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1 Grundlagen

1 Grundlagen

Der Begriff Algorithmus geht auf den persischen Gelehrten Muham-
med Al Chwarizmi (8./9. Jhd.) zurück. Der älteste bekannte nicht-
triviale Algorithmus ist der nach Euklid benannte Algorithmus zur
Berechnung des größten gemeinsamen Teilers zweier natürlicher Zah-
len (300 v. Chr.). Von einem Algorithmus wird erwartet, dass er
jede Problemeingabe nach endlich vielen Rechenschritten löst (etwa
durch Produktion einer Ausgabe). Ein Algorithmus ist ein „Verfah-
ren“ zur Lösung eines Entscheidungs- oder Berechnungsproblems, das
sich prinzipiell auf einer Turingmaschine (TM) implementieren lässt
(Church-Turing-These).

Die Registermaschine

Bei Aussagen zur Laufzeit von Algorithmen beziehen wir uns auf die
Registermaschine (engl. random access machine; RAM). Dieses Modell
ist etwas flexibler als die Turingmaschine, da es den unmittelbaren
Lese- und Schreibzugriff (random access) auf eine beliebige Speicher-
einheit (Register) erlaubt. Als Speicher stehen beliebig viele Register
zur Verfügung, die jeweils eine beliebig große natürliche Zahl speichern
können. Auf den Registerinhalten sind folgende arithmetische Ope-
rationen in einem Rechenschritt ausführbar: Addition, Subtraktion,
abgerundetes Halbieren und Verdoppeln. Unabhängig davon geben
wir die Algorithmen in Pseudocode an. Das RAM-Modell benutzen
wir nur zur Komplexitätsabschätzung.
Die Laufzeit von RAM-Programmen wird wie bei TMs in der Länge
der Eingabe gemessen. Man beachte, dass bei arithmetischen Proble-
men (wie etwa Multiplikation, Division, Primzahltests, etc.) die Länge

einer Zahleingabe n durch die Anzahl dlog ne der für die Binärkodie-
rung von n benötigten Bits gemessen wird. Dagegen bestimmt bei
nicht-arithmetischen Problemen (z.B. Graphalgorithmen oder Sortier-
problemen) die Anzahl der gegebenen Zahlen, Knoten oder Kanten
die Länge der Eingabe.

Asymptotische Laufzeit und Landau-Notation

Definition 1.1. Seien f und g Funktionen von N nach R+. Wir
schreiben f(n) = O(g(n)), falls es Zahlen n0 und c gibt mit

∀n ≥ n0 : f(n) ≤ c · g(n).

Die Bedeutung der Aussage f(n) = O(g(n)) ist, dass f „nicht
wesentlich schneller“ als g wächst. Formal bezeichnet der Term
O(g(n)) die Klasse aller Funktionen f , die obige Bedingung erfül-
len. Die Gleichung f(n) = O(g(n)) drückt also in Wahrheit eine
Element-Beziehung f ∈ O(g(n)) aus. O-Terme können auch auf
der linken Seite vorkommen. In diesem Fall wird eine Inklusionsbe-
ziehung ausgedrückt. So steht n2 +O(n) = O(n2) für die Aussage
{n2 + f | f ∈ O(n)} ⊆ O(n2).

Beispiel 1.2.
• 7 log(n) + n3 = O(n3) ist richtig.
• 7 log(n)n3 = O(n3) ist falsch.
• 2n+O(1) = O(2n) ist richtig.
• 2O(n) = O(2n) ist falsch (siehe Übungen). /

Es gibt noch eine Reihe weiterer nützlicher Größenvergleiche von
Funktionen.

Definition 1.3. Wir schreiben f(n) = o(g(n)), falls es für jedes
c > 0 eine Zahl n0 gibt mit

∀n ≥ n0 : f(n) ≤ c · g(n).
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Damit wird ausgedrückt, dass f „wesentlich langsamer“ als g wächst.
Außerdem schreiben wir
• f(n) = Ω(g(n)) für g(n) = O(f(n)), d.h. f wächst mindestens so
schnell wie g)
• f(n) = ω(g(n)) für g(n) = o(f(n)), d.h. f wächst wesentlich schnel-
ler als g, und
• f(n) = Θ(g(n)) für f(n) = O(g(n)) ∧ f(n) = Ω(g(n)), d.h. f und
g wachsen ungefähr gleich schnell.

1.1 Graphentheoretische Grundlagen

Definition 1.4. Ein (ungerichteter) Graph ist ein Paar G =
(V,E), wobei
V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.

Hierbei gilt
E ⊆

(
V
2

)
=
{
{u, v} ⊆ V | u 6= v

}
.

Sei v ∈ V ein Knoten.
a) Die Nachbarschaft von v ist NG(v) = {u ∈ V | {u, v} ∈ E}.
b) Der Grad von v ist degG(v) = ‖NG(v)‖.
c) Der Minimalgrad von G ist δ(G) = minv∈V degG(v) und der

Maximalgrad von G ist ∆(G) = maxv∈V degG(v).

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach
N(v), deg(v), δ usw.

Beispiel 1.5.
• Der vollständige Graph (V,E) auf n Knoten, d.h. ‖V ‖ = n und
E =

(
V
2

)
, wird mit Kn und der leere Graph (V, ∅) auf n Knoten

wird mit En bezeichnet.

K1: K2: K3: K4: K5:

• Der vollständige bipartite Graph (A,B,E) auf a+ b Knoten,
d.h. A∩B = ∅, ‖A‖ = a, ‖B‖ = b und E = {{u, v} | u ∈ A, v ∈ B}
wird mit Ka,b bezeichnet.

K1,1: K1,2: K2,2: K2,3: K3,3:

• Der Pfad der Länge n− 1 wird mit Pn bezeichnet.

P2: P3: P4: P5:

• Der Kreis der Länge n wird mit Cn bezeichnet.

C3: C4: C5: C6:

Definition 1.6. Sei G = (V,E) ein Graph.
a) Eine Knotenmenge U ⊆ V heißt unabhängig oder stabil, wenn

es keine Kante von G mit beiden Endpunkten in U gibt, d.h. es gilt
E ∩

(
U
2

)
= ∅. Die Stabilitätszahl ist

α(G) = max{‖U‖ | U ist stabile Menge in G}.

b) Eine Knotenmenge U ⊆ V heißt Clique, wenn jede Kante mit
beiden Endpunkten in U in E ist, d.h. es gilt

(
U
2

)
⊆ E. Die Cli-

quenzahl ist
ω(G) = max{‖U‖ | U ist Clique in G}.

c) Eine Abbildung f : V → N heißt Färbung von G, wenn f(u) 6=
f(v) für alle {u, v} ∈ E gilt. G heißt k-färbbar, falls eine Fär-
bung f : V → {1, . . . , k} existiert. Die chromatische Zahl ist

χ(G) = min{k ∈ N | G ist k-färbbar}.

d) Ein Graph heißt bipartit, wenn χ(G) ≤ 2 ist.
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1 Grundlagen 1.1 Graphentheoretische Grundlagen

e) Ein Graph G′ = (V ′, E ′) heißt Sub-/Teil-/Untergraph von G,
falls V ′ ⊆ V und E ′ ⊆ E ist. Ein Subgraph G′ = (V ′, E ′) heißt
(durch V ′) induziert, falls E ′ = E ∩

(
V ′

2

)
ist. Hierfür schreiben

wir auch H = G[V ′].
f) Ein Weg ist eine Folge von (nicht notwendig verschiedenen) Kno-

ten v0, . . . , v` mit {vi, vi+1} ∈ E für i = 0, . . . , `−1, der jede Kante
e ∈ E höchstens einmal durchläuft. Die Länge des Weges ist die
Anzahl der durchlaufenen Kanten, also `. Im Fall ` = 0 heißt der
Weg trivial. Ein Weg v0, . . . , v` heißt auch v0-v`-Weg.

g) Ein Graph G = (V,E) heißt zusammenhängend, falls es für alle
Paare {u, v} ∈

(
V
2

)
einen u-v-Weg gibt. G heißt k-fach zusam-

menhängend, 1 < k < n, falls G nach Entfernen von beliebigen
l ≤ min{n− 1, k − 1} Knoten immer noch zusammenhängend ist.

h) Ein Zyklus ist ein u-v-Weg der Länge ` ≥ 2 mit u = v.
i) Ein Weg heißt einfach oder Pfad, falls alle durchlaufenen Knoten

verschieden sind.
j) Ein Kreis ist ein Zyklus v0, v1 . . . , v`−1, v0 der Länge ` ≥ 3, für

den v0, v1, . . . , v`−1 paarweise verschieden sind.
k) Ein Graph G = (V,E) heißt kreisfrei, azyklisch oder Wald,

falls er keinen Kreis enthält.
l) Ein Baum ist ein zusammenhängender Wald.

m) Jeder Knoten u ∈ V vom Grad deg(u) ≤ 1 heißt Blatt und die
übrigen Knoten (vom Grad ≥ 2) heißen innere Knoten.

Es ist leicht zu sehen, dass die Relation
Z = {(u, v) ∈ V × V | es gibt in G einen u-v-Weg}

eine Äquivalenzrelation ist. Die durch die Äquivalenzklassen von Z in-
duzierten Teilgraphen heißen die Zusammenhangskomponenten
(engl. connected components) von G.
Definition 1.7. Ein gerichteter Graph oder Digraph ist ein
Paar G = (V,E), wobei

V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.

Hierbei gilt
E ⊆ V × V =

{
(u, v) | u, v ∈ V

}
,

wobei E auch Schlingen (u, u) enthalten kann. Sei v ∈ V ein Knoten.
a) Die Nachfolgermenge von v ist N+(v) = {u ∈ V | (v, u) ∈ E}.
b) Die Vorgängermenge von v ist N−(v) = {u ∈ V | (u, v) ∈ E}.
c) Die Nachbarmenge von v ist N(v) = N+(v) ∪N−(v).
d) Der Ausgangsgrad von v ist deg+(v) = ‖N+(v)‖ und der Ein-

gangsgrad von v ist deg−(v) = ‖N−(v)‖. Der Grad von v ist
deg(v) = deg+(v) + deg−(v).

e) Ein (gerichteter) v0-v`-Weg ist eine Folge von Knoten
v0, . . . , v` mit (vi, vi+1) ∈ E für i = 0, . . . , ` − 1, der jede Kan-
te e ∈ E höchstens einmal durchläuft.

f) Ein (gerichteter) Zyklus ist ein gerichteter u-v-Weg der Länge
` ≥ 1 mit u = v.

g) Ein gerichteter Weg heißt einfach oder (gerichteter) Pfad, falls
alle durchlaufenen Knoten verschieden sind.

h) Ein (gerichteter) Kreis in G ist ein gerichteter Zyklus
v0, v1 . . . , v`−1, v0 der Länge ` ≥ 1, für den v0, v1, . . . , v`−1 paarwei-
se verschieden sind.

i) G heißt kreisfrei oder azyklisch, wenn es in G keinen gerichteten
Kreis gibt.

j) G heißt schwach zusammenhängend, wenn es in G für jedes
Knotenpaar u 6= v ∈ V einen u-v-Pfad oder einen v-u-Pfad gibt.

k) G heißt stark zusammenhängend, wenn es in G für jedes Kno-
tenpaar u 6= v ∈ V sowohl einen u-v-Pfad als auch einen v-u-Pfad
gibt.
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1 Grundlagen 1.2 Datenstrukturen für Graphen

1.2 Datenstrukturen für Graphen

Sei G = (V,E) ein Graph bzw. Digraph und sei V = {v1, . . . , vn}.
Dann ist die (n× n)-Matrix A = (aij) mit den Einträgen

aij =

1, {vi, vj} ∈ E
0, sonst

bzw. aij =

1, (vi, vj) ∈ E
0, sonst

die Adjazenzmatrix von G. Für ungerichtete Graphen ist die Ad-
jazenzmatrix symmetrisch mit aii = 0 für i = 1, . . . , n.
Bei der Adjazenzlisten-Darstellung wird für jeden Knoten vi eine
Liste mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet
man entweder nur die Liste der Nachfolger oder zusätzlich eine weitere
für die Vorgänger. Falls die Anzahl der Knoten gleichbleibt, organi-
siert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit
Index i verweist auf die Adjazenzliste von Knoten vi. Falls sich die
Anzahl der Knoten dynamisch ändert, so werden die Adjazenzlisten
typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 1.8.
Betrachte den gerichteten Graphen G = (V,E)
mit V = {1, 2, 3, 4} und E = {(2, 3),
(2, 4), (3, 1), (3, 4), (4, 4)}. Dieser hat folgende
Adjazenzmatrix- und Adjazenzlisten-Darstellung:

1 2

43

1 2 3 4
1 0 0 0 0
2 0 0 1 1
3 1 0 0 1
4 0 0 0 1

1
2
3
4

3 4
1 4
4

/

Folgende Tabelle gibt den Aufwand der wichtigsten elementaren Opera-
tionen auf Graphen in Abhängigkeit von der benutzten Datenstruktur

an. Hierbei nehmen wir an, dass sich die Knotenmenge V nicht ändert.

Adjazenzmatrix Adjazenzlisten
einfach clever einfach clever

Speicherbedarf O(n2) O(n2) O(n+m) O(n+m)
Initialisieren O(n2) O(1) O(n) O(1)

Kante einfügen O(1) O(1) O(1) O(1)
Kante entfernen O(1) O(1) O(n) O(1)
Test auf Kante O(1) O(1) O(n) O(n)

Bemerkung 1.9.

• Der Aufwand für die Initialisierung des leeren Graphen in der Ad-
jazenzmatrixdarstellung lässt sich auf O(1) drücken, indem man
mithilfe eines zusätzlichen Feldes B die Gültigkeit der Matrixein-
träge verwaltet (siehe Übungen).
• Die Verbesserung beim Löschen einer Kante in der Adjazenzlisten-
darstellung erhält man, indem man die Adjazenzlisten doppelt ver-
kettet und im ungerichteten Fall die beiden Vorkommen jeder Kante
in den Adjazenzlisten der beiden Endknoten gegenseitig verlinkt
(siehe die Prozeduren Insert(Di)Edge und Remove(Di)Edge auf
den nächsten Seiten).
• Bei der Adjazenzlistendarstellung können die Knoten auch in einer
doppelt verketteten Liste organisiert werden. In diesem Fall können
dann auch Knoten in konstanter Zeit hinzugefügt und in Zeit O(n)
wieder entfernt werden (unter Beibehaltung der übrigen Speicher-
und Laufzeitschranken).

Es folgen die Prozeduren für die in obiger Tabelle aufgeführten elemen-
taren Graphoperationen, falls G als ein Feld G[1, . . . , n] von (Zeigern
auf) doppelt verkettete Adjazenzlisten repräsentiert wird. Wir behan-
deln zuerst den Fall eines Digraphen.
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1 Grundlagen 1.3 Keller und Warteschlange

Prozedur Init

1 for i := 1 to n do
2 G[i] := ⊥

Prozedur InsertDiEdge(u, v)
1 erzeuge Listeneintrag e
2 source(e) := u
3 target(e) := v
4 prev(e) := ⊥
5 next(e) := G[u]
6 if G[u] 6= ⊥ then
7 prev(G[u]) := e
8 G[u] := e
9 return e

Prozedur RemoveDiEdge(e)
1 if next(e) 6= ⊥ then
2 prev(next(e)) := prev(e)
3 if prev(e) 6= ⊥ then
4 next(prev(e)) := next(e)
5 else
6 G[source(e)] := next(e)

Prozedur Edge(u, v)
1 e := G[u]
2 while e 6= ⊥ do
3 if target(e) = v then
4 return 1
5 e := next(e)
6 return 0

Falls G ungerichtet ist, können diese Operationen wie folgt implemen-
tiert werden (die Prozeduren Init und Edge bleiben unverändert).

Prozedur InsertEdge(u, v)
1 erzeuge Listeneinträge e, e′

2 opposite(e) := e′

3 opposite(e′) := e
4 next(e) := G[u]
5 next(e′) := G[v]
6 if G[u] 6= ⊥ then
7 prev(G[u]) := e
8 if G[v] 6= ⊥ then
9 prev(G[v]) := e′

10 G[u] := e; G[v] := e′

11 source(e) := target(e′) := u
12 target(e) := source(e′) := v
13 prev(e) := ⊥
14 prev(e′) := ⊥
15 return e

Prozedur RemoveEdge(e)
1 RemoveDiEdge(e)
2 RemoveDiEdge(opposite(e))

1.3 Keller und Warteschlange

Für das Durchsuchen eines Graphen ist es vorteilhaft, die bereits
besuchten (aber noch nicht abgearbeiteten) Knoten in einer Menge B
zu speichern. Damit die Suche effizient ist, sollte die Datenstruktur
für B folgende Operationen effizient implementieren.
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1 Grundlagen 1.3 Keller und Warteschlange

Init(B): Initialisiert B als leere Menge.
Empty(B): Testet B auf Leerheit.

Insert(B, u): Fügt u in B ein.
Element(B): Gibt ein Element aus B zurück.
Remove(B): Gibt ebenfalls Element(B) zurück und

entfernt es aus B.

Andere Operationen wie z.B. Remove(B, u) werden nicht benötigt.
Die gewünschten Operationen lassen sich leicht durch einen Keller
(auch Stapel genannt) (engl. stack) oder eine Warteschlange (engl.
queue) implementieren. Falls maximal n Datensätze gespeichert wer-
den müssen, kann ein Feld zur Speicherung der Elemente benutzt
werden. Andernfalls können sie auch in einer einfach verketteten Liste
gespeichert werden.

Stack S – Last-In-First-Out

Top(S): Gibt das oberste Element von S zurück.
Push(S, x): Fügt x als oberstes Element zum Keller hinzu.

Pop(S): Gibt das oberste Element von S zurück und ent-
fernt es.

Queue Q – Last-In-Last-Out

Enqueue(Q, x): Fügt x am Ende der Schlange hinzu.
Head(Q): Gibt das erste Element von Q zurück.

Dequeue(Q): Gibt das erste Element von Q zurück und ent-
fernt es.

Die Kelleroperationen lassen sich wie folgt auf einem Feld S[1 . . . n]
implementieren. Die Variable size(S) enthält die Anzahl der im
Keller gespeicherten Elemente.

Prozedur StackInit(S)
1 size(S) := 0

Prozedur StackEmpty(S)
1 return(size(S) = 0)

Prozedur Top(S)
1 if size(S) > 0 then
2 return(S[size(S)])
3 else
4 return(⊥)

Prozedur Push(S, x)
1 if size(S) < n then
2 size(S) := size(S) + 1
3 S[size(S)] := x
4 else
5 return(⊥)

Prozedur Pop(S)
1 if size(S) > 0 then
2 size(S) := size(S)− 1
3 return(S[size(S) + 1])
4 else
5 return(⊥)

Es folgen die Warteschlangenoperationen für die Speicherung in einem
Feld Q[1 . . . n]. Die Elemente werden der Reihe nach am Ende der
Schlange Q (zyklisch) eingefügt und am Anfang entnommen. Die
Variable head(Q) enthält den Index des ersten Elements der Schlan-
ge und tail(Q) den Index des hinter dem letzten Element von Q
befindlichen Eintrags.
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1 Grundlagen 1.4 Durchsuchen von Graphen

Prozedur QueueInit(Q)
1 head(Q) := 1
2 tail(Q) := 1
3 size(Q) := 0

Prozedur QueueEmpty(Q)
1 return(size(Q) = 0)

Prozedur Head(Q)
1 if QueueEmpty(Q) then
2 return(⊥)
3 else
4 returnQ[head(Q)]

Prozedur Enqueue(Q, x)
1 if size(Q) = n then
2 return(⊥)
3 size(Q) := size(Q) + 1
4 Q[tail(Q)] := x
5 if tail(Q) = n then
6 tail(Q) := 1
7 else
8 tail(Q) := tail(Q) + 1

Prozedur Dequeue(Q)
1 if QueueEmpty(Q) then
2 return(⊥)
3 size(Q) := size(Q)− 1
4 x := Q[head(Q)]
5 if head(Q) = n then
6 head(Q) := 1

7 else
8 head(Q) := head(Q) + 1
9 return(x)

Satz 1.10. Sämtliche Operationen für einen Keller S und eine War-
teschlange Q sind in konstanter Zeit O(1) ausführbar.
Bemerkung 1.11. Mit Hilfe von einfach verketteten Listen sind
Keller und Warteschlangen auch für eine unbeschränkte Anzahl von
Datensätzen mit denselben Laufzeitbeschränkungen implementierbar.

Die für das Durchsuchen von Graphen benötigte Datenstruktur B
lässt sich nun mittels Keller bzw. Schlange wie folgt realisieren.

Operation Keller S Schlange Q
Init(B) StackInit(S) QueueInit(Q)
Empty(B) StackEmpty(S) QueueEmpty(Q)
Insert(B, u) Push(S, u) Enqueue(Q, u)
Element(B) Top(S) Head(Q)
Remove(B) Pop(S) Dequeue(Q)

1.4 Durchsuchen von Graphen

Wir geben nun für die Suche in einem Graphen bzw. Digraphen
G = (V,E) einen Algorithmus GraphSearch mit folgenden Eigen-
schaften an:

GraphSearch benutzt eine Prozedur Explore, um alle Knoten
und Kanten von G zu besuchen.
Explore(w) findet Pfade zu allen von w aus erreichbaren Knoten.
Hierzu speichert Explore(w) für jeden über eine Kante {u, v} bzw.
(u, v) neu entdeckten Knoten v 6= w den Knoten u in parent(v).
Wir nennen die bei der Entdeckung eines neuen Knotens v durch-
laufenen Kanten (parent(v), v) parent-Kanten.
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1 Grundlagen 1.4 Durchsuchen von Graphen

Im Folgenden verwenden wir die Schreibweise e = uv sowohl für
gerichtete als auch für ungerichtete Kanten e = (u, v) bzw. e = {u, v}.

Algorithmus GraphSearch(V,E)
1 for all v ∈ V, e ∈ E do
2 vis(v) := false
3 parent(v) := ⊥
4 vis(e) := false
5 for all w ∈ V do
6 if vis(w) = false then Explore(w)

Prozedur Explore(w)
1 vis(w) := true
2 Init(B)
3 Insert(B,w)
4 while ¬Empty(B) do
5 u := Element(B)
6 if ∃ e = uv ∈ E : vis(e) = false then
7 vis(e) := true
8 if vis(v) = false then
9 vis(v) := true

10 parent(v) := u
11 Insert(B, v)
12 else
13 Remove(B)

Um die nächste von u ausgehende Kante uv, die noch nicht besucht
wurde, in konstanter Zeit bestimmen zu können, kann man bei der
Adjazenzlistendarstellung für jeden Knoten u neben dem Zeiger auf
die erste Kante in der Adjazenzliste von u einen zweiten Zeiger be-
reithalten, der auf die aktuelle Kante in der Liste verweist.

Suchwälder

Definition 1.12. Sei G = (V,E) ein Digraph.
• Ein Knoten w ∈ V heißt Wurzel von G, falls alle Knoten v ∈ V
von w aus erreichbar sind (d.h. es gibt einen gerichteten w-v-Weg
in G).
• G heißt gerichteter Wald, wenn G kreisfrei ist und jeder Knoten
v ∈ V Eingangsgrad deg−(v) ≤ 1 hat.
• Ein Knoten u ∈ V vom Ausgangsgrad deg+(u) = 0 heißt Blatt.
• Ein gerichteter Wald, der eine Wurzel hat, heißt gerichteter
Baum.

In einem gerichteten Baum liegen die Kantenrichtungen durch die
Wahl der Wurzel bereits eindeutig fest. Daher kann bei bekannter
Wurzel auf die Angabe der Kantenrichtungen auch verzichtet werden.
Man spricht dann von einem Wurzelbaum.
Betrachte den durch SearchGraph(V,E) erzeugten Digraphen W =
(V,Eparent) mit

Eparent =
{

(parent(v), v) | v ∈ V und parent(v) 6= ⊥
}
.

Da parent(v) vor v markiert wird, ist klar, dass W kreisfrei ist. Zu-
dem hat jeder Knoten v höchstens einen Vorgänger parent(v). Dies
zeigt, dass W tatsächlich ein gerichteter Wald ist. W heißt Such-
wald von G und die Kanten (parent(v), v) von W werden auch als
Baumkanten bezeichnet.
W hängt zum einen davon ab, wie die Datenstruktur B implementiert
ist (z.B. als Keller oder als Warteschlange). Zum anderen hängt W
aber auch von der Reihenfolge der Knoten in den Adjazenzlisten ab.

Klassifikation der Kanten eines (Di-)Graphen

Die Kanten eines Graphen G = (V,E) werden durch den Suchwald
W = (V,Eparent) in vier Klassen eingeteilt. Dabei erhält jede Kante
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1 Grundlagen 1.4 Durchsuchen von Graphen

die Richtung, in der sie bei ihrem ersten Besuch durchlaufen wird.
Neben den Baumkanten (parent(v), v) ∈ Eparent gibt es noch
Rückwärts-, Vorwärts- und Querkanten. Rückwärtskanten (u, v)
verbinden einen Knoten u mit einem Knoten v, der auf dem parent-
Pfad P (u) von u liegt. Liegt dagegen u auf P (v), so wird (u, v)
als Vorwärtskante bezeichnet. Alle übrigen Kanten heißen Quer-
kanten. Diese verbinden zwei Knoten, von denen keiner auf dem
parent-Pfad des anderen liegt.

Beispiel 1.13. Bei Aufruf mit dem
Startknoten a könnte die Prozedur
Explore den nebenstehendem Graphen
beispielsweise wie folgt durchsuchen.

f c

a b

e d

Menge B Knoten Kante Typ B Knoten Kante Typ
{a} a (a, b) B {d, e, f} d (d, e) V
{a, b} a (a, f) B {d, e, f} d (d, f) Q
{a, b, f} a - - {d, e, f} d - -
{b, f} b (b, d) B {e, f} e (e, d) R
{b, d, f} b - - {e, f} e - -
{d, f} d (d, c) B {f} f (f, e) Q
{c, d, f} c (c, e) B {f} f - -
{c, d, e, f} c - - ∅

Dabei entsteht nebenstehender Such-
wald.

b d

a c

f e

Die Klassifikation der Kanten eines Digraphen G erfolgt analog, wobei
die Richtungen jedoch bereits durch G vorgegeben sind (dabei werden
Schlingen der Kategorie der Vorwärtskanten zugeordnet). Tatsächlich

durchläuft Explore bei einem Graphen die Knoten und Kanten in der
gleichen Reihenfolge wie bei dem Digraphen, der für jede ungerichtete
Kante {u, v} die beiden gerichteten Kanten (u, v) und (v, u) enthält.

Beispiel 1.14. Bei Aufruf mit dem
Startknoten a könnte die Prozedur
Explore beispielsweise nebenstehen-
den Suchwald generieren.

f c

a b

e d

Menge B Knoten Kante B Knoten Kante
{a} a {a, e} B {c, d, e, f} c {c, f} Q
{a, e} a {a, f} B {c, d, e, f} c - -
{a, e, f} a - - {d, e, f} d {d, b} -
{e, f} e {e, a} - {d, e, f} d {d, c} -
{e, f} e {e, c} B {d, e, f} d {d, e} R
{c, e, f} c {c, b} B {d, e, f} d - -
{b, c, e, f} b {b, c} - {e, f} e {e, d} -
{b, c, e, f} b {b, d} B {e, f} e - -
{b, c, d, e, f} b - - {f} f {f, a} -
{c, d, e, f} c {c, d} V {f} f {f, c} -
{c, d, e, f} c {c, e} - {f} f - -

Satz 1.15. Falls der (un)gerichtete Graph G in Adjazenzlisten-
Darstellung gegeben ist, durchläuft GraphSearch alle Knoten und
Kanten von G in Zeit O(n+m).

Beweis. Offensichtlich wird jeder Knoten u genau einmal zu B hin-
zugefügt. Dies geschieht zu dem Zeitpunkt, wenn u zum ersten Mal
„besucht“ und das Feld visited für u auf true gesetzt wird. Außer-
dem werden in Zeile 6 von Explore alle von u ausgehenden Kanten
durchlaufen, bevor u wieder aus B entfernt wird. Folglich werden
tatsächlich alle Knoten und Kanten von G besucht.
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1 Grundlagen 1.5 Spannbäume und Spannwälder

Wir bestimmen nun die Laufzeit des Algorithmus GraphSearch. In-
nerhalb von Explore wird die while-Schleife für jeden Knoten u genau
(deg(u) + 1)-mal bzw. (deg+(u) + 1)-mal durchlaufen:
• einmal für jeden Nachbarn v von u und
• dann noch einmal, um u aus B zu entfernen.
Insgesamt sind das n+ 2m im ungerichteten bzw. n+m Durchläufe
im gerichteten Fall. Bei Verwendung von Adjazenzlisten kann die
nächste von einem Knoten v aus noch nicht besuchte Kante e in
konstanter Zeit ermittelt werden, falls man für jeden Knoten v einen
Zeiger auf e in der Adjazenzliste von v vorsieht. Die Gesamtlaufzeit
des Algorithmus GraphSearch beträgt somit O(n+m). �

Als nächstes zeigen wir, dass Explore(w) zu allen von w aus erreich-
baren Knoten v einen (gerichteten) w-v-Pfad liefert. Dieser lässt sich
mittels parent wie folgt zurückverfolgen. Sei

ui =

v, i = 0,
parent(ui−1), i > 0 und ui−1 6= ⊥

und sei ` = min{i ≥ 0 | ui+1 = ⊥}. Dann ist u` = w und
p = (u`, . . . , u0) ein w-v-Pfad. Wir nennen P den parent-Pfad
von v und bezeichnen ihn mit P (v).

Satz 1.16. Falls beim Aufruf von Explore alle Knoten und Kanten
als unbesucht markiert sind, berechnet Explore(w) zu allen erreich-
baren Knoten v einen (gerichteten) w-v-Pfad P (v).

Beweis. Wir zeigen zuerst, dass Explore(w) alle von w aus erreich-
baren Knoten besucht. Hierzu führen wir Induktion über die Länge `
eines kürzesten w-v-Weges.
` = 0: In diesem Fall ist v = w und w wird in Zeile 1 besucht.

` ; `+ 1: Sei v ein Knoten mit Abstand l + 1 von w. Dann hat ein
Nachbarknoten u ∈ N(v) den Abstand ` von w. Folglich wird u
nach IV besucht. Da u erst dann aus B entfernt wird, wenn alle
seine Nachbarn (bzw. Nachfolger) besucht wurden, wird auch v
besucht.

Es bleibt zu zeigen, dass parent einen Pfad P (v) von w zu jedem
besuchten Knoten v liefert. Hierzu führen wir Induktion über die
Anzahl k der vor v besuchten Knoten.
k = 0: In diesem Fall ist v = w. Da parent(w) = ⊥ ist, liefert

parent einen w-v-Pfad (der Länge 0).
k − 1 ; k: Sei u = parent(v). Da u vor v besucht wird, liefert

parent nach IV einen w-u-Pfad P (u). Wegen u = parent(v)
ist u der Entdecker von v und daher mit v durch eine Kante
verbunden. Somit liefert parent auch für v einen w-v-Pfad
P (v). �

1.5 Spannbäume und Spannwälder

In diesem Abschnitt zeigen wir, dass der Algorithmus GraphSearch
für jede Zusammenhangskomponente eines (ungerichteten) Graphen
G einen Spannbaum berechnet.

Definition 1.17. Sei G = (V,E) ein Graph und H = (U, F ) ein
Untergraph.
• H heißt spannend, falls U = V ist.
• H ist ein spannender Baum (oder Spannbaum) von G, falls
U = V und H ein Baum ist.
• H ist ein spannender Wald (oder Spannwald) von G, falls
U = V und H ein Wald ist.

10



1 Grundlagen 1.6 Berechnung der Zusammenhangskomponenten

Es ist leicht zu sehen, dass für G genau dann ein Spannbaum existiert,
wenn G zusammenhängend ist. Allgemeiner gilt, dass die Spannbäu-
me für die Zusammenhangskomponenten von G einen Spannwald
bilden. Dieser ist bzgl. der Subgraph-Relation maximal, da er in kei-
nem größeren Spannwald enthalten ist. Ignorieren wir die Richtungen
der Kanten im Suchwald W , so ist der resultierende Wald W ′ ein
maximaler Spannwald für G.
Da Explore(w) alle von w aus erreichbaren Knoten findet, spannt
jeder Baum des (ungerichteten) Suchwaldes W ′ = (V,E ′parent) mit

E ′parent =
{
{parent(v), v} | v ∈ V und parent(v) 6= ⊥

}
eine Zusammenhangskomponente von G.

Korollar 1.18. Sei G ein (ungerichteter) Graph.
• Der Algorithmus GraphSearch(V,E) berechnet in Linearzeit einen
Spannwald W ′, dessen Bäume die Zusammenhangskomponenten
von G spannen.
• Falls G zusammenhängend ist, ist W ′ ein Spannbaum für G.

1.6 Berechnung der
Zusammenhangskomponenten

Folgende Variante von GraphSearch bestimmt die Zusammenhangs-
komponenten eines (ungerichteten) Eingabegraphen G.

Algorithmus CC(V,E)
1 k := 0
2 for all v ∈ V, e ∈ E do
3 cc(v) := 0
4 cc(e) := 0
5 for all w ∈ V do

6 if cc(w) = 0 then
7 k := k + 1
8 ComputeCC(k, w)

Prozedur ComputeCC(k, w)
1 cc(w) := k
2 Init(B)
3 Insert(B,w)
4 while ¬Empty(B) do
5 u := Element(B)
6 if ∃ e = {u, v} ∈ E : cc(e) = 0 then
7 cc(e) := k
8 if cc(v) = 0 then
9 cc(v) := k

10 Insert(B, v)
11 else
12 Remove(B)

Korollar 1.19. Der Algorithmus CC(V,E) bestimmt für einen Gra-
phen G = (V,E) in Linearzeit O(n+m) sämtliche Zusammenhangs-
komponenten Gk = (Vk, Ek) von G, wobei Vk = {v ∈ V | cc(v) = k}
und Ek = {e ∈ E | cc(e) = k} ist.

1.7 Breiten- und Tiefensuche

Wie wir gesehen haben, findet Explore(w) sowohl in Graphen als
auch in Digraphen alle von w aus erreichbaren Knoten. Als nächstes
zeigen wir, dass Explore(w) zu allen von w aus erreichbaren Knoten
sogar einen kürzesten Weg findet, falls wir die Datenstruktur B als
Warteschlange Q implementieren.
Die Benutzung einer Warteschlange Q zur Speicherung der bereits
entdeckten, aber noch nicht abgearbeiteten Knoten bewirkt, dass

11



1 Grundlagen 1.7 Breiten- und Tiefensuche

zuerst alle Nachbarknoten u1, . . . , uk des aktuellen Knotens u besucht
werden, bevor ein anderer Knoten aktueller Knoten wird. Da die
Suche also zuerst in die Breite geht, spricht man von einer Breiten-
suche (kurz BFS, engl. breadth first search). Den hierbei berechneten
Suchwald bezeichnen wir als Breitensuchwald.
Bei Benutzung eines Kellers wird dagegen u1 aktueller Knoten, bevor
die übrigen Nachbarknoten von u besucht werden. Daher führt die
Benutzung eines Kellers zu einer Tiefensuche (kurz DFS, engl. depth
first search). Der berechnete Suchwald heißt dann Tiefensuchwald.
Die Breitensuche eignet sich eher für Distanzprobleme wie z.B. das
Finden
• kürzester Wege in Graphen und Digraphen,
• längster Wege in Bäumen (siehe Übungen) oder
• kürzester Wege in Distanzgraphen (Dijkstra-Algorithmus).
Dagegen liefert die Tiefensuche interessante Strukturinformationen
wie z.B.
• die zweifachen Zusammenhangskomponenten in Graphen,
• die starken Zusammenhangskomponenten in Digraphen oder
• eine topologische Sortierung bei azyklischen Digraphen (s. Übun-

gen).
Wir betrachten zuerst den Breitensuchalgorithmus.

Algorithmus BFS(V,E)
1 for all v ∈ V, e ∈ E do
2 vis(v) := false
3 parent(v) := ⊥
4 vis(e) := false
5 for all w ∈ V do
6 if vis(w) = false then BFS-Explore(w)

Prozedur BFS-Explore(w)
1 vis(w) := true
2 QueueInit(Q)
3 Enqueue(Q,w)
4 while ¬QueueEmpty(Q) do
5 u := Head(Q)
6 if ∃ e = uv ∈ E : vis(e) = false then
7 vis(e) := true
8 if vis(v) = false then
9 vis(v) := true

10 parent(v) := u
11 Enqueue(Q, v)
12 else
13 Dequeue(Q)

Beispiel 1.20. BFS-Explore gene-
riert bei Aufruf mit dem Startknoten a
nebenstehenden Breitensuchwald.

b c

a d

f e

bes. bes. bes. bes.
Schlange Q Knoten Kante Typ Q Knoten Kante Typ
←a← a (a, b) B c, e, d c (c, e) Q
a, b a (a, f) B c, e, d c (c, f) Q
a, b, f a - - c, e, d c - -
b, f b (b, c) B e, d e (e, c) Q
b, f, c b - - e, d e (e, d) Q
f, c f (f, e) B e, d e (e,f) R
f, c, e f - - e, d e - -
c, e c (c, d) B d d - -

/
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1 Grundlagen 1.7 Breiten- und Tiefensuche

Satz 1.21. Sei G ein Graph oder Digraph und sei w Wurzel des von
BFS-Explore(w) berechneten Suchbaumes T . Dann liefert parent
für jeden Knoten v in T einen kürzesten w-v-Weg P (v).

Beweis. Wir führen Induktion über die kürzeste Weglänge ` von w
nach v in G.
` = 0: Dann ist v = w und parent liefert einen Weg der Länge 0.
` ; `+ 1: Sei v ein Knoten, der den Abstand `+ 1 von w in G hat.

Dann existiert ein Knoten u ∈ N−(v) (bzw. u ∈ N(v)) mit
Abstand ` von w in G hat. Nach IV liefert also parent einen
w-u-Weg P (u) der Länge `. Da u erst aus Q entfernt wird,
nachdem alle Nachfolger von u entdeckt sind, wird v von u oder
einem bereits zuvor in Q eingefügten Knoten z entdeckt. Da
Q als Schlange organisiert ist, ist P (u) nicht kürzer als P (z).
Daher folgt in beiden Fällen, dass P (v) die Länge `+ 1 hat. �

Wir werden später noch eine Modifikation der Breitensuche kennen ler-
nen, die kürzeste Wege in Graphen mit nichtnegativen Kantenlängen
findet (Algorithmus von Dijkstra).
Als nächstes betrachten wir den Tiefensuchalgorithmus.

Algorithmus DFS(V,E)
1 for all v ∈ V, e ∈ E do
2 vis(v) := false
3 parent(v) := ⊥
4 vis(e) := false
5 for all w ∈ V do
6 if vis(w) = false then DFS-Explore(w)

Prozedur DFS-Explore(w)
1 vis(w) := true
2 StackInit(S)

3 Push(S,w)
4 while ¬StackEmpty(S) do
5 u := Top(S)
6 if ∃ e = uv ∈ E : vis(e) = false then
7 vis(e) := true
8 if vis(v) = false then
9 vis(v) := true

10 parent(v) := u
11 Push(S, v)
12 else
13 Pop(S)

Beispiel 1.22. Bei Aufruf mit dem
Startknoten a generiert die Prozedur
DFS-Explore nebenstehenden Tiefen-
suchwald.

b c

a d

f e

bes. bes. bes. bes.
Keller S Knoten Kante Typ S Knoten Kante Typ
a↔ a (a, b) B a, b, c c (c, f) B

a, b b (b, c) B a, b, c, f f (f, e) Q
a, b, c c (c, d) B a, b, c, f f - -
a, b, c, d d - - a, b, c c - -
a, b, c c (c, e) B a, b b - -
a, b, c, e e (e, c) R a a (a, f) V
a, b, c, e e (e, d) Q a a - -
a, b, c, e e - -
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1 Grundlagen 1.7 Breiten- und Tiefensuche

Die Tiefensuche auf nebenstehendem
Graphen führt auf folgende Klassifika-
tion der Kanten (wobei wir annehmen,

b c

a d

f e

b c

a d

f e

dass die Nachbarknoten in den Ad-
jazenzlisten alphabetisch angeordnet
sind):

Keller S Kante Typ Keller S Kante Typ
a↔ {a, b} B a, b, c, d, e, f {f, c} R
a, b {b, a} - a, b, c, d, e, f {f, e} -
a, b {b, c} B a, b, c, d, e, f - -
a, b, c {c, b} - a, b, c, d, e - -
a, b, c {c, d} B a, b, c, d - -
a, b, c, d {d, c} - a, b, c {c, e} -
a, b, c, d {d, e} B a, b, c {c, f} -
a, b, c, d, e {e, c} R a, b, c - -
a, b, c, d, e {e, d} - a, b - -
a, b, c, d, e {e, f} B a {a, f} -
a, b, c, d, e, f {f, a} R a - -

/

Die Tiefensuche lässt sich auch rekursiv implementieren. Dies hat den
Vorteil, dass kein (expliziter) Keller benötigt wird.

Prozedur DFS-Explore-rec(w)
1 vis(w) := true
2 while ∃ e = uv ∈ E : vis(e) = false do
3 vis(e) := true

4 if vis(v) = false then
5 parent(v) := w
6 DFS-Explore-rec(v)

Da DFS-Explore-rec(w) zu parent(w) zurückspringt, kann auch
das Feld parent(w) als Keller fungieren. Daher lässt sich die Prozedur
auch nicht-rekursiv ohne zusätzlichen Keller implementieren, indem
die Rücksprünge explizit innerhalb einer Schleife ausgeführt werden
(siehe Übungen).
Bei der Tiefensuche lässt sich der Typ jeder Kante algorithmisch leicht
bestimmen, wenn wir noch folgende Zusatzinformationen speichern.
• Ein neu entdeckter Knoten wird bei seinem ersten Besuch grau

gefärbt. Sobald er abgearbeitet ist, also bei seinem letzten Besuch,
wird er schwarz. Zu Beginn sind alle Knoten weiß.
• Zudem merken wir uns die Reihenfolge, in der die Knoten entdeckt
werden, in einem Feld r.

Dann lässt sich der Typ jeder Kante e = (u, v) bei ihrem ersten
Besuch wie folgt bestimmen:

Baumkante: farbe(v) = weiß,
Vorwärtskante: farbe(v) 6= weiß und r(v) ≥ r(u),

Rückwärtskante: farbe(v) = grau und r(v) < r(u),
Querkante: farbe(v) = schwarz und r(v) < r(u).

Die folgende Variante von DFS berechnet diese Informationen.

Algorithmus DFS(V,E)
1 r := 0
2 for all v ∈ V, e ∈ E do
3 farbe(v) := weiß
4 vis(e) := false
5 for all u ∈ V do
6 if farbe(u) = weiß then DFS-Explore(u)
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1 Grundlagen 1.7 Breiten- und Tiefensuche

Prozedur DFS-Explore(u)
1 farbe(u) := grau
2 r := r + 1
3 r(u) := r
4 while ∃ e = (u, v) ∈ E : vis(e) = false do
5 vis(e) := true
6 if farbe(v) = weiß then
7 DFS-Explore(v)
8 farbe(u) := schwarz

Beispiel 1.23. Bei Aufruf mit dem
Startknoten a werden die Knoten im
nebenstehenden Digraphen von der
Prozedur DFS-Explore wie folgt ge-
färbt (die Knoten sind mit ihren r-
Werten markiert).

b

2
c

3

a

1
d

4

f

6
e

5

Keller Farbe Kante Typ Keller Farbe Kante Typ
a a: grau (a, b) B a, b, c, e e: schwarz - -
a, b b: grau (b, c) B a, b, c - (c, f) B
a, b, c c: grau (c, d) B a, b, c, f f : grau (f, e) Q
a, b, c, d d: grau - - a, b, c, f f : schwarz - -

d: schwarz a, b, c c: schwarz - -
a, b, c - (c, e) B a, b b: schwarz - -
a, b, c, e e: grau (e, c) R a - (a, f) V
a, b, c, e - (e, d) Q a a: schwarz - -

/

Bei der Tiefensuche in ungerichteten Graphen können weder Quer-
noch Vorwärtskanten auftreten. Da v beim ersten Besuch einer sol-
chen Kante (u, v) nicht weiß ist und alle grauen Knoten auf dem
parent-Pfad P (u) liegen, müsste v nämlich bereits schwarz sein. Dies

ist aber nicht möglich, da die Kante {u, v} in v-u-Richtung noch
gar nicht durchlaufen wurde. Folglich sind alle Kanten, die nicht zu
einem neuen Knoten führen, Rückwärtskanten. Das Fehlen von Quer-
und Vorwärtskanten spielt bei manchen Anwendungen eine wichtige
Rolle, etwa bei der Zerlegung eines Graphen G in seine zweifachen
Zusammenhangskomponenten.
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2 Berechnung kürzester Wege

2 Berechnung kürzester Wege

In vielen Anwendungen tritt das Problem auf, einen kürzesten Weg
von einem Startknoten s zu einem Zielknoten t in einem Digraphen
zu finden, dessen Kanten (u, v) vorgegebene Längen l(u, v) haben.
Die Länge eines Weges W = (v0, . . . , v`) ist

l(W ) =
`−1∑
i=0

l(vi, vi+1).

Die kürzeste Weglänge von s nach t wird als Distanz dist(s, t) zwi-
schen s und t bezeichnet,

dist(s, t) = min{l(W ) | W ist ein s-t-Weg}.

Falls kein s-t-Weg existiert, setzen wir dist(s, t) =∞. Man beachte,
dass die Distanz auch dann nicht beliebig klein werden kann, wenn
Kreise mit negativer Länge existieren, da ein Weg jede Kante höchs-
tens einmal durchlaufen kann. In vielen Fällen haben jedoch alle
Kanten in E eine nichtnegative Länge l(u, v) ≥ 0. In diesem Fall
nennen wir D = (V,E, l) einen Distanzgraphen.

2.1 Der Dijkstra-Algorithmus

Der Dijkstra-Algorithmus findet einen kürzesten Weg P (u) von s
zu allen erreichbaren Knoten u (single-source shortest-path problem).
Hierzu führt der Algorithmus eine modifizierte Breitensuche aus. Dabei
werden die in Bearbeitung befindlichen Knoten in einer Prioritäts-
warteschlange U verwaltet. Genauer werden alle Knoten u, zu denen

bereits ein s-u-Weg P (u) bekannt ist, zusammen mit der Weglänge g
solange in U gespeichert bis P (u) optimal ist. Auf der Datenstruktur
U sollten folgende Operationen (möglichst effizient) ausführbar sein.

Init(U): Initialisiert U als leere Menge.
Update(U, u, g): Erniedrigt den Wert von u auf g (nur wenn der

aktuelle Wert größer als g ist). Ist u noch nicht
in U enthalten, wird u mit dem Wert g zu U
hinzugefügt.

RemoveMin(U): Gibt ein Element aus U mit dem kleinsten Wert
zurück und entfernt es aus U (ist U leer, wird der
Wert ⊥ (nil) zurückgegeben).

Voraussetzung für die Korrektheit des Algorithmus ist, dass alle Kan-
ten eine nichtnegative Länge haben. Während der Suche werden be-
stimmte Kanten e = (u, v) daraufhin getestet, ob g(u) + `(u, v) < g(v)
ist. Da in diesem Fall die Kante e auf eine Herabsetzung von g(v)
auf den Wert g(u) + `(u, v) „drängt“, wird diese Wertzuweisung als
Relaxation von e bezeichnet. Welche Kanten (u, v) auf Relaxation
getestet werden, wird beim Dijkstra-Algorithmus durch eine einfache
Greedystrategie bestimmt: Wähle u unter allen noch nicht fertigen
Knoten mit minimalem g-Wert und teste alle Kanten (u, v), für die v
nicht schon fertig ist.

Algorithmus Dijkstra(V,E, l, s)
1 for all v ∈ V do
2 g(v) :=∞
3 parent(v) := ⊥
4 done(v) := false
5 g(s) := 0
6 Init(P )
7 Update(P, s, 0)
8 while u := RemoveMin(P ) 6= ⊥ do
9 done(u) := true
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2 Berechnung kürzester Wege 2.1 Der Dijkstra-Algorithmus

10 for all v ∈ N+(u) do
11 if done(v) = false ∧ g(u) + l(u, v) < g(v) then
12 g(v) := g(u) + l(u, v)
13 Update(P, v, g(v))
14 parent(v) := u

Der Algorithmus speichert die aktuelle Länge des Pfades P (u) in g(u).
Knoten außerhalb des aktuellen Breitensuchbaums T haben den Wert
g(u) =∞. In jedem Schleifendurchlauf wird in Zeile 8 ein Knoten u
mit minimalem g-Wert aus U entfernt und als fertig markiert. An-
schließend werden alle von u wegführenden Kanten e = (u, v) auf
Relaxation getestet sowie g, U und T gegebenenfalls aktualisiert.
Beispiel 2.1. Betrachte den nebenste-
henden Distanzgraphen G. Bei Aus-
führung des Dijkstra-Algorithmus mit
dem Startknoten a werden die folgen-
den kürzesten Wege berechnet.

b c

a d

e f

1

7

3

3 6
8

1

1
3

Inhalt von P entfernt besuchte Kanten Update-Op.
(a, 0) (a, 0) (a, b), (a, e) (b, 1), (e, 7)
(b, 1), (e, 7) (b, 1) (b, c) (c, 4)
(c, 4), (e, 7) (c, 4) (c, d), (c, e), (c, f) (d, 12), (f, 10)
(e, 7), (f, 10), (d, 12) (e, 7) (e, f) (f, 8)
(f, 8), (d, 12) (f, 8) (f, c), (f, d) (d, 11)
(d, 11) (d, 11) − −

/

Als nächstes beweisen wir die Korrektheit des Dijkstra-Algorithmus.

Satz 2.2. Sei D = (V,E, l) ein Distanzgraph und sei s ∈ V . Dann
berechnet Dijkstra(V,E, l, s) im Feld parent für alle von s aus
erreichbaren Knoten t ∈ V einen kürzesten s-t-Weg P (t).

Beweis. Wir zeigen zuerst, dass alle von s aus erreichbaren Knoten
t ∈ V zu U hinzugefügt werden. Dies folgt aus der Tatsache, dass s zu

U hinzugefügt wird, und spätestens dann, wenn ein Knoten u in Zeile
8 aus U entfernt wird, sämtliche Nachfolger von u zu U hinzugefügt
werden.
Zudem ist klar, dass g(u) ≥ dist(s, u) ist, da P (u) im Fall g(u) <∞
ein s-u-Weg der Länge g(u) ist. Es bleibt also nur noch zu zeigen,
dass P (u) für jeden aus U entfernten Knoten u ein kürzester s-u-Weg
ist, d.h. es gilt g(u) ≤ dist(s, u).
Hierzu zeigen wir induktiv über die Anzahl k der vor u aus U entfern-
ten Knoten, dass g(u) ≤ dist(s, u) ist.
k = 0: In diesem Fall ist u = s und P (u) hat die Länge g(u) = 0.
k − 1 ; k: Sei W = v0, . . . , v` = u ein kürzester s-u-Weg in G und

sei vi der Knoten mit maximalem Index i auf diesem Weg, der
vor u aus P entfernt wird.
Nach IV gilt dann

g(vi) = dist(s, vi). (2.1)

Zudem ist
g(vi+1) ≤ g(vi) + l(vi, vi+1). (2.2)

Da u im Fall u 6= vi+1 vor vi+1 aus P entfernt wird, ist

g(u) ≤ g(vi+1). (2.3)

Daher folgt

g(u)
(2.3)
≤ g(vi+1)

(2.2)
≤ g(vi) + l(vi, vi+1)

(2.1)= dist(s, vi) + l(vi, vi+1)
= dist(s, vi+1) ≤ dist(s, u). �

Um die Laufzeit des Dijkstra-Algorithmus abzuschätzen, überlegen
wir uns zuerst, wie oft die einzelnen Operationen auf der Datenstruk-
tur P ausgeführt werden. Sei n = ‖V ‖ die Anzahl der Knoten und
m = ‖E‖ die Anzahl der Kanten des Eingabegraphen.
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2 Berechnung kürzester Wege 2.1 Der Dijkstra-Algorithmus

• Die Init-Operation wird nur einmal ausgeführt.
• Da die while-Schleife für jeden von s aus erreichbaren Knoten genau

einmal durchlaufen wird, wird die RemoveMin-Operation höchstens
min{n,m}-mal ausgeführt.
• Wie die Prozedur BFS-Explore besucht der Dijkstra-Algorithmus
jede Kante maximal einmal. Daher wird die Update-Operation
höchstens m-mal ausgeführt.

Beobachtung 2.3. Bezeichne Init(n), RemoveMin(n) und Update(n)
den Aufwand zum Ausführen der Operationen Init, RemoveMin und
Update für den Fall, dass P nicht mehr als n Elemente aufzunehmen
hat. Dann ist die Laufzeit des Dijkstra-Algorithmus durch

O(n+m+ Init(n) + min{n,m} · RemoveMin(n) +m · Update(n))

beschränkt.

Die Laufzeit hängt also wesentlich davon ab, wie wir die Datenstruktur
U implementieren. Falls alle Kanten die gleiche Länge haben, wachsen
die Distanzwerte der Knoten monoton in der Reihenfolge ihres (ers-
ten) Besuchs. D.h. wir können U als Warteschlange implementieren.
Dies führt wie bei der Prozedur BFS-Explore auf eine Laufzeit von
O(n+m).
Für den allgemeinen Fall, dass die Kanten unterschiedliche Längen
haben, betrachten wir folgende drei Möglichkeiten.
1. Da die Felder g und done bereits alle zur Verwaltung von U be-

nötigten Informationen enthalten, kann man auf die (explizite)
Implementierung von U auch verzichten. In diesem Fall kostet die
RemoveMin-Operation allerdings Zeit O(n), was auf eine Gesamt-
laufzeit von O(n2) führt.
Dies ist asymptotisch optimal, wenn G relativ dicht ist, also
m = Ω(n2) Kanten enthält. Ist G dagegen relativ dünn, d.h.
m = o(n2), so empfiehlt es sich, U als Prioritätswarteschlange
zu implementieren.

2. Es ist naheliegend, U in Form eines Heaps H zu implementieren.
In diesem Fall lässt sich die Operation RemoveMin in Zeit O(log n)
implementieren. Da die Prozedur Update einen linearen Zeitauf-
wand erfordert, ist es effizienter, sie durch eine Insert-Operation
zu simulieren. Dies führt zwar dazu, dass derselbe Knoten evtl.
mehrmals mit unterschiedlichen Werten in H gespeichert wird.
Die Korrektheit bleibt aber dennoch erhalten, wenn wir nur die
erste Entnahme eines Knotens aus H beachten und die übrigen
ignorieren.
Da für jede Kante höchstens ein Knoten in H eingefügt
wird, erreicht H maximal die Größe n2 und daher sind die
Heap-Operationen Insert und RemoveMin immer noch in Zeit
O(log n2) = O(log n) ausführbar. Insgesamt erhalten wir somit
eine Laufzeit von O(n + m log n), da sowohl Insert als auch
RemoveMin maximal m-mal ausgeführt werden.
Die Laufzeit von O(n+m log n) bei Benutzung eines Heaps ist zwar
für dünne Graphen sehr gut, aber für dichte Graphen schlechter
als die implizite Implementierung von U mithilfe der Felder g und
done.

3. Als weitere Möglichkeit kann U auch in Form eines so genannten
Fibonacci-Heaps F implementiert werden. Dieser benötigt nur eine
konstante amortisierte LaufzeitO(1) für die Update-Operation und
O(log n) für die RemoveMin-Operation. Insgesamt führt dies auf
eine Laufzeit von O(m+ n log n). Allerdings sind Fibonacci-Heaps
erst bei sehr großen Graphen mit mittlerer Dichte schneller.

implizit Heap Fibonacci-Heap
Init O(1) O(1) O(1)
Update O(1) O(log n) O(1)

RemoveMin O(n) O(log n) O(log n)
Gesamtlaufzeit O(n2) O(n+m log n) O(m+ n log n)
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2 Berechnung kürzester Wege 2.2 Der Bellman-Ford-Algorithmus

Die Tabelle fasst die Laufzeiten des Dijkstra-Algorithmus für die
verschiedenen Möglichkeiten zur Implementation der Datenstruktur
U zusammen. Eine offene Frage ist, ob es auch einen Algorithmus
mit linearer Laufzeit O(n+m) zur Bestimmung kürzester Wege in
Distanzgraphen gibt.

2.2 Der Bellman-Ford-Algorithmus

In manchen Anwendungen treten negative Kantengewichte auf. Geben
die Kantengewichte beispielsweise die mit einer Kante verbundenen
Kosten wider, so kann ein Gewinn durch negative Kosten modelliert
werden. Auf diese Weise lassen sich auch längste Wege in Distanz-
graphen berechnen, indem man alle Kantenlängen l(u, v) mit −1
multipliziert und in dem resultierenden Graphen einen kürzesten Weg
bestimmt.
Die Komplexität des Problems hängt wesentlich davon ab, ob man (ge-
richtete) Kreise mit negativer Länge zulässt oder nicht. Falls negative
Kreise zugelassen werden, ist das Problem NP-hart. Andernfalls exis-
tieren effiziente Algorithmen wie z.B. der Bellman-Ford-Algorithmus
(BF-Algorithmus) oder der Bellman-Ford-Moore-Algorithmus (BFM-
Algorithmus). Diese Algorithmen lösen das single-source shortest-path
Problem mit einer Laufzeit von O(nm) im schlechtesten Fall.
Der Ford-Algorithmus arbeitet ganz ähnlich wie der Dijkstra-
Algorithmus, betrachtet aber jede Kante nicht wie dieser nur einmal,
sondern eventuell mehrmals. In seiner einfachsten Form sucht der
Algorithmus wiederholt eine Kante e = (u, v) mit

g(u) + `(u, v) < g(v)

und aktualisiert den Wert von g(v) auf g(u)+`(u, v) (Relaxation). Die
Laufzeit hängt dann wesentlich davon ab, in welcher Reihenfolge die
Kanten auf Relaxation getestet werden. Im besten Fall lässt sich eine
lineare Laufzeit erreichen (z.B. wenn der zugrunde liegende Digraph

azyklisch ist). Bei der Bellman-Ford-Variante wird in O(nm) Schrit-
ten ein kürzester Weg von s zu allen erreichbaren Knoten gefunden
(sofern keine negativen Kreise existieren).
Wir zeigen induktiv über die Anzahl k der Kanten eines kürzesten
s-u-Weges, dass g(u) = dist(s, u) gilt, falls g für alle Kanten (u, v) die
Dreiecksungleichung g(v) ≤ g(u) + `(u, v) erfüllt (also keine Relaxa-
tionen mehr möglich sind).
Im Fall k = 0 ist nämlich u = s und somit g(s) = 0 = dist(s, s).
Im Fall k > 0 sei v ein Knoten, dessen kürzester s-v-Weg W aus k
Kanten besteht. Dann gilt nach IV für den Vorgänger u von v auf W
g(u) = dist(s, u). Aufgrund der Dreiecksungleichung folgt dann

g(v) ≤ g(u) + `(u, v) = dist(s, u) + `(u, v) = dist(s, v).

Aus dem Beweis folgt zudem, dass nach Relaxation aller Kanten eines
kürzesten s-v-Weges W (in der Reihenfolge, in der die Kanten in W
durchlaufen werden) den Wert dist(s, v) hat. Dies gilt auch für den
Fall, dass zwischendurch noch weitere Kantenrelaxationen stattfinden.
Der Bellman-Ford-Algorithmus prüft in n− 1 Iterationen jeweils alle
Kanten auf Relaxation. Sind in der n-ten Runde noch weitere Relaxa-
tionen möglich, muss ein negativer Kreis existieren. Die Laufzeit ist
offensichtlich O(nm) und die Korrektheit folgt leicht durch Induktion
über die minimale Anzahl von Kanten eines kürzesten s-t-Weges.
Zudem wird bei jeder Relaxation einer Kante (u, v) der Vorgänger u
im Feld parent(v) vermerkt, so dass sich ein kürzester Weg von s zu
allen erreichbaren Knoten (bzw. ein negativer Kreis) rekonstruieren
lässt.

Algorithmus BF(V,E, l, s)
1 for all v ∈ V do
2 g(v) :=∞
3 parent(v) := ⊥
4 g(s) := 0
5 for i := 1 to n− 1 do
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2 Berechnung kürzester Wege 2.3 Der Bellman-Ford-Moore-Algorithmus

6 for all (u, v) ∈ E do
7 if g(u) + l(u, v) < g(v) then
8 g(v) := g(u) + l(u, v)
9 parent(v) := u

10 for all (u, v) ∈ E do
11 if g(u) + l(u, v) < g(v) then
12 error(es gibt einen negativen Kreis)

2.3 Der Bellman-Ford-Moore-Algorithmus

Die BFM-Variante prüft in jeder Runde nur diejenigen Kanten (u, v)
auf Relaxation, für die g(u) in der vorigen Runde erniedrigt wurde.
Dies führt auf eine deutliche Verbesserung der durchschnittlichen
Laufzeit. Wurde nämlich g(u) in der (i − 1)-ten Runde nicht ver-
ringert, dann steht in der i-ten Runde sicher keine Relaxation der
Kante (u, v) an. Es liegt nahe, die in der nächsten Runde zu prüfenden
Knoten u in einer Schlange Q zu speichern. Dabei kann mit u auch die
aktuelle Rundenzahl i in Q gespeichert werden. In Runde 0 wird der
Startknoten s in Q eingefügt. Können in Runde n immer noch Kanten
relaxiert werden, so bricht der Algorithmus mit der Fehlermeldung
ab, dass negative Kreise existieren. Da die BFM-Variante die Kanten
in derselben Reihenfolge relaxiert wie der BF-Algorithmus, führt sie
auf dasselbe Ergebnis.

Algorithmus BFM(V,E, l, s)
1 for all v ∈ V do
2 g(v) :=∞, parent(v) := ⊥, inQueue(v) := false
3 g(s) := 0, Init(Q), Enqueue(Q, (0, s)), inQueue(s) := true
4 while (i, u) := Dequeue(Q) 6= ⊥ and i < n do
5 inQueue(u) := false
6 for all v ∈ N+(u) do
7 if g(u) + l(u, v) < g(v) then

8 g(v) := g(u) + l(u, v)
9 parent(v) := u

10 if inQueue(v) = false then
11 Enqueue(Q, (i+ 1, v))
12 inQueue(v) := true
13 if i = n then
14 error(es gibt einen negativen Kreis)

Für kreisfreie Graphen lässt sich eine lineare Laufzeit O(n+m) er-
zielen, indem die Nachfolger in Zeile 6 in topologischer Sortierung
gewählt werden. Dies bewirkt, dass jeder Knoten höchstens einmal in
die Schlange eingefügt wird.

Beispiel 2.4. Betrachte untenstehenden kantenbewerteten Digraphen
mit dem Startknoten a.

a b

gf

d e

c

2
−23 5 −3

8 1

4
92

Die folgende Tabelle zeigt jeweils den Inhalt der Schlange Q, bevor
der BFM-Algorithmus das nächste Paar (i, u) von Q entfernt. Dabei
enthält jeder Eintrag (i, u, v, g) neben der Rundenzahl i und dem Kno-
ten u auch noch den parent-Knoten v und den g-Wert von u, obwohl
diese nicht in Q gespeichert werden.
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2 Berechnung kürzester Wege 2.3 Der Bellman-Ford-Moore-Algorithmus

⇑
(0, a,⊥, 0)
⇑ (1, b, a, 2)

(1, g, a, 5) (1, g, b,−1)
(2, d, g, 7)
(2, e, g, 0)(2, e, g, 0)

(3, f, d, 9) (3, f, d, 9)
(3, c, d, 9) (3, c, d, 9)
(3, d, e, 4) (3, d, e, 4) (3, d, e, 4)

(4, f, d, 6)

Die berechneten Entfernungen mit den zugehörigen parent-Pfaden
sind in folgendem Suchbaum widergegeben:

a
0

b
2

g
−1

f
6

d
4

e
0

c
9

2

−3

4

1
92

Als nächstes betrachten wir den folgenden Digraphen:

a b

gf

d e

c

4
−23 5 −3

5 1

4
32

Da dieser einen negativen Kreis enthält, der vom Startknoten aus
erreichbar ist, lassen sich die Entfernungen zu allen Knoten, die von
diesem Kreis aus erreichbar sind, beliebig verkleinern.

⇑
(0, a,⊥, 0)
⇑ (1, b, a, 4)

(1, g, a, 5) (1, g, b, 1)
(2, d, g, 6)
(2, e, g, 2) (2, e, g, 2)

(3, f, d, 8) (3, f, d, 8)
(3, c, e, 5)

(3, c, e, 5)
(4, b, c, 3)

(5, g, b, 0)
(6, d, g, 5)
(6, e, g, 1) (2, e, g, 1)

(7, f, d, 7) (7, f, d, 7)
(7, c, e, 4)

Da nun der Knoten f mit der Rundenzahl i = n = 7 aus der Schlange
entnommen wird, bricht der Algorithmus an dieser Stelle mit der
Meldung ab, dass negative Kreise existieren. Ein solcher Kreis (im
Beispiel: g, e, c, b, g) lässt sich bei Bedarf anhand der parent-Funktion
aufspüren, indem wir den parent-Weg zu f zurückverfolgen: f , d, g,
b, c, e, g.

a
0

b
3

g
0

f
7

d
5

e
1

c
4

−2
−3

5 1
32

/
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2 Berechnung kürzester Wege 2.4 Der Floyd-Warshall-Algorithmus

2.4 Der Floyd-Warshall-Algorithmus

Der Algorithmus von Floyd-Warshall berechnet die Distanzen zwi-
schen allen Knoten unter der Voraussetzung, dass keine negativen
Kreise existieren.

Algorithmus Floyd-Warshall(V,E, l)
1 for i := 1 to n do
2 for j := 1 to n do
3 if (i, j) ∈ E then d0(i, j) := l(i, j) else d0(i, j) :=∞
4 for k := 1 to n do
5 for i := 1 to n do
6 for j := 1 to n do
7 dk(i, j) = min

{
dk−1(i, j), dk−1(i, k) + dk−1(k, j)

}
Hierzu speichert der Algorithmus in dk(i, j) die Länge eines kürzesten
Weges von i nach j, der außer i und j nur Knoten ≤ k besucht. Die
Laufzeit ist offenbar O(n3). Da die dk-Werte nur von den dk−1-Werten
abhängen, ist der Speicherplatzbedarf O(n2). Die Existenz negativer
Kreise lässt sich daran erkennen, dass mindestens ein Diagonalelement
dk(i, i) einen negativen Wert erhält.

Beispiel 2.5. Betrachte folgenden kantenbewerteten Digraphen:

1

2

5 4

32
−2

10
−3

1

49

d0 1 2 3 4 5
1 ∞ 2 ∞ ∞ ∞
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ ∞
4 ∞ ∞ 4 ∞ ∞
5 10 ∞ 9 1 ∞

d1 1 2 3 4 5
1 ∞ 2 ∞ ∞ ∞
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ ∞
4 ∞ ∞ 4 ∞ ∞
5 10 12 9 1 ∞

d2 1 2 3 4 5
1 ∞ 2 ∞ ∞ −1
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ −5
4 ∞ ∞ 4 ∞ ∞
5 10 12 9 1 9

d3 1 2 3 4 5
1 ∞ 2 ∞ ∞ −1
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ −5
4 ∞ 2 4 ∞ −1
5 10 7 9 1 4

d4 1 2 3 4 5
1 ∞ 2 ∞ ∞ −1
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ −5
4 ∞ 2 4 ∞ −1
5 10 3 5 1 0

d5 1 2 3 4 5
1 9 2 4 0 −1
2 7 0 2 −2 −3
3 5 −2 0 −4 −5
4 9 2 4 0 −1
5 10 3 5 1 0

Als nächstes betrachten wir folgenden Digraphen:

1

2

5 4

32
−2

10
−3

1

496 3

d0 1 2 3 4 5
1 ∞ 2 ∞ ∞ ∞
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ ∞
4 ∞ ∞ 4 ∞ ∞
5 10 ∞ 3 1 ∞

d1 1 2 3 4 5
1 ∞ 2 ∞ ∞ ∞
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ ∞
4 ∞ ∞ 4 ∞ ∞
5 10 12 3 1 ∞
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3 Flüsse in Netzwerken

d2 1 2 3 4 5
1 ∞ 2 ∞ ∞ −1
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ −5
4 ∞ ∞ 4 ∞ ∞
5 10 12 3 1 9

d3 1 2 3 4 5
1 ∞ 2 ∞ ∞ −1
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ −5
4 ∞ 2 4 ∞ −1
5 10 1 3 1 −2

d4 1 2 3 4 5
1 ∞ 2 ∞ ∞ −1
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ −5
4 ∞ 2 4 ∞ −1
5 10 1 3 1 −2

d5 1 2 3 4 5
1 9 0 2 0 −3
2 7 −2 0 −2 −5
3 5 −4 −2 −4 −7
4 9 0 2 0 −3
5 8 −1 1 −1 −4

Wegen d3(5, 5) = −2 liegt der Knoten 5 auf einem negativen Kreis.
Folglich ist die Weglänge nicht für alle Knotenpaare nach unten be-
schränkt. /

Ohne großen Mehraufwand lassen sich auch die kürzesten Wege selbst
berechnen, indem man in einem Feld parent[i, j] den Vorgänger von
j auf einem kürzesten Weg von i nach j speichert (falls ein Weg
von i nach j existiert). Eine elegantere Möglichkeit besteht jedoch
darin, die Kantenfunktion l in eine äquivalente Distanzfunktion l′ zu
transformieren, die keine negativen Werte annimmt, aber dieselben
kürzesten Wege in G wie l hat. Da wir für diese Transformation nur
alle kürzesten Wege von einem festen Knoten s zu allen anderen
Knoten berechnen müssen, ist sie in Zeit O(nm) durchführbar.

3 Flüsse in Netzwerken

Definition 3.1. Ein Netzwerk N = (V,E, s, t, c) besteht aus einem
gerichteten Graphen G = (V,E) mit einer Quelle s ∈ V und einer
Senke t ∈ V sowie einer Kapazitätsfunktion c : V × V → N.
Zudem muss jede Kante (u, v) ∈ E positive Kapazität c(u, v) > 0 und
jede Nichtkante (u, v) 6∈ E muss die Kapazität c(u, v) = 0 haben.

Die folgende Abbildung zeigt ein Netzwerk N .

a b

s t

c d

6

8

4

59

9

8

4 3
7

Definition 3.2.
a) Ein Fluss in N ist eine Funktion f : V × V → Z mit

f(u, v) ≤ c(u, v), (Kapazitätsbedingung)
f(u, v) = −f(v, u), (Antisymmetrie)∑
v∈V f(u, v) = 0 für alle u ∈ V \ {s, t} (Kontinuität)

b) Der Fluss in den Knoten u ist f−(u) = ∑
v∈V max{0, f(v, u)}.

c) Der Fluss aus u ist f+(u) = ∑
v∈V max{0, f(u, v)}.

d) Der Nettofluss durch u ist f+(u)− f−(u) = ∑
v∈V f(u, v).

e) Die Größe von f ist |f | = f+(s)− f−(s).

Die Antisymmetrie impliziert, dass f(u, u) = 0 für alle u ∈ V ist,
d.h. wir können annehmen, dass G schlingenfrei ist. Die folgende
Abbildung zeigt einen Fluss f in N .
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3 Flüsse in Netzwerken 3.1 Der Ford-Fulkerson-Algorithmus

a b

s t

c d

1/6

7/8

4/4

2/5
−3/9

5/9

6/8

3/4 3/3

3/7

u s a b c d t

f+(u) 8 4 7 9 6 0
f−(u) 0 4 7 9 6 8

3.1 Der Ford-Fulkerson-Algorithmus

Wie lässt sich für einen Fluss f in einem Netzwerk N entscheiden, ob
er vergrößert werden kann? Diese Frage lässt sich leicht beantworten,
falls f der konstante Nullfluss f = 0 ist: In diesem Fall genügt es, in
G = (V,E) einen Pfad von s nach t zu finden. Andernfalls können
wir zu N und f ein Netzwerk Nf konstruieren, so dass f genau dann
vergrößert werden kann, wenn sich in Nf der Nullfluss vergrößern
lässt.

Definition 3.3. Sei N = (V,E, s, t, c) ein Netzwerk und sei f ein
Fluss in N . Das zugeordnete Restnetzwerk ist Nf = (V,Ef , s, t, cf )
mit der Kapazität

cf (u, v) = c(u, v)− f(u, v)

und der Kantenmenge

Ef = {(u, v) ∈ V × V | cf (u, v) > 0}.

Zum Beispiel führt der Fluss

a b

s t

c d

11/16

8/13

12/12

4/9
−1/8

15/20

11/14

1/4 7/7

4/4

auf das folgende Restnetzwerk Nf :

a b

s t

c d

5
11

5
8

12

5
49

5

15
3

11

3 7
4

Definition 3.4. Sei Nf = (V,Ef , s, t, cf) ein Restnetzwerk. Dann
heißt jeder s-t-Pfad P in (V,Ef ) Zunahmepfad in Nf . Die Kapa-
zität von P in Nf ist

cf (P ) = min{cf (u, v) | (u, v) liegt auf P}

und der zu P gehörige Fluss in Nf ist

fP (u, v) =


cf (P ), (u, v) liegt auf P,
−cf (P ), (v, u) liegt auf P,
0, sonst.

P = (u0, . . . , uk) ist also genau dann ein Zunahmepfad in Nf , falls
• u0 = s und uk = t ist,
• die Knoten u0, . . . , uk paarweise verschieden sind
• und cf (ui, ui+1) > 0 für i = 0, . . . , k − 1 ist.
Die folgende Abbildung zeigt den zum Zunahmepfad P = s, c, b, t
gehörigen Fluss fP in Nf . Die Kapazität von P ist cf (P ) = 4.

a b

s t

c d

5
11

4/5
8

12

5

4/4
9

4/5
15

3

11

3 7
4
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3 Flüsse in Netzwerken 3.1 Der Ford-Fulkerson-Algorithmus

Es ist leicht zu sehen, dass fP tatsächlich ein Fluss in Nf ist. Durch Ad-
dition der beiden Flüsse f und fP erhalten wir einen Fluss f ′ = f+fP
in N der Größe |f ′| = |f |+ |fP | > |f |.

Fluss f :

a b

s t

c d

11/16

8/13

12/12

4/9
−1/8

15/20

11/14

1/4 7/7

4/4

Fluss f + fP :

a b

s t

c d

11/16

12/13

12/12

0/9
−1/8

19/20

11/14

1/4 7/7

4/4

Nun können wir den Ford-Fulkerson-Algorithmus angeben.

Algorithmus Ford-Fulkerson(V,E, s, t, c)
1 for all (u, v) ∈ V × V do
2 f(u, v) := 0
3 while es gibt einen Zunahmepfad P in Nf do
4 f := f + fP

Beispiel 3.5. Für den neuen Fluss erhalten wir nun folgendes Rest-
netzwerk:

a b

s t

c d
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1
12

12

99

1
19

3

11

3 7
4

In diesem existiert kein Zunahmepfad mehr. /

Um zu beweisen, dass der Algorithmus von Ford-Fulkerson tatsäch-
lich einen Maximalfluss berechnet, zeigen wir, dass es nur dann im
Restnetzwerk Nf keinen Zunahmepfad mehr gibt, wenn der Fluss f
maximal ist. Hierzu benötigen wir den Begriff des Schnitts.

Definition 3.6. Sei N = (V,E, s, t, c) ein Netzwerk und sei ∅ (
S ( V . Dann heißt die Menge E(S) = {(u, v) ∈ E | u ∈ S, v /∈ S}
Kantenschnitt (oder einfach Schnitt; oft wird auch einfach S als
Schnitt bezeichnet). Die Kapazität eines Schnittes S ist

c(S) =
∑

u∈S,v /∈S
c(u, v).

Ist f ein Fluss in N , so heißt

f(S) =
∑

u∈S,v /∈S
f(u, v)

der Nettofluss (oder einfach Fluss) durch den Schnitt S.

Beispiel 3.7. Betrachte den Schnitt S = {s, a, c} in folgendem Netz-
werk N mit dem Fluss f :

a b

s t

c d

11/16

12/13

13/13

1/9

−2/8
19/19

11/14

2/4 7/7

4/4

a b

s t

c d

Dieser Schnitt hat die Kapazität

c(S) = c(a, b) + c(c, d) = 13 + 14 = 27
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3 Flüsse in Netzwerken 3.1 Der Ford-Fulkerson-Algorithmus

und der Fluss f(S) durch diesen Schnitt ist

f(S) = f(a, b) + f(c, b) + f(c, d) = 13− 1 + 11 = 23.

Dagegen hat der Schnitt S ′ = {s, a, b, c, d}

a b

s t

c d

11/16

12/13

13/13

1/9

−2/8
19/19

11/14

2/4 7/7

4/4

a b

s t

c d

die Kapazität

c(S ′) = c(b, t)+c(d, t) = 19+4 = f(b, t)+f(d, t) = f(S ′),

die mit dem Fluss durch diesen Schnitt übereinstimmt. /

Lemma 3.8. Für jeden Schnitt S mit s ∈ S, t /∈ S und jeden Fluss
f gilt

|f | = f(S) ≤ c(S).

Beweis. Die Gleichheit |f | = f(S) zeigen wir durch Induktion über
k = ‖S‖.
k = 1: In diesem Fall ist S = {s} und somit

|f | = f+(s)−f−(s) =
∑
v∈V

f(s, v) = f(s, s)︸ ︷︷ ︸
=0

+
∑
v 6=s

f(s, v) = f(S).

k − 1 ; k: Sei S ein Schnitt mit ‖S‖ = k > 1 und sei w ∈ S − {s}.
Betrachte den Schnitt S ′ = S − {w}. Dann gilt

f(S) =
∑

u∈S,v /∈S
f(u, v) =

∑
u∈S′,v /∈S

f(u, v) +
∑
v/∈S

f(w, v)

und

f(S ′) =
∑

u∈S′,v /∈S′
f(u, v) =

∑
u∈S′,v /∈S

f(u, v) +
∑
u∈S′

f(u,w).

Wegen f(w,w) = 0 ist ∑u∈S′ f(u,w) = ∑
u∈S f(u,w) und daher

f(S)− f(S ′) =
∑
v 6∈S

f(w, v)−
∑
u∈S

f(u,w) =
∑
v∈V

f(w, v) = 0.

Nach Induktionsvoraussetzung folgt somit f(S) = f(S ′) = |f |.
Schließlich folgt wegen f(u, v) ≤ c(u, v) die Ungleichung

f(S) =
∑

(u,v)∈E(S)
f(u, v) ≤

∑
(u,v)∈E(S)

c(u, v) = c(S). �

Satz 3.9 (Min-Cut-Max-Flow-Theorem). Sei f ein Fluss in einem
Netzwerk N = (V,E, s, t, c). Dann sind folgende Aussagen äquivalent:
1. f ist maximal.
2. In Nf existiert kein Zunahmepfad.
3. Es gibt einen Schnitt S in N mit s ∈ S, t /∈ S und c(S) = |f |.

Beweis. Die Implikation „1 ⇒ 2“ ist klar, da die Existenz eines Zu-
nahmepfads zu einer Vergrößerung von f führen würde.
Für die Implikation „2 ⇒ 3“ betrachten wir den Schnitt

S = {u ∈ V | u ist in Nf von s aus erreichbar}.

Da in Nf kein Zunahmepfad existiert, gilt dann
• s ∈ S, t /∈ S und
• cf (u, v) = 0 für alle u ∈ S und v /∈ S.
Wegen cf (u, v) = c(u, v)− f(u, v) folgt somit

|f | = f(S) =
∑

u∈S,v /∈S
f(u, v) =

∑
u∈S,v /∈S

c(u, v) = c(S).

Die Implikation „3 ⇒ 1“ ist wiederum klar, da im Fall c(S) = |f | für
jeden Fluss f ′ die Abschätzung |f ′| = f ′(S) ≤ c(S) = |f | gilt. �
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3 Flüsse in Netzwerken 3.1 Der Ford-Fulkerson-Algorithmus

Der obige Satz gilt auch für Netzwerke mit Kapazitäten in R+.
Sei c0 = c(S) die Kapazität des Schnittes S = {s}. Dann durchläuft
der Ford-Fulkerson-Algorithmus die while-Schleife höchstens c0-mal.
Bei jedem Durchlauf ist zuerst das Restnetzwerk Nf und danach ein
Zunahmepfad in Nf zu berechnen.
Die Berechnung des Zunahmepfads P kann durch Breitensuche in
Zeit O(n + m) erfolgen. Da sich das Restnetzwerk nur entlang von
P ändert, kann es in Zeit O(n) aktualisiert werden. Jeder Durch-
lauf benötigt also Zeit O(n + m), was auf eine Gesamtlaufzeit von
O(c0(n + m)) führt. Da der Wert von c0 jedoch exponentiell in der
Länge der Eingabe (also der Beschreibung des Netzwerkes N) sein
kann, ergibt dies keine polynomielle Zeitschranke. Bei Netzwerken
mit Kapazitäten in R+ kann der Ford-Fulkerson-Algorithmus sogar
unendlich lange laufen (siehe Übungen).
Bei nebenstehendem Netzwerk benötigt Ford-
Fulkerson zur Bestimmung des Maximalflusses
abhängig von der Wahl der Zunahmepfade zwi-
schen 2 und 211 Schleifendurchläufe.

a

s t

b

210

210

210

210

1

Im günstigsten Fall wird nämlich zuerst der Zunahmepfad (s, a, t)
und dann der Pfad (s, b, t) gewählt. Im ungünstigsten Fall werden ab-
wechselnd die beiden Zunahmepfade (s, a, b, t) und (s, b, a, t) gewählt:

i Zunahmepfad Pi in Nfi−1 neuer Fluss fi in N

1

a

s t

b

210

210

210

210

1

a

s t

b

1/210

0/210

0/210

1/210

1/1

2

a

s t

b

210−1

1

210

210

210−1

11

a

s t

b

1/210

1/210

1/210

1/210

0/1

2j + 1

a

s t

b

210−j
j

210−j
j

210−j
j

210−j
j

1

a

s t

b

j+1/210

j/210

j/210

j+1/210

1/1

2j + 2

a

s t

b

210−j−1

j+1

210−j
j

210−j
j

210−j−1

j+11

a

s t

b

j+1/210

j+1/210

j+1/210

j+1/210

0/1

Nicht nur in diesem Beispiel lässt sich die exponentielle Laufzeit wie
folgt vermeiden:
• Man betrachtet nur Zunahmepfade mit einer geeignet gewählten

Mindestkapazität. Dies führt auf eine Laufzeit, die polynomiell in
n, m und log c0 ist.
• Man bestimmt in jeder Iteration einen kürzesten Zunahmepfad
im Restnetzwerk mittels Breitensuche in Zeit O(n + m). Diese
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3 Flüsse in Netzwerken 3.2 Der Edmonds-Karp-Algorithmus

Vorgehensweise führt auf den Edmonds-Karp-Algorithmus, der eine
Laufzeit von O(nm2) hat (unabhängig von der Kapazitätsfunktion).
• Man bestimmt in jeder Iteration einen Fluss g im Restnetzwerk Nf ,
der nur Kanten benutzt, die auf einem kürzesten s-t-Pfad in Nf

liegen. Zudem hat g die Eigenschaft, dass g auf jedem kürzesten
s-t-Pfad P mindestens eine Kante e ∈ P blockiert (d.h. der Fluss
g(e) durch e schöpft die Restkapazität cf (e) von e vollkommen aus),
weshalb diese Kante in der nächsten Iteration fehlt. Dies führt auf
den Algorithmus von Dinic. Da die Länge der kürzesten s-t-Pfade
im Restnetzwerk in jeder Iteration um mindestens 1 zunimmt, liegt
nach spätestens n− 1 Iterationen ein maximaler Fluss vor. Dinic
hat gezeigt, dass ein blockierender Fluss g in Zeit O(nm) bestimmt
werden kann. Folglich hat der Algorithmus von Dinic eine Laufzeit
von O(n2m). Malhotra, Kumar und Maheswari fanden später einen
O(n2)-Algorithmus zur Bestimmung eines blockierenden Flusses.
Damit lässt sich die Gesamtlaufzeit auf O(n3) verbessern.

3.2 Der Edmonds-Karp-Algorithmus

Der Edmonds-Karp-Algorithmus ist eine spezielle Form von Ford-
Fulkerson, die nur Zunahmepfade mit möglichst wenigen Kanten
benutzt, welche mittels Breitensuche bestimmt werden.

Algorithmus Edmonds-Karp(V,E, s, t, c)
1 for all (u, v) ∈ V × V do
2 f(u, v) := 0
3 repeat
4 P ← zunahmepfad(f)
5 if P 6= ⊥ then add(f,P)
6 until P = ⊥

Prozedur zunahmepfad(f)

1 for all v ∈ V do
2 vis(v) := false
3 parent(v) := ⊥
4 vis(s) := true
5 QueueInit(Q)
6 Enqueue(Q, s)
7 while ¬QueueEmpty(Q) ∧ Head(Q) 6= t do
8 u := Head(Q)
9 Dequeue(Q)

10 for all v ∈ N−(v) ∪N+(v) do
11 e := (u, v)
12 if c(e)− f(e) > 0 ∧ vis(v) = false then
13 c′(e) := c(e)− f(e)
14 vis(v) := true
15 parent(v) := u
16 Enqueue(Q, v)
17 if Head(Q) = t then
18 P := parent-Pfad von s nach t
19 cf (P ) := min{c′(e) | e ∈ P}
20 else
21 P := ⊥
22 return P

Prozedur add(f, P )
1 for all e ∈ P do
2 f(e) := f(e) + cf (P )
3 f(eR) := f(eR)− cf (P )

Satz 3.10. Der Edmonds-Karp-Algorithmus durchläuft die repeat-
Schleife höchstens nm/2-mal und hat somit eine Laufzeit von O(nm2).

Beweis. Sei f0 der triviale Fluss und seien P1, . . . , Pk die Zunahme-
pfade, die der Edmonds-Karp-Algorithmus der Reihe nach berechnet,
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3 Flüsse in Netzwerken 3.3 Der Algorithmus von Dinic

d.h. fi = fi−1 + fPi
. Eine Kante e heißt kritisch in Pi, falls der Fluss

fPi
die Kante e sättigt, d.h. cfi−1(e) = fPi

(e) = cfi−1(Pi). Man beachte,
dass eine kritische Kante e in Pi wegen cfi

(e) = cfi−1(e)− fPi
(e) = 0

nicht in Nfi
enthalten ist, wohl aber eR.

Wir überlegen uns zunächst, dass die Längen `i von Pi (schwach)
monoton wachsen. Hierzu beweisen wir die stärkere Behauptung,
dass sich die Abstände jedes Knotens u ∈ V von s und von t beim
Übergang von Nfi−1 zu Nfi

nicht verringern können. Sei di(u, v) die
minimale Länge eines Pfades von u nach v im Restnetzwerk Nfi−1 .
Behauptung 3.11. Für jeden Knoten u ∈ V gilt di+1(s, u) ≥ di(s, u)
und di+1(u, t) ≥ di(u, t).

Hierzu zeigen wir folgende Behauptung.
Behauptung 3.12. Falls die Kante e = (uj, uj+1) auf einem kürzes-
ten Pfad P = (u0, . . . , uh) von s = u0 nach u = uh in Nfi

liegt (d.h.
di+1(s, uj+1) = di+1(s, uj) + 1), dann gilt di(s, uj+1) ≤ di(s, uj) + 1.

Die Behauptung ist klar, wenn die Kante e = (uj, uj+1) auch in
Nfi−1 enthalten ist. Ist dies nicht der Fall, muss fi−1(e) 6= fi(e)
sein, d.h. e oder eR müssen in Pi vorkommen. Da e nicht in Nfi−1

ist, muss eR = (uj+1, uj) auf Pi liegen. Da Pi ein kürzester Pfad
von s nach t in Nfi−1 ist, folgt di(s, uj) = di(s, uj+1) + 1, was
di(s, uj+1) = di(s, uj)− 1 ≤ di(s, uj) + 1 impliziert.
Damit ist Behauptung 3.12 bewiesen und es folgt

di(s, u) ≤ di(s, uh−1) + 1 ≤ · · · ≤ di(s, s) + h = h = di+1(s, u).

Die Ungleichung di+1(u, t) ≥ di(u, t) folgt analog, womit auch Behaup-
tung 3.11 bewiesen ist. Als nächstes zeigen wir folgende Behauptung.
Behauptung 3.13. Für 1 ≤ i < j ≤ k gilt: Falls e = (u, v) in Pi
und eR = (v, u) in Pj enthalten ist, so ist lj ≥ li + 2.

Dies folgt direkt aus Behauptung 3.11:

lj = dj(s, t) = dj(s, v) + dj(u, t) + 1 ≥ di(s, v)︸ ︷︷ ︸
di(s,u)+1

+ di(u, t)︸ ︷︷ ︸
di(v,t)+1

+1 = li + 2.

Da jeder Zunahmepfad Pi mindestens eine kritische Kante enthält und
E∪ER höchstens m Kantenpaare der Form {e, eR} enthält, impliziert
schließlich folgende Behauptung, dass k ≤ mn/2 ist.
Behauptung 3.14. Zwei Kanten e und eR sind zusammen höchstens
n/2-mal kritisch.

Seien Pi1 , . . . , Pih die Pfade, in denen e oder eR kritisch ist. Falls
k ∈ {e, eR} kritisch in Pij ist, dann fällt k aus Nfij +1 heraus. Damit
also e oder eR kritisch in Pij+1 sein können, muss ein Pfad Pj′ mit
ij < j′ ≤ ij+1 existieren, der kR enthält. Wegen Behauptung 3.11 und
Behauptung 3.13 ist `ij+1 ≥ `j′ ≥ `ij + 2. Daher ist

n− 1 ≥ `ih ≥ `i1 + 2(h− 1) ≥ 1 + 2(h− 1) = 2h− 1,

was h ≤ n/2 impliziert. �

Man beachte, dass der Beweis auch bei Netzwerken mit reellen Kapa-
zitäten seine Gültigkeit behält.

3.3 Der Algorithmus von Dinic

Man kann zeigen, dass sich in jedem Netzwerk ein maximaler Fluss
durch Addition von höchstens m Zunahmepfaden konstruieren lässt
(siehe Übungen). Es ist nicht bekannt, ob sich solche Pfade in Zeit
O(n+m) bestimmen lassen. Wenn ja, würde dies auf eine Gesamtlauf-
zeit von O(n+m2) führen. Für dichte Netzwerke (d.h. m = Θ(n2))
hat der Algorithmus von Dinic die gleiche Laufzeit O(n2m) = O(n4)
und die verbesserte Version ist mit O(n3) in diesem Fall sogar noch
schneller.

29



3 Flüsse in Netzwerken 3.3 Der Algorithmus von Dinic

Definition 3.15. Sei N = (V,E, s, t, c) ein Netzwerk und sei g ein
Fluss in N . Der Fluss g sättigt eine Kante e ∈ E, falls g(e) = c(e)
ist. g heißt blockierend, falls g auf jedem Pfad P von s nach t
mindestens eine Kante e ∈ E sättigt.

Nach dem Min-Cut-Max-Flow-Theorem gibt es zu jedem maximalen
Fluss f einen Schnitt S, so dass alle Kanten in E(S) gesättigt sind.
Da jeder Pfad von s nach t mindestens eine Kante in E(S) enthalten
muss, ist jeder maximale Fluss auch blockierend. Für die Umkehrung
gibt es jedoch einfache Gegenbeispiele, wie etwa

a b

s t

c d

1/1

1

1

1/1
1

1
1/1

Ein blockierender Fluss muss also nicht unbedingt maximal sein. Tat-
sächlich ist g genau dann ein blockierender Fluss in N , wenn es im
Restnetzwerk Ng keinen Zunahmepfad gibt, der nur aus Vorwärtskan-
ten e ∈ E mit g(e) < c(e) besteht. Wir werden sehen, dass sich ein
blockierender Fluss in Zeit O(n2) berechnen lässt.
Der Algorithmus von Dinic arbeitet wie folgt.

Algorithmus Dinic(V,E, s, t, c)
1 for all (u, v) ∈ V × V do
2 f(u, v) := 0
3 while schichtnetzwerk(f) do
4 g := blockfluss(f)
5 f := f + g

Die Prozedur blockfluss(f) berechnet einen blockierenden Fluss im
Restnetzwerk Nf , der für alle Kanten den Wert 0 hat, die nicht auf ei-
nem kürzesten Pfad P von s nach t in Nf liegen. Hierzu werden aus Nf

alle Knoten u 6= t entfernt, die einen Abstand d(s, u) ≥ d(s, t) in Nf

haben. Falls in Nf kein Pfad von s nach t existiert (d.h. d(s, t) =∞),
wird auch t entfernt.
Das resultierende Netzwerk N ′f wird als Schichtnetzwerk bezeich-
net, da jeder Knoten in N ′f einer Schicht Sj zugeordnet werden kann:
Für 0 ≤ j < d(s, t) ist Sj = {u ∈ V | d(s, u) = j}. Im Fall d(s, t) <∞
kommt für j = d(s, t) noch die Schicht Sj = {t} hinzu. Zudem werden
alle Kanten aus Nf entfernt, die nicht auf einem kürzesten Pfad von s
zu einem Knoten in N ′f liegen, d.h. jede Kante (u, v) in N ′f verbindet
einen Knoten u in Schicht Sj mit einem Knoten v in Schicht Sj+1
von N ′f .
Das Schichtnetzwerk N ′f wird von der Prozedur schichtnetzwerk
durch eine modifizierte Breitensuche in Zeit O(n + m) berechnet.
Diese Prozedur gibt den Wert true zurück, falls t im berechneten
Schichtnetzwerk N ′f enthalten (und somit der aktuelle Fluss f noch
nicht maximal) ist, und sonst den Wert false.

Satz 3.16. Der Algorithmus von Dinic durchläuft die while-Schleife
höchstens n-mal.

Beweis. Sei k die Anzahl der Schleifendurchläufe und für i = 1, . . . , k
sei gi der blockierende Fluss, den der Dinic-Algorithmus im Schicht-
netzwerk N ′fi−1

berechnet, d.h. fi = fi−1 + gi. Zudem sei di(u, v)
wieder die minimale Länge eines Pfades von u nach v im Restnetz-
werk Nfi−1 . Wir zeigen, dass di+1(s, t) > di(s, t) ist. Da d1(s, t) ≥ 1
und dk(s, t) ≤ n− 1 ist, folgt k ≤ n− 1.
Behauptung 3.17. Für jeden Knoten u ∈ V gilt di+1(s, u) ≥
di(s, u).

Hierzu zeigen wir folgende Behauptung.
Behauptung 3.18. Falls die Kante e = (uj, uj+1) auf einem kürzes-
ten Pfad P = (u0, . . . , uh) von s = u0 nach u = uh in Nfi

liegt (d.h.
di+1(s, uj+1) = di+1(s, uj) + 1), dann gilt di(s, uj+1) ≤ di(s, uj) + 1.
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Die Behauptung ist klar, wenn die Kante e = (uj, uj+1) auch in Nfi−1

enthalten ist. Ist dies nicht der Fall, muss fi−1(e) 6= fi(e) sein, d.h.
gi(e) muss ungleich 0 sein. Da e nicht in Nfi−1 und somit auch nicht
in N ′fi−1

ist, muss eR = (uj+1, uj) in N ′fi−1
sein. Da N ′fi−1

nur Kanten
auf kürzesten Pfaden von s zu einem Knoten in N ′fi−1

enthält, folgt
di(s, uj) = di(s, uj+1)+1, was di(s, uj+1) = di(s, uj)−1 ≤ di(s, uj)+1
impliziert.
Damit ist Behauptung 3.18 bewiesen und Behauptung 3.17 folgt wie
im Beweis von Satz 3.10. Als nächstes zeigen wir folgende Behauptung.
Behauptung 3.19. Für i = 1, . . . , k − 1 gilt di+1(s, t) > di(s, t).

Sei P = (u0, u1, . . . , uh) ein kürzester Pfad von s = u0 nach t = uh in
Nfi

. Dann gilt wegen Behauptung 3.17, dass di(s, uj) ≤ di+1(s, uj) = j
für j = 0, . . . , h ist.
Wir betrachten zwei Fälle. Wenn alle Knoten uj in N ′fi−1

enthalten
sind, führen wir die Annahme di(s, t) = di+1(s, t) auf einen Wider-
spruch. Wegen Behauptung 3.18 folgt aus dieser Annahme nämlich
die Gleichheit di(s, uj+1) = di(s, uj) + 1, da sonst di(s, t) < h wäre.
Folglich ist P auch ein kürzester Pfad von s nach t in Nfi−1 und somit
gi kein blockierender Fluss in Nfi−1 .
Es bleibt der Fall, dass mindestens ein Knoten uj nicht in N ′fi−1
enthalten ist. Sei uj+1 der erste Knoten auf P , der nicht in N ′fi−1
enthalten ist. Dann ist uj+1 6= t und daher di+1(s, t) > di+1(s, uj+1).
Zudem liegt die Kante e = (uj, uj+1) nicht nur in Nfi

, sondern we-
gen fi(e) = fi−1(e) (da weder e noch eR zu N ′fi−1

gehören) auch
in Nfi−1 . Da somit uj in N ′fi−1

und e in Nfi−1 ist, kann uj+1 nur
aus dem Grund nicht zu N ′fi−1

gehören, dass di(s, uj+1) = di(s, t)
ist. Daher folgt wegen di+1(s, uj) ≥ di(s, uj) (Behauptung 3.17) und
di(s, uj) + 1 ≥ di(s, uj+1) (Behauptung 3.18)

di+1(s, t) > di+1(s, uj+1) = di+1(s, uj) + 1 ≥ di(s, uj+1) = di(s, t). �

Die Prozedur schichtnetzwerk führt eine Breitensuche mit Start-
knoten s im Restnetzwerk Nf aus und speichert dabei in der Menge
E ′ nicht nur alle Baumkanten, sondern zusätzlich alle Querkanten
(u, v), die auf einem kürzesten Weg von s zu v liegen. Sobald alle von
s aus erreichbaren Knoten besucht (und in V ′ gespeichert) wurden
oder t am Kopf der Warteschlange Q erscheint, bricht die Suche ab.
Falls der Kopf von Q gleich t ist, werden alle Knoten v 6= t, die die
gleiche Entfernung von s wie t haben, sowie alle Kanten, die in diesen
Knoten enden, wieder aus N ′f entfernt.
Die Laufzeitschranke O(n+m) folgt aus der Tatsache, dass jede Kante
in E ∪ER höchstens einmal besucht wird und jeder Besuch mit einem
konstantem Zeitaufwand verbunden ist.

Prozedur schichtnetzwerk(f)
1 for all v ∈ V do
2 niv(v) := n
3 niv(s) := 0
4 V ′ := {s}
5 E ′ := ∅
6 QueueInit(Q)
7 Enqueue(Q, s)
8 while ¬QueueEmpty(Q) ∧ Head(Q) 6= t do
9 u := Head(Q)

10 Dequeue(Q)
11 for all v ∈ N+(u) ∪N−(u) do
12 e := (u, v)
13 if c(e)− f(e) > 0 ∧ niv(v) > niv(u) then
14 V ′ := V ′ ∪ {v}
15 E ′ := E ′ ∪ {e}
16 c′(e) := c(e)− f(e)
17 if niv(v) > niv(u) + 1 then
18 niv(v) := niv(u) + 1
19 Enqueue(Q, v)
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20 if Head(Q) = t then
21 V ′′ := {v ∈ V ′ | v 6= t, niv(v) = niv(t)}
22 V ′ := V ′ \ V ′′
23 E ′ := E ′ \ (V ′ × V ′′)
24 return true
25 else
26 return false

Die Prozedur blockfluss1 berechnet einen blockierenden Fluss g
im Schichtnetzwerk N ′f in der Zeit O(nm). Hierzu bestimmt sie in der
repeat-Schleife mittels Tiefensuche einen Zunahmepfad P in N ′f+g,
addiert den Fluss (f + g)P zum aktuellen Fluss g hinzu, und ent-
fernt die gesättigten Kanten e ∈ P aus E ′. Falls die Tiefensuche in
einer Sackgasse endet (weil E ′ keine weiterführenden Kanten enthält),
wird die zuletzt besuchte Kante (u′, u) ebenfalls aus E ′ entfernt und
die Tiefensuche vom Startpunkt u′ dieser Kante fortgesetzt (back
tracking). Die Prozedur blockfluss1 bricht ab, falls keine weiteren
Pfade von s nach t existieren. Folglich ist der berechnete Fluss g
tatsächlich blockierend.
Die Laufzeitschranke O(nm) folgt aus der Tatsache, dass sich die
Anzahl der aus E ′ entfernten Kanten nach spätestens n Schleifen-
durchläufen um 1 erhöht.

Prozedur blockfluss1(f)
1 for all e ∈ V × V do g(e) := 0
2 StackInit(S)
3 Push(S, s)
4 u := s
5 done := false
6 repeat
7 if ∃ e = uv ∈ E ′ then
8 Push(S, v)
9 c′′(e) := c′(e)− g(e)

10 u := v
11 elsif u = t then
12 P := S-Pfad von s nach t
13 c′g(P ) := min{c′′(e) | e ∈ P}
14 for all e ∈ P do
15 if c′′(e) = c′g(P ) then E ′ := E ′ \ {e}
16 g(e) := g(e) + c′g(P )
17 g(eR) := g(eR)− c′g(P )
18 u := s
19 StackInit(S)
20 Push(S, s)
21 elsif u 6= s then
22 Pop(S)
23 u′ := Top(S)
24 E ′ := E ′ \ {(u′, u)}
25 u := u′

26 else done := true
27 until done
28 return g

Die Prozedur blockfluss2 benötigt nur Zeit O(n2), um einen blo-
ckierenden Fluss g im Schichtnetzwerk N ′f zu berechnen. Zu ihrer
Beschreibung benötigen wir folgende Notation.

Definition 3.20. Sei N = (V,E, s, t, c) ein Netzwerk und sei u ein
Knoten in N . Die Ausgangskapazität von u ist

c+(u) =
∑

(u,v)∈E
c(u, v)

und die Eingangskapazität von u ist

c−(u) =
∑

(v,u)∈E
c(v, u).
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Der Durchsatz von u ist

d(u) =


c+(u), u = s,

c−(u), u = t,

min{c+(u), c−(u)}, sonst.

Ein Fluss g in N sättigt einen Knoten u ∈ V , falls d(u) =
max{f+(u), f−(u)} ist.

Die Korrektheit der Prozedur blockfluss2 basiert auf folgender
Proposition.

Proposition 3.21. Sei N = (V,E, s, t, c) ein Netzwerk und sei g ein
Fluss in N . g ist blockierend, falls jeder s-t-Pfad in N mindestens
einen Knoten enthält, der durch g gesättigt wird.

Beweis. Dies folgt aus der Tatsache, dass ein Fluss g in N , der auf
jedem s-t-Pfad P mindestens einen Knoten u sättigt, auch mindestens
eine Kante in P sättigt. �

Beginnend mit dem trivialen Fluss g = 0 berechnet die Prozedur
blockfluss2 für jeden Knoten u den Durchsatz D(u) im Schicht-
netzwerk N ′f und wählt in jedem Durchlauf der repeat-Schleife einen
Knoten u mit minimalem Durchsatz D(u), um den aktuellen Fluss
g um den Wert D(u) zu erhöhen. Hierzu benutzt sie die Prozeduren
propagierevor und propagiererück, die dafür Sorge tragen, dass
der zusätzliche Fluss tatsächlich durch den Knoten u fließt und die
Durchsatzwerte D(v) von allen Knoten aktualisiert werden, die von
der Flusserhöhung betroffen sind. Aus diesem Grund wird u durch
den zusätzlichen Fluss gesättigt und kann aus dem Netzwerk entfernt
werden.
In der Menge B werden alle Knoten gespeichert, deren Durchsatz
durch die Erhöhungen des Flusses g oder durch die Entfernung von

Kanten aus E ′ auf 0 gesunken ist. Diese Knoten und die mit ih-
nen verbundenen Kanten werden in der while-Schleife der Prozedur
blockfluss2 aus dem Schichtnetzwerk N ′f entfernt.

Prozedur blockfluss2(f)
1 for all e ∈ E ′ ∪ E ′R do g(e) := 0
2 for all u ∈ V ′ do
3 D+(u) := ∑

uv∈E′ c
′(u, v)

4 D−(u) := ∑
vu∈E′ c

′(v, u)
5 repeat
6 for all u ∈ V ′ \ {s, t} do
7 D(u) := min{D−(u), D+(u)}
8 D(s) := D+(s)
9 D(t) := D−(t)

10 wähle u ∈ V ′ mit D(u) minimal
11 Init(B); Insert(B, u)
12 propagierevor(u)
13 propagiererück(u)
14 while u := Remove(B) 6∈ {s, t} do
15 V ′ := V ′ \ {u}
16 for all e = uv ∈ E ′ do
17 D−(v) := D−(v)− c′(u, v)
18 if D−(v) = 0 then Insert(B, v)
19 E ′ := E ′ \ {e}
20 for all e = vu ∈ E ′ do
21 D+(v) := D+(v)− c′(v, u)
22 if D+(v) = 0 then Insert(B, v)
23 E ′ := E ′ \ {e}
24 until u ∈ {s, t}
25 return g

Da in jedem Durchlauf der repeat-Schleife mindestens ein Knoten u
gesättigt und aus V ′ entfernt wird, wird nach höchstens n− 1 Itera-

33



3 Flüsse in Netzwerken 3.3 Der Algorithmus von Dinic

tionen einer der beiden Knoten s oder t als Knoten u mit minimalem
Durchsatz D(u) gewählt und die repeat-Schleife verlassen. Da nach
Beendigung des letzten Durchlaufs der Durchsatz von s oder von t
gleich 0 ist, wird einer dieser beiden Knoten zu diesem Zeitpunkt von
g gesättigt. Nach Proposition 3.21 ist somit g ein blockierender Fluss.
Die Prozeduren propagierevor und propagiererück propagieren
den Fluss durch u in Vorwärtsrichtung hin zu t bzw. in Rückwärts-
richtung hin zu s. Dies geschieht in Form einer Breitensuche mit
Startknoten u unter Benutzung der Kanten in E ′ bzw. E ′R. Da der
Durchsatz D(u) von u unter allen Knoten minimal ist, ist sicherge-
stellt, dass der Durchsatz D(v) jedes Knoten v ausreicht, um den für
ihn ermittelten Zusatzfluss in Höhe von z(v) weiterzuleiten.

Prozedur propagierevor(u)
1 for all v ∈ V ′ do z(v) := 0
2 z(u) := D(u)
3 QueueInit(Q); Enqueue(Q, u)
4 while v := Dequeue(Q) 6= ⊥ do
5 while z(v) 6= 0 ∧ ∃e = vu ∈ E ′ do
6 m := min{z(v), c′(e)}
7 z(v) := z(v)−m; z(u) := z(u) +m
8 aktualisierekante(e,m)
9 Enqueue(Q, u)

Prozedur aktualisierekante(e = vu,m)
1 g(e) := g(e) +m
2 c′(e) := c′(e)−m
3 if c′(e) = 0 then E ′ := E ′ \ {e}
4 D+(v) := D+(v)−m
5 if D+(v) = 0 then Insert(B, v)
6 D−(u) := D−(u)−m
7 if D−(u) = 0 then Insert(B, u)

Die Prozedur propagiererück unterscheidet sich von der Proze-
dur propagierevor nur dadurch, dass in Zeile 5 die Bedingung
∃e = vu ∈ E ′ durch die Bedingung ∃e = uv ∈ E ′ ersetzt wird.
Da die repeat-Schleife von blockfluss2 maximal (n− 1)-mal durch-
laufen wird, werden die Prozeduren propagierevor und propa-
giererück höchstens (n− 1)-mal aufgerufen. Sei a die Gesamtzahl
der Durchläufe der inneren while-Schleife von propagierevor, sum-
miert über alle Aufrufe. Da in jedem Durchlauf eine Kante aus E ′
entfernt wird (falls m = c′(u, v) ist) oder der zu propagierende Fluss
z(v) durch einen Knoten v auf 0 sinkt (falls m = z(v) ist), was pro
Knoten und pro Aufruf höchstens einmal vorkommt, ist a ≤ n2 +m.
Der gesamte Zeitaufwand ist daher O(n2 +m) innerhalb der beiden
while-Schleifen und O(n2) außerhalb. Die gleichen Schranken gelten
für propagiererück.
Eine ähnliche Überlegung zeigt, dass die while-Schleife von
blockfluss2 einen Gesamtaufwand von O(n + m) hat. Folglich
ist die Laufzeit von blockfluss2 O(n2).

Korollar 3.22. Der Algorithmus von Dinic berechnet bei Verwendung
der Prozedur blockfluss2 einen maximalen Fluss in Zeit O(n3).

Auf Netzwerken, deren Flüsse durch jede Kante oder durch jeden Kno-
ten durch eine relativ kleine Zahl C beschränkt sind, lassen sich noch
bessere Laufzeitschranken für den Dinic-Algorithmus nachweisen.

Satz 3.23. Sei N = (V,E, s, t, c) ein Netzwerk.
(i) Falls jeder Knoten u ∈ V \ {s, t} einen Durchsatz d(u) ≤ C

hat, so durchläuft der Algorithmus von Dinic die while-Schleife
höchstens 2(Cn)1/2 mal.

(ii) Falls jede Kante e ∈ E eine Kapazität c(e) ≤ C hat, so durch-
läuft der Algorithmus von Dinic die while-Schleife höchstens
(25Cn2)1/3 mal.

Beweis. Sei M = |f | die Größe eines maximalen Flusses f in N .
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(i) Da die Anzahl a der Schleifendurchläufe durchM beschränkt ist,
können wir M > (Cn)1/2 annehmen. Betrachte den i-ten Schlei-
fendurchlauf, in dem ein blockierender Fluss gi im Schichtnetz-
werk N ′fi−1

mit den Schichten S0 = {s}, S1, . . . , Sdi−1, Sdi
= {t}

berechnet wird. Da ein maximaler Fluss in Nfi−1 (in N ′fi−1
kann

er kleiner sein) die Größe ri = M − |fi−1| hat und dieser durch
die Knoten jeder einzelnen Schicht Sj, 1 ≤ j ≤ di − 1, fließt,
muss

ri ≤ C‖Sj‖ bzw. ri/C ≤ ‖Sj‖,
sein, woraus

(di−1)ri/C ≤ ‖S1‖+· · ·+‖Sdi−1‖ ≤ n−2 ≤ n bzw. di ≤ 1+nC/ri

folgt. Damit ist die Anzahl a der Schleifendurchläufe durch

a ≤ i+ ri+1 ≤ di + ri+1 ≤ ri+1 + 1 + nC/ri

beschränkt. Nun wählen wir i so, dass ri > (Cn)1/2 und
ri+1 ≤ (Cn)1/2 ist. Dann folgt

a− 1 < ri+1 + nC/ri ≤ (Cn)1/2 + nC/(Cn)1/2 = 2(Cn)1/2.

(ii) Da die Anzahl a der Schleifendurchläufe durch M beschränkt
ist, können wir M > (2n

√
C)2/3 annehmen. Betrachte den i-ten

Schleifendurchlauf, in dem ein blockierender Fluss gi im Schicht-
netzwerk N ′fi−1

mit den Schichten S0 = {s}, S1, . . . , Sdi−1, Sdi

berechnet wird. Hierbei nehmen wir zu Sdi
alle Knoten hinzu,

die nicht in N ′fi−1
liegen. Sei kj die Anzahl der Kanten von Sj

nach Sj+1. Da ein maximaler Fluss in Nfi−1 (in N ′fi−1
kann er

wieder kleiner sein) die Größe ri = M−|fi−1| hat und dieser für
j = 0, . . . , di − 1 durch die kj Kanten von Sj nach Sj+1 fließt,
muss

ri ≤ Ckj ≤ C‖Sj‖‖Sj+1‖ bzw. ri/C ≤ ‖Sj‖‖Sj+1‖

sein. Somit enthält mindestens eine von zwei benachbarten
Schichten Sj und Sj+1 mindestens

√
ri/C Knoten, woraus

(di/2)
√
ri/C ≤ ‖S0‖+ · · ·+ ‖Sdi

‖ ≤ n bzw. di ≤ 2n
√
C/ri

folgt. Damit ist die Anzahl a der Schleifendurchläufe durch

a ≤ i+ ri+1 ≤ di + ri+1 ≤ ri+1 + 2n
√
C/ri

beschränkt. Nun wählen wir i so, dass ri > (2n
√
C)2/3 und

ri+1 ≤ (2n
√
C)2/3 ist. Dann folgt

a ≤ (2n
√
C)2/3 + 2n

√
C/(2n

√
C)1/3 = (25Cn2)1/3. �

Korollar 3.24. Sei N = (V,E, s, t, c) ein Netzwerk.
(i) Falls jeder Knoten u ∈ V \ {s, t} einen Durchsatz d(u) ≤ C

hat, so berechnet der Algorithmus von Dinic bei Verwendung
der Prozedur blockfluss1 einen maximalen Fluss in Zeit
O((nC +m)

√
Cn).

(ii) Falls jede Kante e ∈ E eine Kapazität c(e) ≤ C hat, so berech-
net der Algorithmus von Dinic bei Verwendung der Prozedur
blockfluss1 einen maximalen Fluss in Zeit O(C4/3n2/3m).

Beweis. Zunächst ist leicht zu sehen, dass die Kapazitätschranke auf
den Kanten oder Knoten auch für jedes Schichtnetzwerk N ′fi

gilt.
(i) Jedesmal wenn blockfluss1 einen s-t-Pfad P im Schichtnetz-

werk findet, verringert sich der Durchsatz c′′(u) der auf P lie-
genden Knoten u um den Wert c′g(P ) ≥ 1, da der Fluss g durch
diese Knoten um diesen Wert steigt. Daher kann jeder Kno-
ten an maximal C Flusserhöhungen beteiligt sein, bevor sein
Durchsatz auf 0 sinkt. Da somit pro Knoten ein Zeitaufwand
von O(C) für alle erfolgreichen Tiefensuchschritte, die zu einem
s-t-Pfad führen, und zusätzlich pro Kante ein Zeitaufwand von
O(1) für alle nicht erfolgreichen Tiefensuchschritte anfällt, läuft
blockfluss1 in Zeit O(nC +m).
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(ii) Jedesmal wenn blockfluss1 einen s-t-Pfad P im Schichtnetz-
werk findet, verringert sich die Kapazität c′′(e) der auf P liegen-
den Kanten e um den Wert c′g(P ) ≥ 1. Da somit pro Kante ein
Zeitaufwand von O(C) für alle erfolgreichen Tiefensuchschritte
und O(1) für alle nicht erfolgreichen Tiefensuchschritte anfällt,
läuft blockfluss1 in Zeit O(Cm+m) = O(Cm). �

3.4 Kostenoptimale Flüsse

In manchen Anwendungen fallen für die Benutzung jeder Kante e
eines Netzwerkes Kosten an, die proportional zur Höhe des Flusses
f(e) durch diese Kante sind. Falls die Kosten für die einzelnen Kanten
differieren, ist es möglich, dass zwei Flüsse unterschiedliche Kosten
verursachen, obwohl sie die gleiche Größe haben. Man möchte also
einen maximalen Fluss f berechnen, der minimale Kosten hat.
Die Kosten eines Flusses f werden auf der Basis einer Kostenfunk-
tion k : E → Z berechnet, wobei für jede Kante e ∈ E mit f(e) ≥ 0
Kosten in Höhe von f(e)k(e) anfallen.
Die Gesamtkosten von f im Netzwerk berechnen sich also zu

k(f) =
∑

f(e)>0
f(e)k(e).

Ein negativer Kostenwert k(e) < 0 bedeutet, dass eine Erhöhung des
Flusses durch die Kante e um 1 mit einem Gewinn in Höhe von −k(e)
verbunden ist. Ist zu einer Kante e ∈ E auch die gegenläufige Kante
eR in E enthalten, so muss k die Bedingung k(eR) = −k(e) erfüllen.∗
Der Grund hierfür ist, dass die Erniedrigung von f(e) > 0 um einen
bestimmten Wert w ≤ f(e) gleichbedeutend mit einer Erhöhung von
f(eR) um diesen Wert im Restnetzwerk Nf ist und die Kostenfunktion
auch für Nf gelten soll. Daher können wir k mittels k(e) = −k(eR),

falls eR ∈ E und k(e) = 0 für alle e ∈ (V ×V )\(E∪ER) auf die Menge
V × V erweitern. Zudem definieren wir für beliebige Multimengen
F ⊆ V × V die Kosten von F als k(F ) = ∑

e∈F k(e) (d.h. jede Kante
e ∈ F wird bei der Berechnung von k(F ) entsprechend der Häufigkeit
ihres Vorkommens in F berücksichtigt). Wir nennen F negativ, falls
F negative Kosten k(F ) < 0 hat.
Das nächste Lemma liefert einen Algorithmus, mit dem sich überprü-
fen lässt, ob ein Fluss minimale Kosten unter allen Flüssen derselben
Größe hat. Für einen Fluss f sei

kmin(f) = min{k(g) | g ist ein Fluss in N mit |g| = |f |}

das Minimum der Kosten aller Flüsse der Größe |f |.

Lemma 3.25. Ein Fluss f in N hat genau dann minimale Kosten
k(f) = kmin(f), wenn es im Restnetzwerk Nf keinen negativen Kreis
K mit k(K) < 0 gibt.

Beweis. Falls es in Nf einen Kreis K mit Kosten k(K) < 0 gibt, dann
können wir den Fluss durch alle Kanten e ∈ K um 1 erhöhen. Dies
führt auf einen Fluss g mit |g| = |f | und k(g) = k(f) + k(K) < k(f).
Sei umgekehrt g ein Fluss in N mit |g| = |f | und k(g) < k(f). Dann
ist g − f wegen g(e)− f(e) ≤ c(e)− f(e) ein Fluss in Nf . Da g − f
die Größe |g − f | = 0 hat, können wir g − f als Summe von Flüssen
h1, . . . , hk in Nf darstellen, wobei hi nur für Kanten e auf einem Kreis
Ki in Nf einen positiven Wert hi(e) = wi > 0 annimmt (siehe nächs-
ten Abschnitt). Da k(h1) + · · ·+ k(hk) = k(g − f) = k(g)− k(f) < 0
ist, muss wegen k(hi) = ∑

e∈Ki
hi(e)k(e) = wik(Ki) mindestens ein

Kreis Ki negativ sein.
Um hi und die zugehörigen Kreise Ki für i = 1, . . . , k zu fin-
den, wählen wir eine beliebige Kante ei,1 aus Ef , für die der Fluss
h′i−1 = g − f − h1 − · · · − hi−1 einen minimalen positiven Wert
w = h′i−1(ei,1) > 0 annimmt (falls es keine solche Kante ei,1 gibt, sind

∗Natürlich kann man diese Einschränkung bspw. dadurch umgehen, dass man die Kante e = (u, v) durch einen Pfad (u, w, v) über einen neuen Knoten w ersetzt.
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wir fertig, weil dann h′i−1 der triviale Fluss ist). Da h′i−1 den Wert 0
hat und somit die Kontinuitätsbedingung für alle Knoten (inklusive
s und t) erfüllt, lässt sich nun zu jeder Kante ei,j = (a, b) ∈ Ef
solange eine Fortsetzung ei,j+1 = (b, c) ∈ Ef mit h′i−1(ei,j+1) > 0
(und damit h′i−1(ei,j+1) ≥ w) finden bis sich ein Kreis Ki schließt.
Nun setzen wir hi(ei,j) = wi für alle Kanten ei,j ∈ Ki, wobei
wi = min{h′i−1(e) | e ∈ Ki} ist.
Da sich die Anzahl der Kanten in Ef , die unter dem verbleibenden
Fluss h′i = g−f−h1−· · ·−hi einen Wert ungleich 0 haben, gegenüber
h′i−1 mindestens um 1 verringert, ist die Anzahl der Kreise Ki durch
‖Ef‖ ≤ 2m beschränkt. �

Mithilfe von Lemma 3.25 lässt sich ein maximaler Fluss mit minimalen
Kosten wie folgt berechnen. Wir berechnen zuerst einen maximalen
Fluss f . Dann suchen wir beginnend mit i = 1 und f0 = f einen
negativen Kreis Ki in Nfi−1 . Hierzu kann der Bellman-Ford-Moore
Algorithmus benutzt werden, wenn wir zu Nfi−1 einen neuen Knoten
s′ hinzufügen und diesen mit allen Knoten u durch eine neue Kante
(s′, u) verbinden.
Falls kein negativer Kreis existiert, ist fi−1 ein maximaler Fluss mit
minimalen Kosten. Andernfalls bilden wir den Fluss fi, indem wir
zu fi−1 den Fluss fKi

addieren, der auf jeder Kante e ∈ Ki den
Wert fKi

(e) = cfi−1(Ki) = min{cfi−1(e) | e ∈ Ki} hat. Da sich
die Kosten k(fi) = k(fi−1) + k(fKi

) = k(fi−1) + cfi−1(Ki)k(Ki) von
fi wegen k(Ki) ≤ −1 bei jeder Iteration um mindestens 1 verrin-
gern und die Kostendifferenz zwischen zwei beliebigen Flüssen durch
D = ∑

u∈V |k(s, u)|(c(s, u) + c(u, s)) beschränkt ist, liegt nach k ≤ D
Iterationen ein kostenminimaler Fluss fk vor.
Der nächste Satz bereitet den Weg für einen Algorithmus zur Bestim-
mung eines kostenminimalen Flusses, dessen Laufzeit nicht von D,
sondern von der Größe M = |f | eines maximalen Flusses f in N ab-
hängt. Voraussetzung hierfür ist jedoch, dass es in N keine negativen
Kreise gibt.

Lemma 3.26. Ist fi−1 ein Fluss in N mit k(fi−1) = kmin(fi−1) und
ist Pi ein Zunahmepfad in Nfi−1 mit

k(Pi) = min{k(P ′) | P ′ ist ein Zunahmepfad in Nfi−1},

so ist fi = fi−1 + fPi
ein Fluss in N mit k(fi) = kmin(fi).

Beweis. Angenommen, es gibt einen Fluss g in N mit |g| = |fi|
und k(g) < k(fi). Dann gibt es in Nfi

einen negativen Kreis K
mit k(K) < 0. Wir benutzen K, um einen Zunahmepfad P ′ mit
k(fP ′) < k(fPi

) zu konstruieren.
Sei F die Multimenge aller Kanten, die auf K oder Pi liegen, d.h.
jede Kante in K∆Pi = (K \ Pi) ∪ (Pi \K) kommt genau einmal und
jede Kante in K ∩ Pi kommt genau zweimal in F vor. F ist also ein
Multigraph bestehend aus dem s-t-Pfad Pi und dem Kreis K und es
gilt k(F ) = k(Pi) + k(K) < k(Pi).
Da jede Kante e ∈ F̂ = K \ Efi−1 wegen fi−1(e) = c(e) zwar von
fi−1 aber wegen e ∈ K ⊆ Efi

nicht von fi gesättigt wird, muss
fi−1(e) 6= fi(e) und somit eR ∈ Pi sein, was F̂ ⊆ PR

i impliziert. Somit
ist jede Kante e ∈ F̂ und mit ihr auch eR genau einmal in F enthalten.
Entfernen wir nun für jede Kante e ∈ F̂ die beiden Kanten e und eR
aus F , so erhalten wir die Multimenge F ′ = F \ (F̂ ∪ F̂R), die wegen
k(e) + k(eR) = 0 dieselben Kosten k(F ′) = k(F ) < k(Pi) wie F hat.
Zudem gilt F ′ ⊆ Efi−1 . Da F ′ aus F durch Entfernen von Kreisen
(der Länge 2) entsteht, ist auch F ′ ein Multigraph, der sich in einen
s-t-Pfad P ′ und eine gewisse Anzahl von Kreisen K1, . . . , K` in Nfi−1

zerlegen lässt. Da nach Voraussetzung keine negativen Kreise in Nfi−1

existieren, folgt

k(P ′) = k(F ′)−
∑̀
i=1

k(Ki) ≤ k(F ′) = k(F ) < k(Pi). �

37



3 Flüsse in Netzwerken 3.4 Kostenoptimale Flüsse

Basierend auf Lemma 3.26 können wir nun leicht einen Algorithmus
zur Bestimmung eines maximalen Flusses mit minimalen Kosten in
einem Netzwerk N angeben, falls es in N keine negativen Kreise gibt.

Algorithmus Min-Cost-Flow(V,E, s, t, c, k)
1 for all (u, v) ∈ V × V do
2 f(u, v) := 0
3 repeat
4 P ← min-zunahmepfad(f)
5 if P 6= ⊥ then add(f,P)
6 until P = ⊥

Hierbei berechnet die Prozedur min-zunahmepfad(f) einen Zunah-
mepfad in Nf , der minimale Kosten unter allen Zunahmepfaden in
Nf hat. Da es in Nf keine negativen Kreise gibt, kann hierzu bspw.
der Bellman-Ford-Moore Algorithmus benutzt werden, der in Zeit
O(mn) läuft. Dies führt auf eine Gesamtlaufzeit von O(Mmn), wobei
M = |f | die Größe eines maximalen Flusses f in N ist.

Satz 3.27. In einem Netzwerk N kann ein maximaler Fluss f mit
minimalen Kosten in Zeit O(|f |mn) bestimmt werden, falls es in N
keine negativen Kreise bzgl. der Kostenfunktion k gibt.

Tatsächlich lässt sich für Netzwerke ohne negative Kreise die Laufzeit
unter Verwendung des Dijkstra-Algorithmus in Kombination mit einer
Preisfunktion auf O(Mm log n) verbessern.

Definition 3.28. Sei G = (V,E) ein Digraph mit Kostenfunktion
k : E → Z. Eine Funktion p : V → Z heißt Preisfunktion für
(G, k), falls für jede Kante e = (x, y) in E die Ungleichung

k(x, y) + p(x)− p(y) ≥ 0

gilt. Die bzgl. p reduzierte Kostenfunktion kp : E → N0 ist

kp(x, y) = k(x, y) + p(x)− p(y).

Lemma 3.29. Ein Digraph G = (V,E) mit Kostenfunktion k : E →
Z hat genau dann keine negativen Kreise, wenn es eine Preisfunktion
p für (G, k) gibt. Zudem lässt sich eine geeignete Preisfunktion p in
Zeit O(nm) finden.

Beweis. Wir zeigen zuerst die Rückwärtsrichtung. Sei also p eine Preis-
funktion mit kp(e) ≥ 0 für alle e ∈ E. Dann gilt für jede Kantenmenge
F ⊆ E die Ungleichung kp(F ) ≥ 0. Da zudem für jeden Kreis K in
G die Gleichheit k(K) = kp(K) gilt, folgt sofort k(K) = kp(K) ≥ 0.
Sei nun G ein Digraph und sei k : E → Z eine Kostenfunktion oh-
ne negativen Kreise. Betrachte den Digraphen G′, der aus G durch
Hinzunahme eines neuen Knotens s und Kanten (s, x) für alle x ∈ V
entsteht. Zudem erweitern wir k mittels k′(s, x) = 0 zu einer Kosten-
funktion k′ auf G′. Da es auch in (G′, k′) keine negativen Kreise gibt,
existiert in G′ für jeden Knoten x ∈ V ein bzgl. k′ kürzester Pfad von
s nach x, dessen Länge wir mit dk′(s, x) bezeichnen. Da nun für jede
Kante e = (x, y) ∈ E die Ungleichung

dk
′(s, x) + k(x, y) ≥ dk

′(s, y)

gilt, ist p(x) = dk
′(s, x) die gesuchte Preisfunktion. Diese lässt sich

mit BFM in Zeit O(nm) finden. �

Sobald wir eine Preisfunktion p für das Restnetzwerk Nf haben,
können wir Dijkstra zur Berechnung eines bzgl. kp kürzesten Zunah-
mepfades P in Nf benutzen. P ist dann auch ein kürzester Pfad bzgl.
k, da für jeden s-t-Pfad P die Beziehung kp(P ) = k(P ) + p(s)− p(t)
gilt und p(s)− p(t) eine von P unabhängige Konstante ist.
Falls N keine negativen Kreise hat, können wir für N = Nf0 eine
Preisfunktion p0(x) = min{k(P ) | P ist ein s-x-Pfad} mit dem BFM-
Algorithmus in Zeit O(nm) berechnen. Angenommen, wir haben für
ein i ≥ 1 einen Fluss fi−1 mit minimalen Kosten k(fi−1) = kmin(fi−1)
und eine Preisfunktion pi−1 für (Nfi−1 , k). Sofern in Nfi−1 ein Zunah-
mepfad existiert, können wir mit dem Dijkstra-Algorithmus in Zeit
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O(m log n) einen bzgl. kpi−1 kürzesten Zunahmepfad Pi berechnen
und erhalten einen größeren Fluss fi = fi−1 + fPi

mit minimalen
Kosten k(fi) = kmin(fi). Andernfalls ist fi−1 ein maximaler Fluss.
Es bleibt die Frage, wie wir im Fall, dass Pi existiert, eine Preisfunktion
pi für Nfi

finden können, ohne erneut BFM zu benutzen.

Lemma 3.30. Sei di(s, x) die minimale Pfadlänge von s nach x in
Nfi−1 bzgl. kpi−1, wobei pi−1 : V → Z eine beliebige Funktion ist. Dann
ist pi(x) = pi−1(x) + di(s, x) eine Preisfunktion für k in Nfi−1 und in
Nfi

.

Beweis. Wir zeigen zuerst, dass pi eine Preisfunktion für (Nfi−1 , k) ist.
Für jede Kante e = (x, y) ∈ Efi−1 gilt nämlich di(y) ≤ di(x) + kpi−1(e)
und kpi−1(e) = k(e) + pi−1(x)− pi−1(y). Somit ist

kpi(e) = k(e) + pi(x)− pi(y)
= k(e) + pi−1(x) + di(s, x)− pi−1(y)− di(s, y)
= kpi−1(e) + di(s, x)− di(s, y) ≥ 0.

Falls e auf Pi liegt, gilt sogar kpi(e) = 0, da Pi ein bzgl. kpi−1 kürzester
s-t-Pfad in Nfi−1 und daher di(s, y) = di(s, x) + kpi−1(e) ist.
Da zudem für jede Kante e in Nfi

, die nicht zu Nfi−1 gehört, die ge-
spiegelte Kante eR auf dem Pfad Pi liegt, folgt kpi(eR) = 0 und somit
kpi(e) = k(e) +pi(x)−pi(y) = −k(eR)−pi(y) +pi(x) = −kpi(eR) = 0.
Dies zeigt, dass pi eine Preisfunktion für (Nfi

, k) ist. �

Satz 3.31. In einem Netzwerk N kann ein maximaler Fluss f mit
minimalen Kosten in Zeit O(mn+ |f |m log n) bestimmt werden, falls
es in N keine negativen Kreise bzgl. der Kostenfunktion k gibt.

Beweis. Wir berechnen zuerst mit BFM in Zeit O(nm) eine Preis-
funktion p0 für die Kostenfunktion k im Netzwerk N = Nf0 . Dann
bestimmen wir in ≤ |f | Iterationen eine Folge von kostenminimalen

Flüssen fi, indem wir mit dem Dijkstra-Algorithmus in Zeit O(m log n)
einen bzgl. kpi−1 kürzesten Zunahmepfad Pi in Nfi−1 berechnen. Da
hierbei bereits die Distanzen di(x) für alle Knoten x berechnet werden
können, erfordert die Bestimmung von pi in jeder Iteration nur O(n)
Zeit. �
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4 Matchings

Definition 4.1. Sei G = (V,E) ein Graph.
• Zwei Kanten e, e′ ∈ E heißen unabhängig, falls e ∩ e′ = ∅ ist.
• Eine KantenmengeM ⊆ E heißt Matching in G, falls alle Kanten
in M paarweise unabhängig sind.
• Ein Knoten v ∈ V heißt gebunden, falls v Endpunkt einer Mat-
chingkante (also v ∈ ⋃M) ist und sonst frei.
• M heißt perfekt, falls alle Knoten von G gebunden sind (also
V = ⋃

M ist).
• Die Matchingzahl von G ist

µ(G) = max{‖M‖ | M ist ein Matching in G}

• Ein Matching M heißt maximal, falls ‖M‖ = µ(G) ist. M heißt
gesättigt, falls es in keinem größeren Matching enthalten ist.

Offensichtlich ist M ⊆ E genau dann ein Matching, wenn ‖⋃M‖ =
2‖M‖ ist. Das Ziel besteht nun darin, ein maximales Matching M in
G zu finden.
Durch eine einfache Reduktion des bipartiten Matchingproblems auf
ein Flussproblem erhält man aus Korollar 3.24 das folgende Resultat
(siehe Übungen).

Satz 4.2. In einem bipartiten Graphen lässt sich ein maximales Mat-
ching in Zeit O(m

√
n) bestimmen.

Beweis. Sei G = (U, V,E) der gegebene bipartite Graph. Konstruiere
das Netzwerk N = (V ′, E ′, s, t, c) mit den Knoten V ′ = U ∪V ∪{s, t}

und den Kanten

E ′ = ({s} × U) ∪
{

(u, v) ∈ U × V
∣∣∣ {u, v} ∈ E} ∪ (V × {t}),

die alle Kapazität 1 haben. Es ist leicht zu sehen, dass sich aus jedem
Matching M in G ein Fluss f in N konstruieren lässt mit ‖M‖ = |f |
und umgekehrt. Es genügt also, einen maximalen Fluss in N zu finden.
Nach Korollar 3.24 ist dies mit dem Algorithmus von Dinic unter
Einsatz von blockfluss1 in O(m

√
n) Zeit möglich, da der Durchsatz

aller Knoten außer s und t durch 1 beschränkt ist. �

In den Übungen wird gezeigt, dass die Laufzeit durch eine verbesserte
Analyse sogar durch O(m

√
µ(G)) abgeschätzt werden kann.

Die Konstruktion aus Satz 4.2 lässt sich nicht ohne Weiteres auf allge-
meine, nicht-bipartite Graphen verallgemeinern. Wir werden jedoch
sehen, dass sich manche bei den Flussalgorithmen verwendete Ideen
auch für Matchingalgorithmen einsetzen lassen.

Beispiel 4.3. Ein gesättigtes Matching muss nicht maximal sein:

v

u

x

w

v

u

x

w

M = {{v, w}} ist gesättigt, da es sich nicht erweitern lässt. M ist
jedoch kein maximales Matching, da M ′ = {{v, x}, {u,w}} größer ist.
Die Greedy-Methode, ausgehend von M = ∅ solange Kanten zu M
hinzuzufügen, bis sich M nicht mehr zu einem größeren Matching
erweitern lässt, funktioniert also nicht.

Es gibt jedoch eine Methode, mit der sich jedes Matching, das nicht
maximal ist, vergrößern lässt.

Definition 4.4. Sei G = (V,E) ein Graph und sei M ein Matching
in G.
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1. Ein Pfad P = (u1, . . . , uk) heißt alternierend, falls für i =
1, . . . , k − 1 gilt:

ei = {ui, ui+1} ∈M ⇔ ei+1 = {ui+1, ui+2} ∈ E \M.

2. Ein Kreis C = (u1, . . . , uk) heißt alternierend, falls der Pfad
P = (u1, . . . , uk−1) alternierend ist und zusätzlich gilt:

e1 ∈M ⇔ ek−1 ∈ E \M.

3. Ein alternierender Pfad P heißt vergrößernd, falls weder e1 noch
ek−1 zu M gehören.

Satz 4.5. Ein Matching M in G ist genau dann maximal, wenn es
keinen vergrößernden Pfad in G bzgl. M gibt.

Beweis. Ist P ein vergrößernder Pfad, so liefert M ′ = M∆P ein
Matching der Größe ‖M ′‖ = ‖M‖ + 1 in G. Hierbei identifizieren
wir P mit der Menge {ei | i = 1, . . . , k − 1} der auf P = (u1, . . . , uk)
liegenden Kanten ei = {ui, ui+1}.
Ist dagegen M nicht maximal und M ′ ein größeres Matching, so
betrachten wir die Kantenmenge M∆M ′. Da jeder Knoten in dem
Graphen G′ = (V,M∆M ′) höchstens den Grad 2 hat, lässt sich die
Kantenmenge M∆M ′ in disjunkte Kreise und Pfade partitionieren.
Da diese Kreise und Pfade alternierend sind, und M ′ größer als M
ist, muss mindestens ein Pfad vergrößernd sein. �

Damit haben wir das Problem, ein maximales Matching in einem Gra-
phen G zu finden, auf das Problem reduziert, zu einem Matching M
in G einen vergrößernden Pfad zu finden, sofern ein solcher existiert.

4.1 Der Algorithmus von Edmonds

Der Algorithmus von Edmonds bestimmt einen vergrößernden Pfad
wie folgt. Jeder Knoten v hat einen von 3 Zuständen, welcher ent-
weder mit gerade (falls v frei ist) oder unerreicht (falls v gebunden

ist) initialisiert wird. Dann wird ausgehend von den freien Knoten
als Wurzeln ein Suchwald W aufgebaut, indem für einen beliebigen
geraden Knoten v eine Kante zu einem Knoten v′ besucht wird, der
entweder ebenfalls gerade oder unerreicht ist.
Ist v′ unerreicht, so wird der aktuelle Suchwald W um die beiden Kan-
ten (v, v′) und (v′,M(v′)) erweitert, wobeiM(v′) der Matchingpartner
von v′ ist (d.h. {v′,M(v′)} ∈ M). Zudem wechselt der Zustand von
v′ von unerreicht zu ungerade und der von M(v′) von unerreicht zu
gerade. Damit wird erreicht, dass jeder Knoten in W genau dann
gerade (bzw. ungerade) ist, wenn der Abstand zu seiner Wurzel in W
gerade (bzw. ungerade) ist.
Ist v′ dagegen gerade, so gibt es zwei Unterfälle. Sind die beiden
Wurzeln von v und v′ verschieden, so wurde ein vergrößernder Pfad
gefunden, der von der Wurzel von v zu v über v′ zur Wurzel von v′
verläuft.
Andernfalls befindet sich v′ im gleichen Suchbaum wie v, d.h. es gibt
einen gemeinsamen Vorfahren v′′, so dass durch Verbinden der beiden
Pfade von v′′ nach v und von v′′ nach v′ zusammen mit der Kante
{v, v′} ein Kreis C entsteht. Da v und v′ beide gerade sind, hat C eine
ungerade Länge. Zudem muss auch v′′ gerade sein, da jeder ungerade
Knoten in W genau ein Kind hat. Der Pfad von der Wurzel von v′′
zu v′′ zusammen mit dem Kreis C wird als Blume mit der Blüte C
bezeichnet. Der Knoten v′′ heißt Basis der Blüte C.
Zwar führt das Auffinden einer Blüte C nicht direkt zu einem ver-
größernden Pfad, sie bedeutet aber dennoch einen Fortschritt, da
sich der Graph wie folgt vereinfachen lässt. Wir kontrahieren C
zu einem einzelnen geraden Knoten b, der die Nachbarschaften aller
Knoten in C zu Knoten außerhalb von C erbt, und setzen die Suche
nach einem vergrößernden Pfad fort. Bezeichnen wir den aus G durch
Kontraktion von C entstandenen Graphen mit GC und das aus M
durch Kontraktion von C entstandene Matching in GC mit MC , so
stellt folgendes Lemma die Korrektheit dieser Vorgehensweise sicher.
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Lemma 4.6. In G lässt sich ausgehend vonM genau dann ein vergrö-
ßernder Pfad finden, wenn dies in GC ausgehend von MC möglich ist.
Zudem kann jeder vergrößernde Pfad in GC zu einem vergrößernden
Pfad in G expandiert werden.

Beweis. Sei P ein vergrößernder Pfad in GC . Falls P nicht den Kno-
ten b besucht, zu dem die Blüte C kontrahiert wurde, so ist P auch
ein vergrößernder Pfad in G. Besucht P dagegen den Knoten b, so
betrachten wir die beiden Nachbarn a und c von b in P (o.B.d.A sei
{a, b} in MC). Dann existiert in M eine Kante zwischen a und der
Basis v′′ von C. Zudem gibt es in C mindestens einen Nachbarn vc
von c. Im Fall v′′ = vc genügt es, b durch v′′ zu ersetzen. Andernfalls
ersetzen wir b durch denjenigen der beiden Pfade P1 und P2 von
v′′ nach vc auf C, der vc über eine Matchingkante erreicht. Falls b
Endknoten von P ist, also nur einen Nachbarn c in P hat, ersetzen
wir b durch den gleichen Pfad.
Der Beweis der Rückrichtung ist komplizierter, da viele verschiedene
Fälle möglich sind. Alternativ ergibt sich die Rückrichtung aber auch
als Folgerung aus der Korrektheit des Edmonds-Algorithmus (siehe
Satz 4.9). �

Die folgende Prozedur VergrößernderPfad berechnet einen vergrö-
ßernden Pfad für G, falls das aktuelle Matching M nicht maximal ist.
DaM nicht mehr als n/2 Kanten enthalten kann, wird diese Prozedur
höchstens (n/2 + 1)-mal aufgerufen.

Prozedur VergrößernderPfad(G,M)
1 Q← ∅
2 for v ∈ V (G) do
3 if ∃e ∈M : v ∈ e then zustand(v)← unerreicht
4 else
5 zustand(v)← gerade
6 root(v)← v
7 depth(v)← 0

8 for u ∈ N(v) do Q← Q ∪ {(v, u)}
9 while Q 6= ∅ do

10 entferne eine Kante (v, v′) aus Q
11 if inblüte(v) = inblüte(v′) 6= ⊥ then // tue nichts
12 else if zustand(v′) = unerreicht then
13 parent(v′)← v
14 root(v′)← root(v)
15 depth(v′)← depth(v) + 1
16 if zustand(v) = gerade then
17 zustand(v′)← ungerade
18 Q← Q ∪ {v′,partner(v′)}
19 else
20 zustand(v′)← gerade
21 for u ∈ N(v′) \ {v} do Q← Q ∪ {(v′, u)}
22 else if zustand(v′) = zustand(v) or inblüte(v) or

inblüte(v′) then
23 if root(v) =root(v′) then // v und v′ sind im

gleichen Baum: kontrahiere Blüte
24 v′′ ← tiefster gemeinsamer Vorfahr von v und v′

// verwende depth(v) und depth(v′)
25 b← neuer Knoten
26 blüte(b)← (v′′, . . . , v, v′, . . . , v′′) // setze die

beiden Pfade entlang der Baum-Kanten zu
einem ungeraden Kreis zusammen

27 parent(b)← v′′

28 root(b)← root(v′′)
29 depth(b)← depth(v′′)+1
30 for u ∈ blüte(b)\{v′′} do
31 inblüte(u)← b
32 if zustand(u) = ungerade then
33 for w ∈ N(u) do Q← Q ∪ {(u,w)}
34 else // vergrößernder Pfad gefunden, muss noch

expandiert werden
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35 P ← leere doppelt verkettete Liste
36 u← v
37 while u 6= ⊥ do
38 while inblüte(u) 6= ⊥ do u← inblüte(u)
39 hänge u vorne an P an
40 u← parent(u)
41 u← v′

42 while u 6= ⊥ do
43 while inblüte(u) do u← inblüte(u)
44 hänge u hinten an P an
45 u← parent(u)
46 u← der erste Knoten auf P
47 while u 6= ⊥ do
48 if blüte(u) = ⊥ then
49 u← succP(u)
50 else // blüte(u) = (v0, . . . , vk) mit v0 = vk
51 ersetze u in P durch den alternierenden

Pfad in blüte(u), der predP(u) und
succP(u) verbindet und auf der Nicht-
Basis-Seite mit einer Kante aus M endet

52 u← der erste Knoten dieses Pfads
53 return P

Für den Beweis der Korrektheit des Edmonds-Algorithmus benötigen
wir den Begriff des OSC.

Definition 4.7. Sei G = (V,E) ein Graph. Eine Menge S =
{v1, . . . , vk, V1, . . . , V`} von Knoten v1, . . . , vk ∈ V und Teilmengen
V1, . . . , V` ⊆ V heißt OSC (engl. odd set cover) in G, falls
1. ∀e ∈ E : e ∩ V0 6= ∅ ∨ ∃i ≥ 1 : e ⊆ Vi, wobei V0 = {v1, . . . , vk}.
2. ∀i ≥ 1 : ni ≡2 1, wobei ni = ‖Vi‖.
Das Gewicht von S ist weight(S) = k + ∑`

i=1(ni − 1)/2. Im Fall
` = 0 nennen wir V0 auch Knotenüberdeckung (oder kurz VC

für engl. vertex cover) in G.

Lemma 4.8. Für jedes Matching M in einem Graphen G = (V,E)
und jedes OSC S in G gilt ‖M‖ ≤ weight(S).

Beweis. M kann für jeden Knoten vj ∈ S höchstens eine Kante und
von den Kanten in Vi, i ≥ 1, höchstens (ni − 1)/2 Kanten enthalten.

�

Satz 4.9. Der Algorithmus von Edmonds berechnet ein maximales
Matching M für G.

Beweis. Es ist klar, dass der Algorithmus von Edmonds terminiert.
Wir analysieren die Struktur des Suchwalds zu diesem Zeitpunkt. Jede
Kante e ∈ E lässt sich in genau eine von drei Kategorien einteilen:
1. e hat mindestens einen ungeraden Endpunkt,
2. beide Endpunkte von e sind unerreicht,
3. e liegt komplett innerhalb einer Blüte.
Würde nämlich e keine dieser 3 Bedingungen erfüllen, so würde der Al-
gorithmus nicht terminieren, da alle Kanten e = (v, v′), die mindestens
einen geraden Endpunkt v haben, von dem Algorithmus betrachtet
werden und somit v′ nicht gerade oder unerreicht sein kann, da
1. im Fall, dass auch v′ gerade ist, e entweder zur Kontraktion einer

weiteren Blüte oder zu einem vergrößernden Pfad führen würde,
und

2. im Fall, dass v′ unerreicht ist, v′ in einen ungeraden Knoten ver-
wandelt würde.

Folglich können wir ein OSC S wie folgt konstruieren. Sei U die
Menge der unerreichten Knoten. Jede Blüte bildet eine Menge Vi in S
und jeder ungerade Knoten wird als Einzelknoten zu S hinzugefügt.
Falls U nicht leer ist, fügen wir einen beliebigen unerreichten Knoten
u0 ∈ U als Einzelknoten zu S hinzu. Falls U mindestens 4 Knoten
enthält, fügen wir auch die Menge U \ {u0} zu S hinzu.
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Nun ist leicht zu sehen, dass S alle Kanten überdeckt und jeder
Einzelknoten in S mit einer Matchingkante inzident. Da zudem jede
Blüte Vi der Größe ni genau (ni− 1)/2 (und auch die Menge U \ {u0}
im Fall ‖U‖ ≥ 4 genau (‖U‖ − 2)/2) Matchingkanten enthält, folgt
weight(S) = ‖M‖. �

Korollar 4.10. Für jeden Graphen G gilt

µ(G) = min{weight(S) | S ist ein OSC in G}.

Ein Spezialfall hiervon ist der Satz von König für bipartite Graphen
(siehe Übungen).
Der Algorithmus von Edmonds lässt sich leicht dahingehend modifi-
zieren, dass er nicht nur ein maximales Matching M , sondern auch ein
OSC S ausgibt, das die Optimalität von M beweist. In den Übungen
werden wir noch eine weitere Möglichkeit zur „Zertifizierung“ der
Optimalität von M kennenlernen.

Lemma 4.11. Die Prozedur VergrößernderPfad benötigt O(m)
Zeit; der Algorithmus von Edmonds hat damit eine Gesamtlaufzeit
von O(nm).

Beweis. Wir können annehmen, dass G keinen isolierten Knoten hat,
da sich diese in Zeit O(n) entfernen lassen. Wir zeigen, dass die
Prozedur VergrößernderPfad in Zeit O(m) läuft. Da die Prozedur
höchstens n/2-mal aufgerufen wird und die Laufzeit außerhalb von
VergrößernderPfad durch O(n2) beschränkt ist, ergibt sich somit
eine Gesamtlaufzeit von O(nm) (genauer O(nm+n)). Dass jeder Auf-
ruf von VergrößernderPfad nach O(m) Schritten terminiert, liegt
daran, dass die Initialisierung O(n+m) = O(m) Schritte benötigt und
danach für jede Kante e ∈ E nur O(1) Schritte ausgeführt werden:
1. Für jede Kante e = {u, v} ∈ E wird jede der beiden Orientierungen

(u, v) und (v, u) von e maximal einmal zu Q hinzugefügt.

2. Außerdem ist jede Kante maximal einmal an der Kontraktion
einer Blüte beteiligt, und folglich auch höchstens einmal an der
Expansion einer Blüte. �

4.2 Effiziente Implementierung von Edmonds’
Algorithmus

Micali und Vazirani haben gezeigt, dass eine Variante von Edmonds’
Algorithmus sogar mit O(m√µ) Zeit auskommt. Der Ansatz ist ähn-
lich wie beim Algorithmus von Dinic: Pro Runde wird nicht nur ein
einzelner vergrößernder Pfad zum Matching hinzugefügt, sondern eine
maximale Menge knotendisjunkter vergrößernder Pfade, die minimale
Länge (unter allen vergrößernden Pfaden) haben.
Hopcroft und Karp haben mit den folgenden Lemmata gezeigt, dass
O(√µ) solcher Runden ausreichen.

Lemma 4.12. Sei M ein Matching in einem Graphen G, sei P ein
kürzester vergrößernder Pfad bezüglich M , und sei P ′ ein vergrößern-
der Pfad bezüglich M∆P . Dann ist ‖P ′‖ ≥ ‖P‖ + ‖P ∩ P ′‖, wobei
die Kardinalität sich hier auf die Anzahl der Kanten bezieht.

Beweis. Sei M ′ = (M∆P )∆P ′ das resultierende Matching. Betrachte
den Graphen H = M∆M ′ = P∆P ′. In H hat jeder Knoten höchs-
tens den Grad 2: Sofern P ′ einen Knoten v aus P enthält, einer der
P -Nachbarn von v auch ein P ′-Nachbar von v sein muss, da P ′ ein
alternierender Pfad bezüglich M∆P ist. Die Zusammenhangskompo-
nenten von H sind also in Pfade und Kreise. Wegen M ′ = M∆H
müssen diese Pfade und Kreise alternierend bezüglich M sein. Wegen
‖M ′‖ = ‖M‖+ 2 enthält H mindestens zwei disjunkte vergrößernde
Pfade P1 und P2 für M .
Nun gilt: ‖H‖ ≥ ‖P1‖ + ‖P2‖ ≥ 2‖P‖, da P ein kürzester vergrö-
ßernder Pfad bezüglich M ist. Zusammen mit ‖H‖ = ‖P∆P ′‖ =
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‖P‖+ ‖P ′‖ − ‖P ∩ P ′‖ ergibt dies die Behauptung. �

Wenn im Algorithmus von Edmonds nun ausgehend vom leeren Mat-
ching M0 = ∅ vergrößernde Pfade Pi minimaler Länge bezüglich Mi−1
gefunden werden um die Matchings Mi = Mi−1∆Pi zu erhalten, gilt
folglich ‖Pi‖ ≤ ‖Pi+1‖.

Lemma 4.13. Wenn ‖Pi‖ = ‖Pj‖ für i < j gilt, so sind Pi und Pj
knotendisjunkt.

Beweis. Angenommen Pi und Pj wären nicht knotendisjunkt. Wir
können o.B.d.A. annehmen, dass kein k existiert mit i < k < j (also
‖Pk‖ = ‖Pi‖), für das Pk nicht knotendisjunkt zu Pi ist. Dann ist Pj
ein vergrößernder Pfad bezüglich Mi = Mi−1∆Pi. Mit Lemma 4.12
folgt ‖Pj‖ ≥ ‖Pi‖ + ‖Pi ∩ Pj‖. Wegen ‖Pi‖ = ‖Pj‖ sind Pi und Pj
damit kantendisjunkt. Wenn Pj nun einen Knoten v aus Pi enthalten
würde, müsste Pj auch den Mi-Nachbarn von v enthalten. Da dieser
aber auch ein Nachbar von v auf Pi ist, ergibt sich ein Widerspruch
dazu, dass Pi und Pj kantendisjunkt sind. �

Satz 4.14. Sei G ein Graph mit Matchingzahl µ und sei P1, . . . , Pµ
die Folge der kürzesten Zunahmepfade. Dann gilt∥∥∥{‖Pi‖ ∣∣∣ 1 ≤ i ≤ µ

}∥∥∥ ≤ 2 b√µc+ 1.

Beweis. Sei r = µ −
⌊√
µ
⌋
. Dann gilt ‖Mr‖ = r. Der Graph

H = Mr∆Mµ hat als Zusammenhangskomponenten (unter ande-
ren) µ− r =

⌊√
µ
⌋
knotendisjunkte vergrößernde Pfade bezüglich Mr.

Da Mr nur r Kanten enthält, enthält mindestens einer dieser ver-
größernden Pfade höchstens

⌊
r/
⌊√

µ
⌋⌋
≤
⌊√
µ
⌋
Kanten aus Mr; der

Pfad Pr ist damit höchstens 2
⌊√

µ
⌋

+ 1 lang. Da die Länge eines
vergrößernden Pfads immer eine ungerade natürliche Zahl ist, folgt∥∥∥{‖Pi‖ ∣∣∣ 1 ≤ i ≤ r

}∥∥∥ ≤ b√µc+ 1.

Da Pr+1, . . . , Pµ höchstens µ− r =
⌊√
µ
⌋
weitere Längen beisteuern,

folgt die Behauptung. �

Es bleibt also zu zeigen, wie eine maximale Menge vergrößernden
Pfade minimaler Länge in O(m) Zeit gefunden werden kann. Gegen-
über der Prozedur VergrößernderPfad sind dazu eine Reihe von
Änderungen nötig:
• Um nur vergrößernde Pfade minimaler Länge zu finden, muss die

Reihenfolge in der die Kanten betrachtet werden angepasst werden.
Dass dies notwendig ist ergibt sich aus folgendem Beispiel:

b

a c

Hier kann es passieren, dass der vergrößernde Pfad über die Kante
{a, c} mit Länge 11 vor dem über die Kante {b, c} der Länge 9
gefunden wird.
Abhilfe schafft das folgende Vorgehen: Es werden nicht alle Kanten
gleichberechtigt zur Menge Q hinzugefügt und in einer beliebigen
Reihenfolge entnommen. Vielmehr wird eine Breitensuche durchge-
führt (d.h. Q wird als Warteschlange implementiert), damit kürzere
Pfade zuerst gefunden werden. Das alleine genügt aber noch nicht,
um das Problem aus dem vorhergehenden Beispiel zuverlässig zu
vermeiden. Deshalb werden für jeden Knoten die folgenden Werte
gespeichert und aktualisiert:
evenlevel(u): Die Länge des kürzesten alternierenden Pfades ge-

rader Länge von u zu einem freien Knoten. Initial 0 für freie
Knoten und ∞ für alle übrigen.

oddlevel(u): Die Länge des kürzesten alternierenden Pfades un-
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gerader Länge von u zu einem freien Knoten. Initial ∞.
level(u): Das Minimum von evenlevel(u) und oddlevel(u).
Während der Breitensuche erhalten die als gerade markierten Kno-
ten endliches evenlevel und die als ungerade markierten Knoten
endliches oddlevel. Beim Kontrahieren einer Blüte erhalten die
in der Blüte enthaltenen als gerade markierten Knoten endliches
oddlevel und die in der Blüte enthaltenen als ungerade markier-
ten Knoten endliches evenlevel. Im folgenden Beispiel sind die
Knoten jeweils mit evenlevel/oddlevel beschriftet.

0/∞

∞/1

2/∞

6/3 6/3

4/5 4/5

0/∞

∞/1

2/∞

∞/3

4/∞

Eine Kante e wird Brücke genannt, wenn e eine Matchingkante
ist, deren Endpunkte beide endliches evenlevel haben, oder wenn
e eine Nicht-Matchingkante ist, deren Endpunkte beide endliches
oddlevel haben. Damit sind Brücken gerade die Kanten, die im
Algorithmus von Edmonds zur Erkennung von Blüten oder vergrö-
ßernden Pfaden führen. Einer Brücke {u, v} wird ihre Zähigkeit
zugeordnet:

tenacity({u, v}) =oddlevel(u) + oddlevel(v) + 1 falls {u, v} ∈M
evenlevel(u) + evenlevel(v) + 1 sonst

Wenn eine Brücke dazu führt, dass ein vergrößernder Pfad gefun-
den wird, entspricht ihre Zähigkeit damit gerade der Länge des
vergrößernden Pfades.

Wenn der Algorithmus eine Brücke findet, reiht er diese nicht ein-
fach in die Warteschlange Q ein, sondern sammelt sie getrennt nach
Zähigkeit. Brücken mit Zähigkeit 2i+ 1 (die Zähigkeit ist immer
ungerade) werden zu dem Zeitpunkt behandelt (d.h. der zugehörige
vergrößernde Pfad ermittelt beziehungsweise die zugehörige Blüte
kontrahiert), an dem die Breitensuche alle Knoten der Schicht i
gefunden hat. Im obigen Beispiel hat die Kante {a, c} die Zähig-
keit 9 und wird damit nach Schicht 4 behandelt, während die Kante
{b, c} Zähigkeit 11 hat und damit erst nach Schicht 5 an die Reihe
kommt.
Damit ist sichergestellt, dass der Algorithmus kürzere vergrößernde
Pfade zuerst findet.
• Um die Zeitschranke O(m) für das finden einer maximalen Menge
von kürzesten vergrößernden Pfaden einzuhalten, kann die Suche
nicht nach jedem gefundenen Pfad neu gestartet werden. Statt-
dessen werden alle Knoten (und die zu ihnen inzidenten Kanten)
gelöscht, die auf dem gefundenen vergrößernder Pfad liegen.
Das folgende Beispiel zeigt, dass weitere Änderungen nötig sind,
damit der Algorithmus tatsächlich eine maximale Menge kürzester
vergrößernder Pfade des ursprünglichen Graphen findet.

a b c d

In diesem Graphen gibt es zwei disjunkte vergrößernde Pfade (von a
nach b und von c nach d). Allerdings wird von der Breitensuche
entweder der Knoten b oder der Knoten c zuerst betrachtet, und die
zum anderen Knoten inzidenten Kanten tauchen nicht im Breiten-
suchbaum auf. Nach dem Löschen des ersten vergrößernden Pfads
kann deshalb kein weiterer vergrößernder Pfad gefunden werden,
der nur Brücken- und Suchbaumkanten verwendet.
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Um dieses Problem zu umgehen, wird für jeden Knoten nicht nur
sein Elternknoten im Suchbaum gespeichert, sondern eine Menge
von Vorgängern:

predecessors(u) =
{
v
∣∣∣ {u, v} ∈M}

falls u gerade{
v
∣∣∣ {u, v} ∈ E \M∧
evenlevel(v) + 1 = oddlevel(u)

}
sonst

Anstelle des Suchwalds mit seinen parent-Kanten erhalten wir
so einen geschichteten Graphen mit (gerichteten) predecessor-
Kanten. Ein Knoten w wird Vorfahr von u genannt, wenn er von u
aus entlang solcher predecessor-Kanten erreichbar ist.
Nach dieser Änderung ist es natürlich nicht mehr möglich für jeden
von der Breitensuche erreichten Knoten zu speichern, was die Wurzel
seines Suchbaums ist. Einer Brücke kann der Algorithmus deshalb
nicht mehr ohne Weiteres anzusehen, ob sie zu einem vergrößernden
Pfad führt. Im folgenden Beispiel führt die Brücke {a, b} zu einem
vergrößernden Pfad von u nach v, während es keinen vergrößernden
Pfad durch die Brücke {c, d} gibt.

u v

a b

level 0

level 1

level 2

level 3
c d

Da der Algorithmus weiterhin genau dann eine Blüte finden soll,
wenn er ausgehend von einer Brücke keinen vergrößernden Pfad fin-
den kann, ergibt sich die folgende verallgemeinerte Blütendefinition:
Eine Brücke {u, v} schließt eine Blüte, wenn es einen Knoten w

gibt der sowohl für u als auch für v der einzige Vorfahr auf der
Schicht level(w) ist; wir können annehmen, dass w unter allen sol-
chen Knoten das größte level hat. Die Blüte besteht aus u und v
sowie allen ihren Vorgängern, die keine Vorgänger von w sind. Der
Knoten w heißt Basis der Blüte.
Mit dieser Definition ist leicht zu sehen, dass jede Brücke {u, v}
entweder eine Blüte schließt oder zu einem vergrößernden Pfad
führt. Es bleibt die Frage, wie der Algorithmus diese Blüte bezie-
hungsweise diesen Pfad anhand der predecessor-Kanten effizient
finden kann. Dies gelingt mit einer simultanen Tiefensuche. Hierbei
werden zwei disjunkte Tiefensuchbäume aufgebaut, einer von u aus
und einer von v aus, die nur predecessor-Kanten verwenden. Der
nächste Tiefensuchschritt wird immer in dem Suchbaum durch-
geführt, dessen aktueller Knoten die größere Schicht hat; liegen
beide in der gleichen Schicht, wird der erste Suchbaum bevorzugt.
Erreichen beide Suchbäume die Schicht 0, ist ein vergrößernder
Pfad gefunden. Stößt der zweite Suchbaum auf einen Knoten w,
der bereits zum ersten Suchbaum gehört, versucht er (durch Back-
tracking) einen weiteren Vorgänger von v auf dieser Schicht zu
finden. Ist dies nicht möglich, wird der Knoten w an den Suchbaum
von v übergeben und (mit Backtracking) versucht, einen weiteren
Vorfahren von u auf dieser Schicht zu finden. Gelingt auch das
nicht, ist w Basis einer Blüte, die alle in den beiden Suchbäumen
enthaltenen Knoten umfasst.
Um sicherzustellen, dass die simultane Tiefensuche nie steckenbleibt
ohne einen vergrößernden Pfad oder eine Blüte zu finden, können
alle gebundenen Knoten (zusammen mit ihren inzidenten Kanten)
gelöscht werden, deren Vorgängermenge durch Löschen von Knoten
leer werden. Später gefundene vergrößernde Pfade gleicher Län-
ge können die gelöschten Knoten nicht verwenden, da sie außer
predecessor-Kanten nur eine Brückenkante enthalten können, die
noch nicht Teil einer Blüte ist, und nach Lemma 4.13 knotendisjunkt
zum gerade gelöschten Pfad sind.
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Um den Aufwand aller durchgeführten simultanen Tiefensuchen
durchO(m) abzuschätzen, sind folgende Beobachtungen nötig. Wird
eine Blüte gefunden, sind alle während der Suche besuchten Kan-
ten in der Blüte enthalten; da jede Kante nur einmal Teil einer
Blüte ist, ergibt sich konstanter Aufwand pro Kante. Und wenn
ein vergrößernder Pfad gefunden, entsteht nur konstanter Aufwand
pro gelöschter Kante, weil die Tiefensuchen nur dann in Sackgassen
geraten, wenn die (eigentlich vorhandenen) predecessor-Kanten
durch den jeweils anderen Suchbaum blockiert sind.

4.3 Gewichtete Matchings

Beim Gewichteten Matchingproblem wird für einen gegebenen Gra-
phen G = (V,E) mit Kantengewichten w : E → Z ein maximales
Matching M von G mit minimalem Gewicht w(M) = ∑

e∈M w(e)
gesucht.
Eine Anwendung ist das Chinese Postman Problem, bei dem in ei-
nem Graphen G = (V,E) mit Kostenfunktion c : E → N eine Tour
T = (v0, . . . , vk) gesucht wird, die jede Kante mindestens einmal
durchläuft und minimale Kosten c(T ) = ∑k

i=1 c({vi−1, vi}) hat.

a

b

2

c

2

d
3

e

22

1

f3

g

2

1
h

4

i
3

1

j

22

Der folgende Algorithmus reduziert das Chinese Postman Problem
auf das Gewichtete Matchingproblem:

Prozedur ChinesePostman(V,E, c)

1 U := {v ∈ V | deg(v) ≡2 1} // Knoten mit ungeradem Grad

2 H := (U,
(
U
2

)
) // vollständiger Graph auf U

3 Definiere w :
(
U
2

)
→ Z durch w({u, v}) := dG,c(u, v) //

dG,c: Entfernung in G bezüglich c
4 M := GewichtetesMatching(H,w)
5 for {u, v} ∈M do
6 Finde einen kürzesten u-v-Pfad in G und füge

eine neue Kopie aller seiner Kanten ein
7 T := Euler-Tour im so entstandenen Multigraphen
8 return T

Um die Korrektheit der Reduktion zu zeigen, nehmen wir an, dass
es eine Tour T ′ gäbe, die ebenfalls alle Kanten von G mindestens
einmal durchläuft und die günstiger als T ist, d.h. c(T ′) < c(T ).
Bezeichne die Multimenge der durch T (beziehungsweise T ′) wie-
derholt durchlaufenen Kanten mit ET (beziehungsweise ET ′). Es
gilt c(ET ) − c(ET ′) = c(T ) − c(T ′) > 0. Die Kanten in ET ′ las-
sen sich in Pfade zerlegen, die jeden Knoten in U einmal als End-
knoten haben (zusätzlich könnte es noch Kreise geben). Diese Pfa-
de definieren damit ein perfektes Matching M ′ in H, das Gewicht
w(M ′) ≤ c(ET ′) < −c(ET ) = w(M) hat, was im Widerspruch dazu
steht, dass M minimales Gewicht hat.

Das gewichtete Matchingproblem im allgemeinen Fall kann mit Tech-
niken der Linearen Programmierung gelöst werden, die aber den
Rahmen dieser Vorlesung sprengen würden. Für bipartite Graphen
können wir es jedoch auf die Berechnung eines kostenoptimalen Flusses
reduzieren.
Um das gewichtete Matchingproblem in einem bipartiten Graphen
G = (U,W,E) auf die Berechnung eines kostenminimalen maximalen
Flusses in einem azyklischen Netzwerk N(G) zu reduzieren, fügen wir
zwei neue Knoten s und t hinzu und verbinden s mit allen Knoten
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u ∈ U durch eine neue Kante (s, u) sowie alle Knoten w ∈ W durch
eine neue Kante (w, t) mit t. Alle Kanten in E werden von U nach W
gerichtet und haben die vorgegebenen Kosten/Gewichte. Alle neue
Kanten e haben die Kosten k(e) = 0 und alle Kanten e in N(G) haben
die Kapazität c(e) = 1. Dann entspricht jedem Fluss f in N(G) genau
ein Matching M von G mit M = {{u,w} ∈ U ×W | f(u,w) = 1}
(und umgekehrt entspricht jedem Matching M genau ein Fluss f mit
dieser Eigenschaft).
Da die maximale Flussgröße M in N(G) durch n/2 beschränkt ist,
erhalten wir einen O(mn log n) Algorithmus für das gewichtete Mat-
chingproblem in bipartiten Graphen. Da N(G) kreisfrei ist, können
wir hierbei beliebige Kantengewichte zulassen.

Korollar 4.15. In einem bipartiten Graphen G = (V,E) lässt sich ein
maximales Matching mit minimalen Kosten in Zeit O(µ(G)m log n)
berechnen.

Beweis. Wir transformieren G in das zugehörige Netzwerk N = N(G).
Da N eine sehr spezielle Form hat, lässt sich eine Preisfunktion p0
für (N, k) in Linearzeit bestimmen. Dann berechnen wir in höchstens
µ(G) Iterationen, die jeweils Zeit O(m log n) beanspruchen, einen
kostenminimalen maximalen Fluss f in N . Aus diesem lässt sich ein
Matching Mf in G gewinnen, das wegen ‖Mf‖ = |f | maximal und
wegen k(Mf ) = k(f) kostenminimal ist. Die beiden Transformationen
von G in N und von f in Mf benötigen nur Linearzeit. �

Tatsächlich leistet der Algorithmus von Korollar 4.15 noch mehr. Er
berechnet für jede Zahl i mit 1 ≤ i ≤ µ(G) ein Matching Mi der
Größe i, das minimale Kosten unter allen Matchings dieser Größe hat,
und eine zu Mi kompatible Preisfunktion pi−1 (siehe Übungen). Dabei
heißt eine Preisfunktion p kompatibel zu einem Matching M in G,
falls die reduzierten Kosten von allen Kanten e = (u,w) ∈ U ×W
mit {u,w} ∈ E einen nichtnegativen Wert kp(e) ≥ 0 und alle Kanten
e = (u,w) ∈ U ×W mit {u,w} ∈M den Wert kp(e) = 0 haben.

5 Färben von Graphen

Definition 5.1. Sei G = (V,E) ein Graph und sei k ∈ N.
a) Eine Abbildung f : V → N heißt Färbung von G, wenn f(u) 6=

f(v) für alle {u, v} ∈ E gilt.
b) G heißt k-färbbar, falls eine Färbung f : V → {1, . . . , k} exis-

tiert.
c) Die chromatische Zahl ist

χ(G) = min{k ∈ N | G ist k-färbbar}.

Beispiel 5.2.

χ(En) = 1, χ(Kn,m) = 2, χ(Kn) = n,

χ(Cn) =

2, n gerade
3, sonst.

Ein wichtiges Entscheidungsproblem ist, ob ein gegebener Graph
k-färbbar ist. Dieses Problem ist für jedes feste k ≥ 3 schwierig.

k-Färbbarkeit (k-Coloring):
Gegeben: Ein Graph G.
Gefragt: Ist G k-färbbar?

Satz 5.3. k-Coloring ist für k ≥ 3 NP-vollständig.

Das folgende Lemma setzt die chromatische Zahl χ(G) in Beziehung
zur Stabilitätszahl α(G).

Lemma 5.4. n/α(G) ≤ χ(G) ≤ n− α(G) + 1.
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Beweis. Sei G ein Graph und sei c eine χ(G)-Färbung von G. Da
dann die Mengen Si = {u ∈ V | c(u) = i}, i = 1, . . . , χ(G), stabil
sind, folgt ‖Si‖ ≤ α(G) und somit gilt

n =
χ(G)∑
i=1
‖Si‖ ≤ χ(G)α(G).

Für den Beweis von χ(G) ≤ n− α(G) + 1 sei S eine stabile Menge in
G mit ‖S‖ = α(G). Dann ist G − S k-färbbar für ein k ≤ n − ‖S‖.
Da wir alle Knoten in S mit der Farbe k + 1 färben können, folgt
χ(G) ≤ k + 1 ≤ n− α(G) + 1. �

Beide Abschätzungen sind scharf, können andererseits aber auch
beliebig schlecht werden.

Lemma 5.5.
(
χ(G)

2

)
≤ m.

Beweis. Zwischen je zwei Farbklassen einer optimalen Färbung muss
es mindestens eine Kante geben. �

Die chromatische Zahl steht auch in Beziehung zur Cliquenzahl ω(G)
und zum Maximalgrad ∆(G):

Lemma 5.6. ω(G) ≤ χ(G) ≤ ∆(G) + 1.

Beweis. Die erste Ungleichung folgt daraus, dass die Knoten einer
maximal großen Clique unterschiedliche Farben erhalten müssen.
Um die zweite Ungleichung zu erhalten, betrachte folgenden Färbungs-
algorithmus:

Algorithmus greedy-color

1 input ein Graph G = (V,E) mit V = {v1, . . . , vn}
2 c(v1) := 1
3 for i := 2 to n do
4 Fi := {c(vj) | j < i, vj ∈ N(vi)}
5 c(vi) := min{k ≥ 1 | k 6∈ F}

Da für die Farbe c(vi) von vi nur ‖Fi‖ ≤ ∆(G) Farben verboten sind,
gilt c(vi) ≤ ∆(G) + 1. �

Satz 5.7 (Brooks 1941 (vereinfachter Beweis von Lovász, 1975)). Sei
G ein Graph mit ∆(G) ≥ 3. Dann gilt χ(G) = ∆(G) + 1 nur dann,
wenn K∆(G)+1 ein Teilgraph von G ist.

Beweis. Wir führen Induktion über n. Für n ≤ 4 gibt es genau 3
Graphen G mit ∆(G) ≥ 3. Diese erfüllen die Behauptung.
Sein nun G ein Graph mit n > 4 Knoten und Maximalgrad
d = ∆(G) ≥ 3, der Kd+1 nicht als Teilgraph enthält. Wir können
annehmen, dass G zusammenhängend ist.
Falls es in G einen Knoten u mit deg(u) < d gibt, dann ist G − u
nach IV d-färbbar und somit auch G.
Es bleibt der Fall, dass alle Knoten u den Grad d haben. Da G 6= Kd+1
ist, folgt n ≥ d+ 2. Falls G einen Schnittknoten s hat, d.h. in G− s
gibt es k ≥ 2 Komponenten G1, . . . Gk, folgt nach IV χ(Gi) ≤ d und
somit auch χ(G) ≤ d.
Behauptung 5.8. In G gibt es einen Knoten u, der zwei Nachbarn
a und b mit {a, b} 6∈ E hat, so dass G− {a, b} zusammenhängend ist.

Da G den Kd+1 nicht als Teilgraph enthält, hat jeder Knoten u zwei
Nachbarn v, w ∈ N(u) mit {v, w} 6∈ E. Falls G− v 2-fach zusammen-
hängend ist, ist G− {v, w} zusammenhängend und die Behauptung
folgt.
Falls G − v nicht 2-fach zusammenhängend ist, hat G − v mindes-
tens zwei 2-fach-Zusammenhangskomponenten (Blöcke) B1, . . . , B`

der Blockbaum T hat mindestens zwei Blätter Bi, Bj. Da κ(G) ≥ 2
ist, ist v in G zu mindestens einem Knoten in jedem Blatt B von
T benachbart, der kein Schnittknoten ist. Wählen wir für a und b
zwei dieser Knoten, so ist G− {a, b} zusammenhängend und somit
die Behauptung bewiesen.
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Sei also u ein Knoten, der zwei Nachbarn a und b mit {a, b} 6∈ E
hat, so dass G− {a, b} zusammenhängend ist. Wir wenden auf den
Graphen G − {a, b} eine Tiefensuche an mit Startknoten u1 = u.
Sei (u1, . . . , un−2) die Reihenfolge, in der die Knoten besucht werden.
Nun lassen wir greedy-color mit der Reihenfolge (a, b, un−2, . . . , u1)
laufen.
Behauptung 5.9. greedy-color benutzt ≤ d Farben.

Die Knoten a und b erhalten die Farbe c(a) = c(b) = 1. Jeder Knoten
ui, i > 1, ist mit einem Knoten uj mit j < i verbunden. Daher ist
seine Farbe c(ui) ≤ deg(ui) ≤ d. Da u = u1 bereits zwei Nachbarn a
und b mit derselben Farbe hat, folgt auch c(u) ≤ d. �

In den Übungen wird folgendes Korollar gezeigt:

Korollar 5.10. Es gibt einen Linearzeitalgorithmus, der alle Graphen
G mit ∆(G) ≤ 3 mit χ(G) Farben färbt.

5.1 Färben von planaren Graphen

Ein Graph G heißt planar, wenn er so in die Ebene einbettbar ist,
dass sich zwei verschiedene Kanten höchstens in ihren Endpunkten
berühren. Dabei werden die Knoten von G als Punkte und die Kanten
von G als Verbindungslinien zwischen den zugehörigen Endpunkten
dargestellt.
Bereits im 19. Jahrhundert wurde die Frage aufgeworfen, wie viele
Farben höchstens benötigt werden, um eine Landkarte so zu färben,
dass aneinander grenzende Länder unterschiedliche Farben erhalten.
Offensichtlich lässt sich eine Landkarte in einen planaren Graphen
transformieren, indem man für jedes Land einen Knoten zeichnet und
benachbarte Länder durch eine Kante verbindet. Länder, die sich nur
in einem Punkt berühren, gelten dabei nicht als benachbart.

Die Vermutung, dass 4 Farben ausreichen, wurde 1878 von Kempe
„bewiesen“ und erst 1890 entdeckte Heawood einen Fehler in Kempes
„Beweis“. Übrig blieb der 5-Farben-Satz. Der 4-Farben-Satz wurde erst
1976 von Appel und Haken bewiesen. Hierbei handelt es sich jedoch
nicht um einen Beweis im klassischen Sinne, da zur Überprüfung der
vielen auftretenden Spezialfälle Computer benötigt werden.

Satz 5.11 (Appel, Haken 1976).
Jeder planare Graph ist 4-färbbar.

Aus dem Beweis des 4-Farben-Satzes von Appel und Haken lässt sich
ein 4-Färbungsalgorithmus für planare Graphen mit einer Laufzeit
von O(n4) gewinnen.
In 1997 fanden Robertson, Sanders, Seymour und Thomas einen ein-
facheren Beweis für den 4-Farben-Satz, welcher zwar einen deutlich
schnelleren O(n2) Algorithmus liefert, aber auch nicht ohne Computer-
Unterstützung verifizierbar ist.

Beispiel 5.12. Wie die folgenden Einbettungen von K4 und K2,3 in
die Ebene zeigen, sind K4 und K2,3 planar.

K4: K2,3:

/

Um eine Antwort auf die Frage zu finden, ob auch K5 und K3,3 pla-
nar sind, betrachten wir die Gebiete von in die Ebene eingebetteten
Graphen.
Durch die Kanten eines eingebetteten Graphen wird die Ebene in
so genannte Gebiete unterteilt. Nur eines dieser Gebiete ist unbe-
schränkt und dieses wird als äußeres Gebiet bezeichnet. Die Anzahl
der Gebiete von G bezeichnen wir mit r(G) oder kurz mit r. Der
Rand rand(g) eines Gebiets g ist die (zirkuläre) Folge aller Kanten,
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die an g grenzen, wobei jede Kante so durchlaufen wird, dass g „in
Fahrtrichtung links“ liegt bzw. bei Erreichen eines Knotens über ei-
ne Kante e, u über die im Uhrzeigersinn nächste Kante e′ wieder
verlassen wird. Die Anzahl der an ein Gebiet g grenzenden Kanten
bezeichnen wir mit d(g), wobei Kanten, die nur an g und an kein
anderes Gebiet grenzen, doppelt gezählt werden.
Die Gesamtzahl ∑g d(g) aller Inzidenzen von Gebieten und Kanten
bezeichnen wir mit i(G). Da jede Kante genau 2 Inzidenzen zu dieser
Summe beiträgt, folgt∑

g

d(g) = i(G) = 2m(G).

Ein ebener Graph wird durch das Tripel G = (V,E,R) beschrieben,
wobei R aus den Rändern aller Gebiete von G besteht. Wir nennen
G auch ebene Realisierung des Graphen (V,E). Durch R ist für
jeden Knoten u die (zirkuläre) Ordnung π auf allen mit u inzidenten
Kanten eindeutig festgelegt (und umgekehrt). Man nennt π das zu
G gehörige Rotationssystem. Dieses kann bei Verwendung der Ad-
jazenzlistendarstellung ohne zusätzlichen Platzaufwand gespeichert
werden, indem man die zu u adjazenten Knoten gemäß π anordnet.

Beispiel 5.13. Nebenstehender ebe-
ner Graph hat 13 Kanten a, . . . ,m
und 7 Gebiete mit den Rändern

R = {(a, f, g), (a, j, i), (b, g, e, h),
(b, c, j), (c, h, d), (d, e, k),
(f, i, l,m,m, l, k)}.

a

i

f

b

h cg

e

k

j

d
l m

Das zugehörige Rotationssystem ist

π = {(a, f, i), (a, j, b, g), (b, c, h), (e, k, f, g), (d, e, h),
(c, j, i, l, k, d), (l,m), (m)}.

Man beachte, dass sowohl in R als auch in π jede Kante genau zweimal
vorkommt. /

Satz 5.14 (Polyederformel von Euler, 1750).
Für einen zusammenhängenden ebenen Graphen G = (V,E,R) gilt

n(G)−m(G) + r(G) = 2. (∗)

Beweis. Wir führen den Beweis durch Induktion über die Kantenzahl
m(G) = m.
m = 0: Da G zusammenhängend ist, muss dann n = 1 sein.

Somit ist auch r = 1, also (∗) erfüllt.
m− 1 ; m: Sei G ein zusammenhängender ebener Graph mit m

Kanten.
Ist G ein Baum, so entfernen wir ein Blatt und erhalten einen zu-
sammenhängenden ebenen Graphen G′ mit n− 1 Knoten, m− 1
Kanten und r Gebieten. Nach IV folgt (n−1)− (m−1) + r = 2,
d.h. (∗) ist erfüllt.
Falls G kein Baum ist, entfernen wir eine Kante auf einem Kreis
in G und erhalten einen zusammenhängenden ebenen Graphen
G′ mit n Knoten, m− 1 Kanten und r − 1 Gebieten. Nach IV
folgt n− (m− 1) + (r− 1) = 2 und daher ist (∗) auch in diesem
Fall erfüllt. �

Korollar 5.15. Sei G = (V,E) ein planarer Graph mit n ≥ 3 Knoten.
Dann ist m ≤ 3n− 6. Falls G dreiecksfrei ist gilt sogar m ≤ 2n− 4.

Beweis. O.B.d.A. sei G zusammenhängend. Wir betrachten eine be-
liebige planare Einbettung von G. Da n ≥ 3 ist, ist jedes Gebiet g
von d(g) ≥ 3 Kanten umgeben. Daher ist 2m = i = ∑

g d(g) ≥ 3r
bzw. r ≤ 2m/3. Eulers Formel liefert

m = n+ r − 2 ≤ n+ 2m/3− 2,

was (1− 2/3)m ≤ n− 2 und somit m ≤ 3n− 6 impliziert.
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Wenn G dreiecksfrei ist, ist jedes Gebiet von d(g) ≥ 4 Kanten umge-
ben. Daher ist 2m = i = ∑

g d(g) ≥ 4r bzw. r ≤ m/2. Eulers Formel
liefert daher m = n + r − 2 ≤ n + m/2 − 2, was m/2 ≤ n − 2 und
somit m ≤ 2n− 4 impliziert. �

Korollar 5.16. K5 ist nicht planar.

Beweis. Wegen n = 5, also 3n− 6 = 9, und wegen m =
(

5
2

)
= 10 gilt

m 6≤ 3n− 6. �

Korollar 5.17. K3,3 ist nicht planar.

Beweis. Wegen n = 6, also 2n− 4 = 8, und wegen m = 3 · 3 = 9 gilt
m 6≤ 2n− 4. �

Als weitere interessante Folgerung aus der Polyederformel können wir
zeigen, dass jeder planare Graph einen Knoten v vom Grad deg(v) ≤ 5
hat.

Lemma 5.18. Jeder planare Graph hat einen Minimalgrad δ(G) ≤ 5.

Beweis. Für n ≤ 6 ist die Behauptung klar. Für n > 6 impliziert die
Annahme δ(G) ≥ 6 die Ungleichung

m = 1
2
∑
u∈V deg(u) ≥ 1

2
∑
u∈V 6 = 3n,

was im Widerspruch zu m ≤ 3n− 6 steht. �

Definition 5.19. Sei G = (V,E) ein Graph und seien u, v ∈ V .
Dann entsteht der Graph Guv = (V − {v}, E ′) mit

E ′ = {e ∈ E | v 6∈ e} ∪ {{u, v′} | {v, v′} ∈ E − {u, v}}.

durch Fusion von u und v. Ist e = {u, v} eine Kante von G (also
e ∈ E), so sagen wir auch, Guv entsteht aus G durch Kontraktion

der Kante e. G heißt zu H kontrahierbar, falls H aus einer iso-
morphen Kopie von G durch eine Folge von Kontraktionen gewonnen
werden kann.

Satz 5.20 (Kempe 1878, Heawood 1890).
Jeder planare Graph ist 5-färbbar.

Beweis. Wir beweisen den Satz durch Induktion über n.
n = 1: Klar.
n− 1 ; n: Da G planar ist, existiert ein Knoten u mit deg(u) ≤ 5.

Zunächst entfernen wir u aus G. Falls u fünf Nachbarn hat,
existieren zwei Nachbarn v und w, die nicht durch eine Kante
verbunden sind, und wir fusionieren diese zu v.
Der resultierende Graph G′ ist planar und hat n′ ≤ n− 1 Kno-
ten. Daher existiert nach IV eine 5-Färbung c′ für G′. Da wir
nun w mit c′(v) färben können und somit die Nachbarn von u
höchstens 4 verschiedene Farben haben, ist G 5-färbbar. �

Definition 5.21. Seien G = (V,E) ein Graph, v ∈ V und e ∈
(
V
2

)
.

• Durch Entfernen des Knotens v entsteht der Graph G[V −{v}] aus
G, den wir mit G− v bezeichnen.
• Den Graphen (V,E − {e}) bezeichnen wir mit G− e und den
Graphen (V,E ∪ {e}) mit G ∪ e.
• Hat v den Grad 2 und sind u und w die beiden Nachbarn von v, so
entsteht der Graph G′ = (G− v) ∪ {u,w} durch Überbrückung
von v aus G.
• H heißt Unterteilung von G, wenn G durch sukzessive Über-
brückungen aus einer isomorphen Kopie von H entsteht.

Beispiel 5.22. Betrachte folgende Graphen.
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aG :

b c d

e

aH :

b c d e f

g

aH ′ :

b c d e f g

h

Offensichtlich ist H keine Unterteilung von G. Entfernen wir jedoch
die beiden dünnen Kanten aus H, so ist der resultierende Teilgraph
eine Unterteilung von G. Dagegen ist kein Teilgraph von H ′ eine
Unterteilung von G. /

Kuratowski konnte 1930 beweisen, dass jeder nichtplanare Graph G
eine Unterteilung des K3,3 oder des K5 als Teilgraph enthält. Für den
Beweis benötigen wir noch folgende Notationen.

Definition 5.23. Sei G ein Graph und sei K ein Kreis in G. Ein
Teilgraph B von G heißt Brücke von K in G, falls
• B nur aus einer Kante besteht, die zwei Knoten von K verbindet,
aber nicht auf K liegt, oder
• B −K eine Zusammenhangskomponente von G−K ist und B aus
B−K durch Hinzufügen aller Kanten zwischen B−K und K (und
der zugehörigen Endpunkte auf K) entsteht.

Die Knoten von B, die auf K liegen heißen Kontaktpunkte von B.
Zwei Brücken B und B′ von K heißen inkompatibel, falls
• B Kontaktpunkte u, v und B′ Kontaktpunkte u′, v′ hat, so dass diese
vier Punkte in der Reihenfolge u, u′, v, v′ auf K liegen, oder
• B und B′ mindestens 3 gemeinsame Kontaktpunkte haben.

Es ist leicht zu sehen, dass ein Graph G genau dann planar ist, wenn
sich die Brücken jedes Kreises K von G in höchstens zwei Mengen
partitionieren lassen, so dass jede Menge nur kompatible Brücken
enthält.

Satz 5.24 (Kuratowski 1930).
Für einen Graphen G sind folgende Aussagen äquivalent:

- G ist planar.
- Keine Unterteilung des K3,3 oder des K5 ist ein Teilgraph von G.

Beweis. Wenn eine Unterteilung G′ desK3,3 oder desK5 ein Teilgraph
von G ist, so ist G′ und folglich auch G nicht planar.
Sei nun G = (V,E) nicht planar. Durch Entfernen von Knoten und
Kanten erhalten wir einen 3-zusammenhängenden nicht planaren Teil-
graphen G′ = (V ′, E ′), so dass G′ − e′ für jede Kante e′ ∈ E ′ planar
ist (siehe Übungen). Wir entfernen eine beliebige Kante e0 = {a0, b0}
aus G′. Da G′− e0 2-zusammenhängend ist, gibt es einen Kreis durch
die beiden Knoten a0 und b0 in G′−e0. Sei H ′ eine ebene Realisierung
von G′ − e0 und sei K ein Kreis durch die beiden Knoten a0 und b0.
Dabei wählen wir H ′ und K so, dass es keine ebene Realisierung H ′′
von G′ − e0 gibt, in der ein Kreis durch a0 und b0 existiert, der in H ′′
mehr Gebiete als K in H ′ einschließt.
Dann ist e0 eine Brücke von K in G′. Die übrigen Brücken von K in
G′ sind auch Brücken von K in H ′. Die Kanten jeder solchen Brücke
B verlaufen entweder alle innerhalb oder alle außerhalb von K in H ′.
Im ersten Fall nennen wir B eine innere Brücke und im zweiten
eine äußere Brücke.
Für zwei Knoten a, b auf K bezeichnen wir mit K[a, b] die Menge
aller Knoten, die auf dem Bogen von a nach b (im Uhrzeigersinn) auf
K liegen. Zudem sei K[a, b) = K[a, b] \ {b}. Die Mengen K(a, b) und
K(a, b] sind analog definiert.
Behauptung 5.25. Jede äußere Brücke B besteht aus einer Kante,
die einen Knoten in K(a0, b0) mit einem Knoten in K(b0, a0) verbin-
det.

Zum Beweis der Behauptung nehmen wir an, dass B mindestens 3
Kontaktpunkte oder mindestens einen Kontaktpunkt in {a0, b0} hat.
Dann liegen mindestens zwei dieser Punkte auf K[a0, b0] oder auf
K[b0, a0]. Folglich kann K zu einem Kreis K ′ erweitert werden, der
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mehr Gebiete einschließt (bzw. ausschließt) als K, was der Wahl von
K und H ′ widerspricht.
Nun wählen wir eine innere Brücke B∗, die sowohl zu e0 als auch zu
einer äußeren Brücke B̂ inkompatibel ist. Eine solche Brücke muss es
geben, da wir sonst alle mit e0 inkompatiblen inneren Brücken nach
außen klappen und e0 als innere Brücke hinzunehmen könnten, ohne
die Planarität zu verletzen.
Sei B̂ = {a1, b1}. Da e0 und B̂ inkompatibel sind, können wir anneh-
men, dass diese vier Knoten in der Reihenfolge a0, a1, b0, b1 auf K
liegen. Wir zeigen nun, dass G′ eine Unterteilung des K3,3 oder des
K5 als Teilgraph enthält. Hierzu geben wir entweder zwei disjunkte
Mengen A,B ⊆ V ′ mit jeweils 3 Knoten an, so dass 9 knotendisjunk-
te Pfade zwischen allen Knoten a ∈ A und b ∈ B existieren. Oder
wir geben fünf Knoten an, zwischen denen 10 knotendisjunkte Pfade
existieren.
Fall 1: B∗ hat einen Kontaktpunkt k1 6∈ {a0, a1, b0, b1}. Aus Symme-

triegründen können wir k1 ∈ K(a0, a1) annehmen. Da B∗ weder
zu e0 noch zu B̂ kompatibel ist, hat B∗ weitere Kontaktpunkte
k2 ∈ K(b0, a0) und k3 ∈ K(a1, b1), wobei k2 = k3 sein kann.
Fall 1a: ∃k ∈ {k2, k3} ∩ K(b0, b1). In diesem Fall existieren 9

knotendisjunkte Pfade zwischen {a0, a1, k} und {b0, b1, k1}.
Fall 1b: {k2, k3}∩K(b0, b1) = ∅. In diesem Fall ist k2 ∈ K[b1, a0)

und k3 ∈ K(a1, b0]. Dann gibt es in B∗ einen Knoten u,
von dem aus 3 knotendisjunkte Pfade zu {k1, k2, k3} exis-
tieren. Folglich gibt es 9 knotendisjunkte Pfade zwischen
{a0, a1, u} und {k1, k2, k3}.

Fall 2: B∗ hat nur Kontaktpunkte k ∈ {a0, a1, b0, b1}. In diesem Fall
müssen alle vier Punkte zu B∗ gehören (denn B∗ ist inkompati-
bel zu B und B̂) und es gibt in B∗ einen a0-b0-Pfad P0 sowie
einen a1-b1-Pfad P1.
Fall 2a: P0 und P1 haben nur einen Knoten u gemeinsam.

Dann gibt es in B∗ vier knotendisjunkte Pfade von u zu

{a0, a1, b0, b1} und somit 10 knotendisjunkte Pfade zwi-
schen den Knoten u, a0, a1, b0, b1.

Fall 2b: P0 und P1 haben mindestens zwei Knoten gemeinsam.
Seien u der erste und v der letzte Knoten auf P0, die
auch auf P1 liegen. Dann gibt es in B∗ drei knotendis-
junkte Pfade zwischen u und allen Knoten in {v, a0, a1}
und zwei zwischen v und allen Knoten in {b0, b1}. Folglich
gibt es 9 knotendisjunkte Pfade zwischen {a0, a1, v} und
{b0, b1, u}. �

Definition 5.26. Seien G,H Graphen. H heißt Minor von G, wenn
sich H aus einem zu G isomorphen Graphen durch wiederholte An-
wendung folgender Operationen gewinnen lässt:
• Entfernen von Kanten,
• Entfernen von isolierten Knoten und
• Kontraktion von Kanten.

G heißt H-frei, falls H kein Minor von G ist. Für eine Menge H
von Graphen heißt G H-frei, falls G für alle H ∈ H H-frei ist.

Da die Kantenkontraktionen zuletzt ausgeführt werden können, ist
H genau dann ein Minor von G, wenn ein Teilgraph von G zu H
kontrahierbar ist. Zudem ist leicht zu sehen, dass G und H genau
dann Minoren voneinander sind, wenn sie isomorph sind.

Beispiel 5.27. Wir betrachten nochmals die Graphen G und H ′.

aG :

b c d

e

aH ′ :

b c d e f g

h

G ist ein Minor von H ′, da durch Fusion der Knoten c, d, e, f ein zu
G isomorpher Graph aus H ′ entsteht. /

55



5 Färben von Graphen 5.1 Färben von planaren Graphen

Wagner beobachtete, dass sich aus dem Satz von Kuratowski folgende
Charakterisierung der Klasse der planaren Graphen ableiten lässt
(siehe Übungen).

Korollar 5.28 (Wagner 1937). Ein Graph ist genau dann planar,
wenn er {K3,3, K5}-frei ist.

Beispiel 5.29. Betrachte folgenden Graphen.

a b

c d e

f g h i

j k l

m n

a b

d

j l

Durch Entfernen der dünnen Kanten entsteht eine Unterteilung des
K5. Aus dieser erhalten wir den K5, indem wir alle dünn umrandeten
Knoten (also alle Knoten vom Grad 2) überbrücken.
Alternativ lässt sich der K5 auch durch Fusion aller Knoten in
den farblich unterlegten Umgebungen der dick umrandeten Knoten
gewinnen. /

Definition 5.30. Sei ≤ eine binäre Relation auf einer Menge A.
a) (A,≤) heißt Quasiordnung, wenn ≤ reflexiv und transitiv auf

A ist.
b) (A,≤) heißt Wohlquasiordnung, wenn es zudem zu jeder Folge

a1, a2, . . . von Elementen aus A Indizes i < j mit ai ≤ aj gibt.

Beispiele für Quasiordnungen sind der Betrag auf komplexen Zahlen
und die Erreichbarkeit in gerichteten Graphen.
(N,≤) ist eine Wohlquasiordnung. Dagegen ist (Z,≤) keine Wohlqua-
siordnung, da unendliche absteigende Ketten a1 > a2 > · · · existieren,
z.B. ai = −i. Auch die Teilbarkeitsrelation auf den natürlichen Zahlen
ist keine Wohlquasiordnung, da mit der Folge der Primzahlen eine un-
endliche Antikette existiert (d.h. die Glieder der Folge sind paarweise
unvergleichbar).
Proposition 5.31. Eine Quasiordnung (A,≤) ist genau dann eine
Wohlquasiordnung, wenn es in (A,≤) weder unendliche absteigende
Ketten noch unendliche Antiketten gibt.

Beweis. Es ist klar, dass (A,≤) keine Wohlquasiordnung ist, wenn
es eine unendliche absteigende Kette oder eine unendliche Antikette
gibt.
Wenn umgekehrt weder unendliche absteigende Ketten noch unendli-
che Antikette existieren, so können wir in jeder Folge a1, a2, . . . alle
Elemente aj streichen, für die ein i < j existiert, so dass ai > aj ist.
Da hierbei von jeder absteigenden Kette ein Element in der Folge
verbleibt und alle diese Ketten endlich sind, enthält die verbleibende
Folge immer noch unendlich viele Elemente.
Als nächstes streichen wir alle Elemente aj , für die ein i < j existiert,
so dass ai und aj unvergleichbar sind. Die verbleibende Folge ist dann
immer noch unendlich und sogar monoton, d.h. es gilt ai ≤ ai+1 für
alle i. �

Proposition 5.32. In einer Wohlquasiordnung (A,≤) hat jede Teil-
menge B ⊆ A bis auf Äquivalenz nur endlich viele minimale Elemente.
Dabei heißen a, b ∈ A äquivalent, falls a ≤ b und b ≤ a gilt.
Satz 5.33 (Satz von Robertson und Seymour, 1983-2004). Die Mino-
renrelation bildet auf der Menge aller endlichen ungerichteten Graphen
eine Wohlquasiordnung.

56



5 Färben von Graphen 5.2 Färben von chordalen Graphen

Korollar 5.34. Sei K eine Graphklasse, die unter Minorenbildung
abgeschlossen ist (d.h. wenn G ∈ K und H ein Minor von G ist, dann
folgt H ∈ K). Dann gibt es eine endliche Menge H von Graphen mit

K = {G | G ist H-frei}.

Die Graphen in H sind bis auf Isomorphie eindeutig bestimmt und
heißen verbotene Minoren für die Klasse K. Für den Beweis des
Korollars betrachten wir die komplementäre Klasse K aller endlichen
Graphen, die nicht zu K gehören. Nach Satz 5.33 in Kombination mit
Proposition 5.32 hat K bis auf Isomorphie nur endlich viele minimale
Elemente. Da mit H auch jeder Graph G, der H als Minor enthält,
zu K gehört, gibt es demnach eine endliche Menge H von Graphen
mit

K = {G | ∃H ∈ H : H ist ein Minor von G},

womit Korollar 5.34 bewiesen ist.
Das Problem, für zwei gegebene Graphen G und H zu entscheiden,
ob H ein Minor von G ist, ist zwar NP-vollständig. Für einen festen
Graphen H ist das Problem dagegen effizient entscheidbar.

Satz 5.35 (Robertson und Seymour, 1995). Für jeden Graphen H gibt
es einen O(n3)-zeitbeschränkten Algorithmus, der für einen gegebenen
Graphen G entscheidet, ob er H-frei ist.

Korollar 5.36. Die Zugehörigkeit zu jeder unter Minorenbildung
abgeschlossenen Graphklasse K ist in P entscheidbar.

Der Entscheidungsalgorithmus für K lässt sich allerdings nur ange-
ben, wenn wir die verbotenen Minoren für K kennen. Leider ist der
Beweis von Theorem 5.33 in dieser Hinsicht nicht konstruktiv, so dass
der Nachweis, dass K unter Minorenbildung abgeschlossen ist, nicht
automatisch zu einem effizienten Erkennungsalgorithmus für K führt.

5.2 Färben von chordalen Graphen

Definition 5.37. Ein Graph G = (V,E) heißt chordal, wenn er
keinen induzierten Kreis der Länge ≥ 4 enthält.

Ein induzierter Kreis G[{u1, . . . , uk}] enthält also nur die Kreiskan-
ten {u1, u2}, . . . , {uk−1, uk}, {uk, u1}, aber keine Sehnen {ui, uj} mit
i− j 6≡k ±1.

Definition 5.38. Sei G ein Graph. Eine Menge S ⊆ V heißt Sepa-
rator von G, wenn G− S mehr Komponenten als G hat.

Lemma 5.39. Für einen Graphen G sind folgende Aussagen äquiva-
lent.

(i) G ist chordal.
(ii) Jeder inklusionsminimale Separator von G ist eine Clique.
(iii) Jedes Paar von nicht adjazenten Knoten x und y in G hat einen

inklusionsminimalen x-y-Separator S, der eine Clique ist.

Beweis. Sei G chordal und sei S ein minimaler Separator von G.
Dann hat G − S mindestens zwei Komponenten G[V1] und G[V2].
Angenommen, S enthält zwei nicht adjazente Knoten x und y. Da S
minimal ist, sind beide Knoten sowohl mit G[V1] als auch mit G[V2]
verbunden. Betrachte die beiden Teilgraphen Gi = G[Vi ∪ {x, y}] und
wähle jeweils einen kürzesten x-y-Pfad Pi in Gi. Da diese eine Länge
≥ 2 haben, bilden sie zusammen einen Kreis K = P1 ∪ P2 der Länge
≥ 4. Aufgrund der Konstruktion von K ist klar, dass K keine Sehne
in G hat. Dies zeigt, dass die erste Aussage die zweite impliziert.
Dass die zweite die dritte impliziert, ist klar. Um zu zeigen, dass die
erste aus der dritten folgt, nehmen wir an, dass G nicht chordal ist.
Dann gibt es in G einen induzierten Kreis K der Länge ≥ 4. Seien
x und y zwei beliebige nicht adjazente Knoten auf K und sei S ein
minimaler x-y-Separator in G. Dann muss S mindestens zwei nicht
adjazente Knoten aus K enthalten. �
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Definition 5.40. Sei G = (V,E) ein Graph und sei k ≥ 0. Ein Kno-
ten u ∈ V heißt k-simplizial in G, wenn die Nachbarschaft N(u)
eine Clique der Größe k in G bildet. Jeder k-simpliziale Knoten wird
auch als simplizial bezeichnet.

Zusammenhängende chordale Graphen können als eine Verallgemeine-
rung von Bäumen aufgefasst werden. Ein Graph G ist ein Baum, wenn
er aus K1 durch sukzessives Hinzufügen von 1-simplizialen Knoten
erzeugt werden kann. Entsprechend heißt G k-Baum, wenn G aus
Kk durch sukzessives Hinzufügen von k-simplizialen Knoten erzeugt
werden kann. Wir werden sehen, dass ein zusammenhängender Graph
G genau dann chordal ist, wenn er aus einem isolierten Knoten (also
aus einer 1-Clique) durch sukzessives Hinzufügen von simplizialen
Knoten erzeugt werden kann. Äquivalent hierzu ist, dass G durch
sukzessives Entfernen von simplizialen Knoten auf einen isolierten
Knoten reduziert werden kann.

Definition 5.41. Sei G = (V,E) ein Graph. Eine lineare Ordnung
(v1, . . . , vn) auf V heißt perfekte Eliminationsordnung von G,
wenn vi simplizial in G[{v1, . . . , vi}] für i = 1, . . . , n ist.

Lemma 5.42. Jeder nicht vollständige chordale Graph G = (V,E)
besitzt mindestens zwei simpliziale Knoten, die nicht durch eine Kante
verbunden sind.

Beweis. Wir führen Induktion über n. Für n ≤ 2 ist die Behauptung
klar. Sei G ein zusammenhängender Graph mit n ≥ 3 Knoten. Falls
G nicht vollständig ist, enthält G zwei nichtadjazente Knoten x1 und
x2. Sei S ein minimaler x1-x2-Separator und seien G[V1] und G[V2]
die beiden Komponenten von G− S mit xi ∈ Vi. Nach Lemma 5.39
ist S eine Clique in G. Betrachte die Teilgraphen Gi = G[Vi ∪ S]. Da
Gi chordal ist und weniger als n Knoten hat, ist Vi ∪ S entweder eine
Clique oder Gi enthält mindestens zwei nicht adjazente simpliziale
Knoten yi, zi, wovon höchstens einer zu S gehört. Da im zweiten Fall

yi oder zi in Vi ist, ist mindestens einer der drei Knoten xi, yi und zi
ohne Nachbarn in G[V3−i] und somit auch simplizial in G. �

Satz 5.43. Ein Graph ist genau dann chordal, wenn er eine perfekte
Eliminationsordnung hat.

Beweis. Falls G chordal ist, lässt sich eine perfekte Eliminations-
ordnung gemäß Lemma 5.42 bestimmen, indem wir beginnend mit
i = n sukzessive einen simplizialen Knoten vi in G[V −{vi+1, . . . , vn}]
wählen.
Für die umgekehrte Richtung sei (v1, . . . , vn) eine perfekte Elimina-
tionsordnung von G. Wir zeigen induktiv, dass Gi = G[{v1, . . . , vi}]
chordal ist. Da vi+1 simplizial in Gi+1 ist, enthält jeder Kreis K der
Länge ≥ 4 in Gi+1, auf dem vi+1 liegt, eine Sehne zwischen den beiden
Kreisnachbarn von vi+1. Daher ist mit Gi auch Gi+1 chordal. �

Korollar 5.44. Es gibt einen Polynomialzeitalgorithmus A, der für
einen gegebenen Graphen eine perfekte Eliminationsordnung berech-
net falls G chordal ist und andernfalls einen induzierten Kreis der
Länge ≥ 4 findet.

Beweis. A versucht wie im Beweis von Theorem 5.43 beschrieben,
eine perfekte Eliminationsordnung zu bestimmen. Stellt sich heraus,
dass Gi = G[V − {vi+1, . . . , vn}] keinen simplizialen Knoten vi hat,
so ist Gi wegen Lemma 5.42 nicht chordal. Folglich gibt es wegen
Lemma 5.39 in Gi zwei nicht adjazente Knoten x und y, so dass
kein minimaler x-y-Separator S eine Clique ist. Wie im Beweis von
Lemma 5.39 beschrieben, lässt sich mithilfe von S ein induzierter
Kreis K der Länge ≥ 4 in Gi konstruieren. Da Gi ein induzierter
Teilgraph von G ist, ist K auch ein induzierter Kreis in G. �

Eine perfekte Eliminationsordnung kann verwendet werden, um einen
chordalen Graphen zu färben:
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Algorithmus chordal-color(V,E)

1 berechne eine PEO (v1, . . . , vn) für G = (V,E)
2 greedy-color(vn, . . . , v1)

Lemma 5.45. Für einen gegebenen chordalen Graphen G = (V,E)
berechnet der Algorithmus chordal-color eine k-Färbung von G
mit k = χ(G) = ω(G).

Beweis. Sei (v1, . . . , vn) eine perfekten Eliminationsordnung von G
und sei vi ein beliebiger Knoten mit f(vi) = k. Die Nachbarn von vi
in der Menge {vi+1, . . . , vn} bilden eine Clique, da vi simplizial in
G[{vi+1, . . . , vn}] ist. Wegen f(vi) = k bilden sie zusammen mit vi
eine k-Clique. Es folgt k = χ(G) = ω(G). �

Um chordal-color effizient zu implementieren, benötigen wir einen
möglichst effizienten Algorithmus zur Bestimmung einer perfekten Eli-
minationsordnung. Rose, Tarjan und Lueker haben hierfür 1976 einen
Linearzeitalgorithmus angegeben, der auf lexikographischer Breitensu-
che (kurz LexBFS oder LBFS) basiert. Der Unterschied zur normalen
Breitensuche besteht darin, dass die Warteschlange Q nicht einzelne
Knoten, sondern Knotenmengen enthält, welche die Menge der noch
nicht besuchten Knoten partitionieren. Diese Partition wird vom Al-
gorithmus wiederholt verfeinert. Der Name von LexBFS rührt daher,
dass die Knoten in einer Reihenfolge besucht werden, die auch bei
einer gewöhnlichen Breitensuche auftreten kann, bei dieser aber nicht
garantiert ist, weil die Nachbarn eines Knoten in beliebiger Reihenfolge
zur Warteschlange hinzugefügt werden. Wenn die Zeilen und Spalten
der Adjazenzmatrix nach der durch LexBFS gefundenen Reihenfolge
angeordnet werden, sind die Zeilen lexikographisch sortiert.

Algorithmus LexBFS(V,E)

1 Q← (V ) // doppelt verkettete Liste von Mengen
2 result← () // leere Liste

3 while L 6= ∅ do
4 wähle v ∈ first(L)
5 first(L)← first(L)\{v}
6 if first(L)= ∅ then entferne den ersten Eintrag

von L
7 append(result, v)
8 for S in L with N(v) ∩ S 6= ∅ do
9 ersetze (S) in L durch (S ∩N(v), S \N(v))

10 return result

Um diesen Algorithmus effizient zu implementieren, kann die innere
for-Schleife durch eine Schleife über die Nachbarn von v ersetzt wer-
den, wenn die Knotenmengen in Q durch verkettete Listen realisiert
werden und für jeden Knoten ein Zeiger auf die Menge die ihn enthält
und auf seinen Eintrag in dieser Menge gespeichert wird.
Lemma 5.46. Sei G = (V,E) ein chordaler Graph und sei
(vn, . . . , v1) die durch LexBFS(V,E) gefundene Knotenreihenfolge.
Dann ist (v1, . . . , vn) eine perfekte Eliminationsordnung für G.

Beweis. Wir führen den Beweis mittels Induktion über n. Für n = 1
ist die Aussage trivialerweise erfüllt.
Für n > 1 werden wir zeigen, dass der zuletzt von LexBFS besuchte
Knoten v1 simplizial in G ist. Dies ist ausreichend, da G− v1 wieder
chordal ist und LexBFS bei Eingabe G − v1 die Folge (vn, . . . , v2)
berechnet, deren Umkehrung nach Induktionsvoraussetzung eine per-
fekte Eliminationsordnung für G− v1 ist. Wenn v1 simplizial in G ist,
folgt daraus, dass (v1, v2, . . . , vn) eine perfekte Eliminationsordnung
für G ist.
Wir werden unter der Annahme, dass v1 nicht simplizial ist, eine
unendliche Folge von aufsteigenden Knotenindizes i0 < i1 < i2 < · · ·
konstruieren, sodass
(a) für j < k gilt: {vij , vik} ∈ E ⇔ j + 2 = k ∨ (j, k) = (0, 1) und
(b) für j ≥ 2 gilt: 6 ∃i′j > ij : vi′j ∈ N(vij−2) \N(vij−1).
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Dies ergibt einen Widerspruch zur Endlichkeit von G. Zunächst set-
zen wir i0 = 1. Da vi0 = v1 nicht simplizial ist, gibt es zwei nicht-
benachbarte Knoten vi1 , vi2 ∈ N(vi0); wir können i1 < i2 annehmen
und dass die Bedingung (b) gilt.
Es bleibt, ij für j ≥ 3 zu finden. Da vij−1 ∈ N(vij−3)−N(vij−2) gilt
und LexBFS den Knoten vij−2 vor vij−3 ausgewählt hat, können die
Knoten vij−2 und vij−3 zu dem Zeitpunkt als LexBFS den Knoten vij−1

ausgewählt hat nicht mehr in der gleichen Menge sein. Dies ist nur
möglich, wenn es ein ij > ij−1 gibt mit vij ∈ N(vij−2)−N(vij−3). Um
zu zeigen, dass ij der Bedingung (a) genügt, müssen wir nachweisen,
dass vij−2 der einzige Nachbar von vij unter den bisher ausgewählten
Knoten ist. Durch Induktion über k ≥ 3 lässt sich zeigen, dass vij−k

kein Nachbar von vij ist: Für k = 3 ist dies bereits durch die Wahl
von ij sichergestellt. Und wenn vij ∈ N(vij−k

) \N(vij−k+1) für k > 3
wäre, so ergäbe sich wegen (b) ein Widerspruch zur Wahl von ij−k+2.
Schließlich folgt aus der Chordalität von G, dass {vij , vij−1} /∈ E, wo-
mit Bedingung (a) gezeigt ist. Außerdem können wir wieder annehmen,
dass ij der Bedingung (b) genügt. �

Damit haben wir einen Linearzeitalgorithmus, der für chordale Gra-
phen eine perfekte Eliminationsordnung berechnet. Um zu entscheiden,
ob ein gegebener Graph chordal ist, genügt es nach Satz 5.43, ob die
Umkehrung der durch LexBFS gefundenen Knotenreihenfolge tatsäch-
lich eine perfekte Eliminationsordnung ist. Der folgende Algorithmus
realisiert diese Überprüfung in linearer Zeit:

Algorithmus PEO(V,E)

1 (v1, . . . , vn)← (LexBFS(V,E))R
2 for i := 1 to n do
3 if N(vi) ∩ {vi+1, . . . , vn} = ∅ then
4 j ← min{k > i | vk ∈ N(vi)}
5 if (N(vi) ∩ {vj+1, . . . , vn}) \N(vj) 6= ∅ then
6 return "nicht chordal"

7 return (v1, . . . , vn)

Wegen Lemma 5.46 ist klar, dass der Eingabegraph G nicht chor-
dal ist, wenn der Algorithmus PEO nicht chordal ausgibt. Um-
gekehrt gilt: Wenn G nicht chordal ist, ist Umkehrung (v1, . . . , vn)
der durch LexBFS berechneten Knotenfolge nach Satz 5.43 keine
perfekte Eliminationsordnung, d.h. es gibt einen Knoten vi, sodass
N(vi) ∩ {vi+1, . . . , vn} zwei nicht-benachbarte Knoten vj und vk ent-
hält. Wir können annehmen, dass j der kleinste solche Index ist.
Sei i′ der größte Index mit i ≤ i′ < j und vj, vk ∈ N(vi′). Dann gibt
der Algorithmus PEO bei dem Durchlauf der for-Schleife, bei dem
i′ betrachtet wird, nicht chordal aus.
Der Algorithmus PEO kann sogar noch so erweitert werden, dass er
für nicht-chordale Graphen in Linearzeit einen induzierten Kreis der
Länge ≥ 4 berechnet: Hierzu wird Zeile 6 durch die im Beweis von
Lemma 5.46 angegebene Konstruktion der Knotenfolge ersetzt. Diese
wird mit i0 = i gestartet. Da der Eingabegraph endlich ist, muss die
Folge irgendwann abbrechen – und dies ist nur dann möglich, wenn die
Kante {vij , vij−1} existiert und damit einen induzierten Kreis schließt.

5.3 Kantenfärbungen

Definition 5.47. Sei G = (V,E) ein Graph und sei k ∈ N.
a) Eine Abbildung f : E → N heißt Kantenfärbung von G, wenn

f(e) 6= f(e′) für alle Kanten e, e′ mit e ∩ e′ 6= ∅ gilt.
b) G heißt k-kantenfärbbar, falls eine Kantenfärbung f : E →
{1, . . . , k} existiert.

c) Die kantenchromatische Zahl oder der chromatische Index
von G ist

χ′(G) = min{k ∈ N | G ist k-kantenfärbbar}.

Ist f eine k-Kantenfärbung von G, so bildet jede Farbklasse
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Mi = {e ∈ E | f(e) = i} ein Matching in G, d.h. f zerlegt E in
k disjunkte Matchings M1, . . . ,Mk. Umgekehrt liefert jede Zerlegung
von E in k disjunkte Matchings eine k-Kantenfärbung von G.

Beispiel 5.48.

χ′(Cn) =

3, n ungerade,
2, sonst,

χ′(Kn) = 2dn/2e − 1 =

n, n ungerade,
n− 1, sonst,

(siehe Übungen).

Lemma 5.49. Für jeden nicht leeren Graphen gilt ∆ ≤ χ′ ≤ 2∆− 1
und m/µ ≤ χ′ ≤ 2dn/2e − 1.

Beweis. Siehe Übungen. �

Korollar 5.50. Für jeden nicht leeren k-regulären Graphen mit einer
ungeraden Knotenzahl gilt χ′(G) > k.

Beweis. Wegen µ ≤ (n − 1)/2 und 2m = n∆ folgt χ′ ≥ m/µ ≥
n∆/(n− 1) > ∆ = k. �

Lemma 5.51. Für jeden bipartiten Graphen gilt χ′ = ∆.

Beweis. Siehe Übungen. Dort wird die Aussage sogar für biparti-
te Multigraphen (d.h. zwei Knoten können durch mehrere Kanten
verbunden sein) bewiesen. �

Als nächstes geben wir einen Algorithmus an, der für jeden Graphen
G eine k-Kantenfärbung mit k ≤ ∆(G) + 1 berechnet. Für den Beweis
benötigen wir folgende Begriffe.

Definition 5.52. Sei G = (V,E) ein Graph.
a) Ein Knoten u ∈ V heißt d-gradig, wenn folgende Bedingungen

erfüllt sind:
• deg(u) ≤ d,
• alle Nachbarn v ∈ N(u) haben einen Grad deg(v) ≤ d und
• ‖{v ∈ N(u) | deg(v) = d}‖ ≤ 1.

b) u heißt stark d-gradig, wenn folgende Bedingungen erfüllt sind:
• deg(u) = d,
• für alle v ∈ N(u) gilt d− 1 ≤ deg(v) ≤ d und
• ‖{v ∈ N(u) | deg(v) = d}‖ = 1.

Sei u ein Knoten in einem Graphen G und sei f eine k-Kantenfärbung
von G − u mit zugehöriger Partition M1, . . . ,Mk. Dann bezeichnet
Ni(u) = N(u) ∩ free(Mi) die Menge der Nachbarn v von u, für die
die Farbe i noch frei ist (d.h. es ist möglich, die Kante {u, v} mit i
zu färben). Wir sagen f blockiert die Farbe i, falls Ni(u) = ∅ ist.
Das nächste Lemma ist eine direkte Folgerung aus obiger Definition.

Lemma 5.53. Sei u ein stark k-gradiger Knoten in G und sei f eine
k-Kantenfärbung von G−u. Dann erfüllen die Anzahlen ai = ‖Ni(u)‖
folgende Bedingungen:

(i) ∑k
i=1 ai = 2k − 1,

(ii) falls f eine Farbe blockiert, dann gibt es eine Farbe j mit aj ≥ 3,
(iii) falls f keine Farbe blockiert, dann gibt es eine Farbe j mit

aj = 1.

Lemma 5.54. Sei u ein stark k-gradiger Knoten in G = (V,E) und
sei G− u k-kantenfärbbar. Dann hat G− u eine k-Kantenfärbung g,
die keine Farbe blockiert.
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Beweis. Sei f eine k-Kantenfärbung für G− u. Falls f eine Farbe i
blockiert, gibt es nach Lemma 5.53 eine Farbe j mit aj ≥ 3.
Betrachte den Graphen H = (V,Mi∪Mj). Sei v ein beliebiger Knoten
in Nj(u). Da v 6∈ free(Mi) und somit Endpunkt einer Kante in Mi

ist, folgt degH(v) = 1. Sei P ein bzgl. Inklusion maximaler Pfad in
H mit Startknoten v. Da ∆(H) ≤ 2 ist, ist P eine Zusammenhangs-
komponente von H. Vertauschen wir daher die Farben i und j von
allen Kanten auf P , so erhalten wir wieder eine k-Kantenfärbung
f ′ für G − u. Für diese sind a′i und a′j größer 0, da v ∈ free(M ′

i) ist
und free(Mj) höchstens 2 Knoten verliert (nämlich v und evtl. den
anderen Endpunkt von P ).
Folglich blockiert f ′ eine Farbe weniger als f und wir können diesen
Prozess fortsetzen, bis keine Farben mehr blockiert sind. �

Lemma 5.55. Sei u ein k-gradiger Knoten in G = (V,E) und sei
g eine k-Kantenfärbung für G − u. Dann lässt sich aus g eine k-
Kantenfärbung f für G konstruieren.

Beweis. Wir führen Induktion über k. Im Fall k = 1 ist u höchstens
mit einem Knoten in G verbunden und daher lässt sich g leicht zu
einer 1-Färbung für G erweitern.
Ist k ≥ 2, so modifizieren G zuerst zu einem Graphen G′, so dass u
stark k-gradig in G′ ist. Hierzu erweitern wir die Nachbarschaft von
u durch Hinzunahme von Blattknoten auf die Größe k. Anschließend
vergrößern wir die Nachbarschaft N(v) jedes Knotens v ∈ N(u) auf
dieselbe Weise, wobei wir sicherstellen, dass genau ein Nachbar von u
den Grad k und alle anderen den Grad k− 1 haben. Zudem erweitern
wir g zu einer k-Kantenfärbung g′ für G′ − u.
Nun benutzen wir Lemma 5.54, um g′ in eine k-Kantenfärbung f ′ für
G′−u zu transformieren, die keine Farbe blockiert. Nach Lemma 5.53
gibt es eine Farbe j mit a′j = 1. Sei v der einzige Nachbar von u in G′,
dessen Kanten nicht mit j gefärbt sind. Nun entfernen wir die Kante

{u, v} sowie alle mit j gefärbten Kanten aus G′ und färben alle mit k
gefärbten Kanten mit j. Dann haben in dem resultierenden Graphen
G′′ sowohl u als auch alle seine Nachbarn einen um 1 kleineren Grad,
d.h. u ist (k − 1)-gradig (aber evtl. nicht stark (k − 1)-gradig) in G′′.
Zudem liefert die Einschränkung f ′′ von f ′ auf die Kanten von G′′−u
eine (k − 1)-Kantenfärbung für diesen Graphen.
Nach IV lässt sich aus f ′′ eine (k − 1)-Kantenfärbung g′′ für G′′ kon-
struieren. Färben wir nun die aus G′ entfernten Kanten mit k, so
erhalten wir eine k-Kantenfärbung für G′ und daraus eine für G. �

Satz 5.56 (Vizing). Für jeden Graphen gilt χ′ ≤ ∆ + 1.

Beweis. Wir führen Induktion über n. Der Fall n = 1 ist trivial.
Im Fall n ≥ 2 wählen wir einen beliebigen Knoten u in G. Dann ist u
d-gradig für ein d ≤ ∆(G) + 1. Sei k = max{∆(G− u) + 1, d}. Nach
IV hat G− u eine k-Kantenfärbung, aus der wir nach Lemma 5.55
eine k-Kantenfärbung für G konstruieren können. �

Da der Beweis von Satz 5.56 konstruktiv ist, können wir daraus leicht
einen Algorithmus ableiten.

Algorithmus Vizing

1 input Graph G = (V,E) mit V = {u1, . . . , un}
2 f := ∅
3 for ` := 2 to n do
4 f := erweitere-faerbung(f, u`, G[{u1, . . . , u`}])

Prozedur erweitere-faerbung(f, u,G)
1 k := ∆(G) + 1
2 while deg(u) < k do
3 füge einen neuen Blattnachbarn von u hinzu
4 for all v ∈ N(u) do
5 if deg(v) < k − 1 then
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6 füge k − 1− deg(v) neue Blattnachbarn von v
7 hinzu und erweitere f auf die neuen Kanten
8 S := N(u); C := {1, . . . , k}
9 while S 6= ∅ do

10 if ∀v ∈ S : ‖{i ∈ C | v ∈ free(Mi)}‖ = 2 then
11 wähle einen beliebigen Knoten v ∈ S
12 füge einen neuen Blattnachbarn von v hinzu
13 und erweitere f auf die neue Kante
14 while ∃i ∈ C : Ni(u) = ∅ do
15 wähle j ∈ C mit ‖Nj(u)‖ ≥ 3
16 berechne einen inklusionsmaximalen Pfad P
17 in G[Mi ∪Mj] mit Startpunkt in Nj(u)
18 vertausche die Farben i und j auf P
19 wähle i ∈ C mit ‖Ni(u)‖ = 1 und sei Ni(u) = {v}
20 f({u, v}) := i; C := C \ {i}; S := S \ {v}
21 f := Einschränkung von f auf die Kanten in G
22 return f

Die Prozedur erweitere-faerbung(f, u,G) erweitert eine k-Kan-
tenfärbung f von G − u zu einer k-Kantenfärbung f von G, wobei
k = ∆(G) + 1 ist. Hierzu wird G durch Hinzufügen von Blattknoten
so zu einem Graphen G′ erweitert, dass u stark k-gradig in G′ ist.
Anschließend wird f auf die mit u inzidenten Kanten in G′ fortge-
setzt. Schließlich wird die Einschränkung von f auf die Kanten in G
zurückgegeben.
Die innere while-Schleife wird für jede blockierte Farbe einmal durch-
laufen. Da zu Beginn höchstens k Farben blockiert sind und bei jedem
der ‖S‖ = k Durchläufe der äußeren while-Schleife maximal eine Far-
be blockiert wird, wird die innere while-Schleife insgesamt höchstens
2k-mal durchlaufen.
Damit der Pfad P in Zeit O(n) gefunden werden kann, speichern
wir für jeden Knoten v und jede Farbe j den Matchingpartner Mj(v)
von v in einer (k × n)-Matrix M [i, v]. Dabei setzen wir M [i, v] = ⊥,

falls v ∈ free(Mi) ist. Nun ist leicht zu sehen, dass die Prozedur
erweitere-faerbung eine Laufzeit von O(kn) und somit der Algo-
rithmus Vizing eine Laufzeit von O(n2∆(G)) hat.
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6 Baum- und Pfadweite

Definition 6.1. Sei G = (V,E) ein Graph.
a) Eine Baumzerlegung von G ist ein Paar (T,X), wobei T =

(VT , ET ) ein Baum und X = (Xt)t∈VT
eine Familie von Untermen-

gen von V ist, so dass gilt:
• ⋃t∈VT

Xt = V ,
• für jede Kante {u, v} ∈ E gibt es ein t ∈ VT mit {u, v} ⊆ Xt,
und
• für jeden Knoten u ∈ V ist der durch X−1(u) := {t ∈ VT | u ∈
Xt} induzierte Untergraph T [X−1(u)] von T zusammenhängend.

b) Die Weite von (T,X) ist w(T,X) = maxt∈VT
‖Xt‖ − 1.

c) Die Baumweite tw(G) von G ist die kleinste Weite aller mögli-
chen Baumzerlegungen von G.

d) Eine Baumzerlegung (T,X) von G heißt Pfadzerlegung, wenn
T ein Pfad ist. Die Pfadweite pw(G) von G ist die kleinste Weite
aller möglichen Pfadzerlegungen von G.

Die Mengen Xt werden als Taschen (engl. bags) bezeichnet.
Beispiel 6.2. (i) Betrachte folgenden Graphen G:

a b c

d e

f g h

abd

bdg beg

bce

dfg egh

G hat eine Baumzerlegung mit den Taschen X1 = {a, b, d},
X2 = {b, d, g}, X3 = {b, e, g}, X4 = {b, e, c}, X5 = {e, g, h},
X6 = {d, f, g} und dem Baum T = ({1, . . . , 6}, ET ), wobei ET
folgende Kanten enthält: {1, 2}, {2, 3}, {3, 4}, {3, 5}, {2, 6}.

(ii) Sei Gk×` = Pk × P` der (k × `)-Gittergraph mit k` Knoten.
Dann gilt

tw(Gk×`) ≤ pw(Gk×`) ≤ min{k, `}.

Der Graph G5×4 hat bspw. folgende Pfadzerlegung der Weite 4:

a b c d

e f g h

i j k l

m n o p

q r s t

abcd
e

bcd
ef

cd
efg

d
efgh

efgh
l

efg
kl

ef
jkl

e
ijkl

ijkl
m

jkl
mn

kl
mno

l
mnop

mnop
t

mno
st

mn
rst

m
qrst

/

Proposition 6.3. Sei G = (V,E) ein Graph. Dann gilt:
• tw(G) = 0⇔ pw(G) = 0⇔ E = ∅
• Wenn G ein nicht-leerer Wald ist, gilt tw(G) = 1.

Beweisidee. Für den leeren Graphen kann eine Baumzerlegung der
Weite 0 konstruiert werden, indem für jeden Knoten eine Tasche er-
zeugt wird, die nur diesen Knoten enthält. Diese Taschen können dann
in beliebiger Reihenfolge zu einem Pfad verbunden werden. Wenn G
umgekehrt eine Baumdekomposition der Weite 0 hat, kommen nie
zwei Knoten gemeinsam in einer Tasche vor, woraus E = ∅ folgt.
Für die zweite Aussage genügt es zu zeigen, dass jeder nicht-leere
Baum Baumweite 1 hat, da sich die Baumdekompositionen für die
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Zusammenhangskomponenten durch Verbinden mit zusätzlichen Kan-
ten leicht zu einer für den gesamten Graphen kombinieren lassen. Sei
G = (V,E) ein Baum. Dann ist (T,X) mit VT = E ∪

{
{u}

∣∣∣ u ∈ V },
Xt = t für t ∈ VT und ET =

{
{s, t}

∣∣∣ s ⊂ t
}
eine Baumdekomposition

der Weite 1 von G. �

Definition 6.4. Eine Baumzerlegung (T,X) heißt kompakt, wenn
alle Taschen paarweise unvergleichbar sind, d.h. für alle s 6= t ∈ VT
gilt Xs 6⊆ Xt und Xt 6⊆ Xs.

Proposition 6.5. Sei G = (V,E) ein Graph.
(i) Jede Baumzerlegung (T,X) von G lässt sich in Polynomialzeit

in eine kompakte Baumzerlegung (T ′, X ′) von G transformieren,
die nur Taschen aus X enthält.

(ii) Für jede kompakte Baumzerlegung (T,X) von G gilt n(T ) ≤
n(G).

(iii) Für jeden Untergraphen H von G gilt tw(H) ≤ tw(G) und
pw(H) ≤ pw(G).

(iv) Für jede Kante {u, v} ∈ E gilt tw(Guv) ≤ tw(G) und
pw(Guv) ≤ pw(G).

Beweisidee.
(i) Der Algorithmus traversiert T von einem beliebigen Blatt aus.

Für jede Kante {s, t} (wobei s näher am Startknoten liege als t)
wird geprüft, ob Xs ⊆ Xt oder Xs ⊇ Xt gilt. In diesem Fall wird
die Kante {s, t} zu s kontrahiert und Xs auf Xs∪Xt ∈ {Xs, Xt}
gesetzt. Anschließend wird die Graphsuche im so erhaltenen
Graphen Tst fortgesetzt.
Dieser Algorithmus benötigt O(w(T,X)·n(T )) Zeit. Es ist leicht
zu sehen, dass das Ergebnis eine kompakte Baumrepräsentati-
on von G ist. Angewandt auf eine Pfadkomposition findet der
Algorithmus eine kompakte Pfaddekomposition.

(ii) Sei (T,X) eine kompakte Baumdekomposition von G = (V,E),
und sei s ein Blatt von T und s′ sein Nachbar. Da (T,X) kom-
pakt ist, muss es einen Knoten vs ∈ Xs \ Xs′ . Betrachte nun
einen beliebigen Baumknoten t ∈ VT \ {s}, und sei t′ ∈ VT der
erste Knoten auf dem Pfad von t nach s. Dann muss es wieder
einen Knoten vt ∈ Xt \Xt′ geben. Da die Baumknoten, deren
Taschen diese Knoten vs und vt enthalten jeweils einen Teilbaum
bilden, gilt t1 6= t2 ⇒ vt1 6= vt2 – und damit n(T ) ≤ n(G).

(iii) Sei (T,X) eine Baumdekomposition von G = (V,E) und sei
H = (V ′, E ′) ein Untergraph von G. Dann ist (T,X ′) mit
X ′t = Xt ∩ V ′ eine Baumdekomposition von H mit w(T,X ′) ≤
w(T,X).

(iv) Sei (T,X) eine Baumdekomposition von G = (V,E). Dann ist
(T,X ′) mit

X ′t =

Xt wenn v /∈ Xt

(Xt \ {v}) ∪ {u} wenn v ∈ Xt

eine Baumdekomposition von Guv mit w(T,X ′) ≤ w(T,X). �

Korollar 6.6. Für jeden Minor H eines Graphen G gilt tw(H) ≤
tw(G) und pw(H) ≤ pw(G).

Als nächstes zeigen wir, dass tw(G) ≥ ω(G)− 1 ist. Für 2 Teilbäume
T ′ und T ′′ eines Baumes T bezeichne dT (T ′, T ′′) die minimale Länge
eines Pfades P im Baum T , der einen Knoten u ∈ T ′ mit einem
Knoten v ∈ T ′′ verbindet. Man beachte, dass der kürzeste Pfad P
zwischen T ′ und T ′′ im Fall dT (T ′, T ′′) > 0 eindeutig bestimmt ist
und der einzige Pfad zwischen T ′ und T ′′ ist, dessen innere Knoten
weder zu T ′ noch zu T ′′ gehören.

Lemma 6.7. Seien T1, . . . , Tk, S Teilbäume von T , so dass T1 ∩ · · · ∩
Tk 6= ∅ ist. Dann gilt

dT (T1 ∩ · · · ∩ Tk, S) ≤ max{dT (Ti, S) | i = 1, . . . , k}.

65



6 Baum- und Pfadweite

Beweis. Wir führen Induktion über k. Für k = 1 ist nichts zu zei-
gen. Im Fall k ≥ 2 gilt für S ′ = T1 ∩ · · · ∩ Tk−1 nach IV, dass
dT (S ′, S) ≤ max{dT (Ti, S) | i = 1, . . . , k − 1} ist. Daher reicht es
zu zeigen, dass dT (S ′ ∩ Tk, S) ≤ max{dT (S ′, S), dT (Tk, S)} ist. Sei
d = dT (S ′ ∩ Tk, S) > 0 und sei P = (u1, . . . , ud) der kürzeste Pfad
zwischen S ′ ∩Tk und S. Dann gehören u2, . . . , ud alle nicht zu S ′ oder
alle nicht zu Tk. Somit ist P kürzester S ′-S Pfad oder kürzester Tk-S
Pfad. �

Definition 6.8. Ein Mengensystem X = (Xi)i∈I hat die Helly-
Eigenschaft, wenn für jede Teilmenge J ⊆ I gilt:

(∀i, j ∈ J : Xi ∩Xj 6= ∅)⇒
⋂
j∈J

Xj 6= ∅.

Lemma 6.9. Die Knotenmengen aller Unterbäume eines Baumes T
haben die Helly-Eigenschaft.

Beweis. Sei Z = {T1, . . . , Tk} eine beliebige Menge von Unterbäumen
von T , so dass je zwei Unterbäume Ti und Tj aus Z einen nicht leeren
Schnitt haben. Wir zeigen induktiv über k = ‖Z‖, dass dann auch⋂
Z nicht leer ist.

Für k ≤ 2 ist nichts zu zeigen. Im Fall k ≥ 3 gilt nach IV,
dass T ′ = ⋂k−1

i=1 Ti 6= ∅ ist. Zudem folgt mit obigem Lemma, dass
dT (T ′, Tk) ≤ max{dT (Ti, Tk) | i = 1, . . . , k − 1} = 0 und somit
T ′ ∩ Tk 6= ∅ ist. �

Satz 6.10. Sei (T,X) eine Baumzerlegung eines Graphen G und
sei C eine Clique in G. Dann gibt es eine Tasche Xt, in der C ent-
halten ist.

Beweis. Da je 2 Knoten u, v ∈ C durch eine Kante verbunden sind,
gibt es eine Tasche Xt mit {u, v} ∈ Xt. Folglich haben die zugehö-
rigen Unterbäume X−1(u) und X−1(v) mindestens einen Knoten t

gemeinsam. Nach Lemma 6.9 gibt es daher einen Knoten, der in allen
Unterbäumen X−1(u) mit u ∈ C enthalten ist. �

Korollar 6.11.
(i) ω(G) ≤ tw(G) + 1,
(ii) tw(Kn) = n− 1.

Definition 6.12. Eine Baumzerlegung (T,X) von G heißt Baum-
zerlegung in Cliquen, wenn alle Taschen Cliquen in G sind.

Lemma 6.13. Ein Graph G ist genau dann chordal, wenn er eine
Baumzerlegung in Cliquen hat.

Beweis. Sei G chordal. Wir zeigen mittels Induktion über die Kno-
tenanzahl n, dass G eine Baumzerlegung in Cliquen hat. Für n = 1
ist dies klar. Für n ≥ 2 sei v ein simplizialer Knoten von G. Nach
Induktionsvoraussetzung hat G− v eine Baumzerlegung (T ′, X ′) in
Cliquen. Da NG(v) eine Clique in G − v ist, gibt es nach Satz 6.10
t ∈ VT ′ mit NG(v) ⊆ Xt. Um eine Baumzerlegung (T,X) von G zu
erhalten, konstruieren wir T aus T ′ durch Anfügen eines neuen Blatt-
nachbarn s von t und erweitern X ′ zu X durch Xs = NG(v)∪{v}. Es
ist leicht zu sehen, dass (T,X) eine Baumzerlegung in Cliquen ist.
Sei nun umgekehrt (T,X) eine Baumzerlegung in Cliquen von G.
Für jeden Kreis K der Länge ≥ 4 kann wie im Beweis von Propositi-
on 6.5(iii) eine Baumdekomposition (T ′, X ′) für den vonK induzierten
Teilgraphen konstruieren; auch hier sind alle Taschen Cliquen. Wegen
tw(G[K]) ≥ 2 gibt es t ∈ VT ′ mit ‖X ′t‖ ≥ 3. Da X ′t eine Clique
induziert, hat K eine Sehne. �

Frage: Welche Graphen haben eine Pfadzerlegung in Cliquen?

Definition 6.14. Sei G = (V,E) ein Graph. Dann heißt ein Graph
H = (V,E ′) eine chordale Erweiterung von G, wenn H chordal
und G ein Teilgraph von H ist.
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Lemma 6.15. tw(G) = min{ω(H)− 1 | H ist eine chordale Erwei-
terung von G}.

Beweis. ≤: Sei H ein beliebiger chordaler Graph, der G als Subgraph
enthält. Dann hat H eine Baumzerlegung (T,X) in Cliquen und es
gilt tw(H) = ω(H)− 1. Da (T,X) auch eine Baumzerlegung von G
ist, folgt tw(G) ≤ ω(H)− 1.
≥: Sei (T,X) eine Baumzerlegung von G der Weite w = tw(G). Fügen
wir alle Kanten {u, v} zu G hinzu, für die u und v in einer gemeinsa-
men Tasche liegen, so ist der resultierende Graph H chordal und es
gilt ω(H) ≤ w − 1. �

Definition 6.16. Sei G = (V,E) ein Graph und seien U,W ⊆ V
zwei nichtleere disjunkte Knotenmengen in G. Dann heißt X ⊆ V ein
U-W -Separator in G, wenn U \X und W \X nichtleer sind und es
in G − X keinen Pfad von einem Knoten u ∈ U zu einem Knoten
w ∈ W gibt.

Es ist leicht zu sehen, dass ein Graph G = (V,E) genau dann k-
fach zusammenhängend ist, wenn es keine Mengen U,W,X ⊆ V gibt
sodass X ein U -W -Separator ist mit ‖X‖ < k.

Lemma 6.17. Sei (T,X) eine Baumzerlegung von G = (V,E) und
sei e = {u,w} eine Kante in T . Seien Tu und Tw die beiden Kompo-
nenten von T −e und seien X(Tu) = ⋃

t∈Tu
Xt und X(Tw) = ⋃

t∈Tw
Xt.

Falls U = X(Tu) \X(Tw) und W = X(Tw) \X(Tu) beide nicht leer
sind, ist X = Xu ∩Xw ein U-W -Separator in G.

Beweis. Wegen Xu ⊆ X(Tu) und Xw ⊆ X(Tw) folgt X = Xu ∩Xw ⊆
X(Tu)∩X(Tw). Da (T,X) eine Baumzerlegung ist, gilt auch die umge-
kehrte Inklusion, d.h. X, U = X(Tu)\X(Tw) undW = X(Tw)\X(Tu)
zerlegen V in 3 Mengen. Daher reicht es zu zeigen, dass in G keine
Kante zwischen U und W existiert.

Sei {a, b} ∈ E. Dann gibt es eine Tasche Xt mit {a, b} ⊆ Xt. Falls t
zu Tu gehört, folgt {a, b} ⊆ X(Tu) und somit {a, b} ∩W = ∅. Falls t
zu Tw gehört, folgt {a, b} ⊆ X(Tw) und somit {a, b} ∩ U = ∅. �

Satz 6.18. Für jeden Graphen G gilt κ(G) ≤ tw(G).

Beweis. Sei k = tw(G). Dann hat G mindestens k + 1 Knoten. Falls
G genau k+ 1 Knoten hat, ist G höchstens k-fach zusammenhängend.
Falls G n > k + 1 Knoten hat, sei (T,X) eine kompakte Baumzerle-
gung von G und sei e = {u,w} eine Kante in T . Da (T,X) kompakt
ist, gilt Xu \ Xw 6= ∅ und Xw \ Xu 6= ∅ und somit ‖Xu ∩ Xw‖ ≤ k.
Nach obigem Lemma ist X = Xu ∩Xw ein Separator in G und somit
G höchstens k-fach zusammenhängend. �

Korollar 6.19. Ein Graph G = (V,E) hat genau dann die Baumweite
tw(G) = 1, wenn G ein Wald und E 6= ∅ ist.

Frage: Welche Graphen G haben Pfadweite pw(G) = 1?

Satz 6.20. Für jeden Graphen G gilt m(G) ≤ tw(G) · n(G).

Beweis. Wir führen den Beweis mittels Induktion über die Knoten-
zahl n.
n ≤ tw(G) + 1: Jeder Knoten hat maximal tw(G) Nachbarn, folglich

gilt sogar m(G) ≤ 1
2 · tw(G) · n(G).

n > tw(G) + 1: Sei (T,X) eine Baumdekomposition von G mit mi-
nimaler Weite. Nach Proposition 6.5 können wir annehmen,
dass (T,X) kompakt ist. Sei t ∈ VT ein Blatt von T , und
sei s der Nachbar von t. Wegen der Kompaktheit existiert
ein Knoten u ∈ Xt \ Xs; dieser taucht damit nur in der Ta-
sche Xt auf. Insbesondere müssen alle Nachbarn von u in Xt

enthalten sein, es gilt also degG(u) ≤ ‖Xt‖ − 1 ≤ tw(G).
Nach Induktionsvoraussetzung gilt außerdem m(G − u) ≤
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tw(G− u) · n(G− u) ≤ tw(G) ·
(
n(G)− 1

)
. Zusammen ergibt

sich m(G) = degG(u) +m(G− u) ≤ tw(G) · n(G). �

6.1 Dynamische Programmierung über
Baumdekompositionenen

Definition 6.21. Sei P ⊆ Σ∗ ein Entscheidungsproblem und k : Σ∗ →
N ein Parameter (beispielsweise die Baumweite des Eingabegraphen).
Dann heißt P fixed parameter tractable (FPT) bezüglich k (kurz:
(P, k) ∈ FPT), wenn es eine Funktion f : N→ N und einen Algorith-
mus gibt, der für jedes x ∈ Σ∗ in f(k(x)) · |x|O(1) Zeit entscheidet, ob
x ∈ P gilt.

Die Funktion f ist hierbei beliebig, insbesondere kann sie exponentiell
wachsen. Für NP-schwere Probleme sind FPT-Algorithmen dennoch
interessant, weil sie das exponentielle Laufzeitverhalten auf den Para-
meter beschränken. Wird der Parameter als konstant angenommen,
ergibt sich für wachsende Eingabegrößen polynomielle Laufzeit. Dabei
ist die Aussage »P ist FPT bezüglich der Baumweite« stärker als
»für jede Baumweite w ist das Problem P für Graphen mit durch w
beschränkter Baumweite in Polynomialzeit lösbar«, weil letzteres auch
bei einer Laufzeit von nO(w) zutrifft.
Viele Probleme, die für allgemeine Graphen NP-schwer sind, sind FPT
bezüglich der Baumweite. Häufig lassen sich sogar Laufzeiten der
Form f(w) · n erreichen; die Größe der Eingabe geht also nur linear
ein.
Um nachzuweisen, dass ein Problem FPT bezüglich der Baumweite
ist, bietet es sich an, den Dekompositiosbaum an einem beliebigen
Knoten zu wurzeln und dann von den Blättern aufwärts Teillösungen
zu berechnen, bis eine Lösung für den gesamten Graphen vorliegt.

Definition 6.22. Sei (T,X) eine Baumdekomposition für einen Gra-
phen G = (V,E) und sei r ∈ VT . Dann heißt (T, r,X) gewurzelte
Baumdekomposition von G, wobei alle kannten von der Wurzel r
weggerichtet werden. Zudem definieren wir für t ∈ VT :

T (t) = {s ∈ VT | s ist von u aus erreichbar}
V (t) =

⋃
s∈T (t)

Xt

G(v) = G[V (t)]

Die Idee ist nun, für jeden Baumknoten t ∈ VT und jede lokale Lö-
sung Lt auf G[Xt] in einer Tabelle zu speichern, ob (und ggf. wie)
sich Lt zu einer Lösung L̂t auf G(t) erweitern lässt. Dabei werden wir T
post-order traversieren, um bei der Behandlung eines inneren Knotens
bereits auf die Information über seine Kinder zugreifen können. Um
zu prüfen, ob zu einer lokalen Lösung Lt auf G[Xt] eine Erweiterung
zu einer Lösung L̂t auf G(t) existiert, werden wir prüfen, ob zu Lt
kompatible Teillösungen Ls1 , . . . , Lsk

für die Kinder s1, . . . , sk von t
existieren, die sich zu Lösungen auf G(s1), . . . , G(sk) erweitern lassen.
Damit ergibt sich folgender Meta-Algorithmus:

1 for each t ∈ VT (bottom-up) do
2 for each Teillösung Lt auf G[Xt] do
3 Speichere, ob Lt mit erweiterbaren Teillösungen

Ls1 , . . . , Lsk
für die Kinder s1, . . . , sk von~t zu

einer Lösung L̂t auf G(t) kombiniert werden
kann

4 Prüfe, ob eine passende "Teil-"Lösung für die
Wurzel r existiert

Um diesen Meta-Algorithmus für ein konkretes Problem anzupassen,
muss jeweils geklärt werden, was eine lokale Teillösung ist, wann Teil-
lösungen kompatibel sind und wie kompatible Teillösungen kombiniert
werden können.
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Färbbarkeit

Als erstes Beispiel für ein NP-schweres Problem, dass FPT in der
Baumweite ist, werden wir k-Färbbarkeit betrachten – also die Frage,
ob für einen gegebenen Graphen G eine k-Färbung existiert.
Als lokale Teillösung an einem Baumknoten t ∈ VT verwenden wir
Funktionen ft : Xt → [k], wobei [k] = {1, 2, . . . , k}. Um den Algo-
rithmus zu vereinfachen, betrachten wir auch solche ft, die keine
k-Färbung von G[Xt] sind.
Für zwei Teilgraphen G1 = (V1, E1) und G2 = (V2, E2) eines Gra-
phen G = (V,E) nennen wir k-Färbungen f1 : V1 → [k] von G1 und
f2 : V2 → [k] vonG2 kompatibel, wenn f1(u) = f2(u) für alle u ∈ V1∩V2
gilt. Falls zusätzlich V1 ⊂ V2 gilt, so heißt f2 Erweiterung von f1.
Für t ∈ VT und ft : Xt → [k] definieren wir das Prädikat

Pt(ft) =

1 falls es eine k-Färbung f̂t von G(t) gibt, die ft erweitert
0 sonst.

Das dynamische Programm wird dieses Prädikat von den Blättern
aus für jeden Knoten von T berechnen. Für Blätter t ∈ VT genügt
es zu prüfen, ob ft eine k-Färbung von G[Xt] ist. Für innere Knoten
muss zusätzlich die Erweiterbarkeit geprüft werden. Dies gelingt mit
dem folgenden Lemma.

Lemma 6.23. Sei t ∈ VT und ft : Xt → [k] eine k-Färbung von G[Xt].
Dann gilt Pt(ft) = 1 genau dann, wenn für alle Kinder s von t ei-
ne lokale Lösung fs : Xs → [k] mit Ps(fs) = 1 existiert, die zu ft
kompatibel ist.

Beweis. »⇒«: Sei f̂t eine k-Färbung von G(t), die ft erweitert. Wir
definieren für jedes Kind s von t die k-Färbung fs = f̂t|Xs . Da sich
diese auf die k-Färbung f̂s = f̂t|V (s) von G(s) erweitern lässt, gilt
Ps(fs) = 1. Außerdem ist fs nach Konstruktion zu ft kompatibel.

»⇐«: Seien s1, . . . , sd die Kinder von t. Für i ∈ [d] sei fsi
: Xsi

→ [k]
eine lokale Lösung, die zu ft kompatibel ist und die sich zu einer k-
Färbung f̂s von G(si) erweitern lässt. Wegen i 6= j ⇒ V (si)∩V (sj) ⊆
Xt sind die Funktionen in F = {ft, fs1 , . . . , fsd

} paarweise kompati-
bel. Ihre Vereinigung f̂t = ⋃

F ist eine k-Färbung von G(t), die ft
erweitert. �

Zusammen ergibt sich der folgende Algorithmus:
Prozedur treedec-color(V,E, T, r,X, k)
1 for each t ∈ VT (bottom-up) do
2 for each ft : Xt → [k] do
3 Pt(ft) := 1
4 if ∃u, v ∈ Xt : {u, v} ∈ E ∧ ft(u) = ft(v) then
5 Pt(ft) := 0
6 else
7 for each child s of t do
8 if 6 ∃fs : Xs → [k] : Ps(fs) = 1 und fs, ft

kompatibel then
9 Pt(ft) := 0; break

10 return ∃fr : Xr → [k] : Pr(fr) = 1

Die Korrektheit folgt aus Lemma 6.23. Um die Laufzeit abzuschätzen,
nehmen wir an, dass die gegebene Baumdekomposition kompakt ist;
damit hat T nach Proposition 6.5 höchstens n Knoten und die äußere
Schleife über t wird höchstens n mal durchlaufen. Für ft stehen dabei
jeweils höchstens kw+1 Möglichkeiten zur Verfügung. In den Übungen
wird χ(G) ≤ tw(G) + 1 gezeigt, daher können wir kw+1 ≤ (w + 1)w+1

abschätzen. Der Test in Zeile 4 kann in O(w∆) implementiert werden,
indem für jeden Knoten u ∈ Xt seine Adjazenzliste durchgegangen
wird. Da jeder Baumknoten s höchstens einen Elternknoten t hat,
wird die innere for-Schleife höchstens

(
(w + 1)w+1 · n

)
-mal durchlau-

fen. In ihr müssen jeweils höchstens (w+ 1)w+1 Funktionen fs getestet
werden. Zusammen ergibt sich eine Laufzeit von O

(
(w+ 1)2w+2w∆n

)
.
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Da der Maximalgrad ∆ nicht durch w beschränkt ist (der K1,∆ hat
Baumweite 1 und Maximalgrad ∆), ist diese Laufzeit noch nicht linear
in n. Um dies zu erreichen, kann für den Adjazenztest in Zeile 4 eine
Lazy-Adjazenzmatrix verwendet werden, in der nur die 1-Einträge
initialisiert werden, und die Gültigkeit eines Eintrags ai,j beim Zugriff
noch dadurch geprüft wird, ob er auf einen Eintrag einer zusätzlichen
Liste zeigt, in der an dieser Stelle das Tupel (i, j) steht. Hierbei ent-
steht ein Initialisierungsaufwand von O(m) = O(wn) und es kann
für ein Paar von Knoten in konstanter Zeit getestet werden, ob sie
benachbart sind. Allerdings wird quadratisch viel Platz in n benötigt.
Um nicht nur die Laufzeit, sondern auch den Platzbedarf linear in n
zu halten, hilft das folgende Lemma. Für S ⊆ VT definieren wir top(S)
als den Knoten in S, der den kürzesten Abstand zur Wurzel von T hat.
Für u ∈ V sei top(u) = top(X−1(u)) und Ntop(u) = N(u) ∩Xtop(u).

Lemma 6.24. {u, v} ∈ E ⇔ u ∈ Ntop(v) ∨ v ∈ Ntop(u)

Beweis. »⇐« ist nach Definition klar.
»⇒«: Sei S = X−1(u) ∩X−1(v). Dann gilt top(S) ∈ {top(u), top(v)},
da sonst auch der Elternknoten von top(S) in S enthalten wäre. �

Die Mengen Ntop(u) können für alle Knoten u ∈ V in O(n + m) =
O(wn) Zeit berechnet werden, indem T traversiert wird und an jeder
Tasche t für alle Knoten in Xt, die nicht auch in der Elterntasche
enthalten sind, die Adjazenzliste durchgegangen wird (was jede Kante
nur zweimal besucht). Wegen ‖Ntop(u)‖ ≤ w + 1 sind dann Adja-
zenztests in O(w) Zeit möglich. Dies ergibt für treedec-color eine
Gesamtlaufzeit von O

(
(w + 1)2w+2w3n

)
.

Stabile Mengen

Als zweites Beispiel für ein NP-schweres Problem, das FPT in der
Baumweite des Eingabegraphen ist, betrachten wir das Stabilitäts-
problem. Hier wird für einen gegebenen Graphen G = (V,E) und

eine Zahl k ∈ N gefragt, ob es eine stabile Menge U ⊆ V der Größe
‖U‖ = k gibt.
Der Algorithmus wird wieder eine Variante des zu Beginn der Ab-
schnitts vorgestellten Meta-Algorithmus sein. Eine lokale Teillösung
für einen Baumknoten t ∈ VT ist eine Menge It ⊆ Xt. Dabei inter-
essieren wir uns eigentlich nur für solche It die stabil in G[Xt] sind,
nehmen der Einfachheit halber aber alle Teilmengen von Xt in die
Tabelle des dynamischen Programms auf.
Seien G1 = (V1, E1) und G2 = (V2, E2) Teilgraphen eines Gra-
phen G = (V,E). Zwei stabile Mengen I1 von G1 und I2 von G2
heißen kompatibel, wenn I1∩V2 = I2∩V1 gilt. In diesem Fall ist I1∪I2
stabil in (V1 ∪ V2, E1 ∪ E2).
Das dynamische Programm berechnet für t ∈ VT und It ⊆ Xt die
Werte

Pt(It) =


max

‖Ît‖
∣∣∣∣∣∣ Ît ist stabil in G(T )
und kompatibel zu It

 falls It stabil in G[Xt]

−∞ sonst.

Um die rekursive Berechnungsvorschrift für Pt möglichst einfach zu
halten, werden wir Baumdekompositionen mit einer besonderen Struk-
tur verwenden.
Definition 6.25. Deine gewurzelte Baumdekomposition (T, r,X)
heißt einfach, wenn alle Baumknoten t ∈ VT eine der folgenden
Bedingungen erfüllen:
(a) t hat keine Kinder und ‖Xt‖ = 1. In diesem Fall heißt t Blatt.
(b) t hat ein Kind s mit Xt ⊂ Xs und ‖Xt‖ = ‖Xs‖ − 1. In diesem

Fall heißt t Weglass-Knoten.
(c) t hat ein Kind s mit Xt ⊃ Xs und ‖Xt‖ = ‖Xs‖+ 1. In diesem

Fall heißt t Hinzufüge-Knoten.
(d) t hat zwei Kinder r und s mit Xr = Xs = Xt. In diesem Fall

heißt t Kombinationsknoten.
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Lemma 6.26. Es gibt einen Algorithmus, der aus einer kompakten
Baumdekomposition (T,X) von G = (V,E) in O(wn) Zeit eine einfa-
che Baumdekomposition von G mit gleicher Weite und O(wn) Knoten
berechnet.

Beweis. Der Algorithmus arbeitet wie folgt:

Prozedur simple-treedec(T,X)
1 for t ∈ VT do
2 if degT (t) = 1 ∧ ‖Xt‖ > 1 then
3 füge ein neues Blatt t′ als Nachbarn von t an
4 wähle u ∈ Xt und setze Xt′ = {u}
5 for {s, t} ∈ ET do
6 if Xs 6⊆ Xt ∧Xs 6⊇ Xt then
7 unterteile {s, t} durch einen neuen Knoten r
8 setze Xr = Xs ∩Xt

9 for {s, t} ∈ ET do
10 sei {v1, . . . , vp} = Xs und {v1, . . . , vq} = Xt und p < q
11 unterteile {s, t} durch q − p− 1 Knoten t1, . . . , tq−p−1
12 setze Xti = {v1, . . . , vp+i}
13 wähle r ∈ VT und betrachte T als in r gewurzelt
14 for t ∈ VT do
15 seien t1, . . . , td die Kinder von t
16 if d > 1 then
17 füge einen Binärbaum mit d Blättern zwischen t

und seinen Kindern ein, alle neuen Knoten
erhalten die gleiche Tasche wie t

Die erste Schleife stellt sicher, dass alle Blätter einelementige Taschen
haben. Die zweite und dritte Schleife stellen sicher, dass sich die Ta-
schen von benachbarten Baumknoten um genau einen Graphknoten
unterscheiden. Die vierte Schleife stellt schließlich sicher, dass interne
Knoten entweder nur ein oder zwei Kinder haben und in letzterem
Fall beide die gleiche Tasche haben.

Nach Proposition 6.5 gilt zu Beginn des Algorithmus ‖VT‖ ≤ n. Nach
der ersten Schleife gilt ‖VT‖ ≤ 2n. Nach der zweiten Schleife gilt
‖VT‖ ≤ 3n, da nur für die höchstens n − 1 Kanten des ursprüngli-
chen Baums neue Knoten eingefügt werden können. Nach der dritten
Schleife gilt ‖VT‖ ≤ 3wn, da jede Kante durch höchstens w = w(T,X)
Knoten unterteilt wird. Schließlich gilt nach der vierten Schleife
‖VT‖ ≤ 9wn, da die eingefügten Binärbäume höchstens so viele
Blätter wie zuvor vorhandene Knoten haben und höchstens so viele
innere Knoten wie Blätter.
Es ist leicht zu sehen, dass die Laufzeit linear durch die Ausgabegröße
und damit durch O(wn) beschränkt ist. �

Das folgende Lemma zeigt, wie Pt für einfache Baumdekompositionen
rekursiv berechnet werden kann.
Lemma 6.27. Sei (T, r,X) eine einfache Baumdekomposition und
t ∈ VT . Dann gilt:
(a) Wenn t ein Blatt ist mit Xt = {u}, so ist Pt({u}) = 1 und

Pt(∅) = 0.
(b) Wenn t ein Weglass-Knoten mit Kind s und {u} = Xs \Xt ist,

so gilt Pt(I) = max
{
Ps(I), Ps(I ∪ {u})

}
für alle I ⊆ Xt.

(c) Wenn t ein Hinzufüge-Knoten mit Kind s und {u} = Xt \Xs ist,
so gilt für alle I ⊆ Xt:

Pt(I) =


−∞ wenn I nicht stabil in G[Xt]
Ps(I) wenn I stabil in G[Xt] und u /∈ I
Ps(I \ {u}) + 1 wenn I stabil in G[Xt] und u ∈ I

(d) Wenn t ein Kombinationsknoten mit Kindern r und s ist, so gilt
Pt(I) = Pr(I) + Ps(I)− ‖I‖ für alle I ⊆ Xt.

Satz 6.28. Es gibt einen Algorithmus, der für eine gegebene Baum-
dekomposition (T,X) eines Graphen G = (V,E) der Weite w in
O(2ww4n) Zeit die Stabilitätszahl α(G) berechnet.

71



6 Baum- und Pfadweite 6.1 Dynamische Programmierung über Baumdekompositionenen

Beweis. Der Algorithmus berechnet zunächst eine einfache Baum-
dekomposition (T ′, r,X) von G der Weite w (in O(wn) Zeit nach
Lemma 6.26) und die Mengen Ntop(u) für schnelle Adjazenztests nach
Lemma 6.24 (ebenfalls O(wn) Zeit). Dann verwendet er die Berech-
nungsvorschriften aus Lemma 6.27, um bottom-up für alle Baum-
knoten t ∈ VT ′ und Mengen It ⊆ Xt die Werte Pt(It) auszurechnen.
Schließlich gibt er maxIr⊆Xr Pr(Ir) zurück.
Es gibt 2wwn Paare von t und It, für die Pt(It) berechnet wird. Je
nachdem, welcher Fall von Lemma 6.27 jeweils zum tragen kommt,
fällt dabei folgender Aufwand an:
Fall (a) kann in O(1) Zeit implementiert werden.
Fall (b) kann in O(w) Zeit implementiert werden, wenn die Indi-

zes It ⊆ Xt als Bitfolgen der Länge ‖Xt‖ repräsentiert wer-
den.

Fall (c) kann in O(w3) Zeit implementiert werden, wenn zur Über-
prüfung ob It stabil in G[Xt] ist der O(w)-Adjazenztest nach
Lemma 6.24 verwendet wird.

Fall (d) kann wieder in O(w) Zeit implementiert werden.
Zusammen ergibt sich die angegebene Laufzeit. �

Courcelle hat sogar gezeigt, dass für einen gegebenen Graphen G
und eine als MSO-Formel φ (monadic second order logic) gegebene
Grapheigenschaft in f(tw, φ)n Zeit entschieden werden kann, ob φ
durch G erfüllt wird.
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