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1 Kryptografische Hashverfahren

1.1 Einfiihrung

Durch kryptographische Verfahren lassen sich unter anderem die folgenden Schutzziele
realisieren.
o Vertraulichkeit
— Geheimhaltung
— Anonymitat (z.B. Mobiltelefon)
— Unbeobachtbarkeit (von Transaktionen)
o Integritat
— von Nachrichten und Daten
e Jurechenbarkeit
— Authentikation
— Unabstreitbarkeit
— Identifizierung
o Verfigbarkeit
— von Daten
— von Rechenressourcen
— von Informationsdienstleistungen
Kryptografische Hashverfahren sind ein wirksames Werkzeug zur Sicherstellung der Inte-
gritdt von Nachrichten oder generell von digitalisierten Daten. Sie nehmen somit beim
Schutz der Datenintegritéit eine dhnlich herausragende Stellung ein wie sie Kryptosys-
temen bei der Wahrung der Vertraulichkeit zukommt. Daneben finden kryptografische
Hashfunktionen aber auch vielfach als Bausteine von komplexeren Systemen Verwendung.
Wie wir noch sehen werden, sind kryptografische Hashfunktionen etwa bei der Erstellung
von digitalen Signaturen sehr niitzlich. Auf weitere Anwendungsmoglichkeiten werden
wir spater eingehen.
Vielen Anwendungen von kryptografischen Hashfunktionen h liegt die Idee zugrunde,
dass sie zu einem vorgegebenen Text z eine zwar kompakte aber dennoch représentati-
ve Darstellung h(z) liefern, die unter praktischen Gesichtspunkten als eine eindeutige
Identifikationsnummer von x fungieren kann. Die Berechnungsvorschrift fiir A muss
somit ,charakteristische Merkmale“ von x in den Hashwert h(z) einflielen lassen. Da
der Fingerabdruck eines Menschen ganz dhnliche Eigenschaften besitzt (was ihn fiir
Kriminalisten bekanntlich so wertvoll macht), wird der Hashwert h(z) auch oft als
ein digitaler Fingerabdruck von x bezeichnet. Gebrauchlich sind auch die Bezeich-
nungen kryptografische Priifsumme oder message digest (englische Bezeichnung fiir
,Nachrichtenextrakt*).
Typische Schutzziele, die sich mittels Hashfunktionen realisieren lassen, sind die
Nachrichten- und Teilnehmerauthentikation.

e  Nachrichtenauthentikation“ (message authentication)
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Abbildung 1.1: Eine grobe Einteilung von kryptografischen Hashverfahren.

(Integritatsschutz) (Authentikation)

— Wie lasst sich sicherstellen, dass eine Nachricht (oder eine Datei) wiahrend
einer (rdumlichen oder auch zeitlichen) Ubertragung nicht verindert wurde?

— Wie lésst sich der Urheber (oder Absender) einer Nachricht zweifelsfrei fest-
stellen?

e Teilnehmerauthentikation® (entity authentication, identification)

— Wie kann sich eine Person (oder ein Gerat) anderen gegeniiber zweifelsfrei
ausweisen?

Klassifikation von Hashverfahren

Kryptografische Hashverfahren lassen sich grob danach klassifizieren, ob der Hashwert
lediglich in Abhéngigkeit vom Eingabetext berechnet wird oder zusétzlich von einem
symmetrischen Schliissel abhéangt (siehe Abbildung 1.1).

Kryptografische Hashfunktionen, bei deren Berechnung keine Schliissel benutzt werden,
dienen vornehmlich der Erkennung von unbefugt vorgenommenen Manipulationen an
Dateien oder Nachrichten. Daher werden sie auch als MDC bezeichnet (Manipulation
Detection Code [englisch] = Code zur Erkennung von Manipulationen). Zuweilen wird
das Kiirzel MDC auch als eine Abkiirzung fiir Modification Detection Code verwendet.
Seltener ist dagegen die Bezeichnung MIC (message integrity codes). Abbildung 1.2
zeigt eine typische Anwendung von MDCs.

Um die Integritéit eines Datensatzes = sicherzustellen, der iiber einen ungesi-

@ ======================> @
h h
é Authentisierter Kanal A 4 (echt)
> y L h(z'

Abbildung 1.2: Einsatz eines MDC h zur Uberpriifung der Integritit eines Datensatzes
x.
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Gesicherter Kanal

k: Symmetrischer Authentikationsschliissel
y = hi(x): MAC-Hashwert fiir 2 unter k

Abbildung 1.3: Verwendung eines MAC zur Nachrichtenauthentikation.

cherten Kanal gesendet (bzw. auf einem vor Manipulationen nicht sicheren
Webserver abgelegt) wird, kann man wie folgt verfahren. Man sendet den
MDC-Hashwert von x tiber einen authentisierten Kanal und priift, ob der
Datensatz nach der Ubertragung noch denselben Hashwert liefert.

Kryptografische Hashverfahren mit symmetrischen Schliisseln finden hauptséachlich bei
der Authentifizierung von Nachrichten Verwendung. Diese werden daher auch als MAC
(message authentication code [englisch] = Code zur Nachrichtenauthentifizierung) oder
als Authentikationscode bezeichnet. Daneben gibt es auch Hashverfahren mit asym-
metrischen Schliisseln. Diese werden jedoch der Rubrik der Signaturverfahren zugeordnet,
da mit ihnen ausschlieflich digitale Unterschriften gebildet werden. Abbildung 1.3 zeigt,
wie sich Nachrichten mit einem MAC authentisieren lassen. Man beachte, dass nun auch
der Hashwert tiber den unsicheren Kanal gesendet wird.

Mochte Alice eine Nachricht x an Bob tibermitteln, so berechnet er den
zugehorigen MAC-Hashwert y = hy(2) und figt diesen der Nachricht x hinzu.
Bob tberpriift die Echtheit der empfangenen Nachricht (2/,y'), indem sie
ihrerseits den zu z’ gehorigen Hashwert hy(x’) berechnet und das Ergebnis
mit y’ vergleicht. Der geheime Authentikationsschliissel k£ muss hierbei genau
wie bei einem symmetrischen Kryptosystem tiber einen gesicherten Kanal
vereinbart werden.

Indem Alice seine Nachricht z um den Hashwert y = hy(x) ergénzt, gibt er Bob nicht
nur die Moglichkeit, anhand von y die empfangene Nachricht auf Manipulationen zu
iiberpriifen. Die Benutzung des geheimen Schliissels k erlaubt zudem eine Uberpriifung
der Herkunft der Nachricht.

1.2 Schliissellose Hashfunktionen (MDCs)

In diesem Abschnitt betrachten wir verschiedene Sicherheitsanforderungen an einzelne
Hashfunktionen h. Dabei nehmen wir an, dass h 6ffentlich bekannt ist, d.h. h ist eine
schliissellose Hashfunktion (MDC).
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Sei h: X — Y eine Hashfunktion. Ein Paar (z,y) € X x Y heifit giiltig fur h, falls
h(z) =y ist. Ein Paar (z,2') mit h(z) = h(z') heifit Kollisionspaar fiir h. Die Anzahl
||Y|| der Hashwerte bezeichnen wir mit m. Ist auch der Textraum X endlich, || X|| = n,
so heifit h eine (n, m)-Hashfunktion. In diesem Fall verlangen wir meist, dass n > 2m
ist, und wir nennen h dann eine Kompressionsfunktion (compression function).

Da h offentlich bekannt ist, ist es sehr einfach, fiir einen vorgegebenen Text x ein giiltiges
Paar (z,y) zu erzeugen. Fiur bestimmte kryptografische Anwendungen ist es wichtig, dass
dies nicht moglich ist, falls der Hashwert y vorgegeben wird.

Problem P1: Bestimmung eines Urbilds
Gegeben: Eine Hashfkt. h: X — Y und ein Hashwert y € Y.
Gesucht: Ein Text z € X mit h(z) = y.

Falls es einen immensen Aufwand erfordert, fiir einen vorgegebenen Hashwert y einen Text
x mit h(xz) = y zu finden, so heifit h Einweg-Hashfunktion (one-way hash function bzw.
preimage resistant hash function). Diese Eigenschaft wird beispielsweise benotigt, wenn
die Hashwerte der Benutzerpassworter in einer 6ffentlich zuganglichen Datei abgespeichert
werden, wie es bei manchen Unix-Systemen der Fall ist.

Problem P2: Bestimmung eines zweiten Urbilds
Gegeben: Fine Hashfkt. h: X — Y und ein Text z € X.
Gesucht: Ein Text 2’ € X \ {z} mit h(2') = h(z).

Falls sich fiir einen vorgegebenen Text x nur mit grofem Aufwand ein weiterer Text &’ # x
mit dem gleichen Hashwert h(z') = h(z) finden lésst, heifit h schwach kollisionsre-
sistent (weakly collision resistant bzw. second preimage resistant). Diese Eigenschaft
wird in der durch Abbildung 1.2 skizzierten Anwendung benétigt. Beim Versuch, eine
digitale Signatur zu filschen (siehe unten), sieht sich der Gegner dagegen mit folgender
Problemstellung konfrontiert.

Problem P3: Bestimmung einer Kollision
Gegeben: Fine Hashtkt. h: X — Y.
Gesucht: Texte x # ' € X mit h(z") = h(z).

Falls sich dieses Problem nur mit einem immensen Aufwand l6sen lésst, heifit h (stark)
kollisionsresistent (collision resistant).

Obwohl die schwache Kollisionsresistenz eine gewisse Ahnlichkeit mit der Einweg-
Eigenschaft aufweist, sind die beiden Eigenschaften im allgemeinen unvergleichbar. So
muss eine schwach kollisionsresistente Funktion nicht notwendigerweise eine Einweg-
funktion sein, da die Bestimmung eines Urbildes gerade fiir diejenigen Funktionswerte
einfach sein kann, die nur ein einziges Urbild besitzen. Umgekehrt impliziert die Einweg-
Eigenschaft auch nicht die schwache Kollisionsresistenz, da die Kenntnis eines Urbildes
das Auffinden weiterer Urbilder sehr stark erleichtern kann.

1.2.1 Vergleich von Sicherheitsanforderungen

In diesem Abschnitt zeigen wir, dass stark kollisionsresistente Hashfunktionen sowohl
schwach kollisionsresistent als auch Einweghashfunktionen sind.

Satz 1. Sei h: X — Y eine (n,m)-Hashfunktion. Dann ist das Problem P3, ein Kol-
listonspaar fir h zu bestimmen, auf das Problem P2, ein zweites Urbild zu bestimmen,
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1 wahle zufallig z € X
2 2= Ax)
5 if 2’ #7 then return(z,2’) else return(?)

Abbildung 1.4: Reduktion des Kollisionsroblems auf das Problem, ein zweites Urbild zu
bestimmen

reduzierbar. Folglich sind stark kollisionsresistente Hashfunktionen auch schwach kollisi-
onsresistent.

Beweis. Sei A ein Las-Vegas Algorithmus, der fiir ein zufillig aus X gewahltes x mit
Erfolgswahrscheinlichkeit ¢ ein zweites Urbild a’ fiir h liefert und andernfalls 7 aus-
gibt. Dann ist klar, dass der in Abbildung 1.4 dargestellte Las-Vegas Algorithmus mit
Wahrscheinlichkeit € ein Kollisionspaar findet. O

Als néchstes zeigen wir, wie sich das Kollisionsproblem auf das Urbildproblem reduzieren
lasst.

Satz 2. Sei h: X — Y eine (n, m)-Hashfunktion mit n > 2m. Dann ist das Problem P3,
ein Kollisionspaar fiir h zu bestimmen, auf das Problem P1, ein Urbild zu bestimmen,
reduzierbar.

Beweis. Sei A ein Invertierungsalgorithmus fir h, d.h. A berechnet fiir jeden Hashwert y
in W(h) = {h(z) | € X} ein Urbild z mit h(x) = y. Betrachte den in Abbildung 1.5
dargestellten Las-Vegas Algorithmus B.

Sei C = {h~'(y) | y € Y}. Dann hat B eine Erfolgswahrscheinlichkeit von

Il fel-1_ 1 —1)=(n—m)/n
ZHXH ] ==> (Icl-1)=( )/n=

ceC ceC

N —

1.2.2 Das Zufallsorakelmodell (ZOM)

Das ZOM dient dazu, den Aufwand verschiedener Angriffe auf eine Hashfunktion h: X —
Y nach oben abzuschatzen. Sind X und Y vorgegeben, so konnen wir eine Hashfunktion
h: X — Y dadurch ,konstruieren®, dass wir fiir jedes x € X zufallig ein y € Y wahlen
und h(z) auf y setzen. Aquivalent hierzu ist, fiir h eine zufillige Funktion aus der
Klasse FI(X,Y) aller n™ Funktionen von X nach Y zu wéihlen. Dieses Verfahren ist auf
Grund des hohen Aufwands zwar nicht mehr praktikabel, wenn n = || X|| eine bestimmte
Grofle iibersteigt. Es liefert uns aber ein theoretisches Modell fiir eine Hashfunktion
mit ,idealen® kryptografischen Eigenschaften. Offensichtlich besteht fiir den Gegner die

I wahle zufallig r € X

2y = h(x)

3 2= Aly)

1 if z # 2’ then return(z,2’) else return(?)

Abbildung 1.5: Reduktion des Kollisionsproblems auf das Urbildproblem
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Prozedur FindPreimage(h,v,q)

1 wahle eine beliebige Menge Xy = {zy,...,2,} CX
2 for each z; € Xy do

3 if h(z;) =y then return(z;)

1 return(?)

Abbildung 1.6: Bestimmung eines Urbilds fiir einen Hashwert

einzige Moglichkeit, Informationen iiber A zu erhalten, darin, sich fiir eine Reihe von
Texten die zugehorigen Hashwerte zu besorgen (was der Befragung eines funktionalen
Zufallsorakels entspricht).

Eine Zufallsfunktion A eignet sich deshalb gut als kryptografische Hashfunktion, weil
der Hashwert h(x) fiir einen Text = auch dann noch schwer vorhersagbar ist, wenn der
Gegner bereits die Hashwerte einer beliebigen Zahl von anderen Texten kennt.

Proposition 3. Sei Xo = {x1,..., 2z} eine beliebige Menge von k verschiedenen Texten
aus X und seien yy, ..., yx € Y. Dann gilt fir eine zufallig aus F(X,Y") gewdhlte Funktion
h und fiir jedes Paar (z,y) € (X — Xo) X Y,

Prih(x) = y|h(z;) = y; furi=1,... k] =1/m.

Um eine obere Komplexitéitsschranke fiir das Urbildproblem im ZOM zu erhalten, be-
trachten wir den in Abbildung 1.6 dargestellten Algorithmus. Hier (und bei den beiden
folgenden Algorithmen) gibt der Parameter ¢ die Anzahl der Hashwertberechnungen
(also die Anzahl der gestellten Orakelfragen an das Zufallsorakel h) an. Der Zeitaufwand
der Algorithmen ist dabei proportional zu q.

Satz 4. FINDPREIMAGE(h, y,q) gibt im ZOM mit Wahrscheinlichkeit e =1 —(1—1/m)4
ein Urbild von y aus (unabhdingig von der Wahl der Menge X ).

Beweis. Sei y € Y fest und sei Xo = {z1,...,2,}. Fiir i = 1,..., ¢ bezeichne E; das
Ereignis “h(z;) = y”. Nach Proposition 3 sind diese Ereignisse stochastisch unabhéangig
und ihre Wahrscheinlichkeit ist Pr[E;| = 1/m (i =1,...,¢q). Also folgt

PrlEyU...UE,|=1-Pr[EiN...NE,]=1—(1—-1/m)".
O

Der in Abbildung 1.7 dargestellte Algorithmus liefert uns eine obere Schranke fiir die
Komplexitat des Problems, ein zweites Urbild fir A(x) zu bestimmen. Die Erfolgswahr-
scheinlichkeit lésst sich vollkommen analog zum vorherigen Satz bestimmen.

Satz 5. FINDSECONDPREIMAGE(h, x,q) gibt im ZOM mit Wahrscheinlichkeit € =
1—(1—1/m)? "t ein zweites Urbild xy # = von y = h(x) aus.

Ist ¢ vergleichsweise klein, so ist bei beiden bisher betrachteten Angriffen € ~ ¢/m. Um
also auf eine Erfolgswahrscheinlichkeit von 1/2 zu kommen, ist ¢ &~ m /2 zu wéhlen.

Geht es lediglich darum, irgendein Kollisionspaar (z, ") aufzusptiren, so bietet sich ein
sogenannter Geburtstagsangriff an. Dieser ist deutlich zeiteffizienter zu realisieren.
Wie der Name schon andeutet, basiert dieser Angriff auf dem sogenannten Geburtstagspa-
radoxon, welches in seiner einfachsten Form folgendes besagt.
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Geburtstagsparadoxon: Bereits in einer Schulklasse mit 23 Schulkindern haben mit einer
Wahrscheinlichkeit grofler 1/2 mindestens zwei Kinder am gleichen Tag Geburtstag
(dies erscheint zwar verbliiffend, wird aber durch die Praxis mehr als bestétigt).

Tatsédchlich zeigt der néchste Satz, dass bei g-maligem Ziehen (mit Zuriicklegen) aus
einer Urne mit m Kugeln mit einer Wahrscheinlichkeit von

I—(m—1)(m—-2)---(m—q+1)/m?!

eine Kugel zweimal gezogen wird. Fiir m = 365 und ¢ = 23 ergibt dies einen Wert von
ungefahr 0,507.

Zur Kollisionsbestimmung verwenden wir den in Abbildung 1.8 dargestellten Algorithmus.
Bei einer naiven Implementierung wiirde zwar der Zeitaufwand fiir die Auswertung der if-
Bedingung quadratisch von ¢ abhéngen. Trigt man aber jeden Text x unter dem Suchwort
h(z) in eine (herkémmliche) Hashtabelle der GroBe ¢ ein, so wird der Zeitaufwand fiir
die Bearbeitung jedes einzelnen Textes x im wesentlichen durch die Berechnung von h(zx)
bestimmt.

Satz 6. COLLISION(h, q) gibt im ZOM mit Erfolgswahrscheinlichkeit

(m—1)(m—2)---(m—q+1)

e=1- —

ma

ein Kollisionspaar (xz,x") fir h aus.

Beweis. Sei Xo = {x1,...,2,}. Fir i =1,...,q bezeichne E; das Ereignis

“h(x;) & {h(xy,...,h(x;1)}.”

Dann beschreibt E1N...NE, das Ereignis “COLLISION(h, ¢) gibt 7 aus” und fiiri = 1,...,¢
gilt
i1
PI'[E,L‘El n...N Eifl] = u
m
Dies fithrt auf die Erfolgswahrscheinlichkeit

e = 1-Pr[EyN...NE,]
= 1- Pr[El]Pr[EQ ’El] te PI‘[Eq ’ El N...N qul]

() (2 ().

Prozedur FindSecondPreimage(h,z,q)

1 y:=h(x)
> wahle eine beliebige Menge X, = {z1,...,741} C X —{z}
1

for each z; € Xy do
if h(z;) =y then return(x;)
5 return(?)

Abbildung 1.7: Bestimmung eines 2. Urbilds fiir einen Hashwert
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Prozedur Collision(h,q)

1 wahle eine beliebige Menge X, = {zy,...,2,} C X
> for each z; € Xy do y; := h(z;)
3 if Ji#j:y; =y; then return(z;,z;) else return(?)

Abbildung 1.8: Bestimmung eines Kollisionspaares

Mit 1 — z ~ e~ * folgt

q—1 ; -1 2
2 —i 1 Na-1, _a(g—1) _ 9
€:1_||<1_>%1—||em :1—@771 i:llzl—e 2m %1—6 2m%q2/2m.
. m ‘
=1 =1

Somit erhalten wir die Abschiatzung

q = co/m

mit c. = v/2¢. Diese Abschiatzung ist nur fiir e-Werte nahe Null hinreichend genau. Eine
2

bessere Abschétzung ergibt sich aus der Approximation e &~ 1 — ¢~ 2m:

q =~ dm

mit ¢, = ,/2In 7. Fiir ¢ = 1/2 ergibt sich somit ¢ ~ /(2In2)m ~ 1,17/m.

Besitzt also eine bindre Hashfunktion h: {0,1}" — {0, 1}™ die Hashwertlange m = 128
Bit, so miissen im ZOM ¢ ~ 1,17 - 25* Texte gehasht werden, um mit einer Wahrschein-
lichkeit von 1/2 eine Kollision zu finden. Um einem Geburtstagsangriff widerstehen zu

konnen, sollte eine Hashfunktion mindestens eine Hashwertlénge von 128 oder besser 160
Bit haben.

1.2.3 Iterierte Hashfunktionen

In diesem Abschnitt beschéftigen wir uns mit der Frage, wie sich aus einer kollisionsresis-
tenten Kompressionsfunktion

h:{0,1}" — {0,1}™
eine kollisionsresistente Hashfunktion
h:{0,1}* — {0, 1}
konstruieren lésst. Hierzu betrachten wir folgende kanonische Konstruktionsmethode.

Preprocessing: Transformiere x € {0,1}* mittels einer Funktion
y:{0.1}" — (J{o,1}"
r>1

zu einem String y(z) mit der Eigenschaft |y(z)| =, 0.

Processing: Sei IV € {0,1}™ ein offentlich bekannter Initialisierungsvektor und sei
y(x) = y1 -+ -y, mit |y;| =t fiir ¢ = 1,...,r. Berechne eine Folge z, ...,z von
Strings z; € {0,1}™ wie folgt:

1V, 1 =0,
Zi =
h(ZZ‘,lyi), 1= 1, e, T
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Optionale Ausgabetransformation: Berechne den Hashwert h(z) = g(z,), wobei
g: {0,1}™ — {0,1}" eine offentlich bekannte Funktion ist. (Meist wird fiir ¢
die Identitat verwendet.)

Um h(x) zu berechnen, muss also die Kompressionsfunktion h genau r-mal aufgeru-
fen werden. Wir formulieren nun eine fiir Preprocessing-Funktionen wiinschenswerte
Eigenschaft.

Definition 7. Eine Funktion y: {0,1}* — {0, 1}* heifst suffizfrei, falls es keine Strings
x # & und z in {0,1}* mit y(Z) = zy(z) gibt (d.h. kein Funktionswert y(x) ist Suffix
eines Funktionswertes y(Z) an einer Stelle T # x).

Man beachte, dass jede suffixfreie Funktion insbesondere injektiv ist.

Satz 8. Fulls die Preprocessing-Funktion y suffizfrei und die Ausgabetransformation g
injektiv ist, so ist mit h auch h kollisionsresistent.

Beweis. Angenommen, es gelingt, ein Kollisionspaar z, # fiir h mit fz(:v) = ﬁ(:%) zu finden.
Sei
y(x) =y Y—1yr und y(Z) = $1Ys - . . Y1y mit k < L.

Da y suffixfrei ist, muss ein Index i € {1,...,k} mit y; # 4;_x4; existieren. Weiter seien
2 (i=0,....k)und 2; (j =0,...,1) die in der Processing-Phase berechneten Hashwerte.
Da g injektiv ist, muss mit g(z;) = iL(x) = iL(:i‘) = g(Z) auch z, = Z; gelten. Sei i,,4,
der grofite Index i € {1,...,k} mit z;_1y; # Zi_k+i—1U1—k+i- Dann bilden z;,_ 1y, . und
Zl—ktimaz—1Yl—k-+imas WEZEN

h(zimaz_lyimam) = Zima,z = 2l—k+lmaz = h(gl_k+imaz_1gl—k+imaz>

ein Kollisionspaar fiir h. O

1.2.4 Die Merkle-Damgaard-Konstruktion

Merkle und Damgaard schlugen 1989 folgende konkrete Realisierung ihrer Konstruktion
vor. Als Initialisierungsvektors wird der Nullvektor IV = 0™ benutzt, die optionale
Ausgabetransformation entfillt, und fiir y(z) wird im Fall t > 2 die folgende Funktion
verwendet. (Den Fall ¢ = 1 betrachten wir spéter.)

Fir z = ¢ sei y(r) = 0" und fiir x € {0,1}" mit n > 0 sei k = [%5] und = =
T1Ty. .. Tp_1Zg it |x1| = |zo| = ... = |xp_q| = t — 1 sowie |z = t — 1 — d, wobei
0 <d<t—1 Im Fall kK = 1 ist dann y(z) = 0x0%1bin;_1(d) und fir k > 1 ist
y(x) = Y1 Y41, wobei

Oxl, 1= 1,
lz;, 2 <1<k,
124,09, 1=k,

Lbing_1(d), i=k+1,

und bin;_1(d) die durch fithrende Nullen auf die Lange ¢t — 1 aufgefiillte Binardarstellung
von d ist.

Satz 9. Die durch (1.1) definierte Preprocessing-Funktion y ist suffizfrei.
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Beweis. Seien x # T zwei Texte mit |x| < |Z|. Wir miissen zeigen, dass y(z) = y1ya - . - Ypr1
kein Suffix von y(Z) = 9192 . . . §i41 ist. Im Fall = ¢ ist dies klar. Fiir x # & machen wir
folgende Fallunterscheidung.

1. Fall: |z| #,_, |Z|. Dann folgt d # d und somit Y41 # Jis1-

2. Fall:  |z| = |Z|. In diesem Fall ist &k = [. Wegen = # 7 existiert ein Index ¢ €
{1,...,k} mit z; # Z;. Dies impliziert y; # @, also ist y(x) kein Suffix von y(Z).

3. Fall: |2| # |Z| und |z| =, |2|. In diesem Fall ist & < [. Da y(z) mit einer Null
beginnt, aber das (I — k 4+ 1)-te Bit von y(Z) eine Eins ist, kann y(z) kein Suffix
von y(Z) sein. 0

Nun kommen wir zum Fall ¢ = 1. Sei y die durch y(x) := 11f(z) definierte Funktion,
wobei f wie folgt definiert ist:

flxy,...,x,) = f(x1) ... f(z2) mit f(0) =0 und f(1) = 01.

Dann ist leicht zu sehen, dass y suffixfrei ist. Da die Kompressionsfunktion A bei der
Berechnung von ﬁ(m) im Fall ¢ = 1 fur jedes Bit von y(x) einmal aufgerufen wird, wird h
genau |y(z)| < 2(n+1)-mal aufgerufen. Im Fall ¢ > 1 werden dagegen nur k+1 = [ ;%5 ]+1
Aufrufe benotigt.

1.2.5 Die MD4-Hashfunktion

Die MD4-Hashfunktion (Message Digest) wurde 1990 von Rivest vorgeschlagen. Die
Bitlange von MD4 betragt [ = 128 Bit. Bei einer Wortlange von 32 Bit entspricht
dies 4 Wortern. Die im Folgenden vorgestellten Hashfunktionen benutzen u.a. folgende
Operationen auf Wortern.

Operatoren auf {0,1}3
X AY | bitweises ,,Und“ von X und Y
X VY | bitweises ,,Oder” von X und Y
X @Y | bitweises ,,exklusives Oder® von X und Y
=X | bitweises Komplement von X
X +Y | Ganzzahl-Addition modulo 232
X — s | Rechtsshift um s Stellen
X « s | zirkuldrer Linksshift um s Stellen

Wiéhrend die Ganzzahl-Addition bei MD4 und MD5 in little endian Architektur (d.h.
ein aus 4 Bytes azasaqag, 0 < a; < 255 zusammengesetztes Wort représentiert die Zahl
a02** + a12'% + a92® + a3) ausgefiihrt wird, verwendet SHA-1 eine big endian Architektur
(d.h. azasaiag, 0 < a; < 255 reprasentiert die Zahl a32?* + @520 + ;2% + ag). Der
MD4-Algorithmus benutzt die folgenden Konstanten y;, 2;,s;, j = 0,...,47

y; (in Hexadezimaldarstellung)
i =0,...,15 0

i —=16,...,31 50827999

g =32,...,47 6ed9ebal
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“j

j=0,...,15 | 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15
j=16,...,31| 0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15
j=32,...,47| 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15
Sj

j=0,...,15 | 3,7,11,19,3,7,11,19,3,7,11,19,3,7,11,19
j=16,...,31]3,5,9,13, 3,5,9,13, 3,5, 9,13, 3,5, 9, 13
j=32,...,473,9,11,15,3,9,11,15,3,9,11,15,3,9,11, 15

und folgende Funktionen f;, 7 =0,...,47

(X AY)V (~X A Z), j= 0,...,15,
(XY, Z) = ((XAY)V(XAZ)V(YANZ), j=16,...,31,
XpY ez J=32,...,47.

Fiir MD4 konnten nach ca. 22 Hashwertberechnungen Kollisionen aufgespiirt werden.
Deshalb gilt MD4 nicht mehr als kollisionsresistent.

MD4(x)

1 input z € {0,1}*, |z| =n

oy :=x10%bing(n), k€ {0,1,...,511} mit n+1+k+64=0 (mod 512)
s (Hy, Hy, Hs, Hy) := (67452301, e fcdab89, 98badc fe, 10325476)

i sel y=»M,---M,, r=(n+1+k+64)/512

5 for 1:=1 to r do

6 seli M,; = X|[0]--- X[15]

7 (A,B,C, D) = (Hl,HQ,H3,H4)

8 for j:=0 to 47 do

9 (A,B,C,D) := (D,(A+ f;(B,C,D) + X[z] +v;) < s;,B,C)
10 (Hy,Hy, H3, Hy) == (H1 + A,Hy + B,Hs + C,Hy + D)
11 output H H,H3;H,

1.2.6 Die MD5-Hashfunktion

Der MD?5 ist eine 1991 von Rivest prasentierte verbesserte Version von MD4. Die Bitlange
von MD5 betragt wie bei MD4 [ = 128 Bit. Bei einer Wortlange von 32 Bit entspricht
dies 4 Wortern. In MD5 werden teilweise andere Konstanten als in MD4 verwendet.
Zudem besitzt MD5 eine zusitzliche 4. Runde (j = 48,...,63), in der die Funktion
[i(X,Y,Z) =Y & (X V~Z) verwendet wird. Auflerdem wurde die in Runde 2 von MD4
verwendete Funktion durch f;(X,Y,Z) := (X ANZ)V (Y AN=Z), j = 16...31, ersetzt.
Die y-Konstanten sind definiert als y; := die ersten 32 Bit der Binardarstellung von
abs(sin(j + 1)), 0 < j < 63, und fiir z; und s; werden folgende Konstanten benutzt.
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Zj
j=0,...,15 |z =7 0,1,2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15
j=16,...,31 | z;=(5j+1)mod 16 : 1,6,11,0,5,10,15,4,9,14,3,8,13,2,7,12

j=232,...,47 |z =(3j+5) mod 16 : 5,8 11,14,1,4,7,10,13,0,3,6,9,12, 15, 2

j=48,...,63 |z = 7j mod 16 : 0,7,14,5,12,3,10,1,8,15,6,13,4,11,2,9
5

j=0,...,15 7,12,17,22,7,12,17,22,7,12,17,22,7,12,17, 22

j=16,...,31 5,9,14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20

j=232,... 47 4,11,16,23,4,11,16,23,4, 11, 16,23, 4, 11, 16, 23

j=48,...,63 6,10, 15,21,6, 10,15, 21,6, 10, 15,21, 6, 10, 15, 21

Fiir MD5 konnten in 2004 ebenfalls Kollisionspaare gefunden werden (fiir die Kompressi-
onsfunktion von MD5 gelang dies bereits 1996).

MD5(z)

1 input z € {0,1}*, |z| =n

oy :=z10%bings(n), k€ {0,1,...,511} mit n+1+k+64 =0 (mod 512)
3 (Hy, Hy, Hy, Hy) := (67452301, e fcdab89, 98badc fe, 10325476)

. seiy=M;---M,, r=(n+1+k+64)/512

5 for i:=1 to r do

6 sei M; = X|[0]--- X[15]

7 (A,B,C,D) = (Hl,HQ,Hg,H4>

8 for j:=0 to 63 do

) (A,B,C,D) = (D,B +(A+ f;(B,C,D) + X|2] + ;) < ;. B,C)
10 (Hy,Hy,Hs, Hy) := (Hi+ A,Hy+ B,H; + C,H, + D)

11 output H HyH3;H,

1.2.7 Die SHA-1-Hashfunktion

Der Secure Hash Algorithm (SHA-1) ist eine Weiterentwicklung des MD4 bzw. MD5
Algorithmus. Er gilt in den USA als Standard und ist Bestandteil des von der US-Behorde
NIST (National Institute of Standards and Technology) im August 1991 vero6ffentlichten
DSS (Digital Signature Standard). Die Bitlinge von SHA-1 betrigt [ = 160 Bit. Bei
einer Wortlange von 32 Bit entspricht dies 5 Wortern. SHA-1 unterscheidet sich nur
geringfiigig von der SHA-0 Hashfunktion, in der eine Schwachstelle dazu fithrt, dass
nach Berechnung von ca. 26! Hashwerten ein Kollisionspaar gefunden werden kann
(obwohl bei einem Geburtstagsangriff auf Grund der Hashwertlénge von 160 Bit ca. 2%
Berechnungen erforderlich sein miissten). Diese potentielle Schwéche von SHA-0 wurde
im SHA-1 dadurch entfernt, dass SHA-1 in Zeile 8 einen zirkuldren Shift um eine Bitstelle
ausfiihrt. Der SHA-1-Algorithmus benutzt die folgenden Konstanten K, j =0,...,79

K; (in Hexadezimaldarstellung)

j=0,...,19 50827999
J=20,...,39 6ed9ebal
J=40,...,59 8 f1bbedc

Jj=260,...,79 ca62c1d6
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und folgende Funktionen f;, 7 =0,...,79

(XAY)V (=X AZ), j= 0,...,19,
XY a7, j=20,...,39,
L(XY, 2) = .
(XAY)V(XANZ)V(YANZ), j=40,...,59,
XpYadZ, Jj =60,...,79.
SHA-1(x)

input = € {0,1}*, |z| =n

y:=x10%bings(n), k€ {0,1,...,511} mit n+1+k+64 =0 (mod 512)
(Hy, Hy, Hy, H3, Hy) := (67452301, e fcdab89, 98badc fe, 10325476, c3d2el f0)
sei y=M,---M,, r=(n+1+k+64)/512

5 for i:=1 to r do

6 seli M; = X|[0]--- X[15]

7 for t:=16 to 79 do

8 X[t =X[t-3]eX[t—-8 e X[t—14]eX[t—-16]) 1

9 (A,B,C,D,E) = (Hy,Hy,Hs, H3, Hy)

10 for j:=0 to 79 do

11 temp := (A< 5)+ f;(B,C,D) + E+ X[j] + K;

12 (A,B,C,D, E) := (temp, A, B <> 30,C, D)

13 (Hy,Hy,Hy, H3, Hy) := (Hy+ A ,Hi+ B,Hy + C,Hs + D,Hy + F)

14 output HOH1H2H3H4

BW N =

1.2.8 Die SHA-2-Familie

Im Jahr 2001 veroffentlichte die US-Behorde NIST drei weitere Hashfunktionen der
SHA-Familie: SHA-256, SHA-384, and SHA-512. Diese Funktionen werden auch als
SHA-2 Hashfunktionen bezeichnet. In 2004 kam noch SHA-224 als vierte Variante hinzu.
SHA-256 und SHA-512 haben denselben Aufbau, unterscheiden sich aber in erster Linie
in der benutzten Wortldnge: 32 Bit bei SHA-256 und 64 Bit bei SHA-512. Zudem werden
unterschiedliche Shift- und Summationskonstanten verwendet und auch die Rundenzahlen
differieren. SHA-224 und SHA-384 sind reduzierte Varianten von SHA-256 und SHA-
512. Der SHA-256-Algorithmus benutzt die folgenden Konstanten K, j =0,...,63 (in
Hexadezimaldarstellung).

428a2 98, 71374491, b5c0 focf, e9bbdbab, 3956¢25b, 59111 1,923 f82a4, ablchedb,
d807aa98, 12835001, 243185be, 550c7dc3, T2bebd74, 80debl fe, 9bdc06a7, c19bf174,
e49b69cl, efbed786, 0fc19dc6, 240calce, 2de92¢6 f, 4aT7484aa, 5cb0a9de, 76 fI88da,
983e5152, a831c¢66d, b00327¢8, bf597 fc7, c6e00bf3, d5a79147, 06ca6351, 14292967,
27b70a85, 2e1b2138, 4d2c6df ¢, 53380d13, 650a7354, 766a0abb, 81c2c92e, 92722¢85,
a2bfe8al, a81a664b, c24b8b70, c76¢H1a3, d192e819, d6990624, f40e3585, 106aa070,
19a4¢116, 1e376¢08, 2748774c, 34b0bcbb, 391c0cb3, 4ed8aada, 509ccad f, 682¢6 f f3,
748 f82ee, T8a5636 f, 84c87814, 8cc70208, 90be f f fa, a4506ceb, be f9ad f7, c6T178f2

Dies sind jeweils die ersten 32 Bit der bindren Nachkommastellen der dritten Wurzeln
der ersten 64 Primzahlen 2,...,311. SHA-256 arbeitet wie folgt.
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SHA-256(x)

1 input z € {0,1}, |z| =n

> y:=x10%bings(n), k€ {0,1,...,511} mit n+1+k+64=0 (mod 512)
3 (Ho, Hy, Hy, H3, Hy, Hs, Hg, H7) := (6a09e¢667, bb67ae85, 3cbe f372, ab4 f f53a,
A 510527 f, 9b05688¢, 1 f83d9ab, bbeOcd19)

5 sely=»M;---M,, r=(n+1+k+64)/512

¢ for ::=1 to r do

7 sei M; = X][0]--- X[15]

8 for t:=16 to 63 do

9 s0:= (X[t —15] = T7)® (X[t — 15] — 18) @ (X[t — 15] — 3)
10 sl:i=(X[t—2]—=17) & (X[t —2] — 19) & (X[t — 2] — 10)
11 Xt] == X[t —16] 4+ s0+ X[t — 7] + s1

12 (A,B,C,D,E,F,G,H) := (Hy, H, Hy, H3, Hy, H5, Hg, H7)

13 for j:=0 to 63 do

14 s0:=(A—=2)&(A—13)d (A — 22)

15 maj = (ANB)@ (ANC)@ (BAC)
16 t2 := s0+ may

17 sl:=(F—=6)® (F<—11)® (E < 25)
18 ch:=(EANF)® (-ENG)

tl:=H+sl+ch+ K; + X[j]
(A,B,C,D,E,F,G,H) = (1l + 12, A, B,C,D +t1, B, F,G)

21 (H07HlaHQaH3aH47H5aH67H7>
22 = (Hy+A,Hi+B,Hy+C,Hy+ D,H,+ E,Hs + F,Hs + G,H; + H)
23 output H0H1H2H3H4H5H6H7

Die Initialwerte von Hy, ..., H; in den Zeilen 3 und 4 sind jeweils die ersten 32 Bit der
bindren Nachkommastellen der Wurzeln der Primzahlen 2,3,5,7,11,13,17, 19.

1.2.9 Kryptoanalyse von Hashfunktionen

Bereits 1991 wurden von Den Boer und Bosselaers Schwéchen im MD4 aufgedeckt. Im
August 2004 erschien ein Bericht [1] mit einer Anleitung, wie sich Kollisionen fiir MD4
mittels “hand calculation” finden lassen.

In 1993, fanden den Boer und Bosselaers einen Weg, so genannte “Pseudo-Kollisionen” fiir
die MD5 Kompressionsfunktion zu generieren. In 1996, fand Dobbertin ein Kollisionspaar
fiir die MD5 Kompressionsfunktion.

Im August 2004 wurden schlielich Kollisionen fiir MD5 von Xiaoyun Wang, Dengguo
Feng, Xuejia Lai und Hongbo Yu berechnet. Der benétigte Aufwand wurde mit ca. 1
Stunde auf einem IBM p690 Cluster abgeschatzt.

Im Marz 2005 veroffentlichten Arjen Lenstra, Xiaoyun Wang und Benne de Weger zwei
X.509 Zertifikate mit unterschiedlichen Public-keys, die auf denselben MD5-Hashwert
fithrten. Nur wenige Tage spéter beschrieb Vlastimil Klima eine Moglichkeit, Kollisionen
fiir MD5 innerhalb weniger Stunden auf einem Notebook zu berechnen. Mittels der so
genannten Tunneling-Methode wurde die Rechenzeit vom gleichen Autor im Mérz 2006
auf eine Minute verkiirzt.

Auf der CRYPTO 98 stellten Chabaud und Joux einen Angriff auf SHA-0 vor, der ein
Kollisionspaar mit nur 2°' Hashwertberechnungen (anstelle von 2% bei einem Geburts-
tagsangriff) aufsptrt.
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In 2004 fanden Biham und Chen Beinahe-Kollisionen fiir den SHA-0, bei denen sich die
Hashwerte nur an 18 von den 160 Bitpositionen unterschieden. Zudem legten sie volle
Kollisionen fiir den auf 62 Runden reduzierten SHA-0 Algorithmus vor.

Schliefflich wurde im August 2004 die Berechnung einer Kollision fiir den vollen 80-Runden
SHA-0 Algorithmus von Joux, Carribault, Lemuet und Jalby bekannt gegeben. Hierzu
wurden lediglich 2°! Hashwerte berechnet, die ca. 80000 Stunden CPU-Rechenzeit auf

einem 2-Prozessor 256-Itanium Supercomputer benotigten.

Ebenfalls im August 2004 wurde von Wang, Feng, Lai und Yu auf der CRYPTO 2004 eine
Angriffsmethode fiir MD5, SHA-0 und andere Hashfunktionen vorgestellt, mit der sich die
Anzahl der Hashwertberechnungen auf 2%° senken lisst. Dies wurde im Februar 2005 von
Xiaoyun Wang, Yiqun Lisa Yin und Hongbo Yu geringfiigig auf 2%° Hashwertberechnungen
verbessert.

Aufgrund der erfolgreichen Angriffe auf SHA-0 rieten mehrere Experten von einer weiteren
Verwendung des SHA-1 ab. Darauthin kiindigte die amerikanische Behorde NIST an,
SHA-1 in 2010 zugunsten der SHA-2 Varianten abzulésen.

Im Jahr 2005 veroffentlichten Rijmen und Oswald einen Angriff, der mit weniger als
280 Hashwertberechnungen ein Kollisionspaar fiir den auf 53 Runden reduzierten SHA-1
Algorithmus findet. Nur wenig spéater kiindigten Xiaoyun Wang, Yiqun Lisa Yin und
Hongbo Yu einen Angriff auf den vollen 80-Runden SHA-1 mit 2%° Hashwertberechnungen
an. Im August 2005 erfuhr der benétigte Aufwand von Xiaoyun Wang, Andrew Yao und
Frances Yao auf der CRYPTO 2005 eine weitere Reduktion auf 2% Berechnungen. In
2008 wurde von Stephane Manuel ein Kollisionsangriff mit einem geschatzten Aufwand
von 25! bis 257 Berechnungen verdffentlicht.

Die besten bekannten Angriffe gegen SHA-2 brechen die von 64 auf 41 Runden reduzierte
Variante von SHA-256 und die von 80 auf 46 Runden reduzierte Variante von SHA-512.

Im Oktober 2012 wurde der Hash-Algorithmus Keccak als Gewinner des vom NIST aus-
geschriebenen Wettbewerbs fiir den SHA-3-Algorithmus ausgewéhlt. Die Intention dabei
war nicht, SHA-2 als Standard durch SHA-3 abzul6sen, zumal bisher keine erfolgreichen
Angriffe gegen SHA-2 bekannt sind. Vielmehr ging es bei diesem Wettbewerb darum,
angesichts der erfolgreichen Angriffe gegen MD5 und SHA-0, die einen dhnlichen Aufbau
wie SHA-1 und SHA-2 haben, eine auf einem vollkommen anderen Entwurfsprinzip
basierende Alternative zur Verfligung zu stellen.

1.2.10 Die Sponge-Konstruktion

Die Konstruktionsidee hinter dem SHA-3-Gewinner Keccak wird von den Autoren als
Sponge bezeichnet. Sie d&hnelt oberflichlich der in 1.2.3 vorgestellten Konstruktion, weist
aber einige Unterschiede auf. So ist ein Sponge nicht nur zur Konstruktion einer Hash-
funktion gedacht, basiert statt auf einer Kompressionsfunktion h auf einer Permutation
(oder Transformation) f : {0,1}” — {0,1}" und besitzt einen inneren Zustand, der nicht
ausgegeben wird. Die Anzahl der Bits, die benotigt wird, um diesen inneren Zustand
zu speichern, wird als Kapazitat ¢ des Sponges bezeichnet und ist sein wichtigster
Sicherheitsparameter. Dagegen beschreibt die Bitrate r = b — ¢ die Anzahl der Bits des
auBeren Zustands, tiber den Eingabe und Ausgabe des Sponges erfolgt.

Neben dem Kern f der Konstruktion ist auch wieder ein Preprocessing-Schritt notwendig.
Die Anforderungen fiir diesen definieren wir vorab.
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Definition 10. Eine Funktion y: {0,1}* — U.1{0,1} heifit sponge-konformes
Padding fir die Bitrate r, falls gilt:

o VnV(x,z') € {0,1}" x {0,1}" 3z : y(x) = vz Ay(a') = 2'z,

o Vk>0Vx # 2 : y(x) # y(z)0r.

Es ist leicht zu sehen, dass die Paddingfunktion pad10*1, sponge-konform fiir r ist, wobei
pad10°1,(z) = x10"1, d=min{i||z|+2+i=, 0}.

Tatséachlich ist pad10*1, sogar fiir jedes ' > 1 sponge-konform. Ohne die abschlieBende
1 ware dies nicht der Fall.

Definition 11. Seien r > 1, y ein sponge-konformes Padding fir r und f : {0, 1}b —
{0,1}". Die Funktion Sponge;, . : N x {0,1}" — {0,1}" ist wie folgt definiert:

Firx € {0,1}" seiyy...yx := y(x) mit |y;| =r (1 < i < k). Wir definieren die Zustinde
Si,Z' Z 0:

0° 1=10
Si =19 f(si-1 @ (y:0°) 1<i<k (Absorbtionsphase)
f(si-1) i>k (Squeezing-Phase)

Weiter bezeichne z; die ersten r Bits von s, +1— 1,1 > 1, es sei ¢ = L%J und z,
bezeichne die ersten | — cr Bits von z..1. Dann ist

Sponge;, (I, x) = z1... 2204,
Fiir die Analyse definieren wir
Absorby, . (z) = sp und Squeeze; (I, sk) = 21... 22y,

Den Aufwand, fiir festes [ ein Kollisionspaar = # 2’ mit Sponge;, .(l,r) =
Sponge;, (I, ') zu finden, kénnen wir nach oben durch den Aufwand abschitzen, ein
Paar x # 2’ zu finden, so dass Absorby, ,.(z) = Absorby, ,(z'). Da in der Absorbtions-
phase der duere Zustand (d.h. die Folge der ersten r Bits) beliebig und somit auch
identisch gesetzt werden kann, geniigt es, ein inneres Kollisionspaar zu finden, d.h.
solche  # 2’ so dass Absorbl () = Absorb’ (a'), wobei Absorb () die Folge

Fyr fyr
der letzten ¢ Bits von Absorby, .(z) bezeichnet.

Um eine solche innere Kollision zu finden, hilft es, sich die 2¢ inneren Zustédnde als Knoten
eines gerichteten Multigraphen G vorzustellen, wobei jeder Knoten 2" ausgehende Kanten
mit Label 0" bis 1" hat. Ziel ist es dann, zwei verschiedene Pfade von 0™ zu demselben
Knoten v zu finden, wobei zwei Pfade auch dann verschieden sind, wenn sich die Kanten
nur in den Labeln unterscheiden. Anders als beim ZOM fiir eine Hashfunktion lohnt es
sich hier fiir den Angreifer, die Argumente adaptiv nach einer Strategie S zu wahlen. Der
Algorithmus in Abb. 1.9 fasst dieses Vorgehen zusammen. Der Einfachheit halber gibt er
ein Kollisionspaar nach dem Padding aus; fiir pad10*1, und alle y, deren Padding nur
von |x| mod r abhdngt, lisst sich dieses aber leicht auf ein Paar vor dem Preprocessing
erweitern.

Satz 12. Fir jede Strategie S gibt INNERCOLLISION(f,7,q,S) im ZOM mit Erfolgs-
wahrscheinlichkeit hochstens
1] (1 ! )
€= 5

i=1
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Prozedur InnerCollision(f,r,q,S)

I c:=b—r, wobei f:{0,1}* = {0,1}"

> initialisiere den gerichteten Multigraphen G = (V,A):= ({0,1}",0)
3 for 1:=1 to ¢q do

+  wahle v eV und z € {0,1}" nach Strategie S

5 2 = f(av)

6 A=AU{(v,V,x,2)}

7 if 3 verschiedene Pfade (0° uy,xq,2)),..., (ug_1, ug, Tk, x}) und
8 0 v1,91,94), - s (Vi—1, vy, ;) Mit w, = in G
o return(z(z2 @ 1) ... (2% D 7)), 1 (Y2 D Y1) - (Y6 D Yioy))

0 else

11 return(?)

Abbildung 1.9: Bestimmung eines inneren Kollisionspaares

ein Kollisionspaar (x,x') fir Absorbf, .(x) aus. Wihit S nur von 0° erreichbare Knoten
v und kein Paar (v, x) mehrmals, so ist die Erfolgswahrscheinlichkeit exakt .

Beweis. Sei E; das Ereignis “G enthélt nach ¢ Durchldufen keine zwei verschiedenen
Pfade von 0¢ zu einem Knoten v”. Da nur durch eine Kante zwischen zwei von 0¢ aus
erreichbaren Knoten ein zweiter Pfad von 0¢ aus geschlossen werden kann und nach ¢ — 1
Durchldufen hochstens i von 2¢ Knoten erreichbar sind, gilt (unabhéngig von S):
Pr[E | EiN...NEy] > 1— 21
Wahlt S nur erreichbare Knoten und keine (v, x) mehrfach, so sind unter Annahme von
EyN...N E;_; auch ¢ Knoten erreichbar (sonst giabe es bereits zwei Pfade von 0¢ zu
einem Knoten in GG) und es gilt Gleichheit. Analog zum Beweis vom Satz 6 folgt der
behauptete Wert ¢, mit Gleichheit im Fall der Wahl erreichbarer Knoten durch §. 0O

Auch hier lasst sich ¢ in Abhéngigkeit von € mittels 1 — z &~ e™® abschétzen und es folgt:

c / 1
q~c22, c.=4/2In
1—c¢

Der Standard SHA-3 definiert die oben beschriebene Sponge-Konstruktion, 7 verschiedene
bijektive Funktionen f,,w = 2',i € {0,...,6} als Kern des Sponges Sponge;, ,.q10+1 -
sowie verschiedene Kombinationen von Bitraten r und Ausgabeliangen [ (c ist durch
25w — r bestimmt).

Jede Funktion f,, : {0,1}>*>* — {0,1}°*>** bildet ein zweidimensionales Feld A aus
w-Bit-Wortern auf ein ebensolches Feld f,(A) ab. Dabei wird (12 + log, w)-mal eine
Rundenfunktion f/ : {0,1}°*°*" x {0,1}" — {0,1}>*>*" aufgerufen, die A und eine
Rundenkonstante RC; auf A’ abbildet.

Es gilt

1.2.11 SHA-3

fulA, RC) = tre(X(m(p(0(A))))),
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wobei 0, p, , x und tpc Bijektionen von {0, 1}°*°** nach {0, 1}°**** sind. Die Funktion
6 besteht aus @-Operationen und ist so gewihlt, dass sich §7!(A) an moglichst vielen
Bits dndert, falls eines in A geflippt wird. Danach permutieren die Funktionen p und 7
die Bits von A innerhalb und zwischen den Wortern. Ahnlich einer S-Box im SPN ist
X eine nichtlineare Funktion (die einzige solche in der Definition von f] ), die nur auf
5-Bit-Blocken arbeitet (jedes Bit hangt sogar nur von 2 anderen ab). Schlussendlich setzt
tre das Wort Ag auf Ago @ RC.

Fir die Werte [ € {224, 256,384,512} definiert der Standard FIPS 202:
SHA3-[(x) = Spongey, . vadie-1, ([, 701),  wobei r = 1600 — 21.

Das zusétzliche Padding 01 soll dabei SHA-3 von anderen Anwendungen von Keccak mit
denselben Werten w, [, r unterscheiden.

1.3 Nachrichten-Authentikationscodes (MACs)

Definition 13. Fine Hashfamilie H = (X,Y, K, H) wird durch folgende Komponenten
beschrieben.:

e X, eine endliche oder unendliche Menge von Texten,
e Y, endliche Menge aller moglichen Hashwerte, ||Y]| < || X/,

e K, endlicher Schliisselraum (key space), wobei jeder Schlissel k € K eine
Hashfunktion hy: X —Y in H spezifiziert, d.h. H = {hy | k € K}.

Im folgenden werden wir die Grofie || X || des Textraumes mit n, die des Hashwertbereiches
Y mit m und die des Schliisselraumes K mit [ bezeichnen. Wir nennen dann H auch eine
(n, m, l)-Hashfamilie.

Damit ein geheimer Schliissel £ fiir die Authentifizierung mehrerer Nachrichten benutzt
werden kann, ohne dass dies einem potentiellen Gegner zur nichtautorisierten Berechnung
von giiltigen MAC-Werten verhilft, sollte folgende Bedingung erfiillt sein.

Berechnungsresistenz: Auch wenn eine Reihe von unter einem Schliissel k£ generierten

Text-Hashwert-Paaren (x1, hg(z1)), .. ., (Zn, hx(z,)) bekannt ist, erfordert es einen
immensen Aufwand, ohne Kenntnis von k ein weiteres Paar (z,y) mit y = hy(x)
zu finden.

Bei Verwendung einer berechnungsresistenten Hashfunktion ist es einem Gegner nicht
moglich, an Bob eine Nachricht x zu schicken, die Bob als von Alice stammend anerkennt.

Verwendung eines MAC zur Versiegelung von Software

Mithilfe einer berechnungsresistenten Hashfunktion kann der Integritdtsschutz fiir mehrere
Datensatze auf die Geheimhaltung eines Schliissels k zurtickgefiithrt werden.

Um die Datensétze x1,...,x, gegen unbefugt vorgenommene Veranderun-
gen zu schiitzen, legt man sie zusammen mit ihren Hashwerten y; =
hi(x1),...,yn = hg(x,) auf einem unsicheren Speichermedium ab und be-
wahrt den geheimen Schliissel k£ an einem sicheren Ort auf. Bei einem spateren
Zugriff auf einen Datensatz x; lasst sich dessen Unversehrtheit durch einen
Vergleich von y; mit dem Ergebnis hy(z;) einer erneuten MAC-Berechnung
iiberpriifen.
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Da auf diese Weise ein wirksamer Schutz der Datensdtze gegen Viren und andere
Manipulationen erreicht wird, spricht man von einer Versiegelung der gespeicherten
Datensatze.

1.3.1 Angriffe gegen symmetrische Hashfunktionen

Ein Angriff gegen einen MAC hat die unbefugte Berechnung von Hashwerten zum Ziel.
Das heifit, der Gegner versucht, Hashwerte hy(x) ohne Kenntnis des geheimen Schliissels
k zu berechnen. Entsprechend der Art des zur Verfiigung stehenden Textmaterials lassen
sich die Angriffe gegen einen MAC wie folgt klassifizieren.

Impersonation
Der Gegner kennt nur den benutzten MAC und versucht ein Paar (z,y) mit
hi(z) = y zu generieren, wobei k der (dem Gegner unbekannte) Schliissel ist.
Substitution
Der Gegner versucht in Kenntnis eines Paares (x, hy(x)) ein Paar (2/,y') mit 2’ # x
und hy(z') =y zu generieren.
Angriff bei bekanntem Text (known-text attack)

Der Gegner kennt fiir eine Reihe von Texten 1, ..., x, (die er nicht selbst wahlen
konnte) die zugehorigen MAC-Werte hy(z1), ..., hg(z,) und versucht, ein Paar
(',y") mit hp(2') =o' und 2’ & {x1,...,z,.} zu generieren.

Angriff bei frei wahlbarem Text (chosen-text attack)
Der Gegner kann die Texte x; selbst wahlen.

Angriff bei adaptiv wahlbarem Text (adaptive chosen-text attack)
Der Gegner kann die Wahl des Textes x; von den zuvor erhaltenen MAC-Werten
hi(x;), j < i, abhidngig machen.
Wechseln die Anwender nach jeder Hashwertberechnung den Schliissel, so geniigt es, dass
‘H einem Impersonationsangriff widersteht.

1.3.2 Informationstheoretische Sicherheit von M ACs

Modell: Schliissel £ und Nachrichten x werden unabhéngig gemafl einer Wahrscheinlich-
keitsverteilung p(k, x) = p(k)p(x) generiert, welche dem Gegner bekannt ist. Wir
nehmen 0.B.d.A. an, dass p(z) > 0 und p(k) > 0 fur alle z € X und k € K gilt.

Erfolgswahrscheinlichkeit fiir Impersonation

Sei o die Wahrscheinlichkeit, mit der sich ein Gegner bei optimaler Strategie als Alice
ausgeben kann, ohne dass Bob dies bemerkt.

Fiir ein Paar (z,y) sei p(x +— y) die Wahrscheinlichkeit, dass ein zuféllig gewéhlter
Schliissel den Text z auf den Hashwert y abbildet:

px=y) = > k).
ke K (z,y)

wobei K (z,y) = {k € K | hg(z) = y} alle Schliissel enthélt, die  auf y abbilden. D.h.
p(x — y) ist die Wahrscheinlichkeit, dass Bob das (vom Gegner gewéhlte) Paar (x,y) als
echt akzeptiert. Dann gilt @ = max{a(x) | v € X'}, wobei

a(z) = max{p(x —y) |y €Y}
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die Wahrscheinlichkeit ist, mit der einem Gegner bei optimaler Strategie eine Impersona-
tion mit dem Text = gelingt.

Beispiel 14. Sei K = {1,2,3}, X = {a,b,¢,d} und Y = {0,1}. Wir beschreiben H
durch die zugehorige Authentikationsmatrix. Die Zeilen und Spalten dieser Matriz

werden mit den Schlisseln k € K und den Texten v € X indiziert und ihr Eintrag in
Zeile k und Spalte x ist der Wert hy(x).

10,1] [0,2] 03] |0,4]

‘ a b c d
025/ 1| 0 0 0 1
0,30 2| 1 1 0 1
0,45 3| O 1 1 0

Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(z) bzw. p(k) an. Dann hat der
Gegner folgende Erfolgsaussichten o(x), falls er an Bob den Text x senden mdchte.

T a b c d
p(z+—0) 0,7 0,25 0,555 045
plz—1)103 0,75 045 0,55

a(x) 0,7 0,75 0,55 0,55

Folglich ist o = 0,75. <

Satz 15. Fir alle x € X ist a(z) > - und daher gilt a >

1 1
m m’

Beweis. Sei x € X beliebig. Dann gilt

Yop=y)=> > plk)=) pk) =1L

yey yeY keK(z,y) keK

Somit existiert fir jedes x € X ein y € Y mit p(x — y) > % und dies impliziert

1
= > —
a(z) = maxp(z = y) 2 —

O

Bemerkung 16. Wie der Beweis zeigt, gilt o = % genau dann, wenn fir alle Paare
(x,y) € X XY gilt,

keK (z,y)

D.h. bei Gleichverteilung der Schliissel muss in jeder Spalte der Authentikationsmatrizx
jeder Hashwert gleich oft vorkommen. Dies ldsst sich am einfachsten dadurch erreichen,
dass man K =Y setzt und fir hy die konstante Funktion hy(x) = k wdhlt.

Das folgende Lemma bendétigen wir fiir den Beweis des néchsten Satzes (Beweis siehe
Ubungen).

Lemma 17. Sei X eine Zufallsvariable mit endlichem Wertebereich W (X) C R*. Dann
gilt log E(X) > E(log X).
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Satz 18. Fir jeden MAC (X,Y, K, H) gilt:

1
O Z SHR-HKEY) (= 1/0).
Hierbei sind X,Y, K Zufallsvariablen, die die Verteilungen der Nachrichten, der Hash-

werte und der Schliissel beschreiben.

Der Wert von «a kann also um so kleiner werden, je gleichmafBiger die Schliisselverteilung
ist und je mehr Information die Beobachtung eines giiltigen Paares (x,y) tiber den
Schliissel liefert.

Beweis. Bezeichne «o(z,y) = p(z — y) die Wahrscheinlichkeit, mit der dem Gegner eine
Impersonation mit dem Paar (z,y) gelingt. Da a = max, , a(x,y) ist, folgt E(a(X,))) =
ey P(x,y)a(z,y) < o und somit folgt unter Anwendung von Lemma 17,

loga > log E(a(X,Y)) > E(loga(X,Y)) =Y p(z,y) logp(y|z) = —H(V|X).
z,y W—/%’_/
p@)p(ylz) —log ool
Wegen
HK,Y,X)=HX)+HY|X)+ HKI|X,Y)
und
H(K,Y,X) = H(CX) +HY|K,X).
—H(K)+H(X) =0

gilt zudem H(Y|X) = H(K) — H(K | X,)) und somit loga > H(K | X,Y) — H(K). O

Beispiel 19 (Fortsetzung von Beispiel 14). Es gilt
1
H(K) =3 p(k) log Sy = 04 1152403 13T 40,2520 = 154,
p p

Um H(K|X,Y) zu bestimmen, bendtigen wir die bedingten Verteilungen IC,, fir alle
Paare (z,y) € X x Y.

(z.y) | (a,0) (a1) (b,0) (b1) (¢0) (¢1) (d,0) (d,1)
p(l|x,y) = 0 1 0 z 0 0 =
p(2|z,y) 0 1 0 2 2 0 0 £
p(3|x,y) = 0 0 2 0 1 1 0
H(Kz,y) |~094 0 0 ~097 ~099 0 0~ 0,99

p(z,y) 0,0r 0,03 0,05 0,15 0,165 0,135 0,18 0,22

Hierbei gilt p(z,y) = p(z)p(y|z) = p(z)p(x — y). Zusammen ergibt sich

H(K|x,Y) = pry (Klz,y) ~ 0,52.

Erfolgswahrscheinlichkeit fiir Substitution

Bezeichne [ die Wahrscheinlichkeit, mit der ein Gegner bei optimaler Strategie eine von
Alice gesendete Nachricht durch eine andere Nachricht ersetzen kann, ohne dass Bob dies
bemerkt.
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Betrachten wir den Fall, dass der Gegner ein von Alice gesendetes Paar (x,y) durch (2, y')
ersetzt. Dann ist seine Erfolgswahrscheinlichkeit gleich der bedingten Wahrscheinlichkeit

plx =y, = Y)  Ciekyary) PK)

pla' =y e y) = -
= S R Ve (o

dass ein zuféllig gewahlter Schliissel k& den Text z” auf ¥’ abbildet, wenn bereits bekannt
ist, dass hi(x) = y ist. Falls Alice also das Paar (x,y) sendet, so ist die maximale
Erfolgswahrscheinlichkeit des Gegners gleich

B(x,y) = mr,r;%,p(ﬂf’ =y y).

Da der Gegner keinen Einfluss auf die Wahl von (x,y) hat, ist § gleich dem erwarteten
Wert von §(z,y) unter der Verteilung

p(x,y) = p@)p(y|z) = p(x)p(z = y).

unter der die Paare gesendet werden. Somit ergibt sich 3 zu

B=EBX,Y)= > plzypby).

zeX,yeY

Wegen p(z,y) = p(x)p(x — y) kénnen wir S unter Verwendung der Funktion

B'(z,y) = Bz, y)p(z = y) = ;,g%,p(x’ =y z )

auch einfacher mittels der Formel 5 = 3>, c x p(x) ¥, ey 8'(7,y) berechnen.

Beispiel 20 (Fortsetzung von Beispiel 14).

(2) Pl o) By | pay) | Blew)
@) (@b | b0) 61 | @) @) | @0 @
(@0) 0.25 0,45 0,25 0,45 | 0,45 0.25 | 045 | 0,7 | 0,643
@1) 0 03| 03 0 0 03| 03| 03 | 1
®0) | 0,25 0 0,25 0 0 0,25]| 0.25 | 025 | 1
w1 | 0,45 0,3 0,3 0,45| 0,45 03 | 045 | 0,75 | 06
o | 0,25 03] 025 03 0 0,55 0,55 0,55 | 1
ey | 0,45 0| 0 0,45 045 0 | 045 045 | 1
@0 | 0,45 0 | 0 045 0 0,45 045 | 045 | 1
@n | 0.25 0302 03055 0 0,55 | 0,55 | 1

Die optimalen Wahlmaoglichkeiten des Gegners, ein Paar (z,y) durch ein anderes Paar
(@', y") zu ersetzen, sind in der Tabelle fett gedruckt. Fir 5 erhalten wir somit den Wert

B o= > plx)d Bxy)

zeX yey
0,1(0,45 4 0,3) 4 0,2(0,25 + 0,45) + 0,3(0,55 + 0,45) + 0,4(0,45 + 0,55)
= 0,915.
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Als néachstes zeigen wir fur 3 die gleiche untere Schranke wie fir a.
Satz 21. Fir alle (z,y) € X XY mit p(z,y) > 0 ist f(z,y) > + und daher gilt § > L.

Beweis. Sei (x,y) € X XY ein Paar mit p(x,y) > 0. Dann gilt fiir beliebige 2’ € X —{z},

=1.

Z ‘€Y Z 'y x k

E p(w’|—>y’\$._>y) ye keK(z'y'"; ,y)p( )
Y > k

y'e kEK (z,y) p( )

Somit existiert ein ' € Y mit p(a’ — ¢/ |z — y) > L und dies impliziert

1
Blx,y) = max p(a' =y lr=y) > —.
! m

R
Folglich ist
1

zeX,yeYy zeX,yeY
O

Beispiel 22. Sei X =Y ={0,1,2} = Zs3 und sei K = 7Z3 X Zs3. Fir k = (a,b) € K und
r e X sei
hi(x) = ax + b mod 3.

Die zugehérige Authentikationsmatrix ist

N = O N~ O N OO
— O N O NN = O
O N = = O NN OIN

R R e I e e N i
N NN R =B~ O OO
N R ON R O N+~ O

~— N N N N~ N

Wir nehmen an, dass der Schliissel unter Gleichverteilung gewdhlt wird. Ersetzt der
Gegner ein Paar (z,y) durch ein Paar (2',y") mit ' # x, so wird dieses Paar von
genau einem der 3 infrage kommenden Schliissel akzeptiert. Dies liegt daran, dass in je 2
Spalten der Authentikationsmatriz jedes Hashwertpaar genau einmal vorkommt. Folglich
ist p(x’ — |z — y) = 1/3 und somit § = 1/3. Q

Lemma 23. Sei (X,Y,K, H) ein MAC mit 3 = =. Dann gilt
p(@’ =y |z y)=1/m
fir alle Doppelpaare (z,y,x',y’) mit x # x'.

Beweis. Wir zeigen zuerst, dass die Behauptung unter der Voraussetzung p(z +— y) > 0
gilt. Ware nédmlich
pla’ =y |z = y) > 1/m,
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dann wire auch

Blz,y) = Joax, p@’ =y lz = y)>1/m.

Da fur alle Paare (u,v) mit p(u +— v) > 0 nach Satz 21 die Ungleichung 5(u,v) > 1/m
gilt und zudem p(z,y) = p(x)p(x — y) > 0 ist, folgt hieraus

B= > pley)bxy) >1/m,

zeX,yeyY

was im Widerspruch zur Voraussetzung des Satzes steht. Ist andererseits
p(x' =y |z —y) <1/m,

muss wegen

Z pla’ =y |lr—y) =1
Y€y

auch ein Hashwert y” mit p(2’ — ¢ |x +— y) > 1/m existieren, woraus sich wie bereits
gezeigt ein Widerspruch ergibt.

Es bleibt zu zeigen, dass p(x +— y) > 0 fiir alle Paare (x,y) gilt. Ware p(z — y) = 0, so
wiirde fiir ein beliebiges Paar (u,v) mit p(u — v) > 0 auch p(z — y|u +— v) = 0 sein.
Wie bereits gezeigt, steht dies jedoch im Widerspruch zur Voraussetzung 5= 1/m. O

Satz 24. Ein MAC (X,Y, K, H) erfillt 5 = % genau dann, wenn
p(z =y, —y) =1/m?
fiir alle Doppelpaare (z,y,x',y") mit x # ' gilt.
Beweis. Sei (X,Y, K, H) ein MAC mit § = % Nach obigem Lemma impliziert dies, dass
pla’ =y |z y) =1/m
fir alle Doppelpaare (z,y,2’,y') mit  # 2’ gilt. Dies impliziert nun
p(z’ — o) pr&—ﬂy )p(x' =y |z —y)=1/m

und daher
plx =y, —=y)=pl — y)plr—yla — ) =1/m>

Umgekehrt rechnet man leicht nach, dass die Bedingung § = % erfiillt ist, wenn fiir alle
Doppelpaare (z,y,z’,y') mit  # 2’ die Gleichheit p(z — y, 2’ — 3/) = 1/m? gilt. O

Bemerkung 25. Nach obigem Satz gilt f = % genau dann, wenn fir alle Doppelpaare
(z,y, 2, y") mit v # 2’ gilt,

ple=yd =y)= > pk)=—3
keK (zy,z'y")

D.h. bei Gleichverteilung der Schliissel gilt f = % genau dann, wenn in je zwei Spalten
der Authentikationsmatriz jedes Hashwertpaar gleich oft vorkommt.

Ab jetzt setzen wir voraus, dass der Schliissel unter Gleichverteilung gewéhlt wird, d.h.
es gilt p(k) = m fir alle k € K.
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Definition 26. Fin MAC (X,Y, K, H) heifit 2-universal, falls fir alle z,x' € X mit
x £ 2 und alle y,y €Y gilt:

K|

1K Gty =

Bemerkung 27. Bei der Konstruktion von 2-universalen Hashfamilien spielt der Pa-
rameter \ = HmLQ” eine wichtige Rolle. Da \ notwendigerweise positiv und ganzzahlig ist,
muss insbesondere || K| > m? gelten.

Im folgenden nennen wir eine 2-universale (n, m, )-Hashfamilie mit A = [/m? kurz einen
(n,m,l, \)-MAC.

Auf Grund von Bemerkung 25 ist klar, dass ein MAC bei gleichverteilten Schliisseln genau
dann die Bedingung 3 = % erfiillt, wenn er 2-universal ist. Auf Grund von Bemerkung 16

nimmt in diesem Fall auch « den optimalen Wert % an.
Der néchste Satz zeigt eine einfache Konstruktionsmoglichkeit von 2-universalen MACs
mit dem Parameterwert A\ = 1.

Satz 28. Sei p prim und fir a,b,x € Z, sei
hap(z) = ax + b mod p.
Dann ist (X,Y,K,H) mit X =Y =7, und K = 7Z, X Z, ein (p, p,p*,1)-MAC.

Beweis. Wir miissen zeigen, dass die GroBle von K (z,y,z’,y') fur alle Doppelpaare
(x,y,2',y") mit x # 2’ konstant ist. Ein Schliissel (a,b) gehort genau dann zu dieser
Menge, wenn er die beiden Kongruenzen

ar+b =, v,
ar’' +b =,

erfiilllt. Da dies jedoch nur auf den Schliissel (a,b) mit

/

= (¥ —y)(@' —z)"  mod p,

b = y—a(y —y)(=' —2)"" mod p

zutrifft, folgt || K(2', v/, x,y)| = 1. -

Die Hashfunktionen des vorigen Satzes erfiillen wegen n = m = p nicht die Kompressi-
onseigenschaft. Zwar ldsst sich n noch geringfiigig von p auf p + 1 vergroflern, ohne K
und Y (und damit \) zu verdndern (sieche Ubungen). Wie der néchste Satz zeigt, lisst
sich eine stiarkere Kompression mit dem Parameterwert A = 1 jedoch nicht realisieren.

Satz 29. Fir einen (n,m,l,1)-MAC gilt
n<m+1
und somit | = m?* > (n —1)2.

Beweis. O.B.d.A. sei [|[K| ={1,...,{} und Y = {1,...,m}. Es ist leicht zu sehen, dass
eine (bijektive) Umbenennung 7: Y — Y der Hashwerte in einer einzelnen Spalte der
Authentikationsmatrix A wieder auf einen 2-universalen MAC fithrt. Also kénnen wir
zudem annehmen, dass die erste Zeile der Authentikationsmatrix A nur Einsen enthélt.
Da A 2-universal ist, gilt:
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e In jeder Zeile i = 2,...,m? kommt héchstens eine Eins vor.
e Jede Spalte j enthélt eine Eins in Zeile 1 und m — 1 Einsen in den iibrigen Zeilen.

Da in den Zeilen i = 2,...,m? insgesamt genau n(m — 1) Einsen vorkommen, folgt

Anzahl der Zeilen > Anzahl der Zeilen mit einer Eins,

m2 1+n(m—1)
was m? — 1 > n(m — 1) bzw. n < m + 1 impliziert. O

Der néachste Satz liefert 2-universale MACs mit beliebig groBem Kompressionsfaktor. Fiir
den Beweis benotigen wir das folgende Lemma.

Lemma 30. Sei A eine (k x {)-Matriz tiber einem endlichen Korper F, deren k Zeilen
linear unabhdngig sind. Dann besitzt das lineare Gleichungssystem

Ar =y
fiir jedes y € F* genau ||F||** Lésungen x € F-.
Beweis. Siehe Ubungen. 0

Satz 31. Sei p prim und fir x = (z1,...,74) € {0,1}* und k = (ky,..., kq) € Z;l sei

d
hi(x) = kx = Z k;x; mod p.

=1

Dann ist (X, Y, K, H) mit X = {0,1}*—{07}, Y = Z,, und K = Z{ ein (2°—1,p, p*,p*?)-
MAC.

Beweis. Wir miissen zeigen, dass die Grofle von K(z,y,2’,y’) fir alle Doppelpaare
(z,y,2',y) mit x # z’ konstant ist. Es gilt

k€ K(r,y2y) & h)=yAh)=y
s k-x=ynNk-2' =9,

Fassen wir « = x;---x4 und 2’ = 2 --- 2/, zu einer Matrix A zusammen, so ist dies
dquivalent zu

ki
xl . Id ) . _ y
Ty Ty k'd y')
Da die beiden Zeilen von A verschieden und damit linear unabhéngig sind, folgt mit

obigem Lemma, dass genau ||K (x,y,2’,y')|| = p®~2 Schliissel k = (ki, ..., kq) mit dieser
Eigenschaft existieren. O

Bemerkung 32. Obige Konstruktion liefert einen \-Wert von % = p%2. Durch
Erweiterung von X auf eine geeignete Teilmenge X' C Z;f lasst sich der Textraum von
24 — 1 auf ppd%ll vergréfiern (siehe Ubungen). Dies fiihrt auf einen beliebig grof$ wihlbaren

Kompressionsfaktor von pdj bei einem \-Wert von A = p®~2. Wie der ndichste Satz

zeigt, lasst sich dies nicht mit einem kleineren \-Wert erreichen.
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Im Beweis des néchsten Satzes benotigen wir folgendes Lemma.

Lemma 33. Fir beliebige reelle Zahlen by, ..., b, € R gilt (Z?;l bi)z <m¥m. b2

=11
Beweis. Siehe Ubungen. O

Satz 34. Fir einen (n,m,l,\)-MAC gilt

und somit | > n(m —1) 4+ 1.

Beweis. O.B.d.A. kénnen wir wieder || K|| = {1,...,{} und Y = {1,...,m} annehmen,
und dass die 1. Zeile der Authentikationsmatrix A nur aus Einsen besteht. Fiir jede Zeile
i =1,...,1 bezeichne e; die Anzahl der Einsen in dieser Zeile (also e; = n). Da in jeder
Spalte jeder Hashwert genau Am-mal vorkommt, gilt

l l
Y eg=Mm und Y e =Anm—n=n(Am-—1).
i=1 =2

Sei z; die Anzahl von Indexpaaren (j, ') mit j # 5/ und A[i, j] = A[i, j'] = 1 in Zeile i.
Dann gibt es in den Zeilen ¢ = 2, ..., [ insgesamt

l l ! l
2= zi=> efles—1)=>e=>e=Y e —n(Am—1)
=2 ;

l
1=2 =2 1=2 i=2

solche Paare. Mit obigem Lemma ergibt sich

Lol (Zhoe)” (- 1))
D = ey e

1=2

Da andererseits in jedem Spaltenpaar das Hashwert-Paar (1, 1) in genau A Zeilen vor-
kommt (genauer: einmal in Zeile 1 und (A — 1)-mal in den Zeilen i = 2,...,[), und da
n(n — 1) solche Spaltenpaare existieren, ergibt sich andererseits die Gleichung

z=A=1Dn(n-1).
Somit erhalten wir

A= Dn(n—1) =3¢ — n(Am—1) > W
(A =Dnn—1)+n(dm —1)(Am* — 1) > (n(Am — 1))?
(A —n — X+ dm)(Am? — 1) > n(Am — 1)?

“N2m2 4+ N2m3 > dnm® + \n— X+ dm — 2 nm

N (m® —m?) > An(m —1)>+m —1)

Am? > n(m—1) + 1.

—n(Am —1)

L
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1.3.3 MACs auf der Basis einer Kompressionsfunktion

Sei h: {0,1}™* — {0,1}™ die Kompressionsfunktion einer schliissellosen Hashfunktion
h (etwa MD5). Dann kénnen wir mithilfe von A einen MAC konstruieren, indem wir als
Initialisierungsvektor IV den symmetrischen Schliissel k£ € K benutzen. Wir betrachten
zunachst den Fall, dass auf das Preprocessing verzichtet wird.

Sei H = (X,Y, K) die Hashfamilie mit X = U,>;{0,1}"*, Y = {0,1}" = K und
H = {hy | k € K}, wobei hy(x) wie folgt berechnet wird:

Sei x=uxy,...,xp, |z =t fir i=1,....n
20 =k
for i:=1 to n do
zi = h(zi_12;)
output z,

[ R N

Bei diesem MAC fithrt beispielsweise folgender Substitutionsangriff zum Erfolg.

Sei (x,z) ein Paar mit hy(xz) = z, wobei k der dem Gegner unbekannte Schliissel ist.
Dann lasst sich fiir einen beliebigen String u € {0, 1} leicht der MAC-Wert des Textes
x’ = zu mittels hg(z") = h(zu) berechnen.

Ein dhnlicher Angriff ist auch bei Verwendung einer Preprocessing-Funktion moglich. Hat
diese beispielsweise die Form y(z) = xpad(x), so lasst sich obiger Angriff entsprechend
modifizieren (siehe Ubungen).

1.3.4 CBC-MACs

Als Basis fiir die Konstruktion eines MAC kann auch ein symmetrisches Kryptosystem
dienen.

Sei (M,C, K, E, D) ein Kryptosystem mit M = C = {0, 1}. Zudem sei IV := 0" und sei
k € K ein geheimer Schliissel. Sei y eine Funktion fiir den Preprocessing-Schritt.

Berechnung von Ay (z):

Cy=y@) =gy, 21,y =t
2 zp:=1V

3 for 1=1 to n do

2 = E(k, Zi—1 D yz)

5 output hi(x) = z,

i

Die Hashwertlange betragt also ¢t Bit. Wird auf den Preprocessing-Schritt verzichtet,
so léasst sich leicht ein Angriff mit 2 adaptiven Fragen ausfiihren. Kennt der Gegner
die MAC-Werte z = hg(z) und 2/ = hi(2') fir die Texte 2 = z;-- 2, und 2’ =
(X1 ® IV @ 2)xpi9 -+ Tym, Wobel |x;| =t firi =1,...,n 4+ m ist, so muss auch der
Text " = x1 -+ Ty den MAC-Wert hy(2”) = 2’ haben.

Diesen Angriff kann man zwar ausschliefen, indem man eine feste Lange fiir die Texte
x vorschreibt. Dies schrankt jedoch die Anwendbarkeit des CBC-MACS erheblich ein.
Zudem ist dann immer noch folgender Geburtstagsangriff auf den CBC-MAC moglich.
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Geburtstagsangriff auf einen CBC-MAC

Dieser Angriff ermoglicht es, mit ¢ + 1 Hashwertfragen (wobei g ~ 1,17 - 2%) den MAC-
Wert hy(x) fiir einen zuvor nicht erfragten Text = zu finden, wobei z = z;...x, €
{0, 1} abgesehen vom ersten ¢-Bitblock z1 € {0, 1} beliebig wéihlbar ist. Hierzu wéhlt
der Gegner zunéchst n — 2 beliebige Blocke s, ..., z, € {0,1} und ¢ ~ 1,17 - 2%
paarweise verschiedene Blocke z1,...,2f € {0,1}". Anschliefend wihlt er zufillig ¢
weitere Blocke xd, ... x4 € {0,1}' und erfragt die MAC-Werte z; = hy,(z") fiir die Texte
vt =axizbrs - w,,i=1,...,q.

Wegen % # #] fiir i # j sind auch die Texte z', ..., 29 paarweise verschieden. Seien
zi,...,2{ die nach der ersten Iteration des CBC-MACSs berechneten Kryptotexte zi =
E,(IV & 2}). Da die Blocke 7%, zufillig gewahlt werden, sind auch die Eingangsblocke
2t @ 2 fir die 2. Iteration zufillig, d.h. es gilt

DN | —

PrRi#£j:2 @ab=2 @al]=Pr[Fi#j: i =1l ~

Da die Gleichheit der Eingangsblocke 2! @ x} und 2] @ 23 fiir die 2. Tteration mit der
Gleichheit der Ausgangsblécke 2% und zJ der n-ten Iteration und damit mit der Gleichheit
der zugehorigen MAC-Werte 2* und 27 dquivalent ist, kann der Gegner das Indexpaar
(4,7) mit zi @ x} = 2] ® 27 auch leicht finden, sofern es existiert.

Befindet sich unter den erfragten Texten ein Kollisionspaar (z¢,27) mit 2z = 27, so
erfragt der Gegner fiir einen beliebigen Bitblock u € {0,1}* — {0’} den MAC-Wert
Z; = hi(z%) fir den Text ' = x%(x D u)zs - - - z,, welcher zugleich MAC-Wert des Textes
T = &} (x) ® u)xs- - - x, ist, den er zuvor nicht erfragt hat.

Definition 35. Sei 0 < e <1 und sei q € N. Ein (g,q)-Falscher fir eine Hashfamilie
H ist ein probabilistischer Algorithmus A, der q Fragen x1,...,x, stellt und aus den
Antworten z; = hyi(x;) mit Wahrscheinlichkeit mindestens e (bei zufdllig gewdhltem
Schlissel k) ein Paar (z,z) berechnet mit x & {x1,...,x,} und hy(z) = .

Wir unterscheiden zwischen adaptiven Fragen (d.h. der Text x; darf von den Hashwerten
der Texte x1,...,x;_1 abhidngen) und nicht-adaptiven Fragen. Zudem unterscheiden wir
zwischen selektiven Falschungen (d.h. der Gegner kann den Hashwert fiir einen Text seiner
Wahl generieren) und existientiellen Falschungen (d.h. der Gegner kann den Hashwert fiir
irgendeinen Text x & {x1,...,2,} generieren, auf dessen Wahl er keinen Einfluss hat).

Beispiel 36. Der oben beschriebene Geburtstagsangriff auf einen CBC-MAC fihrt auf
einen (%, q + 1)-Falscher fir ¢ ~ 1,17 - 23. Dabei ist nur die letzte Hashwertfrage adaptiv
und der Text x kann abgesehen vom ersten t-Bitblock beliebig vorgegeben werden. <

1.3.5 Kombination einer Hashfunktion mit einem MAC (HMAC)

Falls der Textraum einer Hashfamilie den Hashwertraum einer anderen Hashfamilie
enthalt, lassen sich diese leicht komponieren (Nested-MAC).

Definition 37. Seien H1 = (X, Y, K1, F) mit F = {fy | k € K1} und Ho = (Y, Z, K>, G)
mit G = {gx | k € Ky} Hashfamilien. Dann ist Hy o He = (X, Z, K, H) die Komposition
von Hy und Hy, wobei K = K; X Ky und H = {gk, © fr, | (k1,k2) € K} ist.
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Beispiel 38. Wihit man fiir Ho eine 2-universale Hashfamilie und fiir H, eine schliissel-
lose Hashfunktion (etwa SHA-1), so erhdlt man einen so genannten HMAC (Hash-MAC).
q

Eine Variante hiervon ist der auf SHA-1 basierende HMAC, bei dem zwei Varianten
von SHA-1 mit symmetrischen Schliisseln komponiert werden, wobei jedoch beidesmal
derselbe Schliissel benutzt wird. Seien

tpad = 36 ...36 und opad = 5C'...5C

64mal 64mal

512 Bit Konstanten. Dann berechnet sich HMAC wie folgt:
HMAC(z) = SHA-1((k & opad)SHA-1((k & ipad)zx)).

Hierbei fungiert die Funktion fi(z) = SHA-1((k @ ipad)x) als Hashfunktion mit Schliissel,
die beliebig lange Texte hasht, und der MAC gx(y) = SHA-1((k & opad)y) wird nur
auf Bitstrings der Lange 512 angewendet. Wie der folgende Satz zeigt, gentigt es, wenn
fr kollisionsresistent und g5 berechnungsresistent ist, um einen berechnungsresistenten

HMAC zu erhalten.

Definition 39. Fin (g, q)-Kollisionsangreifer fir eine Hashfamilie H = (X,Y, K, H) ist
ein probabilistischer Algorithmus A, der q Fragen x+, ..., x, stellt und aus den Antworten
y; = hg(z;) mit Wahrscheinlichkeit mindestens € ein Paar (zv,z") berechnet mit hy(z) =
hi.(x'), wobei k der dem Gegner unbekannte (und zufillig gewdhlte) Schliissel ist.

Da der Gegner den Schliissel k nicht kennt, ist ein Kollisionsangriff gegen eine Hashfamilie
‘H schwieriger zu realisieren als ein Kollisionsangriff gegen eine schliissellose Hashfunktion.

Satz 40. SeienH, = (X, Y, K1, F), Ho = (X, Y, K3, G) und H = (X, Z, K, H) = Hi0H>
Hashfamilien. Falls fir Hy kein adaptiver (e1,q + 1)-Kollisionsangriff und fir Hy kein
adaptiver (g, q)-Falscher existieren, dann gilt fir jeden adaptiven (e, q)-Fdlscher fir H,
dass € < &1 + €9 ist.

Beweis. Sei A ein adaptiver (e, ¢)-Félscher fiir . Seien z, ..., z, die Fragen, dic A an
sein Orakel stellt, und seien z; = gx, (fx, (z;)) die erhaltenen Antworten. Zudem sei (z, 2)
die Ausgabe von A. Dann ist die Erfolgswk von A

Priz & {x1,..., 2.} A g, (fr, (2)) = 2] > €.

Hierbei wird (kq, k) zufillig aus K = K7 x K5 gewéhlt. Wir mtssen zeigen, dass ¢ < e1+¢5
ist.

Behauptung 41. Pr(fy, (z) € {fi, (x1),. .., fi,(zg)}] < 1.

Hierzu betrachten wir folgenden adaptiven Kollisionsangreifer A’ gegen H;: A’ wihlt
zufillig einen Schliissel ks € K5 und simuliert A, wobei A’ fiir jede Anfrage x; von A
das Orakel f, (mit unbekanntem, aber zuféllig gewéhltem Schlissel ki) nach dem Wert
Yi = fr,(x;) fragt und an A die Antwort z; = g, (y;) zurtickgibt. Sobald A ein Paar
(x, z) ausgibt, fragt A" das Orakel f;, nach dem Hashwert y = fi, () und gibt im Fall
y € {y1,...,y,} das Paar (z,z;) fiir einen beliebigen Index ¢ mit y = y; aus.

Da A’ genau im Fall y € {y1,...,y,} Erfolg hat, tritt dieser Fall mit Wahrscheinlichkeit
kleiner £; ein, womit Behauptung 41 bewiesen ist.



1.3 Nachrichten-Authentikationscodes (MACs) 31

Behauptung 42. Pr{fi, (2) & (i (71), - fis (7)) A gy (fin (2)) = 2] > € — 1.
Dies folgt direkt aus Prjz & {z1,..., 24} A gk, (fk, (2)) = 2] > £ und Behauptung 41.
Behauptung 43. Pr[fo, () € {fis (11).. .- fis ()} A sy (2)) = 2] < 2.

Hierzu betrachten wir den adaptiven Félscher A” gegen Hs, der zufillig einen Schliissel
ki € K; wahlt und A wie folgt simuliert. A” gibt bei jeder Anfrage z; von A die
Antwort des Orakels gx, auf die Frage y; = fi, (z;) zuriick und sobald A ein Paar
(x, z) ausgibt, gibt A” das Paar (fy,(z),2) aus. Dann hat A” genau im Fall fy, (z) &
{fe, (1), -, [y () }AGry (fiy () = 2 Erfolg. Da es nach Voraussetzung keinen adaptiven
(€9, q)-Falscher gegen Hy gibt, muss € — &1 < €5 sein. O
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2 Elliptische Kurven

2.1 Elliptische Kurven iiber den reellen Zahlen

Definition 44. Seien a,b € R. Eine elliptische Kurve E enthilt alle Lésungen (x,y) € R?
der Gleichung y* = 23 + ax + b und zusdtzlich den Punkt O (Punkt im Unendlichen;
siche Ubungen). Im Fall 4a3 + 27b* = 0 heifit E singuldr, sonst nicht-singuldr.

Beispiel 45. Betrachte die durch y?> = 2% — 4x definierte elliptische Kurve E. Punkte:
<_27 0)7 (07 0)7 (27 0)7 <_17 2)7 (_17 _2)-

Auf den nicht-singuldren Punkten von E lasst sich eine additive Gruppenoperation +
definieren. Die Idee dabei ist, dass die Summe aller auf einer Geraden g liegenden Punkte
von F gleich dem neutralen Element O sein soll. Hierbei werden Tangentialpunkte doppelt
und Wendepunkte dreifach gezédhlt und nur solche Geraden g berticksichtigt, auf denen
bei dieser Zahlweise 3 Punkte von E liegen, wobei im Fall, dass g parallel zur y-Achse
verlauft, zuséatzlich noch der Punkt O hinzugerechnet wird.

Am einfachsten ist der Fall, dass die Gerade g parallel zur y-Achse verliduft, also ¢
den Punkt O enthélt. Besteht die Schnittmenge S von g und £\ {O} aus 2 Punkten
P = {x1,11} und Q = {x2, 42}, so gilt offensichtlich z; = x5 und y; = —ys und wir
erhalten P+ Q + O = O bzw. —P = (z1,—v1). Diese Gleichung gilt auch fir den
Fall, dass S nur aus einem Punkt P = {x,y;} besteht, da P dann wegen 3; = 0 ein
Tangentialpunkt ist und daher doppelt gezahlt wird.

Es bleibt der Fall, dass g nicht parallel zur y-Achse verlauft. Hier gibt es 2 Unterfalle:

P # Q: In diesem Fall gilt x; # xo. Zudem ist ¢ = {(z,y) € R?ly = Az + pu} mit
A=L2"9 yund p =y — A\ry = yo — Axg. Wir zeigen zuerst, dass

Eng={PQ,R}
ist, wobei R = (z3,ys3) folgende Koordinaten hat:
x5 =X\ — 11 — 2o und y3 = Nz3 — 1) + 1.
Fir alle (z,y) € ENg gilt
(A +p)? =2°+azx + b
~2® = N2 4 (@ —2u\)r + b — = 0.

p(z)
p lasst sich in C vollstdndig in Linearfaktoren zerlegen,

p(z) = (z = 21)(x — z2) (2 — 23).
Da sich der Koeffizient —\? von 22 aus der linearen Zerlegung von p(x) zu
—/\2 = —T1 — T2 — XT3

berechnet, muss 3 = A\? — z; — x5 sein. Da R auch auf g liegt, ist zudem y3 =
Mxs —21) + 41
Folglich ist P+ Q = —R = (23, —y3) = (A2 — 21 — 29, M1 — 23) — 91).
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P = Q: In diesem Fall gilt 1 = x5 und y; = y, # 0. Sei g die Tangente durch P an F.
Wir zeigen, dass es einen Punkt R = (z3,y3) € R? gibt mit

gNE ={P R},

wobei x3 = \? — 22, und y3 = A(z3 — 11) + y1 ist. Die Steigung X von g erhalten
wir durch implizites Differenzieren:

B d7y B —%(%,yl) B 313 +a

N\ = _
dx %(351,91) 241

Y

3

wobei F(x,y) = y* — 2% — ax — b ist. Zur Begriindung sei

T(z,y) = c(z — 1) + d(y — y1)
die Tangentialebene an F'(z,y) im Punkt (x1,y1, F(x1,y1)) = (21,91,0). Dann gilt
oF

c= %(xl,yl) =377 —a
und OF
d= @(xlvyl) =2y.

Da die Tangente g sowohl in der Tangentialebene 7' als auch in der z,y-Ebene
verlauft, folgt

(z,y)eg & T(r,y)=0
C

<~ Y—hn= —g(x—ﬂh);

woraus sich A = —% ergibt. Genau wie im 1. Fall erhalten wir nun P+Q = P+ P =

2P = —R = (3, ~y3)) = (\* — 21 — 22, M1 — 23) — 1) mit A = 3213/?.

Satz 46. E bildet mit O als neutralem Element und + als Addition eine abelsche Gruppe,
d.h.

o + ist abgeschlossen auf E.
o + ist kommutativ

e Jeder Punkt hat ein Inverses —P. P ist selbstinvers, falls P = —P ist. Dies gilt
fiir P = 0O und alle Kurvenpunkte der Form P = (x,0).

e + ist assoziativ (ohne Beweis!).

2.2 Elliptische Kurven iiber endlichen Korpern

Definition 47. Sei F, ein endlicher Kérper mit ¢ = p™ fiir eine Primzahl p > 3. Fiir
a,b € F, mit 4a® + 276 # 0 heifst

E={(z,y) € Z2 | y* =, 2° + axz + b} U{O}

elliptische Kurve iber Fy. Die Gruppenoperation + ist auf E' wie folgt definiert.
e O ist neutrales Element, d.h. VP € E—{0} : P+ O =0+ P =P,
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e Das Inverse zu P = (z,y) € E\{O} ist =P = P = (z, —y).
o Fir P.QQ € E\{O} ist

O, P=Q

R, sonst

rio-

wobei sich R = (x3,y3) wie folgt aus P = (x1,y1) und Q = (x2,y2) berechnet:
r3 = )\2 — T1 — T2
ys = AMx1—x3) — w0
_ -l
wobei \ — (2 —y1)(x2 — 1), P#Q
(321 + a)(2y1) ™", P=Q
Satz 48. (E,O,+) bildet eine abelsche Gruppe (ohne Beweis).

Beispiel 49. p = 11, E definiert durch y*> = 3 + x+6. Zur Erinnerung: Im Fall p =43
lassen sich fiir z € QR,, die Wurzeln y durch +2"1 bestimmen.

T 01| 2 3 14| 5 |67 8 19| 10
z=23+2+6 6|8 b 3 18] 4 |8] 4 9 | 7] 4
y==tyzmod 11 || — | — |47 56| — 29| —1]2:9[3;8|—12;9

Da die Gruppe (E,O,+) ||E|| = 13 Elemente enthdlt, und 13 eine Primzahl ist, haben alle
Elemente entweder die Ordnung 1 oder 13. Da nur das neutrale Element O die Ordnung
1 hat, haben alle anderen Elemente P € E—{QO} die Ordnung 13, sind also Erzeuger der
Gruppe. Folglich ist (E, O, +) zyklisch und somit isomorph zu Zq3: (E,O,+) = (Z13,0,+).
Berechnung von 2g = (2,7) + (2,7):

A= (3-2241)(2-7) ' mod 11
= 2.37!
= 2.4=28

r3 = 8 —2—-2modl1l=5

ys = 8(2—5)—Tmod 11 =2

= 2¢g = (5,2)
Berechnung von 3g = 29+ g = (5,2) + (2,7):

A= (7-2)(2-5)"mod 11
— 5y

r3 = 22—-5—2mod 11 =8
ys = 2-(bh—8)—2mod 11 =3

k-gl(2,7)](5,2)](8,3)(10,2)((3,6)[(7,9)|(7,2)|(3,5)[(10,9)|(8,8)[(5,9)|(2,4)| O
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Satz 50. (Hasse) Fir die Anzahl | E| von Punkten einer elliptischen Kurve diber einem
endlichen Korper IF, gilt

q+1-2/q<||E|| <q+1+4+2y/q (ohne Beweis).

Bemerkung 51. Es gibt einen effizienten Algorithmus (von Schoof) mit Zeitkomplezitit
O(log® q), der ||E|| bei Eingabe von a,b und q berechnet.

Satz 52. Sei E eine elliptische Kurve tber F,. Dann ist (E, O, +) isomorph zu Zy, X ZLn,,
wobei ny,ny € NT sind und ny Teiler von ny und von q — 1 ist (ohne Beweis).

Bemerkung 53. Wie jede Gruppe muss E im Fall |E| prim zyklisch sein. Wegen
|E|| = ni - ny und da ny Teiler von ng ist, muss E auch dann zyklisch sein, wenn || E|
das Produkt von zwei verschiedenen Primzahlen (da dann nqy =1 sein muss).

Im Fall ny > 1 ist ' dagegen nicht zyklisch, hat aber eine nicht-triviale zyklische
Untergruppe, die zu Z, isomorph ist und fir kryptografische Anwendungen benutzt
werden kann.

Kompakte Darstellung von Punkten auf E

Fir den Fall, dass sich Quadratwurzeln effizient in IF, berechnen lassen, gibt es eine
einfache Moglichkeit, Punkte auf einer elliptischen Kurve iiber IF, kompakter darzustellen.
Ist zum Beispiel ¢ = p prim mit p =, 3, so lassen sich die Wurzeln +4/z mod p von
2 € QR, = {z? mod p | z € Z}} (QR steht fiir quadratischer Rest) effizient mittels

+/z = £2TV/4 mod p berechnen.

Folgende Funktion liefert dann eine kompakte Darstellung.

PointCompress: £ — {O} — Z, x Zy mit (z,y) — (z,y mod 2).

Fiir die Rekonstruktion kénnen wir folgende Prozedur benutzen. Sei E' eine elliptische
Kurve y* = 2% + az + b iiber F, und sei p(z) = 2 + az + .

Prozedur PointDeCompress(z,i)

I z:=p(r) mod p

> if z € QR, then

3 y:=+/zmod p

4 if y#517 then y:=p—y
5 output (z,y)

¢ else output (‘‘error’’)

Effiziente Berechnung von Vielfachen von Punkten auf E

In Z, berechnen wir Potenzen a® mod m durch ‘wiederholtes Quadieren und Multi-
plizieren’. Ahnlich kénnen wir in einer elliptischen Kurve E die Vielfachen mP eines
Punktes P durch ‘wiederholtes Verdoppeln und Addieren’ berechnen. Da in E additive
Inverse sehr leicht zu berechnen sind, kann m P durch ‘wiederholtes Verdoppeln, Addieren
und Subtrahieren’ noch effizienter berechnet werden. Hierzu reprasentieren wir m in
NAF-Darstellung (Non Adjacent Form).
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Definition 54. (¢;_y,...,c0) € {—1,0,1} heifst SBR-Darstellung (Signed Binary
Representation) einer Zahl ¢ € 7, falls

-1
Z c2'=c
i=0
ist. Ist von je zwei benachbarten Ziffern ¢; mindestens eine 0, so heifit (¢;—1,...,¢o)

NAF-Darstellung von c.

Beispiel 55. Sowohl (0,1,0,1,1) als auch (1,0,—1,0,—1) sind SBR-Darstellungen von
c=142+8=11=-1—-4+16. N

Satz 56. Jede Zahl ¢ € 7 hat eine eindeutige NAF-Darstellung (Beweis siehe Ubungen,).

Berechnung einer NAF-Darstellung aus der Bindrdarstellung: Ersetze jeden Teilstring
der Form (0,1,...,1) von rechts beginnend durch den Teilstring (1,0,...,0,—1).

Zur effizienten Berechnung von ) = cP benutzen wir das Horner-Schema
-1
c = ZCZQl = ( .. (01712 + 6172)2 + -+ 01)2 + Co,
i=0

welches auf folgendes iteratives Schema zur Berechnung der Vielfachen @); = Zé-;% c;j2' P
fihrt:
O, i=1
Qi = ,
2Qi1 + P, 0<i<l.

Dies fithrt auf folgende Algorithmen zur Berechnung von Vielfachen von Punkten auf E:

Prozedur DoubleAdd(P,¢_1,...,¢)

Q=0

2> for i:=1—1 to 0 do

3 Q:=2-Q

| if ;=1 then Q:=Q+ P
5 output (Q)

Prozedur DoubleAddSub(P,¢;_1,...,c)

Q=0

o for i:=1—1 to 0 do
3

1

Q:=2-Q

if ;=1 then Q. =Q+ P
5 if ¢, =—1 then Q:=Q+ (—P)
¢ output (Q)

Da eine [-Bitzahl im Durchschnitt %—Nullen in Binardarstellung und 2gl—Nullen in NAF-

Darstellung enthélt, ist DoubleAddSub mit ca. [ 4+ /3 Additionen/Subtraktionen um 11
Prozent effizienter als DoubleAdd mit ca. [ 4+ [/2 Additionen (siche Ubungen).
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3 Digitale Signaturverfahren

Handschriftliche Signaturen

e Die durch die Unterschrift gekennzeichnete Person hat tiberpriifbar die Unterschrift
geleistet.

e Die Unterschrift ist nicht auf ein anderes Dokument tibertragbar, ohne ihre Giiltig-
keit zu verlieren.

e Das signierte Dokument kann nachtraglich nicht unbemerkt verédndert werden.
Eine direkte Ubertragung dieser Eigenschaften in die digitale Welt ist nicht moglich.

Losung: Die digitale Unterschrift wird nicht physikalisch, sondern logisch (inhaltlich)
an ein elektronisches Dokument gebunden und die Fahigkeit, einen individuellen
Schriftzug auszufithren, wird durch geheimes Wissen ersetzt.

Definition 57. FEin digitales Signaturverfahren besteht aus:

o ciner Menge X von Dokumenten,

e ciner endlichen Menge Y wvon Unterschriften,

e ciner endlichen Menge K von Schliisseln,

e ciner Menge S C K x K wvon Schlisselpaaren (/%, k),

e cinem Signaturalgorithmus sig : K x X =Y und

o cinem Verifikationsalgorithmus ver : K x X xY — {0,1}
mit

1, st ]%,:L‘ =,
ver(k, z,y) = { 0 g( )songt

fir alle (k,k) € S.

Klassifikation von Angriffen gegen Signaturverfahren

Angriff bei bekanntem Verifikationsschliissel (key-only attack)

Angriff bei bekannter Signatur (known signature attack): fiir eine Reihe von Doku-
menten z ist die zugehorige Signatur y = sig(k, x) bekannt, auf deren Auswahl der
Gegner keinen Einfluss hat.

Angriff bei frei wahlbaren Dokumenten (chosen document attack): d.h. der Geg-
ner war fiir eine gewisse Zeit in der Lage, fir von ihm gewéahlte Dokumente
die zugehorige Signatur in Erfahrung zu bringen und versucht nun, fiir ein “neues”
Dokument die Unterschrift zu bestimmen.

adaptiver Angriff bei frei wahlbaren Dokumenten: d.h. der Gegner wéhlt jeweils das
nachste Dokument in Abhéngigkeit von der Signatur des vorigen.
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Erfolgskriterien fiir die Falschung digitaler Signaturen

uneingeschranktes Falschungsvermdgen (total break): Der Gegner hat einen Weg ge-
funden, die Funktion = — sig(k, x), effizient zu berechnen ohne £ als Eingabe zu
benutzen (k ist ohnehin bekannt).

selektives Falschungsvermogen (selective forgery): Der Gegner kann fiir Dokumente
seiner Wahl die zugehorigen Signaturen bestimmen (eventuell mit Hilfe des legalen
Unterzeichners).

nichtselektives (existentielles) Falschungsvermogen: Der Gegner kann fiir irgendein
Dokument = die zugehorige digitale Signatur bestimmen.

Beim RSA-Signaturverfahren ist K = {(a,n)|n = pq fir Primzahlen p,q und a €
Lyt und S die Relation S = {(d,n,e,n) € K x K|de =, 1}. Signiert wird mittels
sig(d,n,z) := ¢ mod n, wobei X =Y = Z,, und die Verifikationsbedingung ist

L, y¥ =2
ver(e,n,z,y) = { 0 const

Satz 58. Fir alle (d,n,e,n) € S und z,y € Z, gilt:

1, sig(d,n,z) =y,

ver(e,n,z,y) = { 0 onst

Beweis. Folgt direkt aus der Korrektheit des RSA-Kryptosystems. O

Wir betrachten unterschiedliche Angriffsmoglichkeiten gegen das RSA-Signaturverfahren.

e Es ist nicht schwer, eine nichtselektive Falschung bei bekanntem Verifikationsschliis-
sel durchzufiihren. Hierzu wéhlt der Gegner zu einer beliebigen Signatur y € Y das
Dokument x = y° mod n.

e Zudem ist eine existentielle Falschung bei bekannten Signaturen moglich, falls
der Gegner zwei signierte Dokumente (z1, y1), (22, y2) mit ver(k, z;,y;) = 1 kennt.
Wegen yf =, z; fur i = 1,2 folgt namlich (y142)¢ =, y{ys =, z172 und somit
ver(k, zyzy mod n,y;y2 mod n) = 1.

e Weiterhin kann der Gegner bei frei wahlbaren Dokumenten sogar eine selektive
Falschung durchfithren. Ist bereits die Signatur fiir ein beliebiges Dokument 2’ € Z
bekannt und kann sich der Gegner die Signatur fiir das Dokument z” = x -
2~ mod n beschaffen, so kann er daraus wie oben eine giiltige Signatur fiir das
Dokument x berechnen.

Diese Angriffe kann man vereiteln, indem man das Dokument x mit Redundanz versieht
(indem man z.B. anstelle von x den Text zx signiert). Um auch ldngere Dokumente
effizient signieren zu konnen, wird i.a. jedoch eine geeignete Hashfunktion h benutzt und
nicht das gesamte Dokument x, sondern nur der Hashwert h(z) signiert.

Bei der Signaturerstellung benotigte Eigenschaften einer Hashfunktion A

e Die verwendete Hashfunktion h sollte die Einwegeigenschaft haben, da sonst der
Gegner zu einem y € Y ein passendes Dokument = mit h(z) = y bestimmen kann
(zumindest wenn das Signaturverfahren anfillig gegen eine existentielle Féalschung
ist, wie etwa RSA).
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e Angenommen der Gegner kennt bereits ein Paar (z,y) mit ver(k, h(x),y) = 1.
Dann sollte h zumindest schwach kollisionsresistent sein, da sonst der Gegner ein
x’ mit h(z") = h(x) berechnen und das Paar (z’,y) bestimmen konnte.

e Falls sich der Gegner fiir bestimmte von ihm selbst gewédhlte Dokumente z die
zugehorige Signatur y beschaffen kann, so sollte h sogar kollisionsresistent sein.
Andernfalls konnte der Gegner ein Kollisonspaar (z,2’) fir h finden und sich
das (unverdachtige) Dokument x signieren lassen. Die erhaltene Signatur y fiir 2/
verwenden.

3.1 Das ElGamal-Signaturverfahren

Das Signaturverfahren von ElGamal (1985) ist wie das gleichnamige asymmetrische
Kryptosystem probabilistisch und beruht wie dieses auf dem diskreten Logarithmus.

Wir beschreiben nun das Signaturverfahren von ElGamal. Sei p eine grofle Primzahl
und «a ein Erzeuger von Z; (p und « sind offentlich). Jeder Teilnehmer B erhilt als
geheimen Signierschliissel eine Zahl a € Z,—1 = {0,...,p — 2} und gibt § = a® mod p
als Offentlichen Verifikationsschliissel bekannt:

Signierschliissel: k= (p, v, a),

Verifikationsschliissel: &k = (p, «, 3).

Signaturerstellung: Um ein Dokument o € X = Z,_; zu signieren, wahlt der Signierer
zuféllig eine Zahl z € Z; | und berechnet sig(k,z,2) = (7,0) € Y = Ly X Ly mit
v=a*mod pund § = (z —ay)z~! mod p— 1. Falls § = 0 ist, muss eine neue Zufallszahl
z gewahlt werden.

Verifikation: ver(k, z, (v,9)) = 1, falls 879° =, a® ist.

Lemma 59. Die Bedingung 77° =, o® ist genau dann erfillt, wenn es ein z € Y/

mit sig(k,x,z) = (v,6) gibt.

Beweis. Wegen v = o mod pist z durch v (und « durch z) eindeutig bestimmt. Weiter ist
B0 =, a® o =, a®*#_ Da « ein Erzeuger von Z, ist, gilt die Kongruenz Q0 =, o
genau dann, wenn a7y + 20 =, 1 x ist, was wiederum mit 6 =, ; (z — ay)z~! dquivalent
ist. O

Zur Sicherheit des ElGamal-Systems

1. Falls der Gegner den diskreten Logarithmus bestimmen kann, so kann er den
geheimen Schliissel a = log,, 8 berechnen.
2. Als néchstes betrachten wir verschiedene Szenarien fiir einen selektiven Angriff bei
gegebenem Klartext x.
a) Der Gegner wahlt zuerst 7 und versucht, ein passendes 0 zu finden. Mit
a® = 7v° mod p folgt § = log, a®377. D.h. die Bestimmung von ¢ ist eine
Instanz des diskreten Logarithmus Problems (kurz: DLP).

b) Der Gegner wihlt zuerst § und versucht dann v aus o® = $79° mod p zu
bestimmen. Dazu ist kein eflizientes Verfahren bekannt.

¢) Der Gegner wihlt v und § gleichzeitig. Auch hierfiir ist kein effizientes Verfah-
ren bekannt.
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3. Versucht der Gegner bei einem nichtselektiven Angriff, zuerst v und ¢ zu wéhlen und
dazu ein passendes Dokument x zu finden, so muss er den diskreten Logarithmus
x = log,, 377° bestimmen.

4. Eine existentielle Falschung lasst sich jedoch wie folgt durchfithren. Wahle beliebige
Zahlen u € Z, 1, v € Z;_; und berechne v = a"" mod p. Dann ist (v,d) genau
dann eine giiltige Signatur fiir ein Dokument z, wenn o® =, 37(a*3")? ist. Dies
ist wiederum #quivalent zur Kongruenz a®~" =, 87+ die sich fiir das Dokument
x = ud mod p — 1 mittels 6 = —yv~! mod p — 1 erfiillen lisst. Bei Wahl von v = 1
fithrt z.B. jedes u € Z,_5 mittels v = a“ mod p und 6 = —y mod p — 1 auf eine
giltige Signatur (v,d) fiir das Dokument z = ud mod p — 1.

Bemerkung 60. Bei der Benutzung des ElGamal-Signaturverfahrens sind folgende
Punkte zu beachten.

1. Die Zufallszahl z muss geheim gehalten werden.

2. Zufallszahlen diirfen nicht mehrfach verwendet werden.

Kennt ndmlich der Gegner zu einer Signatur (z, (7, d)) die Zufallszahl z, so kann sie wegen
d =p-1 (x—ay)z"! im Fall ggT(y,p—1) = 1 die geheime Zahl a = (—zd+z)y~* mod p—1
berechnen. Ist ggT'(v,p — 1) = d > 1, so lassen sich aus dieser Kongruenz d Kandidaten
fiir @ gewinnen, die sich tiber die Kongruenz a® =, 3 verifizieren lassen.

Sind andererseits (z1, (7, 01)) und (z9, (7, d2)) mit demselben z generierte Signaturen,
dann folgt wegen 77 =, o™ und 37y =, a®2,

102 — 81-62) —

v p T = o™ » T = 2(6 — 02) =pq 11 — 2o

Aus dieser Kongruenz lassen sich d = g¢gT'(6; — 2, p — 1) Kandidaten fiir z gewinnen und
daraus wie oben a berechnen, falls d nicht zu grof3 ist.

3.2 Das Schnorr-Signaturverfahren

Da die Primzahl p beim ElGamal-Signaturverfahren mindestens eine 512-Bit-Zahl (besser
1024-Bit-Zahl) sein sollte, betrdgt die Signaturlange 1024 bzw 2048 Bit. Folgende Variante
des ElGamal-Signaturverfahrens, die als eine Vorstufe zum DSA betrachtet werden kann,
wurde von Schnorr vorgeschlagen.

Die zugrunde liegende Idee ist folgende: Indem wir fiir o ein Element der Ordnung ¢ mit
q =~ 2'% wihlen, reduziert sich die Signaturlinge auf 2-160 = 320 Bit. Die Berechnungen
werden aber nach wie vor modulo p mit p ~ 2'0%* ausgefiihrt, so dass das Problem des
diskreten Logarithmus zur Basis « in Z; hart bleibt.

Sei g ein Erzeuger von Z;, wobei p die Bauart p—1 = mgq fiir eine Primzahl ¢ = 7= ~

hat. Dann ist @ = g*~9/ ¢in Element in Z% der Ordnung ord,(a) = ¢
h : {0,1}* — Z, eine Hashfunktion, die jedem Dokument z € X = {0,1}* einen
Hashwert in Z, zuordnet.

Signierschliissel: k= (p.qg.a,a),ac Ly,
Verifikationsschliissel: &k = (p, «, 8), f = a® mod p.

Signaturerstellung: Um ein Dokument = € X zu signieren, wahlt der Signierer zufallig
eine geheime Zahl z € Z; und berechnet

sig(k,x, 2) = (v,0),
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wobei v = h(z bin(a® mod p)) und 6 = (2 + ay) mod ¢ ist. Der Signaturraum ist also
Y =7, x Z,.
Verifikation: ver(k,,§) = 1, falls h(zbin(a’3~" mod p)) =  ist.

3.3 Der Digital Signature Algorithm (DSA)

Der DSA wurde im August 1991 vom National Institute of Standards and Technology
(NIST) fiir die Verwendung im Digital Signature Standard (DSS) empfohlen. Der DSS
enthilt neben dem DSA (urspriinglich der einzige im DSS definierte Algorithmus) als
weitere Algorithmen die RSA-Signatur und ECDSA (siehe unten). Ausgehend vom
ElGamal-Verfahren lasst sich der DSA durch folgende Modifikationen erhalten:
1. ¢ als Losung von 20 — ay =,_1 x (d.h. 6 = (x 4+ ay)z!) ~ Verifikationsbedingung:
o® B =, 75 (Oé:coéa”/ =, az(x—l—a'y)z*l)
2. Ist  + ay € Z;_,, dann existiert ' = (z + ay)”'z mod p — 1 ~» Verifikation
durch: a** g7 =, 4
3. Sei nun wie bei Schnorr p = mg+1 mit ¢ ~ 2'% prim und sei & € Z} mit ord,(a) = q.
Dann kann bei der Verifikation von a®~ 379" =, v auf der Exponentenebene
modulo q gerechnet werden. Da v jedoch rechts nicht als Exponent, sondern als
Basiszahl, vorkommt, muss auch die linke Seite modulo q reduziert werden.

Beim DSA hat der Signierschliissel also die Form k = (p,q,@,a), wobei a € Z; ist, und
der zugehorige Verifikationsschliissel ist & = (p, ¢, v, f) mit § = a® mod p. Zudem gilt
X =Z,und Y =Z, x Z.

Zu gegebenem = € X wird zuféllig eine geheime Zahl z € Z7 gewdhlt.

R = (o mod d
sig(k,z,x) = (v,0), wobei 7 = (a7 mod p) mod ¢
6= (r+ay)z"" modq € Z

Im Fall v = 0 oder § = 0 muss ein neues z gewdhlt werden. Die Verifikationsbedingung
ist

1, (a*8?mod p) mod q = 7,
0, sonst,

ver(k,z,7,0) = {

wobei e = 267t mod ¢ und d = v6~! mod q ist.
Korrektheit: Im Fall sig(k, z, ) = (v, 0) ist

—1 -1 -1 -1
af d =, azé a/a’yé =, a/& (z+a) =, a(a:—&—a’y) z(z+ay) =, oF

woraus sich
(o mod p) mod ¢ = (o mod p) mod ¢ = ~

ergibt.
Beispiel 61. ¢ =101, p=78¢+1="7879, g=3 (ord,(3)=p—1)
~ a = 3" mod p =170 hat Ordnung q

Wir wihlen a =75 € Zy, d.h. 8 = a* mod p = 170" mod p = 4547. Um das Dokument
x = 1234 € Z; zu signieren, wihlen wir die geheime Zufallszahl z = 50 € Zj (~ 271 =199)
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und erhalten dann

v = (170°° mod 7879) mod 101
2518 mod 101

= 94
§ = (1234 +75-94) - 99 mod 101
= 97 (~ 071 =25)

d.h. sig(p,q,a, z,x) = (94,97), wobei k= (p,q,a,a)

Um diese Signatur zu prifen berechnen wir:

e = x6 'modyg

1234 - 25 mod 101
45

76~ mod ¢

94 - 25 mod 101
= 27

=y
Il

~ (afB? mod p) mod q = (170%54547*" mod 7879) mod 101 = 94. <

3.4 ECDSA (Elliptic Curve DSA)

Im Jahr 2000 als FIPS 186-2 als Standard deklariert.

Definition 62. Sei E eine elliptische Kurve tiber einem endlichen Korper. Sei A € E
ein Punkt der Ordnung q (q prim), so dass das Diskrete-Logarithmus-Problem zur Basis
A in E schwierig ist. Zudem sei h eine kryptografische Hashfunktion.
X ={0,1}", Y = Z; x Z3. éffentlicher Verifikationsschliissel: (E,q, A, B),
wobei B =m - A geheimer Signierschlissel: (E,q, A,m), m € Z.

sig(k,z,x) = (7, 0), wobei

(w,v) = z-A
v = wumodgq
§ = (h(z)+my)z ' mod q
1 dg=
ver(k,z,v,d) = { WG E =T obei
0, sonst
(u,v) = eA+dB
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Korrektheit der Verifikation beim ECDSA:

(u,v) = eA+dB
= (@5 HA+ (v HmA
= (@ +my)0 A
= 2zA (da (2’ +mv)6~ ! =, 2)
Beispiel 63. Signieren und Verifizieren: Sei E idiber Zy, definiert durch +* = 23+ x +6
Wir wihlen A = (2,7), m=7 —-p=11,¢q=13,B=TA = (7,2)

Annahme: Wir wollen ein Dokument x mit dem Hashwert h(x) = 4 unter Verwendung
des Signierschlissels k = (E,q, A,m) und der Zufallszahl r = 3 signieren.

(u,v) == 2zA=3-(2,7)=(8,3)
= nmodq=8,6=(4+7-8)3 ' mod13=7
siglk,z,x) = (8,7)

Verifikation von (v,0) = (8,7) unter k = (E,q, A, B):

e = 26 'modg=4-7T"mod13=4-2mod 13 =38
= yd 'modg=28-2mod 13 =3
(u,v) == eA+dB=8-(2,7)+3-(7,2) =(8,3)
~ umod qg=_8=r. <

3.5 One-time Signatur (Lamport)

Sei f: U — V eine injektive Einwegfunktion. Der Dokumentenraum ist X = {0, 1}" und
der Signaturraum ist Y = U".

verschiedenen Elementen aus U.

Der zugehérige Verifikationsschliissel ist dann & = (vip)iz1,. np—o01 mit v;p = f(u;p) fir
alle (i,b) € {1,...,n} x{0,1}.

Signaturerstellung: Die Signatur fiir ein Dokument x = z; ...z, € X ist

A~

sig(k,z) = U1z - Upg, -
—_—

Yy
Verifikation:

1 i) = Vg, firi=1,...,n,
Uer(kax,uh...,un);:{ ;S (w) Vi, TUT 2 n
—_——

v 0, sonst.

Beispiel 64. Wir wdhlen als Einwegfunktion eine Funktion der Form f : Z; — Z; mit
f(u) = g* mod p, wobei g ein Erzeuger von Z ist.
Z.B. sei p="T879 und g = 3, also f(u) = 3* mod 7879. Weiter sein = 3.

Dann erhalten wir fir den Signierschlissel k= (u1,0,u1,1, U2, U217, Ug 0, U3 1), WObeL
u1,0 = 5831, w11 = 803, ugg = 4285, ua 1 = 735, us o = 2467, uz1 = 6449 den zugehirigen
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Verifikationsschliissel k = (v10, V1.1, V2,0, V2,1, V30, V31), wobei v1g = 2009, vy, = 4672,
Vg0 = 268, v91 = 3810, v3 o = 4721 und vs1 = 5731 ist. Die Signatur fir das Dokument
x = 110 ist dann

sz’g(l%,a:) = (U1, U271, Usp) = (u1,ug, uz) = (803, 735, 2467).
Die Verifikation ergibt den Wert ver(k,x,uy,us, ug) = 1, da Folgendes gilt:
i=1: f(ur) = f(803) = 3% mod 7879 = 4672 = vy 4,

i =2 fus) = f(735) = 375 mod 7879 = 3810 = o,
i=3: f(us) = f(2467) = 32467 mod 7879 = 4721 = v3,, a

Zum Nachweis der Sicherheit des Signaturverfahrens nehmen wir an, dass f : U — V
eine Bijektion ist und dass ein deterministischer Algorithmus LAMPORT-FALSCHUNG (k)
existiert, der bei Eingabe eines Verifikationsschliissels k eine existentielle Falschung (z, y)
mit ver(k,z,y) = 1 berechnet. Betrachte folgenden probabilistischen Algorithmus:

Prozedur Lamport-Urbild(v)

1 wahle zufallig einen Verifikationsschlissel k= (vip)i=1,. np—01

> falls v nicht in £ vorkommt, ersetze fir ein zufdllig gewdhltes
Indexpaar (j,a) den Wert v;, durch v

s (21, , @, ug, ..., u,) =: Lamport-Falschung(k)

. if x; = a then

5 output (u,)

¢ else

7 output (‘7)

Satz 65. Unter den genannten Voraussetzungen gibt LAMPORT-URBILD(v) fir ein
zufillig aus V- gewdhltes v mit Wahrscheinlichkeit % ein Urbild w von v aus.

Beweis. Im Fall x; = a gibt der Algorithmus LAMPORT-URBILD ein Urbild u = u; von
v aus:
Daher reicht es zu zeigen:

p = Probye,y|[LAMPORT-URBILD(v) # ‘7] = 1/2.

Sei § die Menge aller moglichen Verifikationsschliissel £ und fiir v € V sei S, die
Menge aller k& € S, die v enthalten. 7, bezeichne die Menge aller k£ € S,, fur die
LAMPORT-FALSCHUNG (k) ein Urbild von v liefert. Weiter sei t, = || 75|, $» = ||Sy|| und
s =S
Da jeder der s Verifikationsschliissel £ € S zu der Summe .y ¢, einen Wert von genau n
beitragt (fir jedes i = 1,...,nist k = (Vip)i=1,. np=01 i genau einer der beiden Mengen
T,,, und T, , enthalten), ist 3°,cy t, = ns. Dagegen trdgt jedes k zu der Summe 3,y s,
den Wert 2n bei (K = (Vip)i=1,...np—0,1 ist genau in den 2n Mengen S, , enthalten),
weshalb Y, oy S, = 2ns ist. Da aus Symmetriegriinden die Zahlen s, alle gleich sind, folgt
sy = 2ns/||V]|.
Sei nun p, die Erfolgswahrscheinlichkeit von LAMPORT-URBILD(v), d.h. p, = t,/s,. Dann
ergibt sich die durchschnittliche Erfolgswahrscheinlichkeit p zu
1 1 1 ns
P T W T s 2 T s Ty

2ns

-----
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Die Lamport-Signatur hat aus praktischer Sicht einige Nachteile, die sich jedoch teilweise
beheben lassen (siehe Ubungen). So lisst sich sowohl die Lénge des privaten Signierschliis-
sels (mittels Pseudozufallsgeneratoren) als auch des 6ffentlichen Verifikationsschliissels
(mittels Hash-Listen) verringern. Zudem konnen bei Verwendung von Hash-Baumen mit
demselben Schliisselpaar auch mehrere Nachrichten signiert und verifiziert werden.

3.6 Full Domain Hash (FDH) Signaturen

Sei F = {fx|k € K} eine Familie von Fallttir-Permutationen auf {0,1}", d.h. fiir jedes
k e K gilt:

e f; ist Einweg-Permutation auf {0, 1}".

e Es existiert ein k € K mit fe(fi(x)) = o fir alle z € {0,1}".

Weiter sei G : {0,1}* — {0, 1}" eine Zufallsfunktion, d.h. die Zufallsvariablen X, = G(z)
sind stochastisch unabhangig und es gilt

Prob|G(z) =y] =27" Vo € {0,1}" und y € {0, 1}".

G modelliert eine Hashfunktion H : {0, 1}* — {0, 1}" mit optimalen kryptographischen
Eigenschaften (vgl. Zufalls-Orakel-Modell, ZOM), deren Wertebereich den gesamten
Definitionsbereich der Funktionen fj ausfillt (full domain hash). In der Praxis wird
anstelle von G eine konkrete Hashfunktion eingesetzt, die meist nicht den gesamten
Definitionsbereich der Funktionen fj ausschopft.

Die auf F und G basierende FDH-Signatur funktioniert wie folgt. Um fir ein Dokument
r € X ={0,1}* eine Signatur y € Y = {0, 1}" zu berechnen, wird ein Signierschliissel &
benutzt:

sig(k,z) == f(G(x)).

Diese wird unter Verwendung des zugehorigen Verifikationsschliissels & wie folgt tiberpriift:

L fily) = G(o),

0, sonst.

ver(k,z,y) = {

Z.B. beruht das RSA-Signaturverfahren in Verbindung mit einer Hashfunktion auf diesem
Prinzip. Ein Problem hierbei ist allerdings, dass der Wertebereich von in der Praxis
verwendeten Hashfunktionen die Menge {0, 1}'% ist und fiir die RSA-Falltiir-Permutation
ein Definitionsbereich von {0, 1}" mit n &~ 1024 zu wéhlen ist, um eine ausreichend grofie
Sicherheit zu erreichen. In der Praxis behilft man sich damit, dass man die 160-Bit-
Hashwerte durch eine deterministische Paddingfunktion auf 1024-Bit aufbliht, was die
Sicherheit allerdings mindern kann.

Sicherheitsanalyse der FDH-Signatur im ZOM

Sei FDH-Falschung ein probabilistischer Algorithmus, der bei Eingabe des offentlichen
Verifikationsschlissels & mit Wahrscheinlichkeit e eine existentielle Falschung (z,y) mit
ver(x,y) = 1 ausgibt und sei ¢ die Anzahl der verschiedenen Orakelfragen z, ..., z, von
FDH-Falschung an G. Wir nehmen an, dass € > 27" ist, da fiir ein beliebiges Dokument
z € {0,1}* ein zufillig gewadhltes y € {0,1}" bereits mit Wahrscheinlichkeit 27" eine
gliltige Signatur liefert.

Betrachte folgenden Invertierungsalgorithmus fiir f;.



46 3 Digitale Signaturverfahren

Prozedur FDH-Invert(k,z)

I wahle zufallig je€{l,...,q}

> simuliere FDH-Falschung(k), wobei die i-te Orakelfrage z; 1 <i <gq,
im Fall ¢=j durch z; und sonst durch ein zufallig gewahltes
z €40,1}" beantwortet wird.

3 if FDH-Falschung(k) = (z,y) A fi(y) = 20 then output (y)

i else output (‘7)

Der néchste Satz zeigt, dass FDH-Invert bei Eingabe eines beliebigen Verifikations-
schliissels k € K die Funktion f;, an einem zufallig gewdhlten Wert 2o € {0, 1}" mit einer
von £ und ¢ abhangigen Erfolgswahrscheinlichkeit ¢’ invertiert.

Satz 66. Fualls FDH-F&lschung bei Eingabe k nach genauw q Fragen an G eine giiltige
Filschung (x,y) mit Wahrscheinlichkeit € > 27" ausgibt, findet FDH-Invert bei Eingabe
von k und einem zufdllig gewdhlten String zo € {0,1}"™ mit Wahrscheinlichkeit

, _E—27"
>

o q

g

ein Urbild y von 2y fir die Funktion f.

Beweis. Da die Eingabe zy zufillig gewahlt wird, erhdlt FDH-Falschung als Antwort
auf seine Orakelfragen z1, ..., z, zufallig gewédhlte Strings 2z, was dem ZOM entspricht.
Daher ist die Wahrscheinlichkeit, dass FDH-Falschung(k) bei der Simulation Erfolg hat,
also ein Paar (z,y) mit G(z) = fi(y) ausgibt, genau . Falls FDH-Falschung das Paar
(x,y) ausgibt, ohne den Wert G(x) zu erfragen (d.h. = & {xy,...,2,}), so nimmt G(x)
den Wert fi(y) nur mit Wahrscheinlichkeit 2= an, d.h.

Pr[FDH-Falschung(k) hat Erfolg |z & {xy,... ,x,}] =27",
was Pr[FDH-Falschung(k) hat Erfolg Ax & {x1,...,2,}] < 27" impliziert. Wegen

e = Pr[FDH-F&lschung(k) hat Erfolg A z € {z1,...,2,}]
+Pr[FDH-Falschung(k) hat Erfolg A @ & {z1,...,2,}]
< Pr[FDH-Falschung(k) hat Erfolg Az € {z1,...,2,}] + 27",

erhalten wir
Pr[FDH-Falschung hat Erfolg A x € {xy,...,2,}] > e —27".

Da die Frage z; € {z1,...,2,}, die mit z, beantwortet wird, zuféllig ausgewahlt wird
und FDH-Falschung keinerlei Information tber j erhélt, folgt

Pr[FDH-Invert hat Erfolg] > Pr[FDH-Falschung hat Erfolg A z = ;]

1 q
—) " Pr[FDH-F&lschung hat Erfolg A z = ;]

7=
= Pr[FDH-Falschung hat Erfolg Az € {z1,...,2,}]/q
> (e=2"")/q O

Falls sich also f; nur mit einer sehr kleinen Wahrscheinlichkeit ¢” effizient invertieren lasst,
so gelingt einem dhnlich effizienten Gegner, der nicht mehr als ¢ Hashwertberechnungen
durchfithrt im ZOM hochstens mit Wahrscheinlichkeit ge’4+2~™ eine existentielle Falschung
fiir die FDH-Signatur. Ein dhnliches Resultat lasst sich auch fiir den Fall beweisen, dass
der Gegner einen Angriff mit frei wahlbaren Dokumenten ausfiihrt.
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3.7 Verbindliche Signaturen (undeniable signatures)

In manchen Féllen ist es fiir den Unterzeichner eines Dokumentes nicht wiinschenswert,
dass jeder die von ihm geleistete Unterschrift verifizieren kann.

Zum Beispiel konnte eine Softwarefirma ihre Produkte mit einer Signatur versehen, die
u.a. Virusfreiheit garantiert.

Problem: Auch SW-Piraten, die ein Produkt unrechtméfig erworben haben, kénnen sich
von der Giltigkeit der Signatur iiberzeugen.

Losung: Die Signatur wird so erstellt, dass ihre Verifikation nur unter Mitwirkung der
Softwarefirma moglich ist.

Neues Problem: Die Softwarefirma konnte sich absichtlich unkooperativ verhalten, um
eine von ihr erzeugte echte Signatur als gefilscht abzuleugnen.

Losung: Es gibt ein Ableugnungsprotokoll (disavowal protocol), mit dem die Softwarefirma
gefilschte Signaturen als solche entlarven kann. Verweigert die Softwarefirma auch hier
ihre Mitwirkung, so liegt der Verdacht nahe, dass die vorliegende Signatur echt ist.

Das Signaturverfahren von Chaum und van Antwerpen

Bei diesem Signaturverfahren wird eine Primzahl p = 2¢ + 1 benutzt, wobei auch ¢ prim
ist, so dass das Diskrete Logarithmus Problem in Zj hart ist. Sei a € Z; ein Element der
Ordnung ¢ und sei G' = {a’|a € Z,}, die von « in Z; erzeugte Untergruppe.

Der Dokumenten- und Signaturraum ist X =Y = G. Der Signierschliissel hat die Form

A

k = (p,a,a), a € Z; und der zugehorige Verifikationsschliissel ist & = (p, , 3) mit
B = a® mod p. Der Signieralgorithmus berechnet sz’g(/%, x) = x* mod p.

Will Bob eine von Alice geleistete Unterschrift y € G fiir ein Dokument x € G verifizieren,
so fiihrt er zusammen mit Alice folgendes Protokoll aus.

Verifikationsprotokoll:
1. Bob wéhlt zuféllig e;, es € Z, und und sendet ¢ = y** 3°> mod p an Alice.
2. Alice sendet d = ¢* ' ™44 mod p zuriick an Bob.
3. Bob akzeptiert y als echt, falls d =, 2o ist.

Es ist leicht zu sehen, dass Bob eine echte Signatur y akzeptiert, falls Alice kooperiert.
Wegen

p=,a’
folgt
g =, v =, o
und wegen
y =, x°
folgt
g =, 20 =, .
Somit ist

d — Ca*1 — (yelﬁez)afl — ya’lelﬁa’lez — melae2.
Beispiel 67. Sei p = 467 = 2233+ 1 mit ¢ = 233. Da g = 2 ein Erzeuger von
Zy, ist, hat o = ¢*> = 4 die gewiinschte Ordnung q = %. Da o die Untergruppe
QR, der quadratischen Reste erzeugt, ist G = QR,. Waihlen wir den Signierschlissel
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k= (p,o,a) = (467,4,101), so erhalten wir k = (p, a, B) = (467,4,449) als zugehirigen
Verifikationsschliissel. Die Signatur fir x = 119 € G berechnet sich wie folgt:

sig(k, ) = 2% mod p = 119'°! mod 467 = 129 = y
Verifikation von y = 129 fiir x = 119 unter k:

1. Bob wdihlt e1,es € Z, (1 = 38,e2 = 397 = 164) und sendet ¢ =
Yy 3°2 mod p = 1293844914 mod 467 = 13 an Alice.

2. Alice sendet d = ¢® ™°d4 ;mod p =9 an Bob zuriick.
3. Bob akzeptiert, da d = x°*a®? = 11934164 mod 467 = 9 gilt.
<

Bemerkung 68. Die Wahl von p der Form p = 2q+1 mit g prim dient folgenden Zielen:

e Die Ordnung q der Untergruppe G von Z,, ist prim (dies erlaubt die Berechnung
von a~! mod q in Schritt 2 des Verifikationsprotokolls).

o G ist eine maglichst grofe Untergruppe von Z; mit primer Ordnung.
Behauptung 69. Im Fall y #, x* akzeptiert Bob y mit Wahrscheinlichkeit 1/q (auch
wenn sich Alice nicht an das Verifikationsprotokoll hdlt).

Beweis. Da zu y, ,c € G und zu e; € Z, genau ein ey € Z, mit
¢ = e (3.1)

existiert, fithren je ¢ Paare (e, e2) € Z, x Z, auf dasselbe c. Aus der Sicht von Alice, die
nur ¢ kennt, sind diese ¢ Paare alle gleichwahrscheinlich. Wir zeigen nun, dass fiir jedes
d € G genau eines dieser g Paare die Kongruenz

d =, z%a” (3.2)
erfiillt, weshalb Bob mit Wahrscheinlichkeit 1/q akzeptiert.
l

Seien 4, j, k,l € Z, die zu ¢,d, x,y € G gehorigen Exponenten, d.h. ¢ =, o,...,y =, al.
Dann sind die Kongruenzen (3.1) und (3.2) dquivalent zu

C=yp y€1/862 o Oti‘Ep alzl . %€ N i.Eq lel + aes o [ «a (] =, Z .
d=, x%a* ol =, a4t - o J =q key + e E 1) \ex J
———
A
Wegen of =, y %, 2% =, o™ folgt | #, ka und daher ist detA #, 0. O

Mochte nun Alice Bob gegeniiber nachweisen, dass eine Signatur y gefélscht ist, so fithren
beide folgendes Protokoll aus.

Ableugnungsprotokoll

1 Bob wahlt zufallig e;,e; € Z, und sendet c =y [3“ mod p an Alice.

> Alice sendet d=c¢* ™44 modp zuriick.

3 Bob testet, ob d#, z*a* ist.

. Bob wahlt zufdllig fi, fo € Z, und sendet C = y/132 modp an Alice.

5 Alice sendet D = (C* 'moddmod p zuriick.

¢ Bob testet, ob D #, 2710 ist.

7 Bob erkennt y als gefalscht an, falls mindestens einer der Tests
in Schritt 3) oder 6) erfolgreich war und (da=)' =, (Da=2)=
gilt.
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Bei den Schritten 1.-3. und 4.-6. handelt es sich jeweils um eine fehlgeschlagene Verifikation
der Unterschrift y (sofern der Test von Bob in Zeile 3 bzw. 6 positiv ausfillt). In Schritt
7 fiihrt Bob zusétzlich einen Konsistenztest aus, um sich davon zu tiberzeugen, dass Alice
die Zahlen d und D geméafl dem Protokoll gewahlt hat.

Beispiel 70. Sei p = 467,q = 233, = 4,a = 101, § = 449. Wir nehmen an, dass das
Dokument x = 286 mit der Alice zugeschriebenen Signatur y = 81 unterschrieben ist und
Alice Bob davon tiberzeugen méchte, dass y gefdlscht ist.

1. Bob wahlt e; = 45, ey = 237 und sendet ¢ = 305 an Alice.

Alice antwortet mit d = ¢* ' =109

Bob verifiziert, dass 286*94%37 =, 149 #£, 109 gilt.

Bob wdhlt fy = 125, fo =9 und sendet C' = 72 an Alice.

Alice antwortet mit D = C* " = 68

Bob verifiziert, dass 286'2°4° =, 25 #£, 109 gilt.

Bon erkennt y also gefilscht an, da (109 - 47237)125 = 188 =, (68 - 4™ ")* ist, also
die Konsistenzbedingung erfillt ist.

NS G oo

N

Es bleibt zu zeigen, dass Alice zwar Bob mit hoher Wahrscheinlichkeit von der Falschheit
einer Signatur y #, x® iberzeugen kann, es ihr aber nicht gelingt, Bob von der Falschheit
einer echten Signatur y =, x* zu tiberzeugen.

Behauptung 71. Im Fall y #, x® erkennt Bob y mit Wahrscheinlichkeit 1 — q% als
gefilscht an, falls sich beide an das Ableugnungsprotokoll halten.

Bewets. Nach vorigem Satz betriagt die Wahrscheinlichkeit, dass beide Tests in Schritt 3.
und 6. fehlschlagen genau q%. Wegen

d=, " c=, Y 5% 5 =,a"
folgt

(da~)ft =, ((y"82)" a~2)h

e1a’1f1662a’1f1&—62f1

= Y
—1 _
=, yem f1aezf1a e2f1
-1
— era” " f1
=p y

Analog ergibt sich aus .
D=,C"".C =,y 6% 3=, af

(Doé*f2)€1 =, ((yflﬁfz)a_la*b)a

— f1a7161
=p
=, (da=®)N
d.h. die Konsistenzbedingung wird mit Wahrscheinlichkeit 1 erfiillt. O

Behauptung 72. Im Fall y =, x* erkennt Bob y mit Wahrscheinlichkeit < % als
gefilscht an, auch wenn sich Alice nicht an das Ableugnungsprotokoll hdlt.



20 3 Digitale Signaturverfahren

Beweis. Bob erkennt y nur dann als gefalscht an, wenn
(d #, v°*a® oder D #, v"'a’?) und (da=*)"" =, (Da™2)2

gilt. Da die beiden Félle d #, 2°'a®® und D #, x/1a/?) symmetrisch sind, reicht es einen
davon zu betrachten.

Wir nehmen also an, dass Alice eine Zahl d an Bob sendet mit d #, 2°*a®?. Nachdem Alice
die Zahl C in Zeile 4 von Bob erhalten hat, weif§ sie nur, dass das von Bob gewéhlte Paar
(f1, f2) die Kongruenz C' =, y/1 37 erfiillt. Wie wir bereits im Beweis zu Behauptung 69
gesehen haben, trifft dies auf genau ¢ Paare zu. Wir zeigen nun, dass fir jedes D € G
genau eines dieser ¢ Paare die Konsistenzbedingung

(doé—EQ)fl =, (Da—f2)61

erfullt. Dies beweist, dass Bob y mit Wahrscheinlichkeit hochstens 1/q als gefilscht

akzeptiert.
Sei u = da™** mod p und seien i, j, k,l € Z, die zu C, D, z,u gehorigen Exponenten, d.h.

C=,a' ..., u=,a". Dann gilt

C =, yf16f2 o =9 kaf, + afs N (kza a) <f1> _ ( 1 )
(da=2)lt =, (Da~2) lfi=q7e1 —eifs Ioe) \f) 7 e
A

Wegen d #, za® und v =, da~ folgt u #, * und somit | #, e;k. Daher ist
detA = kae; — al = a(ke; — 1) %, 0. O

3.8 Fail-Stop-Signaturen

Diese Signaturen erlauben der Signaturerstellerin Alice fiir den Fall, dass ihr Signierschliis-
sel k geknackt wird (“fail”), dies zu beweisen und damit alle von ihr mit & geleisteten
Unterschriften zu widerrufen (“stop”).

Genauer:

Alice kann mit hoher Wahrscheinlichkeit beweisen, dass eine von einem Gegner
erzeugte giiltige Signatur y fiir ein Dokument x nicht von ihr stammt.

Das van Heyst-Pedersen Signaturverfahren

Definition 73. Seip =2q+1 prim, p,q prim und sei o € Z,, ein Element der Ordnung
q. Weiter sei G = {a*|a € Z,} die von o in Zy, erzeugte Untergruppe und 8 = a® mod p
fir ein a € 7.

Die Zahlen p, q, o, B werden von einer vertrauenswiirdigen Instanz generiert und bekannt
gegeben, a wird jedoch vor allen Teilnehmern geheim gehalten.

X =2y, Y =7y X Zy.

Signaturschlissel: k= (a1,b1,a9,by) € Z;‘.

Verifikationsschliissel: k = (71, v2) = (a® 8%, a®23%) € G2

Signieralgorithmus:

~

sig(k, ) = (y1,y2) = (a1 + zaz mod ¢, by + xby mod g).
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Verifikationsalgorithmus:

1 Wi =, an g,

0 sonst.

UGT(]C, z, U, y2> = {

Beh: Im Fall: sig(k,x) = (y1,y2) gilt ver(k,z,y1,y2) = 1:

s = am g (g
aa1+m2 5b1+ccb2

; v Gv2
Sei S die Menge aller Paare (lg:,k‘ € Z;‘ x G2 mit k = (a1,b1,a2,b0) und k =
(a“lﬁbl,a“iﬁ@). Weiter seien S(k) = {k € Zy | (k. k) € S} und S(k,z,y1,10) = {k €
S(k) | sig(k,z) = (y1,92)}-
Lemma 74. ||S(k)|| = ¢*.
Lemma 75. Sei ver(k,x,y1,y2) = 1. Dann gilt

|‘S(k7'xaylay2>” =q

Beweis. Sei k = (71,72). Dann ist k= (a1,b1,as, by) genau dann in S(k, x,y1, y2), wenn

=, au [ | .
,,.Z; EZ Oéa2562 }k E S(k)

Y1 Eq a] + xag . P .
stg(k,x) = (y1,
Yo =g bi + aby } o) = ne)

Seien ¢, co € Z, eindeutig bestimmte Exponenten mit v; =, a® und v =, a®. Dann
sind diese Kongruenzen aquivalent zu

c1 =4 a1 + aby
ca =4 ag + aby
Y1 =¢ a1 + Tas

Y2 =q b1 + xby
oder in Matrixform
1 a 0 O aq c1
0 01 a bl . Co <*>
1 0 2 O a | | wn
0 ]. 0 xXr bg Y2
A

Wir zeigen, dass A den Rang rang(A) = 3 hat. Seien ry, ..., 7, die Zeilen von A. Dann
gilt rang(A) > 3, da die Zeilen ro, r3, 74 linear unabhéngig sind, und

rang(A) <3, da r; =r3 + ary — xry ist.

Damit hat () im Falle der Losbarkeit genau ¢*~3 = ¢ Losungen. Da ver(k, x,y1,92) = 1
ist, folgt

MYy =p @V = o Fxc =,y +ays = ¢ =4+ ays — xco.

Da somit die um die Spalte auf der rechten Seite von (*) erweiterte Koeffizientenmatrix
A’ denselben Rang wie A hat, ist (*) auch lésbar. O
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Lemma 76. Fir alle x,2',y1, v}, Y2, Yy € Z, mit &’ # x gilt
HS(k> T, Y1, y2) N S(ka xla y/17 yé)” S 1.
Im Fall ver(k,z,y1,y2) = ver(k,z',y},y5) = 1 gilt sogar Gleichheit.

Beweis. Die Bedingung k = (a1,b1,a2,b9) € S(k,x,y1,y2) N S(k,x', v}, y5) ist dquivalent
zu

1 a 0 0 c1
0 01 a a Co
1 0 = O by I (%)
01 0 =« Qo Yo
1 0 2 0 by y1
01 0 2 Y5
wobei wieder v; =, o, v, =, o ist. Wir zeigen, dass die Zeilen 73, ..., 75 von A linear

unabhéngig sind und somit A den Rang rang(A) = 4 hat. Daraus folgt, dass (*) hochstens
eine Losung hat.

Aus 38 . iy = 0 folgt namlich I3 + Is = 0 und zl5 + 2'l; = 0, was l3(x —2') = 0 und
somit wegen x — x’ # 0 I3 = 5 = 0 impliziert. Analog folgt I4 = lg = 0.

Da sich k bei Kenntnis zweier Signaturen y, 3’ fir zwei Dokumente x, 2" leicht bestimmen
lasst, handelt es sich also um ein One-time-Signaturverfahren.

Um die Losbarkeit von (*) im Fall ver(k, z,y1, y2) = ver(k,2’,y},v5) = 1 zu erhalten,
zeigen wir, dass die in A bestehenden Zeilenabhangigkeiten r; + xry — ary = r3 und
r1 + 2'rg — arg = 15 auch fiir den Spaltenvektor auf der rechten Seite von (*) gelten: Aus
ver(k,z,y1,y2) = 1 folgt

NYs Sp @B = atre =gy tay, = Y1 =g 0+ xe — ays
und analog folgt aus ver(k,«’,y;,v5) = 1 die Kongruenz y; =, ¢1 + 2'co — ays. O

Im néchsten Satz zeigen wir, dass ein Gegner, der tiber unbeschréankte Rechenressourcen
verfligt, bei Kenntnis einer von Alice fiir ein Dokument x erzeugten Signatur sig(/%, x) =
(y1,y2) nur mit Wk 1/¢ ein Dokument 2’ # x und eine Signatur (v}, y5) fiir 2’ berechnen
kann, die mit sig(k,2’) tibereinstimmt.

Satz 77. Fir alle x,2',y1, Y1, y2, Yy € Zy mit &’ # x gilt

s s 1
Probiczylsig®h o) = (1, 2) | siglk, o) = (yr.10)] =

A B

Beweis. Sei S(k,x,y) = {k1,...,k,}. Dann gilt sig(ki, ') # sig(k;,z’) fir i # j, da
sonst l%i,l%j fiur (v, %) = sig(l%i,x’) = sz’g(l%j,x’) beide in S(k,x,y1,y2) N S(k, 2", y],v5)
enthalten wéren.

__ ProblAnB] _ [IS(k2"yy.y9)NS(kzyr,y2)ll 1
Nun folgt ProblA|B] = “prmr = = fstwgral  — o =

Frage: Wie funktioniert der Fail-Stop-Mechanismus?
D.h. wie kann Alice bei Vorlage eines Tripels (2/, ¢, v5) mit ver(k, 2, y}, y5) =
1und (i}, 44) # sig(k, ') = (4, yY) beweisen, dass die giiltige Signatur (1}, )
nicht von ihr erzeugt wurde?
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Antwort: Sie benutzt das Tripel (2/, v}, v5), um a zu berechnen.
Wegen
ver(k, 'y, yy) = 1 =wver(k, 2", y}, y3)

folgt

y/ y/ . l,/ _ y// y//
05152:p'71'72 =>p alﬁQ
/ ! _ ! /!
=Y +ay, =¢ Y +ay,
1 /
h— U
/ 1!
Yo — Y2

=a =y

Beispiel 78. (zur van Heyst-Pedersen-Fail-Stop-Signatur) p = 2q + 1,p = 3467 =
2-1733+1 o € Z3 mit ordy(a) = q,a =4 a € L}, a = 1567 ~ § = o = 47 = 514

q
Die vertrauenswiirdige Instanz (TTP,trusted third party) gibt p,q, o, 6 bekannt und hdlt
a geheim.

Angenommen Alice wdhlt A
k = (888,1024, 786, 999)

)~ N~

so berechnet sich k zu
k= (71,72), wobei

M =™ = 478514191 = 3405
Y2 = % = 4705149 = 2281
Wird nun Alice mit dem Paar (2',y") = (', y],v45) = (3383,822,55) konfrontiert, das

wegen

yvE = 3405 - 2281%%% = 2282
und ¥ (Y2 = 4522515% = 2282

die Verifikationsbedingung ver(k,x’,y") = 1 erfillt, so berechnet Alice zundchst

sig(k,z') =y = (y1,vh) mit

Yy = a1 + x'az mod ¢ = 888 + 3383 - 786 =, 1504
Yy = by + 2'by mod ¢ = 1024 + 3383 - 999 =, 1291

um sich zu vergewissern, dass y' # y" ist. Hieraus erhdlt sie dann a zu

=y 1504 — 822
a = y} y/l/ mod ¢ = ————— =, 1567
Yo — Yo o5 — 1291
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4 Pseudozufallszahlen-Generatoren

Pseudozufallszahlen-Generatoren (kurz PZG) f werden mit einem Startwert z — dem
sogenannten Keim (engl. seed) — fir die Erzeugung einer ,zufilligen* Bitfolge f(x)
gestartet. Dabei wird die Eingabe z zuféllig unter Gleichverteilung gewéhlt und die
Ausgabe f(z) sollte langer sein als x und moglichst zufillig aussehen. Zudem sollte f
von einem deterministischen Algorithmus effizient berechenbar sein.

Linear-Kongruenz-Generator

Der Keim zg wird zufillig aus der Menge Z,, = {0, 1,...n — 1}gewahlt. Die Parameter a
und b sind ebenfalls aus Z; .
Algorithmus LinGen,, (o)

1 for i:=1 to [ do
2 ri:=a-ri_1+bmodn
1

b; := x; mod 2
ouput(by,...b)

Power-Generator

Der Keim zy wird zufallig aus der Menge Z; gewahlt.

Algorithmus PowerGen,,;.(x¢)

1 for i:=1 to [ do
2 x; = x{_; mod n
3
|

b; == x; mod 2
OUpUt(bl, R bl)

Es gibt zwei interessante Spezialfille des Powergenerators:
o RSA-Generator (RSAGEN) mit n = p - g wobei p,q € IP und ggT(e, p(n)) =1
e Quadratischer-Rest-Generator (BBS) mit e = 2 (siehe folgenden Abschnitt).

4.1 Kryptografische Sicherheit von Pseudozufallsgeneratoren

Wir betrachten hier nur den Fall, dass sowohl x als auch f(z) Bitfolgen sind und die
Lange der Ausgabe nur von der Lange der Eingabe abhéngt.

Sei | = I(k) > k+1 eine Funktion. Ein [(k)-Generator ist eine Funktion f auf {0,1}*, die
Strings der Lange k auf Strings der Lange [(k) abbildet und in Polynomialzeit berechenbar
ist.

Seien (Xj) und (Y)) Familien von Zufallsvariablen mit Wertebereich W (X}), W(Y;) C
{0,11*) und sei ¢ : N — R* eine Funktion. Ein e-Unterscheider zwischen (X}) und



4.1 Kryptografische Sicherheit von Pseudozufallsgeneratoren 55

(Yx) ist ein in Polynomialzeit berechenbarer probabilistischer Algorithmus D, so dass fur
unendlich viele Werte von k gilt:

| Pr[D(X%) = 1] — Pr[D(Yy) = 1] > e(l(k)).

Hierbei ist Pr[D(Xj) = 1] die Wahrscheinlichkeit, da8 D bei einer zufillig gemafi X},
gewéhlten Eingabe akzeptiert. In diesem Fall heilen die beiden Familien (Xj) und (Yj)
e-unterscheidbar.

Ein [(k)-Generator f heifit e-sicher, falls die beiden Familien (f(Uy)) und (Uyy)) von
Zufallsvariablen X, = f(Uy) und Y, = Uy nicht e-unterscheidbar sind, wobei U, eine
auf {0, 1}" gleichverteilte ZV ist. f heiit (kryptografisch) sicher, falls f fiir jedes Polynom
p 1/p-sicher ist.

Es ist nicht bekannt, ob kryptografisch sichere PZGen existieren. Eine notwendige
Bedingung hierfiir ist P # NP. Ob diese Bedingung auch hinreichend ist, ist ebenfalls
nicht bekannt. Man kann jedoch zeigen, dass die Existenz von kryptografisch sicheren
PZGen aquivalent zur Existenz von Einwegfunktionen ist.

Bei manchen Anwendungen ist es wichtig, dass kein effizienter Algorithmus das néchste
Bit der Pseudozufallsfolge korrekt vorhersagen kann. Es ist nicht schwer zu sehen, dass
ein sicherer PZG diese Bedingung erfiillt.

Ein probabilistischer Algorithmus N heifit e-next bit predictor (e-NBP) fir f, falls fiir
unendlich viele k

Pr[N(fir—1)(Up), 1'™) = fr(Uy)] 2 1/2 + (I(k))

ist, wobei die Zufallsvariable I auf der Menge {1,...,l(k)} gleichverteilt ist. Hierbei
bezeichnet f;(x) das i-te Bit und fj;)(x) die Folge der ersten i Bits von f(x).

Satz 79. Fualls es einen effizienten e-NBP N fiir f gibt, so ex. auch ein effizienter
e-Unterscheider fir f.

Beweis. Sei N ein e-NBP fiir f und betrachte folgenden Unterscheider D.

1 input z=2;---2z
2 wahle i e {1,...,1}
3 Z; = N(Zl c 21, 1Z)

ouput(z; @ 2z} & 1)

=

D gibt also bei Eingabe 2z genau dann 1 aus, wenn der Prediktor N das ¢-te Pseudozu-
fallsbit richtig rit, wobei ¢ zufallig gewahlt wird. Daher ist

PrD(£(S)) = 1] = Pr[N(fu-1(5). 1) = f1(S)] = 1/2 +<.

Andererseits ist klar, dass N das i-te Bit z; einer rein zufalligen Eingabe z mit Wahr-
scheinlichkeit 1/2 richtig rét, und somit Pr[D(U) = 1] = 1/2 ist. O

Ein probabilistischer Algorithmus P heifit e-previous bit predictor (e-PBP) fir f, falls
fiir unendlich viele k gilt:

Pr[P(fr41(S) -+ fi(8), 1'™) = fr(S)] = 1/2 + £(U(k))-

Vollkommen analog zu obigem Satz lasst sich der folgende Satz beweisen.
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Satz 80. Fualls es einen effizienten e-PBP N fiir f gibt, so ex. auch ein effizienter
e-Unterscheider fiir f.

Interessanterweise lasst sich aus einem Unterscheider auch ein NBP bzw. PBP gewinnen.
Um also die Sicherheit eines PZG zu beweisen, geniigt der Nachweis, dass es keinen
effizienten NBP gibt.

Satz 81. Fulls es einen effizienten e-Unterscheider D fiir f gibt, so ex. auch ein effizienter
e/l-NBP fiir f.

Beweis. Wir konnen 0.B.d.A. annehmen, dass
Pr[D(U)) = 1] = Pr[D(f(Uk)) = 1] > €(I(k))

fir unendlich viele k gilt, da wir andernfalls D invertieren kénnen. Die Ausgabe D(z) =1
deutet also darauf hin, dass z tendenziell ein echter Zufallsstring ist, wahrend die Ausgabe
D(z) = 0 darauf hindeutet, dass z ein Pseudozufallsstring ist. Betrachte nun folgenden
Prediktor N.

L input (2100200, 1Y), 1<i <1

2 rate zufallig b;---b € {0, 1}~
3 d:=D(z1- -z _1bi-+by)

1 output(d @ b;)

Sei z; - - - z; eine Realisierung der ZVen f(Uy). Dann sagt N bei Eingabe von zy -+ -z,
das i-te Bit z; mit b; vorher, falls D den String 2; - - - z;_1b; - - - b; fiir pseudozufillig halt
(also D(zy -+ 2zi—1b; - - b)) = 0 ist), und mit b; @ 1, falls D diesen String fiir zuféllig halt.
Betrachte fir i = 1,...,1 = [(k) die Zufallsvariablen

Hi = fl(Uk) o fzfl(Uk) Bz o 'Bla

fli—11(Ux)

wobei Uy, und Bj, j = 1,...,l, unabhingig auf {0, 1}* bzw. {0,1} gleichverteilt sind.
Insbesondere ist also H; = B, --- B, = U, gleichverteilt auf {0,1} und H;y = f(Uy)
pseudozufillig verteilt auf {0, 1}!. Wegen

N(fi—1)(Ux)) = D(fi—1)(Ux)B; - - By) ® B;

H;

folgt

Pr[N (fii—1(Ux), 1) = fi(Ux)] = 1/2
= Pr[D(H;) @ B; = fi(Uy)] —1/2
Pr[D(H;) =0,B; = [;(Uy)] + Pr[D(H;) =1,B; # fi(Ux)] —1/2
Pr[B;=fi(Uy)]—Pr[B;=[i(Uy),D(H;)=1]  Pr[D(H;)=1]-Pr[D(H;)=1,B;=f;(Uk)]
= Pr[B; = fi(Uy)] + Pr[D(H;) = 1] = 2Pr[D(H;) = 1, B; = f;(Uy)| — 1/2

1/2

Pr[D(H;+1)=1,B;=f;(Ug)]
=Pr[D(H;+1)=1] Pr[B;=f;(Ug)]
—_———
= Pr[D(H;) =1] —Pr[D(H;41) = 1]. 1/2
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Sei die ZV [ auf {1,...,1} gleichverteilt. Dann folgt
Pr[N(fir-1)(Ux), 1') = f1(Uy)] = 1/2 = Pr[D(H;) = 1] = Pr[D(H11) = 1]
!
= 3 Pl = PeiD(H,) = 1) = PriD(Hi) = 1)

1/1
= (Pr[D(H1) = 1] = Pr[D(H41) = 1])/1

Somit gilt Pr[N(fi;—1(Uk), 1") = f1(Uy)] > 1/2 4+ e(I(k))/i(k) fir unendlich viele k. O
Ganz dhnlich wie der obige Satz ldsst sich auch folgendes Resultat beweisen.

Satz 82. Fulls es einen effizienten e-Unterscheider D fir f gibt, so ex. auch ein effizienter
e/l(k)-PBP fir f.

4.2 Quadratische Reste

In diesem Abschnitt beschéftigen wir uns mit dem Problem, die Losbarkeit einer quadra-
tischen Kongruenzgleichung

2=, a (4.1)
zu entscheiden.

Definition 83. Fin Element a € 7, heiffit quadratischer Rest modulo m (kurz:
a € QR,,), falls ein x € Z*, existiert mit x* =, a. QNR,,, := Z* \ QR,, ist die Menge
der quadratischen Nichtreste modulo m.

Definition 84. Sei p > 2 eine Primzahl und a € Z,. Dann heif§t

a 1, a€QR,
L(a,p) = () =4 —1, a€QNR,
N 0, sonst

das Legendre-Symbol von a modulo p.

Die Kongruenzgleichung (4.1) besitzt also fiir ein a € Z, genau dann eine Losung, wenn
a € QR,, ist. Wie das folgende Lemma zeigt, kann die Losbarkeit von (4.1) fiir primes m
effizient entschieden werden. Am Ende dieses Abschnitts werden wir noch eine andere
Methode zur effizienten Berechnung des Legendre-Symbols kennenlernen.

Lemma 85. Seia € Z,, p > 2 prim, und sei k = logpyg(a) fiir einen beliebigen Erzeuger
g von Z,. Dann sind die folgenden drei Bedingungen dquivalent:

1. aP V2= 1,
2. k ist gerade,
3. a € QR,.

Bewess.

1 = 2: Angenommen, a =, g"* fiir ein ungerades k = 2 - j + 1. Dann ist

a(p_l)/2 Ep

g (P gp=1)/2 =, gP= /2 Z, 1.

=l
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2 = 3: Ist a =, ¢" fiir k = 2j gerade, so folgt a =, (¢’)?, also a € QR,.
3=1: SeiaeQR,, d.h. b*=,afireinbe Z,,. Dann folgt mit dem Satz von Fermat,

a®P V2 = prl = 1.

g
Somit zerféllt Z, in die drei Teilmengen QR,, QNR, und Z, \ Z = {0}, wobei die ersten

beiden jeweils (p — 1)/2 Elemente enthalten. Als weitere Folgerung erhalten wir folgende
Formel zur effizienten Berechnung des Legendre-Symbols.

Satz 86 (Eulers Kriterium). Fir alle a und p > 2 prim gilt

p-1/2_ (2
a f— .
. <p>

Beweis. Nach obigem Lemma reicht es zu zeigen, dass fir alle a € Z; die Kongruenz
a®P~1/2 =, 41 gelten muss. Da jedoch die Kongruenz z?> =, 1 nach dem Satz von
Lagrange nur die beiden Losungen +1 hat, folgt dies aus der Tatsache, dass a®~1)/2

Losung dieser Kongruenz ist. O

Korollar 87. Fir alle a,b € Z,,, p > 2 prim, gilt

1. (*?1) = (—1)D/2 = { L, p=41,

_17 P =4 3a
ab) — (a) . (b
2 (5)=()-G)
Als weiteres Korollar aus Eulers Kriterium erhalten wir eine Methode, quadratische Kon-
gruenzgleichungen im Fall p =4 3 zu l6sen. Fir beliebige Primzahlen p ist kein effizienter,

deterministischer Algorithmus bekannt. Es gibt jedoch einen probabilistischen Algorith-
mus von Adleman, Manders und Miller (1977).

Korollar 88. Seip > 2 prim, dann besitzt die quadratische Kongruenzgleichung x* =, a
fiir jedes a € QR, genau zwei Lisungen. Im Fall p =, 3 sind dies £a* mod p (fiir
k= (p+1)/4), wovon nur a®* mod p ein quadratischer Rest ist.

Beweis. Sei a € QR,, d.h. es existiert ein b € ZZ mit b2 =, a. Mit b ist auch —b eine
Losung von z? =, a, die von b verschieden ist (p ist ungerade). Nach Lagrange existieren

Sei nun p =4 3. Dann gilt

nach Korollar 87. Demnach ist genau eine der beiden Losungen +b ein quadratischer
Rest. SchlieBlich liefert Eulers Kriterium die Kongruenz a?~%/2 =, 1. Daher folgt fiir
k= (p+1)/4 die Kongruenz

(") = a2 = D2 g =, g,

Da mit a auch a* mod p ein quadratischer Rest ist, ist —a* mod p ein quadratischer
Nichtrest. 0
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Satz 89. Sei n = pq fir Primzahlen p,q mit p =4 ¢ = 3. Dann besitzt die quadratische
Kongruenz x* =, a fir jedes a € QR,, genau vier Lisungen, wovon genau eine ein
quadratischer Rest ist.

Beweis. Mit 22 =,, a besitzen wegen n = pq auch die beiden quadratischen Kongruenzen

2 =, a und 2? =, a Losungen, und zwar jeweils genau zwei (siche Korollar 88):

y1 = a®/ 4 mod p € QR,, yo = —aP*V/* mod p € QNR,, z; = al¥*Y* mod q € QR,
und 2, = —al"V/* mod ¢ € QNR,. Mit dem Chinesischen Restsatz kénnen wir vier
verschiedene Losungen ; ;, 1 <14,7 < 2 mit

xXr Ep yl
Xz Eq Zj
bestimmen. Es kénnen aber auch nicht mehr als diese vier Losungen existieren, da sich
daraus fiir mindestens eine der beiden Kongruenzen x? =, a und z? =, a mehr als zwei
Losungen ableiten lielen.
Wegen
r€QR, = FJu:ul=,x
= Eluzuzszzqu2
= zmod p € QR, Az mod ¢ € QR,

konnen x; o, 22,1, T22 keine quadratischen Reste modulo n sein.
Weiterhin gibt es Zahlen | € Z}, k € Z; mit > =, y, und k*> =, 2. Sei m € Z} eine
Losung fiir das System

x =yl
=,k
Dann folgt
T =, =, P =,m? und 1, =, 2 =, k2 =, mP
und daher z;; =, m?. Also ist 21, ein quadratischer Rest modulo n. O

Als weitere zahlentheoretische Funktion mit fiir die Kryptografie wichtigen Eigenschaften
erhalten wir somit die Quadratfunktion 2?2 : QR,, — QR,,, die nach vorigem Satz bijektiv
ist (falls n = pq fir Primzahlen p, ¢ mit p =4 ¢ = 3). Thre Umkehrfunktion x — /x
heifit diskrete Wurzelfunktion, und kann bei Kenntnis der Primfaktoren p und ¢ von
n effizient berechnet werden.

4.3 Quadratische Pseudoreste

Wir erweitern nun das Legendre-Symbol zum Jacobi-Symbol.

Definition 90 (Jacobi-Symbol). Das Jacobi-Symbol ist fir alle a und alle ungeraden

m > 3 durch o ..
a a a
rem- G- ()

definiert, wobei pi' ---pSr die Primfaktorzerlegung von m ist. Ist zwar (E) =1, aber
a € QNR,, kein quadratischer Rest modulo m, so heifit a quadratischer Pseudorest
modulo m (kurz: a € QR,,).
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Man beachte, dafl im Gegensatz zum Legendre-Symbol die Eigenschaft (%) =1 fiir ein
a € Z;, nicht unbedingt mit a € QR,, gleichbedeutend ist. Zum Beispiel gibt es in Z;
(n = p - q fir Primzahlen p und ¢ mit p =4 ¢ =4 3) wie wir gesehen haben, genau p(n)/4
quadratische Reste und 3¢p(n)/4 quadratische Nichtreste, wogegen nur fir die Halfte
aller a € Z; die Gleichung (%) = —1 gilt. Folglich gibt es in diesem Fall genau so viele
quadratische Reste wie quadratische Pseudoreste.

Allerdings tibertragt sich die in Teil 1 von Korollar 87 festgehaltene Eigenschaft des
Legendre-Symbols auf das Jacobi-Symbol. Interessanterweise ist das Jacobi-Symbol auch
ohne Kenntnis der Primfaktorzerlegung des Moduls effizient berechenbar.

Sei n = pq das Produkt zweier Primzahlen p, ¢ mit der Eigenschaft p =4 ¢ =4 3. Es ist
bekannt, dass die Berechnung der Umkehrfunktion /x : QR,, — QR,, der Quadratfunktion
2?2 1 QR, — QR, #quivalent zur Faktorisierung von n ist. Folglich ist die diskrete
Wurzelfunktion /x schwer zu berechnen, falls die Faktorisierung von n schwer ist. Man
nimmt sogar an, dass bereits die Frage, ob eine gegebene Zahl x € Z; ein quadratischer
Rest, ein schwieriges Problem ist. Da dieses Problem fiir Eingaben x mit Jacobisymbol
(%) = —1 trivial ist, schlieffit man sie tiblicherweise von der Betrachtung aus.

Quadratische-Reste-Problem (QR-Problem):
Gegeben: Zahlen n und = € Z; mit Jacobisymbol (%) =1 (dh. z € QR, UQR,),
wobei n das Produkt zweier unbekannter Primzahlen ist.
Gefragt: Ist € QR,,?

Beim QR-Problem geht es also darum, quadratische Reste von quadratischen Pseudoresten
zu unterscheiden.

4.4 Der BBS-Generator

Der BBS-Pseudozufallsgenerator von Blum, Blum und Shub 1986 verwendet die Qua-
dratfunktion

2% : QR, — QR,,
mit n = p - q fir p,q prim und p =4 ¢ =4 3. Seine Sicherheit ldsst sich unter der
Voraussetzung beweisen, dass ohne Kenntnis der Faktoren p, ¢ fur fast alle y € QR,, das
niederwertigste Bit von ,/y nur mit Wahrscheinlichkeit 1/2 richtig geraten werden kann.

Als Keim wird eine zuféllig aus Z; gewdhlte Zahl zy verwendet. Daraus werden der
Reihe nach Zahlen x; € QR,, durch Quadrieren berechnet, deren Paritdten die Bits der
Ausgabefolge bilden.

Algorithmus BBS,, ;(zo)

1 for 1:=1 to [ do
2 z; =27, modn
3 b; := x; mod 2

i ouput(by,...b)

Beispiel 91. Waihlen wir z. B. die Primzahlen p = 11, ¢ = 19, also n = 209, und als
Keim zq = 20, so erhalten wir die Pseudo-Zufallsbitfolge BBSop9(20) = 11001100. ..

ilo 1 2 3 4 5 6 7 8
z;[20 191 115 58 20 191 115 58 20
b0 1 1 0 0 1 1 0 0
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Wir zeigen nun, dass sich aus jedem effizienten Unterscheider fiir den BBS-Generator
ein effizienter probabilistischer Algorithmus fiir das QR-Problem gewinnen léasst. Im
Umkehrschluss bedeutet dies, dass der BBS-Generator sicher ist, falls das QR-Problem
hart ist.

Sei also D ein effizienter e-Unterscheider fiir den Generator BBS,, ;. Dann ex. ein effizienter
(¢/1)-PBP P fur BBS,,;. Der folgende Satz zeigt, wie sich aus einem §-PBP P fiir BBS,,;
ein Entscheidungsalgorithmus fiir das QR-Problem gewinnen lasst, der fir eine zufallige
Eingabe x € QR,, U QR,, eine Korrektheitswahrscheinlichkeit > 1/2 + ¢ hat.

Satz 92. Fulls es einen effizienten 6-PBP P fiir BBS,,; gibt, so ldsst sich fir eine zufdllig
aus QR, U QR,, gewdhlte Fingabe x mit Wahrscheinlichkeit > 1/2 4+ § entscheiden, ob
x € QR,, ist.

Beweis. Betrachte folgenden Entscheidungsalgorithmus.

Algorithmus QR-Test(z,n)

1 wahle i eg{l,... I}

2 X=X

3 for j:=i+1 to [ do

+ xj=a5, modn

5 b; == x; mod 2

6 by = P(biyr-- by, 1Y)

7 if =, b; then ouput(l) else ouput(0)

Die Aussage des Satzes folgt unmittelbar aus folgender Behauptung.

Behauptung. Pr _ . o [QR-Test(x,n) =1< x € QR,] > 1/2+4.
Wird zx zufallig aus QR,UQR, gewdhlt, so ist 7;11 = 22 mod n ein zufilliger quadratischer
Rest in QR,,, d.h. die Eingabe fiir den PBP P sind [ — ¢ konsekutive Bits einer mit BBS,, ;
generierten Pseudozufallsfolge (man tiberlegt sich leicht, dass die Verteilung dieser Bitfolge
nicht vom Index des Startbits abhéngt, da alle x;, i > 1, auf QR,, gleichverteilt sind).
Daher gibt P mit Wahrscheinlichkeit 1/2+0 die Paritét der diskreten Wurzel /711 mod n
aus. Da z € QR, U QR,, ist, gilt VZiyi mod n € {z,n — r}. Zudem hat ,/z;{7 mod n
wegen = Z» n —  genau dann die gleiche Paritdt wie z, wenn z = ,/7;;1 mod n ist. Da
dies wiederum mit x € QR,, dquivalent ist, folgt die Behauptung. O

Als néchstes zeigen wir, wie sich QR-Test in einen Algorithmus verwandeln lisst, der
jede Eingabe z € QR, U QR,, mit Wahrscheinlichkeit > 1/2 + ¢ korrekt entscheidet.

Satz 93. Fulls es einen effizienten Algorithmus A gibt, der fiir eine zufillig aus QR,UQR,,
gewdhlte Eingabe x mit Wahrscheinlichkeit > 1/2 + § entscheidet, ob x € QR,, ist, so ex.
auch ein effizienter Algorithmus A, der fir jede Fingabe x € QRnU(fQﬁn die Zugehorigkeit
von x zu QR,, mit Wahrscheinlichkeit > 1/2 + 0 korrekt entscheidet.

Beweis. Betrachte folgenden Entscheidungsalgorithmus.

Algorithmus A'(z,n)

I wahle zeRrZ;
> wahle bep {0,1}
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5 2= (=1)2%2 mod n

. ouput A(z',n) b

Fir jede Eingabe x € QR,, U QT?n ist 2’ eine Zufallszahl in QR,, U @ Da —1 € @/?n ist,
ist die Funktion x — —x mod n eine Bijektion zwischen QR,, und QR,,, d.h. die Ausgabe
von A(z,n) ist genau dann korrekt, wenn die Ausgabe von A(x’,n) korrekt ist. O

SchlieBllich zeigen wir noch, wie sich die Fehlerwahrscheinlichkeit von A’ exponentiell
klein machen léasst. Hierzu benétigen wir das folgende Lemma.

Lemma 94. Sei E ein Ereignis, das mit Wahrscheinlichkeit 1/,— 9, 6 > 0, auftritt. Dann
ist die Wahrscheinlichkeit, dass sich E bei m = 2t + 1 unabhdngigen Wiederholungen
mehr als t-mal ereignet, hichstens 1/5(1 — 462)%.

Beweis. Furt=1,...,m sei X; die Indikatorvariable

X {1, Ereignis F tritt beim i-ten Versuch ein,
i =

0, sonst

und X sei die Zufallsvariable X = >77", X;. Dann ist X binomial verteilt mit Parametern
m und p = 1/, — 6. Folglich gilt fur i > m/2,

PILY =] = (?)(1/2—&1‘(1/#5)%@‘

_ (T) (1fy — 8)™2 (11, + 5)™2 <1/2 _ 5>i—m/2

s+ 0

< (V) =0 ph o
(Ya=02)""”

Wegen

erhalten wir somit

- m/2 m _ AS2\m/2
S P =i < (1h-8)" % <> _ (A —40mm”

i=t+1 i=t+1 \ ? 2
(1 — 46%)
J— 2 . |:|
Falls wir also A’ m = 2t 4+ 1-mal ausfithren und einen Mehrheitsentscheid treffen, so

reduziert sich die Fehlerwahrscheinlichkeit von 1/, — & auf 1/5(1 — 46%)" < e~%°*, Wihlen
wir beispielsweise t = s/462, so wird diese kleiner als 27%.
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5 Berechnung des diskreten Logarithmus und
Ganzzahl-Faktorisierung

Sei (G, 0) eine Gruppe und sei a € G. Weiter bezeichne [a] = {a’]i = 0---n — 1} die von
a in G erzeugte Untergruppe, wobei n = ordg(a) = min{e > 1 | a® = 1} die Ordnung
von « ist. Dann heifit die eindeutig bestimmte Zahl e € {0,...,n — 1} mit § = a° der
diskrete Logarithmus von 3 zur Basis o in G (kurz: e = logg ,(53)).

Das diskrete Logarithmusproblem (DLP):
Gegeben: (Beschreibung einer) Gruppe G, ein Element a € G und die Ordnung
n = ordg(a) von « in G sowie ein Element § € [a].

Gesucht: Der diskrete Logarithmus e = logg ,(3) von 3 zur Basis o in G.

In vielen Gruppen ist die Funktion e — ¢ effizient mittels wiederholtem Quadrieren und
Multiplizieren berechenbar. In einigen Féllen ist jedoch kein effizienter Algorithmus zur
Bestimmung der Umkehrfunktion, also von log,(f) bekannt, d.h. e — o ist Kandidat
fiir eine Einwegfunktion.

Beispiel 95. Sei G = Zy, p prim, und sei o ein Erzeuger von Zy. Dann ist [a] = Ly, und
a hat die Ordnung n = p — 1. Ist p hinreichend grof§ und enthdlt p — 1 mindestens einen
grofien Primfaktor, so sind keine effizienten Algorithmen zur Berechnung von log, () in
L, bekannt.

Wir betrachten zunéchst eine Reihe von naiven Algorithmen fiir das DLP.

Berechnung von log. (/)

v:=1

for 1:=0 to n—1 do
if v =/ then output(i)
V=0

O

Dieser Algorithmus lauft in Zeit O(n) (wobei wir vereinfacht annehmen, dass elementare
Gruppenoperationen in konstanter Zeit ausfiihrbar sind) und benétigt nur logarithmischen
Speicherplatz. Falls wir im Vorfeld eine Tabelle mit den Logarithmen aller moglichen
Werte fiir 3 erstellen, konnen wir danach fiir jedes [ den diskreten Logarithmus durch
Table-Lookup in konstanter Zeit bestimmen. Fiir die Precomputation fallen jedoch Zeit
O(n) und Platz O(nlogn) an.

DLP-Berechnung mittels Precomputation

I Precomputation: Trage die Exponenten e=0,...,n—1 unter der
Adresse a° in eine Tabelle T ein

> Computation: Ermittle in T den Eintrag e unter der Adresse [ und
gib e aus
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5.1 Der Algorithmus von Shanks

Der folgende Algorithmus von Shanks (auch baby-step giant-step Algorithmus genannt)
berechnet ebenfalls im Vorfeld eine Tabelle von DLP-Werten, allerdings nur fiir Potenzen
der Form o™ j = 0,...,m — 1, wobei m = [y/n| ist. Dadurch erhoht sich zwar
die Laufzeit zur Bestimmung des diskreten Logarithmus fir § von O(1) auf O(y/n), im
Gegenzug geht jedoch der Speicherplatzverbrauch von O(nlogn) auf O(y/nlogn) zurtick.

Algorithmus Shanks(G,n,«, ()

I Precomputation:

2 k= [v/n]

3 sortiere die Paare (a'™,i), i=0,...,k—1, nach der ersten
Komponente in eine Tabelle T1

1+ Computation:

5 sortiere die Paare (Ba™,j), j=0,...,k—1, nach der ersten

Komponente in eine Tabelle 72

6 ermittle durch parallele sequentielle Suche Paare (v,i) in T'1
und (v,7) in 72 mit derselben ersten Komponente

7 output im +j

5.2 Der Pohlig-Hellman-Algorithmus

Mit dem Pohlig-Hellman-Algorithmus léasst sich der diskrete Logarithmus in einer be-
liebigen Gruppe G berechnen. Die Ordnung der Potenz o' eines Elements o € G der
Ordnung n ist

ordg(a’) = n/ggT(n,i).

Ist insbesondere ¢ ein Teiler von n, so hat a™/¢ die Ordnung q.

Im Folgenden betrachten wir speziell den Fall, dass a ein Element der Gruppe G = Z;,
ist. Sei a = logg ,(8) der diskrete Logarithmus von 3 zur Basis . Weiter sei n = [[;_; p{’

die Primfaktorzerlegung der Ordnung n von «. Falls wir fir ¢« = 1,...,k die Werte
a; = a mod p;* kennen, so lasst sich daraus a leicht mit dem Chinesischen Restsatz
berechnen. Schreiben wir a; als Zahl zur Basis p;, so erhalten wir Ziffern dy, . .., de,—1 € Zp,

mit a; = Z;;_Ol djpg. Weiter ex. eine Zahl s; > 0 mit a = a; + s;p;".

Um nun die Ziffern dy, . .., d.,—1 zu berechnen, betrachten wir fiir j =0,...,e; — 1 und

o 2. _d. J—1 .. .
B; = Ba~do=dpi=dapi-=djipi dje Gleichung

j+1 i+1
] n/pl

5;1/1% — q%in/pi <bZW. dj —= ]ogG’an/pi(ﬁj )> ,

die sich leicht verifizieren lasst:

j+1 o .
”/Pf — (aa—do—d1p¢—d2p?~~—dj_1pz 1)n/pg7L1
j
i : .1 . i
= (Ozdjpﬁ+dj+1pﬁ+l+"'+dei—lpf’ *‘”p:l)n/piﬂ
TP RS T S B
= (a%PFP /P fiir eine Zahl ¢t > 0

Oédj n/p; Oétn

_ adjn/pi
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Der folgende Algorithmus berechnet sukzessive die Zahlen §; und dazu die Ziffern
o

dj = logg on/r: (B;L/pg ), die sich wegen ordg(a”/?) = p; in Zeit O(,/p;) (etwa mit dem

Algorithmus von Shanks) ermitteln lassen. Insgesamt erhalten wir somit eine Laufzeit

von O(e;4/p;) zur Bestimmung von a; und von O(max; /p;logn) zur Bestimmung von a.

Algorithmus Pohlig-Hellman-DLP(G,n,a, B,p1,. .., Pk, €1, €k), n =111 p5
1 for i:=1 to k do

2 for j:=0 to ¢;—1 do

3 d] = lOgG,Oén/pZ (/Bn/pz+1)

4 B := Ba P

5 a; = (dei_l T do)pi

6 b; :=m/m;

7 c = bl-_l mod m;

output Zle a;b;c; mod m

oo

Beispiel 96. 3 = 3344, a = 3, m = 29%. Da wir die Ordnung von o nicht kennen, setzen
wir n = ||Z% ] = ¢(29%) = (29 — 1)29% = 2% . 7-29%. Der Algorithmus von Pohlig und
Hellman muss also fir (p;,e;) € {(2,2),(7,1),(29,2)} durchgefihrt werden:

. n j+1
8 npltt BT 4w

3344 11774 1 0
3344 5887 24388 1 2
2

i opioe; mi=py nfp; QP
0
1
2 7 1 7 3364 7302 0 3344 3364 4850 9
0
1

1 2 2 4 11774 24388

3 29 2 841 812 12616 3344 812 11775 28
6998 28 3365 8 260

Der gesuchte diskrete Logarithmus a = logg ,(8) muss nun noch mit dem Chinesischen
Restsatz als Losung der drei Kongruenzen a =, a; bestimmt werden.

Satz 97 (Chinesischer Restsatz). Seien mq,...,my paarweise teilerfremd und seien
a; € Ly, firi=1,...,k. Dann hat das System

T =, 4, t=1,...,k

genau eine Losung x modulo m = [1%_, m;, die durch

k
m
T = Zaibici mod m mit b, = — und ¢; = bfl mod m;
i=1 m;
bestimmt ist.

Es ergeben sich folgende Werte:

~.

a; m; bi=m/m; c¢;=(m/m;)"' mod m; a;bic; mod m

1 2 4 H&K7 3 11774
2 2 7 3364 2 13456
3 260 &41 28 811 17080
> a = 18762

Damit gilt log4(3344) =993 18762.
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5.3 Der Rho-Faktorisierungsalgorithmus

Von Pollard wurde eine heuristische Strategie entwickelt, die sich sowohl zur Losung
des DLP als auch des Faktorisierungsproblems eignet. Die Idee dabei ist, mit wenig
Speicherplatz eine Kollision a; = a; mit ¢ # j fiir eine Folge (a,) der Form a,11 = f(a,)
zu finden. Zahlenfolgen dieser Bauart haben die Eigenschaft, dass a; = a; die Gleichheit
ik = ajyp fir alle & > ¢ impliziert.

Wir betrachten zunédchst die Faktorisierungsvariante des Rho-Algorithmus von Pollard.
Sei n eine Zahl mit mindestens 2 verschiedenen Primteilern p < ¢ (falls n nur einen
Primteiler hat, also eine Primzahlpotenz ist, lasst sich n leicht durch Berechnung der
k-ten Wurzeln fur k = 2,...,log,(n) faktorisieren).

Angenommen, wir wahlen zuféllig eine Menge X C Z,, der Gréfle |/p, so enthalt X mit
grofler Wahrscheinlichkeit 2 Elemente x # 2’ mit © =, 2/, die auf den nichttrivialen
Faktor d = ggT(x — 2/, n) von n fithren.

Wiéhlen wir nun anstelle von X eine pseudozufillige Menge der Form X = {1, 2y =
f(z1),...,2; = f(zj—1)}, wobei z; ein zufillig gewdhlter Startwert ist, so tritt bei
geeigneter Wahl von [ : Z,, — 7Z, fiir j < /p mit groler Wahrscheinlichkeit eine Kollision
x; =p x; fir ein ¢ < j auf. Eine gute Wahl fiir f ist beispielsweise f(z) = 2? &+ 1 mod n.
Werden zur Berechnung von f nur die Ringoperationen von Z,, verwendet, so impliziert
r; =, v; die Kongruenz z; 11 = f(z;) =, f(z;) = xj11, was wiederum fiir fur alle £ > 0
die Kongruenz x;, =, x4, bzw. fir alle k > ¢ die Kongruenz z;, =, x,_;; impliziert.
Setzen wir [ = j — 4, so erhalten wir fir alle &£ > ¢ die Kongruenz z;, =, x4, und daraus
Ty =p Tita fir alle k> ¢ und d > 0. Insbesondere folgt also x, =, xo fiir alle £ > ¢ mit
k =, 0. Indem wir also sukzessive die Paare (xy, x} = o) berechnen, kénnen wir mit
sehr geringem Platzverbrauch ein Kollisionspaar (xy, z},) mit xx =, ), und k <i+1=j
finden (ohne p zu kennen).

Algorithmus Pollard-Rho-Factorize(n)

1 wahle zufallig z € Z,

> 2 =2+ 1modn

3 while ggT(z —2',n) =1 do

! x = f(z)

5o o= f(f(@")

¢ if d=ggT(x —a',n) <n then output(d)
7 else output(?)

5.4 Der Rho-DLP-Algorithmus

Dieser Algorithmus berechnet eine pseudozufillige Folge von Paaren (x;,y;) € Z, X Z,.
Ziel ist es, zwei verschiedene Paare (z;,v;) und (x;,y;) mit o % = o % zu finden. Im
Fall ggT(y; — y;,n) = 1 lédsst sich hieraus wegen

aFitavi — iV = i pYi = aitay;

der diskrete Logarithmus logs,(6) = (z; — #;)(y; — y:;)~" mod n leicht bestimmen.
Andernfalls erhalten wir ¢ = ggT(y; — y;,n) Kandidaten ay,...,a,, unter denen der
richtige ebenfalls leicht zu ermitteln ist, sofern ¢ nicht zu grof§ ist. Zur Bildung der
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Pseudozufallsfolge kann bspw. die Funktion f in folgendem Algorithmus benutzt werden.
Aus Effizienzgriinden berechnet sie auch gleich die Werte v; = o® 3Y%. Die Mengen
S1, 92,53 bilden eine Partition von G in drei etwa gleich grofle Mengen, wobei das
neutrale Element 1 von G nicht in Sy enthalten sein sollte.

Algorithmus Pollard-Rho-DLP(G,n,«a,3)

1 function f(z,y,7)
2 case
3
1

v € 81t return(z,y + 1 mod n, 57)
v € Sy: return(2x mod n, 2y mod n, v?)
5 v € S3: return(zx + 1 mod n,y, ay)

: wihle zufallig z,y € Z,

8 yi=atpy

o (@Y ) = [z, y,7)

10 while v# v do

n () = f(2,y)

2o (@Y Y) = YY)

5og=ggT(y —y,n)

1+ bestimme alle Ldsungen ay,...,a, von (y —y)a =, (z — ')
15 output a; mit a% =p

Ahnlich wie beim Rho-Faktorisierungsalgorithmus lisst sich argumentieren, dass die
while-Schleife nach ca. \/n Iterationen abbricht.

5.5 Die Index-Calculus-Methode

Hierbei handelt es sich nicht um einen generischen DLP-Algorithmus, da er nur fir
spezielle Gruppen anwendbar ist. Wir betrachten den wichtigen Spezialfall G = Z7, p
prim, und ord(«) = p — 1. Der Algorithmus benutzt eine Faktorbasis B = {p1,...,ps},
wobei wir annehmen, dass B die ersten b Primzahlen enthalt.

Algorithmus Index-Calculus(p,a,f)

1 Precomputation:

2 bestimme [; =log,p;, fur i=1,...,b

3 Computation:

| wahle zufallig eine Zahl s€ {0,...,p—2}

5 v := fa’® mod p

6 if (v ist Uber B faktorisierbar) then

7 berechne Exponenten c¢p,...,¢, mit v =pt---p’
8 output (cily + -+ ¢ly — smod p — 1)

Zur Bestimmung der Zahlen /; kann man wie folgt vorgehen. Wihle ¢ etwas grofler als b
(z.B. ¢ = b+ 10) und generiere ¢ Kongruenzen der Form

i __ alj ab]- .
o =, p7ep =100

Hierzu kann man x; zuféllig wahlen und testen, ob y; = a® mod p iiber B faktorisierbar
ist. Die Wahrscheinlichkeit hierfiir hangt natiirlich von der Grofle von B ab. Aus den
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Kongruenzen lasst sich ein lineares Kongruenzgleichungssystem der Form

aip -0 Apl l T
Ep_]_
Ale *°° Qpe lb e
A
fir die Unbekannten [y, ..., [, gewinnen, das die gewtinschten Werte liefert, falls A durch

Streichen von ¢—b Zeilen in eine (b x b)-Matrix A’ mit ggT(detA’, p—1) = 1 transformiert
werden kann.

Beispiel 98. Sei p = 10007 und o = 5. Als Faktorbasis B wdhlen wir B = {2,3,5,7}.
Zudem wahlen wir x1 = 4063, x5 = 5136 und x3 = 9865. Damit erhalten wir wegen

54063 mod p = 42 = 213171
55136 mod p = 54 = 213370
59865 mod p = 189 = 23371

das Kongruenzgleichungssystem

11 1\ /I 4063
13 0|[L]|=,1[5136
03 1) \ly 9865

fir die Unbekannten ly, 1y, ly. Subtrahieren wir die erste Zeile von der Summe der 2. und
3. Zeile, so erhalten wir die Gleichung 5ly =,_1 5136 + 9865 — 4063 = 10938 =,_; 932
und somit lo = 6190. Zudem ist |y = 6578, I, = 1301 und I3 = log,, p3 = log; 5 = 1.

Wollen wir nun den diskreten Logarithmus fir § = 9451 bestimmen, so wdhlen wir eine
Zufallszahl s (z.B. s = 7736) und berechnen

v = Ba® = 9451 - 570 = 8400 = 2*3'5%7".
Daraus erhalten wir log, 5 =4-6578+1-6190+2-1+1-1301 — 7736 mod p — 1 = 6057.

Durch eine heuristische Komplexitatsanalyse lasst sich zeigen, dass die
Precomputation-Phase in Zeit O(e(tte()vinphlnp) ypnd die Computation-Phase
in Zeit O(ell/2re)vinpnnp) aysfiihrbar ist.

5.6 Die Methode der zufilligen Quadrate

Mit einer dhnlichen Methode lésst sich iibrigens auch eine zusammengestzte Zahl n
faktorisieren (so genannte Methode der zufélligen Quadrate). Hierzu sucht man nach
Zahlen z; € Z*, i € I, mit der Eigenschaft, dass y; = zZ mod n iiber B faktorisierbar ist:
y; = pit - - - p*. Danach bestimmt man eine Teilmenge J C I, so dass die Primfaktor-
zerlegung [[;c; vi = pi* - - - p,’ nur gerade Exponenten e; = Y,c; ¢;; hat. Setzen wir nun
a =[l;c;jx; mod nund b = p?/Q - -pzb/Q mod 7, so gilt offenbar a? =,, b* und wir konnen
im Fall, dass a #,, £b ist, einen nichttrivialen Faktor ggT(a — b,n) von n bestimmen.
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Beispiel 99. Sei n = 15770708441 und B = {2,3,5,7,11,13}. Wihlen wir x; =
8340934156, xo = 12044942944 und x5 = 2773700011, so erhalten wir wegen

2?2 mod n = 21 = 371
r3 mod n = 182 = 2'7113!
z3 mod n = 78 = 2'3113!

die Kongruenz
a® = (] #: mod n)? = 9503435785 =, v* = (2'3'7'13" mod n)? = 5462,
welche auf den Faktor ggT(a — b,n) = ggT (9503435785 — 546, n) = 115759 von n fiihrt.

Die Zahlen z; konnen hierbei entweder zufallig aus 7Z,, gewahlt werden, oder besser von
der Form [vkn] + [ fiir kleine Zahlen k,1 > 0. Da dies bewirkt, dass y; = 22 mod n
relativ klein ist, erhoht dies die Wahrscheinlichkeit, dass y; tiber B faktorisierbar ist.

Wir kénnen auch testen, ob die Zahl y; = n — y; iiber B faktorisierbar ist, da sich in
diesem Fall y; in ein Produkt von Zahlen der erweiterten Basis B’ = B U {—1} zerlegen
lasst. Wir missen dann nur darauf achten, dass wir J C I so bestimmen, dass auch die
Summe der Exponenten von —1 gerade ist. Um fiir y; = 27 mod n einen méglichst grofien

Wert zu erhalten, kann man z; beispielsweise von der Form |vVkn| — [ fiir kleine Zahlen
k.l > 0 wéhlen.

Beispiel 100. Sein = 1829 und B’ = {—1,2,3,5,7,11,13}. Wegen /n = 42,8, v/2n =
60,5, v3n = 74,1, v/4n = 85,5 testen wir die Zahlen 42, 43, 60, 61, 74, 75, 85, 86 und
erhalten folgende Zerleqgungen tiber B’ :

422 =, —65 = (—1)5'13!
43? =, 20 = 225!

612 =, 63 = 327

742 =, —11 = (—1)111
852 =, —91 = (—1)7'13!
862 =, 80 = 2*5.

Fiir J ={2,6} ergibt sich zwar die Kongruenz

a* = (]] #; mod n)* = (43 - 86 mod n)* = 40% =, b* = (2°5' mod n)* = 40°,
ieJ
welche wegen a = b keinen nichttrivialen Faktor von n liefert. Dagegen ergibt sich fir
J=1{1,2,3,5} die Kongruenz
a* = (][ z: mod n)* = (42-43-61-85 mod n)* = 1459° =, b* = (2'3'5'7'13" mod n)* = 901,
ieJ

welche auf den Faktor ggT(a — b,n) = ggT (1459 — 901, 1829) = 31 von n fiihrt.
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