y ,K Zufallsvariablen, die die Verteilungen der Nachrichten, der Hash-
werte und der Schlüssel beschreiben.
Der Wert von α kann also um so kleiner werden, je gleichmäßiger die Schlüsselverteilung
ist und je mehr Information die Beobachtung eines gültigen Paares (x, y) über den
Schlüssel liefert.

Beweis. Bezeichne α(x, y) = p(x 7→ y) die Wahrscheinlichkeit, mit der dem Gegner eine
Impersonation mit dem Paar (x, y) gelingt. Da α = maxx,y α(x, y) ist, folgt E(α(X ,Y)) =∑
x,y p(x, y)α(x, y) ≤ α und somit folgt unter Anwendung von Lemma 17,

logα ≥ logE(α(X ,Y)) ≥ E(logα(X ,Y)) =
∑
x,y

p(x, y)︸ ︷︷ ︸
p(x)p(y|x)

log p(y |x)︸ ︷︷ ︸
− log 1

p(y|x)

= −H(Y |X).

Wegen
H(K,Y ,X) = H(X) +H(Y |X) +H(K|X ,Y)

und
H(K,Y ,X) = H(K,X)︸ ︷︷ ︸

=H(K)+H(X)

+H(Y |K,X)︸ ︷︷ ︸
=0

.

gilt zudem H(Y |X) = H(K)−H(K | X ,Y) und somit logα ≥ H(K | X ,Y)−H(K). �

Beispiel 19 (Fortsetzung von Beispiel 14). Es gilt

H(K) =
∑
k

p(k) log 1
p(k) = 0,45 · 1,152 + 0,3 · 1,737 + 0,25 · 2,0 = 1,54.

Um H(K|X ,Y) zu bestimmen, benötigen wir die bedingten Verteilungen Kx,y für alle
Paare (x, y) ∈ X × Y .

(x, y) (a, 0) (a, 1) (b, 0) (b, 1) (c, 0) (c, 1) (d, 0) (d, 1)
p(1|x, y) 5

14 0 1 0 5
11 0 0 5

11
p(2|x, y) 0 1 0 2

5
6
11 0 0 6

11
p(3|x, y) 9

14 0 0 3
5 0 1 1 0

H(K|x, y) ≈ 0,94 0 0 ≈ 0,97 ≈ 0,99 0 0 ≈ 0,99
p(x, y) 0,07 0,03 0,05 0,15 0,165 0,135 0,18 0,22

Hierbei gilt p(x, y) = p(x)p(y|x) = p(x)p(x 7→ y). Zusammen ergibt sich

H(K|X ,Y) =
∑
x,y

p(x, y)H(K|x, y) ≈ 0,52 .

Erfolgswahrscheinlichkeit für Substitution

Bezeichne β die Wahrscheinlichkeit, mit der ein Gegner bei optimaler Strategie eine von
Alice gesendete Nachricht durch eine andere Nachricht ersetzen kann, ohne dass Bob dies
bemerkt.

22 1 Kryptografische Hashverfahren

Betrachten wir den Fall, dass der Gegner ein von Alice gesendetes Paar (x, y) durch (x′, y′)
ersetzt. Dann ist seine Erfolgswahrscheinlichkeit gleich der bedingten Wahrscheinlichkeit

p(x′ 7→ y′ |x 7→ y) = p(x 7→ y, x′ 7→ y′)
p(x 7→ y) =

∑
k∈K(x,y,x′,y′) p(k)∑
k∈K(x,y) p(k) ,

dass ein zufällig gewählter Schlüssel k den Text x′ auf y′ abbildet, wenn bereits bekannt
ist, dass hk(x) = y ist. Falls Alice also das Paar (x, y) sendet, so ist die maximale
Erfolgswahrscheinlichkeit des Gegners gleich

β(x, y) := max
x′ 6=x,y′

p(x′ 7→ y′ |x 7→ y).

Da der Gegner keinen Einfluss auf die Wahl von (x, y) hat, ist β gleich dem erwarteten
Wert von β(x, y) unter der Verteilung

p(x, y) = p(x)p(y |x) = p(x)p(x 7→ y).

unter der die Paare gesendet werden. Somit ergibt sich β zu

β = E(β(X ,Y)) =
∑

x∈X,y∈Y
p(x, y)β(x, y).

Wegen p(x, y) = p(x)p(x 7→ y) können wir β unter Verwendung der Funktion

β′(x, y) = β(x, y)p(x 7→ y) = max
x′ 6=x,y′

p(x′ 7→ y′, x 7→ y)

auch einfacher mittels der Formel β = ∑
x∈X p(x)∑y∈Y β

′(x, y) berechnen.

Beispiel 20 (Fortsetzung von Beispiel 14).

p(x′ 7→y′, x 7→y)
(x,y)

(a,0) (a,1) (b,0) (b,1) (c,0) (c,1) (d,0) (d,1)
β′(x,y) p(x 7→y) β(x,y)

(a,0) 0,25 0,45 0,25 0,45 0,45 0,25 0,45 0,7 0,643
(a,1) 0 0,3 0,3 0 0 0,3 0,3 0,3 1
(b,0) 0,25 0 0,25 0 0 0,25 0,25 0,25 1
(b,1) 0,45 0,3 0,3 0,45 0,45 0,3 0,45 0,75 0,6
(c,0) 0,25 0,3 0,25 0,3 0 0,55 0,55 0,55 1
(c,1) 0,45 0 0 0,45 0,45 0 0,45 0,45 1
(d,0) 0,45 0 0 0,45 0 0,45 0,45 0,45 1
(d,1) 0,25 0,3 0,25 0,3 0,55 0 0,55 0,55 1

Die optimalen Wahlmöglichkeiten des Gegners, ein Paar (x, y) durch ein anderes Paar
(x′, y′) zu ersetzen, sind in der Tabelle fett gedruckt. Für β erhalten wir somit den Wert

β =
∑
x∈X

p(x)
∑
y∈Y

β′(x, y)

= 0,1(0,45 + 0,3) + 0,2(0,25 + 0,45) + 0,3(0,55 + 0,45) + 0,4(0,45 + 0,55)
= 0,915.

/

1.3 Nachrichten-Authentikationscodes (MACs) 23

Als nächstes zeigen wir für β die gleiche untere Schranke wie für α.

Satz 21. Für alle (x, y) ∈ X ×Y mit p(x, y) > 0 ist β(x, y) ≥ 1
m

und daher gilt β ≥ 1
m
.

Beweis. Sei (x, y) ∈ X×Y ein Paar mit p(x, y) > 0. Dann gilt für beliebige x′ ∈ X−{x},

∑
y′∈Y

p(x′ 7→ y′ |x 7→ y) =
∑
y′∈Y

∑
k∈K(x′,y′;x,y) p(k)∑

k∈K(x,y) p(k) = 1.

Somit existiert ein y′ ∈ Y mit p(x′ 7→ y′ |x 7→ y) ≥ 1
m

und dies impliziert

β(x, y) = max
x′ 6=x,y′

p(x′ 7→ y′ |x 7→ y) ≥ 1
m
.

Folglich ist
β =

∑
x∈X,y∈Y

p(x, y)β(x, y) ≥ 1
m

∑
x∈X,y∈Y

p(x, y) = 1
m
.

�

Beispiel 22. Sei X = Y = {0, 1, 2} = Z3 und sei K = Z3 × Z3. Für k = (a, b) ∈ K und
x ∈ X sei

hk(x) = ax+ b mod 3.

Die zugehörige Authentikationsmatrix ist

0 1 2
(0, 0) 0 0 0
(0, 1) 1 1 1
(0, 2) 2 2 2
(1, 0) 0 1 2
(1, 1) 1 2 0
(1, 2) 2 0 1
(2, 0) 0 2 1
(2, 1) 1 0 2
(2, 2) 2 1 0

Wir nehmen an, dass der Schlüssel unter Gleichverteilung gewählt wird. Ersetzt der
Gegner ein Paar (x, y) durch ein Paar (x′, y′) mit x′ 6= x, so wird dieses Paar von
genau einem der 3 infrage kommenden Schlüssel akzeptiert. Dies liegt daran, dass in je 2
Spalten der Authentikationsmatrix jedes Hashwertpaar genau einmal vorkommt. Folglich
ist p(x′ 7→ y′ |x 7→ y) = 1/3 und somit β = 1/3. /

Lemma 23. Sei (X, Y,K,H) ein MAC mit β = 1
m
. Dann gilt

p(x′ 7→ y′ |x 7→ y) = 1/m

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′.

Beweis. Wir zeigen zuerst, dass die Behauptung unter der Voraussetzung p(x 7→ y) > 0
gilt. Wäre nämlich

p(x′ 7→ y′ |x 7→ y) > 1/m,

24 1 Kryptografische Hashverfahren

dann wäre auch
β(x, y) = max

x′ 6=x,y′
p(x′ 7→ y′ |x 7→ y) > 1/m.

Da für alle Paare (u, v) mit p(u 7→ v) > 0 nach Satz 21 die Ungleichung β(u, v) ≥ 1/m
gilt und zudem p(x, y) = p(x)p(x 7→ y) > 0 ist, folgt hieraus

β =
∑

x∈X,y∈Y
p(x, y)β(x, y) > 1/m,

was im Widerspruch zur Voraussetzung des Satzes steht. Ist andererseits

p(x′ 7→ y′ |x 7→ y) < 1/m,

muss wegen ∑
y′′∈Y

p(x′ 7→ y′′ |x 7→ y) = 1

auch ein Hashwert y′′ mit p(x′ 7→ y′′ |x 7→ y) > 1/m existieren, woraus sich wie bereits
gezeigt ein Widerspruch ergibt.
Es bleibt zu zeigen, dass p(x 7→ y) > 0 für alle Paare (x, y) gilt. Wäre p(x 7→ y) = 0, so
würde für ein beliebiges Paar (u, v) mit p(u 7→ v) > 0 auch p(x 7→ y |u 7→ v) = 0 sein.
Wie bereits gezeigt, steht dies jedoch im Widerspruch zur Voraussetzung β = 1/m. �

Satz 24. Ein MAC (X, Y,K,H) erfüllt β = 1
m

genau dann, wenn

p(x 7→ y, x′ 7→ y′) = 1/m2

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′ gilt.

Beweis. Sei (X, Y,K,H) ein MAC mit β = 1
m
. Nach obigem Lemma impliziert dies, dass

p(x′ 7→ y′ |x 7→ y) = 1/m

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′ gilt. Dies impliziert nun

p(x′ 7→ y′) =
∑
y

p(x 7→ y)p(x′ 7→ y′ |x 7→ y) = 1/m

und daher
p(x 7→ y, x′ 7→ y′) = p(x′ 7→ y′)p(x 7→ y |x′ 7→ y′) = 1/m2.

Umgekehrt rechnet man leicht nach, dass die Bedingung β = 1
m

erfüllt ist, wenn für alle
Doppelpaare (x, y, x′, y′) mit x 6= x′ die Gleichheit p(x 7→ y, x′ 7→ y′) = 1/m2 gilt. �

Bemerkung 25. Nach obigem Satz gilt β = 1
m

genau dann, wenn für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ gilt,

p(x 7→ y, x′ 7→ y′) =
∑

k∈K(x,y,x′,y′)
p(k) = 1

m2 .

D.h. bei Gleichverteilung der Schlüssel gilt β = 1
m

genau dann, wenn in je zwei Spalten
der Authentikationsmatrix jedes Hashwertpaar gleich oft vorkommt.

Ab jetzt setzen wir voraus, dass der Schlüssel unter Gleichverteilung gewählt wird, d.h.
es gilt p(k) = 1

‖K‖ für alle k ∈ K.

1.3 Nachrichten-Authentikationscodes (MACs) 25

Definition 26. Ein MAC (X, Y,K,H) heißt 2-universal, falls für alle x, x′ ∈ X mit
x 6= x′ und alle y, y′ ∈ Y gilt:

‖K(x, y, x′, y′)‖ = ‖K‖
m2 .

Bemerkung 27. Bei der Konstruktion von 2-universalen Hashfamilien spielt der Pa-
rameter λ = ‖K‖

m2 eine wichtige Rolle. Da λ notwendigerweise positiv und ganzzahlig ist,
muss insbesondere ‖K‖ ≥ m2 gelten.

Im folgenden nennen wir eine 2-universale (n,m, l)-Hashfamilie mit λ = l/m2 kurz einen
(n,m, l, λ)-MAC.
Auf Grund von Bemerkung 25 ist klar, dass ein MAC bei gleichverteilten Schlüsseln genau
dann die Bedingung β = 1

m
erfüllt, wenn er 2-universal ist. Auf Grund von Bemerkung 16

nimmt in diesem Fall auch α den optimalen Wert 1
m

an.
Der nächste Satz zeigt eine einfache Konstruktionsmöglichkeit von 2-universalen MACs
mit dem Parameterwert λ = 1.

Satz 28. Sei p prim und für a, b, x ∈ Zp sei

ha,b(x) = ax+ b mod p.

Dann ist (X, Y,K,H) mit X = Y = Zp und K = Zp × Zp ein (p, p, p2, 1)-MAC.

Beweis. Wir müssen zeigen, dass die Größe von K(x, y, x′, y′) für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ konstant ist. Ein Schlüssel (a, b) gehört genau dann zu dieser
Menge, wenn er die beiden Kongruenzen

ax+ b ≡p y,

ax′ + b ≡p y′

erfüllt. Da dies jedoch nur auf den Schlüssel (a, b) mit

a = (y′ − y)(x′ − x)−1 mod p,
b = y − x(y′ − y)(x′ − x)−1 mod p

zutrifft, folgt ‖K(x′, y′, x, y)‖ = 1. �

Die Hashfunktionen des vorigen Satzes erfüllen wegen n = m = p nicht die Kompressi-
onseigenschaft. Zwar lässt sich n noch geringfügig von p auf p+ 1 vergrößern, ohne K
und Y (und damit λ) zu verändern (siehe Übungen). Wie der nächste Satz zeigt, lässt
sich eine stärkere Kompression mit dem Parameterwert λ = 1 jedoch nicht realisieren.

Satz 29. Für einen (n,m, l, 1)-MAC gilt

n ≤ m+ 1

und somit l = m2 ≥ (n− 1)2.

Beweis. O.B.d.A. sei ‖K‖ = {1, . . . , l} und Y = {1, . . . ,m}. Es ist leicht zu sehen, dass
eine (bijektive) Umbenennung π : Y → Y der Hashwerte in einer einzelnen Spalte der
Authentikationsmatrix A wieder auf einen 2-universalen MAC führt. Also können wir
zudem annehmen, dass die erste Zeile der Authentikationsmatrix A nur Einsen enthält.
Da A 2-universal ist, gilt:

26 1 Kryptografische Hashverfahren

• In jeder Zeile i = 2, . . . ,m2 kommt höchstens eine Eins vor.
• Jede Spalte j enthält eine Eins in Zeile 1 und m− 1 Einsen in den übrigen Zeilen.

Da in den Zeilen i = 2, . . . ,m2 insgesamt genau n(m− 1) Einsen vorkommen, folgt

Anzahl der Zeilen︸ ︷︷ ︸
m2

≥ Anzahl der Zeilen mit einer Eins︸ ︷︷ ︸
1+n(m−1)

,

was m2 − 1 ≥ n(m− 1) bzw. n ≤ m+ 1 impliziert. �

Der nächste Satz liefert 2-universale MACs mit beliebig großem Kompressionsfaktor. Für
den Beweis benötigen wir das folgende Lemma.

Lemma 30. Sei A eine (k × `)-Matrix über einem endlichen Körper F, deren k Zeilen
linear unabhängig sind. Dann besitzt das lineare Gleichungssystem

Ax = y

für jedes y ∈ Fk genau ‖F‖`−k Lösungen x ∈ F`.

Beweis. Siehe Übungen. �

Satz 31. Sei p prim und für x = (x1, . . . , xd) ∈ {0, 1}d und k = (k1, . . . , kd) ∈ Zdp sei

hk(x) = kx =
d∑
i=1

kixi mod p.

Dann ist (X, Y,K,H) mit X = {0, 1}d−{0d}, Y = Zp und K = Zdp ein (2d−1, p, pd, pd−2)-
MAC.

Beweis. Wir müssen zeigen, dass die Größe von K(x, y, x′, y′) für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ konstant ist. Es gilt

k ∈ K(x, y, x′, y′) ⇔ hk(x) = y ∧ hk(x′) = y′

⇔ k · x = y ∧ k · x′ = y′.

Fassen wir x = x1 · · ·xd und x′ = x′1 · · ·x′d zu einer Matrix A zusammen, so ist dies
äquivalent zu (

x1 · · · xd
x′1 · · · x′d

)
·


k1...
kd

 =
(
y

y′

)
.

Da die beiden Zeilen von A verschieden und damit linear unabhängig sind, folgt mit
obigem Lemma, dass genau ‖K(x, y, x′, y′)‖ = pd−2 Schlüssel k = (k1, . . . , kd) mit dieser
Eigenschaft existieren. �

Bemerkung 32. Obige Konstruktion liefert einen λ-Wert von ‖K‖
m2 = pd−2. Durch

Erweiterung von X auf eine geeignete Teilmenge X ′ ⊆ Zdp lässt sich der Textraum von
2d − 1 auf pd−1

p−1 vergrößern (siehe Übungen). Dies führt auf einen beliebig groß wählbaren
Kompressionsfaktor von pd−1

p(p−1) bei einem λ-Wert von λ = pd−2. Wie der nächste Satz
zeigt, lässt sich dies nicht mit einem kleineren λ-Wert erreichen.

1.3 Nachrichten-Authentikationscodes (MACs) 27

Im Beweis des nächsten Satzes benötigen wir folgendes Lemma.

Lemma 33. Für beliebige reelle Zahlen b1, . . . , bm ∈ R gilt
(∑m

i=1 bi
)2
≤ m

∑m
i=1 b

2
i .

Beweis. Siehe Übungen. �

Satz 34. Für einen (n,m, l, λ)-MAC gilt

λ ≥ n(m− 1) + 1
m2

und somit l ≥ n(m− 1) + 1.

Beweis. O.B.d.A. können wir wieder ‖K‖ = {1, . . . , l} und Y = {1, . . . ,m} annehmen,
und dass die 1. Zeile der Authentikationsmatrix A nur aus Einsen besteht. Für jede Zeile
i = 1, . . . , l bezeichne ei die Anzahl der Einsen in dieser Zeile (also e1 = n). Da in jeder
Spalte jeder Hashwert genau λm-mal vorkommt, gilt

l∑
i=1

ei = λnm und
l∑

i=2
ei = λnm− n = n(λm− 1).

Sei zi die Anzahl von Indexpaaren (j, j′) mit j 6= j′ und A[i, j] = A[i, j′] = 1 in Zeile i.
Dann gibt es in den Zeilen i = 2, . . . , l insgesamt

z =
l∑

i=2
zi =

l∑
i=2

ei(ei − 1) =
l∑

i=2
e2
i −

l∑
i=2

ei =
l∑

i=2
e2
i − n(λm− 1)

solche Paare. Mit obigem Lemma ergibt sich

l∑
i=2

e2
i ≥

(∑l
i=2 ei

)2

l − 1 = (n(λm− 1))2

l − 1 .

Da andererseits in jedem Spaltenpaar das Hashwert-Paar (1, 1) in genau λ Zeilen vor-
kommt (genauer: einmal in Zeile 1 und (λ− 1)-mal in den Zeilen i = 2, . . . , l), und da
n(n− 1) solche Spaltenpaare existieren, ergibt sich andererseits die Gleichung

z = (λ− 1)n(n− 1).

Somit erhalten wir

(λ− 1)n(n− 1) =
l∑

i=2
e2
i − n(λm− 1) ≥ (n(λm− 1))2

l − 1 − n(λm− 1)

⇒ ((λ− 1)n(n− 1) + n(λm− 1))(λm2 − 1) ≥ (n(λm− 1))2

⇒ (λn− n− λ+ λm)(λm2 − 1) ≥ n(λm− 1)2

⇒ −λ2m2 + λ2m3 ≥ λnm2 + λn− λ+ λm− 2λnm
⇒ λ2(m3 −m2) ≥ λ(n(m− 1)2 +m− 1)
⇒ λm2 ≥ n(m− 1) + 1.

�

28 1 Kryptografische Hashverfahren

1.3.3 MACs auf der Basis einer Kompressionsfunktion

Sei h : {0, 1}m+t → {0, 1}m die Kompressionsfunktion einer schlüssellosen Hashfunktion
ĥ (etwa MD5). Dann können wir mithilfe von h einen MAC konstruieren, indem wir als
Initialisierungsvektor IV den symmetrischen Schlüssel k ∈ K benutzen. Wir betrachten
zunächst den Fall, dass auf das Preprocessing verzichtet wird.
Sei H = (X, Y,K) die Hashfamilie mit X = ∪n≥1{0, 1}n·t, Y = {0, 1}m = K und
H = {hk | k ∈ K}, wobei hk(x) wie folgt berechnet wird:

1 Sei x = x1, . . . , xn, |xi| = t für i = 1, . . . , n
2 z0 := k
3 for i := 1 to n do
4 zi := h(zi−1xi)
5 output zn

Bei diesem MAC führt beispielsweise folgender Substitutionsangriff zum Erfolg.
Sei (x, z) ein Paar mit hk(x) = z, wobei k der dem Gegner unbekannte Schlüssel ist.
Dann lässt sich für einen beliebigen String u ∈ {0, 1}t leicht der MAC-Wert des Textes
x′ = xu mittels hk(x′) = h(zu) berechnen.
Ein ähnlicher Angriff ist auch bei Verwendung einer Preprocessing-Funktion möglich. Hat
diese beispielsweise die Form y(x) = xpad(x), so lässt sich obiger Angriff entsprechend
modifizieren (siehe Übungen).

1.3.4 CBC-MACs

Als Basis für die Konstruktion eines MAC kann auch ein symmetrisches Kryptosystem
dienen.
Sei (M,C,K,E,D) ein Kryptosystem mit M = C = {0, 1}t. Zudem sei IV := 0t und sei
k ∈ K ein geheimer Schlüssel. Sei y eine Funktion für den Preprocessing-Schritt.
Berechnung von hk(x):

1 y := y(x) = y1 . . . yn, n ≥ 1, |yi| = t
2 z0 := IV
3 for i = 1 to n do
4 zi := E(k, zi−1 ⊕ yi)
5 output hk(x) = zn

Die Hashwertlänge beträgt also t Bit. Wird auf den Preprocessing-Schritt verzichtet,
so lässt sich leicht ein Angriff mit 2 adaptiven Fragen ausführen. Kennt der Gegner
die MAC-Werte z = hk(x) und z′ = hk(x′) für die Texte x = x1 · · ·xn und x′ =
(xn+1 ⊕ IV ⊕ z)xn+2 · · ·xn+m, wobei |xi| = t für i = 1, . . . , n+m ist, so muss auch der
Text x′′ = x1 · · ·xn+m den MAC-Wert hk(x′′) = z′ haben.
Diesen Angriff kann man zwar ausschließen, indem man eine feste Länge für die Texte
x vorschreibt. Dies schränkt jedoch die Anwendbarkeit des CBC-MACS erheblich ein.
Zudem ist dann immer noch folgender Geburtstagsangriff auf den CBC-MAC möglich.

1.3 Nachrichten-Authentikationscodes (MACs) 29

Geburtstagsangriff auf einen CBC-MAC

Dieser Angriff ermöglicht es, mit q + 1 Hashwertfragen (wobei q ≈ 1,17 · 2 t
2) den MAC-

Wert hk(x) für einen zuvor nicht erfragten Text x zu finden, wobei x = x1 . . . xn ∈
{0, 1}tn abgesehen vom ersten t-Bitblock x1 ∈ {0, 1}t beliebig wählbar ist. Hierzu wählt
der Gegner zunächst n − 2 beliebige Blöcke x3, . . . , xn ∈ {0, 1}t und q ≈ 1,17 · 2 t

2

paarweise verschiedene Blöcke x1
1, . . . , x

q
1 ∈ {0, 1}t. Anschließend wählt er zufällig q

weitere Blöcke x1
2, . . . , x

q
2 ∈ {0, 1}t und erfragt die MAC-Werte zi = hk(xi) für die Texte

xi = xi1x
i
2x3 · · ·xn, i = 1, . . . , q.

Wegen xi1 6= xj1 für i 6= j sind auch die Texte x1, . . . , xq paarweise verschieden. Seien
z1

1 , . . . , z
q
1 die nach der ersten Iteration des CBC-MACs berechneten Kryptotexte zi1 =

Ek(IV ⊕ xi1). Da die Blöcke xi2 zufällig gewählt werden, sind auch die Eingangsblöcke
zi1 ⊕ xi2 für die 2. Iteration zufällig, d.h. es gilt

Pr[∃i 6= j : zi1 ⊕ xi2 = zj1 ⊕ x
j
2] = Pr[∃i 6= j : xi2 = xj2] ≈ 1

2 .

Da die Gleichheit der Eingangsblöcke zi1 ⊕ xi2 und zj1 ⊕ xj2 für die 2. Iteration mit der
Gleichheit der Ausgangsblöcke zin und zjn der n-ten Iteration und damit mit der Gleichheit
der zugehörigen MAC-Werte zi und zj äquivalent ist, kann der Gegner das Indexpaar
(i, j) mit zi1 ⊕ xi2 = zj1 ⊕ x

j
2 auch leicht finden, sofern es existiert.

Befindet sich unter den erfragten Texten ein Kollisionspaar (xi, xj) mit zi = zj, so
erfragt der Gegner für einen beliebigen Bitblock u ∈ {0, 1}t − {0t} den MAC-Wert
z̄i = hk(x̄i) für den Text x̄i = xi1(xi2⊕ u)x3 · · ·xn, welcher zugleich MAC-Wert des Textes
x̄j = xj1(xj2 ⊕ u)x3 · · ·xn ist, den er zuvor nicht erfragt hat.

Definition 35. Sei 0 ≤ ε ≤ 1 und sei q ∈ N. Ein (ε, q)-Fälscher für eine Hashfamilie
H ist ein probabilistischer Algorithmus A, der q Fragen x1, . . . , xq stellt und aus den
Antworten zi = hk(xi) mit Wahrscheinlichkeit mindestens ε (bei zufällig gewähltem
Schlüssel k) ein Paar (x, z) berechnet mit x 6∈ {x1, . . . , xq} und hk(x) = z.

Wir unterscheiden zwischen adaptiven Fragen (d.h. der Text xi darf von den Hashwerten
der Texte x1, . . . , xi−1 abhängen) und nicht-adaptiven Fragen. Zudem unterscheiden wir
zwischen selektiven Fälschungen (d.h. der Gegner kann den Hashwert für einen Text seiner
Wahl generieren) und existientiellen Fälschungen (d.h. der Gegner kann den Hashwert für
irgendeinen Text x 6∈ {x1, . . . , xq} generieren, auf dessen Wahl er keinen Einfluss hat).

Beispiel 36. Der oben beschriebene Geburtstagsangriff auf einen CBC-MAC führt auf
einen (1

2 , q + 1)-Fälscher für q ≈ 1,17 · 2 t
2 . Dabei ist nur die letzte Hashwertfrage adaptiv

und der Text x kann abgesehen vom ersten t-Bitblock beliebig vorgegeben werden. /

1.3.5 Kombination einer Hashfunktion mit einem MAC (HMAC)

Falls der Textraum einer Hashfamilie den Hashwertraum einer anderen Hashfamilie
enthält, lassen sich diese leicht komponieren (Nested-MAC).

Definition 37. Seien H1 = (X, Y,K1, F) mit F = {fk | k ∈ K1} und H2 = (Y, Z,K2, G)
mit G = {gk | k ∈ K2} Hashfamilien. Dann ist H1 ◦ H2 = (X,Z,K,H) die Komposition
von H1 und H2, wobei K = K1 ×K2 und H = {gk2 ◦ fk1 | (k1, k2) ∈ K} ist.

30 1 Kryptografische Hashverfahren

Beispiel 38. Wählt man für H2 eine 2-universale Hashfamilie und für H1 eine schlüssel-
lose Hashfunktion (etwa SHA-1), so erhält man einen so genannten HMAC (Hash-MAC).
/

Eine Variante hiervon ist der auf SHA-1 basierende HMAC, bei dem zwei Varianten
von SHA-1 mit symmetrischen Schlüsseln komponiert werden, wobei jedoch beidesmal
derselbe Schlüssel benutzt wird. Seien

ipad = 36 . . . 36︸ ︷︷ ︸
64mal

und opad = 5C . . . 5C︸ ︷︷ ︸
64mal

512 Bit Konstanten. Dann berechnet sich HMAC wie folgt:

HMACk(x) = SHA-1((k ⊕ opad)SHA-1((k ⊕ ipad)x)).

Hierbei fungiert die Funktion fk(x) = SHA-1((k⊕ ipad)x) als Hashfunktion mit Schlüssel,
die beliebig lange Texte hasht, und der MAC gk(y) = SHA-1((k ⊕ opad)y) wird nur
auf Bitstrings der Länge 512 angewendet. Wie der folgende Satz zeigt, genügt es, wenn
fk kollisionsresistent und gk berechnungsresistent ist, um einen berechnungsresistenten
HMAC zu erhalten.

Definition 39. Ein (ε, q)-Kollisionsangreifer für eine Hashfamilie H = (X, Y,K,H) ist
ein probabilistischer Algorithmus A, der q Fragen x1, . . . , xn stellt und aus den Antworten
yi = hk(xi) mit Wahrscheinlichkeit mindestens ε ein Paar (x, x′) berechnet mit hk(x) =
hk(x′), wobei k der dem Gegner unbekannte (und zufällig gewählte) Schlüssel ist.

Da der Gegner den Schlüssel k nicht kennt, ist ein Kollisionsangriff gegen eine Hashfamilie
H schwieriger zu realisieren als ein Kollisionsangriff gegen eine schlüssellose Hashfunktion.

Satz 40. Seien H1 = (X, Y,K1, F), H2 = (X, Y,K2, G) und H = (X,Z,K,H) = H1◦H2
Hashfamilien. Falls für H1 kein adaptiver (ε1, q + 1)-Kollisionsangriff und für H2 kein
adaptiver (ε2, q)-Fälscher existieren, dann gilt für jeden adaptiven (ε, q)-Fälscher für H,
dass ε ≤ ε1 + ε2 ist.

Beweis. Sei A ein adaptiver (ε, q)-Fälscher für H. Seien x1, . . . , xq die Fragen, die A an
sein Orakel stellt, und seien zi = gk2(fk1(xi)) die erhaltenen Antworten. Zudem sei (x, z)
die Ausgabe von A. Dann ist die Erfolgswk von A

Pr[x 6∈ {x1, . . . , xq} ∧ gk2(fk1(x)) = z] ≥ ε.

Hierbei wird (k1, k2) zufällig ausK = K1×K2 gewählt. Wir müssen zeigen, dass ε ≤ ε1+ε2
ist.
Behauptung 41. Pr[fk1(x) ∈ {fk1(x1), . . . , fk1(xq)}] < ε1.

Hierzu betrachten wir folgenden adaptiven Kollisionsangreifer A′ gegen H1: A′ wählt
zufällig einen Schlüssel k2 ∈ K2 und simuliert A, wobei A′ für jede Anfrage xi von A
das Orakel fk1 (mit unbekanntem, aber zufällig gewähltem Schlüssel k1) nach dem Wert
yi = fk1(xi) fragt und an A die Antwort zi = gk2(yi) zurückgibt. Sobald A ein Paar
(x, z) ausgibt, fragt A′ das Orakel fk1 nach dem Hashwert y = fk1(x) und gibt im Fall
y ∈ {y1, . . . , yq} das Paar (x, xi) für einen beliebigen Index i mit y = yi aus.
Da A′ genau im Fall y ∈ {y1, . . . , yq} Erfolg hat, tritt dieser Fall mit Wahrscheinlichkeit
kleiner ε1 ein, womit Behauptung 41 bewiesen ist.

1.3 Nachrichten-Authentikationscodes (MACs) 31

Behauptung 42. Pr[fk1(x) 6∈ {fk1(x1), . . . , fk1(xq)} ∧ gk2(fk1(x)) = z] > ε− ε1.

Dies folgt direkt aus Pr[x 6∈ {x1, . . . , xq} ∧ gk2(fk1(x)) = z] ≥ ε und Behauptung 41.
Behauptung 43. Pr[fk1(x) 6∈ {fk1(x1), . . . , fk1(xq)} ∧ gk2(fk1(x)) = z] < ε2.

Hierzu betrachten wir den adaptiven Fälscher A′′ gegen H2, der zufällig einen Schlüssel
k1 ∈ K1 wählt und A wie folgt simuliert. A′′ gibt bei jeder Anfrage xi von A die
Antwort des Orakels gk2 auf die Frage yi = fk1(xi) zurück und sobald A ein Paar
(x, z) ausgibt, gibt A′′ das Paar (fk1(x), z) aus. Dann hat A′′ genau im Fall fk1(x) 6∈
{fk1(x1), . . . , fk1(xq)}∧gk2(fk1(x)) = z Erfolg. Da es nach Voraussetzung keinen adaptiven
(ε2, q)-Fälscher gegen H2 gibt, muss ε− ε1 < ε2 sein. �

32

2 Elliptische Kurven

2.1 Elliptische Kurven über den reellen Zahlen

Definition 44. Seien a, b ∈ R. Eine elliptische Kurve E enthält alle Lösungen (x, y) ∈ R2

der Gleichung y2 = x3 + ax + b und zusätzlich den Punkt O (Punkt im Unendlichen;
siehe Übungen). Im Fall 4a3 + 27b2 = 0 heißt E singulär, sonst nicht-singulär.
Beispiel 45. Betrachte die durch y2 = x3 − 4x definierte elliptische Kurve E. Punkte:
(−2, 0), (0, 0), (2, 0), (−1, 2), (−1,−2).

Auf den nicht-singulären Punkten von E lässt sich eine additive Gruppenoperation +
definieren. Die Idee dabei ist, dass die Summe aller auf einer Geraden g liegenden Punkte
von E gleich dem neutralen Element O sein soll. Hierbei werden Tangentialpunkte doppelt
und Wendepunkte dreifach gezählt und nur solche Geraden g berücksichtigt, auf denen
bei dieser Zählweise 3 Punkte von E liegen, wobei im Fall, dass g parallel zur y-Achse
verläuft, zusätzlich noch der Punkt O hinzugerechnet wird.
Am einfachsten ist der Fall, dass die Gerade g parallel zur y-Achse verläuft, also g
den Punkt O enthält. Besteht die Schnittmenge S von g und E \ {O} aus 2 Punkten
P = {x1, y1} und Q = {x2, y2}, so gilt offensichtlich x1 = x2 und y1 = −y2 und wir
erhalten P + Q + O = O bzw. −P = (x1,−y1). Diese Gleichung gilt auch für den
Fall, dass S nur aus einem Punkt P = {x1, y1} besteht, da P dann wegen y1 = 0 ein
Tangentialpunkt ist und daher doppelt gezählt wird.
Es bleibt der Fall, dass g nicht parallel zur y-Achse verläuft. Hier gibt es 2 Unterfälle:
P 6= Q: In diesem Fall gilt x1 6= x2. Zudem ist g = {(x, y) ∈ R2|y = λx + µ} mit

λ = y2−y1
x2−x1

und µ = y1 − λx1 = y2 − λx2. Wir zeigen zuerst, dass

E ∩ g = {P,Q,R}

ist, wobei R = (x3, y3) folgende Koordinaten hat:

x3 = λ2 − x1 − x2 und y3 = λ(x3 − x1) + y1.

Für alle (x, y) ∈ E ∩ g gilt

(λx+ µ)2 = x3 + ax+ b

; x3 − λ2x2 + (a− 2µλ)x+ b− µ2︸ ︷︷ ︸
p(x)

= 0.

p lässt sich in C vollständig in Linearfaktoren zerlegen,

p(x) = (x− x1)(x− x2)(x− x3).

Da sich der Koeffizient −λ2 von x2 aus der linearen Zerlegung von p(x) zu

−λ2 = −x1 − x2 − x3

berechnet, muss x3 = λ2 − x1 − x2 sein. Da R auch auf g liegt, ist zudem y3 =
λ(x3 − x1) + y1.
Folglich ist P +Q = −R = (x3,−y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1).

2.2 Elliptische Kurven über endlichen Körpern 33

P = Q: In diesem Fall gilt x1 = x2 und y1 = y2 6= 0. Sei g die Tangente durch P an E.
Wir zeigen, dass es einen Punkt R = (x3, y3) ∈ R2 gibt mit

g ∩ E = {P,R},

wobei x3 = λ2 − 2x1 und y3 = λ(x3 − x1) + y1 ist. Die Steigung λ von g erhalten
wir durch implizites Differenzieren:

λ = dy

dx
=
−∂F

∂x
(x1, y1)

∂F
∂y

(x1, y1)
= 3x2

1 + a

2y1
,

wobei F (x, y) = y2 − x3 − ax− b ist. Zur Begründung sei

T (x, y) = c(x− x1) + d(y − y1)

die Tangentialebene an F (x, y) im Punkt (x1, y1, F (x1, y1)) = (x1, y1, 0). Dann gilt

c = ∂F

∂x
(x1, y1) = −3x2

1 − a

und
d = ∂F

∂y
(x1, y1) = 2y1.

Da die Tangente g sowohl in der Tangentialebene T als auch in der x, y-Ebene
verläuft, folgt

(x, y) ∈ g ⇔ T (x, y) = 0
⇔ y − y1 = − c

d
(x− x1),

woraus sich λ = − c
d
ergibt. Genau wie im 1. Fall erhalten wir nun P +Q = P +P =

2P = −R = (x3,−y3)) = (λ2 − x1 − x2, λ(x1 − x3)− y1) mit λ = 3x2
1+a

2y1
.

Satz 46. E bildet mit O als neutralem Element und + als Addition eine abelsche Gruppe,
d.h.
• + ist abgeschlossen auf E.
• + ist kommutativ
• Jeder Punkt hat ein Inverses −P . P ist selbstinvers, falls P = −P ist. Dies gilt
für P = O und alle Kurvenpunkte der Form P = (x, 0).
• + ist assoziativ (ohne Beweis!).

2.2 Elliptische Kurven über endlichen Körpern

Definition 47. Sei Fq ein endlicher Körper mit q = pn für eine Primzahl p > 3. Für
a, b ∈ Fq mit 4a3 + 27b2 6= 0 heißt

E = {(x, y) ∈ Z2
p | y2 ≡p x3 + ax+ b} ∪ {O}

elliptische Kurve über Fq. Die Gruppenoperation + ist auf E wie folgt definiert.
• O ist neutrales Element, d.h. ∀P ∈ E − {O} : P +O = O + P = P .

34 2 Elliptische Kurven

• Das Inverse zu P = (x, y) ∈ E \ {O} ist −P = P = (x,−y).
• Für P,Q ∈ E \ {O} ist

P +Q =

O, P = Q

R, sonst

wobei sich R = (x3, y3) wie folgt aus P = (x1, y1) und Q = (x2, y2) berechnet:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

wobei λ =

(y2 − y1)(x2 − x1)−1, P 6= Q

(3x2
1 + a)(2y1)−1, P = Q

Satz 48. (E,O,+) bildet eine abelsche Gruppe (ohne Beweis).

Beispiel 49. p = 11, E definiert durch y2 = x3 + x+ 6. Zur Erinnerung: Im Fall p ≡4 3
lassen sich für z ∈ QRp die Wurzeln y durch ±z p+1

4 bestimmen.

x 0 1 2 3 4 5 6 7 8 9 10
z = x3 + x+ 6 6 8 5 3 8 4 8 4 9 7 4
y = ±

√
z mod 11 − − 4; 7 5; 6 − 2; 9 − 2; 9 3; 8 − 2; 9

Da die Gruppe (E,O,+) ‖E‖ = 13 Elemente enthält, und 13 eine Primzahl ist, haben alle
Elemente entweder die Ordnung 1 oder 13. Da nur das neutrale Element O die Ordnung
1 hat, haben alle anderen Elemente P ∈ E−{O} die Ordnung 13, sind also Erzeuger der
Gruppe. Folglich ist (E,O,+) zyklisch und somit isomorph zu Z13: (E,O,+) ∼= (Z13, 0,+).
Berechnung von 2g = (2, 7) + (2, 7):

λ = (3 · 22 + 1)(2 · 7)−1 mod 11
= 2 · 3−1

= 2 · 4 = 8
x3 = 82 − 2− 2 mod 11 = 5
y3 = 8(2− 5)− 7 mod 11 = 2

⇒ 2g = (5, 2)
Berechnung von 3g = 2g + g = (5, 2) + (2, 7):

λ = (7− 2)(2− 5)−1 mod 11
= 5 · (−3)−1

= 2
x3 = 22 − 5− 2 mod 11 = 8
y3 = 2 · (5− 8)− 2 mod 11 = 3

⇒ 3g = (8, 3)

k 1 2 3 4 5 6 7 8 9 10 11 12 13
k · g (2, 7) (5, 2) (8, 3) (10, 2) (3, 6) (7, 9) (7, 2) (3, 5) (10, 9) (8, 8) (5, 9) (2, 4) O

/

2.2 Elliptische Kurven über endlichen Körpern 35

Satz 50. (Hasse) Für die Anzahl ‖E‖ von Punkten einer elliptischen Kurve über einem
endlichen Körper Fq gilt

q + 1− 2√q ≤ ‖E‖ ≤ q + 1 + 2√q (ohne Beweis).

Bemerkung 51. Es gibt einen effizienten Algorithmus (von Schoof) mit Zeitkomplexität
O(log8 q), der ‖E‖ bei Eingabe von a, b und q berechnet.

Satz 52. Sei E eine elliptische Kurve über Fq. Dann ist (E,O,+) isomorph zu Zn1×Zn2,
wobei n1, n2 ∈ N+ sind und n1 Teiler von n2 und von q − 1 ist (ohne Beweis).

Bemerkung 53. Wie jede Gruppe muss E im Fall ‖E‖ prim zyklisch sein. Wegen
‖E‖ = n1 · n2 und da n1 Teiler von n2 ist, muss E auch dann zyklisch sein, wenn ‖E‖
das Produkt von zwei verschiedenen Primzahlen (da dann n1 = 1 sein muss).
Im Fall n1 > 1 ist E dagegen nicht zyklisch, hat aber eine nicht-triviale zyklische
Untergruppe, die zu Zn2 isomorph ist und für kryptografische Anwendungen benutzt
werden kann.

Kompakte Darstellung von Punkten auf E

Für den Fall, dass sich Quadratwurzeln effizient in Fq berechnen lassen, gibt es eine
einfache Möglichkeit, Punkte auf einer elliptischen Kurve über Fq kompakter darzustellen.
Ist zum Beispiel q = p prim mit p ≡4 3, so lassen sich die Wurzeln ±

√
z mod p von

z ∈ QRp = {x2 mod p | x ∈ Z∗p} (QR steht für quadratischer Rest) effizient mittels
±
√
z = ±z(p+1)/4 mod p berechnen.

Folgende Funktion liefert dann eine kompakte Darstellung.
PointCompress: E − {O} → Zp × Z2 mit (x, y) 7→ (x, y mod 2).
Für die Rekonstruktion können wir folgende Prozedur benutzen. Sei E eine elliptische
Kurve y2 = x3 + ax+ b über Fq und sei p(x) = x3 + ax+ b.

Prozedur PointDeCompress(x, i)
1 z := p(x) mod p
2 if z ∈ QRp then
3 y :=

√
z mod p

4 if y 6≡2 i then y := p− y
5 output (x, y)
6 else output (‘‘error’’)

Effiziente Berechnung von Vielfachen von Punkten auf E

In Z∗m berechnen wir Potenzen ae mod m durch ‘wiederholtes Quadieren und Multi-
plizieren’. Ähnlich können wir in einer elliptischen Kurve E die Vielfachen mP eines
Punktes P durch ‘wiederholtes Verdoppeln und Addieren’ berechnen. Da in E additive
Inverse sehr leicht zu berechnen sind, kann mP durch ‘wiederholtes Verdoppeln, Addieren
und Subtrahieren’ noch effizienter berechnet werden. Hierzu repräsentieren wir m in
NAF-Darstellung (Non Adjacent Form).

36 2 Elliptische Kurven

Definition 54. (cl−1, . . . , c0) ∈ {−1, 0, 1}l heißt SBR-Darstellung (Signed Binary
Representation) einer Zahl c ∈ Z, falls

l−1∑
i=0

ci2i = c

ist. Ist von je zwei benachbarten Ziffern ci mindestens eine 0, so heißt (cl−1, . . . , c0)
NAF-Darstellung von c.

Beispiel 55. Sowohl (0, 1, 0, 1, 1) als auch (1, 0,−1, 0,−1) sind SBR-Darstellungen von
c = 1 + 2 + 8 = 11 = −1− 4 + 16. /

Satz 56. Jede Zahl c ∈ Z hat eine eindeutige NAF-Darstellung (Beweis siehe Übungen).

Berechnung einer NAF-Darstellung aus der Binärdarstellung: Ersetze jeden Teilstring
der Form (0, 1, . . . , 1) von rechts beginnend durch den Teilstring (1, 0, . . . , 0,−1).
Zur effizienten Berechnung von Q = cP benutzen wir das Horner-Schema

c =
l−1∑
i=0

ci2i = (. . . (cl−12 + cl−2)2 + · · ·+ c1)2 + c0,

welches auf folgendes iteratives Schema zur Berechnung der Vielfachen Qi = ∑l−1
j=i cj2jP

führt:

Qi =

O, i = l

2Qi+1 + ciP, 0 ≤ i < l.

Dies führt auf folgende Algorithmen zur Berechnung von Vielfachen von Punkten auf E:

Prozedur DoubleAdd(P, cl−1, . . . , c0)
1 Q := O
2 for i := l − 1 to 0 do
3 Q := 2 ·Q
4 if ci = 1 then Q := Q+ P
5 output (Q)

Prozedur DoubleAddSub(P, cl−1, . . . , c0)
1 Q := O
2 for i := l − 1 to 0 do
3 Q := 2 ·Q
4 if ci = 1 then Q := Q+ P
5 if ci = −1 then Q := Q+ (−P)
6 output (Q)

Da eine l-Bitzahl im Durchschnitt l
2 -Nullen in Binärdarstellung und 2l

3 -Nullen in NAF-
Darstellung enthält, ist DoubleAddSub mit ca. l + l/3 Additionen/Subtraktionen um 11
Prozent effizienter als DoubleAdd mit ca. l + l/2 Additionen (siehe Übungen).

37

3 Digitale Signaturverfahren

Handschriftliche Signaturen

• Die durch die Unterschrift gekennzeichnete Person hat überprüfbar die Unterschrift
geleistet.
• Die Unterschrift ist nicht auf ein anderes Dokument übertragbar, ohne ihre Gültig-

keit zu verlieren.
• Das signierte Dokument kann nachträglich nicht unbemerkt verändert werden.

Eine direkte Übertragung dieser Eigenschaften in die digitale Welt ist nicht möglich.

Lösung: Die digitale Unterschrift wird nicht physikalisch, sondern logisch (inhaltlich)
an ein elektronisches Dokument gebunden und die Fähigkeit, einen individuellen
Schriftzug auszuführen, wird durch geheimes Wissen ersetzt.

Definition 57. Ein digitales Signaturverfahren besteht aus:
• einer Menge X von Dokumenten,
• einer endlichen Menge Y von Unterschriften,
• einer endlichen Menge K von Schlüsseln,
• einer Menge S ⊆ K ×K von Schlüsselpaaren (k̂, k),
• einem Signaturalgorithmus sig : K ×X → Y und
• einem Verifikationsalgorithmus ver : K ×X × Y → {0, 1}

mit

ver(k, x, y) =
{

1, sig(k̂, x) = y,

0, sonst

für alle (k̂, k) ∈ S.

Klassifikation von Angriffen gegen Signaturverfahren

Angriff bei bekanntem Verifikationsschlüssel (key-only attack)
Angriff bei bekannter Signatur (known signature attack): für eine Reihe von Doku-

menten x ist die zugehörige Signatur y = sig(k̂, x) bekannt, auf deren Auswahl der
Gegner keinen Einfluss hat.

Angriff bei frei wählbaren Dokumenten (chosen document attack): d.h. der Geg-
ner war für eine gewisse Zeit in der Lage, für von ihm gewählte Dokumente
die zugehörige Signatur in Erfahrung zu bringen und versucht nun, für ein “neues”
Dokument die Unterschrift zu bestimmen.

adaptiver Angriff bei frei wählbaren Dokumenten: d.h. der Gegner wählt jeweils das
nächste Dokument in Abhängigkeit von der Signatur des vorigen.

38 3 Digitale Signaturverfahren

Erfolgskriterien für die Fälschung digitaler Signaturen

uneingeschränktes Fälschungsvermögen (total break): Der Gegner hat einen Weg ge-
funden, die Funktion x 7→ sig(k̂, x), effizient zu berechnen ohne k̂ als Eingabe zu
benutzen (k ist ohnehin bekannt).

selektives Fälschungsvermögen (selective forgery): Der Gegner kann für Dokumente
seiner Wahl die zugehörigen Signaturen bestimmen (eventuell mit Hilfe des legalen
Unterzeichners).

nichtselektives (existentielles) Fälschungsvermögen: Der Gegner kann für irgendein
Dokument x die zugehörige digitale Signatur bestimmen.

Beim RSA-Signaturverfahren ist K = {(a, n)|n = pq für Primzahlen p, q und a ∈
Z∗ϕ(n)} und S die Relation S = {(d, n, e, n) ∈ K ×K|de ≡ϕ(n) 1}. Signiert wird mittels
sig(d, n, x) := xd mod n, wobei X = Y = Zn, und die Verifikationsbedingung ist

ver(e, n, x, y) =
{

1, ye ≡n x
0, sonst.

Satz 58. Für alle (d, n, e, n) ∈ S und x, y ∈ Zn gilt:

ver(e, n, x, y) =
{

1, sig(d, n, x) = y,

0, sonst.

Beweis. Folgt direkt aus der Korrektheit des RSA-Kryptosystems. �

Wir betrachten unterschiedliche Angriffsmöglichkeiten gegen das RSA-Signaturverfahren.
• Es ist nicht schwer, eine nichtselektive Fälschung bei bekanntem Verifikationsschlüs-

sel durchzuführen. Hierzu wählt der Gegner zu einer beliebigen Signatur y ∈ Y das
Dokument x = ye mod n.
• Zudem ist eine existentielle Fälschung bei bekannten Signaturen möglich, falls

der Gegner zwei signierte Dokumente (x1, y1), (x2, y2) mit ver(k, xi, yi) = 1 kennt.
Wegen yei ≡n xi für i = 1, 2 folgt nämlich (y1y2)e ≡n ye1ye2 ≡n x1x2 und somit
ver(k, x1x2 mod n, y1y2 mod n) = 1.
• Weiterhin kann der Gegner bei frei wählbaren Dokumenten sogar eine selektive

Fälschung durchführen. Ist bereits die Signatur für ein beliebiges Dokument x′ ∈ Z∗n
bekannt und kann sich der Gegner die Signatur für das Dokument x′′ = x ·
x′−1 mod n beschaffen, so kann er daraus wie oben eine gültige Signatur für das
Dokument x berechnen.

Diese Angriffe kann man vereiteln, indem man das Dokument x mit Redundanz versieht
(indem man z.B. anstelle von x den Text xx signiert). Um auch längere Dokumente
effizient signieren zu können, wird i.a. jedoch eine geeignete Hashfunktion h benutzt und
nicht das gesamte Dokument x, sondern nur der Hashwert h(x) signiert.

Bei der Signaturerstellung benötigte Eigenschaften einer Hashfunktion h

• Die verwendete Hashfunktion h sollte die Einwegeigenschaft haben, da sonst der
Gegner zu einem y ∈ Y ein passendes Dokument x mit h(x) = y bestimmen kann
(zumindest wenn das Signaturverfahren anfällig gegen eine existentielle Fälschung
ist, wie etwa RSA).

3.1 Das ElGamal-Signaturverfahren 39

• Angenommen der Gegner kennt bereits ein Paar (x, y) mit ver(k, h(x), y) = 1.
Dann sollte h zumindest schwach kollisionsresistent sein, da sonst der Gegner ein
x′ mit h(x′) = h(x) berechnen und das Paar (x′, y) bestimmen könnte.
• Falls sich der Gegner für bestimmte von ihm selbst gewählte Dokumente x die
zugehörige Signatur y beschaffen kann, so sollte h sogar kollisionsresistent sein.
Andernfalls könnte der Gegner ein Kollisonspaar (x, x′) für h finden und sich
das (unverdächtige) Dokument x signieren lassen. Die erhaltene Signatur y für x′
verwenden.

3.1 Das ElGamal-Signaturverfahren

Das Signaturverfahren von ElGamal (1985) ist wie das gleichnamige asymmetrische
Kryptosystem probabilistisch und beruht wie dieses auf dem diskreten Logarithmus.
Wir beschreiben nun das Signaturverfahren von ElGamal. Sei p eine große Primzahl
und α ein Erzeuger von Z∗p (p und α sind öffentlich). Jeder Teilnehmer B erhält als
geheimen Signierschlüssel eine Zahl a ∈ Zp−1 = {0, . . . , p − 2} und gibt β = αa mod p
als öffentlichen Verifikationsschlüssel bekannt:
Signierschlüssel: k̂ = (p, α, a),
Verifikationsschlüssel: k = (p, α, β).
Signaturerstellung: Um ein Dokument x ∈ X = Zp−1 zu signieren, wählt der Signierer
zufällig eine Zahl z ∈ Z∗p−1 und berechnet sig(k̂, x, z) = (γ, δ) ∈ Y = Z∗p × Zp−1 mit
γ ≡ αz mod p und δ = (x− aγ)z−1 mod p− 1. Falls δ = 0 ist, muss eine neue Zufallszahl
z gewählt werden.
Verifikation: ver(k, x, (γ, δ)) = 1, falls βγγδ ≡p αx ist.

Lemma 59. Die Bedingung βγγδ ≡p αx ist genau dann erfüllt, wenn es ein z ∈ Z∗p−1

mit sig(k̂, x, z) = (γ, δ) gibt.

Beweis. Wegen γ ≡ αz mod p ist z durch γ (und γ durch z) eindeutig bestimmt. Weiter ist
βγγδ ≡p αaγαzδ ≡p αaγ+zδ. Da α ein Erzeuger von Z∗p ist, gilt die Kongruenz αaγ+zδ ≡p αx
genau dann, wenn aγ + zδ ≡p−1 x ist, was wiederum mit δ ≡p−1 (x− aγ)z−1 äquivalent
ist. �

Zur Sicherheit des ElGamal-Systems

1. Falls der Gegner den diskreten Logarithmus bestimmen kann, so kann er den
geheimen Schlüssel a = logα β berechnen.

2. Als nächstes betrachten wir verschiedene Szenarien für einen selektiven Angriff bei
gegebenem Klartext x.
a) Der Gegner wählt zuerst γ und versucht, ein passendes δ zu finden. Mit

αx ≡ βγγδ mod p folgt δ = logγ αxβ−γ. D.h. die Bestimmung von δ ist eine
Instanz des diskreten Logarithmus Problems (kurz: DLP).

b) Der Gegner wählt zuerst δ und versucht dann γ aus αx ≡ βγγδ mod p zu
bestimmen. Dazu ist kein effizientes Verfahren bekannt.

c) Der Gegner wählt γ und δ gleichzeitig. Auch hierfür ist kein effizientes Verfah-
ren bekannt.

40 3 Digitale Signaturverfahren

3. Versucht der Gegner bei einem nichtselektiven Angriff, zuerst γ und δ zu wählen und
dazu ein passendes Dokument x zu finden, so muss er den diskreten Logarithmus
x = logα βγγδ bestimmen.

4. Eine existentielle Fälschung lässt sich jedoch wie folgt durchführen. Wähle beliebige
Zahlen u ∈ Zp−1, v ∈ Z∗p−1 und berechne γ = αuβv mod p. Dann ist (γ, δ) genau
dann eine gültige Signatur für ein Dokument x, wenn αx ≡p βγ(αuβv)δ ist. Dies
ist wiederum äquivalent zur Kongruenz αx−uδ ≡p βγ+vδ, die sich für das Dokument
x = uδ mod p− 1 mittels δ = −γv−1 mod p− 1 erfüllen lässt. Bei Wahl von v = 1
führt z.B. jedes u ∈ Zp−2 mittels γ = αuβ mod p und δ = −γ mod p− 1 auf eine
gültige Signatur (γ, δ) für das Dokument x = uδ mod p− 1.

Bemerkung 60. Bei der Benutzung des ElGamal-Signaturverfahrens sind folgende
Punkte zu beachten.

1. Die Zufallszahl z muss geheim gehalten werden.
2. Zufallszahlen dürfen nicht mehrfach verwendet werden.

Kennt nämlich der Gegner zu einer Signatur (x, (γ, δ)) die Zufallszahl z, so kann sie wegen
δ ≡p−1 (x−aγ)z−1 im Fall ggT(γ, p−1) = 1 die geheime Zahl a = (−zδ+x)γ−1 mod p−1
berechnen. Ist ggT (γ, p− 1) = d > 1, so lassen sich aus dieser Kongruenz d Kandidaten
für a gewinnen, die sich über die Kongruenz αa ≡p β verifizieren lassen.
Sind andererseits (x1, (γ, δ1)) und (x2, (γ, δ2)) mit demselben z generierte Signaturen,
dann folgt wegen βγγδ1 ≡p αx1 und βγγδ2 ≡p αx2 ,

γδ1−δ2 ≡p αx1−x2 ⇒ αz(δ1−δ2) ≡p αx1−x2 ⇒ z(δ1 − δ2) ≡p−1 x1 − x2.

Aus dieser Kongruenz lassen sich d = ggT (δ1− δ2, p− 1) Kandidaten für z gewinnen und
daraus wie oben a berechnen, falls d nicht zu groß ist.

3.2 Das Schnorr-Signaturverfahren

Da die Primzahl p beim ElGamal-Signaturverfahren mindestens eine 512-Bit-Zahl (besser
1024-Bit-Zahl) sein sollte, beträgt die Signaturlänge 1024 bzw 2048 Bit. Folgende Variante
des ElGamal-Signaturverfahrens, die als eine Vorstufe zum DSA betrachtet werden kann,
wurde von Schnorr vorgeschlagen.
Die zugrunde liegende Idee ist folgende: Indem wir für α ein Element der Ordnung q mit
q ≈ 2160 wählen, reduziert sich die Signaturlänge auf 2 · 160 = 320 Bit. Die Berechnungen
werden aber nach wie vor modulo p mit p ≈ 21024 ausgeführt, so dass das Problem des
diskreten Logarithmus zur Basis α in Z∗p hart bleibt.
Sei g ein Erzeuger von Z∗p, wobei p die Bauart p−1 = mq für eine Primzahl q = p−1

m
≈ 2160

hat. Dann ist α = g(p−1)/q ein Element in Z∗p der Ordnung ordp(α) = q. Weiter sei
h : {0, 1}∗ → Zq eine Hashfunktion, die jedem Dokument x ∈ X = {0, 1}∗ einen
Hashwert in Zq zuordnet.

Signierschlüssel: k̂ = (p, q, α, a), a ∈ Zq,
Verifikationsschlüssel: k = (p, α, β), β = αa mod p.
Signaturerstellung: Um ein Dokument x ∈ X zu signieren, wählt der Signierer zufällig
eine geheime Zahl z ∈ Z∗q und berechnet

sig(k̂, x, z) = (γ, δ),

3.3 Der Digital Signature Algorithm (DSA) 41

wobei γ = h(x bin(αz mod p)) und δ = (z + aγ) mod q ist. Der Signaturraum ist also
Y := Zq × Zq.
Verifikation: ver(k, γ, δ) = 1, falls h(xbin(αδβ−γ mod p)) = γ ist.

3.3 Der Digital Signature Algorithm (DSA)

Der DSA wurde im August 1991 vom National Institute of Standards and Technology
(NIST) für die Verwendung im Digital Signature Standard (DSS) empfohlen. Der DSS
enthält neben dem DSA (ursprünglich der einzige im DSS definierte Algorithmus) als
weitere Algorithmen die RSA-Signatur und ECDSA (siehe unten). Ausgehend vom
ElGamal-Verfahren lässt sich der DSA durch folgende Modifikationen erhalten:

1. δ als Lösung von zδ − aγ ≡p−1 x (d.h. δ = (x+ aγ)z−1) ; Verifikationsbedingung:
αxβγ ≡p γδ (αxαaγ ≡p αz(x+aγ)z−1)

2. Ist x + aγ ∈ Z∗p−1, dann existiert δ−1 = (x + aγ)−1z mod p − 1 ; Verifikation
durch: αxδ−1

βγδ
−1 ≡p γ

3. Sei nun wie bei Schnorr p = mq+1 mit q ≈ 2160 prim und sei α ∈ Z∗p mit ordp(α) = q.
Dann kann bei der Verifikation von αxδ

−1
βγδ

−1 ≡p γ auf der Exponentenebene
modulo q gerechnet werden. Da γ jedoch rechts nicht als Exponent, sondern als
Basiszahl, vorkommt, muss auch die linke Seite modulo q reduziert werden.

Beim DSA hat der Signierschlüssel also die Form k̂ = (p, q, α, a), wobei a ∈ Z∗q ist, und
der zugehörige Verifikationsschlüssel ist k = (p, q, α, β) mit β = αa mod p. Zudem gilt
X = Z∗p und Y = Zq × Z∗q.
Zu gegebenem x ∈ X wird zufällig eine geheime Zahl z ∈ Z∗p gewählt.

sig(k̂, z, x) = (γ, δ), wobei

γ = (αz mod p) mod q
δ = (x+ aγ)z−1 mod q ∈ Z∗q

Im Fall γ = 0 oder δ = 0 muss ein neues z gewählt werden. Die Verifikationsbedingung
ist

ver(k, x, γ, δ) =

1, (αeβd mod p) mod q = γ,

0, sonst,

wobei e = xδ−1 mod q und d = γδ−1 mod q ist.
Korrektheit: Im Fall sig(k̂, z, x) = (γ, δ) ist

αeβd ≡p αxδ
−1
αaγδ

−1 ≡p αδ
−1(x+aγ) ≡p α(x+aγ)−1z(x+aγ) ≡p αz

woraus sich
(αeβd mod p) mod q = (αz mod p) mod q = γ

ergibt.

Beispiel 61. q = 101, p = 78q + 1 = 7879, g = 3 (ordp(3) = p− 1)

; α = 378 mod p = 170 hat Ordnung q

Wir wählen a = 75 ∈ Z∗q, d.h. β = αa mod p = 17075 mod p = 4547. Um das Dokument
x = 1234 ∈ Z∗p zu signieren, wählen wir die geheime Zufallszahl z = 50 ∈ Z∗p (; z−1 = 99)

42 3 Digitale Signaturverfahren

und erhalten dann

γ = (17050 mod 7879) mod 101
= 2518 mod 101
= 94

δ = (1234 + 75 · 94) · 99 mod 101
= 97 (; δ−1 = 25)

d.h. sig(p, q, α, z, x) = (94, 97), wobei k̂ = (p, q, α, a)
Um diese Signatur zu prüfen berechnen wir:

e = xδ−1 mod q
= 1234 · 25 mod 101
= 45

d = γδ−1 mod q
= 94 · 25 mod 101
= 27

; (αeβd mod p) mod q = (17045454727 mod 7879) mod 101 = 94. /

3.4 ECDSA (Elliptic Curve DSA)

Im Jahr 2000 als FIPS 186-2 als Standard deklariert.

Definition 62. Sei E eine elliptische Kurve über einem endlichen Körper. Sei A ∈ E
ein Punkt der Ordnung q (q prim), so dass das Diskrete-Logarithmus-Problem zur Basis
A in E schwierig ist. Zudem sei h eine kryptografische Hashfunktion.

X = {0, 1}∗, Y = Z∗q × Z∗q. öffentlicher Verifikationsschlüssel: (E, q, A,B),
wobei B = m · A geheimer Signierschlüssel: (E, q, A,m), m ∈ Z∗q.
sig(k̂, z, x) = (γ, δ), wobei

(u, v) := z · A
γ := u mod q
δ := (h(x) +mγ)z−1 mod q

ver(k, x, γ, δ) =

1, u mod q = γ

0, sonst
wobei

(u, v) := eA+ dB

e := h(x)δ−1 mod q
d := γδ−1 mod q

3.5 One-time Signatur (Lamport) 43

Korrektheit der Verifikation beim ECDSA:

(u, v) = eA+ dB

= (x′δ−1)A+ (γδ−1)mA
= (x′ +mγ)δ−1A

= zA (da (x′ +mγ)δ−1 ≡q z)

Beispiel 63. Signieren und Verifizieren: Sei E über Z11 definiert durch γ2 = x3 + x+ 6
Wir wählen A = (2, 7), m = 7 → p = 11, q = 13, B = 7A = (7, 2)
Annahme: Wir wollen ein Dokument x mit dem Hashwert h(x) = 4 unter Verwendung
des Signierschlüssels k̂ = (E, q, A,m) und der Zufallszahl r = 3 signieren.

(u, v) := zA = 3 · (2, 7) = (8, 3)
γ := n mod q = 8, δ = (4 + 7 · 8)3−1 mod 13 = 7

sig(k̂, z, x) = (8, 7)

Verifikation von (γ, δ) = (8, 7) unter k = (E, q, A,B):

e := x′δ−1 mod q = 4 · 7−1 mod 13 = 4 · 2 mod 13 = 8
d := yδ−1 mod q = 8 · 2 mod 13 = 3

(u, v) := eA+ dB = 8 · (2, 7) + 3 · (7, 2) = (8, 3)

; u mod q = 8 = γ. /

3.5 One-time Signatur (Lamport)

Sei f : U → V eine injektive Einwegfunktion. Der Dokumentenraum ist X = {0, 1}n und
der Signaturraum ist Y = Un.
Der Signierschlüssel ist eine beliebige Folge k̂ = (ui,b)i=1,...,n;b=0,1 von 2n paarweise
verschiedenen Elementen aus U .
Der zugehörige Verifikationsschlüssel ist dann k = (vi,b)i=1,...,n;b=0,1 mit vi,b = f(ui,b) für
alle (i, b) ∈ {1, . . . , n} × {0, 1}.
Signaturerstellung: Die Signatur für ein Dokument x = x1 . . . xn ∈ X ist

sig(k̂, x) = u1,x1 . . . un,xn︸ ︷︷ ︸
y

.

Verifikation:

ver(k, x, u1, . . . , un︸ ︷︷ ︸
y

) :=

1, f(ui) = vi,xi
für i = 1, . . . , n,

0, sonst.

Beispiel 64. Wir wählen als Einwegfunktion eine Funktion der Form f : Z∗p → Z∗p mit
f(u) = gu mod p, wobei g ein Erzeuger von Z∗p ist.
Z.B. sei p = 7879 und g = 3, also f(u) = 3u mod 7879. Weiter sei n = 3.
Dann erhalten wir für den Signierschlüssel k̂ = (u1,0, u1,1, u2,0, u2,1, u3,0, u3,1), wobei
u1,0 = 5831, u1,1 = 803, u2,0 = 4285, u2,1 = 735, u3,0 = 2467, u3,1 = 6449 den zugehörigen

44 3 Digitale Signaturverfahren

Verifikationsschlüssel k = (v1,0, v1,1, v2,0, v2,1, v3,0, v3,1), wobei v1,0 = 2009, v1,1 = 4672,
v2,0 = 268, v2,1 = 3810, v3,0 = 4721 und v3,1 = 5731 ist. Die Signatur für das Dokument
x = 110 ist dann

sig(k̂, x) = (u1,1, u2,1, u3,0) = (u1, u2, u3) = (803, 735, 2467).
Die Verifikation ergibt den Wert ver(k, x, u1, u2, u3) = 1, da Folgendes gilt:

i = 1 : f(u1) = f(803) = 3803 mod 7879 = 4672 = v1,x1

i = 2 : f(u2) = f(735) = 3735 mod 7879 = 3810 = v2,x2

i = 3 : f(u3) = f(2467) = 32467 mod 7879 = 4721 = v3,x3 /

Zum Nachweis der Sicherheit des Signaturverfahrens nehmen wir an, dass f : U → V
eine Bijektion ist und dass ein deterministischer Algorithmus Lamport-Fälschung(k)
existiert, der bei Eingabe eines Verifikationsschlüssels k eine existentielle Fälschung (x, y)
mit ver(k, x, y) = 1 berechnet. Betrachte folgenden probabilistischen Algorithmus:

Prozedur Lamport-Urbild(v)
1 wähle zufällig einen Verifikationsschlüssel k = (vi,b)i=1,...,n;b=0,1
2 falls v nicht in k vorkommt, ersetze für ein zufällig gewähltes

Indexpaar (j, a) den Wert vj,a durch v
3 (x1, . . . , xn, u1, . . . , un) =: Lamport-Fälschung(k)
4 if xj = a then
5 output (uj)
6 else
7 output (‘?‘)

Satz 65. Unter den genannten Voraussetzungen gibt Lamport-Urbild(v) für ein
zufällig aus V gewähltes v mit Wahrscheinlichkeit 1

2 ein Urbild u von v aus.

Beweis. Im Fall xj = a gibt der Algorithmus Lamport-Urbild ein Urbild u = uj von
v aus:

f(uj) = vj,xj
= vj,a = v.

Daher reicht es zu zeigen:
p = Probv∈RV [Lamport-Urbild(v) 6= ‘?‘] = 1/2.

Sei S die Menge aller möglichen Verifikationsschlüssel k und für v ∈ V sei Sv die
Menge aller k ∈ S, die v enthalten. Tv bezeichne die Menge aller k ∈ Sv, für die
Lamport-Fälschung(k) ein Urbild von v liefert. Weiter sei tv = ‖Tv‖, sv = ‖Sv‖ und
s = ‖S‖.
Da jeder der s Verifikationsschlüssel k ∈ S zu der Summe∑v∈V tv einen Wert von genau n
beiträgt (für jedes i = 1, . . . , n ist k = (vi,b)i=1,...,n;b=0,1 in genau einer der beiden Mengen
Tvi,0 und Tvi,1 enthalten), ist ∑v∈V tv = ns. Dagegen trägt jedes k zu der Summe ∑v∈V sv
den Wert 2n bei (k = (vi,b)i=1,...,n;b=0,1 ist genau in den 2n Mengen Svi,b

enthalten),
weshalb ∑v∈V sv = 2ns ist. Da aus Symmetriegründen die Zahlen sv alle gleich sind, folgt
sv = 2ns/‖V ‖.
Sei nun pv die Erfolgswahrscheinlichkeit von Lamport-Urbild(v), d.h. pv = tv/sv. Dann
ergibt sich die durchschnittliche Erfolgswahrscheinlichkeit p zu

p = 1
‖V ‖

∑
pv = 1

‖V ‖
∑

tv/sv = 1
2ns

∑
tv = ns

2ns = 1
2 .

�

3.6 Full Domain Hash (FDH) Signaturen 45

Die Lamport-Signatur hat aus praktischer Sicht einige Nachteile, die sich jedoch teilweise
beheben lassen (siehe Übungen). So lässt sich sowohl die Länge des privaten Signierschlüs-
sels (mittels Pseudozufallsgeneratoren) als auch des öffentlichen Verifikationsschlüssels
(mittels Hash-Listen) verringern. Zudem können bei Verwendung von Hash-Bäumen mit
demselben Schlüsselpaar auch mehrere Nachrichten signiert und verifiziert werden.

3.6 Full Domain Hash (FDH) Signaturen

Sei F = {fk|k ∈ K} eine Familie von Falltür-Permutationen auf {0, 1}n, d.h. für jedes
k ∈ K gilt:
• fk ist Einweg-Permutation auf {0, 1}n.
• Es existiert ein k̂ ∈ K mit fk(fk̂(x)) = x für alle x ∈ {0, 1}n.

Weiter sei G : {0, 1}∗ → {0, 1}n eine Zufallsfunktion, d.h. die Zufallsvariablen Xx = G(x)
sind stochastisch unabhängig und es gilt

Prob[G(x) = y] = 2−n ∀x ∈ {0, 1}∗ und y ∈ {0, 1}n.

G modelliert eine Hashfunktion H : {0, 1}∗ → {0, 1}n mit optimalen kryptographischen
Eigenschaften (vgl. Zufalls-Orakel-Modell, ZOM), deren Wertebereich den gesamten
Definitionsbereich der Funktionen fk ausfüllt (full domain hash). In der Praxis wird
anstelle von G eine konkrete Hashfunktion eingesetzt, die meist nicht den gesamten
Definitionsbereich der Funktionen fk ausschöpft.
Die auf F und G basierende FDH-Signatur funktioniert wie folgt. Um für ein Dokument
x ∈ X = {0, 1}∗ eine Signatur y ∈ Y = {0, 1}n zu berechnen, wird ein Signierschlüssel k̂
benutzt:

sig(k̂, x) := fk̂(G(x)).
Diese wird unter Verwendung des zugehörigen Verifikationsschlüssels k wie folgt überprüft:

ver(k, x, y) =

1, fk(y) = G(x),
0, sonst.

Z.B. beruht das RSA-Signaturverfahren in Verbindung mit einer Hashfunktion auf diesem
Prinzip. Ein Problem hierbei ist allerdings, dass der Wertebereich von in der Praxis
verwendeten Hashfunktionen die Menge {0, 1}160 ist und für die RSA-Falltür-Permutation
ein Definitionsbereich von {0, 1}n mit n ≈ 1024 zu wählen ist, um eine ausreichend große
Sicherheit zu erreichen. In der Praxis behilft man sich damit, dass man die 160-Bit-
Hashwerte durch eine deterministische Paddingfunktion auf 1024-Bit aufbläht, was die
Sicherheit allerdings mindern kann.

Sicherheitsanalyse der FDH-Signatur im ZOM

Sei FDH-Fälschung ein probabilistischer Algorithmus, der bei Eingabe des öffentlichen
Verifikationsschlüssels k mit Wahrscheinlichkeit ε eine existentielle Fälschung (x, y) mit
ver(x, y) = 1 ausgibt und sei q die Anzahl der verschiedenen Orakelfragen x1, . . . , xq von
FDH-Fälschung an G. Wir nehmen an, dass ε > 2−n ist, da für ein beliebiges Dokument
x ∈ {0, 1}∗ ein zufällig gewähltes y ∈ {0, 1}n bereits mit Wahrscheinlichkeit 2−n eine
gültige Signatur liefert.
Betrachte folgenden Invertierungsalgorithmus für fk.

46 3 Digitale Signaturverfahren

Prozedur FDH-Invert(k, z0)
1 wähle zufällig j ∈ {1, . . . , q}
2 simuliere FDH-Fälschung(k), wobei die i-te Orakelfrage xi, 1 ≤ i ≤ q,

im Fall i = j durch z0 und sonst durch ein zufällig gewähltes
z ∈ {0, 1}n beantwortet wird.

3 if FDH-Fälschung(k) = (x, y) ∧ fk(y) = z0 then output (y)
4 else output (‘?‘)

Der nächste Satz zeigt, dass FDH-Invert bei Eingabe eines beliebigen Verifikations-
schlüssels k ∈ K die Funktion fk an einem zufällig gewählten Wert z0 ∈ {0, 1}n mit einer
von ε und q abhängigen Erfolgswahrscheinlichkeit ε′ invertiert.
Satz 66. Falls FDH-Fälschung bei Eingabe k nach genau q Fragen an G eine gültige
Fälschung (x, y) mit Wahrscheinlichkeit ε > 2−n ausgibt, findet FDH-Invert bei Eingabe
von k und einem zufällig gewählten String z0 ∈ {0, 1}n mit Wahrscheinlichkeit

ε′ ≥ ε− 2−n
q

ein Urbild y von z0 für die Funktion fk.

Beweis. Da die Eingabe z0 zufällig gewählt wird, erhält FDH-Fälschung als Antwort
auf seine Orakelfragen x1, . . . , xq zufällig gewählte Strings z, was dem ZOM entspricht.
Daher ist die Wahrscheinlichkeit, dass FDH-Fälschung(k) bei der Simulation Erfolg hat,
also ein Paar (x, y) mit G(x) = fk(y) ausgibt, genau ε. Falls FDH-Fälschung das Paar
(x, y) ausgibt, ohne den Wert G(x) zu erfragen (d.h. x 6∈ {x1, . . . , xq}), so nimmt G(x)
den Wert fk(y) nur mit Wahrscheinlichkeit 2−n an, d.h.

Pr[FDH-Fälschung(k) hat Erfolg |x 6∈ {x1, . . . , xq}] = 2−n,
was Pr[FDH-Fälschung(k) hat Erfolg ∧ x 6∈ {x1, . . . , xq}] ≤ 2−n impliziert. Wegen

ε = Pr[FDH-Fälschung(k) hat Erfolg ∧ x ∈ {x1, . . . , xq}]
+Pr[FDH-Fälschung(k) hat Erfolg ∧ x 6∈ {x1, . . . , xq}]

≤ Pr[FDH-Fälschung(k) hat Erfolg ∧ x ∈ {x1, . . . , xq}] + 2−n,
erhalten wir

Pr[FDH-Fälschung hat Erfolg ∧ x ∈ {x1, . . . , xq}] ≥ ε− 2−n.
Da die Frage xj ∈ {x1, . . . , xq}, die mit z0 beantwortet wird, zufällig ausgewählt wird
und FDH-Fälschung keinerlei Information über j erhält, folgt
Pr[FDH-Invert hat Erfolg] ≥ Pr[FDH-Fälschung hat Erfolg ∧ x = xj]

= 1
q

q∑
i=1

Pr[FDH-Fälschung hat Erfolg ∧ x = xi]

= Pr[FDH-Fälschung hat Erfolg ∧ x ∈ {x1, . . . , xq}]/q
≥ (ε− 2−n)/q �

Falls sich also fk nur mit einer sehr kleinen Wahrscheinlichkeit ε′ effizient invertieren lässt,
so gelingt einem ähnlich effizienten Gegner, der nicht mehr als q Hashwertberechnungen
durchführt im ZOM höchstens mit Wahrscheinlichkeit qε′+2−n eine existentielle Fälschung
für die FDH-Signatur. Ein ähnliches Resultat lässt sich auch für den Fall beweisen, dass
der Gegner einen Angriff mit frei wählbaren Dokumenten ausführt.

3.7 Verbindliche Signaturen (undeniable signatures) 47

3.7 Verbindliche Signaturen (undeniable signatures)

In manchen Fällen ist es für den Unterzeichner eines Dokumentes nicht wünschenswert,
dass jeder die von ihm geleistete Unterschrift verifizieren kann.
Zum Beispiel könnte eine Softwarefirma ihre Produkte mit einer Signatur versehen, die
u.a. Virusfreiheit garantiert.
Problem: Auch SW-Piraten, die ein Produkt unrechtmäßig erworben haben, können sich
von der Gültigkeit der Signatur überzeugen.
Lösung: Die Signatur wird so erstellt, dass ihre Verifikation nur unter Mitwirkung der
Softwarefirma möglich ist.
Neues Problem: Die Softwarefirma könnte sich absichtlich unkooperativ verhalten, um
eine von ihr erzeugte echte Signatur als gefälscht abzuleugnen.
Lösung: Es gibt ein Ableugnungsprotokoll (disavowal protocol), mit dem die Softwarefirma
gefälschte Signaturen als solche entlarven kann. Verweigert die Softwarefirma auch hier
ihre Mitwirkung, so liegt der Verdacht nahe, dass die vorliegende Signatur echt ist.

Das Signaturverfahren von Chaum und van Antwerpen

Bei diesem Signaturverfahren wird eine Primzahl p = 2q + 1 benutzt, wobei auch q prim
ist, so dass das Diskrete Logarithmus Problem in Z∗p hart ist. Sei α ∈ Z∗p ein Element der
Ordnung q und sei G = {αa|a ∈ Zq}, die von α in Z∗p erzeugte Untergruppe.
Der Dokumenten- und Signaturraum ist X = Y = G. Der Signierschlüssel hat die Form
k̂ = (p, α, a), a ∈ Z∗q und der zugehörige Verifikationsschlüssel ist k = (p, α, β) mit
β = αa mod p. Der Signieralgorithmus berechnet sig(k̂, x) = xa mod p.
Will Bob eine von Alice geleistete Unterschrift y ∈ G für ein Dokument x ∈ G verifizieren,
so führt er zusammen mit Alice folgendes Protokoll aus.
Verifikationsprotokoll:

1. Bob wählt zufällig e1, e2 ∈ Zq und und sendet c = ye1βe2 mod p an Alice.
2. Alice sendet d = ca

−1 mod q mod p zurück an Bob.
3. Bob akzeptiert y als echt, falls d ≡p xe1αe2 ist.

Es ist leicht zu sehen, dass Bob eine echte Signatur y akzeptiert, falls Alice kooperiert.
Wegen

β ≡p αa

folgt
βa
−1 ≡p αa·a

−1 ≡p α

und wegen
y ≡p xa

folgt
ya
−1 ≡p xa·a

−1 ≡p x.

Somit ist
d = ca

−1 = (ye1βe2)a−1 = ya
−1e1βa

−1e2 = xe1αe2 .

Beispiel 67. Sei p = 467 = 2 · 233 + 1 mit q = 233. Da g = 2 ein Erzeuger von
Z∗p ist, hat α = g2 = 4 die gewünschte Ordnung q = p−1

2 . Da α die Untergruppe
QRp der quadratischen Reste erzeugt, ist G = QRp. Wählen wir den Signierschlüssel

48 3 Digitale Signaturverfahren

k̂ = (p, α, a) = (467, 4, 101), so erhalten wir k = (p, α, β) = (467, 4, 449) als zugehörigen
Verifikationsschlüssel. Die Signatur für x = 119 ∈ G berechnet sich wie folgt:

sig(k̂, x) = xa mod p = 119101 mod 467 = 129 = y

Verifikation von y = 129 für x = 119 unter k:
1. Bob wählt e1, e2 ∈ Zq (e1 = 38, e2 = 397 = 164) und sendet c =

ye1βe2 mod p = 12938449164 mod 467 = 13 an Alice.
2. Alice sendet d = ca

−1 mod q mod p = 9 an Bob zurück.
3. Bob akzeptiert, da d = xe1αe2 = 119384164 mod 467 = 9 gilt.

/

Bemerkung 68. Die Wahl von p der Form p = 2q+1 mit q prim dient folgenden Zielen:
• Die Ordnung q der Untergruppe G von Z∗p ist prim (dies erlaubt die Berechnung
von a−1 mod q in Schritt 2 des Verifikationsprotokolls).
• G ist eine möglichst große Untergruppe von Z∗p mit primer Ordnung.

Behauptung 69. Im Fall y 6≡p xa akzeptiert Bob y mit Wahrscheinlichkeit 1/q (auch
wenn sich Alice nicht an das Verifikationsprotokoll hält).

Beweis. Da zu y, β, c ∈ G und zu e1 ∈ Zq genau ein e2 ∈ Zq mit

c ≡p ye1βe2 (3.1)

existiert, führen je q Paare (e1, e2) ∈ Zq × Zq auf dasselbe c. Aus der Sicht von Alice, die
nur c kennt, sind diese q Paare alle gleichwahrscheinlich. Wir zeigen nun, dass für jedes
d ∈ G genau eines dieser q Paare die Kongruenz

d ≡p xe1αe2 (3.2)

erfüllt, weshalb Bob mit Wahrscheinlichkeit 1/q akzeptiert.
Seien i, j, k, l ∈ Zq die zu c, d, x, y ∈ G gehörigen Exponenten, d.h. c ≡p αi, . . . , y ≡p αl.
Dann sind die Kongruenzen (3.1) und (3.2) äquivalent zu

c ≡p ye1βe2

d ≡p xe1αe2
⇔ αi ≡p αle1 · αae2

αj ≡p αke1 · αe2
⇔ i ≡q le1 + ae2

j ≡q ke1 + e2
⇔
(
l a

k 1

)
︸ ︷︷ ︸

A

(
e1
e2

)
≡q

(
i

j

)
.

Wegen αl ≡p y 6≡p xa ≡p αka folgt l 6≡q ka und daher ist detA 6≡q 0. �

Möchte nun Alice Bob gegenüber nachweisen, dass eine Signatur y gefälscht ist, so führen
beide folgendes Protokoll aus.

Ableugnungsprotokoll
1 Bob wählt zufällig e1, e2 ∈ Zq und sendet c = ye1βe2 mod p an Alice.
2 Alice sendet d = ca

−1 mod q mod p zurück.
3 Bob testet, ob d 6≡p xe1αe2 ist.
4 Bob wählt zufällig f1, f2 ∈ Zq und sendet C = yf1βf2 mod p an Alice.
5 Alice sendet D = Ca−1 mod q mod p zurück.
6 Bob testet, ob D 6≡p xf1αf2 ist.
7 Bob erkennt y als gefälscht an, falls mindestens einer der Tests

in Schritt 3) oder 6) erfolgreich war und (dα−e2)f1 ≡p (Dα−f2)e1

gilt.

3.7 Verbindliche Signaturen (undeniable signatures) 49

Bei den Schritten 1.-3. und 4.-6. handelt es sich jeweils um eine fehlgeschlagene Verifikation
der Unterschrift y (sofern der Test von Bob in Zeile 3 bzw. 6 positiv ausfällt). In Schritt
7 führt Bob zusätzlich einen Konsistenztest aus, um sich davon zu überzeugen, dass Alice
die Zahlen d und D gemäß dem Protokoll gewählt hat.

Beispiel 70. Sei p = 467, q = 233, α = 4, a = 101, β = 449. Wir nehmen an, dass das
Dokument x = 286 mit der Alice zugeschriebenen Signatur y = 81 unterschrieben ist und
Alice Bob davon überzeugen möchte, dass y gefälscht ist.

1. Bob wählt e1 = 45, e2 = 237 und sendet c = 305 an Alice.
2. Alice antwortet mit d = ca

−1 = 109
3. Bob verifiziert, dass 286454237 ≡p 149 6≡p 109 gilt.
4. Bob wählt f1 = 125, f2 = 9 und sendet C = 72 an Alice.
5. Alice antwortet mit D = Ca−1 = 68
6. Bob verifiziert, dass 28612549 ≡p 25 6≡p 109 gilt.
7. Bon erkennt y also gefälscht an, da (109 · 4−237)125 ≡p 188 ≡p (68 · 4−9)45 ist, also

die Konsistenzbedingung erfüllt ist.
/

Es bleibt zu zeigen, dass Alice zwar Bob mit hoher Wahrscheinlichkeit von der Falschheit
einer Signatur y 6≡p xa überzeugen kann, es ihr aber nicht gelingt, Bob von der Falschheit
einer echten Signatur y ≡p xa zu überzeugen.

Behauptung 71. Im Fall y 6≡p xa erkennt Bob y mit Wahrscheinlichkeit 1 − 1
q2 als

gefälscht an, falls sich beide an das Ableugnungsprotokoll halten.

Beweis. Nach vorigem Satz beträgt die Wahrscheinlichkeit, dass beide Tests in Schritt 3.
und 6. fehlschlagen genau 1

q2 . Wegen

d ≡p ca
−1
, c ≡p ye1βe2 , β ≡p αa

folgt

(dα−e2)f1 ≡p ((ye1βe2)a−1
α−e2)f1

≡p ye1a−1f1βe2a−1f1α−e2f1

≡p ye1a−1f1αe2f1α−e2f1

≡p ye1a−1f1

Analog ergibt sich aus
D ≡p Ca−1

, C ≡p yf1βf2 , β ≡p αa

(Dα−f2)e1 ≡p ((yf1βf2)a−1
α−f2)e1

≡p yf1a−1e1

≡p (dα−e2)f1

d.h. die Konsistenzbedingung wird mit Wahrscheinlichkeit 1 erfüllt. �

Behauptung 72. Im Fall y ≡p xa erkennt Bob y mit Wahrscheinlichkeit ≤ 1
q
als

gefälscht an, auch wenn sich Alice nicht an das Ableugnungsprotokoll hält.

50 3 Digitale Signaturverfahren

Beweis. Bob erkennt y nur dann als gefälscht an, wenn

(d 6≡p xe1αe2 oder D 6≡p xf1αf2) und (dα−e2)f1 ≡p (Dα−f2)e1

gilt. Da die beiden Fälle d 6≡p xe1αe2 und D 6≡p xf1αf2) symmetrisch sind, reicht es einen
davon zu betrachten.
Wir nehmen also an, dass Alice eine Zahl d an Bob sendet mit d 6≡p xe1αe2 . Nachdem Alice
die Zahl C in Zeile 4 von Bob erhalten hat, weiß sie nur, dass das von Bob gewählte Paar
(f1, f2) die Kongruenz C ≡p yf1βf2 erfüllt. Wie wir bereits im Beweis zu Behauptung 69
gesehen haben, trifft dies auf genau q Paare zu. Wir zeigen nun, dass für jedes D ∈ G
genau eines dieser q Paare die Konsistenzbedingung

(dα−e2)f1 ≡p (Dα−f2)e1

erfüllt. Dies beweist, dass Bob y mit Wahrscheinlichkeit höchstens 1/q als gefälscht
akzeptiert.
Sei u = dα−e2 mod p und seien i, j, k, l ∈ Zq die zu C,D, x, u gehörigen Exponenten, d.h.
C ≡p αi, . . . , u ≡p αl. Dann gilt

C ≡p yf1βf2

(dα−e2)f1 ≡p (Dα−f2)e1
⇔ i ≡q kaf1 + af2

lf1 ≡q je1 − e1f2
⇔
(
ka a

l e1

)
︸ ︷︷ ︸

A

(
f1
f2

)
≡q

(
i

je1

)
.

Wegen d 6≡p xe1αe2 und u ≡p dα−e2 folgt u 6≡p xe1 und somit l 6≡q e1k. Daher ist
detA = kae1 − al = a(ke1 − l) 6≡q 0. �

3.8 Fail-Stop-Signaturen

Diese Signaturen erlauben der Signaturerstellerin Alice für den Fall, dass ihr Signierschlüs-
sel k̂ geknackt wird (“fail”), dies zu beweisen und damit alle von ihr mit k̂ geleisteten
Unterschriften zu widerrufen (“stop”).
Genauer:

Alice kann mit hoher Wahrscheinlichkeit beweisen, dass eine von einem Gegner
erzeugte gültige Signatur y für ein Dokument x nicht von ihr stammt.

Das van Heyst-Pedersen Signaturverfahren

Definition 73. Sei p = 2q + 1 prim, p, q prim und sei α ∈ Z∗p ein Element der Ordnung
q. Weiter sei G = {αa|a ∈ Zq} die von α in Z∗p erzeugte Untergruppe und β = αa mod p
für ein a ∈ Z∗q.
Die Zahlen p, q, α, β werden von einer vertrauenswürdigen Instanz generiert und bekannt
gegeben, a wird jedoch vor allen Teilnehmern geheim gehalten.
X = Zq, Y = Zq × Zq.
Signaturschlüssel: k̂ := (a1, b1, a2, b2) ∈ Z4

q.
Verifikationsschlüssel: k := (γ1, γ2) = (αa1βb1 , αa2βb2) ∈ G2.
Signieralgorithmus:

sig(k̂, x) = (y1, y2) = (a1 + xa2 mod q, b1 + xb2 mod q).

3.8 Fail-Stop-Signaturen 51

Verifikationsalgorithmus:

ver(k, x, y1, y2) =

1 γ1γ
x
2 ≡p αy1βy2 ,

0 sonst.

Beh: Im Fall: sig(k̂, x) = (y1, y2) gilt ver(k, x, y1, y2) = 1:

γ1γ
x
2 = αa1βb1(αa2βb2)x

= αa1+xa2βb1+xb2

= αy1βy2

Sei S die Menge aller Paare (k̂, k) ∈ Z4
q × G2 mit k̂ = (a1, b1, a2, b2) und k =

(αa1βb1 , αa2βb2). Weiter seien S(k) = {k̂ ∈ Z4
q | (k̂, k) ∈ S} und S(k, x, y1, y2) = {k̂ ∈

S(k) | sig(k̂, x) = (y1, y2)}.

Lemma 74. ‖S(k)‖ = q2.

Lemma 75. Sei ver(k, x, y1, y2) = 1. Dann gilt

‖S(k, x, y1, y2)‖ = q

Beweis. Sei k = (γ1, γ2). Dann ist k̂ = (a1, b1, a2, b2) genau dann in S(k, x, y1, y2), wenn

γ1 ≡p αa1βb1

γ2 ≡p αa2βb2

}
k̂ ∈ S(k)

y1 ≡q a1 + xa2
y2 ≡q b1 + xb2

}
sig(k̂, x) = (y1, y2)

Seien c1, c2 ∈ Zq eindeutig bestimmte Exponenten mit γ1 ≡p αc1 und γ2 ≡p αc2 . Dann
sind diese Kongruenzen äquivalent zu

c1 ≡q a1 + ab1
c2 ≡q a2 + ab2
y1 ≡q a1 + xa2
y2 ≡q b1 + xb2

oder in Matrixform 
1 a 0 0
0 0 1 a

1 0 x 0
0 1 0 x


︸ ︷︷ ︸

A


a1
b1
a2
b2

 =


c1
c2
y1
y2

 (∗)

Wir zeigen, dass A den Rang rang(A) = 3 hat. Seien r1, . . . , r4 die Zeilen von A. Dann
gilt rang(A) ≥ 3, da die Zeilen r2, r3, r4 linear unabhängig sind, und
rang(A) ≤ 3, da r1 = r3 + ar4 − xr2 ist.
Damit hat (∗) im Falle der Lösbarkeit genau q4−3 = q Lösungen. Da ver(k, x, y1, y2) = 1
ist, folgt

γ1γ
x
2 ≡p αy1βy2 ⇒ c1 + xc2 ≡q y1 + ay2 ⇒ c1 ≡q y1 + ay2 − xc2.

Da somit die um die Spalte auf der rechten Seite von (*) erweiterte Koeffizientenmatrix
A′ denselben Rang wie A hat, ist (*) auch lösbar. �

52 3 Digitale Signaturverfahren

Lemma 76. Für alle x, x′, y1, y
′
1, y2, y

′
2 ∈ Zq mit x′ 6= x gilt

‖S(k, x, y1, y2) ∩ S(k, x′, y′1, y′2)‖ ≤ 1.

Im Fall ver(k, x, y1, y2) = ver(k, x′, y′1, y′2) = 1 gilt sogar Gleichheit.

Beweis. Die Bedingung k̂ = (a1, b1, a2, b2) ∈ S(k, x, y1, y2) ∩ S(k, x′, y′1, y′2) ist äquivalent
zu 

1 a 0 0
0 0 1 a

1 0 x 0
0 1 0 x

1 0 x′ 0
0 1 0 x′




a1
b1
a2
b2

 =



c1
c2
y1
y2
y′1
y′2


(∗)

wobei wieder γ1 ≡p αc1 , γ2 ≡p αc2 ist. Wir zeigen, dass die Zeilen r3, . . . , r6 von A linear
unabhängig sind und somit A den Rang rang(A) = 4 hat. Daraus folgt, dass (*) höchstens
eine Lösung hat.
Aus ∑6

i=3 liri = ~0 folgt nämlich l3 + l5 = 0 und xl3 + x′l5 = 0, was l3(x− x′) = 0 und
somit wegen x− x′ 6= 0 l3 = l5 = 0 impliziert. Analog folgt l4 = l6 = 0.
Da sich k̂ bei Kenntnis zweier Signaturen y, y′ für zwei Dokumente x, x′ leicht bestimmen
lässt, handelt es sich also um ein One-time-Signaturverfahren.
Um die Lösbarkeit von (*) im Fall ver(k, x, y1, y2) = ver(k, x′, y′1, y′2) = 1 zu erhalten,
zeigen wir, dass die in A bestehenden Zeilenabhängigkeiten r1 + xr2 − ar4 = r3 und
r1 + x′r2 − ar6 = r5 auch für den Spaltenvektor auf der rechten Seite von (*) gelten: Aus
ver(k, x, y1, y2) = 1 folgt

γ1γ
x
2 ≡p αy1βy2 ⇒ c1 + xc2 ≡q y1 + ay2 ⇒ y1 ≡q c1 + xc2 − ay2

und analog folgt aus ver(k, x′, y′1, y′2) = 1 die Kongruenz y′1 ≡q c1 + x′c2 − ay′2. �

Im nächsten Satz zeigen wir, dass ein Gegner, der über unbeschränkte Rechenressourcen
verfügt, bei Kenntnis einer von Alice für ein Dokument x erzeugten Signatur sig(k̂, x) =
(y1, y2) nur mit Wk 1/q ein Dokument x′ 6= x und eine Signatur (y′1, y′2) für x′ berechnen
kann, die mit sig(k̂, x′) übereinstimmt.

Satz 77. Für alle x, x′, y1, y
′
1, y2, y

′
2 ∈ Zq mit x′ 6= x gilt

Probk̂∈RZ4
q
[sig(k̂, x′) = (y′1, y′2)︸ ︷︷ ︸

A

| sig(k̂, x) = (y1, y2)︸ ︷︷ ︸
B

] = 1
q

Beweis. Sei S(k, x, y) = {k̂1, . . . , k̂q}. Dann gilt sig(k̂i, x′) 6= sig(k̂j, x′) für i 6= j, da
sonst k̂i, k̂j für (y′′1 , y′′2) = sig(k̂i, x′) = sig(k̂j, x′) beide in S(k, x, y1, y2) ∩ S(k, x′, y′′1 , y′′2)
enthalten wären.
Nun folgt Prob[A|B] = Prob[A∩B]

Prob[B] = ‖S(k,x′,y′1,y′2)∩S(k,x,y1,y2)‖
‖S(k,x,y1,y2)‖ = 1

q
. �

Frage: Wie funktioniert der Fail-Stop-Mechanismus?
D.h. wie kann Alice bei Vorlage eines Tripels (x′, y′1, y′2) mit ver(k, x′, y′1, y′2) =
1 und (y′1, y′2) 6= sig(k̂, x′) = (y′′1 , y′′2) beweisen, dass die gültige Signatur (y′1, y′2)
nicht von ihr erzeugt wurde?

3.8 Fail-Stop-Signaturen 53

Antwort: Sie benutzt das Tripel (x′, y′1, y′2), um a zu berechnen.
Wegen

ver(k, x′, y′′1 , y′′2) = 1 = ver(k, x′, y′1, y′2)

folgt

αy
′
1βy

′
2 ≡p γ1γ

x′

2 ≡p αy
′′
1 βy

′′
2

⇒ y′1 + ay′2 ≡q y′′1 + ay′′2

⇒ a ≡q
y′′1 − y′1
y′2 − y′′2

Beispiel 78. (zur van Heyst-Pedersen-Fail-Stop-Signatur) p = 2q + 1, p = 3467 =
2 · 1733︸ ︷︷ ︸

q

+1 α ∈ Z∗p mit ordp(α) = q, α = 4 a ∈ Z∗q, a = 1567 ; β = αa = 41567 = 514

Die vertrauenswürdige Instanz (TTP,trusted third party) gibt p, q, α, β bekannt und hält
a geheim.
Angenommen Alice wählt

k̂ = (888︸︷︷︸
a1

, 1024︸ ︷︷ ︸
b1

, 786︸︷︷︸
a2

, 999︸︷︷︸
b2

)

so berechnet sich k zu
k = (γ1, γ2), wobei

γ1 = αa1βb1 = 48885141024 = 3405

γ2 = αa2βb2 = 4786514999 = 2281

Wird nun Alice mit dem Paar (x′, y′′) = (x′, y′′1 , y′′2) = (3383, 822, 55) konfrontiert, das
wegen

γ1γ
x′

2 = 3405 · 22813383 ≡p 2282
und αy′′1 βy′′2 = 482251555 ≡p 2282

die Verifikationsbedingung ver(k, x′, y′′) = 1 erfüllt, so berechnet Alice zunächst

sig(k, x′) = y′ = (y′1, y′2) mit

y′1 = a1 + x′a2 mod q = 888 + 3383 · 786 ≡q 1504
y′2 = b1 + x′b2 mod q = 1024 + 3383 · 999 ≡q 1291

um sich zu vergewissern, dass y′ 6= y′′ ist. Hieraus erhält sie dann a zu

a = y′1 − y′′1
y′2 − y′′2

mod q = 1504− 822
55− 1291 ≡q 1567

/

54

4 Pseudozufallszahlen-Generatoren

Pseudozufallszahlen-Generatoren (kurz PZG) f werden mit einem Startwert x – dem
sogenannten Keim (engl. seed) – für die Erzeugung einer „zufälligen“ Bitfolge f(x)
gestartet. Dabei wird die Eingabe x zufällig unter Gleichverteilung gewählt und die
Ausgabe f(x) sollte länger sein als x und möglichst zufällig aussehen. Zudem sollte f
von einem deterministischen Algorithmus effizient berechenbar sein.

Linear-Kongruenz-Generator

Der Keim x0 wird zufällig aus der Menge Zn = {0, 1, . . . n− 1}gewählt. Die Parameter a
und b sind ebenfalls aus Z∗n.

Algorithmus LinGenn,l,a,b(x0)
1 for i := 1 to l do
2 xi := a · xi−1 + b mod n
3 bi := xi mod 2
4 ouput(b1, . . . bl)

Power-Generator

Der Keim x0 wird zufällig aus der Menge Z∗n gewählt.

Algorithmus PowerGenn,l,e(x0)
1 for i := 1 to l do
2 xi := xei−1 mod n
3 bi := xi mod 2
4 ouput(b1, . . . bl)

Es gibt zwei interessante Spezialfälle des Powergenerators:
• RSA-Generator (RsaGen) mit n = p · q wobei p, q ∈ IP und ggT(e, ϕ(n)) = 1
• Quadratischer-Rest-Generator (BBS) mit e = 2 (siehe folgenden Abschnitt).

4.1 Kryptografische Sicherheit von Pseudozufallsgeneratoren

Wir betrachten hier nur den Fall, dass sowohl x als auch f(x) Bitfolgen sind und die
Länge der Ausgabe nur von der Länge der Eingabe abhängt.
Sei l = l(k) ≥ k+ 1 eine Funktion. Ein l(k)-Generator ist eine Funktion f auf {0, 1}∗, die
Strings der Länge k auf Strings der Länge l(k) abbildet und in Polynomialzeit berechenbar
ist.
Seien (Xk) und (Yk) Familien von Zufallsvariablen mit Wertebereich W (Xk),W (Yk) ⊆
{0, 1}l(k) und sei ε : N → R+ eine Funktion. Ein ε-Unterscheider zwischen (Xk) und

4.1 Kryptografische Sicherheit von Pseudozufallsgeneratoren 55

(Yk) ist ein in Polynomialzeit berechenbarer probabilistischer Algorithmus D, so dass für
unendlich viele Werte von k gilt:

|Pr[D(Xk) = 1]− Pr[D(Yk) = 1]| ≥ ε(l(k)).

Hierbei ist Pr[D(Xk) = 1] die Wahrscheinlichkeit, daß D bei einer zufällig gemäß Xk

gewählten Eingabe akzeptiert. In diesem Fall heißen die beiden Familien (Xk) und (Yk)
ε-unterscheidbar.
Ein l(k)-Generator f heißt ε-sicher, falls die beiden Familien (f(Uk)) und (Ul(k)) von
Zufallsvariablen Xk = f(Uk) und Yk = Ul(k) nicht ε-unterscheidbar sind, wobei Un eine
auf {0, 1}n gleichverteilte ZV ist. f heißt (kryptografisch) sicher, falls f für jedes Polynom
p 1/p-sicher ist.
Es ist nicht bekannt, ob kryptografisch sichere PZGen existieren. Eine notwendige
Bedingung hierfür ist P 6= NP. Ob diese Bedingung auch hinreichend ist, ist ebenfalls
nicht bekannt. Man kann jedoch zeigen, dass die Existenz von kryptografisch sicheren
PZGen äquivalent zur Existenz von Einwegfunktionen ist.
Bei manchen Anwendungen ist es wichtig, dass kein effizienter Algorithmus das nächste
Bit der Pseudozufallsfolge korrekt vorhersagen kann. Es ist nicht schwer zu sehen, dass
ein sicherer PZG diese Bedingung erfüllt.
Ein probabilistischer Algorithmus N heißt ε-next bit predictor (ε-NBP) für f , falls für
unendlich viele k

Pr[N(f[I−1](Uk), 1l(k)) = fI(Uk)] ≥ 1/2 + ε(l(k))

ist, wobei die Zufallsvariable I auf der Menge {1, . . . , l(k)} gleichverteilt ist. Hierbei
bezeichnet fi(x) das i-te Bit und f[i](x) die Folge der ersten i Bits von f(x).

Satz 79. Falls es einen effizienten ε-NBP N für f gibt, so ex. auch ein effizienter
ε-Unterscheider für f .

Beweis. Sei N ein ε-NBP für f und betrachte folgenden Unterscheider D.

1 input z = z1 · · · zl
2 wähle i ∈R {1, . . . , l}
3 z′i := N(z1 · · · zi−1, 1l)
4 ouput(zi ⊕ z′i ⊕ 1)

D gibt also bei Eingabe z genau dann 1 aus, wenn der Prediktor N das i-te Pseudozu-
fallsbit richtig rät, wobei i zufällig gewählt wird. Daher ist

Pr[D(f(S)) = 1] = Pr[N(f(I−1)(S), 1l) = fI(S)] ≥ 1/2 + ε.

Andererseits ist klar, dass N das i-te Bit zi einer rein zufälligen Eingabe z mit Wahr-
scheinlichkeit 1/2 richtig rät, und somit Pr[D(U) = 1] = 1/2 ist. �

Ein probabilistischer Algorithmus P heißt ε-previous bit predictor (ε-PBP) für f , falls
für unendlich viele k gilt:

Pr[P (fI+1(S) · · · fl(S), 1l(k)) = fI(S)] ≥ 1/2 + ε(l(k)).

Vollkommen analog zu obigem Satz lässt sich der folgende Satz beweisen.

56 4 Pseudozufallszahlen-Generatoren

Satz 80. Falls es einen effizienten ε-PBP N für f gibt, so ex. auch ein effizienter
ε-Unterscheider für f .

Interessanterweise lässt sich aus einem Unterscheider auch ein NBP bzw. PBP gewinnen.
Um also die Sicherheit eines PZG zu beweisen, genügt der Nachweis, dass es keinen
effizienten NBP gibt.

Satz 81. Falls es einen effizienten ε-Unterscheider D für f gibt, so ex. auch ein effizienter
ε/l-NBP für f .

Beweis. Wir können o.B.d.A. annehmen, dass

Pr[D(Ul) = 1]− Pr[D(f(Uk)) = 1] ≥ ε(l(k))

für unendlich viele k gilt, da wir andernfalls D invertieren können. Die Ausgabe D(z) = 1
deutet also darauf hin, dass z tendenziell ein echter Zufallsstring ist, während die Ausgabe
D(z) = 0 darauf hindeutet, dass z ein Pseudozufallsstring ist. Betrachte nun folgenden
Prediktor N .

1 input (z1 · · · zi−1, 1l), 1 ≤ i ≤ l
2 rate zufällig bi · · · bl ∈ {0, 1}l−i+1

3 d := D(z1 · · · zi−1bi · · · bl)
4 output(d⊕ bi)

Sei z1 · · · zl eine Realisierung der ZVen f(Uk). Dann sagt N bei Eingabe von z1 · · · zi−1
das i-te Bit zi mit bi vorher, falls D den String z1 · · · zi−1bi · · · bl für pseudozufällig hält
(also D(z1 · · · zi−1bi · · · bl) = 0 ist), und mit bi ⊕ 1, falls D diesen String für zufällig hält.
Betrachte für i = 1, . . . , l = l(k) die Zufallsvariablen

Hi = f1(Uk) · · · fi−1(Uk)︸ ︷︷ ︸
f[i−1](Uk)

Bi · · ·Bl,

wobei Uk und Bj, j = 1, . . . , l, unabhängig auf {0, 1}k bzw. {0, 1} gleichverteilt sind.
Insbesondere ist also H1 = B1 · · ·Bl = Ul gleichverteilt auf {0, 1}l und Hl+1 = f(Uk)
pseudozufällig verteilt auf {0, 1}l. Wegen

N(f[i−1](Uk)) = D(f[i−1](Uk)Bi · · ·Bl︸ ︷︷ ︸
Hi

)⊕Bi

folgt

Pr[N(f[i−1](Uk), 1l) = fi(Uk)]− 1/2
= Pr[D(Hi)⊕Bi = fi(Uk)]− 1/2
= Pr[D(Hi) = 0, Bi = fi(Uk)]︸ ︷︷ ︸

Pr[Bi=fi(Uk)]−Pr[Bi=fi(Uk),D(Hi)=1]

+ Pr[D(Hi) = 1, Bi 6= fi(Uk)]︸ ︷︷ ︸
Pr[D(Hi)=1]−Pr[D(Hi)=1,Bi=fi(Uk)]

− 1/2

= Pr[Bi = fi(Uk)]︸ ︷︷ ︸
1/2

+ Pr[D(Hi) = 1]− 2 Pr[D(Hi) = 1, Bi = fi(Uk)]︸ ︷︷ ︸
Pr[D(Hi+1)=1,Bi=fi(Uk)]

=Pr[D(Hi+1)=1] Pr[Bi=fi(Uk)]︸ ︷︷ ︸
1/2

− 1/2

= Pr[D(Hi) = 1]− Pr[D(Hi+1) = 1].

4.2 Quadratische Reste 57

Sei die ZV I auf {1, . . . , l} gleichverteilt. Dann folgt

Pr[N(f[I−1](Uk), 1l) = fI(Uk)]− 1/2 = Pr[D(HI) = 1]− Pr[D(HI+1) = 1]

=
l∑

i=1
Pr[I = i]︸ ︷︷ ︸

1/l

(Pr[D(Hi) = 1]− Pr[D(Hi+1) = 1])

= (Pr[D(H1) = 1]− Pr[D(Hl+1) = 1])/l

Somit gilt Pr[N(f[I−1](Uk), 1l) = fI(Uk)] ≥ 1/2 + ε(l(k))/l(k) für unendlich viele k. �

Ganz ähnlich wie der obige Satz lässt sich auch folgendes Resultat beweisen.

Satz 82. Falls es einen effizienten ε-Unterscheider D für f gibt, so ex. auch ein effizienter
ε/l(k)-PBP für f .

4.2 Quadratische Reste

In diesem Abschnitt beschäftigen wir uns mit dem Problem, die Lösbarkeit einer quadra-
tischen Kongruenzgleichung

x2 ≡m a (4.1)

zu entscheiden.

Definition 83. Ein Element a ∈ Z∗m heißt quadratischer Rest modulo m (kurz:
a ∈ QRm), falls ein x ∈ Z∗m existiert mit x2 ≡m a. QNRm := Z∗m \ QRm ist die Menge
der quadratischen Nichtreste modulo m.

Definition 84. Sei p > 2 eine Primzahl und a ∈ Zp. Dann heißt

L(a, p) =
(
a

p

)
=


1, a ∈ QRp
−1, a ∈ QNRp

0, sonst

das Legendre-Symbol von a modulo p.

Die Kongruenzgleichung (4.1) besitzt also für ein a ∈ Z∗m genau dann eine Lösung, wenn
a ∈ QRm ist. Wie das folgende Lemma zeigt, kann die Lösbarkeit von (4.1) für primes m
effizient entschieden werden. Am Ende dieses Abschnitts werden wir noch eine andere
Methode zur effizienten Berechnung des Legendre-Symbols kennenlernen.

Lemma 85. Sei a ∈ Z∗p, p > 2 prim, und sei k = logp, g(a) für einen beliebigen Erzeuger
g von Z∗p. Dann sind die folgenden drei Bedingungen äquivalent:

1. a(p−1)/2 ≡p 1,
2. k ist gerade,
3. a ∈ QRp.

Beweis.
1⇒ 2: Angenommen, a ≡p gk für ein ungerades k = 2 · j + 1. Dann ist

a(p−1)/2 ≡p gj·(p−1)︸ ︷︷ ︸
≡p1

g(p−1)/2 ≡p g(p−1)/2 6≡p 1.

58 4 Pseudozufallszahlen-Generatoren

2⇒ 3: Ist a ≡p gk für k = 2j gerade, so folgt a ≡p (gj)2, also a ∈ QRp.
3⇒ 1: Sei a ∈ QRp, d. h. b2 ≡p a für ein b ∈ Z∗p. Dann folgt mit dem Satz von Fermat,

a(p−1)/2 ≡p b p−1 ≡p 1.

�

Somit zerfällt Zp in die drei Teilmengen QRp, QNRp und Zp \ Z∗p = {0}, wobei die ersten
beiden jeweils (p− 1)/2 Elemente enthalten. Als weitere Folgerung erhalten wir folgende
Formel zur effizienten Berechnung des Legendre-Symbols.

Satz 86 (Eulers Kriterium). Für alle a und p > 2 prim gilt

a(p−1)/2 ≡p
(
a

p

)
.

Beweis. Nach obigem Lemma reicht es zu zeigen, dass für alle a ∈ Z∗p die Kongruenz
a(p−1)/2 ≡p ±1 gelten muss. Da jedoch die Kongruenz x2 ≡p 1 nach dem Satz von
Lagrange nur die beiden Lösungen ±1 hat, folgt dies aus der Tatsache, dass a(p−1)/2

Lösung dieser Kongruenz ist. �

Korollar 87. Für alle a, b ∈ Z∗p, p > 2 prim, gilt

1.
(
−1
p

)
= (−1)(p−1)/2 =

{
1, p ≡4 1,
−1, p ≡4 3,

2.
(
ab
p

)
=
(
a
p

)
·
(
b
p

)
.

Als weiteres Korollar aus Eulers Kriterium erhalten wir eine Methode, quadratische Kon-
gruenzgleichungen im Fall p ≡4 3 zu lösen. Für beliebige Primzahlen p ist kein effizienter,
deterministischer Algorithmus bekannt. Es gibt jedoch einen probabilistischen Algorith-
mus von Adleman, Manders und Miller (1977).

Korollar 88. Sei p > 2 prim, dann besitzt die quadratische Kongruenzgleichung x2 ≡p a
für jedes a ∈ QRp genau zwei Lösungen. Im Fall p ≡4 3 sind dies ±ak mod p (für
k = (p+ 1)/4), wovon nur ak mod p ein quadratischer Rest ist.

Beweis. Sei a ∈ QRp, d. h. es existiert ein b ∈ Z∗p mit b2 ≡p a. Mit b ist auch −b eine
Lösung von x2 ≡p a, die von b verschieden ist (p ist ungerade). Nach Lagrange existieren
keine weitere Lösungen.
Sei nun p ≡4 3. Dann gilt (

−b
p

)
=
(
−1
p

)
·
(
b

p

)
= −

(
b

p

)

nach Korollar 87. Demnach ist genau eine der beiden Lösungen ±b ein quadratischer
Rest. Schließlich liefert Eulers Kriterium die Kongruenz a(p−1)/2 ≡p 1. Daher folgt für
k = (p+ 1)/4 die Kongruenz

(ak)2 = a(p+1)/2 = a(p−1)/2 · a ≡p a.

Da mit a auch ak mod p ein quadratischer Rest ist, ist −ak mod p ein quadratischer
Nichtrest. �

4.3 Quadratische Pseudoreste 59

Satz 89. Sei n = pq für Primzahlen p, q mit p ≡4 q ≡ 3. Dann besitzt die quadratische
Kongruenz x2 ≡n a für jedes a ∈ QRn genau vier Lösungen, wovon genau eine ein
quadratischer Rest ist.

Beweis. Mit x2 ≡n a besitzen wegen n = pq auch die beiden quadratischen Kongruenzen
x2 ≡p a und x2 ≡q a Lösungen, und zwar jeweils genau zwei (siehe Korollar 88):
y1 = a(p+1)/4 mod p ∈ QRp, y2 = −a(p+1)/4 mod p ∈ QNRp, z1 = a(q+1)/4 mod q ∈ QRq
und z2 = −a(q+1)/4 mod q ∈ QNRq. Mit dem Chinesischen Restsatz können wir vier
verschiedene Lösungen xi,j, 1 ≤ i, j ≤ 2 mit

x ≡p yi
x ≡q zj

bestimmen. Es können aber auch nicht mehr als diese vier Lösungen existieren, da sich
daraus für mindestens eine der beiden Kongruenzen x2 ≡p a und x2 ≡q a mehr als zwei
Lösungen ableiten ließen.
Wegen

x ∈ QRn ⇒ ∃u : u2 ≡n x
⇒ ∃u : u2 ≡p x ≡q u2

⇒ x mod p ∈ QRp ∧ x mod q ∈ QRq

können x1,2, x2,1, x2,2 keine quadratischen Reste modulo n sein.
Weiterhin gibt es Zahlen l ∈ Z∗p, k ∈ Z∗q mit l2 ≡p y1 und k2 ≡q z1. Sei m ∈ Z∗n eine
Lösung für das System

x ≡p l
x ≡q k

Dann folgt
x1,1 ≡p y1 ≡p l2 ≡p m2 und x1,1 ≡q z1 ≡q k2 ≡q m2

und daher x1,1 ≡n m2. Also ist x1,1 ein quadratischer Rest modulo n. �

Als weitere zahlentheoretische Funktion mit für die Kryptografie wichtigen Eigenschaften
erhalten wir somit die Quadratfunktion x2 : QRn → QRn, die nach vorigem Satz bijektiv
ist (falls n = pq für Primzahlen p, q mit p ≡4 q ≡ 3). Ihre Umkehrfunktion x 7→

√
x

heißt diskrete Wurzelfunktion, und kann bei Kenntnis der Primfaktoren p und q von
n effizient berechnet werden.

4.3 Quadratische Pseudoreste

Wir erweitern nun das Legendre-Symbol zum Jacobi-Symbol.

Definition 90 (Jacobi-Symbol). Das Jacobi-Symbol ist für alle a und alle ungeraden
m > 3 durch

J (a,m) =
(
a

m

)
=
(
a

p1

)e1

· · ·
(
a

pr

)er

definiert, wobei pe1
1 · · · per

r die Primfaktorzerlegung von m ist. Ist zwar
(
a
m

)
= 1, aber

a ∈ QNRm kein quadratischer Rest modulo m, so heißt a quadratischer Pseudorest
modulo m (kurz: a ∈ Q̃Rm).

60 4 Pseudozufallszahlen-Generatoren

Man beachte, daß im Gegensatz zum Legendre-Symbol die Eigenschaft
(
a
m

)
= 1 für ein

a ∈ Z∗m nicht unbedingt mit a ∈ QRm gleichbedeutend ist. Zum Beispiel gibt es in Z∗n
(n = p · q für Primzahlen p und q mit p ≡4 q ≡4 3) wie wir gesehen haben, genau ϕ(n)/4
quadratische Reste und 3ϕ(n)/4 quadratische Nichtreste, wogegen nur für die Hälfte
aller a ∈ Z∗n die Gleichung

(
a
m

)
= −1 gilt. Folglich gibt es in diesem Fall genau so viele

quadratische Reste wie quadratische Pseudoreste.
Allerdings überträgt sich die in Teil 1 von Korollar 87 festgehaltene Eigenschaft des
Legendre-Symbols auf das Jacobi-Symbol. Interessanterweise ist das Jacobi-Symbol auch
ohne Kenntnis der Primfaktorzerlegung des Moduls effizient berechenbar.
Sei n = pq das Produkt zweier Primzahlen p, q mit der Eigenschaft p ≡4 q ≡4 3. Es ist
bekannt, dass die Berechnung der Umkehrfunktion

√
x : QRn → QRn der Quadratfunktion

x2 : QRn → QRn äquivalent zur Faktorisierung von n ist. Folglich ist die diskrete
Wurzelfunktion

√
x schwer zu berechnen, falls die Faktorisierung von n schwer ist. Man

nimmt sogar an, dass bereits die Frage, ob eine gegebene Zahl x ∈ Z∗n ein quadratischer
Rest, ein schwieriges Problem ist. Da dieses Problem für Eingaben x mit Jacobisymbol(
x
n

)
= −1 trivial ist, schließt man sie üblicherweise von der Betrachtung aus.

Quadratische-Reste-Problem (QR-Problem):
Gegeben: Zahlen n und x ∈ Z∗n mit Jacobisymbol

(
x
n

)
= 1 (d.h. x ∈ QRn ∪ Q̃Rn),

wobei n das Produkt zweier unbekannter Primzahlen ist.
Gefragt: Ist x ∈ QRn?

Beim QR-Problem geht es also darum, quadratische Reste von quadratischen Pseudoresten
zu unterscheiden.

4.4 Der BBS-Generator

Der BBS-Pseudozufallsgenerator von Blum, Blum und Shub 1986 verwendet die Qua-
dratfunktion

x2 : QRn 7→ QRn,
mit n = p · q für p, q prim und p ≡4 q ≡4 3. Seine Sicherheit lässt sich unter der
Voraussetzung beweisen, dass ohne Kenntnis der Faktoren p, q für fast alle y ∈ QRn das
niederwertigste Bit von √y nur mit Wahrscheinlichkeit 1/2 richtig geraten werden kann.
Als Keim wird eine zufällig aus Z∗n gewählte Zahl x0 verwendet. Daraus werden der
Reihe nach Zahlen xi ∈ QRn durch Quadrieren berechnet, deren Paritäten die Bits der
Ausgabefolge bilden.
Algorithmus BBSn,l(x0)
1 for i := 1 to l do
2 xi := x2

i−1 mod n
3 bi := xi mod 2
4 ouput(b1, . . . bl)

Beispiel 91. Wählen wir z. B. die Primzahlen p = 11, q = 19, also n = 209, und als
Keim x0 = 20, so erhalten wir die Pseudo-Zufallsbitfolge BBS209(20) = 11001100 . . .

i 0 1 2 3 4 5 6 7 8 . . .

xi 20 191 115 58 20 191 115 58 20 . . .

bi 0 1 1 0 0 1 1 0 0 . . .

4.4 Der BBS-Generator 61

Wir zeigen nun, dass sich aus jedem effizienten Unterscheider für den BBS-Generator
ein effizienter probabilistischer Algorithmus für das QR-Problem gewinnen lässt. Im
Umkehrschluss bedeutet dies, dass der BBS-Generator sicher ist, falls das QR-Problem
hart ist.
Sei also D ein effizienter ε-Unterscheider für den Generator BBSn,l. Dann ex. ein effizienter
(ε/l)-PBP P für BBSn,l. Der folgende Satz zeigt, wie sich aus einem δ-PBP P für BBSn,l
ein Entscheidungsalgorithmus für das QR-Problem gewinnen lässt, der für eine zufällige
Eingabe x ∈ QRn ∪ Q̃Rn eine Korrektheitswahrscheinlichkeit ≥ 1/2 + δ hat.

Satz 92. Falls es einen effizienten δ-PBP P für BBSn,l gibt, so lässt sich für eine zufällig
aus QRn ∪ Q̃Rn gewählte Eingabe x mit Wahrscheinlichkeit ≥ 1/2 + δ entscheiden, ob
x ∈ QRn ist.

Beweis. Betrachte folgenden Entscheidungsalgorithmus.

Algorithmus QR-Test(x, n)
1 wähle i ∈R {1, . . . , l}
2 xi := x
3 for j := i+ 1 to l do
4 xj := x2

j−1 mod n
5 bj := xj mod 2
6 bi := P (bi+1 · · · bl, 1l)
7 if x ≡2 bi then ouput(1) else ouput(0)

Die Aussage des Satzes folgt unmittelbar aus folgender Behauptung.

Behauptung. Pr
x∈RQRn∪Q̃Rn

[QR-Test(x, n) = 1⇔ x ∈ QRn] ≥ 1/2 + δ.

Wird x zufällig aus QRn∪Q̃Rn gewählt, so ist xi+1 = x2 mod n ein zufälliger quadratischer
Rest in QRn, d.h. die Eingabe für den PBP P sind l− i konsekutive Bits einer mit BBSn,l
generierten Pseudozufallsfolge (man überlegt sich leicht, dass die Verteilung dieser Bitfolge
nicht vom Index des Startbits abhängt, da alle xi, i ≥ 1, auf QRn gleichverteilt sind).
Daher gibt P mit Wahrscheinlichkeit 1/2+δ die Parität der diskreten Wurzel√xi+1 mod n
aus. Da x ∈ QRn ∪ Q̃Rn ist, gilt √xi+1 mod n ∈ {x, n − x}. Zudem hat √xi+1 mod n
wegen x 6≡2 n− x genau dann die gleiche Parität wie x, wenn x = √xi+1 mod n ist. Da
dies wiederum mit x ∈ QRn äquivalent ist, folgt die Behauptung. �

Als nächstes zeigen wir, wie sich QR-Test in einen Algorithmus verwandeln lässt, der
jede Eingabe x ∈ QRn ∪ Q̃Rn mit Wahrscheinlichkeit ≥ 1/2 + δ korrekt entscheidet.

Satz 93. Falls es einen effizienten Algorithmus A gibt, der für eine zufällig aus QRn∪Q̃Rn
gewählte Eingabe x mit Wahrscheinlichkeit ≥ 1/2 + δ entscheidet, ob x ∈ QRn ist, so ex.
auch ein effizienter Algorithmus A′, der für jede Eingabe x ∈ QRn∪Q̃Rn die Zugehörigkeit
von x zu QRn mit Wahrscheinlichkeit ≥ 1/2 + δ korrekt entscheidet.

Beweis. Betrachte folgenden Entscheidungsalgorithmus.

Algorithmus A′(x, n)
1 wähle z ∈R Z∗n
2 wähle b ∈R {0, 1}

62 4 Pseudozufallszahlen-Generatoren

3 x′ := (−1)bz2x mod n
4 ouput A(x′, n)⊕ b

Für jede Eingabe x ∈ QRn ∪ Q̃Rn ist x′ eine Zufallszahl in QRn ∪ Q̃Rn. Da −1 ∈ Q̃Rn ist,
ist die Funktion x 7→ −x mod n eine Bijektion zwischen QRn und Q̃Rn, d.h. die Ausgabe
von A(x, n) ist genau dann korrekt, wenn die Ausgabe von A(x′, n) korrekt ist. �

Schließlich zeigen wir noch, wie sich die Fehlerwahrscheinlichkeit von A′ exponentiell
klein machen lässt. Hierzu benötigen wir das folgende Lemma.

Lemma 94. Sei E ein Ereignis, das mit Wahrscheinlichkeit 1/2−δ, δ > 0, auftritt. Dann
ist die Wahrscheinlichkeit, dass sich E bei m = 2t + 1 unabhängigen Wiederholungen
mehr als t-mal ereignet, höchstens 1/2(1− 4δ2)t.

Beweis. Für i = 1, . . . ,m sei Xi die Indikatorvariable

Xi =

1, Ereignis E tritt beim i-ten Versuch ein,
0, sonst

und X sei die Zufallsvariable X = ∑m
i=1 Xi. Dann ist X binomial verteilt mit Parametern

m und p = 1/2− δ. Folglich gilt für i > m/2,

Pr[X = i] =
(
m

i

)
(1/2− δ)i (1/2 + δ)m−i

=
(
m

i

)
(1/2− δ)m/2 (1/2 + δ)m/2

(
1/2− δ
1/2 + δ

)i−m/2

≤
(
m

i

)
(1/2− δ)m/2 (1/2 + δ)m/2︸ ︷︷ ︸

(1/4−δ2)m/2

.

Wegen
m∑

i=t+1

(
m

i

)
= 2m−1 = 4m/2

2

erhalten wir somit
m∑

i=t+1
Pr[X = i] ≤

(
1/4− δ2

)m/2 m∑
i=t+1

(
m

i

)
= (1− 4δ2)m/2

2

≤ (1− 4δ2)t
2 .

�

Falls wir also A′ m = 2t + 1-mal ausführen und einen Mehrheitsentscheid treffen, so
reduziert sich die Fehlerwahrscheinlichkeit von 1/2− δ auf 1/2(1− 4δ2)t < e−4δ2t. Wählen
wir beispielsweise t = s/4δ2, so wird diese kleiner als 2−s.

63

5 Berechnung des diskreten Logarithmus und
Ganzzahl-Faktorisierung

Sei (G, ◦) eine Gruppe und sei α ∈ G. Weiter bezeichne [α] = {αi|i = 0 · · ·n− 1} die von
α in G erzeugte Untergruppe, wobei n = ordG(a) = min{e ≥ 1 | αe = 1} die Ordnung
von α ist. Dann heißt die eindeutig bestimmte Zahl e ∈ {0, . . . , n− 1} mit β = αe der
diskrete Logarithmus von β zur Basis α in G (kurz: e = logG,α(β)).

Das diskrete Logarithmusproblem (DLP):
Gegeben: (Beschreibung einer) Gruppe G, ein Element α ∈ G und die Ordnung
n = ordG(a) von α in G sowie ein Element β ∈ [α].
Gesucht: Der diskrete Logarithmus e = logG,α(β) von β zur Basis α in G.

In vielen Gruppen ist die Funktion e 7→ αe effizient mittels wiederholtem Quadrieren und
Multiplizieren berechenbar. In einigen Fällen ist jedoch kein effizienter Algorithmus zur
Bestimmung der Umkehrfunktion, also von logα(β) bekannt, d.h. e 7→ αe ist Kandidat
für eine Einwegfunktion.

Beispiel 95. Sei G = Z∗p, p prim, und sei α ein Erzeuger von Z∗p. Dann ist [α] = Z∗p und
α hat die Ordnung n = p− 1. Ist p hinreichend groß und enthält p− 1 mindestens einen
großen Primfaktor, so sind keine effizienten Algorithmen zur Berechnung von logα(β) in
Z∗p bekannt.

Wir betrachten zunächst eine Reihe von naiven Algorithmen für das DLP.

Berechnung von logG,α(β)
1 γ := 1
2 for i := 0 to n− 1 do
3 if γ = β then output(i)
4 γ := αγ

Dieser Algorithmus läuft in Zeit O(n) (wobei wir vereinfacht annehmen, dass elementare
Gruppenoperationen in konstanter Zeit ausführbar sind) und benötigt nur logarithmischen
Speicherplatz. Falls wir im Vorfeld eine Tabelle mit den Logarithmen aller möglichen
Werte für β erstellen, können wir danach für jedes β den diskreten Logarithmus durch
Table-Lookup in konstanter Zeit bestimmen. Für die Precomputation fallen jedoch Zeit
O(n) und Platz O(n log n) an.

DLP-Berechnung mittels Precomputation
1 Precomputation: Trage die Exponenten e = 0, . . . , n− 1 unter der

Adresse αe in eine Tabelle T ein
2 Computation: Ermittle in T den Eintrag e unter der Adresse β und

gib e aus

64 5 Berechnung des diskreten Logarithmus und Ganzzahl-Faktorisierung

5.1 Der Algorithmus von Shanks

Der folgende Algorithmus von Shanks (auch baby-step giant-step Algorithmus genannt)
berechnet ebenfalls im Vorfeld eine Tabelle von DLP-Werten, allerdings nur für Potenzen
der Form αjm, j = 0, . . . ,m − 1, wobei m = d

√
ne ist. Dadurch erhöht sich zwar

die Laufzeit zur Bestimmung des diskreten Logarithmus für β von O(1) auf O(
√
n), im

Gegenzug geht jedoch der Speicherplatzverbrauch von O(n log n) auf O(
√
n log n) zurück.

Algorithmus Shanks(G, n, α, β)
1 Precomputation:
2 k := d

√
ne

3 sortiere die Paare (αim, i), i = 0, . . . , k − 1, nach der ersten
Komponente in eine Tabelle T1

4 Computation:
5 sortiere die Paare (βα−j, j), j = 0, . . . , k − 1, nach der ersten

Komponente in eine Tabelle T2
6 ermittle durch parallele sequentielle Suche Paare (γ, i) in T1

und (γ, j) in T2 mit derselben ersten Komponente
7 output im+ j

5.2 Der Pohlig-Hellman-Algorithmus

Mit dem Pohlig-Hellman-Algorithmus lässt sich der diskrete Logarithmus in einer be-
liebigen Gruppe G berechnen. Die Ordnung der Potenz αi eines Elements α ∈ G der
Ordnung n ist

ordG(αi) = n/ ggT(n, i).

Ist insbesondere q ein Teiler von n, so hat αn/q die Ordnung q.
Im Folgenden betrachten wir speziell den Fall, dass α ein Element der Gruppe G = Z∗m
ist. Sei a = logG,α(β) der diskrete Logarithmus von β zur Basis α. Weiter sei n = ∏k

i=1 p
ei
i

die Primfaktorzerlegung der Ordnung n von α. Falls wir für i = 1, . . . , k die Werte
ai = a mod pei

i kennen, so lässt sich daraus a leicht mit dem Chinesischen Restsatz
berechnen. Schreiben wir ai als Zahl zur Basis pi, so erhalten wir Ziffern d0, . . . , dei−1 ∈ Zpi

mit ai = ∑ei−1
j=0 djp

j
i . Weiter ex. eine Zahl si ≥ 0 mit a = ai + sip

ei
i .

Um nun die Ziffern d0, . . . , dei−1 zu berechnen, betrachten wir für j = 0, . . . , ei − 1 und
βj = βα−d0−d1pi−d2p2

i ···−dj−1p
j−1
i die Gleichung

β
n/pj+1

i
j = αdjn/pi

(
bzw. dj = logG,αn/pi (β

n/pj+1
i

j)
)
,

die sich leicht verifizieren lässt:

β
n/pj+1

i
j = (αa−d0−d1pi−d2p2

i ···−dj−1p
j−1
i)n/p

j+1
i

= (αdjp
j
i +dj+1p

j+1
i +···+dei−1p

ei−1
i +sip

ei
i)n/p

j+1
i

= (αdjp
j
i +tpj+1

i)n/p
j+1
i für eine Zahl t ≥ 0

= αdjn/piαtn

= αdjn/pi

5.2 Der Pohlig-Hellman-Algorithmus 65

Der folgende Algorithmus berechnet sukzessive die Zahlen βj und dazu die Ziffern
dj = logG,αn/pi (β

n/pj+1
i

j), die sich wegen ordG(αn/pi) = pi in Zeit O(√pi) (etwa mit dem
Algorithmus von Shanks) ermitteln lassen. Insgesamt erhalten wir somit eine Laufzeit
von O(ei

√
pi) zur Bestimmung von ai und von O(maxi

√
pi log n) zur Bestimmung von a.

Algorithmus Pohlig-Hellman-DLP(G, n, α, β, p1, . . . , pk, e1, . . . , ek), n = ∏k
i=1 p

ei
i

1 for i := 1 to k do
2 for j := 0 to ei − 1 do
3 dj := logG,αn/pi (βn/p

j+1
i)

4 β := βα−djp
j
i

5 ai := (dei−1 · · · d0)pi

6 bi := m/mi

7 ci := b−1
i mod mi

8 output ∑k
i=1 aibici mod m

Beispiel 96. β = 3344, α = 3, m = 293. Da wir die Ordnung von α nicht kennen, setzen
wir n = ‖Z∗m‖ = ϕ(293) = (29 − 1)292 = 22 · 7 · 292. Der Algorithmus von Pohlig und
Hellman muss also für (pi, ei) ∈ {(2, 2), (7, 1), (29, 2)} durchgeführt werden:

i pi ei mi = pei
i n/pi αn/pi j βj n/pj+1

i β
n/pj+1

i
j dj ai

1 2 2 4 11774 24388 0 3344 11774 1 0
1 3344 5887 24388 1 2

2 7 1 7 3364 7302 0 3344 3364 4850 2 2

3 29 2 841 812 12616 0 3344 812 11775 28
1 6998 28 3365 8 260

Der gesuchte diskrete Logarithmus a = logG,α(β) muss nun noch mit dem Chinesischen
Restsatz als Lösung der drei Kongruenzen a ≡mi

ai bestimmt werden.
Satz 97 (Chinesischer Restsatz). Seien m1, . . . ,mk paarweise teilerfremd und seien
ai ∈ Zmi

für i = 1, . . . , k. Dann hat das System
x ≡mi

ai, i = 1, . . . , k
genau eine Lösung x modulo m = ∏k

i=1 mi, die durch

x =
k∑
i=1

aibici mod m mit bi = m

mi

und ci = b−1
i mod mi

bestimmt ist.

Es ergeben sich folgende Werte:

i ai mi bi = m/mi ci = (m/mi)−1 mod mi aibici mod m

1 2 4 5887 3 11774
2 2 7 3364 2 13456
3 260 841 28 811 17080∑

a = 18762

Damit gilt log3(3344) ≡293 18762.

66 5 Berechnung des diskreten Logarithmus und Ganzzahl-Faktorisierung

5.3 Der Rho-Faktorisierungsalgorithmus

Von Pollard wurde eine heuristische Strategie entwickelt, die sich sowohl zur Lösung
des DLP als auch des Faktorisierungsproblems eignet. Die Idee dabei ist, mit wenig
Speicherplatz eine Kollision ai = aj mit i 6= j für eine Folge (an) der Form an+1 = f(an)
zu finden. Zahlenfolgen dieser Bauart haben die Eigenschaft, dass ai = aj die Gleichheit
ai+k = aj+k für alle k ≥ i impliziert.
Wir betrachten zunächst die Faktorisierungsvariante des Rho-Algorithmus von Pollard.
Sei n eine Zahl mit mindestens 2 verschiedenen Primteilern p < q (falls n nur einen
Primteiler hat, also eine Primzahlpotenz ist, lässt sich n leicht durch Berechnung der
k-ten Wurzeln für k = 2, . . . , log2(n) faktorisieren).
Angenommen, wir wählen zufällig eine Menge X ⊆ Zn der Größe √p, so enthält X mit
großer Wahrscheinlichkeit 2 Elemente x 6= x′ mit x ≡p x′, die auf den nichttrivialen
Faktor d = ggT(x− x′, n) von n führen.
Wählen wir nun anstelle von X eine pseudozufällige Menge der Form X = {x1, x2 =
f(x1), . . . , xj = f(xj−1)}, wobei x1 ein zufällig gewählter Startwert ist, so tritt bei
geeigneter Wahl von f : Zn → Zn für j ≤ √p mit großer Wahrscheinlichkeit eine Kollision
xj ≡p xi für ein i < j auf. Eine gute Wahl für f ist beispielsweise f(x) = x2 ± 1 mod n.
Werden zur Berechnung von f nur die Ringoperationen von Zn verwendet, so impliziert
xi ≡p xj die Kongruenz xi+1 = f(xi) ≡p f(xj) = xj+1, was wiederum für für alle k ≥ 0
die Kongruenz xi+k ≡p xj+k bzw. für alle k ≥ i die Kongruenz xk ≡p xj−i+k impliziert.
Setzen wir l = j − i, so erhalten wir für alle k ≥ i die Kongruenz xk ≡p xk+l und daraus
xk ≡p xk+dl für alle k ≥ i und d ≥ 0. Insbesondere folgt also xk ≡p x2k für alle k ≥ i mit
k ≡l 0. Indem wir also sukzessive die Paare (xk, x′k = x2k) berechnen, können wir mit
sehr geringem Platzverbrauch ein Kollisionspaar (xk, x′k) mit xk ≡p x′k und k < i+ l = j
finden (ohne p zu kennen).

Algorithmus Pollard-Rho-Factorize(n)
1 wähle zufällig x ∈ Zn
2 x′ := x2 + 1 mod n
3 while ggT(x− x′, n) = 1 do
4 x := f(x)
5 x′ := f(f(x′))
6 if d = ggT(x− x′, n) < n then output(d)
7 else output(?)

5.4 Der Rho-DLP-Algorithmus

Dieser Algorithmus berechnet eine pseudozufällige Folge von Paaren (xi, yi) ∈ Zn × Zn.
Ziel ist es, zwei verschiedene Paare (xi, yi) und (xj, yj) mit αxiβyi = αxjβyj zu finden. Im
Fall ggT(yj − yi, n) = 1 lässt sich hieraus wegen

αxi+ayi = αxiβyi = αxjβyj = αxj+ayj

der diskrete Logarithmus logG,α(β) = (xi − xj)(yj − yi)−1 mod n leicht bestimmen.
Andernfalls erhalten wir g = ggT(yj − yi, n) Kandidaten a1, . . . , ag, unter denen der
richtige ebenfalls leicht zu ermitteln ist, sofern g nicht zu groß ist. Zur Bildung der

5.5 Die Index-Calculus-Methode 67

Pseudozufallsfolge kann bspw. die Funktion f in folgendem Algorithmus benutzt werden.
Aus Effizienzgründen berechnet sie auch gleich die Werte γi = αxiβyi . Die Mengen
S1, S2, S3 bilden eine Partition von G in drei etwa gleich große Mengen, wobei das
neutrale Element 1 von G nicht in S2 enthalten sein sollte.

Algorithmus Pollard-Rho-DLP(G, n, α, β)
1 function f(x, y, γ)
2 case
3 γ ∈ S1: return(x, y + 1 mod n, βγ)
4 γ ∈ S2: return(2x mod n, 2y mod n, γ2)
5 γ ∈ S3: return(x+ 1 mod n, y, αγ)
6

7 wähle zufällig x, y ∈ Zn
8 γ := αxβy

9 (x′, y′, γ′) := f(x, y, γ)
10 while γ 6= γ′ do
11 (x, y, γ) := f(x, y, γ)
12 (x′, y′, γ′) := f(f(x′, y′, γ′))
13 g := ggT(y′ − y, n)
14 bestimme alle Lösungen a1, . . . , ag von (y′ − y)a ≡n (x− x′)
15 output ai mit αai = β

Ähnlich wie beim Rho-Faktorisierungsalgorithmus lässt sich argumentieren, dass die
while-Schleife nach ca.

√
n Iterationen abbricht.

5.5 Die Index-Calculus-Methode

Hierbei handelt es sich nicht um einen generischen DLP-Algorithmus, da er nur für
spezielle Gruppen anwendbar ist. Wir betrachten den wichtigen Spezialfall G = Z∗p, p
prim, und ord(α) = p− 1. Der Algorithmus benutzt eine Faktorbasis B = {p1, . . . , pb},
wobei wir annehmen, dass B die ersten b Primzahlen enthält.

Algorithmus Index-Calculus(p, α, β)
1 Precomputation:
2 bestimme li = logα pi für i = 1, . . . , b
3 Computation:
4 wähle zufällig eine Zahl s ∈ {0, . . . , p− 2}
5 γ := βαs mod p
6 if (γ ist über B faktorisierbar) then
7 berechne Exponenten c1, . . . , cb mit γ = pc1

1 · · · pcb
b

8 output (c1l1 + · · ·+ cblb − s mod p− 1)

Zur Bestimmung der Zahlen li kann man wie folgt vorgehen. Wähle c etwas größer als b
(z.B. c = b+ 10) und generiere c Kongruenzen der Form

αxj ≡p p
a1j

1 · · · p
abj

b , j = 1, . . . , c.

Hierzu kann man xj zufällig wählen und testen, ob yj = αxj mod p über B faktorisierbar
ist. Die Wahrscheinlichkeit hierfür hängt natürlich von der Größe von B ab. Aus den

68 5 Berechnung des diskreten Logarithmus und Ganzzahl-Faktorisierung

Kongruenzen lässt sich ein lineares Kongruenzgleichungssystem der Form

a11 · · · ab1

. . .
a1c · · · abc


︸ ︷︷ ︸

A


l1
...
lb

 ≡p−1


x1
...
xc



für die Unbekannten l1, . . . , lb gewinnen, das die gewünschten Werte liefert, falls A durch
Streichen von c−b Zeilen in eine (b×b)-Matrix A′ mit ggT(detA′, p−1) = 1 transformiert
werden kann.

Beispiel 98. Sei p = 10007 und α = 5. Als Faktorbasis B wählen wir B = {2, 3, 5, 7}.
Zudem wählen wir x1 = 4063, x2 = 5136 und x3 = 9865. Damit erhalten wir wegen

54063 mod p = 42 = 213171

55136 mod p = 54 = 213370

59865 mod p = 189 = 203371

das Kongruenzgleichungssystem
1 1 1

1 3 0
0 3 1


l1l2
l4

 ≡p−1

4063
5136
9865


für die Unbekannten l1, l2, l4. Subtrahieren wir die erste Zeile von der Summe der 2. und
3. Zeile, so erhalten wir die Gleichung 5l2 ≡p−1 5136 + 9865− 4063 = 10938 ≡p−1 932
und somit l2 = 6190. Zudem ist l1 = 6578, l4 = 1301 und l3 = logα p3 = log5 5 = 1.
Wollen wir nun den diskreten Logarithmus für β = 9451 bestimmen, so wählen wir eine
Zufallszahl s (z.B. s = 7736) und berechnen

γ = βαs = 9451 · 57736 ≡p 8400 = 24315271.

Daraus erhalten wir logα β = 4 · 6578 + 1 · 6190 + 2 · 1 + 1 · 1301− 7736 mod p− 1 = 6057.

Durch eine heuristische Komplexitätsanalyse lässt sich zeigen, dass die
Precomputation-Phase in Zeit O(e(1+o(1))

√
ln p lnln p) und die Computation-Phase

in Zeit O(e(1/2+o(1))
√

ln p lnln p) ausführbar ist.

5.6 Die Methode der zufälligen Quadrate

Mit einer ähnlichen Methode lässt sich übrigens auch eine zusammengestzte Zahl n
faktorisieren (so genannte Methode der zufälligen Quadrate). Hierzu sucht man nach
Zahlen xi ∈ Z∗n, i ∈ I, mit der Eigenschaft, dass yi = x2

i mod n über B faktorisierbar ist:
yi = pci1

1 · · · pcib
b . Danach bestimmt man eine Teilmenge J ⊆ I, so dass die Primfaktor-

zerlegung ∏i∈J yi = pe1
1 · · · peb

b nur gerade Exponenten ej = ∑
i∈J cij hat. Setzen wir nun

a = ∏
i∈J xi mod n und b = p

e1/2
1 · · · peb/2

b mod n, so gilt offenbar a2 ≡n b2 und wir können
im Fall, dass a 6≡n ±b ist, einen nichttrivialen Faktor ggT(a− b, n) von n bestimmen.

5.6 Die Methode der zufälligen Quadrate 69

Beispiel 99. Sei n = 15770708441 und B = {2, 3, 5, 7, 11, 13}. Wählen wir x1 =
8340934156, x2 = 12044942944 und x3 = 2773700011, so erhalten wir wegen

x2
1 mod n = 21 = 3171

x2
2 mod n = 182 = 2171131

x2
3 mod n = 78 = 2131131

die Kongruenz

a2 = (
∏
xi mod n)2 = 95034357852 ≡n b2 = (213171131 mod n)2 = 5462,

welche auf den Faktor ggT(a− b, n) = ggT(9503435785− 546, n) = 115759 von n führt.

Die Zahlen xi können hierbei entweder zufällig aus Zn gewählt werden, oder besser von
der Form d

√
kne + l für kleine Zahlen k, l ≥ 0. Da dies bewirkt, dass yi = x2

i mod n
relativ klein ist, erhöht dies die Wahrscheinlichkeit, dass yi über B faktorisierbar ist.
Wir können auch testen, ob die Zahl y′i = n − yi über B faktorisierbar ist, da sich in
diesem Fall yi in ein Produkt von Zahlen der erweiterten Basis B′ = B ∪ {−1} zerlegen
lässt. Wir müssen dann nur darauf achten, dass wir J ⊆ I so bestimmen, dass auch die
Summe der Exponenten von −1 gerade ist. Um für yi = x2

i mod n einen möglichst großen
Wert zu erhalten, kann man xi beispielsweise von der Form b

√
knc − l für kleine Zahlen

k, l ≥ 0 wählen.

Beispiel 100. Sei n = 1829 und B′ = {−1, 2, 3, 5, 7, 11, 13}. Wegen
√
n = 42, 8,

√
2n =

60, 5,
√

3n = 74, 1,
√

4n = 85, 5 testen wir die Zahlen 42, 43, 60, 61, 74, 75, 85, 86 und
erhalten folgende Zerlegungen über B′:

422 ≡n −65 = (−1)51131

432 ≡n 20 = 2251

612 ≡n 63 = 3271

742 ≡n −11 = (−1)111

852 ≡n −91 = (−1)71131

862 ≡n 80 = 2451.

Für J = {2, 6} ergibt sich zwar die Kongruenz

a2 = (
∏
i∈J

xi mod n)2 = (43 · 86 mod n)2 = 402 ≡n b2 = (2351 mod n)2 = 402,

welche wegen a = b keinen nichttrivialen Faktor von n liefert. Dagegen ergibt sich für
J = {1, 2, 3, 5} die Kongruenz

a2 = (
∏
i∈J

xi mod n)2 = (42·43·61·85 mod n)2 = 14592 ≡n b2 = (21315171131 mod n)2 = 9012,

welche auf den Faktor ggT(a− b, n) = ggT(1459− 901, 1829) = 31 von n führt.

	1 Kryptografische Hashverfahren
	1.1 Einführung
	1.2 Schlüssellose Hashfunktionen (MDCs)
	1.2.1 Vergleich von Sicherheitsanforderungen
	1.2.2 Das Zufallsorakelmodell (ZOM)
	1.2.3 Iterierte Hashfunktionen
	1.2.4 Die Merkle-Damgaard-Konstruktion
	1.2.5 Die MD4-Hashfunktion
	1.2.6 Die MD5-Hashfunktion
	1.2.7 Die SHA-1-Hashfunktion
	1.2.8 Die SHA-2-Familie
	1.2.9 Kryptoanalyse von Hashfunktionen
	1.2.10 Die Sponge-Konstruktion
	1.2.11 SHA-3

	1.3 Nachrichten-Authentikationscodes (MACs)
	1.3.1 Angriffe gegen symmetrische Hashfunktionen
	1.3.2 Informationstheoretische Sicherheit von MACs
	1.3.3 MACs auf der Basis einer Kompressionsfunktion
	1.3.4 CBC-MACs
	1.3.5 Kombination einer Hashfunktion mit einem MAC (HMAC)

	2 Elliptische Kurven
	2.1 Elliptische Kurven über den reellen Zahlen
	2.2 Elliptische Kurven über endlichen Körpern

	3 Digitale Signaturverfahren
	3.1 Das ElGamal-Signaturverfahren
	3.2 Das Schnorr-Signaturverfahren
	3.3 Der Digital Signature Algorithm (DSA)
	3.4 ECDSA (Elliptic Curve DSA)
	3.5 One-time Signatur (Lamport)
	3.6 Full Domain Hash (FDH) Signaturen
	3.7 Verbindliche Signaturen (undeniable signatures)
	3.8 Fail-Stop-Signaturen

	4 Pseudozufallszahlen-Generatoren
	4.1 Kryptografische Sicherheit von Pseudozufallsgeneratoren
	4.2 Quadratische Reste
	4.3 Quadratische Pseudoreste
	4.4 Der BBS-Generator

	5 Berechnung des diskreten Logarithmus und Ganzzahl-Faktorisierung
	5.1 Der Algorithmus von Shanks
	5.2 Der Pohlig-Hellman-Algorithmus
	5.3 Der Rho-Faktorisierungsalgorithmus
	5.4 Der Rho-DLP-Algorithmus
	5.5 Die Index-Calculus-Methode
	5.6 Die Methode der zufälligen Quadrate

