Vorlesungsskript
Graphalgorithmen

Sommersemester 2015

Prof. Dr. Johannes Kobler
Sebastian Kuhnert

Humboldt-Universitat zu Berlin
Lehrstuhl Komplexitat und Kryptografie

17. Juni 2015

Inhaltsverzeichnis

ii

1 Grundlagen

1 Grundlagen

Der Begriff Algorithmus geht auf den persischen Gelehrten Muham-
med Al Chwarizmi (8./9. Jhd.) zuriick. Der <este bekannte nicht-
triviale Algorithmus ist der nach Fuklid benannte Algorithmus zur
Berechnung des grofiten gemeinsamen Teilers zweier natiirlicher Zah-
len (300 v. Chr.). Von einem Algorithmus wird erwartet, dass er
jede Problemeingabe nach endlich vielen Rechenschritten 16st (etwa
durch Produktion einer Ausgabe). Ein Algorithmus ist ein ,Verfah-
ren® zur Losung eines Entscheidungs- oder Berechnungsproblems, das
sich prinzipiell auf einer Turingmaschine (TM) implementieren lasst
(Church-Turing-These).

Die Registermaschine

Bei Aussagen zur Laufzeit von Algorithmen beziehen wir uns auf die
Registermaschine (engl. random access machine; RAM). Dieses Modell
ist etwas flexibler als die Turingmaschine, da es den unmittelbaren
Lese- und Schreibzugriff (random access) auf eine beliebige Speicher-
einheit (Register) erlaubt. Als Speicher stehen beliebig viele Register
zur Verfiigung, die jeweils eine beliebig grofie natiirliche Zahl speichern
konnen. Auf den Registerinhalten sind folgende arithmetische Ope-
rationen in einem Rechenschritt ausfithrbar: Addition, Subtraktion,
abgerundetes Halbieren und Verdoppeln. Unabhéngig davon geben
wir die Algorithmen in Pseudocode an. Das RAM-Modell benutzen
wir nur zur Komplexitétsabschatzung.

Die Laufzeit von RAM-Programmen wird wie bei TMs in der Lange
der Eingabe gemessen. Man beachte, dass bei arithmetischen Proble-
men (wie etwa Multiplikation, Division, Primzahltests, etc.) die Lange

einer Zahleingabe n durch die Anzahl [logn]| der fiir die Binarkodie-
rung von n benotigten Bits gemessen wird. Dagegen bestimmt bei
nicht-arithmetischen Problemen (z.B. Graphalgorithmen oder Sortier-
problemen) die Anzahl der gegebenen Zahlen, Knoten oder Kanten
die Lange der Eingabe.

Asymptotische Laufzeit und Landau-Notation

Definition 1.1. Seien f und g Funktionen von N nach R*. Wir
schreiben f(n) = O(g(n)), falls es Zahlen ny und c gibt mit

Vn >mng: f(n) <c-g(n).

Die Bedeutung der Aussage f(n) = O(g(n)) ist, dass f ,nicht
wesentlich schneller” als g wéchst. Formal bezeichnet der Term
O(g(n)) die Klasse aller Funktionen f, die obige Bedingung erfiil-
len. Die Gleichung f(n) = O(g(n)) drickt also in Wahrheit eine
Element-Bezichung f € O(g(n)) aus. O-Terme koénnen auch auf
der linken Seite vorkommen. In diesem Fall wird eine Inklusionsbe-
ziechung ausgedriickt. So steht n* + O(n) = O(n?) fiir die Aussage
{n®+f|feO(n)} COn?).

Beispiel 1.2.

7log(n) +n3 = O(n?) ist richtig.

Tlog(n)n3 = O(n?) ist falsch.

2n+O0) = O(2m) st richtig.

e 20" = O(2") ist falsch (siehe Ubungen). N

Es gibt noch eine Reihe weiterer niitzlicher Groflenvergleiche von
Funktionen.

Definition 1.3. Wir schreiben f(n) = o(g(n)), falls es fiir jedes
c > 0 eine Zahl ng gibt mit

Vn >ng: f(n) <c-g(n).

Damit wird ausgedrickt, dass f ,wesentlich langsamer® als g wdchst.
Auferdem schreiben wir

o f(n)=Q(g(n)) fir gin) =0O(f(n)), d.h. f wichst mindestens so
schnell wie g)

o f(n)=uwlg(n)) fir gin) =o(f(n)), d.h. f wichst wesentlich schnel-
ler als g, und

o [(n)=0(g(n)) fir f(n) = O(g(n)) A f(n) = Qg(n)), dh. [und

g wachsen ungefihr gleich schnell.

1.1 Graphentheoretische Grundlagen

Definition 1.4. Ein (ungerichteter) Graph ist ein Paar G =
(V, E), wobei

V' - eine endliche Menge von Knoten/Ecken und

E - die Menge der Kanten ist.
Hierbei gilt

E C (‘2/) :{{u,v}§V|u7év}.

Seiv €V ein Knoten.
a) Die Nachbarschaft von v ist Ng(v) ={u €V | {u,v} € E}.
b) Der Grad von v ist deg,(v) = || Ng(v)||.

¢) Der Minimalgrad von G ist 6(G) = min,cy deg(v) und der
Maximalgrad von G ist A(G) = max,ey degq(v).

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach
N(v), deg(v), § usw.

Beispiel 1.5.

e Der vollstindige Graph (V, E) auf n Knoten, d.h. ||V || =n und

E= (‘2/ , wird mit K,, und der leere Graph (V,0) auf n Knoten

wird mit E,, bezeichnet.

Kl.'

° KQ.'H Kg.’ i K4.' K5.' @

e Der vollstindige bipartite Graph (A, B, E) auf a + b Knoten,
d.h. ANB =0, |Al| = a, ||B|| =b und E = {{u,v} |u € A,v € B}
wird mit Kqp bezeichnet.

Kii:, , K < KZ,Q;X Koy g Ks3: %

e Der Pfad der Lange n — 1 wird mit P, bezeichnet.

Py: o—e P;: o—e— Py:

Ps: o—e—o—o—o

e Der Kreis der Liange n wird mit C,, bezeichnet.

Cg."/\ 04.' C5ﬂ » 06-' O

Definition 1.6. Sei G = (V, E) ein Graph.

a) Eine Knotenmenge U C 'V heifit unabhidngig oder stabil, wenn
es keine Kante von G mit beiden Endpunkten in U g¢ibt, d.h. es gilt
EnN () = 0. Die Stabilititszahl ist

a(G) = max{||U|| | U ist stabile Menge in G}.

b) Eine Knotenmenge U C 'V heifst Clique, wenn jede Kante mit

beiden Endpunkten in U in E ist, d.h. es gilt (g) C E. Die Cli-
quenzahl ist

w(G) = max{||U]| | U ist Clique in G}.

c) Eine Abbildung f: V — N heifst Farbung von G, wenn f(u) #
f(v) fir alle {u,v} € E gilt. G heif$st k-farbbar, falls eine Fdr-
bung f: V — {1,...,k} existiert. Die chromatische Zahl ist

X(G) =min{k € N | G ist k-firbbar}.
d) Ein Graph heifit bipartit, wenn x(G) < 2 ist.

1 Grundlagen

e) Ein Graph G' = (V', E') heifst Sub-/Teil-/Untergraph von G,
falls V! CV und E' C E ist. Ein Subgraph G' = (V' E'") heifit
(durch V') induziert, falls E' = EN (‘g) ist. Hierfiir schreiben
wir auch H = G[V"].

f) Ein Weg ist eine Folge von (nicht notwendig verschiedenen) Kno-
ten vy, . .., v mit {v;,vi1} € E fiiri=0,...,0—1, der jede Kante
e € E héchstens einmal durchlduft. Die Lange des Weges ist die
Anzahl der durchlaufenen Kanten, also €. Im Fall ¢ = 0 heifst der
Weg trivial. Ein Weg vy, ..., vs heifft auch vo-ve-Weg.

g) Ein Graph G = (V, E) heifit zusammenhédngend, falls es fir alle
Paare {u,v} € (‘2/) einen u-v-Weg gibt. G heifst k-fach zusam-
menhingend, 1 < k < n, falls G nach Entfernen von beliebigen
[<min{n — 1,k — 1} Knoten immer noch zusammenhdngend ist.

h) Ein Zyklus ist ein u-v-Weg der Linge { > 2 mit u = v.

i) Fin Weg heifit einfach oder Pfad, falls alle durchlaufenen Knoten
verschieden sind.

j) Ein Kreis ist ein Zyklus vy, vy . ..,v_1,v9 der Linge ¢ > 3, fir
den vg, vy, ...,vi_1 paarweise verschieden sind.

k) Ein Graph G = (V,E) heifit kreisfrei, azyklisch oder Wald,
falls er keinen Kreis enthdlt.

) Ein Baum ist ein zusammenhdngender Wald.

m) Jeder Knoten uw € V vom Grad deg(u) < 1 heifit Blatt und die
ibrigen Knoten (vom Grad > 2) heiffen innere Knoten.

Es ist leicht zu sehen, dass die Relation
Z ={(u,v) € Vx V| esgibt in G einen u-v-Weg}

eine Aquivalenzrelation ist. Die durch die Aquivalenzklassen von Z in-
duzierten Teilgraphen heiflen die Zusammenhangskomponenten
(engl. connected components) von G.

Definition 1.7. Ein gerichteter Graph oder Digraph ist ein
Paar G = (V, E), wobei

1.1 Graphentheoretische Grundlagen

V' - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.

Hierbei gilt
EQVXV:{(U,UHU,UGV},

wobei E auch Schlingen (u,w) enthalten kann. Sei v € V' ein Knoten.

a) Die Nachfolgermenge von v ist N*(v) ={u €V | (v,u) € E}.

b) Die Vorgidngermenge von v ist N~ (v) = {u €V | (u,v) € E}.

¢) Die Nachbarmenge von v ist N(v) = N*(v) U N~ (v).

d) Der Ausgangsgrad von v ist deg” (v) = ||[N*(v)|| und der Ein-
gangsgrad von v ist deg” (v) = ||[N~(v)||. Der Grad von v ist
deg(v) = deg™ (v) + deg™ (v).

e) Ein (gerichteter) wvo-ve-Weg ist eine Folge von Knoten
Vo, -+, mit (v;,vi41) € E firi =0,...,0 —1, der jede Kan-
te e € E hochstens einmal durchlauft.

f) FEin (gerichteter) Zyklus ist ein gerichteter u-v-Weg der Linge
{>1 mitu=w.

g) Ein gerichteter Weg heifit einfach oder (gerichteter) Pfad, falls
alle durchlaufenen Knoten verschieden sind.

h) Ein (gerichteter) Kreis in G ist ein gerichteter Zyklus
Vg, V1 - .., Up_1,V der Linge £ > 1, fiir den vg, vy, ..., v,_1 paarwei-
se verschieden sind.

i) G heifst kreisfrei oder azyklisch, wenn es in G keinen gerichteten
Kreis gibt.

j) G heiffit schwach zusammenhingend, wenn es in G fir jedes
Knotenpaar u # v € V' einen u-v-Pfad oder einen v-u-Pfad gibt.

k) G heifit stark zusammenhidngend, wenn es in G fir jedes Kno-

tenpaar u # v € V' sowohl einen u-v-Pfad als auch einen v-u-Pfad
qibt.

1 Grundlagen

1.2 Datenstrukturen fiir Graphen

Sei G = (V, E) ein Graph bzw. Digraph und sei V = {vy,...,v,}.
Dann ist die (n x n)-Matrix A = (a;;) mit den Eintrégen

17 iy Uj S 1, iy Uj cF
. = { (v, 03} bow., = { (vi, v;)

0, sonst 0, sonst

die Adjazenzmatrix von G. Fiir ungerichtete Graphen ist die Ad-
jazenzmatrix symmetrisch mit a; =0 firv=1,... n.

Bei der Adjazenzlisten-Darstellung wird fiir jeden Knoten v; eine
Liste mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet
man entweder nur die Liste der Nachfolger oder zusétzlich eine weitere
fiir die Vorganger. Falls die Anzahl der Knoten gleichbleibt, organi-
siert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit
Index i verweist auf die Adjazenzliste von Knoten v;. Falls sich die
Anzahl der Knoten dynamisch dndert, so werden die Adjazenzlisten
typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 1.8.

Betrachte den gerichteten Graphen G = (V, E) @ ©
mit V. = {1,2,3,4} und E = {(2,3),

(2,4), (3,1), (3,4), (4,4)}. Dieser hat folgende O

Adjazenzmatriz- und Adjazenzlisten-Darstellung:

123 4 —
110 0 0 0 1]

200 0 1 1 2_——’
30100 1 3| —{1][>{4]]
410 0 01 4—__,

Folgende Tabelle gibt den Aufwand der wichtigsten elementaren Opera-
tionen auf Graphen in Abhangigkeit von der benutzten Datenstruktur

1.2 Datenstrukturen fiir Graphen

an. Hierbei nehmen wir an, dass sich die Knotenmenge V' nicht andert.

Adjazenzmatrix Adjazenzlisten
einfach ‘ clever | einfach ‘ clever
Speicherbedarf | O(n?) | O(n?) | O(n+m) | O(n+m)
Initialisieren | O(n?) | O(1) O(n) O(1)
Kante einfiigen | O(1) | O(1) o(1) O(1)
Kante entfernen || O(1) | O(1) O(n) O(1)
Test auf Kante || O(1) | O(1) O(n) O(n)

Bemerkung 1.9.

o Der Aufwand fir die Initialisierung des leeren Graphen in der Ad-
jazenzmatrizdarstellung lasst sich auf O(1) driicken, indem man
mithilfe eines zusdtzlichen Feldes B die Griltigkeit der Matrizein-
trige verwaltet (siehe Ubungen,).

e Die Verbesserung beim Léschen einer Kante in der Adjazenzlisten-
darstellung erhdlt man, indem man die Adjazenzlisten doppelt ver-
kettet und im ungerichteten Fall die beiden Vorkommen jeder Kante
in den Adjazenzlisten der beiden Endknoten gegenseitig verlinkt
(siehe die Prozeduren Insert(Di)Edge und Remove(Di)Edge auf
den ndchsten Seiten).

e Bei der Adjazenzlistendarstellung kénnen die Knoten auch in einer
doppelt verketteten Liste organisiert werden. In diesem Fall konnen
dann auch Knoten in konstanter Zeit hinzugefigt und in Zeit O(n)
wieder entfernt werden (unter Beibehaltung der ibrigen Speicher-
und Laufzeitschranken).

Es folgen die Prozeduren fiir die in obiger Tabelle aufgefiihrten elemen-
taren Graphoperationen, falls G als ein Feld G[1,...,n| von (Zeigern
auf) doppelt verkettete Adjazenzlisten reprasentiert wird. Wir behan-
deln zuerst den Fall eines Digraphen.

1 Grundlagen

Prozedur Init

1

2

for i:=1 to n do
Gli] =1

Prozedur InsertDiEdge(u,v)

1.3 Keller und Warteschlange

Falls G ungerichtet ist, konnen diese Operationen wie folgt implemen-
tiert werden (die Prozeduren Init und Edge bleiben unverandert).

Prozedur InsertEdge(u,v)

erzeuge Listeneintrag e

source(e) :==u

target(e) :=v

prev(e) := L

next(e) := Glu]

if Glu]# L then
prev(Glu]) :==e

Glu] :==e¢

return e

Prozedur RemoveDiEdge(e)

1
2

-~ W

)

if next(e) # L then
prev(next(e)) := prev(e)
if prev(e) # L then
next(prev(e)) := next(e)
else
G[source(e)] := next(e)

ot >~ w [\ =

10

erzeuge Listeneintrage e, ¢’

opposite(e) := ¢
opposite(e’) :==e¢
next(e) := Glu]
next(e’) := G[v]
if Glu] # L then

prev(Glu]) :=e
if GJv] # L then
prev(G[v]) :=¢

Glu] :==e; Gv]:=¢
source(e) := target(e’) :==u
target(e) := source(¢) :=v

prev(e) :== L
prev(e’) := L
return e

Prozedur RemoveEdge(e)

1
2

RemoveDiEdge(e)
RemoveDiEdge(opposite(e))

Prozedur Edge(u,v)

B W N =

)

e := Glu]
while e # 1 do
if target(e) =v then
return 1
e := next(e)
return 0

1.3 Keller und Warteschlange

Fiir das Durchsuchen eines Graphen ist es vorteilhaft, die bereits
besuchten (aber noch nicht abgearbeiteten) Knoten in einer Menge B
zu speichern. Damit die Suche effizient ist, sollte die Datenstruktur
fir B folgende Operationen effizient implementieren.

1 Grundlagen

Init(B): Initialisiert B als leere Menge.
Empty(B): Testet B auf Leerheit.
Insert(B,u): Fugtuin B ein.
): Gibt ein Element aus B zurtck.
)

Gibt ebenfalls Element(B) zuriick und
entfernt es aus B.

Element(B):
Remove(B):

Andere Operationen wie z.B. Remove(B, u) werden nicht benotigt.

Die gewiinschten Operationen lassen sich leicht durch einen Keller
(auch Stapel genannt) (engl. stack) oder eine Warteschlange (engl.
queue) implementieren. Falls maximal n Datensitze gespeichert wer-
den miissen, kann ein Feld zur Speicherung der Elemente benutzt
werden. Andernfalls konnen sie auch in einer einfach verketteten Liste
gespeichert werden.

Stack S — Last-In-First-Out

Top(S): Gibt das oberste Element von S zurtick.
Push(S,z): Figt x als oberstes Element zum Keller hinzu.

Pop(S): Gibt das oberste Element von S zurtick und ent-
fernt es.

Queue () — Last-In-Last-Out

Enqueue(Q@, z): Fiigt am Ende der Schlange hinzu.
Head(®): Gibt das erste Element von) zuriick.

Dequeue(®): Gibt das erste Element von @ zuriick und ent-
fernt es.

Die Kelleroperationen lassen sich wie folgt auf einem Feld S[1...n]
implementieren. Die Variable size(S) enthalt die Anzahl der im
Keller gespeicherten Elemente.

1.3 Keller und Warteschlange

Prozedur StackInit(S)
1 size(S):=0

Prozedur StackEmpty(S)
| return(size(S) =0)

Prozedur Top(S)
if size(S) >0 then
return(S[size(5)])
else
return(_L)

[\] -

Prozedur Push(S,x)

1 if size(S) <n then

2 size(S) :=size(5)+1
3 Slsize(S)] ==z

i1 else

5 return(.l)

Prozedur Pop(S)

if size(S) >0 then
size(S):=size(S) -1
return(S[size(S) + 1])
else
return(l)

=~ w V) -

ot

Es folgen die Warteschlangenoperationen fiir die Speicherung in einem
Feld Q[1...n]. Die Elemente werden der Reihe nach am Ende der
Schlange @ (zyklisch) eingefiigt und am Anfang entnommen. Die
Variable head(Q) enthélt den Index des ersten Elements der Schlan-
ge und tail(Q) den Index des hinter dem letzten Element von Q
befindlichen Eintrags.

1 Grundlagen

Prozedur QueueInit(Q)

I head(Q) :=1
2 tail(@) :=1
3 size(Q):=0

1.4 Durchsuchen von Graphen

\ head(Q) := head(Q) + 1
9 return(z)

Prozedur QueueEmpty(Q)

I return(size(Q) =0)

Prozedur Head(Q)

1 if QueueEmpty(Q) then
2 return(_L)
3 else

1 returnQ[head(Q)]

Prozedur Enqueue(Q,z)

if size(Q)) =n then

2 return(l)

3 size(Q):=size(Q)+1
o Qtail(@)] ==

5 if tail(Q) =n then

6 tail(Q) =1

7 else

tail(Q) := tail(Q) + 1

oo

Prozedur Dequeue(Q)

1 if QueueEmpty(Q) then
2 return(.l)

3 size(Q):=size(Q)—1
1z = Q[head(Q)]

5 if head(Q)) =n then

s head(Q) :=1

Satz 1.10. Sdamtliche Operationen fiir einen Keller S und eine War-
teschlange @ sind in konstanter Zeit O(1) ausfihrbar.

Bemerkung 1.11. Mit Hilfe von einfach verketteten Listen sind
Keller und Warteschlangen auch fiir eine unbeschrinkte Anzahl von
Datensdtzen mit denselben Laufzeitbeschrinkungen implementierbar.

Die fiir das Durchsuchen von Graphen benotigte Datenstruktur B
lasst sich nun mittels Keller bzw. Schlange wie folgt realisieren.

’ Operation H Keller S ‘ Schlange @ ‘
Init(B) StackInit(S) | QueueInit(Q)
Empty(B) StackEmpty(S) | QueueEmpty(Q)
Insert(B,u) || Push(S,u) Enqueue(Q, u)
Element(B) || Top(S) Head(Q)
Remove(B) Pop(S) Dequeue(Q)

1.4 Durchsuchen von Graphen

Wir geben nun fiir die Suche in einem Graphen bzw. Digraphen
G = (V, F) einen Algorithmus GraphSearch mit folgenden Eigen-
schaften an:
GraphSearch benutzt eine Prozedur Explore, um alle Knoten
und Kanten von G zu besuchen.
Explore(w) findet Pfade zu allen von w aus erreichbaren Knoten.
Hierzu speichert Explore(w) fiir jeden tiber eine Kante {u, v} bzw.
(u,v) neu entdeckten Knoten v # w den Knoten u in parent(v).
Wir nennen die bei der Entdeckung eines neuen Knotens v durch-
laufenen Kanten (parent(v),v) parent-Kanten.

1 Grundlagen

Im Folgenden verwenden wir die Schreibweise e = uv sowohl fir
gerichtete als auch fiir ungerichtete Kanten e = (u,v) bzw. e = {u, v}.
Algorithmus GraphSearch(V, E)

i for all veV, ec F do
2 vis(v) := false
1

parent(v) := L
vis(e) := false
5 for all weV do
6 if vis(w) = false then Explore(w)

Prozedur Explore(w)

1 vis(w) := true

> Init(B)

5 Insert(B,w)

1+ while —Empty(B) do

5 u := Element(B)

6 if 3 e=wuv e E:vis(e) = false then
7 vis(e) := true

8 if vis(v) = false then
9 vis(v) := true

10 parent(v) :==u

11 Insert(B,v)

12 else

13 Remove(B)

Um die néachste von u ausgehende Kante uv, die noch nicht besucht
wurde, in konstanter Zeit bestimmen zu konnen, kann man bei der
Adjazenzlistendarstellung fiir jeden Knoten u neben dem Zeiger auf
die erste Kante in der Adjazenzliste von u einen zweiten Zeiger be-
reithalten, der auf die aktuelle Kante in der Liste verweist.

1.4 Durchsuchen von Graphen

Suchwalder

Definition 1.12. Sei G = (V, E) ein Digraph.

o Fin Knoten w € V heifst Wurzel von G, falls alle Knoten v € V
von w aus erreichbar sind (d.h. es gibt einen gerichteten w-v-Weg
in G).

o (G heifit gerichteter Wald, wenn G kreisfrei ist und jeder Knoten
v € V' FEingangsgrad deg™ (v) <1 hat.

e Ein Knoten u € V vom Ausgangsgrad deg™ (u) = 0 heifst Blatt.

e Fin gerichteter Wald, der eine Wurzel hat, heifit gerichteter
Baum.

In einem gerichteten Baum liegen die Kantenrichtungen durch die
Wahl der Wurzel bereits eindeutig fest. Daher kann bei bekannter
Wurzel auf die Angabe der Kantenrichtungen auch verzichtet werden.
Man spricht dann von einem Wurzelbaum.

Betrachte den durch SearchGraph(V, E) erzeugten Digraphen W =
(V> Eparent) mit

Eparent = {(pa rent(v),v) | v € V und parent(v) # J_}.

Da parent(v) vor v markiert wird, ist klar, dass W kreisfrei ist. Zu-
dem hat jeder Knoten v hochstens einen Vorgénger parent(v). Dies
zeigt, dass W tatsachlich ein gerichteter Wald ist. W heif3t Such-
wald von G und die Kanten (parent(v),v) von W werden auch als
Baumkanten bezeichnet.

W hangt zum einen davon ab, wie die Datenstruktur B implementiert
ist (z.B. als Keller oder als Warteschlange). Zum anderen héngt W
aber auch von der Reihenfolge der Knoten in den Adjazenzlisten ab.

Klassifikation der Kanten eines (Di-)Graphen

Die Kanten eines Graphen G = (V| E) werden durch den Suchwald
W = (V, Eparent) in vier Klassen eingeteilt. Dabei erhalt jede Kante

1 Grundlagen

die Richtung, in der sie bei ihrem ersten Besuch durchlaufen wird.

Neben den Baumkanten (parent(v),v) € Eparent gibt es noch
Riickwirts-, Vorwéarts- und Querkanten. Riickwértskanten (u,v)
verbinden einen Knoten u mit einem Knoten v, der auf dem parent-
Pfad P(u) von wu liegt. Liegt dagegen u auf P(v), so wird (u,v)
als Vorwiértskante bezeichnet. Alle tibrigen Kanten heiflen Quer-
kanten. Diese verbinden zwei Knoten, von denen keiner auf dem
parent-Pfad des anderen liegt.

Beispiel 1.13. Bei Aufruf mit dem 0 e
Startknoten a konnte die Prozedur a .@
Explore den nebenstehendem Graphen e Q

beispielsweise wie folgt durchsuchen.

] Menge B ‘Knoten ‘ Kante ‘ Typ‘ ’ B ‘Knoten ‘ Kante ‘ Typ‘

{a} a (a,b) | B || {d,e, f} d (d,e) | V
{a,b} a |(af)| B [[{de f}| d |(df)] Q
{a,b, [} a - - {d,e, [} d - -
{b, f} b (b,d) | B {e,f} e (e,d) | R
{b.d, f} b - - {e. f} e - -
{d, f} d | (dc)| B {f} [(fie)] Q
{c.d, [} ¢ |(ce)| B {f} f - -
{c,d,e, f} c - - 0

Dabei entsteht nebenstehender Such-
wald.

Die Klassifikation der Kanten eines Digraphen G erfolgt analog, wobei
die Richtungen jedoch bereits durch G vorgegeben sind (dabei werden
Schlingen der Kategorie der Vorwéartskanten zugeordnet). Tatséchlich

1.4 Durchsuchen von Graphen

durchlauft Explore bei einem Graphen die Knoten und Kanten in der
gleichen Reihenfolge wie bei dem Digraphen, der fiir jede ungerichtete
Kante {u,v} die beiden gerichteten Kanten (u,v) und (v, u) enthilt.

Beispiel 1.14. Bei Aufruf mit dem
Startknoten a konnte die Prozedur
Explore beispielsweise nebenstehen-
den Suchwald generieren.

] Menge B ‘Knoten ‘ Kante\ ‘ ’ B ‘Knoten ‘ Kante\ ‘
{a} a |{a,e}|Bl|{ede fH| ¢ |[{cf}Q
{a,e} a {a, f}|B||{c, d,e, f} c - -
{av e’f} a - - {dve7f} d {d7 b} -
{67 f} € {eva} - {d,e,f} d {dv C} -
{e, f} e {e,c} |B|| {d,e, f} d {d,e} | R
{c,e, f} c {c,b} |B|| {d,e, f} d - -
{b,c,e, f} b {b,c} | - {e, f} e {e,d} | -
{b,c,e, [} b {b,d} | B {e, f} e - -
{be,dye, fH] b - |- {f} f [t a}] -
{¢,d,e, [} c {¢,d} |V {f} f {f,c}| -
{Ca duevf} c {Cv 6} - {f} f B B

Satz 1.15. Fualls der (un)gerichtete Graph G in Adjazenzlisten-
Darstellung gegeben ist, durchliuft GraphSearch alle Knoten und
Kanten von G in Zeit O(n + m).

Beweis. Offensichtlich wird jeder Knoten u genau einmal zu B hin-
zugefiigt. Dies geschieht zu dem Zeitpunkt, wenn u zum ersten Mal
,besucht* und das Feld visited fiir u auf true gesetzt wird. Aufler-
dem werden in Zeile 6 von Explore alle von u ausgehenden Kanten
durchlaufen, bevor u wieder aus B entfernt wird. Folglich werden
tatsédchlich alle Knoten und Kanten von G besucht.

1 Grundlagen

Wir bestimmen nun die Laufzeit des Algorithmus GraphSearch. In-
nerhalb von Explore wird die while-Schleife fiir jeden Knoten u genau
(deg(u) + 1)-mal bzw. (deg™ (u) + 1)-mal durchlaufen:

e cinmal fiir jeden Nachbarn v von v und

e dann noch einmal, um u aus B zu entfernen.

Insgesamt sind das n + 2m im ungerichteten bzw. n 4+ m Durchlaufe
im gerichteten Fall. Bei Verwendung von Adjazenzlisten kann die
néichste von einem Knoten v aus noch nicht besuchte Kante e in
konstanter Zeit ermittelt werden, falls man fiir jeden Knoten v einen
Zeiger auf e in der Adjazenzliste von v vorsieht. Die Gesamtlaufzeit
des Algorithmus GraphSearch betréigt somit O(n + m). [

Als néchstes zeigen wir, dass Explore(w) zu allen von w aus erreich-
baren Knoten v einen (gerichteten) w-v-Pfad liefert. Dieser lasst sich
mittels parent wie folgt zurtickverfolgen. Sei

v, 1 =0,
U; =

parent(u;_1), ¢>0und u; ; # L
und sei ¢ = min{i > 0 | w;y1y = L}. Dann ist v, = w und
p = (ug,...,up) ein w-v-Pfad. Wir nennen P den parent-Pfad
von v und bezeichnen ihn mit P(v).

Satz 1.16. Fulls beim Aufruf von Explore alle Knoten und Kanten
als unbesucht markiert sind, berechnet Explore(w) zu allen erreich-
baren Knoten v einen (gerichteten) w-v-Pfad P(v).

Beweis. Wir zeigen zuerst, dass Explore(w) alle von w aus erreich-
baren Knoten besucht. Hierzu fithren wir Induktion tiber die Lange /¢
eines kiirzesten w-v-Weges.

¢ = 0: In diesem Fall ist v = w und w wird in Zeile 1 besucht.

10

1.5 Spannbaume und Spannwalder

¢~ ¢+ 1: Sei v ein Knoten mit Abstand [+ 1 von w. Dann hat ein
Nachbarknoten v € N(v) den Abstand ¢ von w. Folglich wird u
nach IV besucht. Da u erst dann aus B entfernt wird, wenn alle
seine Nachbarn (bzw. Nachfolger) besucht wurden, wird auch v
besucht.

Es bleibt zu zeigen, dass parent einen Pfad P(v) von w zu jedem
besuchten Knoten v liefert. Hierzu fiuhren wir Induktion tber die
Anzahl k£ der vor v besuchten Knoten.

k =0: In diesem Fall ist v = w. Da parent(w) = L ist, liefert
parent einen w-v-Pfad (der Lénge 0).

k—1~ k: Sei u = parent(v). Da u vor v besucht wird, liefert
parent nach IV einen w-u-Pfad P(u). Wegen u = parent(v)
ist u der Entdecker von v und daher mit v durch eine Kante

verbunden. Somit liefert parent auch fiir v einen w-v-Pfad
P(v). u

1.5 Spannbdume und Spannwilder

In diesem Abschnitt zeigen wir, dass der Algorithmus GraphSearch
fir jede Zusammenhangskomponente eines (ungerichteten) Graphen
GG einen Spannbaum berechnet.

Definition 1.17. Sei G = (V, E) ein Graph und H = (U, F) ein
Untergraph.
e H heifit spannend, falls U =V ist.

e H ist ein spannender Baum (oder Spannbaum) von G, falls
U=V und H ein Baum ist.

e H ist ein spannender Wald (oder Spannwald) von G, falls
U=V und H ein Wald ist.

1 Grundlagen

Es ist leicht zu sehen, dass fiir G' genau dann ein Spannbaum existiert,
wenn G zusammenhangend ist. Allgemeiner gilt, dass die Spannbéu-
me fiir die Zusammenhangskomponenten von G einen Spannwald
bilden. Dieser ist bzgl. der Subgraph-Relation maximal, da er in kei-
nem grofleren Spannwald enthalten ist. Ignorieren wir die Richtungen
der Kanten im Suchwald W, so ist der resultierende Wald W' ein
maximaler Spannwald fiir G.

Da Explore(w) alle von w aus erreichbaren Knoten findet, spannt
jeder Baum des (ungerichteten) Suchwaldes W’ = (V, Ej, ent) mit

/ {{parent(v),v} | v € V und parent(v) # J_}

parent —
eine Zusammenhangskomponente von G.

Korollar 1.18. Sei G ein (ungerichteter) Graph.

e Der Algorithmus GraphSearch(V, E) berechnet in Linearzeit einen
Spannwald W', dessen Bdume die Zusammenhangskomponenten
von G spannen.

e Fulls G zusammenhdngend ist, ist W' ein Spannbaum fir G.

1.6 Berechnung der
Zusammenhangskomponenten

Folgende Variante von GraphSearch bestimmt die Zusammenhangs-
komponenten eines (ungerichteten) Eingabegraphen G.

Algorithmus CC(V, E)

1 k=0

> for all veV, ec F do
3 cc(v) =0

1 cc(e) :==0

5 for all weV do

11

1.6 Berechnung der Zusammenhangskomponenten

; if cc(w) =0 then
k:=k+1
ComputeCC(k,w)

-3

0

Prozedur ComputeCC(k,w)
1occ(w) =k

> Init(B)

3 Insert(B,w)
1

while —Empty(B) do

u := Element(B)
6 if 3 e={u,v} € E:cc(e) =0 then
7 cc(e) =k
if cc(v) =0 then
9 cc(v) ==k
10 Insert(B,v)
11 else
12 Remove(B)

0d]

Korollar 1.19. Der Algorithmus CC(V, E) bestimmt fiir einen Gra-
phen G = (V, E) in Linearzeit O(n +m) simtliche Zusammenhangs-
komponenten Gy, = (Vi, Ex) von G, wobei Vi, = {v eV | cc(v) = k}
und E, = {e € E | cc(e) = k} ist.

1.7 Breiten- und Tiefensuche

Wie wir gesehen haben, findet Explore(w) sowohl in Graphen als
auch in Digraphen alle von w aus erreichbaren Knoten. Als néchstes
zeigen wir, dass Explore(w) zu allen von w aus erreichbaren Knoten
sogar einen kiirzesten Weg findet, falls wir die Datenstruktur B als
Warteschlange () implementieren.

Die Benutzung einer Warteschlange () zur Speicherung der bereits
entdeckten, aber noch nicht abgearbeiteten Knoten bewirkt, dass

1 Grundlagen

zuerst alle Nachbarknoten wy, ..., u; des aktuellen Knotens u besucht
werden, bevor ein anderer Knoten aktueller Knoten wird. Da die
Suche also zuerst in die Breite geht, spricht man von einer Breiten-
suche (kurz BF'S, engl. breadth first search). Den hierbei berechneten
Suchwald bezeichnen wir als Breitensuchwald.

Bei Benutzung eines Kellers wird dagegen u; aktueller Knoten, bevor
die iibrigen Nachbarknoten von u besucht werden. Daher fiihrt die
Benutzung eines Kellers zu einer Tiefensuche (kurz DFS, engl. depth
first search). Der berechnete Suchwald heifit dann Tiefensuchwald.

Die Breitensuche eignet sich eher fiir Distanzprobleme wie z.B. das

Finden

e kiirzester Wege in Graphen und Digraphen,

e lingster Wege in Béumen (siehe Ubungen) oder

e kiirzester Wege in Distanzgraphen (Dijkstra-Algorithmus).

Dagegen liefert die Tiefensuche interessante Strukturinformationen

wie z.B.

e die zweifachen Zusammenhangskomponenten in Graphen,

e die starken Zusammenhangskomponenten in Digraphen oder

e cine topologische Sortierung bei azyklischen Digraphen (s. Ubun-
gen).

Wir betrachten zuerst den Breitensuchalgorithmus.

Algorithmus BFS(V, E)

1 for all veV, e E do
2 vis(v) := false

3 parent(v) ;== L

4 vis(e) := false

5 for all weV do

6 if vis(w) = false then BFS-Explore(w)

1.7 Breiten- und Tiefensuche

Prozedur BFS-Explore(w)

I vis(w) := true
QueueInit(Q)

3 Enqueue(Q,w)

. while —QueueEmpty(Q) do
5 u := Head(Q)

6 if 3 e=wuv e E:vis(e) = false then
7 vis(e) := true

8 if vis(v) = false then
9 vis(v) := true

10 parent(v) :==u

11 Enqueue(Q,v)

12 else

13 Dequeue(Q)

V]

Beispiel 1.20. BFS-Explore gene-
riert bei Aufruf mit dem Startknoten a
nebenstehenden Breitensuchwald.

bes. bes. bes. bes.
Schlange @ | Knoten | Kante | Typ || @ Knoten | Kante | Typ
- a (a,b) | B ||ced c (c,e) | Q
a,b a (a,f)| B ||ced c (¢, /)| Q
a,b, f a - - c,e.d c - -
b, f b (b,e) | B ||e,d e (e,c) | Q
b, f,c b - - e,d e (e,d) | Q
f,c f (f,e)| B ||led e (ef) | R
f,ce f - - e, d e - -
c e c (c,d) | B ||d d - -

1 Grundlagen 1.7 Breiten- und Tiefensuche

Satz 1.21. Sei G ein Graph oder Digraph und sei w Wurzel des von s Push(S,w)
BFS-Explore(w) berechneten Suchbaumes T'. Dann liefert parent i while —StackEmpty(S) do
fir jeden Knoten v in T einen kiirzesten w-v-Weg P(v). 5 u = Top(95)
6 if 3 e=wv € E:vis(e) = false then
Beweis. Wir fithren Induktion tber die kiirzeste Weglédnge ¢ von w 7 vis(e) := true
nach v in G. 8 if vis(v) = false then
¢ = 0: Dann ist v = w und parent liefert einen Weg der Léange 0. 9 vis(v) := true

¢~ {4+ 1: Sei v ein Knoten, der den Abstand ¢+ 1 von w in G hat. 0 parent(v) := u
Dann existiert ein Knoten u € N~ (v) (bzw. u € N(v)) mit a Push(S,v)
Abstand ¢ von w in G hat. Nach IV liefert also parent einen . else
w-u-Weg P(u) der Lénge ¢. Da u erst aus @) entfernt wird, v Pop(S)
nachdem alle Nachfolger von u entdeckt sind, wird v von u oder
einem bereits zuvor in () eingefiigten Knoten z entdeckt. Da Beispiel 1.22. Bei Aufruf mit dem
@) als Schlange organisiert ist, ist P(u) nicht kiirzer als P(z).
Daher folgt in beiden Féllen, dass P(v) die Lange £+ 1 hat. W

Startknoten a generiert die Prozedur
DFS-Explore nebenstehenden Tiefen-

suchwald.
Wir werden spéater noch eine Modifikation der Breitensuche kennen ler-
nen, die kiirzeste Wege in Graphen mit nichtnegativen Kantenlangen
findet (Algorithmus von Dijkstra). bes. | bes. bes. | bes.
Als néichstes betrachten wir den Tiefensuchalgorithmus. Keller S | Knoten | Kante | Typ S Knoten | Kante | Typ
Algorithmus DFS(V, E) ae @ (a,b) | B || a,bc ¢ (c.f)| B
ab b o | B |abef|l f |(fe)] Q
1 for all veV, e E do
. a,b,c c (c,d) | B ||a,b,c, f f - -
2 vis(v) := false
a,b,c,d d - - a,b,c c - -
3 parent(v) := L
: a,b,c c (c,e) | B ||a,b b - -
4 vis(e) := false
- for all weV do a,b,c,e e (e,e) | R |]a a (a,f)| V
¢ if vis(w) = false then DFS-Explore(w) a,b,c,e € (e,d) | Q || a a - -
a,b,c,e e - -

Prozedur DFS-Explore(w)

I vis(w) := true
> StackInit(S)

13

1 Grundlagen

Die Tiefensuche auf nebenstehendem Q a
Graphen fithrt auf folgende Klassifika-

tion der Kanten (wobei wir annehmen, @ "@
dass die Nachbarknoten in den Ad-

jazenzlisten alphabetisch angeordnet
sind):

’ Keller S ‘Kante‘TypH Keller S ‘Kante‘Typ‘

a {a,b} | B ||a,b,ce,d,e, f|{f,c}| R
a,b {bya}| - a,bye,d,e, f1{f,e}| -
a,b {b,c} | B ||a,bc,dye f| - -
a,b,c {c,b} | - a,b,c,d, e - -
a,b,c {¢,d}| B ||a,b,c,d - -
a,b,c,d {d,c}| - a,b,c {c,e} | -
a,b,c,d {d,e}| B ||a,b,c {e, f}| -
a,b,c,d,e |{e,c}| R ||a,bc - -
a,b,c,d,e | {e,d}| - a,b - -
a,b,c,d,e |{e,f}| B ||a {a,f}| -
a,b,c,d,e, f1{f,a}| R ||a - -

<

Die Tiefensuche lédsst sich auch rekursiv implementieren. Dies hat den
Vorteil, dass kein (expliziter) Keller benotigt wird.

Prozedur DFS-Explore-rec(w)

1 vis(w) := true
> while 3 e=uv € F:vis(e) = false do
3 vis(e) := true

14

1.7 Breiten- und Tiefensuche

4 if vis(v) = false then
5 parent(v) :==w
6 DFS-Explore-rec(v)

Da DFS-Explore-rec(w) zu parent(w) zuriickspringt, kann auch
das Feld parent(w) als Keller fungieren. Daher lasst sich die Prozedur
auch nicht-rekursiv ohne zuséatzlichen Keller implementieren, indem
die Riickspriinge explizit innerhalb einer Schleife ausgefiithrt werden
(siehe Ubungen).

Bei der Tiefensuche lasst sich der Typ jeder Kante algorithmisch leicht
bestimmen, wenn wir noch folgende Zusatzinformationen speichern.

e Ein neu entdeckter Knoten wird bei seinem ersten Besuch grau
gefarbt. Sobald er abgearbeitet ist, also bei seinem letzten Besuch,
wird er schwarz. Zu Beginn sind alle Knoten weif3.

e Zudem merken wir uns die Reihenfolge, in der die Knoten entdeckt
werden, in einem Feld r.

Dann léasst sich der Typ jeder Kante e = (u,v) bei ihrem ersten

Besuch wie folgt bestimmen:

= weil,

weifl und r(v) > r(u),

= grau und r(v) < r(u),

Baumkante: farbe(v

(
Vorwirtskante: farbe(v
Riickwartskante: farbe(v

— N N

Querkante: farbe(v) = schwarz und r(v) < r(u).

Die folgende Variante von DFS berechnet diese Informationen.

Algorithmus DFS(V, E)

1 r:=0

2> for all veV, ec E do

3 farbe(v) := weiB
|

vis(e) := false
for all we€V do
6 if farbe(u) =weiR then DFS-Explore(u)

1 Grundlagen

Prozedur DFS-Explore(u)

1 farbe(u) :=grau

> ri=r+1

3 r(u):=r

i+ while 3 e= (u,v) € E:vis(e) = false do
5 vis(e) := true

6 if farbe(v) =weiB then

7 DFS-Explore(v)

s farbe(u) := schwarz

Beispiel 1.23. Bei Aufruf mit dem
Startknoten a werden die Knoten im
nebenstehenden Digraphen wvon der
Prozedur DFS-Explore wie folgt ge-
farbt (die Knoten sind mit ihren r-
Werten markiert).

]Keller \Farbe ‘Kante ‘ Typ‘ ’ Keller |Farbe \Kante ‘ Typ‘
a a: grau (a,b) | B || a,b,c, e |e:schwarz - -
a,b b: grau (b,e) | B ||a,b,c |- (¢,f)| B
a,b,c |c:grau (c,d) | B ||a,b,c f|f:grau (f,e) | Q
a,b,c,d|d:grau - - a,b,c, f| f:schwarz| - -
d: schwarz a,b,c |c:schwarz - -
a,b,c |- (c,e) | B |]a,b b: schwarz - -
a,b,c, e e grau (e,c) | R |]a - (a, f)| V
a,b,c e|- (e,d) | Q ||a a:schwarz | - -

Bei der Tiefensuche in ungerichteten Graphen kénnen weder Quer-
noch Vorwartskanten auftreten. Da v beim ersten Besuch einer sol-
chen Kante (u,v) nicht weif ist und alle grauen Knoten auf dem
parent-Pfad P(u) liegen, misste v ndmlich bereits schwarz sein. Dies

15

1.7 Breiten- und Tiefensuche

ist aber nicht moglich, da die Kante {u,v} in v-u-Richtung noch
gar nicht durchlaufen wurde. Folglich sind alle Kanten, die nicht zu
einem neuen Knoten fithren, Riickwéartskanten. Das Fehlen von Quer-
und Vorwértskanten spielt bei manchen Anwendungen eine wichtige
Rolle, etwa bei der Zerlegung eines Graphen G in seine zweifachen
Zusammenhangskomponenten.

2 Berechnung kiirzester Wege

2 Berechnung kiirzester Wege

In vielen Anwendungen tritt das Problem auf, einen kiirzesten Weg
von einem Startknoten s zu einem Zielknoten ¢ in einem Digraphen
zu finden, dessen Kanten (u,v) vorgegebene Lidngen [(u,v) haben.

Die Lénge eines Weges W = (v, ..., v,) ist
-1
(W) = Zl<vi7vi+1)'
i=0

Die kirzeste Weglange von s nach ¢ wird als Distanz dist(s,t) zwi-
schen s und t bezeichnet,

dist(s,t) = min{l(W) | W ist ein s-t-Weg}.

Falls kein s-t-Weg existiert, setzen wir dist(s,t) = co. Man beachte,
dass die Distanz auch dann nicht beliebig klein werden kann, wenn
Kreise mit negativer Lange existieren, da ein Weg jede Kante hochs-
tens einmal durchlaufen kann. In vielen Féllen haben jedoch alle
Kanten in E eine nichtnegative Lange I(u,v) > 0. In diesem Fall
nennen wir D = (V, E,l) einen Distanzgraphen.

2.1 Der Dijkstra-Algorithmus

Der Dijkstra-Algorithmus findet einen kiirzesten Weg P(u) von s
zu allen erreichbaren Knoten w (single-source shortest-path problem).
Hierzu fithrt der Algorithmus eine modifizierte Breitensuche aus. Dabei
werden die in Bearbeitung befindlichen Knoten in einer Prioritéts-
warteschlange U verwaltet. Genauer werden alle Knoten u, zu denen

16

bereits ein s-u-Weg P(u) bekannt ist, zusammen mit der Weglédnge g
solange in U gespeichert bis P(u) optimal ist. Auf der Datenstruktur
U sollten folgende Operationen (moglichst effizient) ausfithrbar sein.

Init(U): Initialisiert U als leere Menge.

Update(U, u, g): Erniedrigt den Wert von u auf ¢ (nur wenn der
aktuelle Wert groler als g ist). Ist w noch nicht
in U enthalten, wird v mit dem Wert g zu U
hinzugefiigt.
RemoveMin(U): Gibt cin Element aus U mit dem kleinsten Wert
zurlick und entfernt es aus U (ist U leer, wird der
Wert L (nil) zuriickgegeben).

Voraussetzung fiir die Korrektheit des Algorithmus ist, dass alle Kan-
ten eine nichtnegative Lange haben. Wéahrend der Suche werden be-
stimmte Kanten e = (u, v) darauthin getestet, ob g(u)+¢(u,v) < g(v)
ist. Da in diesem Fall die Kante e auf eine Herabsetzung von ¢(v)
auf den Wert g(u) + ¢(u,v) ,drangt, wird diese Wertzuweisung als
Relaxation von e bezeichnet. Welche Kanten (u,v) auf Relaxation
getestet werden, wird beim Dijkstra-Algorithmus durch eine einfache
Greedystrategie bestimmt: Wéahle u unter allen noch nicht fertigen
Knoten mit minimalem g-Wert und teste alle Kanten (u,v), fiir die v
nicht schon fertig ist.

Algorithmus Dijkstra(V, E,l, s)

for all v €V do

1
2 g(v) =00

3 parent(v) := L
4

done(v) := false
g(s) =0
¢ Init(P)
7 Update(P, s,0)
s while u := RemoveMin(P) # L do
) done(u) := true

2 Berechnung kiirzester Wege

10 for all v € N*(u) do

11 if done(v) = false A g(u) +l(u,v) < g(v) then
12 g(v) == g(u) + l(u,v)

13 Update(P, v, g(v))

14 parent(v) :==u

Der Algorithmus speichert die aktuelle Lange des Pfades P(u) in g(u).
Knoten auflerhalb des aktuellen Breitensuchbaums 7" haben den Wert
g(u) = oo. In jedem Schleifendurchlauf wird in Zeile 8 ein Knoten u
mit minimalem g-Wert aus U entfernt und als fertig markiert. An-
schliefend werden alle von u wegfithrenden Kanten e = (u,v) auf
Relaxation getestet sowie g, U und T gegebenenfalls aktualisiert.

Beispiel 2.1. Betrachte den nebenste-
henden Distanzgraphen G. Bei Aus-
fiihrung des Dijkstra-Algorithmus mit
dem Startknoten a werden die folgen-
den kiirzesten Wege berechnet.

’Inhalt von P ‘entfernt ‘ besuchte Kanten ‘Update—Op. ‘

(a,0) (a,0) |(a,b),(a,e) (b,1), (e, 7)
(b,1),(e,7) (b,1) |(b,¢) (c,4)

(c;4), (e, 7) (c.,4) |(c,d), (e e),(c, f)|(d,12),(f,10)
(e.7),(f,10),(d,12) | (e,7) | (e, f) (f,8)
(f,8)(d,12) (f,8) | (fi0), (f.d) d,11)

(d,11) (d,11) | — —

Als néchstes beweisen wir die Korrektheit des Dijkstra-Algorithmus.

Satz 2.2. Sei D = (V, E,l) ein Distanzgraph und sei s € V.. Dann
berechnet Dijkstra(V, E,l,s) im Feld parent fir alle von s aus
erreichbaren Knoten t € V' einen kiirzesten s-t-Weg P(t).

Beweis. Wir zeigen zuerst, dass alle von s aus erreichbaren Knoten
t € V zu U hinzugefiigt werden. Dies folgt aus der Tatsache, dass s zu

N

2.1 Der Dijkstra-Algorithmus

U hinzugefiigt wird, und spétestens dann, wenn ein Knoten u in Zeile
8 aus U entfernt wird, sémtliche Nachfolger von u zu U hinzugefiigt
werden.

Zudem ist klar, dass g(u) > dist(s,u) ist, da P(u) im Fall g(u) < co
ein s-u-Weg der Lange g(u) ist. Es bleibt also nur noch zu zeigen,
dass P(u) fur jeden aus U entfernten Knoten u ein kiirzester s-u-Weg
ist, d.h. es gilt g(u) < dist(s,u).

Hierzu zeigen wir induktiv iiber die Anzahl k der vor u aus U entfern-
ten Knoten, dass g(u) < dist(s,u) ist.

k = 0: In diesem Fall ist v = s und P(u) hat die Lange g(u) = 0.

k—1~>k: Sei W =g,...,v, = u ein kiirzester s-u-Weg in G und
sei v; der Knoten mit maximalem Index ¢ auf diesem Weg, der
vor u aus P entfernt wird.

Nach IV gilt dann

g(v;) = dist(s,v;). (2.1)
Zudem ist
9(ir1) < g(vi) + 1(vi, vig1). (2.2)
Da w im Fall u # v; 1 vor v; 11 aus P entfernt wird, ist
9(u) < g(vit1)- (2.3)

Daher folgt

D dist(s,v;) + 1(vi, Viy1)
= dist(s,vi41) < dist(s,u). [

Um die Laufzeit des Dijkstra-Algorithmus abzuschéitzen, tiberlegen
wir uns zuerst, wie oft die einzelnen Operationen auf der Datenstruk-
tur P ausgefiihrt werden. Sei n = ||V|| die Anzahl der Knoten und
m = || F|| die Anzahl der Kanten des Eingabegraphen.

2 Berechnung kiirzester Wege

e Die Init-Operation wird nur einmal ausgefiihrt.

e Da die while-Schleife fiir jeden von s aus erreichbaren Knoten genau
einmal durchlaufen wird, wird die RemoveMin-Operation héchstens
min{n, m}-mal ausgefiihrt.

e Wie die Prozedur BFS-Explore besucht der Dijkstra-Algorithmus
jede Kante maximal einmal. Daher wird die Update-Operation
hochstens m-mal ausgefiihrt.

Beobachtung 2.3. Bezeichne Init(n), RemoveMin(n) und Update(n)
den Aufwand zum Ausfihren der Operationen Init, RemoveMin und
Update fiir den Fall, dass P nicht mehr als n Elemente aufzunehmen
hat. Dann ist die Laufzeit des Dijkstra-Algorithmus durch

O(n +m + Init(n) + min{n, m} - RemoveMin(n) + m - Update(n))
beschrainkt.

Die Laufzeit hédngt also wesentlich davon ab, wie wir die Datenstruktur
U implementieren. Falls alle Kanten die gleiche Lange haben, wachsen
die Distanzwerte der Knoten monoton in der Reihenfolge ihres (ers-
ten) Besuchs. D.h. wir kénnen U als Warteschlange implementieren.
Dies fithrt wie bei der Prozedur BFS-Explore auf eine Laufzeit von
O(n+m).

Fiir den allgemeinen Fall, dass die Kanten unterschiedliche Langen
haben, betrachten wir folgende drei Moglichkeiten.

1. Da die Felder g und done bereits alle zur Verwaltung von U be-

notigten Informationen enthalten, kann man auf die (explizite)
Implementierung von U auch verzichten. In diesem Fall kostet die
RemoveMin-Operation allerdings Zeit O(n), was auf eine Gesamt-
laufzeit von O(n?) fiihrt.
Dies ist asymptotisch optimal, wenn G relativ dicht ist, also
m = Q(n?) Kanten enthilt. Ist G dagegen relativ diinn, d.h.
m = o(n?), so empfiehlt es sich, U als Priorititswarteschlange
zu implementieren.

18

2.1 Der Dijkstra-Algorithmus

2. Es ist naheliegend, U in Form eines Heaps H zu implementieren.
In diesem Fall lasst sich die Operation RemoveMin in Zeit O(logn)
implementieren. Da die Prozedur Update einen linearen Zeitauf-
wand erfordert, ist es effizienter, sie durch eine Insert-Operation
zu simulieren. Dies fithrt zwar dazu, dass derselbe Knoten evtl.
mehrmals mit unterschiedlichen Werten in H gespeichert wird.
Die Korrektheit bleibt aber dennoch erhalten, wenn wir nur die
erste Entnahme eines Knotens aus H beachten und die iibrigen
ignorieren.

Da fiir jede Kante hochstens ein Knoten in H eingefiigt
wird, erreicht H maximal die Grofie n? und daher sind die
Heap-Operationen Insert und RemoveMin immer noch in Zeit
O(logn?) = O(logn) ausfithrbar. Insgesamt erhalten wir somit
eine Laufzeit von O(n + mlogn), da sowohl Insert als auch
RemoveMin maximal m-mal ausgefiithrt werden.

Die Laufzeit von O(n+mlogn) bei Benutzung eines Heaps ist zwar
fir diinne Graphen sehr gut, aber fiir dichte Graphen schlechter
als die implizite Implementierung von U mithilfe der Felder g und
done.

3. Als weitere Moglichkeit kann U auch in Form eines so genannten
Fibonacci-Heaps F' implementiert werden. Dieser benotigt nur eine
konstante amortisierte Laufzeit O(1) fir die Update-Operation und
O(logn) fiir die RemoveMin-Operation. Insgesamt fithrt dies auf
eine Laufzeit von O(m + nlogn). Allerdings sind Fibonacci-Heaps
erst bei sehr grolen Graphen mit mittlerer Dichte schneller.

H implizit Heap Fibonacci-Heap ‘
Init O(1) O(1) O(1)
Update o) O(logn) O(1)
RemoveMin O(n) O(logn) O(logn)

Gesamtlaufzeit H On*) O(n+mlogn) O(m+nlogn) ‘

2 Berechnung kiirzester Wege

Die Tabelle fasst die Laufzeiten des Dijkstra-Algorithmus fiir die
verschiedenen Moglichkeiten zur Implementation der Datenstruktur
U zusammen. Eine offene Frage ist, ob es auch einen Algorithmus
mit linearer Laufzeit O(n + m) zur Bestimmung kiirzester Wege in
Distanzgraphen gibt.

2.2 Der Bellman-Ford-Algorithmus

In manchen Anwendungen treten negative Kantengewichte auf. Geben
die Kantengewichte beispielsweise die mit einer Kante verbundenen
Kosten wider, so kann ein Gewinn durch negative Kosten modelliert
werden. Auf diese Weise lassen sich auch langste Wege in Distanz-
graphen berechnen, indem man alle Kantenldngen [(u,v) mit —1
multipliziert und in dem resultierenden Graphen einen kiirzesten Weg
bestimmt.

Die Komplexitét des Problems hangt wesentlich davon ab, ob man (ge-
richtete) Kreise mit negativer Lange zuldsst oder nicht. Falls negative
Kreise zugelassen werden, ist das Problem NP-hart. Andernfalls exis-
tieren effiziente Algorithmen wie z.B. der Bellman-Ford-Algorithmus
(BF-Algorithmus) oder der Bellman-Ford-Moore-Algorithmus (BFM-
Algorithmus). Diese Algorithmen 16sen das single-source shortest-path
Problem mit einer Laufzeit von O(nm) im schlechtesten Fall.

Der Ford-Algorithmus arbeitet ganz &hnlich wie der Dijkstra-
Algorithmus, betrachtet aber jede Kante nicht wie dieser nur einmal,
sondern eventuell mehrmals. In seiner einfachsten Form sucht der
Algorithmus wiederholt eine Kante e = (u, v) mit

g(u) + £(u,v) < g(v)

und aktualisiert den Wert von g(v) auf g(u)+£(u,v) (Relaxation). Die
Laufzeit hangt dann wesentlich davon ab, in welcher Reihenfolge die
Kanten auf Relaxation getestet werden. Im besten Fall lasst sich eine
lineare Laufzeit erreichen (z.B. wenn der zugrunde liegende Digraph

19

2.2 Der Bellman-Ford-Algorithmus

azyklisch ist). Bei der Bellman-Ford-Variante wird in O(nm) Schrit-
ten ein kiirzester Weg von s zu allen erreichbaren Knoten gefunden
(sofern keine negativen Kreise existieren).

Wir zeigen induktiv iiber die Anzahl k der Kanten eines kiirzesten
s-u-Weges, dass g(u) = dist(s,u) gilt, falls ¢ fiir alle Kanten (u,v) die
Dreiecksungleichung g(v) < g(u) + £(u,v) erfiillt (also keine Relaxa-
tionen mehr moglich sind).

Im Fall £ = 0 ist ndmlich v = s und somit g(s) = 0 = dist(s, s).
Im Fall £ > 0 sei v ein Knoten, dessen kiirzester s-v-Weg W aus k
Kanten besteht. Dann gilt nach IV fiir den Vorgénger v von v auf W
g(u) = dist(s,u). Aufgrund der Dreiecksungleichung folgt dann

g(v) < g(u) + l(u,v) = dist(s,u) + l(u,v) = dist(s,v).

Aus dem Beweis folgt zudem, dass nach Relaxation aller Kanten eines
kiirzesten s-v-Weges W (in der Reihenfolge, in der die Kanten in W
durchlaufen werden) den Wert dist(s,v) hat. Dies gilt auch fiir den
Fall, dass zwischendurch noch weitere Kantenrelaxationen stattfinden.

Der Bellman-Ford-Algorithmus priift in n — 1 Iterationen jeweils alle
Kanten auf Relaxation. Sind in der n-ten Runde noch weitere Relaxa-
tionen moglich, muss ein negativer Kreis existieren. Die Laufzeit ist
offensichtlich O(nm) und die Korrektheit folgt leicht durch Induktion
iiber die minimale Anzahl von Kanten eines kiirzesten s-t-Weges.
Zudem wird bei jeder Relaxation einer Kante (u,v) der Vorganger u
im Feld parent(v) vermerkt, so dass sich ein kiirzester Weg von s zu
allen erreichbaren Knoten (bzw. ein negativer Kreis) rekonstruieren
lasst.

Algorithmus BF(V, E,l, s)
for all veV do

1
2 g(v) == 00

3 parent(v) :== L

1 og(s):=0

5 for t:=1ton—-1 do

2 Berechnung kiirzester Wege

6 for all (u,v) € E do

7 if g(u) + l(u,v) < g(v) then

8 g(v) == g(u) + (v)

9 parent(v) :=

0 for all (u,v) € F do

11 if g(u)+l(u,v) < g(v) then

12 error(es gibt einen negativen Kreis)

2.3 Der Bellman-Ford-Moore-Algorithmus

Die BFM-Variante prift in jeder Runde nur diejenigen Kanten (u,v)
auf Relaxation, fiir die g(u) in der vorigen Runde erniedrigt wurde.
Dies fiihrt auf eine deutliche Verbesserung der durchschnittlichen
Laufzeit. Wurde namlich g(u) in der (i — 1)-ten Runde nicht ver-
ringert, dann steht in der ¢-ten Runde sicher keine Relaxation der
Kante (u, v) an. Es liegt nahe, die in der néchsten Runde zu priifenden
Knoten wu in einer Schlange () zu speichern. Dabei kann mit v auch die
aktuelle Rundenzahl i in) gespeichert werden. In Runde 0 wird der
Startknoten s in () eingefligt. Kénnen in Runde n immer noch Kanten
relaxiert werden, so bricht der Algorithmus mit der Fehlermeldung
ab, dass negative Kreise existieren. Da die BFM-Variante die Kanten
in derselben Reihenfolge relaxiert wie der BF-Algorithmus, fiihrt sie
auf dasselbe Ergebnis.

Algorithmus BFM(V, E. 1, s)
1 for all veV do
2 g(v) := 00, parent(v):= 1, inQueue(v):= false
3 g(s) =0, Init(Q), Enqueue(Q, (0,s)), inQueue(s) := true
i while (i,u) := Dequeue(Q) # L and i <n do
5 inQueue(u) := false
6 for all v € N*(u) do
if g(u) 4+ l(u,v) < g(v) then

N |

20

2.3 Der Bellman-Ford-Moore-Algorithmus

s 9(v) = g(u) + I(u,v)

9 parent(v) :=u

10 if inQueue(v) = false then

11 Enqueue(@, (i + 1,v))

12 inQueue(v) := true

13 if i =n then

14 error(es gibt einen negativen Kreis)

Fiir kreisfreie Graphen lasst sich eine lineare Laufzeit O(n + m) er-
zielen, indem die Nachfolger in Zeile 6 in topologischer Sortierung
gewahlt werden. Dies bewirkt, dass jeder Knoten héchstens einmal in
die Schlange eingefiigt wird.

Beispiel 2.4. Betrachte untenstehenden kantenbewerteten Digraphen
mit dem Startknoten a.

Die folgende Tabelle zeigt jeweils den Inhalt der Schlange QQ, bevor
der BFM-Algorithmus das ndachste Paar (i,u) von @ entfernt. Dabei
enthdlt jeder Eintrag (i,u,v,g) neben der Rundenzahl i und dem Kno-
ten u auch noch den parent-Knoten v und den g-Wert von u, obwohl
diese nicht in () gespeichert werden.

2 Berechnung kiirzester Wege 2.3 Der Bellman-Ford-Moore-Algorithmus

" i)
(0,4, 1,0) (0,a,L1,0)
i (1,b,a,2) 1 (1,b,a,4)
(1,9,a,5)|(1,g,b,—1) (1,9,a,5)|(1,9,b,1)
(2,d,9,7) (2,d,g,6)
(2,€,g,0) (276797()) (2767972) (2,6,9,2)
(3,7,d,9)|(3, f,d,9) (3,1.d,8)|(3, f.d,8)
(3,¢,d,9)| (3,¢,d,9) (3,¢,e,5)
(3,d,e,4)| (3,d,e,4) |(3,d,e,4) | (3,c,¢e,5)
(4, f,d,6)]

(4,b,¢,3)

Die berechneten Entfernungen mit den zugehdrigen parent-Pfaden (5,9,0,0)
sind in folgendem Suchbaum widergegeben: (6,d,9,5)
(67 6797]') (276797 1)
(7, f,d, 1)|(7, f,d,7)
(7,c,e,4)

Da nun der Knoten f mit der Rundenzahl i =n =7 aus der Schlange
entnommen wird, bricht der Algorithmus an dieser Stelle mit der
Meldung ab, dass negative Kreise existieren. Ein solcher Kreis (im
Beispiel: g, e, c,b, g) ldasst sich bei Bedarf anhand der parent-Funktion
aufspiiren, indem wir den parent-Weg zu f zurickverfolgen: f, d, g,
b, c, e, q.

Da dieser einen negativen Kreis enthdlt, der vom Startknoten aus
erreichbar ist, lassen sich die Entfernungen zu allen Knoten, die von
diesem Kreis aus erreichbar sind, beliebig verkleinern.

21

2 Berechnung kiirzester Wege 2.4 Der Floyd-Warshall-Algorithmus

2.4 Der Floyd-Warshall-Algorithmus do[1 2 3 4 5 d,|1 2 3 4 5

1]Joo 2 00 00 o0 1o 2 oo o0 o0
Der Algorithmus von Floyd-Warshall berechnet die Distanzen zwi- 2 |00 00 00 0 —3 2|00 00 00 00 —3
schen allen Knoten unter der Voraussetzung, dass keine negativen 3|00 =2 00 00 00 3|00 —2 00 00 00
Kreise existieren. 4100 00 4 00 o0 400 c0o 4 o0 o0

5110 co 9 1 o 5110 12 9 1 oo
Algorithmus Floyd-Warshall(V, E,l) 11 2 3 1 5 11 2 3 1 5
1 for i:=1 to n do 1 oo 2 o0 o0 —1 1 oo 2 o0 o0 —1
2 for j:=1 to n do 2 oo 00 00 oo —3 2 oo 00 00 o0 —3
3 if (i,7) € E then dy(i,7) :=1(i,7) else dy(i,7) := o0 3|loo =2 00 00 =5 3|0 =2 0 00 =5
1+ for k:=1 to n do 4100 o0 4 o0 00 410 2 4 o0 —1
5 for i:=1 to n do 5110 12 9 1 9 5110 7 9 1 4
6 for j: =1 to n do ;11 2 3 4 5 =11 2 3 4 5
7 d(i, j) = min {di_1(7, 5), dx1(i, k) + dx 1 (K, j) } 1o 2 o0 o0 —1 19 2 4 0 -1

2 oo 00 00 00 —3 217 0 2 -2 -3
Hierzu speichert der Algorithmus in d(7, j) die Lange eines kiirzesten 3loo —2 00 0 =5 35 -2 0 —4 -5
Weges von ¢ nach j, der auler ¢ und j nur Knoten < k besucht. Die 4 1c0 2 4 o0 —1 419 2 4 0 —1
Laufzeit ist offenbar O(n?). Da die d;-Werte nur von den d;,_;-Werten 5110 3 5 1 0 5110 3 5 1 0

abhéngen, ist der Speicherplatzbedarf O(n?). Die Existenz negativer) . .
Kreise lasst sich daran erkennen, dass mindestens ein Diagonalelement Als nichstes betrachten wir folgenden Digraphen.:
dx(7,7) einen negativen Wert erhélt.

Beispiel 2.5. Betrachte folgenden kantenbewerteten Digraphen:

do|1 2 3 4 5 d|1 2 3 4 5
1o 2 00 00 o0 1 |]oo 2 o0 00 o
2100 00 00 00 —3 2100 00 00 0 —3
3 [0 —2 00 o0 o0 3|00 —2 00 00 0
4 100 00 4 o0 4100 00 4 00 o0
5110 0o 3 1 o0 5110 12 3 1 o

22

3 Fliisse in Netzwerken

d[1 2 3 4 5 ds|1 2 3 4 5
1o 2 o0 o0 —1 1]oo 2 o0 o0 —1
2|0 00 00 0 —3 2100 00 00 0 —3
3100 —2 00 00 —H 3|00 —2 0 0 —H
4100 00 4 00 4100 2 4 oo —1
5110 12 3 1 9 5110 1 3 1 —2
d,|1 2 3 4 5 ds| 1 2 3 4 5
1o 2 o0 o0 —1 119 0 2 0 -3
2100 o0 00 o0 —3 217 =2 0 =2 =5
3|0 —2 0 oo —H 315 —4 -2 —-4 -7
4 100 2 4 oo —1 419 0 2 0 -3
5110 1 3 1 -2 518 -1 1 —1—4

Wegen d3(5,5) = —2 liegt der Knoten 5 auf einem negativen Kreis.
Folglich ist die Wegldnge nicht fir alle Knotenpaare nach unten be-
schrankt. <

Ohne grofien Mehraufwand lassen sich auch die kiirzesten Wege selbst
berechnen, indem man in einem Feld parent[i, j] den Vorganger von
j auf einem kiirzesten Weg von i nach j speichert (falls ein Weg
von ¢ nach j existiert). Eine elegantere Moglichkeit besteht jedoch
darin, die Kantenfunktion / in eine dquivalente Distanzfunktion I’ zu
transformieren, die keine negativen Werte annimmt, aber dieselben
kiirzesten Wege in G wie [hat. Da wir fiir diese Transformation nur
alle kiirzesten Wege von einem festen Knoten s zu allen anderen
Knoten berechnen miissen, ist sie in Zeit O(nm) durchfiithrbar.

23

3 Fliisse in Netzwerken

Definition 3.1. Fin Netzwerk N = (V, E, s,t, c) besteht aus einem
gerichteten Graphen G = (V, E) mit einer Quelle s € V' und einer
Senke t € V sowie einer Kapazitiatsfunktion ¢ : V xV — N.
Zudem muss jede Kante (u,v) € E positive Kapazitit c(u,v) > 0 und
jede Nichtkante (u,v) ¢ E muss die Kapazitit c(u,v) = 0 haben.

Die folgende Abbildung zeigt ein Netzwerk .

Definition 3.2.

a) Ein Fluss in N ist eine Funktion f :V xV — Z mit
f(u,0) < e(u,v),
flu,v) = —f(v,u), (Antisymmetrie)
>vey flu,v) =0 fir allew € V\ {s,t} (Kontinuitdt)

b) Der Fluss in den Knoten w ist f~(u) = Y,y max{0, f(v,u)}.

¢) Der Fluss aus u ist fT(u) =3 ,cy max{0, f(u,v)}.

d) Der Nettofluss durch w ist f*(u) — f~(u) = X ,cv f(u,v).

e) Die GroBBe von f ist |f| = fT(s) — [(s).

(Kapazititsbedingung)

Die Antisymmetrie impliziert, dass f(u,u) = 0 fur alle u € V ist,
d.h. wir konnen annehmen, dass G schlingenfrei ist. Die folgende
Abbildung zeigt einen Fluss f in V.

3 Fliisse in Netzwerken

U s a b c dt
ff(w)|8 4 79 6 0
f7(w)y|0 4 79 6 8

3.1 Der Ford-Fulkerson-Algorithmus

Wie lasst sich fiir einen Fluss f in einem Netzwerk N entscheiden, ob
er vergrofert werden kann? Diese Frage lésst sich leicht beantworten,
falls f der konstante Nullfluss f = 0 ist: In diesem Fall geniigt es, in
G = (V, E) einen Pfad von s nach ¢ zu finden. Andernfalls konnen
wir zu NV und f ein Netzwerk N; konstruieren, so dass f genau dann
vergrofert werden kann, wenn sich in Ny der Nullfluss vergrofiern
lasst.

Definition 3.3. Sei N = (V, E,s,t,c) ein Netzwerk und sei f ein
Fluss in N. Das zugeordnete Restnetzwerk ist Ny = (V, Ey, s,t,cy)
mit der Kapazitdt

cr(u,v) = c(u,v) — f(u,v)
und der Kantenmenge

Ef ={(u,v) € V xV |cs(u,v) > 0}.

Zum Beispiel fithrt der Fluss

24

3.1 Der Ford-Fulkerson-Algorithmus

auf das folgende Restnetzwerk Ny:

Definition 3.4. Sei Ny = (V, Ey,s,t,c) ein Restnetzwerk. Dann
heifst jeder s-t-Pfad P in (V, Ey;) Zunahmepfad in N;. Die Kapa-
zitdt von P in Ny ist

cp(P) = min{cs(u,v) | (u,v) liegt auf P}

und der zu P gehorige Fluss in Ny ist

ci(P), (u,v) liegt auf P,
Fru,v) = —¢s(P), (v,u) licgt auf P
0, sonst.

P:(UO,..

e uy = s und u, =t ist,

., uy) ist also genau dann ein Zunahmepfad in Ny, falls
e die Knoten uy, ..., u, paarweise verschieden sind
o und cs(u;,ujpq) >0 fiiri =0,...,k— 1 ist.

Die folgende Abbildung zeigt den zum Zunahmepfad P = s,¢,b,t
gehorigen Fluss fp in Ny. Die Kapazitat von P ist ¢y (P) = 4.

3 Fliisse in Netzwerken

Es ist leicht zu sehen, dass fp tatsachlich ein Fluss in Ny ist. Durch Ad-
dition der beiden Fliisse f und fp erhalten wir einen Fluss f' = f+ fp
in N der GroBe |f'| = |f|+ |fe| > |f]-

Fluss f: Fluss f + fp:

11/16

Nun kénnen wir den Ford-Fulkerson-Algorithmus angeben.

Algorithmus Ford-Fulkerson(V, E,s,t, c)
for all (u,v) €V xV do

1

2 f(u,v) =0

3 while es gibt einen Zunahmepfad P in Ny do
A f=r+/p

Beispiel 3.5. Fir den neuen Fluss erhalten wir nun folgendes Rest-
netzwerk:

In diesem existiert kein Zunahmepfad mehr. <

3.1 Der Ford-Fulkerson-Algorithmus

Um zu beweisen, dass der Algorithmus von Ford-Fulkerson tatséch-
lich einen Maximalfluss berechnet, zeigen wir, dass es nur dann im
Restnetzwerk Ny keinen Zunahmepfad mehr gibt, wenn der Fluss f
maximal ist. Hierzu benétigen wir den Begriff des Schnitts.

Definition 3.6. Sei N = (V, E,s,t,c¢) ein Netzwerk und sei) C
S C V. Dann heifst die Menge E(S) = {(u,v) € E|u € S,v ¢ S}
Kantenschnitt (oder einfach Schnitt; oft wird auch einfach S als
Schnitt bezeichnet). Die Kapazitédt eines Schnittes S ist

co(S)= > cluv).

u€eS,vgS

Ist f ein Fluss in N, so heifit

f(S): Z f(u,v)

ueS,v¢S
der Nettofluss (oder einfach Fluss) durch den Schnitt S.

Beispiel 3.7. Betrachte den Schnitt S = {s,a,c} in folgendem Netz-
werk N mit dem Fluss f:

11/16 @)
12/13 ‘&!!

Dieser Schnitt hat die Kapazitat

11/14

c(9) =c(a,b) + c(c,d) =13+ 14 =27

3 Fliisse in Netzwerken

und der Fluss f(S) durch diesen Schnitt ist
f(S) = f(a,b) + f(e,b) + f(c,d) =13 — 14 11 = 23.
Dagegen hat der Schnitt S" = {s,a,b, c,d}

13/13

die Kapazitdit

c(S") = (b, t)+e(d,t) =19+4 = f(b,t)+ f(d, t) = f(S"),

die mit dem Fluss durch diesen Schnitt ibereinstimmdt. N

Lemma 3.8. Fir jeden Schnitt S mit s € S, t ¢ S und jeden Fluss
f ogilt
[f] = f(S) < ¢(S)

Beweis. Die Gleichheit |f]
k=15l
k = 1: In diesem Fall ist S = {s} und somit

|fl= Zfsv SS—i—Zfsv

veV VO V#S

= f(9) zeigen wir durch Induktion iiber

f(S).

k—1~>k: Sei S ein Schnitt mit ||S]| =k > 1 und sei w € S — {s}.
Betrachte den Schnitt S" = S — {w}. Dann gilt

Z f(uvv): Z f(u,v)+2f(w,v)

ueSw¢sS ueS’' vgs v¢S

26

3.1 Der Ford-Fulkerson-Algorithmus

und

f8) = > fluv)= > flwv)+ > fluw).

ueS wgS’ ueS vgS ues’
Wegen f(w,w) =0ist > ,cq [(u,w) = ,cq f(u,w) und daher
f(S)—f(s") = Z f(w,v) — Z flu,w) = Z f(w,v) =0.

vgS ues veV
Nach Induktionsvoraussetzung folgt somit f(S) = f(S") = | f].
SchlieBlich folgt wegen f(u,v) < ¢(u,v) die Ungleichung
) = Y fwn) < Y cuwu) =ds). ®

(u,0)€E(S) (u,0)€E(S)
Satz 3.9 (Min-Cut-Max-Flow-Theorem). Sei f ein Fluss in einem
Netzwerk N = (V, E, s,t,c). Dann sind folgende Aussagen dquivalent:
1. f ist mazimal.
2. In Ny existiert kein Zunahmepfad.
3. Es gibt einen Schnitt S in N mit s € S, t ¢ S und c¢(S) = | f].

Beweis. Die Implikation ,, 7 = 2“ ist klar, da die Existenz eines Zu-
nahmepfads zu einer Vergroflerung von f fithren wiirde.

Fiir die Implikation ,2 = 3“ betrachten wir den Schnitt
S ={u eV |uistin N; von s aus erreichbar}.

Da in Ny kein Zunahmepfad existiert, gilt dann
e s S, t¢ S und
o ci(u,v) =0firalleue Sundv ¢ S.

Wegen cs(u,v) = c(u,v) — f(u,v) folgt somit

fl=f(S)= > fluv)= > cluv)=c)
u€eS, ¢S u€S,weS
Die Implikation ,,3 = 1 ist wiederum klar, da im Fall ¢(S) = | f| fir
jeden Fluss f’ die Abschitzung |f'| = f/(S) < ¢(S) = | f] gilt. [|

3 Fliisse in Netzwerken

Der obige Satz gilt auch fir Netzwerke mit Kapazitaten in RT.

Sei ¢ = ¢(S) die Kapazitat des Schnittes S = {s}. Dann durchlauft
der Ford-Fulkerson-Algorithmus die while-Schleife hochstens cop-mal.
Bei jedem Durchlauf ist zuerst das Restnetzwerk Ny und danach ein
Zunahmepfad in Ny zu berechnen.

Die Berechnung des Zunahmepfads P kann durch Breitensuche in
Zeit O(n + m) erfolgen. Da sich das Restnetzwerk nur entlang von
P andert, kann es in Zeit O(n) aktualisiert werden. Jeder Durch-
lauf benétigt also Zeit O(n + m), was auf eine Gesamtlaufzeit von
O(co(n +m)) fihrt. Da der Wert von ¢ jedoch exponentiell in der
Lange der Eingabe (also der Beschreibung des Netzwerkes N) sein
kann, ergibt dies keine polynomielle Zeitschranke. Bei Netzwerken
mit Kapazitaten in Rt kann der Ford-Fulkerson-Algorithmus sogar
unendlich lange laufen (siche Ubungen).

Bei nebenstehendem Netzwerk benotigt Ford-
Fulkerson zur Bestimmung des Maximalflusses
abhangig von der Wahl der Zunahmepfade zwi-
schen 2 und 2% Schleifendurchlaufe.

Im giinstigsten Fall wird ndmlich zuerst der Zunahmepfad (s, a,t)
und dann der Pfad (s,b,t) gewdhlt. Im ungiinstigsten Fall werden ab-
wechselnd die beiden Zunahmepfade (s, a,b,t) und (s, b, a,t) gewahlt:

27

3.1 Der Ford-Fulkerson-Algorithmus

{ ‘ Zunahmepfad P; in Ny, | ‘ neuer Fluss f; in N ‘

2j +1

2j + 2

Nicht nur in diesem Beispiel lasst sich die exponentielle Laufzeit wie

folgt vermeiden:

e Man betrachtet nur Zunahmepfade mit einer geeignet gewahlten
Mindestkapazitéit. Dies fithrt auf eine Laufzeit, die polynomiell in
n, m und log ¢ ist.

e Man bestimmt in jeder Iteration einen kiirzesten Zunahmepfad
im Restnetzwerk mittels Breitensuche in Zeit O(n 4+ m). Diese

3 Fliisse in Netzwerken

Vorgehensweise fiihrt auf den Edmonds-Karp-Algorithmus, der eine
Laufzeit von O(nm?) hat (unabhéngig von der Kapazitatsfunktion).

e Man bestimmt in jeder Iteration einen Fluss g im Restnetzwerk Ny,
der nur Kanten benutzt, die auf einem kiirzesten s-t-Pfad in Ny
liegen. Zudem hat g die Eigenschaft, dass g auf jedem kiirzesten
s-t-Pfad P mindestens eine Kante e € P blockiert (d.h. der Fluss
g(e) durch e schopft die Restkapazitét c¢(e) von e vollkommen aus),
weshalb diese Kante in der néchsten Iteration fehlt. Dies fithrt auf
den Algorithmus von Dinic. Da die Lénge der kiirzesten s-t-Pfade
im Restnetzwerk in jeder Iteration um mindestens 1 zunimmt, liegt
nach spétestens n — 1 Iterationen ein maximaler Fluss vor. Dinic
hat gezeigt, dass ein blockierender Fluss g in Zeit O(nm) bestimmt
werden kann. Folglich hat der Algorithmus von Dinic eine Laufzeit
von O(n*m). Malhotra, Kumar und Maheswari fanden spéter einen
O(n?)-Algorithmus zur Bestimmung eines blockierenden Flusses.
Damit ldsst sich die Gesamtlaufzeit auf O(n?) verbessern.

3.2 Der Edmonds-Karp-Algorithmus

Der Edmonds-Karp-Algorithmus ist eine spezielle Form von Ford-
Fulkerson, die nur Zunahmepfade mit moglichst wenigen Kanten
benutzt, welche mittels Breitensuche bestimmt werden.
Algorithmus Edmonds-Karp(V, E, s,t,c)

for all (u,v) eV xV do

1

2 f(u,v) =0

3 repeat

4 P <+ zunahmepfad(f)

5 if P# 1 then add(f,P)
¢ until P= 1

Prozedur zunahmepfad(/f)

3.2 Der Edmonds-Karp-Algorithmus

1 for all veV do

2 vis(v) := false

3 parent(v) := L

© vis(s) := true

5 QueueInit(Q®)

; Enqueue(Q, s)

while —QueueEmpty(Q) A Head(Q) # ¢ do
8 u := Head(Q)

=~

9 Dequeue(Q)

10 for all ve N~ (v) UNT(v) do

11 e := (u,v)

12 if c(e) — f(e) > 0 Avis(v) = false then
13 () = C(e) ()

14 vis(v) := true

15 parent(v) :==u

16 Enqueue(Q,v)

17 if Head(Q) =t then

18 P .= parent-Pfad von s nach t
19 cf(P) :=min{d(e) | e € P}

20 else

21 P=_1

22 return P

[\

Prozedur add(f,P)

1 for all e P do

2 fle) fle)+Cf()

5 flef) = f(ef) — e (P)

Satz 3.10. Der Edmonds-Karp-Algorithmus durchlduft die repeat-
Schleife hochstens nm/2-mal und hat somit eine Laufzeit von O(nm?).

Beweis. Sei fy der triviale Fluss und seien Py, ..., P, die Zunahme-
pfade, die der Edmonds-Karp-Algorithmus der Reihe nach berechnet,

3 Fliisse in Netzwerken

d.h. f; = fi-1 + fp,. Eine Kante e heifit kritisch in P;, falls der Fluss
fp, die Kante e sattigt, d.h. c¢;, ,(e) = fr,(e) = ¢y, , (). Man beachte,
dass eine kritische Kante e in P; wegen cy,(e) = ¢y, ,(e) — fp(e) =0

nicht in Ny, enthalten ist, wohl aber e’

Wir iberlegen uns zunéchst, dass die Langen ¢; von P; (schwach)
monoton wachsen. Hierzu beweisen wir die starkere Behauptung,
dass sich die Abstédnde jedes Knotens v € V von s und von ¢t beim
Ubergang von Ny, , zu Ny, nicht verringern konnen. Sei d;(u,v) die
minimale Lange eines Pfades von u nach v im Restnetzwerk Ny, .

Behauptung 3.11. Fir jeden Knotenuw € V' gilt d;1(s,u) > d;(s,u)
und diyq(u,t) > d;(u,t).

Hierzu zeigen wir folgende Behauptung.

Behauptung 3.12. Fulls die Kante e = (u;, u;+1) auf einem kiirzes-
ten Pfad P = (uy,...,up) von s = ug nach u = uy in Ny, liegt (d.h.
di+1<S,Uj+1) = di+1<8,uj‘) + 1), dann ngt di(S, uj+]_) < di<8,Uj) + 1.

Die Behauptung ist klar, wenn die Kante e = (u;,u;41) auch in
Ny, , enthalten ist. Ist dies nicht der Fall, muss fi_1(e) # fi(e)
sein, d.h. e oder e miissen in P, vorkommen. Da e nicht in Ny, ,
ist, muss e® = (ujy1,u;) auf P; liegen. Da P; ein kirzester Pfad
von s nach t in Ny, | ist, folgt di(s,u;) = di(s,ujy1) + 1, was
di(s,ujs1) = di(s,u;) — 1 < d;(s,u;) + 1 impliziert.

Damit ist Behauptung 3.12 bewiesen und es folgt

di(s,u) < di(s,up_q1) +1<---<di(s,8) +h=h=d1(s,u).

Die Ungleichung d; 1 (u,t) > d;(u,t) folgt analog, womit auch Behaup-
tung 3.11 bewiesen ist. Als néchstes zeigen wir folgende Behauptung.
Behauptung 3.13. Fir 1 <i < j < k gilt: Falls e = (u,v) in P,
und e = (v,u) in P; enthalten ist, so ist l[; > I; + 2.

29

3.3 Der Algorithmus von Dinic

Dies folgt direkt aus Behauptung 3.11:

lj = dj(S, t) = dj(S, U) + dj(u,t) +1> di(S,U) —i—dz(u,t) +1 = ll + 2.
—_—— ——
di(s,u)+1 di(v,t)+1

Da jeder Zunahmepfad P; mindestens eine kritische Kante enthalt und
EUE"® hochstens m Kantenpaare der Form {e, e®} enthilt, impliziert
schlieBlich folgende Behauptung, dass k < mn/2 ist.

Behauptung 3.14. Zwei Kanten e und e® sind zusammen hichstens
n/2-mal kritisch.

Seien P;,..., P, die Pfade, in denen e oder e kritisch ist. Falls
k € {e, e} kritisch in P, ist, dann fallt k& aus N fi;+1 heraus. Damit

also e oder ef kritisch in P, ,, sein konnen, muss ein Pfad Pj mit
i; < j' <ij41 existieren, der k¥ enthélt. Wegen Behauptung 3.11 und
Behauptung 3.13 ist &Hl >y > &j 4 2. Daher ist

n—1>0, >0, +2h—-1)>1+2h—-1)=2h—-1,
was h < n/2 impliziert. [|

Man beachte, dass der Beweis auch bei Netzwerken mit reellen Kapa-
zitaten seine Giiltigkeit behélt.

3.3 Der Algorithmus von Dinic

Man kann zeigen, dass sich in jedem Netzwerk ein maximaler Fluss
durch Addition von hochstens m Zunahmepfaden konstruieren lasst
(siche Ubungen). Es ist nicht bekannt, ob sich solche Pfade in Zeit
O(n+m) bestimmen lassen. Wenn ja, wiirde dies auf eine Gesamtlauf-
zeit von O(n + m?) fithren. Fiir dichte Netzwerke (d.h. m = ©(n?))
hat der Algorithmus von Dinic die gleiche Laufzeit O(n?m) = O(n?)
und die verbesserte Version ist mit O(n?®) in diesem Fall sogar noch
schneller.

3 Fliisse in Netzwerken

Definition 3.15. Sei N = (V, E, s,t,¢) ein Netzwerk und sei g ein
Fluss in N. Der Fluss g séttigt eine Kante e € E, falls g(e) = c(e)
ist. g heiffit blockierend, falls g auf jedem Pfad P von s nach t
mindestens eine Kante e € E sdttigt.

Nach dem Min-Cut-Max-Flow-Theorem gibt es zu jedem maximalen
Fluss f einen Schnitt S, so dass alle Kanten in E(S) geséttigt sind.
Da jeder Pfad von s nach ¢ mindestens eine Kante in E(S) enthalten
muss, ist jeder maximale Fluss auch blockierend. Fiir die Umkehrung
gibt es jedoch einfache Gegenbeispiele, wie etwa

Ein blockierender Fluss muss also nicht unbedingt maximal sein. Tat-
sachlich ist g genau dann ein blockierender Fluss in N, wenn es im
Restnetzwerk Ny keinen Zunahmepfad gibt, der nur aus Vorwértskan-
ten e € F mit g(e) < c¢(e) besteht. Wir werden sehen, dass sich ein
blockierender Fluss in Zeit O(n?) berechnen lésst.

Der Algorithmus von Dinic arbeitet wie folgt.
Algorithmus Dinic(V, E,s,t,c)

1 for all (u,v) eV xV do
2 f(u,v):=0
1

while schichtnetzwerk(f) do
g := blockfluss(f)

s f=rty

Die Prozedur blockfluss(f) berechnet einen blockierenden Fluss im
Restnetzwerk Ny, der fiir alle Kanten den Wert 0 hat, die nicht auf ei-
nem kirzesten Pfad P von s nach ¢ in Ny liegen. Hierzu werden aus Ny

30

3.3 Der Algorithmus von Dinic

alle Knoten u # t entfernt, die einen Abstand d(s,u) > d(s,t) in Ny
haben. Falls in N; kein Pfad von s nach ¢ existiert (d.h. d(s,t) = 00),
wird auch ¢ entfernt.

Das resultierende Netzwerk N} wird als Schichtnetzwerk bezeich-
net, da jeder Knoten in N} einer Schicht S; zugeordnet werden kann:
Fir0 <j<d(s,t)ist S; ={u eV |d(s,u) = j}. Im Fall d(s,t) < oo
kommt fiir j = d(s,t) noch die Schicht S; = {¢} hinzu. Zudem werden
alle Kanten aus Ny entfernt, die nicht auf einem kiirzesten Pfad von s
zu einem Knoten in N} liegen, d.h. jede Kante (u,v) in N} verbindet
einen Knoten u in Schicht S; mit einem Knoten v in Schicht 5,
von Nj.

Das Schichtnetzwerk N} wird von der Prozedur schichtnetzwerk
durch eine modifizierte Breitensuche in Zeit O(n + m) berechnet.
Diese Prozedur gibt den Wert true zuriick, falls ¢ im berechneten
Schichtnetzwerk N} enthalten (und somit der aktuelle Fluss f noch
nicht maximal) ist, und sonst den Wert false.

Satz 3.16. Der Algorithmus von Dinic durchlduft die while-Schleife
hochstens n-mal.

Beweis. Sei k die Anzahl der Schleifendurchlaufe und fur¢=1,...,k
sei g; der blockierende Fluss, den der Dinic-Algorithmus im Schicht-
netzwerk Nj berechnet, d.h. f; = fi 1 + g;. Zudem sei d;(u,v)
wieder die minimale Lénge eines Pfades von u nach v im Restnetz-
werk Ny, . Wir zeigen, dass di1(s,t) > d;(s,t) ist. Da dy(s,t) > 1
und dj(s,t) <n — 1 ist, folgt £ <n — 1.

Behauptung 3.17. Fir jeden Knoten u € V gilt dii1(s,u) >
di(s,u).
Hierzu zeigen wir folgende Behauptung.

Behauptung 3.18. Fulls die Kante e = (u;, uj+1) auf einem kiirzes-
ten Pfad P = (ug,...,up) von s = ug nach u = uy in Ny, liegt (d.h.
di+1(8,’u]‘+1) = di+1(8,uj‘) + 1), dann g’élt di(S, Uj+1) < di(S, U]’) + 1.

3 Fliisse in Netzwerken

Die Behauptung ist klar, wenn die Kante e = (u;, u;4+1) auch in Ny, |
enthalten ist. Ist dies nicht der Fall, muss f;_1(e) # fi(e) sein, d.h.
gi(e) muss ungleich 0 sein. Da e nicht in Ny, , und somit auch nicht
in Ny ist, muss e = (u;y1,u;) in Ny sein. Da N}, nur Kanten
auf kiirzesten Pfaden von s zu einem Knoten in N}, | enthilt, folgt
di(s,uj) = d;(s,uj41) + 1, was di(s,ujp1) = di(s,uj) —1 < di(s,u;)+1
impliziert.

Damit ist Behauptung 3.18 bewiesen und Behauptung 3.17 folgt wie
im Beweis von Satz 3.10. Als néchstes zeigen wir folgende Behauptung.

Behauptung 3.19. Firi=1,...,k—1 gilt dii1(s,t) > d;(s,t).

Sei P = (ug,uq,...,up) ein kiirzester Pfad von s = ug nach t = uy, in
Ny,. Dann gilt wegen Behauptung 3.17, dass d; (s, u;) < diy1(s,u;) =j
fiir y =0,...,h ist.

Wir betrachten zwei Félle. Wenn alle Knoten wu; in N} enthalten
sind, fithren wir die Annahme d;(s,t) = d;+1(s,t) auf einen Wider-
spruch. Wegen Behauptung 3.18 folgt aus dieser Annahme namlich
die Gleichheit d;(s,uj11) = di(s,u;) + 1, da sonst d;(s,t) < h wére.
Folglich ist P auch ein kiirzester Pfad von s nach ¢ in Ny, | und somit
g; kein blockierender Fluss in Ny, .

Es bleibt der Fall, dass mindestens ein Knoten w; nicht in N} |
enthalten ist. Sei u;;; der erste Knoten auf P, der nicht in N} _|
enthalten ist. Dann ist u; 1y # ¢t und daher d;1(s,t) > dip1(s, jp1).
Zudem liegt die Kante e = (u;, uj41) nicht nur in Ny,, sondern we-
gen fi(e) = fi_i(e) (da weder e noch e zu N} gehéren) auch
in Ny,_,. Da somit u; in N}, und e in Ny,_, ist, kann u;,; nur
aus dem Grund nicht zu N} gehoren, dass d;(s,u;j41) = di(s,t)
ist. Daher folgt wegen d,1(s,u;) > d;(s,u;) (Behauptung 3.17) und
di(s,u;) + 1> d;(s,uj4+1) (Behauptung 3.18)

di+1($7t) > di+1<37uj+1) = dz‘+1(377~6j) +1=> di(suujJrl) = di(87t>' u

31

3.3 Der Algorithmus von Dinic

Die Prozedur schichtnetzwerk fiihrt eine Breitensuche mit Start-
knoten s im Restnetzwerk Ny aus und speichert dabei in der Menge
E’ nicht nur alle Baumkanten, sondern zusatzlich alle Querkanten
(u,v), die auf einem kiirzesten Weg von s zu v liegen. Sobald alle von
s aus erreichbaren Knoten besucht (und in V' gespeichert) wurden
oder t am Kopf der Warteschlange () erscheint, bricht die Suche ab.
Falls der Kopf von @) gleich ¢t ist, werden alle Knoten v # t, die die
gleiche Entfernung von s wie ¢ haben, sowie alle Kanten, die in diesen
Knoten enden, wieder aus N} entfernt.

Die Laufzeitschranke O(n+m) folgt aus der Tatsache, dass jede Kante
in £'U E® hochstens einmal besucht wird und jeder Besuch mit einem
konstantem Zeitaufwand verbunden ist.

Prozedur schichtnetzwerk(f)
for all vV do

1

2 niv(v) :=n
3 niv(s):=0

v Vii={s}

5 E =10

¢ QueueInit(Q)

7 Enqueue(Q, s)
s while —QueueEmpty(Q) AHead(Q) #t do

9 u := Head(Q)

10 Dequeue(Q)

11 for all v &€ N*(u)UN"(u) do

12 e:= (u,v)

13 if c(e) — f(e) > 0Aniv(v) > niv(u) then
14 V=V U{v}

15 E' = E'"U{e}

16 d(e) = c(e) — f(e)

17 if niv(v) > niv(u) +1 then
18 niv(v) := niv(u) +1

19 Enqueue(Q,v)

3 Fliisse in Netzwerken

20 if Head(Q) =t then

21 V"':={veV'|v#tniv(v) =niv(t)}
22 V=V VvV

23 E':=E"\ (V' xV")

24 return true
25 else
2 return false

Die Prozedur blockflussl berechnet einen blockierenden Fluss ¢
im Schichtnetzwerk N} in der Zeit O(nm). Hierzu bestimmt sie in der
repeat-Schleife mittels Tiefensuche einen Zunahmepfad P in N }’c +g)
addiert den Fluss (f + ¢g)p zum aktuellen Fluss g hinzu, und ent-
fernt die gesattigten Kanten e € P aus E’. Falls die Tiefensuche in
einer Sackgasse endet (weil £’ keine weiterfithrenden Kanten enthalt),
wird die zuletzt besuchte Kante (u/,u) ebenfalls aus E’ entfernt und
die Tiefensuche vom Startpunkt u' dieser Kante fortgesetzt (back
tracking). Die Prozedur blockfluss1 bricht ab, falls keine weiteren
Pfade von s nach t existieren. Folglich ist der berechnete Fluss g
tatsachlich blockierend.

Die Laufzeitschranke O(nm) folgt aus der Tatsache, dass sich die
Anzahl der aus £’ entfernten Kanten nach spéatestens n Schleifen-
durchlaufen um 1 erhoht.
Prozedur blockflussl(f)

for all ec V xV do g(e):=0

1

> StackInit(S)

3 Push(S,s)

L ui=s

5 done := false

6 repeat

7 if 3 e=wuv € £’ then
8 Push(S,v)

9 d"(e) == (e) — g(e)

32

3.3 Der Algorithmus von Dinic

10 ui=v
11 elsif u =1t then

12 P :=S5-Pfad von s nach ¢

13 c,(P) := min{c"(e) | e € P}

14 for all e P do

15 if ¢’(e) = c,(P) then E' :=E'\ {e}
16 g(e) == g(e) + ¢y(P)

gleR) = g(eR) = ¢/ (P)

18 u=s

19 StackInit(S)

20 Push(S, s)

21 elsif v # s then

22 Pop(S)

23 u' = Top(S)

24 E = FE\{(v,u)}

25 u=u

6 else done := true
until done

[\ [\ [\~
3

g return g

Die Prozedur blockfluss2 benétigt nur Zeit O(n?), um einen blo-
ckierenden Fluss g im Schichtnetzwerk N} zu berechnen. Zu ihrer
Beschreibung benétigen wir folgende Notation.

Definition 3.20. Sei N = (V, E,s,t,c) ein Netzwerk und sei u ein
Knoten in N. Die Ausgangskapazitdt von u ist

Z c(u, v)

(u,v)EE

ct(u) =

und die Eingangskapazitat von u ist

c(uw)= > clv,u).

(v,u)EE

3 Fliisse in Netzwerken

Der Durchsatz von u ist

c(u), u=s,
d(u) = § ¢ (u), u=t,
min{c*(u),c (u)}, sonst.

FEin Fluss g in N sdttigt einen Knoten u € V, falls d(u) =
max{ f*(u), f~(u)} dst.

Die Korrektheit der Prozedur blockfluss2 basiert auf folgender
Proposition.

Proposition 3.21. Sei N = (V, E, s,t,c) ein Netzwerk und sei g ein
Fluss in N. g ist blockierend, falls jeder s-t-Pfad in N mindestens
einen Knoten enthdlt, der durch g gesdttigt wird.

Beweis. Dies folgt aus der Tatsache, dass ein Fluss g in N, der auf
jedem s-t-Pfad P mindestens einen Knoten u sattigt, auch mindestens
eine Kante in P sattigt. |

Beginnend mit dem trivialen Fluss ¢ = 0 berechnet die Prozedur
blockfluss2 fiir jeden Knoten u den Durchsatz D(u) im Schicht-
netzwerk N; und wihlt in jedem Durchlauf der repeat-Schleife einen
Knoten u mit minimalem Durchsatz D(u), um den aktuellen Fluss
g um den Wert D(u) zu erhohen. Hierzu benutzt sie die Prozeduren
propagierevor und propagiereriick, die dafiir Sorge tragen, dass
der zusatzliche Fluss tatsachlich durch den Knoten v fliet und die
Durchsatzwerte D(v) von allen Knoten aktualisiert werden, die von
der Flusserhohung betroffen sind. Aus diesem Grund wird u durch
den zusatzlichen Fluss gesattigt und kann aus dem Netzwerk entfernt
werden.

In der Menge B werden alle Knoten gespeichert, deren Durchsatz
durch die Erh6hungen des Flusses g oder durch die Entfernung von

33

3.3 Der Algorithmus von Dinic

Kanten aus E’' auf 0 gesunken ist. Diese Knoten und die mit ih-
nen verbundenen Kanten werden in der while-Schleife der Prozedur
blockfluss2 aus dem Schichtnetzwerk N JQ entfernt.

Prozedur blockfluss2(f)

1 for all e € E'UE" do g(e) :=0
> for all we V' do

3 D+(U) = ZquE’ Cl(“? U)

] D~ (u) :=
5 repeat

6 for all we V'\ {s,t} do

7 D(u) := min{D~ (u), D" (u)}

8 D(s) :== D" (s)

9 D(t) := D~ (t)
10 wahle v € V' mit D(u) minimal
11 Init(B);Insert(B,u)

ZquE’ CI (’U, ’LL)

12 propagierevor(u)

13 propagiereriick(u)

14 while « := Remove(B) ¢ {s,t} do

15 V=V \ {u}

16 for all e=uv € £’ do

17 D= (v) := D~ (v) — d(u,v)

18 if D~(v) =0 then Insert(B,v)
19 E' = FE"\ {e}

0 for all e=vu € E’ do
D*(v) := Dt (v) — (v, u)

—_

22 if D*(v) =0 then Insert(B,v)
23 E' = FE'\ {e}

2+ until u € {s,t}

25 return g

Da in jedem Durchlauf der repeat-Schleife mindestens ein Knoten u
gesittigt und aus V'’ entfernt wird, wird nach hochstens n — 1 Itera-

3 Fliisse in Netzwerken

tionen einer der beiden Knoten s oder ¢ als Knoten u mit minimalem
Durchsatz D(u) gewahlt und die repeat-Schleife verlassen. Da nach
Beendigung des letzten Durchlaufs der Durchsatz von s oder von ¢
gleich 0 ist, wird einer dieser beiden Knoten zu diesem Zeitpunkt von
g gesattigt. Nach Proposition 3.21 ist somit g ein blockierender Fluss.

Die Prozeduren propagierevor und propagiererick propagieren
den Fluss durch w in Vorwéartsrichtung hin zu ¢ bzw. in Riickwérts-
richtung hin zu s. Dies geschieht in Form einer Breitensuche mit
Startknoten u unter Benutzung der Kanten in £’ bzw. E'®. Da der
Durchsatz D(u) von u unter allen Knoten minimal ist, ist sicherge-
stellt, dass der Durchsatz D(v) jedes Knoten v ausreicht, um den fiir
ihn ermittelten Zusatzfluss in Hohe von z(v) weiterzuleiten.

Prozedur propagierevor(u)

. for all ve V' do z(v):=0
2 z(u) == D(u)

3 QueueInit(Q@);Enqueue(Q,u)

1+ while v :=Dequeue(Q) # L do

5 while z(v) #0A3Je=vu e E' do

6 m = min{z(v),d(e)}

7 z(v) = z(v) —m; z(u) = z(u) +m
8 aktualisierekante(e,m)

9 Enqueue(Q, u)

Prozedur aktualisierekante(e = vu,m)

@ =getm
% d(e):=d(e)—m

if d(e) =0 then E' :=FE'\ {e}
Dt (v) :=D%(v) —m
5 if D" (v) =0 then Insert(B,v)
6 D~ (u) == D~ (u) —m
7 if D™ (u) =0 then Insert(B,u)

34

3.3 Der Algorithmus von Dinic

Die Prozedur propagiererick unterscheidet sich von der Proze-
dur propagierevor nur dadurch, dass in Zeile 5 die Bedingung
de = vu € E' durch die Bedingung de = uv € E’ ersetzt wird.

Da die repeat-Schleife von blockfluss2 maximal (n — 1)-mal durch-
laufen wird, werden die Prozeduren propagierevor und propa-
giereriick hochstens (n — 1)-mal aufgerufen. Sei a die Gesamtzahl
der Durchléufe der inneren while-Schleife von propagierevor, sum-
miert tiber alle Aufrufe. Da in jedem Durchlauf eine Kante aus E’
entfernt wird (falls m = ¢/(u, v) ist) oder der zu propagierende Fluss
z(v) durch einen Knoten v auf 0 sinkt (falls m = z(v) ist), was pro
Knoten und pro Aufruf héchstens einmal vorkommt, ist a < n? + m.
Der gesamte Zeitaufwand ist daher O(n? + m) innerhalb der beiden
while-Schleifen und O(n?) auflerhalb. Die gleichen Schranken gelten
fir propagiererick.

Eine ahnliche Uberlegung zeigt, dass die while-Schleife von
blockfluss2 einen Gesamtaufwand von O(n + m) hat. Folglich
ist die Laufzeit von blockfluss2 O(n?).

Korollar 3.22. Der Algorithmus von Dinic berechnet bei Verwendung
der Prozedur blockfluss2 einen mazimalen Fluss in Zeit O(n?).

Auf Netzwerken, deren Fliisse durch jede Kante oder durch jeden Kno-
ten durch eine relativ kleine Zahl C' beschrankt sind, lassen sich noch
bessere Laufzeitschranken fiir den Dinic-Algorithmus nachweisen.

Satz 3.23. Sei N = (V, E, s,t,c) ein Netzwerk.

(i) Falls jeder Knoten u € V '\ {s,t} einen Durchsatz d(u) < C
hat, so durchliuft der Algorithmus von Dinic die while-Schleife
héchstens 2(Cn)'/? mal.

(ii) Falls jede Kante e € E eine Kapazitit c(e) < C' hat, so durch-

lauft der Algorithmus von Dinic die while-Schleife héochstens
(2°Cn?)Y3 mal.

Beweis. Sei M = |f| die Grofle eines maximalen Flusses f in N.

3 Fliisse in Netzwerken

(i)

Da die Anzahl a der Schleifendurchlaufe durch M beschrankt ist,
kénnen wir M > (Cn)'/? annehmen. Betrachte den i-ten Schlei-
fendurchlauf, in dem ein blockierender Fluss g; im Schichtnetz-
werk Ni | mit den Schichten Sy = {s}, S1,..., 84,1, 5, = {t}
berechnet wird. Da ein maximaler Fluss in Ny,_, (in N}, | kann
er kleiner sein) die GroBe r; = M — | f;_1] hat und dieser durch
die Knoten jeder einzelnen Schicht S;, 1 < j < d; — 1, fliefit,
muss

ry < OIS, baw. 13/C < |S;].

sein, woraus

(di=1)r;/C < |Si||+ - ~+||Sa;—1]] < n—2 < n bzw. d; < 1+nC/r;

folgt. Damit ist die Anzahl a der Schleifendurchléufe durch
a<i+ri <di+rig <rg1+1+nC/r;

beschrankt. Nun wihlen wir i so, dass r; > (Cn)Y? und
i1 < (Cn)Y/? ist. Dann folgt

a—1<riq+nC/r; < (Cn)Y? +nC/(Cn)Y? =2(Cn)"2

Da die Anzahl a der Schleifendurchlaufe durch M beschrankt
ist, kénnen wir M > (2n+/C)?? annehmen. Betrachte den i-ten
Schleifendurchlauf, in dem ein blockierender Fluss g; im Schicht-
netzwerk Nj mit den Schichten Sy = {s},S1,..., 84,1, Sq,
berechnet wird. Hierbei nehmen wir zu Sy, alle Knoten hinzu,
die nicht in N} liegen. Sei k; die Anzahl der Kanten von S
nach Sj,;. Da ein maximaler Fluss in Ny,_, (in N} | kann er
wieder kleiner sein) die GroBe r; = M — | f;—1| hat und dieser fiir
j=0,...,d; =1 durch die k; Kanten von S; nach S, fliefit,
muss

ri < Ckj < Cl|S;l|[|Sall brw. 73/ C < [|Sj[[|:Sj41]]

35

3.3 Der Algorithmus von Dinic

sein. Somit enthalt mindestens eine von zwei benachbarten
Schichten S; und Sj4; mindestens y/r;/C Knoten, woraus

(d;/2)\[1:i/C < ||So|| + -+ [|Sa;|| < n bzw. d; < 2n\/C/r;
folgt. Damit ist die Anzahl a der Schleifendurchléufe durch
a<i+ Ti+1 < dl + Tit1 < Tiv1 + 27’“/0/’&

beschréankt. Nun wéhlen wir i so, dass 7; > (2nv/C)*? und
riy1 < (2nv/C)?3 ist. Dann folgt

a < (2nV)3 4+ 2V C/(2nV OV = (2°CnH)V3. W

Korollar 3.24. Sei N = (V, E, s,t,¢) ein Netzwerk.
(i) Falls jeder Knoten u € V '\ {s,t} einen Durchsatz d(u) < C

hat, so berechnet der Algorithmus von Dinic bei Verwendung
der Prozedur blockflussl einen mazimalen Fluss in Zeit

O((nC + m)v/Ch).

(7i) Falls jede Kante e € E eine Kapazitit c(e) < C hat, so berech-

net der Algorithmus von Dinic bei Verwendung der Prozedur
blockflussl einen maximalen Fluss in Zeit O(C**n**m).

Beweis. Zunéchst ist leicht zu sehen, dass die Kapazitatschranke auf
den Kanten oder Knoten auch fiir jedes Schichtnetzwerk N}, gilt.

(i) Jedesmal wenn blockflussl einen s-t-Pfad P im Schichtnetz-

werk findet, verringert sich der Durchsatz ¢”’(u) der auf P lie-
genden Knoten u um den Wert ¢, (P) > 1, da der Fluss g durch
diese Knoten um diesen Wert steigt. Daher kann jeder Kno-
ten an maximal C' Flusserhohungen beteiligt sein, bevor sein
Durchsatz auf 0 sinkt. Da somit pro Knoten ein Zeitaufwand
von O(C) fiir alle erfolgreichen Tiefensuchschritte, die zu einem
s-t-Pfad fiithren, und zusétzlich pro Kante ein Zeitaufwand von
O(1) fiir alle nicht erfolgreichen Tiefensuchschritte anfallt, lauft
blockflussl in Zeit O(nC + m).

3 Fliisse in Netzwerken

(ii) Jedesmal wenn blockflussl einen s-t-Pfad P im Schichtnetz-
werk findet, verringert sich die Kapazitit ¢”(e) der auf P liegen-
den Kanten e um den Wert ¢ (P) > 1. Da somit pro Kante ein
Zeitaufwand von O(C) fiir alle erfolgreichen Tiefensuchschritte
und O(1) fiir alle nicht erfolgreichen Tiefensuchschritte anfallt,
lduft blockflussl in Zeit O(Cm +m) = O(Cm).]

3.4 Kostenoptimale Fliisse

In manchen Anwendungen fallen fiir die Benutzung jeder Kante e
eines Netzwerkes Kosten an, die proportional zur Hohe des Flusses
f(e) durch diese Kante sind. Falls die Kosten fiir die einzelnen Kanten
differieren, ist es moglich, dass zwei Fliisse unterschiedliche Kosten
verursachen, obwohl sie die gleiche Gréfle haben. Man mochte also
einen maximalen Fluss f berechnen, der minimale Kosten hat.

Die Kosten eines Flusses f werden auf der Basis einer Kostenfunk-
tion k : E' — 7 berechnet, wobei fiir jede Kante e € E mit f(e) >0
Kosten in Hohe von f(e)k(e) anfallen.

Die Gesamtkosten von f im Netzwerk berechnen sich also zu

k(f)= > fle)k(e).

f(e)>0

Ein negativer Kostenwert k(e) < 0 bedeutet, dass eine Erhéhung des
Flusses durch die Kante e um 1 mit einem Gewinn in Hohe von —k(e)
verbunden ist. Ist zu einer Kante e € E auch die gegenlaufige Kante
e® in E enthalten, so muss k die Bedingung k(e®) = —k(e) erfiillen.”
Der Grund hierfiir ist, dass die Erniedrigung von f(e) > 0 um einen
bestimmten Wert w < f(e) gleichbedeutend mit einer Erhéhung von
f(e®) um diesen Wert im Restnetzwerk N; ist und die Kostenfunktion
auch fiir N; gelten soll. Daher kénnen wir &k mittels k(e) = —k(e®?),

3.4 Kostenoptimale Fliisse

falls et € E und k(e) = 0 firr alle e € (V xV)\ (EUE®R) auf die Menge
V x V erweitern. Zudem definieren wir fiir beliebige Multimengen
F CV xV die Kosten von I als k(F) = Y .cp k(e) (d.h. jede Kante
e € F wird bei der Berechnung von k(F') entsprechend der Héufigkeit
ihres Vorkommens in F' berticksichtigt). Wir nennen F' negativ, falls
F negative Kosten k(F') < 0 hat.

Das nachste Lemma liefert einen Algorithmus, mit dem sich iiberprii-
fen lasst, ob ein Fluss minimale Kosten unter allen Fliissen derselben
GrofBe hat. Fur einen Fluss f sei

Emin(f) = min{k(g) | g ist ein Fluss in N mit |g| = |f|}
das Minimum der Kosten aller Flisse der Grofe | f|.

Lemma 3.25. Ein Fluss f in N hat genau dann minimale Kosten
E(f) = kmin(f), wenn es im Restnetzwerk Ny keinen negativen Kreis
K mit k(K) <0 gibt.

Beweis. Falls es in Ny einen Kreis K mit Kosten k(K) < 0 gibt, dann
konnen wir den Fluss durch alle Kanten e € K um 1 erhéhen. Dies
fihrt auf einen Fluss g mit |g| = | f| und k(g) = k(f) + k(K) < k(f).

Sei umgekehrt ¢ ein Fluss in N mit |g| = | f| und k(g) < k(f). Dann
ist g — f wegen g(e) — f(e) < c(e) — f(e) ein Fluss in Ny. Da g — f
die GroBe |g — f| = 0 hat, konnen wir g — f als Summe von Fliissen
hi, ..., hy in Ny darstellen, wobei h; nur fiir Kanten e auf einem Kreis
K; in Ny einen positiven Wert h;(e) = w; > 0 annimmt (siehe néchs-
ten Abschnitt). Da k(hy) + -+ k(hy) = k(g — f) = k(g9) — k(f) <0
ist, muss wegen k(h;) = Y .ck, hi(e)k(e) = w;k(K;) mindestens ein
Kreis K; negativ sein.

Um h; und die zugehorigen Kreise K; fir ¢ = 1,...,k zu fin-
den, wahlen wir eine beliebige Kante e;; aus Ey, fir die der Fluss
h; y =g—f—h —- - — hj_1 einen minimalen positiven Wert
w = h_;(e;1) > 0 annimmt (falls es keine solche Kante e;; gibt, sind

*Natiirlich kann man diese Einschrdnkung bspw. dadurch umgehen, dass man die Kante e = (u, v) durch einen Pfad (u,w, v) tiber einen neuen Knoten w ersetzt.

36

3 Fliisse in Netzwerken

wir fertig, weil dann h!_, der triviale Fluss ist). Da h]_; den Wert 0
hat und somit die Kontinuitatsbedingung fiir alle Knoten (inklusive
s und t) erfillt, lasst sich nun zu jeder Kante e;; = (a,b) € Ey
solange eine Fortsetzung e; ;1 = (b,c) € E; mit hl_,(e;j41) > 0
(und damit h;_,(e; j11) > w) finden bis sich ein Kreis K; schliefit.
Nun setzen wir h;(e;;) = w; fur alle Kanten e;; € K;, wobei
w; = min{h;_,(e) | e € K;} ist.

Da sich die Anzahl der Kanten in £, die unter dem verbleibenden

Fluss b, = g— f —hy—- - - —h; einen Wert ungleich 0 haben, gegeniiber
h;_, mindestens um 1 verringert, ist die Anzahl der Kreise K; durch
|E¢|| < 2m beschrankt. [

Mithilfe von Lemma 3.25 lasst sich ein maximaler Fluss mit minimalen
Kosten wie folgt berechnen. Wir berechnen zuerst einen maximalen
Fluss f. Dann suchen wir beginnend mit ¢ = 1 und f, = f einen
negativen Kreis K; in Ny, . Hierzu kann der Bellman-Ford-Moore
Algorithmus benutzt werden, wenn wir zu Ny, , einen neuen Knoten
s" hinzuftiigen und diesen mit allen Knoten u durch eine neue Kante
(s’',u) verbinden.

Falls kein negativer Kreis existiert, ist f;_; ein maximaler Fluss mit
minimalen Kosten. Andernfalls bilden wir den Fluss f;, indem wir
zu f;—1 den Fluss fg, addieren, der auf jeder Kante e € K, den
Wert fx,(e) = ¢y, ,(K;) = min{cy, ,(e) | e € K;} hat. Da sich
die Kosten k(f;) = k(fi—1) + k(fr,) = k(fi—1) + ¢, (Ki)k(K;) von
fi wegen k(K;) < —1 bei jeder Iteration um mindestens 1 verrin-
gern und die Kostendifferenz zwischen zwei beliebigen Fliissen durch
D =3 ,cv k(s,u)|(c(s,u) + c(u, s)) beschrankt ist, liegt nach k < D
Iterationen ein kostenminimaler Fluss f; vor.

Der néachste Satz bereitet den Weg fiir einen Algorithmus zur Bestim-
mung eines kostenminimalen Flusses, dessen Laufzeit nicht von D,
sondern von der GroBe M = |f| eines maximalen Flusses f in N ab-
hangt. Voraussetzung hierfiir ist jedoch, dass es in N keine negativen
Kreise gibt.

37

3.4 Kostenoptimale Fliisse

Lemma 3.26. Ist f;_ ein Fluss in N mit k(f;—1) = kmin(fi—1) und
ist P; ein Zunahmepfad in Ny, | mit

k(P;) = min{k(P") | P ist ein Zunahmepfad in Ny, .},
so st fi = fio1 + fp, ein Fluss in N mit k(f;) = kmin(fi)-

Beweis. Angenommen, es gibt einen Fluss ¢ in N mit |g| = |f;]
und k(g) < k(fi). Dann gibt es in Ny, einen negativen Kreis K
mit k(K) < 0. Wir benutzen K, um einen Zunahmepfad P’ mit
k(fp) < k(fp,) zu konstruieren.

Sei F' die Multimenge aller Kanten, die auf K oder P; liegen, d.h.
jede Kante in KAP, = (K \ P,) U (P;\ K) kommt genau einmal und
jede Kante in K N P; kommt genau zweimal in F' vor. F' ist also ein
Multigraph bestehend aus dem s-t-Pfad P, und dem Kreis K und es
gilt k(F) = k(P) + k(K) < k(F).

Da jede Kante e € F' = K \ Ej,_, wegen fi_1(e) = c(e) zwar von
fi—1 aber wegen e € K C Fy nicht von f; gesattigt wird, muss
fi—1(e) # fi(e) und somit e® € P; sein, was F' C PF impliziert. Somit
ist jede Kante e € F und mit ihr auch e® genau einmal in F' enthalten.
Entfernen wir nun fiir jede Kante e € F' die beiden Kanten e und e®
aus F, so erhalten wir die Multimenge F' = F'\ (F'U F'R), die wegen
k(e) + k(ef) = 0 dieselben Kosten k(F') = k(F) < k(P;) wie F hat.
Zudem gilt I C Ey, . Da F'" aus F' durch Entfernen von Kreisen
(der Lange 2) entsteht, ist auch F” ein Multigraph, der sich in einen
s-t-Pfad P’ und eine gewisse Anzahl von Kreisen K7,..., K, in Ny, ,
zerlegen lasst. Da nach Voraussetzung keine negativen Kreise in Ny, |
existieren, folgt

KP) = K(F) — SK(K) < K(F) = h(F) < k(P).

i=1

3 Fliisse in Netzwerken

Basierend auf Lemma 3.26 konnen wir nun leicht einen Algorithmus
zur Bestimmung eines maximalen Flusses mit minimalen Kosten in
einem Netzwerk N angeben, falls es in N keine negativen Kreise gibt.

Algorithmus Min-Cost-Flow(V, E,s,t,c, k)
for all (u,v) eV xV do

1

> flu,v):=0

3 repeat

4 P < min-zunahmepfad(f)

5 if P=# 1 then add(f,P)
¢ until P= 1

Hierbei berechnet die Prozedur min-zunahmepfad(f) einen Zunah-
mepfad in Ny, der minimale Kosten unter allen Zunahmepfaden in
Ny hat. Da es in Ny keine negativen Kreise gibt, kann hierzu bspw.
der Bellman-Ford-Moore Algorithmus benutzt werden, der in Zeit
O(mn) lauft. Dies fithrt auf eine Gesamtlaufzeit von O(Mmn), wobei
M = |f] die Grofe eines maximalen Flusses f in NV ist.

Satz 3.27. In einem Netzwerk N kann ein maximaler Fluss f mit
minimalen Kosten in Zeit O(|f|mn) bestimmt werden, falls es in N
keine negativen Kreise bzgl. der Kostenfunktion k gibt.

Tatsachlich lasst sich fiir Netzwerke ohne negative Kreise die Laufzeit
unter Verwendung des Dijkstra-Algorithmus in Kombination mit einer
Preisfunktion auf O(Mmlogn) verbessern.

Definition 3.28. Sei G = (V, E) ein Digraph mit Kostenfunktion
k . E — Z. Eine Funktion p : V — Z heifst Preisfunktion fir
(G, k), falls fiir jede Kante e = (z,y) in E die Ungleichung

k(x,y) +p(x) —ply) =0
gilt. Die bzgl. p reduzierte Kostenfunktion kP : E — Ny ist

kP (x,y) = k(z,y) + p(x) — p(y).

38

3.4 Kostenoptimale Fliisse

Lemma 3.29. Ein Digraph G = (V, E) mit Kostenfunktion k : E —
Z hat genau dann keine negativen Kreise, wenn es eine Preisfunktion
p fir (G, k) gibt. Zudem ldsst sich eine geeignete Preisfunktion p in
Zeit O(nm) finden.

Beweis. Wir zeigen zuerst die Riickwartsrichtung. Sei also p eine Preis-
funktion mit k”(e) > 0 fur alle e € E. Dann gilt fiir jede Kantenmenge
F C FE die Ungleichung £”(F') > 0. Da zudem fir jeden Kreis K in
G die Gleichheit k(K) = kP(K) gilt, folgt sofort k(K) = kP(K) > 0.
Sei nun G ein Digraph und sei k : E — Z eine Kostenfunktion oh-
ne negativen Kreise. Betrachte den Digraphen G, der aus G durch
Hinzunahme eines neuen Knotens s und Kanten (s, z) fir alle z € V'
entsteht. Zudem erweitern wir k£ mittels £'(s, z) = 0 zu einer Kosten-
funktion k" auf G'. Da es auch in (G', k') keine negativen Kreise gibt,
existiert in G’ fiir jeden Knoten x € V' ein bzgl. k&’ kiirzester Pfad von
s nach z, dessen Linge wir mit d*' (s, z) bezeichnen. Da nun fiir jede
Kante e = (x,y) € E die Ungleichung

d¥ (s,2) + k(z,y) > d" (s,y)

gilt, ist p(z) = d* (s,2) die gesuchte Preisfunktion. Diese lisst sich
mit BFM in Zeit O(nm) finden. [|

Sobald wir eine Preisfunktion p fir das Restnetzwerk N; haben,
konnen wir Dijkstra zur Berechnung eines bzgl. kP kiirzesten Zunah-
mepfades P in Ny benutzen. P ist dann auch ein kiirzester Pfad bzgl.
k, da fiir jeden s-t-Pfad P die Beziehung kP(P) = k(P) + p(s) — p(t)
gilt und p(s) — p(t) eine von P unabhingige Konstante ist.

Falls N keine negativen Kreise hat, konnen wir fir N = Ny, eine
Preisfunktion po(z) = min{k(P) | P ist ein s-z-Pfad} mit dem BFM-
Algorithmus in Zeit O(nm) berechnen. Angenommen, wir haben fiir
ein ¢ > 1 einen Fluss f;_; mit minimalen Kosten k(f;_1) = kmin(fi—1)
und eine Preisfunktion p;_; fiir (Ny, ,, k). Sofern in Ny, | ein Zunah-
mepfad existiert, konnen wir mit dem Dijkstra-Algorithmus in Zeit

3 Fliisse in Netzwerken

O(mlogn) einen bzgl. kPi-! kiirzesten Zunahmepfad P, berechnen
und erhalten einen grofleren Fluss f; = fi—1 + fp, mit minimalen
Kosten k(f;) = kmin(fi). Andernfalls ist f;_; ein maximaler Fluss.

Es bleibt die Frage, wie wir im Fall, dass P; existiert, eine Preisfunktion
p; fiir Ny, finden konnen, ohne erneut BFM zu benutzen.

Lemma 3.30. Sei d;(s,x) die minimale Pfadlinge von s nach x in
Ny, | bzgl. kPi=1, wobei p;—y : V — Z eine beliebige Funktion ist. Dann
ist pi(z) = pi—1(x) + di(s, x) eine Preisfunktion fir k in Ny, , und in
Ny
Beweis. Wir zeigen zuerst, dass p; eine Preisfunktion fir (Ny, ,, k) ist.
Fir jede Kante e = (z,y) € Ey, , gilt namlich d;(y) < d;(z) + kP~ (e)
und kPi-1(e) = k(e) + p;_1(z) — pi—1(y). Somit ist

kP (e) = k(e) + pi(x) — pi(y)
=k(e) +pi—i(x) + di(s,2) — pica(y) — di(s,v)
= kPi=t(e) + di(s,x) — di(s,y) > 0.

Falls e auf P, liegt, gilt sogar kPi(e) = 0, da P; ein bzgl. kPi-! kiirzester
s-t-Pfad in Ny, |, und daher d;(s,y) = d;(s,) + kP~ (e) ist.

Da zudem fiir jede Kante e in Ny,, die nicht zu Ny, | gehort, die ge-
spiegelte Kante et auf dem Pfad P, liegt, folgt kPi(e™) = 0 und somit
kPi(e) = k(e) +pi(z) = pi(y) = —k(e™) —pi(y) + pi(z) = —kP () = 0.
Dies zeigt, dass p; eine Preisfunktion fur (Ny,, k) ist. [

Satz 3.31. In einem Netzwerk N kann ein mazimaler Fluss f mit
minimalen Kosten in Zeit O(mn + | fImlogn) bestimmt werden, falls
es in N keine negativen Kreise bzgl. der Kostenfunktion k gibt.

Beweis. Wir berechnen zuerst mit BEM in Zeit O(nm) eine Preis-
funktion py fiir die Kostenfunktion k& im Netzwerk N = Ny . Dann
bestimmen wir in < |f| Iterationen eine Folge von kostenminimalen

39

3.4 Kostenoptimale Fliisse

Fliissen f;, indem wir mit dem Dijkstra-Algorithmus in Zeit O(mlogn)
einen bzgl. kPi-' kiirzesten Zunahmepfad P; in Ny, | berechnen. Da
hierbei bereits die Distanzen d;(x) fiir alle Knoten x berechnet werden
kénnen, erfordert die Bestimmung von p; in jeder Iteration nur O(n)
Zeit. |

4 Matchings

4 Matchings

Definition 4.1. Sei G = (V, E) ein Graph.
e Zwei Kanten e, e’ € E heifflen unabhidngig, falls e Ne' = () ist.

o Fine Kantenmenge M C E heifst Matching in G, falls alle Kanten
in M paarweise unabhdngig sind.

e Fin Knoten v € V heifit gebunden, falls v Endpunkt einer Mat-
chingkante (also v € \JM) ist und sonst frei.

o M heifit perfekt, falls alle Knoten von G gebunden sind (also
V=UM ist).
e Die Matchingzahl von G ist

w(G) = max{||M|| | M ist ein Matching in G}

FEin Matching M heifit maximal, falls |M|| = u(G) ist. M heifit
gesattigt, falls es in keinem gréfieren Matching enthalten ist.

Offensichtlich ist M C E genau dann ein Matching, wenn || M|| =
2|| M| ist. Das Ziel besteht nun darin, ein maximales Matching M in
G zu finden.

Durch eine einfache Reduktion des bipartiten Matchingproblems auf
ein Flussproblem erhélt man aus Korollar 3.24 das folgende Resultat
(siche Ubungen).

Satz 4.2. In einem bipartiten Graphen ldsst sich ein maximales Mat-
ching in Zeit O(m+/n) bestimmen.

Beweis. Sei G = (U,V, E) der gegebene bipartite Graph. Konstruiere
das Netzwerk N = (V' E', s,t,¢) mit den Knoten V! = UUV U{s,t}

40

und den Kanten
E' = ({s} x 1) U{(u,0) € U x V| {u,v} € B} U(V x {t}),

die alle Kapazitdt 1 haben. Es ist leicht zu sehen, dass sich aus jedem
Matching M in G ein Fluss f in N konstruieren lasst mit ||M|| = | f|
und umgekehrt. Es gentigt also, einen maximalen Fluss in N zu finden.
Nach Korollar 3.24 ist dies mit dem Algorithmus von Dinic unter

Einsatz von blockflussl in O(m+/n) Zeit moglich, da der Durchsatz
aller Knoten aufler s und ¢ durch 1 beschrankt ist. |

In den Ubungen wird gezeigt, dass die Laufzeit durch eine verbesserte
Analyse sogar durch O(m,/u(G)) abgeschétzt werden kann.

Die Konstruktion aus Satz 4.2 lasst sich nicht ohne Weiteres auf allge-
meine, nicht-bipartite Graphen verallgemeinern. Wir werden jedoch
sehen, dass sich manche bei den Flussalgorithmen verwendete Ideen
auch fiir Matchingalgorithmen einsetzen lassen.

Beispiel 4.3. Fin gesdttigtes Matching muss nicht mazximal sein:

M = {{v,w}} ist gesdttigt, da es sich nicht erweitern ldasst. M ist
jedoch kein mazximales Matching, da M’ = {{v,z}, {u,w}} grofer ist.
Die Greedy-Methode, ausgehend von M = () solange Kanten zu M
hinzuzufiigen, bis sich M nicht mehr zu einem gréfferen Matching
erweitern ldsst, funktioniert also nicht.

Es gibt jedoch eine Methode, mit der sich jedes Matching, das nicht
maximal ist, vergroffern lésst.

Definition 4.4. Sei G = (V, E) ein Graph und sei M ein Matching
in G.

4 Matchings

1. Fin Pfad P = (ui,...,u) heifst alternierend, falls fir i =
1,...,k—1 gilt:

ei = {us, U1} € M & e = {Uiy1, Uiga} € B\ M.

2. Ein Kreis C' = (uq,...,u;) heifst alternierend, falls der Pfad

P = (uy,...,ux_1) alternierend ist und zusatzlich gilt:
e € M < e € E\M.

3. Fin alternierender Pfad P heifit vergroBBernd, falls weder e; noch
ex—1 2u M gehoren.

Satz 4.5. Ein Matching M in G ist genau dann mazimal, wenn es
keinen vergréffernden Pfad in G bzgl. M gibt.

Beweis. Ist P ein vergrofSernder Pfad, so liefert M’ = MAP ein
Matching der Grofe ||M'|| = ||M]| + 1 in G. Hierbei identifizieren
wir P mit der Menge {e; |i=1,...,k — 1} der auf P = (uy,...,ug)
liegenden Kanten e; = {u;, w41}

Ist dagegen M nicht maximal und M’ ein grofleres Matching, so
betrachten wir die Kantenmenge M AM’. Da jeder Knoten in dem
Graphen G' = (V, MAM') hochstens den Grad 2 hat, ldsst sich die
Kantenmenge M AM' in disjunkte Kreise und Pfade partitionieren.
Da diese Kreise und Pfade alternierend sind, und M’ grofer als M
ist, muss mindestens ein Pfad vergrofiernd sein. [|

Damit haben wir das Problem, ein maximales Matching in einem Gra-
phen G zu finden, auf das Problem reduziert, zu einem Matching M
in GG einen vergrofernden Pfad zu finden, sofern ein solcher existiert.

4.1 Der Algorithmus von Edmonds

Der Algorithmus von Edmonds bestimmt einen vergréfiernden Pfad
wie folgt. Jeder Knoten v hat einen von 3 Zustdnden, welcher ent-
weder mit gerade (falls v frei ist) oder unerreicht (falls v gebunden

41

4.1 Der Algorithmus von Edmonds

ist) initialisiert wird. Dann wird ausgehend von den freien Knoten
als Wurzeln ein Suchwald W aufgebaut, indem fiir einen beliebigen
geraden Knoten v eine Kante zu einem Knoten v' besucht wird, der
entweder ebenfalls gerade oder unerreicht ist.

Ist v" unerreicht, so wird der aktuelle Suchwald W um die beiden Kan-
ten (v,v’) und (v', M (v')) erweitert, wobei M (v') der Matchingpartner
von v ist (d.h. {v/, M (v")} € M). Zudem wechselt der Zustand von
v" von unerreicht zu ungerade und der von M (v") von unerreicht zu
gerade. Damit wird erreicht, dass jeder Knoten in W genau dann
gerade (bzw. ungerade) ist, wenn der Abstand zu seiner Wurzel in W
gerade (bzw. ungerade) ist.

Ist v' dagegen gerade, so gibt es zwei Unterfille. Sind die beiden
Wurzeln von v und v’ verschieden, so wurde ein vergrofSernder Pfad
gefunden, der von der Wurzel von v zu v iiber v' zur Wurzel von v/
verlauft.

Andernfalls befindet sich v' im gleichen Suchbaum wie v, d.h. es gibt
einen gemeinsamen Vorfahren v”; so dass durch Verbinden der beiden
Pfade von v” nach v und von v” nach v’ zusammen mit der Kante
{v,v'} ein Kreis C' entsteht. Da v und v’ beide gerade sind, hat C' eine
ungerade Linge. Zudem muss auch v” gerade sein, da jeder ungerade
Knoten in W genau ein Kind hat. Der Pfad von der Wurzel von v”
zu v"” zusammen mit dem Kreis C' wird als Blume mit der Bliite C'
bezeichnet. Der Knoten v” heifit Basis der Blite C.

Zwar fiihrt das Auffinden einer Bliite C' nicht direkt zu einem ver-
groBernden Pfad, sie bedeutet aber dennoch einen Fortschritt, da
sich der Graph wie folgt vereinfachen ldsst. Wir kontrahieren C
zu einem einzelnen geraden Knoten b, der die Nachbarschaften aller
Knoten in C' zu Knoten auflerhalb von C' erbt, und setzen die Suche
nach einem vergroflernden Pfad fort. Bezeichnen wir den aus G durch
Kontraktion von C' entstandenen Graphen mit G¢ und das aus M
durch Kontraktion von C' entstandene Matching in G mit Mg, so
stellt folgendes Lemma die Korrektheit dieser Vorgehensweise sicher.

4 Matchings

Lemma 4.6. In G ldsst sich ausgehend von M genau dann ein vergro-
fernder Pfad finden, wenn dies in Go ausgehend von Mc maglich ist.
Zudem kann jeder vergréfiernde Pfad in G¢ zu einem vergréffernden
Pfad in G expandiert werden.

Beweis. Sei P ein vergrofernder Pfad in G¢. Falls P nicht den Kno-
ten b besucht, zu dem die Blite C' kontrahiert wurde, so ist P auch
ein vergroflernder Pfad in GG. Besucht P dagegen den Knoten b, so
betrachten wir die beiden Nachbarn a und ¢ von b in P (0.B.d.A sei
{a,b} in M¢). Dann existiert in M eine Kante zwischen a und der
Basis v” von C'. Zudem gibt es in C' mindestens einen Nachbarn v,
von c¢. Im Fall v” = v, gentigt es, b durch v” zu ersetzen. Andernfalls
ersetzen wir b durch denjenigen der beiden Pfade P, und P, von
v” nach v, auf C, der v, iber eine Matchingkante erreicht. Falls b
Endknoten von P ist, also nur einen Nachbarn ¢ in P hat, ersetzen
wir b durch den gleichen Pfad.

Der Beweis der Riickrichtung ist komplizierter, da viele verschiedene
Falle moglich sind. Alternativ ergibt sich die Riickrichtung aber auch
als Folgerung aus der Korrektheit des Edmonds-Algorithmus (siehe
Satz 4.9). [

Die folgende Prozedur VergroBernderPfad berechnet einen vergro-
Bernden Pfad fiir G, falls das aktuelle Matching M nicht maximal ist.
Da M nicht mehr als n/2 Kanten enthalten kann, wird diese Prozedur
hochstens (n/2 4 1)-mal aufgerufen.

Prozedur VergréBernderPfad(G, M)

Q<+ 0

for v € V(G) do
if dee M :v € e then zustand(v) < unerreicht
else

5 zustand(v) < gerade

5 root(v) < v

depth(v) <0

I w [\ =

-3

42

8

4.1 Der Algorithmus von Edmonds

for ue N(v) do Q<+ QU {(v,u)}

o while Q # 0 do

10
11
12
13
14

15

24

[\~ [\
ot

~

w [\ [N} DN
[eoIEN QC

o =

N w w

entferne eine Kante (v,v') aus @
if inblite(v) = inblite(v') # L then // tue nichts
else if zustand(v’) = unerreicht then
parent(v') < v
root(v') < root(v)
depth(v') < depth(v) +1
if zustand(v) = gerade then
zustand(v’') < ungerade
Q < QU {v' partner(v')}
else
zustand(v’') « gerade
for ue N(V')\ {v} do Q+ QU {(v,u)}
else if zustand(v’) = zustand(v) or inblite(wv) or
inblite(v’) then
if root(v) =root(v') then // v und ¢ sind im
gleichen Baum: kontrahiere Blite
v” < tiefster gemeinsamer Vorfahr von v und o’
// verwende depth(v) und depth(v’)
b < neuer Knoten
blite(b) « (v",...,v,0',...,v") // setze die
beiden Pfade entlang der Baum-Kanten zu
einem ungeraden Kreis zusammen
parent (b) < v”
root (b) < root (v”
depth(b) « depth(v”)+1
for u € blite(d)\{v"} do
inblite(u) < b
if zustand(u) = ungerade then
for we N(u) do Q + QU {(u,w)}
else // vergrolBernder Pfad gefunden, muss noch
expandiert werden

4 Matchings

35 P < Tleere doppelt verkettete Liste

36 U <—v

37 while v # L do

38 while inblite(u) # L do u < inblite(u)
39 hange w vorne an P an

10 u < parent(u)

1 u<+— v

42 while v # | do

(3 while inblite(u) do u < inblite(u)

14 hange u hinten an P an

15 u < parent(u)

16 u < der erste Knoten auf P

a7 while v # | do

18 if blite(u) = L then

19 u < succp(u)

50 else // blite(u) = (vo,...,v;) mit vy = vy

51 ersetze uw in P durch den alternierenden

Pfad in blite(u), der predp(u) und
succp(u) verbindet und auf der Nicht-
Basis-Seite mit einer Kante aus M endet
52 u < der erste Knoten dieses Pfads
53 return P

Fir den Beweis der Korrektheit des Edmonds-Algorithmus benétigen
wir den Begriff des OSC.

Definition 4.7. Sei G = (V,E) ein Graph. Eine Menge S =
{v1,..., 06, Vi, ..., Vi} von Knoten vq,...,vy € V und Teilmengen
Vi,..., Vo CV heifit OSC (engl. odd set cover) in G, falls

1.Vee E:enNVy£0VIi>1:eCV;, wobei Vo ={vy,..., 0}

2. ¥i>1:n; =5 1, wobei n; = ||V;]].

Das Gewicht von S ist weight(S) = k + X¢_,(n; — 1)/2. Im Fall
¢ = 0 nennen wir Vo auch Knoteniiberdeckung (oder kurz VC

43

4.1 Der Algorithmus von Edmonds

fir engl. vertex cover) in G.

Lemma 4.8. Fir jedes Matching M in einem Graphen G = (V, E)
und jedes OSC S in G gilt | M| < weight(S).

Beweis. M kann fiir jeden Knoten v; € S hochstens eine Kante und
von den Kanten in V;, i > 1, hochstens (n; — 1)/2 Kanten enthalten.
|

Satz 4.9. Der Algorithmus von Edmonds berechnet ein mazimales
Matching M fir G.

Beweis. Es ist klar, dass der Algorithmus von Edmonds terminiert.
Wir analysieren die Struktur des Suchwalds zu diesem Zeitpunkt. Jede
Kante e € E lasst sich in genau eine von drei Kategorien einteilen:

1. e hat mindestens einen ungeraden Endpunkt,
2. beide Endpunkte von e sind unerreicht,
3. e liegt komplett innerhalb einer Bliite.

Wiirde ndmlich e keine dieser 3 Bedingungen erfiillen, so wiirde der Al-
gorithmus nicht terminieren, da alle Kanten e = (v,v’), die mindestens
einen geraden Endpunkt v haben, von dem Algorithmus betrachtet
werden und somit v' nicht gerade oder unerreicht sein kann, da

1. im Fall, dass auch v’ gerade ist, e entweder zur Kontraktion einer
weiteren Bliite oder zu einem vergroffernden Pfad fiithren wiirde,
und

2. im Fall, dass v' unerreicht ist, v' in einen ungeraden Knoten ver-
wandelt wiirde.

Folglich kénnen wir ein OSC S wie folgt konstruieren. Sei U die
Menge der unerreichten Knoten. Jede Bliite bildet eine Menge V; in .S
und jeder ungerade Knoten wird als Einzelknoten zu S hinzugefiigt.
Falls U nicht leer ist, fiigen wir einen beliebigen unerreichten Knoten
ug € U als Einzelknoten zu S hinzu. Falls U mindestens 4 Knoten
enthalt, figen wir auch die Menge U \ {up} zu S hinzu.

4 Matchings

Nun ist leicht zu sehen, dass S alle Kanten tiiberdeckt und jeder
Einzelknoten in S mit einer Matchingkante inzident. Da zudem jede
Bliite V; der Grofe n; genau (n; —1)/2 (und auch die Menge U \ {uo}
im Fall ||U|| > 4 genau (||U|| — 2)/2) Matchingkanten enthalt, folgt
weight(S) = || M]]. [

Korollar 4.10. Fiir jeden Graphen G gilt

w(G) = min{weight(S) | S ist ein OSC in G}.

Ein Spezialfall hiervon ist der Satz von Konig fiir bipartite Graphen
(siche Ubungen).

Der Algorithmus von Edmonds lésst sich leicht dahingehend modifi-
zieren, dass er nicht nur ein maximales Matching M, sondern auch ein
OSC S ausgibt, das die Optimalitit von M beweist. In den Ubungen
werden wir noch eine weitere Moglichkeit zur ,,Zertifizierung” der
Optimalitiat von M kennenlernen.

Lemma 4.11. Die Prozedur VergréBernderPfad bendtigt O(m)
Zeit; der Algorithmus von Edmonds hat damit eine Gesamtlaufzeit
von O(nm).

Beweis. Wir konnen annehmen, dass GG keinen isolierten Knoten hat,
da sich diese in Zeit O(n) entfernen lassen. Wir zeigen, dass die
Prozedur VergréBernderPfad in Zeit O(m) lauft. Da die Prozedur
hochstens n/2-mal aufgerufen wird und die Laufzeit aulerhalb von
VergroBernderPfad durch O(n?) beschrankt ist, ergibt sich somit
eine Gesamtlaufzeit von O(nm) (genauer O(nm+n)). Dass jeder Auf-
ruf von VergroBernderPfad nach O(m) Schritten terminiert, liegt
daran, dass die Initialisierung O(n+m) = O(m) Schritte bendtigt und
danach fiir jede Kante e € F nur O(1) Schritte ausgefiihrt werden:

1. Fiir jede Kante e = {u,v} € FE wird jede der beiden Orientierungen
(u,v) und (v, u) von e maximal einmal zu) hinzugefiigt.

44

4.2 FEffiziente Implementierung von Edmonds’ Algorithmus

2. Auflerdem ist jede Kante maximal einmal an der Kontraktion
einer Bliite beteiligt, und folglich auch hochstens einmal an der
Expansion einer Bliite. |

4.2 Effiziente Implementierung von Edmonds’
Algorithmus

Micali und Vazirani haben gezeigt, dass eine Variante von Edmonds’
Algorithmus sogar mit O(m,/u) Zeit auskommt. Der Ansatz ist dhn-
lich wie beim Algorithmus von Dinic: Pro Runde wird nicht nur ein
einzelner vergroffernder Pfad zum Matching hinzugefiigt, sondern eine
maximale Menge knotendisjunkter vergroffernder Pfade, die minimale
Léange (unter allen vergrofiernden Pfaden) haben.

Hopcroft und Karp haben mit den folgenden Lemmata gezeigt, dass
O(/1) solcher Runden ausreichen.

Lemma 4.12. Sei M ein Matching in einem Graphen G, sei P ein
kiirzester vergroflernder Pfad beziiglich M, und sei P ein vergrifern-
der Pfad beziiglich MAP. Dann ist |P'|| > || P]| + ||P N P’||, wobei
die Kardinalitdt sich hier auf die Anzahl der Kanten bezieht.

Beweis. Sei M" = (MAP)AP' das resultierende Matching. Betrachte
den Graphen H = MAM’' = PAP’'. In H hat jeder Knoten héchs-
tens den Grad 2: Sofern P’ einen Knoten v aus P enthélt, einer der
P-Nachbarn von v auch ein P’-Nachbar von v sein muss, da P’ ein
alternierender Pfad beziiglich M AP ist. Die Zusammenhangskompo-
nenten von H sind also in Pfade und Kreise. Wegen M’ = MAH
miissen diese Pfade und Kreise alternierend beziiglich M sein. Wegen
||M'|| = ||M|| + 2 enthélt H mindestens zwei disjunkte vergroBernde
Pfade P, und P, fur M.

Nun gilt: ||H|| > [|P1]] + || P2l > 2||P||, da P ein kiirzester vergro-
Bernder Pfad beziiglich M ist. Zusammen mit ||H|| = ||[PAP|| =

4 Matchings

|P|| + ||P'|| = || P N P’|| ergibt dies die Behauptung,. |

Wenn im Algorithmus von Edmonds nun ausgehend vom leeren Mat-
ching My = () vergrofiernde Pfade P; minimaler Lange beztiglich M;_,
gefunden werden um die Matchings M; = M; AP, zu erhalten, gilt
folglich ||| < [Prall-

Lemma 4.13. Wenn ||B|| = || P;|| firi < j gilt, so sind P, und P;
knotendisjunkt.

Beweis. Angenommen F; und P; wéren nicht knotendisjunkt. Wir
konnen 0.B.d.A. annehmen, dass kein k existiert mit ¢ < k < j (also
| Pel| = || B]|), fitr das Py nicht knotendisjunkt zu F; ist. Dann ist P;
ein vergroffernder Pfad beziiglich M; = M, 1 AP;. Mit Lemma 4.12
folgt 1| > | Pl + | P 1 Byl. Wegen | Pi| = | Py sind P: und P,
damit kantendisjunkt. Wenn P; nun einen Knoten v aus P; enthalten
wirde, musste P; auch den M;-Nachbarn von v enthalten. Da dieser
aber auch ein Nachbar von v auf P, ist, ergibt sich ein Widerspruch
dazu, dass P; und P; kantendisjunkt sind. [

Satz 4.14. Sei G ein Graph mit Matchingzahl p und sei P, ..., P,
die Folge der kiirzesten Zunahmepfade. Dann gilt

1R |1 < <] < 2Lva +1

Beweis. Sei r = pu — {\/ﬁJ Dann gilt ||M,| = r. Der Graph
H = M,AM, hat als Zusammenhangskomponenten (unter ande-

ren) g —1r = {\/,EJ knotendisjunkte vergrofernde Pfade beziiglich M,.
Da M, nur r Kanten enthéalt, enthilt mindestens einer dieser ver-

grofernden Pfade hochstens {r / {\/ﬁH < {\/ﬁJ Kanten aus M, ; der

Pfad P, ist damit hochstens 2 L\/EJ + 1 lang. Da die Lange eines
vergrofernden Pfads immer eine ungerade natiirliche Zahl ist, folgt

lIRd |1 <i <o) < Lva)+1.

45

4.2 Effiziente Implementierung von Edmonds’ Algorithmus

Da P,41,..., P, hochstens pp —r = {\/ﬁJ weitere Langen beisteuern,
folgt die Behauptung. |

Es bleibt also zu zeigen, wie eine maximale Menge vergroflernden
Pfade minimaler Linge in O(m) Zeit gefunden werden kann. Gegen-
iiber der Prozedur VergroBernderPfad sind dazu eine Reihe von
Anderungen nétig:

e Um nur vergroffernde Pfade minimaler Lange zu finden, muss die
Reihenfolge in der die Kanten betrachtet werden angepasst werden.
Dass dies notwendig ist ergibt sich aus folgendem Beispiel:

a c

Hier kann es passieren, dass der vergroflernde Pfad tiiber die Kante
{a, c} mit Lange 11 vor dem tber die Kante {b,c} der Lénge 9
gefunden wird.

Abhilfe schafft das folgende Vorgehen: Es werden nicht alle Kanten
gleichberechtigt zur Menge () hinzugefiigt und in einer beliebigen
Reihenfolge entnommen. Vielmehr wird eine Breitensuche durchge-
fuhrt (d.h. @ wird als Warteschlange implementiert), damit kiirzere
Pfade zuerst gefunden werden. Das alleine geniigt aber noch nicht,
um das Problem aus dem vorhergehenden Beispiel zuverlassig zu
vermeiden. Deshalb werden fiir jeden Knoten die folgenden Werte
gespeichert und aktualisiert:

evenlevel(u): Die Lange des kiirzesten alternierenden Pfades ge-
rader Lange von u zu einem freien Knoten. Initial 0 fir freie
Knoten und oo fiir alle tibrigen.

oddlevel(u): Die Linge des kiirzesten alternierenden Pfades un-

4 Matchings

gerader Linge von u zu einem freien Knoten. Initial oo.
level(u): Das Minimum von evenlevel(u) und oddlevel(u).

Waiéhrend der Breitensuche erhalten die als gerade markierten Kno-
ten endliches evenlevel und die als ungerade markierten Knoten
endliches oddlevel. Beim Kontrahieren einer Bliite erhalten die
in der Bliite enthaltenen als gerade markierten Knoten endliches
oddlevel und die in der Bliite enthaltenen als ungerade markier-
ten Knoten endliches evenlevel. Im folgenden Beispiel sind die
Knoten jeweils mit evenlevel/oddlevel beschriftet.

4/5T—T4/5 T4/oo

6/3 6/3 ® 0/3
2/00 2/00
oo/1 oo/1

O/ooi 0/00

Eine Kante e wird Briicke genannt, wenn e eine Matchingkante
ist, deren Endpunkte beide endliches evenlevel haben, oder wenn
e eine Nicht-Matchingkante ist, deren Endpunkte beide endliches
oddlevel haben. Damit sind Briicken gerade die Kanten, die im
Algorithmus von Edmonds zur Erkennung von Bliiten oder vergro-
Bernden Pfaden fithren. Einer Briicke {u,v} wird ihre Zdhigkeit
zugeordnet:

tenacity({u,v}) =
{oddlevel(u) + oddlevel(v) + 1 falls {u,v} € M

evenlevel(u) + evenlevel(v) + 1 sonst

Wenn eine Briicke dazu fiihrt, dass ein vergroflernder Pfad gefun-
den wird, entspricht ihre Zahigkeit damit gerade der Lénge des
vergrofernden Pfades.

46

4.2 FEffiziente Implementierung von Edmonds’ Algorithmus

Wenn der Algorithmus eine Briicke findet, reiht er diese nicht ein-
fach in die Warteschlange () ein, sondern sammelt sie getrennt nach
Zahigkeit. Briicken mit Zahigkeit 2i + 1 (die Zahigkeit ist immer
ungerade) werden zu dem Zeitpunkt behandelt (d.h. der zugehoérige
vergroflernde Pfad ermittelt beziehungsweise die zugehorige Bliite
kontrahiert), an dem die Breitensuche alle Knoten der Schicht ¢
gefunden hat. Im obigen Beispiel hat die Kante {a,c} die Zahig-
keit 9 und wird damit nach Schicht 4 behandelt, wihrend die Kante
{b, ¢} Zédhigkeit 11 hat und damit erst nach Schicht 5 an die Reihe
kommt.

Damit ist sichergestellt, dass der Algorithmus kiirzere vergroffernde
Pfade zuerst findet.

Um die Zeitschranke O(m) fiir das finden einer maximalen Menge
von kiirzesten vergroffernden Pfaden einzuhalten, kann die Suche
nicht nach jedem gefundenen Pfad neu gestartet werden. Statt-
dessen werden alle Knoten (und die zu ihnen inzidenten Kanten)
geloscht, die auf dem gefundenen vergroflernder Pfad liegen.

Das folgende Beispiel zeigt, dass weitere Anderungen nétig sind,
damit der Algorithmus tatsachlich eine maximale Menge kiirzester

vergroBernder Pfade des urspriinglichen Graphen findet.
o—o o o

a b ¢ d

In diesem Graphen gibt es zwei disjunkte vergrofernde Pfade (von a
nach b und von ¢ nach d). Allerdings wird von der Breitensuche
entweder der Knoten b oder der Knoten ¢ zuerst betrachtet, und die
zum anderen Knoten inzidenten Kanten tauchen nicht im Breiten-
suchbaum auf. Nach dem Loschen des ersten vergroflernden Pfads
kann deshalb kein weiterer vergroflernder Pfad gefunden werden,
der nur Briicken- und Suchbaumkanten verwendet.

4 Matchings

Um dieses Problem zu umgehen, wird fiir jeden Knoten nicht nur
sein Elternknoten im Suchbaum gespeichert, sondern eine Menge
von Vorgangern:

predecessors(u) =
{U ’ {u,v} € M}
{ ‘{U’U}EE\M/\ } sonst
evenlevel(v) + 1 = oddlevel(u)

falls u gerade

Anstelle des Suchwalds mit seinen parent-Kanten erhalten wir
so einen geschichteten Graphen mit (gerichteten) predecessor-
Kanten. Ein Knoten w wird Vorfahr von u genannt, wenn er von u
aus entlang solcher predecessor-Kanten erreichbar ist.

Nach dieser Anderung ist es natiirlich nicht mehr méglich fiir jeden
von der Breitensuche erreichten Knoten zu speichern, was die Wurzel
seines Suchbaums ist. Einer Briicke kann der Algorithmus deshalb
nicht mehr ohne Weiteres anzusehen, ob sie zu einem vergroBernden
Pfad fiihrt. Im folgenden Beispiel fiihrt die Briicke {a, b} zu einem
vergroBernden Pfad von u nach v, wahrend es keinen vergroflernden

Pfad durch die Briicke {c,d} gibt.

level 3
level 2

-\I/I level 1 -\I/o
level O
u v
Da der Algorithmus weiterhin genau dann eine Bliite finden soll,
wenn er ausgehend von einer Briicke keinen vergréfiernden Pfad fin-

den kann, ergibt sich die folgende verallgemeinerte Bliitendefinition:
Eine Briicke {u,v} schliefit eine Bliite, wenn es einen Knoten w

47

4.2 Effiziente Implementierung von Edmonds’ Algorithmus

gibt der sowohl fiir u als auch fiir v der einzige Vorfahr auf der
Schicht level(w) ist; wir konnen annehmen, dass w unter allen sol-
chen Knoten das grofite level hat. Die Bliite besteht aus u und v
sowie allen ihren Vorgéngern, die keine Vorgénger von w sind. Der
Knoten w heifit Basis der Bliite.

Mit dieser Definition ist leicht zu sehen, dass jede Briicke {u, v}
entweder eine Bliite schliefit oder zu einem vergroflernden Pfad
fithrt. Es bleibt die Frage, wie der Algorithmus diese Bliite bezie-
hungsweise diesen Pfad anhand der predecessor-Kanten effizient
finden kann. Dies gelingt mit einer simultanen Tiefensuche. Hierbei
werden zwei disjunkte Tiefensuchbdume aufgebaut, einer von u aus
und einer von v aus, die nur predecessor-Kanten verwenden. Der
néachste Tiefensuchschritt wird immer in dem Suchbaum durch-
gefiihrt, dessen aktueller Knoten die groflere Schicht hat; liegen
beide in der gleichen Schicht, wird der erste Suchbaum bevorzugt.
Erreichen beide Suchbdume die Schicht 0, ist ein vergréfSernder
Pfad gefunden. Stoft der zweite Suchbaum auf einen Knoten w,
der bereits zum ersten Suchbaum gehort, versucht er (durch Back-
tracking) einen weiteren Vorganger von v auf dieser Schicht zu
finden. Ist dies nicht méglich, wird der Knoten w an den Suchbaum
von v iibergeben und (mit Backtracking) versucht, einen weiteren
Vorfahren von u auf dieser Schicht zu finden. Gelingt auch das
nicht, ist w Basis einer Bliite, die alle in den beiden Suchbadumen
enthaltenen Knoten umfasst.

Um sicherzustellen, dass die simultane Tiefensuche nie steckenbleibt
ohne einen vergréffernden Pfad oder eine Bliite zu finden, konnen
alle gebundenen Knoten (zusammen mit ihren inzidenten Kanten)
geloscht werden, deren Vorgéangermenge durch Loschen von Knoten
leer werden. Spéter gefundene vergroflernde Pfade gleicher Lén-
ge konnen die geloschten Knoten nicht verwenden, da sie aufler
predecessor-Kanten nur eine Briickenkante enthalten konnen, die
noch nicht Teil einer Bliite ist, und nach Lemma 4.13 knotendisjunkt
zum gerade geloschten Pfad sind.

4 Matchings

Um den Aufwand aller durchgefithrten simultanen Tiefensuchen
durch O(m) abzuschétzen, sind folgende Beobachtungen notig. Wird
eine Bliite gefunden, sind alle wahrend der Suche besuchten Kan-
ten in der Bliite enthalten; da jede Kante nur einmal Teil einer
Bliite ist, ergibt sich konstanter Aufwand pro Kante. Und wenn
ein vergrofernder Pfad gefunden, entsteht nur konstanter Aufwand
pro geloschter Kante, weil die Tiefensuchen nur dann in Sackgassen
geraten, wenn die (eigentlich vorhandenen) predecessor-Kanten
durch den jeweils anderen Suchbaum blockiert sind.

4.3 Gewichtete Matchings

Beim Gewichteten Matchingproblem wird fiir einen gegebenen Gra-
phen G = (V, E) mit Kantengewichten w: E — Z ein maximales
Matching M von G mit minimalem Gewicht w(M) = Y. w(e)
gesucht.

Eine Anwendung ist das Chinese Postman Problem, bei dem in ei-
nem Graphen G = (V, F) mit Kostenfunktion ¢: £ — N eine Tour
T = (vo,...,vx) gesucht wird, die jede Kante mindestens einmal
durchliuft und minimale Kosten ¢(T) = %, ¢({v;_1,v;}) hat.

Der folgende Algorithmus reduziert das Chinese Postman Problem
auf das Gewichtete Matchingproblem:

Prozedur ChinesePostman(V, E,c)

48

4.3 Gewichtete Matchings

1 U:={veV|deg(v)=21} // Knoten mit ungeradem Grad

> H:=(U,(3})) // vollstandiger Graph auf U

3 Definiere w: (g) — Z durch w({u,v}) :==dgc(u,v) //
dg.: Entfernung in G beziglich ¢

i M := GewichtetesMatching(H, w)

5 for {u,v} € M do

6 Finde einen kiirzesten u-v-Pfad in G und flge
eine neue Kopie aller seiner Kanten ein

7 T :=Euler-Tour im so entstandenen Multigraphen

s return T

Um die Korrektheit der Reduktion zu zeigen, nehmen wir an, dass
es eine Tour 71" gibe, die ebenfalls alle Kanten von G mindestens
einmal durchlduft und die giinstiger als 7' ist, d.h. ¢(T") < ¢(T).
Bezeichne die Multimenge der durch T (beziehungsweise T") wie-
derholt durchlaufenen Kanten mit Er (bezichungsweise Erv). Es
gilt ¢(Er) — c¢(Ep) = ¢(T) — ¢(T") > 0. Die Kanten in Ep las-
sen sich in Pfade zerlegen, die jeden Knoten in U einmal als End-
knoten haben (zusitzlich konnte es noch Kreise geben). Diese Pfa-
de definieren damit ein perfektes Matching M’ in H, das Gewicht
w(M') < ¢(Ep) < —c(Er) = w(M) hat, was im Widerspruch dazu
steht, dass M minimales Gewicht hat.

Das gewichtete Matchingproblem im allgemeinen Fall kann mit Tech-
niken der Linearen Programmierung gelost werden, die aber den
Rahmen dieser Vorlesung sprengen wiirden. Fir bipartite Graphen
konnen wir es jedoch auf die Berechnung eines kostenoptimalen Flusses
reduzieren.

Um das gewichtete Matchingproblem in einem bipartiten Graphen
G = (U, W, E) auf die Berechnung eines kostenminimalen maximalen
Flusses in einem azyklischen Netzwerk N(G) zu reduzieren, fiigen wir
zwei neue Knoten s und ¢ hinzu und verbinden s mit allen Knoten

5 Féarben von Graphen

u € U durch eine neue Kante (s,u) sowie alle Knoten w € W durch
eine neue Kante (w,t) mit ¢. Alle Kanten in £ werden von U nach W
gerichtet und haben die vorgegebenen Kosten/Gewichte. Alle neue
Kanten e haben die Kosten k(e) = 0 und alle Kanten e in N(G) haben
die Kapazitét c(e) = 1. Dann entspricht jedem Fluss f in N(G) genau
ein Matching M von G mit M = {{u,w} € U x W | f(u,w) = 1}
(und umgekehrt entspricht jedem Matching M genau ein Fluss f mit
dieser Eigenschaft).

Da die maximale Flussgrofie M in N(G) durch n/2 beschrénkt ist,
erhalten wir einen O(mnlogn) Algorithmus fiir das gewichtete Mat-
chingproblem in bipartiten Graphen. Da N(G) kreisfrei ist, konnen
wir hierbei beliebige Kantengewichte zulassen.

Korollar 4.15. In einem bipartiten Graphen G = (V, E) ldsst sich ein
mazximales Matching mit minimalen Kosten in Zeit O(u(G)mlogn)
berechnen.

Beweis. Wir transformieren G in das zugehorige Netzwerk N = N(G).
Da N eine sehr spezielle Form hat, lasst sich eine Preisfunktion pg
fiur (IV, k) in Linearzeit bestimmen. Dann berechnen wir in hochstens
w(G) Tterationen, die jeweils Zeit O(mlogn) beanspruchen, einen
kostenminimalen maximalen Fluss f in N. Aus diesem lésst sich ein
Matching M/ in G' gewinnen, das wegen || M| = |f| maximal und
wegen k(M) = k(f) kostenminimal ist. Die beiden Transformationen
von G in N und von f in M; bendtigen nur Linearzeit. |

Tatséchlich leistet der Algorithmus von Korollar 4.15 noch mehr. Er
berechnet fiur jede Zahl ¢ mit 1 < i < p(G) ein Matching M; der
Grofle i, das minimale Kosten unter allen Matchings dieser Grofle hat,
und eine zu M; kompatible Preisfunktion p; ; (siehe Ubungen). Dabei
heifit eine Preisfunktion p kompatibel zu einem Matching M in G,
falls die reduzierten Kosten von allen Kanten e = (u,w) € U x W
mit {u,w} € E einen nichtnegativen Wert k?(e) > 0 und alle Kanten
e=(u,w) € Ux W mit {u,w} € M den Wert kP(e) = 0 haben.

49

5 Farben von Graphen

Definition 5.1. Sei G = (V, E) ein Graph und sei k € N.

a) Fine Abbildung f: V — N heiffit Farbung von G, wenn f(u) #
f(v) fir alle {u,v} € E gilt.
b) G heifit k-farbbar, falls eine Farbung f: V — {1,... k} exis-

tiert.
¢) Die chromatische Zahl ist
X(G) = min{k € N | G ist k-farbbar}.

Beispiel 5.2.

X(En) =1, X(Kn,m) =2, x(K,) =n,

2, n gerade

3, sonst.

Ein wichtiges Entscheidungsproblem ist, ob ein gegebener Graph
k-farbbar ist. Dieses Problem ist fiir jedes feste & > 3 schwierig.

k-Farbbarkeit (k-COLORING):

Gegeben: Ein Graph G.
Gefragt: Ist G k-farbbar?

Satz 5.3. k-COLORING ist fiir k > 3 NP-vollstindig.

Das folgende Lemma setzt die chromatische Zahl x(G) in Beziehung
zur Stabilitatszahl o(G).

Lemma 5.4. n/a(G) < x(G) <n—a(G) + 1.

5 Farben von Graphen

Beweis. Sei G ein Graph und sei ¢ eine x(G)-Farbung von G. Da
dann die Mengen S; = {u € V | ¢(u) =i}, i = 1,..., x(G), stabil
sind, folgt ||.S;|| < @(G) und somit gilt

x(G)
n = ; 1Sil] < x(G)a(G).

Fiir den Beweis von x(G) < n — «a(G) + 1 sei S eine stabile Menge in
G mit ||S]| = a(G). Dann ist G — S k-farbbar fir ein £ < n — [|S]].
Da wir alle Knoten in S mit der Farbe k 4 1 farben konnen, folgt
XG)<k+1<n-alG)+1. |

Beide Abschéatzungen sind scharf, kénnen andererseits aber auch
beliebig schlecht werden.

Lemma 5.5. (X(QG)) <m.

Beweis. Zwischen je zwei Farbklassen einer optimalen Farbung muss
es mindestens eine Kante geben. [

Die chromatische Zahl steht auch in Beziehung zur Cliquenzahl w(G)
und zum Maximalgrad A(G):

Lemma 5.6. w(G) < x(G) < A(G) + 1.

Beweis. Die erste Ungleichung folgt daraus, dass die Knoten einer
maximal groflen Clique unterschiedliche Farben erhalten miissen.

Um die zweite Ungleichung zu erhalten, betrachte folgenden Farbungs-
algorithmus:

Algorithmus greedy-color

I input ein Graph G = (V,E) mit V ={vy,...,v,}
2 c(vy) =1

3 for 1:=2 to n do

1 F,={c(v;) | j < i,v;€ N(v;)}

5 c(v;) :=min{k > 1|k ¢ F}

20

Da fiir die Farbe ¢(v;) von v; nur ||F;|| < A(G) Farben verboten sind,
gilt ¢(v;) < A(G) + 1. []

Satz 5.7 (Brooks 1941 (vereinfachter Beweis von Lovasz, 1975)). Sei
G ein Graph mit A(G) > 3. Dann gilt x(G) = A(G) + 1 nur dann,
wenn Kaqy+1 ein Teilgraph von G ist.

Beweis. Wir fithren Induktion iiber n. Fir n < 4 gibt es genau 3
Graphen G mit A(G) > 3. Diese erfiillen die Behauptung.

Sein nun G ein Graph mit n > 4 Knoten und Maximalgrad
d = A(G) > 3, der K41 nicht als Teilgraph enthalt. Wir kénnen
annehmen, dass G zusammenhéngend ist.

Falls es in G einen Knoten u mit deg(u) < d gibt, dann ist G — u
nach IV d-farbbar und somit auch G.

Es bleibt der Fall, dass alle Knoten v den Grad d haben. Da G # Ky
ist, folgt n > d + 2. Falls GG einen Schnittknoten s hat, d.h. in G — s
gibt es k > 2 Komponenten Gy, ... Gy, folgt nach IV x(G;) < d und
somit auch x(G) < d.

Behauptung 5.8. In G gibt es einen Knoten u, der zwei Nachbarn
a und b mit {a,b} ¢ E hat, so dass G — {a,b} zusammenhdingend ist.

Da G den K41 nicht als Teilgraph enthélt, hat jeder Knoten u zwei
Nachbarn v,w € N(u) mit {v,w} € E. Falls G — v 2-fach zusammen-
héngend ist, ist G — {v, w} zusammenhangend und die Behauptung
folgt.

Falls G — v nicht 2-fach zusammenhéangend ist, hat G — v mindes-
tens zwei 2-fach-Zusammenhangskomponenten (Blocke) By, ..., By
der Blockbaum 7" hat mindestens zwei Blatter B;, B;. Da x(G) > 2
ist, ist v in G zu mindestens einem Knoten in jedem Blatt B von
T benachbart, der kein Schnittknoten ist. Wahlen wir fir ¢ und b
zwei dieser Knoten, so ist G — {a, b} zusammenhéngend und somit
die Behauptung bewiesen.

5 Féarben von Graphen

Sei also u ein Knoten, der zwei Nachbarn ¢ und b mit {a,b} ¢ E
hat, so dass G — {a, b} zusammenhéngend ist. Wir wenden auf den

Graphen G — {a,b} eine Tiefensuche an mit Startknoten u; = u.
., Uy_2) die Reihenfolge, in der die Knoten besucht werden.

Sei (ul, ..
Nun lassen wir greedy-color mit der Reihenfolge (a, b, u,_s, .
laufen.

..,Ul)

Behauptung 5.9. greedy-color benutzt < d Farben.

Die Knoten a und b erhalten die Farbe c¢(a) = ¢(b) = 1. Jeder Knoten
u;, © > 1, ist mit einem Knoten u; mit j < ¢ verbunden. Daher ist
seine Farbe c(u;) < deg(u;) < d. Da u = uy bereits zwei Nachbarn a
und b mit derselben Farbe hat, folgt auch c(u) < d. |

In den Ubungen wird folgendes Korollar gezeigt:

Korollar 5.10. Es gibt einen Linearzeitalgorithmus, der alle Graphen
G mit A(G) < 3 mit x(G) Farben firbt.

5.1 Farben von planaren Graphen

Ein Graph G heiflit planar, wenn er so in die Ebene einbettbar ist,
dass sich zwei verschiedene Kanten hochstens in ihren Endpunkten
berithren. Dabei werden die Knoten von G als Punkte und die Kanten
von G als Verbindungslinien zwischen den zugehorigen Endpunkten
dargestellt.

Bereits im 19. Jahrhundert wurde die Frage aufgeworfen, wie viele
Farben hochstens benotigt werden, um eine Landkarte so zu farben,
dass aneinander grenzende Lander unterschiedliche Farben erhalten.
Offensichtlich lasst sich eine Landkarte in einen planaren Graphen
transformieren, indem man fiir jedes Land einen Knoten zeichnet und
benachbarte Liander durch eine Kante verbindet. Lander, die sich nur
in einem Punkt beriihren, gelten dabei nicht als benachbart.

o1

5.1 Férben von planaren Graphen

Die Vermutung, dass 4 Farben ausreichen, wurde 1878 von Kempe
,bewiesen“ und erst 1890 entdeckte Heawood einen Fehler in Kempes
~Beweis“. Ubrig blieb der 5-Farben-Satz. Der 4-Farben-Satz wurde erst
1976 von Appel und Haken bewiesen. Hierbei handelt es sich jedoch
nicht um einen Beweis im klassischen Sinne, da zur Uberpriifung der
vielen auftretenden Spezialfille Computer bendtigt werden.

Satz 5.11 (Appel, Haken 1976).
Jeder planare Graph ist 4-fdarbbar.

Aus dem Beweis des 4-Farben-Satzes von Appel und Haken lésst sich
ein 4-Farbungsalgorithmus fiir planare Graphen mit einer Laufzeit
von O(n*) gewinnen.

In 1997 fanden Robertson, Sanders, Seymour und Thomas einen ein-
facheren Beweis fiir den 4-Farben-Satz, welcher zwar einen deutlich
schnelleren O(n?) Algorithmus liefert, aber auch nicht ohne Computer-
Unterstiitzung verifizierbar ist.

Beispiel 5.12. Wie die folgenden Einbettungen von Ky und K3 in
die Ebene zeigen, sind Ky und K3 planar.

K4.’ K273.'

<

Um eine Antwort auf die Frage zu finden, ob auch K5 und K33 pla-
nar sind, betrachten wir die Gebiete von in die Ebene eingebetteten
Graphen.

Durch die Kanten eines eingebetteten Graphen wird die Ebene in
so genannte Gebiete unterteilt. Nur eines dieser Gebiete ist unbe-
schrankt und dieses wird als &ufBeres Gebiet bezeichnet. Die Anzahl
der Gebiete von G bezeichnen wir mit r(G) oder kurz mit r. Der
Rand rand(g) eines Gebiets g ist die (zirkulére) Folge aller Kanten,

5 Farben von Graphen

die an g grenzen, wobei jede Kante so durchlaufen wird, dass g ,in
Fahrtrichtung links* liegt bzw. bei Erreichen eines Knotens iiber ei-
ne Kante e, u iiber die im Uhrzeigersinn nachste Kante ¢ wieder
verlassen wird. Die Anzahl der an ein Gebiet g grenzenden Kanten
bezeichnen wir mit d(g), wobei Kanten, die nur an g und an kein
anderes Gebiet grenzen, doppelt gezahlt werden.

Die Gesamtzahl 3, d(g) aller Inzidenzen von Gebieten und Kanten
bezeichnen wir mit i(G). Da jede Kante genau 2 Inzidenzen zu dieser
Summe beitragt, folgt

3" d(g) = i(G) = 2m(G).

Ein ebener Graph wird durch das Tripel G = (V, E, R) beschrieben,
wobei R aus den Réndern aller Gebiete von G besteht. Wir nennen
G auch ebene Realisierung des Graphen (V, E). Durch R ist fir
jeden Knoten u die (zirkuldre) Ordnung 7 auf allen mit u inzidenten
Kanten eindeutig festgelegt (und umgekehrt). Man nennt 7 das zu
G gehorige Rotationssystem. Dieses kann bei Verwendung der Ad-
jazenzlistendarstellung ohne zusétzlichen Platzaufwand gespeichert
werden, indem man die zu u adjazenten Knoten geméafl 7= anordnet.

Beispiel 5.13. Nebenstehender ebe- i
ner Graph hat 13 Kanten a,...,m
und 7 Gebiete mit den Rdndern
R={(a,f9), , (b, g, €, h), V A
Das zugehorige Rotationssystem ist
™= {(a7 f? 7/)7 <a7 j? b7 g)7 (b7 c? h)7 (67 k? f7 g)? <d7 67 h)?
(C’ j? 7:7 l? k’ d)’ (l7 m>7 (m)}.

(b,c,7), (c,h,d),(d, e, k),
(f,i,l,m,m,l, k)}.

5.1 Farben von planaren Graphen

Man beachte, dass sowohl in R als auch in w jede Kante genau zweimal
vorkommdt. <

Satz 5.14 (Polyederformel von Euler, 1750).
Fiir einen zusammenhdngenden ebenen Graphen G = (V, E, R) gilt

n(G) —m(G) +r(G) =2. (%)

Beweis. Wir fithren den Beweis durch Induktion tiber die Kantenzahl
m(G) = m.
m = 0: Da G zusammenhéngend ist, muss dann n = 1 sein.

Somit ist auch r = 1, also (x) erfiillt.

m — 1~ m: Sei G ein zusammenhangender ebener Graph mit m
Kanten.

Ist G ein Baum, so entfernen wir ein Blatt und erhalten einen zu-
sammenhangenden ebenen Graphen G’ mit n — 1 Knoten, m — 1
Kanten und r Gebieten. Nach IV folgt (n—1) —(m—1)+r = 2,
d.h. (x) ist erfillt.

Falls G kein Baum ist, entfernen wir eine Kante auf einem Kreis
in G und erhalten einen zusammenhéngenden ebenen Graphen
G’ mit n Knoten, m — 1 Kanten und r — 1 Gebieten. Nach IV
folgt n — (m —1) 4+ (r — 1) = 2 und daher ist () auch in diesem
Fall erfiillt. []

Korollar 5.15. Sei G = (V, E) ein planarer Graph mit n > 3 Knoten.
Dann ist m < 3n — 6. Falls G dreiecksfrei ist gilt sogar m < 2n — 4.

Beweis. O.B.d.A. sei G zusammenhédngend. Wir betrachten eine be-
liebige planare Einbettung von G. Da n > 3 ist, ist jedes Gebiet g
von d(g) > 3 Kanten umgeben. Daher ist 2m = i = >, d(g) > 3r
bzw. r < 2m/3. Eulers Formel liefert

m=n+r—2<n+2m/3 -2,

was (1 —2/3)m < n — 2 und somit m < 3n — 6 impliziert.

5 Féarben von Graphen

Wenn G dreiecksfrei ist, ist jedes Gebiet von d(g) > 4 Kanten umge-
ben. Daher ist 2m =i = 3>, d(g) > 4r bzw. r < m/2. Eulers Formel
liefert daher m =n+r —2 <n+m/2 — 2, was m/2 < n — 2 und
somit m < 2n — 4 impliziert. [|

Korollar 5.16. Kj ist nicht planar.

Beweis. Wegen n =5, also 3n — 6 = 9, und wegen m = (;) = 10 gilt
m £ 3n — 6.]

Korollar 5.17. K33 ist nicht planar.

Beweis. Wegen n = 6, also 2n — 4 = 8, und wegen m = 3 -3 =9 gilt
m £ 2n — 4. [|

Als weitere interessante Folgerung aus der Polyederformel kénnen wir
zeigen, dass jeder planare Graph einen Knoten v vom Grad deg(v) < 5
hat.

Lemma 5.18. Jeder planare Graph hat einen Minimalgrad §(G) < 5.

Beweis. Fir n < 6 ist die Behauptung klar. Fiir n > 6 impliziert die
Annahme §(G) > 6 die Ungleichung

m = %ZuEV deg(u) Z %Zue\/ 6= 37’L,

was im Widerspruch zu m < 3n — 6 steht. |

Definition 5.19. Sei G = (V, E) ein Graph und seien u,v € V.
Dann entsteht der Graph Gy, = (V — {v}, E') mit

E'={ecE|vge} U{{u,v'}|{v,v'} € E—{u,v}}.

durch Fusion von u und v. Ist e = {u,v} eine Kante von G (also
e € E), so sagen wir auch, G, entsteht aus G durch Kontraktion

53

5.1 Férben von planaren Graphen

der Kante e. G heifst zu H kontrahierbar, falls H aus einer iso-
morphen Kopie von G durch eine Folge von Kontraktionen gewonnen
werden kann.

Satz 5.20 (Kempe 1878, Heawood 1890).
Jeder planare Graph ist 5-fdarbbar.

Beweis. Wir beweisen den Satz durch Induktion iiber n.

n = 1: Klar.

n —1~»n: Da G planar ist, existiert ein Knoten u mit deg(u) < 5.
Zunachst entfernen wir u aus G. Falls u fiinf Nachbarn hat,
existieren zwei Nachbarn v und w, die nicht durch eine Kante
verbunden sind, und wir fusionieren diese zu v.

Der resultierende Graph G’ ist planar und hat n’ <n — 1 Kno-
ten. Daher existiert nach IV eine 5-Farbung ¢’ fur G’. Da wir

nun w mit ¢(v) farben kénnen und somit die Nachbarn von u
hochstens 4 verschiedene Farben haben, ist G 5-farbbar. |

Definition 5.21. Seien G = (V, E) ein Graph, v € V und e € (‘2/)

e Durch Entfernen des Knotens v entsteht der Graph G|V —{v}] aus
G, den wir mit G — v bezeichnen.

e Den Graphen (V,E — {e}) bezeichnen wir mit G — e und den
Graphen (V, E U {e}) mit G U e.

e Hat v den Grad 2 und sind u und w die beiden Nachbarn von v, so

entsteht der Graph G' = (G — v) U {u,w} durch Uberbriickung
von v aus G.

e H heifit Unterteilung von G, wenn G durch sukzessive Uber-
briickungen aus einer isomorphen Kopie von H entsteht.

Beispiel 5.22. Betrachte folgende Graphen.

5 Farben von Graphen

Offensichtlich ist H keine Unterteilung von G. Entfernen wir jedoch
die beiden diinnen Kanten aus H, so ist der resultierende Teilgraph
eine Unterteilung von G. Dagegen ist kein Teilgraph von H' eine
Unterteilung von G. <

Kuratowski konnte 1930 beweisen, dass jeder nichtplanare Graph G
eine Unterteilung des K33 oder des K als Teilgraph enthalt. Fiir den
Beweis benétigen wir noch folgende Notationen.

Definition 5.23. Sei G ein Graph und sei K ein Kreis in G. Ein

Teilgraph B von G heifst Briicke von K in G, falls

e B nur aus einer Kante besteht, die zwei Knoten von K verbindet,
aber nicht auf K liegt, oder

e B — K eine Zusammenhangskomponente von G — K ist und B aus
B — K durch Hinzufigen aller Kanten zwischen B— K und K (und
der zugehorigen Endpunkte auf K) entsteht.

Die Knoten von B, die auf K liegen heiffen Kontaktpunkte von B.

Zwei Briicken B und B' von K heiffen inkompatibel, falls

e B Kontaktpunkte u,v und B" Kontaktpunkte u’',v" hat, so dass diese
vier Punkte in der Reihenfolge u,u',v,v" auf K liegen, oder

e B und B’ mindestens 8 gemeinsame Kontaktpunkte haben.

Es ist leicht zu sehen, dass ein Graph G genau dann planar ist, wenn
sich die Briicken jedes Kreises K von G in hochstens zwei Mengen
partitionieren lassen, so dass jede Menge nur kompatible Briicken
enthélt.

Satz 5.24 (Kuratowski 1930).
Fir einen Graphen G sind folgende Aussagen dquivalent:

54

5.1 Farben von planaren Graphen

- G st planar.
- Keine Unterteilung des K33 oder des Ky ist ein Teilgraph von G.

Beweis. Wenn eine Unterteilung G’ des K33 3 oder des K ein Teilgraph
von G ist, so ist G’ und folglich auch G nicht planar.

Sei nun G = (V, E) nicht planar. Durch Entfernen von Knoten und
Kanten erhalten wir einen 3-zusammenhéangenden nicht planaren Teil-
graphen G' = (V' E'), so dass G’ — ¢’ fiir jede Kante ¢’ € E’ planar
ist (sieche Ubungen). Wir entfernen eine beliebige Kante eq = {ag, by}
aus G'. Da G’ — ey 2-zusammenhéngend ist, gibt es einen Kreis durch
die beiden Knoten ag und by in G’ — ey. Sei H' eine ebene Realisierung
von G’ — ¢y und sei K ein Kreis durch die beiden Knoten ay und by.
Dabei wahlen wir H' und K so, dass es keine ebene Realisierung H”
von G’ — eq gibt, in der ein Kreis durch ag und b, existiert, der in H”
mehr Gebiete als K in H' einschlief}t.

Dann ist eq eine Briicke von K in G’. Die tibrigen Briicken von K in
G’ sind auch Briicken von K in H’. Die Kanten jeder solchen Briicke
B verlaufen entweder alle innerhalb oder alle aulerhalb von K in H'.
Im ersten Fall nennen wir B eine innere Briicke und im zweiten
eine dufBere Briicke.

Fir zwei Knoten a,b auf K bezeichnen wir mit KJa,b] die Menge
aller Knoten, die auf dem Bogen von a nach b (im Uhrzeigersinn) auf
K liegen. Zudem sei K|a,b) = KJa,b] \ {b}. Die Mengen K (a,b) und
K (a, b] sind analog definiert.

Behauptung 5.25. Jede duffere Briicke B besteht aus einer Kante,
die einen Knoten in K(ag,by) mit einem Knoten in K (bg, ag) verbin-
det.

Zum Beweis der Behauptung nehmen wir an, dass B mindestens 3
Kontaktpunkte oder mindestens einen Kontaktpunkt in {ag, by} hat.
Dann liegen mindestens zwei dieser Punkte auf K|ag, by] oder auf
Kby, ag|. Folglich kann K zu einem Kreis K’ erweitert werden, der

5 Féarben von Graphen

mehr Gebiete einschlieBt (bzw. ausschliefit) als K, was der Wahl von
K und H’ widerspricht.

Nun wahlen wir eine innere Briicke B*, die sowohl zu ey als auch zu
einer duferen Briicke B inkompatibel ist. Eine solche Briicke muss es
geben, da wir sonst alle mit ey inkompatiblen inneren Briicken nach
auflen klappen und ey als innere Briicke hinzunehmen kénnten, ohne
die Planaritit zu verletzen.

Sei B = {a1,b1}. Da ey und B inkompatibel sind, konnen wir anneh-
men, dass diese vier Knoten in der Reihenfolge ag,ay, by, b; auf K
liegen. Wir zeigen nun, dass G’ eine Unterteilung des K33 oder des
K5 als Teilgraph enthalt. Hierzu geben wir entweder zwei disjunkte
Mengen A, B C V' mit jeweils 3 Knoten an, so dass 9 knotendisjunk-
te Pfade zwischen allen Knoten a € A und b € B existieren. Oder
wir geben fiinf Knoten an, zwischen denen 10 knotendisjunkte Pfade
existieren.

Fall 1: B* hat einen Kontaktpunkt k; & {ao, ai, bg, b1 }. Aus Symme-
triegriinden kénnen wir k; € K(ao, a1) annehmen. Da B* weder
zu ey noch zu B kompatibel ist, hat B* weitere Kontaktpunkte
ko € K(b(), a()) und k3 € K((Il, bl), wobei k9 = ks sein kann.
Fall 1a: Jk € {ko, k3} N K(by,b1). In diesem Fall existieren 9
knotendisjunkte Pfade zwischen {ag, ai, k} und {by, b1, k1 }.

Fall 1b: {ky, k3}NK (by,b1) = 0. In diesem Fall ist ky € Kby, ao)
und k3 € K(aq,bp]. Dann gibt es in B* einen Knoten u,
von dem aus 3 knotendisjunkte Pfade zu {ky, ko, k3} exis-
tieren. Folglich gibt es 9 knotendisjunkte Pfade zwischen
{ao, ay, U} und {k’1,]{32,]{33}

Fall 2: B* hat nur Kontaktpunkte & € {ag, ay, bo, b1}. In diesem Fall
mussen alle vier Punkte zu B* gehéren (denn B* ist inkompati-
bel zu B und B) und es gibt in B* einen ag-by-Pfad Py sowie
einen al—bl—Pfad Pl.

Fall 2a: F, und P; haben nur einen Knoten u gemeinsam.
Dann gibt es in B* vier knotendisjunkte Pfade von u zu

%)

5.1 Férben von planaren Graphen

{ao, a1,bp,b1} und somit 10 knotendisjunkte Pfade zwi-
schen den Knoten u, ag, ay, by, b;.

Fall 2b: P, und P, haben mindestens zwei Knoten gemeinsam.
Seien u der erste und v der letzte Knoten auf F,, die
auch auf P; liegen. Dann gibt es in B* drei knotendis-
junkte Pfade zwischen u und allen Knoten in {v,ag, a;}
und zwei zwischen v und allen Knoten in {by, b; }. Folglich
gibt es 9 knotendisjunkte Pfade zwischen {ag, a;,v} und
{bo, b1, u}. [|

Definition 5.26. Seien G, H Graphen. H heifst Minor von G, wenn
sich H aus einem zu G isomorphen Graphen durch wiederholte An-
wendung folgender Operationen gewinnen ldsst:

o FEntfernen von Kanten,
e FEntfernen von isolierten Knoten und

o Kontraktion von Kanten.

G heifst H-frei, falls H kein Minor von G ist. Fir eine Menge H
von Graphen heifit G ‘H-frei, falls G fiir alle H € H H-fret ist.

Da die Kantenkontraktionen zuletzt ausgefiihrt werden kénnen, ist
H genau dann ein Minor von G, wenn ein Teilgraph von G zu H
kontrahierbar ist. Zudem ist leicht zu sehen, dass G und H genau
dann Minoren voneinander sind, wenn sie isomorph sind.

Beispiel 5.27. Wir betrachten nochmals die Graphen G und H'.

G: (a

G st ein Minor von H', da durch Fusion der Knoten c,d,e, f ein zu
G isomorpher Graph aus H' entsteht. <

5 Farben von Graphen

Wagner beobachtete, dass sich aus dem Satz von Kuratowski folgende
Charakterisierung der Klasse der planaren Graphen ableiten lasst
(siehe Ubungen).

Korollar 5.28 (Wagner 1937). Ein Graph ist genau dann planar,
wenn er { K33, K5}-frei ist.

Beispiel 5.29. Betrachte folgenden Graphen.

Durch Entfernen der diinnen Kanten entsteht eine Unterteilung des
K5. Aus dieser erhalten wir den Ky, indem wir alle diinn umrandeten
Knoten (also alle Knoten vom Grad 2) tberbricken.

Alternativ lasst sich der Ks auch durch Fusion aller Knoten in
den farblich unterlegten Umgebungen der dick umrandeten Knoten
gewinnen. N

Definition 5.30. Sei < eine bindre Relation auf einer Menge A.

a) (A, <) heifst Quasiordnung, wenn < reflexiv und transitiv auf
A ist.

b) (A, <) heifst Wohlquasiordnung, wenn es zudem zu jeder Folge
ai, as, ... von Elementen aus A Indizes i < j mit a; < a; gibt.

5.1 Farben von planaren Graphen

Beispiele fiir Quasiordnungen sind der Betrag auf komplexen Zahlen
und die Erreichbarkeit in gerichteten Graphen.

(N, <) ist eine Wohlquasiordnung. Dagegen ist (Z, <) keine Wohlqua-
siordnung, da unendliche absteigende Ketten a; > as > - - - existieren,
z.B. a; = —i. Auch die Teilbarkeitsrelation auf den nattirlichen Zahlen
ist keine Wohlquasiordnung, da mit der Folge der Primzahlen eine un-
endliche Antikette existiert (d.h. die Glieder der Folge sind paarweise
unvergleichbar).

Proposition 5.31. Eine Quasiordnung (A, <) ist genau dann eine
Wohlquasiordnung, wenn es in (A, <) weder unendliche absteigende
Ketten noch unendliche Antiketten gibt.

Beweis. Es ist klar, dass (A, <) keine Wohlquasiordnung ist, wenn
es eine unendliche absteigende Kette oder eine unendliche Antikette
gibt.

Wenn umgekehrt weder unendliche absteigende Ketten noch unendli-
che Antikette existieren, so kénnen wir in jeder Folge aq,ao,... alle
Elemente a; streichen, fiir die ein ¢ < j existiert, so dass a; > a; ist.
Da hierbei von jeder absteigenden Kette ein Element in der Folge
verbleibt und alle diese Ketten endlich sind, enthélt die verbleibende
Folge immer noch unendlich viele Elemente.

Als néchstes streichen wir alle Elemente a;, fiir die ein ¢ < j existiert,
so dass a; und a; unvergleichbar sind. Die verbleibende Folge ist dann
immer noch unendlich und sogar monoton, d.h. es gilt a; < a;44 fiir
alle 7.]

Proposition 5.32. In einer Wohlquasiordnung (A, <) hat jede Teil-
menge B C A bis auf Aquivalenz nur endlich viele minimale Elemente.
Dabei heifien a,b € A dquivalent, falls a < b und b < a gilt.

Satz 5.33 (Satz von Robertson und Seymour, 1983-2004). Die Mino-
renrelation bildet auf der Menge aller endlichen ungerichteten Graphen
eine Wohlquasiordnung.

5 Féarben von Graphen

Korollar 5.34. Sei K eine Graphklasse, die unter Minorenbildung
abgeschlossen ist (d.h. wenn G € K und H ein Minor von G ist, dann
folgt H € KC). Dann gibt es eine endliche Menge H von Graphen mit

K ={G |G ist H-frei}.

Die Graphen in H sind bis auf Isomorphie eindeutig bestimmt und
heiflen verbotene Minoren fir die Klasse K. Fiir den Beweis des
Korollars betrachten wir die komplementére Klasse K aller endlichen
Graphen, die nicht zu IC gehéren. Nach Satz 5.33 in Kombination mit
Proposition 5.32 hat K bis auf Isomorphie nur endlich viele minimale
Elemente. Da mit H auch jeder Graph G, der H als Minor enthélt,
zu K gehort, gibt es demnach eine endliche Menge H von Graphen
mit

K ={G|3H € H : H ist ein Minor von G},

womit Korollar 5.34 bewiesen ist.

Das Problem, fiir zwei gegebene Graphen G und H zu entscheiden,
ob H ein Minor von G ist, ist zwar NP-vollstandig. Fiir einen festen
Graphen H ist das Problem dagegen effizient entscheidbar.

Satz 5.35 (Robertson und Seymour, 1995). Fir jeden Graphen H gibt
es einen O(n?3)-zeitbeschrinkten Algorithmus, der fiir einen gegebenen
Graphen G entscheidet, ob er H-frei ist.

Korollar 5.36. Die Zugehdrigkeit zu jeder unter Minorenbildung
abgeschlossenen Graphklasse IC ist in P entscheidbar.

Der Entscheidungsalgorithmus fiir /C lasst sich allerdings nur ange-
ben, wenn wir die verbotenen Minoren fiir K kennen. Leider ist der
Beweis von Theorem 5.33 in dieser Hinsicht nicht konstruktiv, so dass
der Nachweis, dass K unter Minorenbildung abgeschlossen ist, nicht
automatisch zu einem effizienten Erkennungsalgorithmus fir /C fiihrt.

57

5.2 Farben von chordalen Graphen

5.2 Farben von chordalen Graphen

Definition 5.37. Fin Graph G = (V,E) heifit chordal, wenn er
keinen induzierten Kreis der Linge > 4 enthdlt.

Ein induzierter Kreis G[{uy, ..., ux}] enthélt also nur die Kreiskan-
ten {wy, ua}t, ..., {uwp—1, ur}, {ug, w1}, aber keine Sehnen {u;, u;} mit
i—j #, £1.

Definition 5.38. Sei G ein Graph. Eine Menge S CV heifit Sepa-
rator von G, wenn G — S mehr Komponenten als G hat.

Lemma 5.39. Fir einen Graphen G sind folgende Aussagen dquiva-
lent.

(i) G ist chordal.
(it) Jeder inklusionsminimale Separator von G ist eine Clique.

(ii1) Jedes Paar von nicht adjazenten Knoten x und y in G hat einen
inklusionsminimalen x-y-Separator S, der eine Clique ist.

Beweis. Sei G chordal und sei S ein minimaler Separator von G.
Dann hat G — S mindestens zwei Komponenten G[V;] und G[V5].
Angenommen, S enthélt zwei nicht adjazente Knoten x und y. Da S
minimal ist, sind beide Knoten sowohl mit G[V;] als auch mit G[V5]
verbunden. Betrachte die beiden Teilgraphen G; = G[V; U{z,y}| und
wahle jeweils einen kiirzesten z-y-Pfad P; in GG;. Da diese eine Lange
> 2 haben, bilden sie zusammen einen Kreis K = P; U P, der Lange
> 4. Aufgrund der Konstruktion von K ist klar, dass K keine Sehne
in G hat. Dies zeigt, dass die erste Aussage die zweite impliziert.

Dass die zweite die dritte impliziert, ist klar. Um zu zeigen, dass die
erste aus der dritten folgt, nehmen wir an, dass G nicht chordal ist.
Dann gibt es in GG einen induzierten Kreis K der Lénge > 4. Seien
x und y zwei beliebige nicht adjazente Knoten auf K und sei S ein
minimaler x-y-Separator in G. Dann muss S mindestens zwei nicht
adjazente Knoten aus K enthalten. |

5 Farben von Graphen

Definition 5.40. Sei G = (V, E) ein Graph und sei k > 0. Ein Kno-
ten u € V heifit k-simplizial in G, wenn die Nachbarschaft N(u)
eine Clique der Grofie k in G bildet. Jeder k-simpliziale Knoten wird
auch als simplizial bezeichnet.

Zusammenhéangende chordale Graphen konnen als eine Verallgemeine-
rung von Baumen aufgefasst werden. Ein Graph G ist ein Baum, wenn
er aus K, durch sukzessives Hinzufiigen von 1-simplizialen Knoten
erzeugt werden kann. Entsprechend heifit G k-Baum, wenn G aus
K}, durch sukzessives Hinzufiigen von k-simplizialen Knoten erzeugt
werden kann. Wir werden sehen, dass ein zusammenhéngender Graph
G genau dann chordal ist, wenn er aus einem isolierten Knoten (also
aus einer 1-Clique) durch sukzessives Hinzufligen von simplizialen
Knoten erzeugt werden kann. Aquivalent hierzu ist, dass G durch
sukzessives Entfernen von simplizialen Knoten auf einen isolierten
Knoten reduziert werden kann.

Definition 5.41. Sei G = (V, E) ein Graph. Eine lineare Ordnung
(v1,...,v,) auf V heiffit perfekte Eliminationsordnung von G,
wenn v; simplizial in G[{vy,...,v}] firi=1,... n ist.

Lemma 5.42. Jeder nicht vollstindige chordale Graph G = (V, E)
besitzt mindestens zwei simpliziale Knoten, die nicht durch eine Kante
verbunden sind.

Bewets. Wir fiihren Induktion iiber n. Fir n < 2 ist die Behauptung
klar. Sei GG ein zusammenhéngender Graph mit n > 3 Knoten. Falls
G nicht vollstandig ist, enthalt G zwei nichtadjazente Knoten x; und
Tg. Sei S ein minimaler x1-zo-Separator und seien G[V;] und G[V5]
die beiden Komponenten von G — S mit x; € V;. Nach Lemma 5.39
ist S eine Clique in G. Betrachte die Teilgraphen G; = G[V; U S]. Da
G; chordal ist und weniger als n Knoten hat, ist V; U .S entweder eine
Clique oder G; enthélt mindestens zwei nicht adjazente simpliziale
Knoten y;, z;, wovon hochstens einer zu S gehort. Da im zweiten Fall

o8

5.2 Farben von chordalen Graphen

y; oder z; in V; ist, ist mindestens einer der drei Knoten x;, y; und z;
ohne Nachbarn in G[V5_;] und somit auch simplizial in G. [|

Satz 5.43. Fin Graph ist genau dann chordal, wenn er eine perfekte
Eliminationsordnung hat.

Beweis. Falls G chordal ist, lasst sich eine perfekte Eliminations-
ordnung geméfl Lemma 5.42 bestimmen, indem wir beginnend mit
i = n sukzessive einen simplizialen Knoten v; in G[V —{v; 41, ..., v,}]
wahlen.

Fiir die umgekehrte Richtung sei (vy, ..., v,) eine perfekte Elimina-
tionsordnung von G. Wir zeigen induktiv, dass G; = G[{vy,...,v;}]
chordal ist. Da v;y; simplizial in G, ist, enthélt jeder Kreis K der
Léange > 4 in G, 1, auf dem v;, liegt, eine Sehne zwischen den beiden
Kreisnachbarn von v; 1. Daher ist mit G; auch G;,; chordal. [|

Korollar 5.44. Es gibt einen Polynomialzeitalgorithmus A, der fiir
einen gegebenen Graphen eine perfekte Eliminationsordnung berech-
net falls G chordal ist und andernfalls einen induzierten Kreis der
Linge > 4 findet.

Beweis. A versucht wie im Beweis von Theorem 5.43 beschrieben,
eine perfekte Eliminationsordnung zu bestimmen. Stellt sich heraus,
dass G; = G|V — {vit1,...,v,}] keinen simplizialen Knoten v; hat,
so ist G; wegen Lemma 5.42 nicht chordal. Folglich gibt es wegen
Lemma 5.39 in G; zwei nicht adjazente Knoten z und y, so dass
kein minimaler z-y-Separator S eine Clique ist. Wie im Beweis von
Lemma 5.39 beschrieben, lasst sich mithilfe von S ein induzierter
Kreis K der Lénge > 4 in G; konstruieren. Da G; ein induzierter
Teilgraph von G ist, ist K auch ein induzierter Kreis in G. |

Eine perfekte Eliminationsordnung kann verwendet werden, um einen
chordalen Graphen zu farben:

5 Féarben von Graphen

Algorithmus chordal-color(V, E)
,u,) fir G=(V,E)

| berechne eine PEO (vy,...
> greedy-color(v,,...,v;)

Lemma 5.45. Fir einen gegebenen chordalen Graphen G = (V, E)
berechnet der Algorithmus chordal-color eine k-Fdarbung von G
mit k = x(G) = w(Q).

Beweis. Sei (vy,...,v,) eine perfekten Eliminationsordnung von G
und sei v; ein beliebiger Knoten mit f(v;) = k. Die Nachbarn von v;
in der Menge {vi1,...,v,} bilden eine Clique, da v; simplizial in
Gl{vis1, ..., vn}] ist. Wegen f(v;) = k bilden sie zusammen mit v;
eine k-Clique. Es folgt £ = x(G) = w(G). [

Um chordal-color effizient zu implementieren, bendtigen wir einen
moglichst effizienten Algorithmus zur Bestimmung einer perfekten Eli-
minationsordnung. Rose, Tarjan und Lueker haben hierfiir 1976 einen
Linearzeitalgorithmus angegeben, der auf lexikographischer Breitensu-
che (kurz LexBFS oder LBFS) basiert. Der Unterschied zur normalen
Breitensuche besteht darin, dass die Warteschlange) nicht einzelne
Knoten, sondern Knotenmengen enthéalt, welche die Menge der noch
nicht besuchten Knoten partitionieren. Diese Partition wird vom Al-
gorithmus wiederholt verfeinert. Der Name von LexBFS riihrt daher,
dass die Knoten in einer Reihenfolge besucht werden, die auch bei
einer gewohnlichen Breitensuche auftreten kann, bei dieser aber nicht
garantiert ist, weil die Nachbarn eines Knoten in beliebiger Reihenfolge
zur Warteschlange hinzugefiigt werden. Wenn die Zeilen und Spalten
der Adjazenzmatrix nach der durch LexBFS gefundenen Reihenfolge
angeordnet werden, sind die Zeilen lexikographisch sortiert.

Algorithmus LexBFS(V, F)

1 Q< (V) // doppelt verkettete Liste von Mengen
2 result < () // leere Liste

59

5.2 Farben von chordalen Graphen

3 while L # () do

1 wahle v e first(L)

5 first(L) < first(L)\{v}

¢ if first(L)= 0 then entferne den ersten Eintrag
von L

7 append(result, v)

s for S in L with N(v)NS #0 do

9 ersetze (S) in L durch (SN N(v),S\ N(v))

10 return result

Um diesen Algorithmus effizient zu implementieren, kann die innere
for-Schleife durch eine Schleife iiber die Nachbarn von v ersetzt wer-
den, wenn die Knotenmengen in () durch verkettete Listen realisiert
werden und fiir jeden Knoten ein Zeiger auf die Menge die ihn enthélt
und auf seinen Eintrag in dieser Menge gespeichert wird.

Lemma 5.46. Sei G = (V,E) ein chordaler Graph und sei
(U, ...,v1) die durch LexBFS(V,E) gefundene Knotenreihenfolge.
Dann ist (vy,...,v,) eine perfekte Eliminationsordnung fir G.

Beweis. Wir fuhren den Beweis mittels Induktion tiber n. Fir n =1
ist die Aussage trivialerweise erfiillt.

Fir n > 1 werden wir zeigen, dass der zuletzt von LexBFS besuchte
Knoten v; simplizial in G ist. Dies ist ausreichend, da G — v; wieder
chordal ist und LexBFS bei Eingabe G — v; die Folge (vy,...,vs)
berechnet, deren Umkehrung nach Induktionsvoraussetzung eine per-
fekte Eliminationsordnung fir G — vy ist. Wenn vy simplizial in G ist,
folgt daraus, dass (vy,ve,...,v,) eine perfekte Eliminationsordnung
fiir G ist.

Wir werden unter der Annahme, dass v; nicht simplizial ist, eine
unendliche Folge von aufsteigenden Knotenindizes ig < 17 < iy < - --
konstruieren, sodass

(a) fiir j <k gilt: {v;, v, } E ES j+2=kV (j,k)=(0,1) und
(b) fir j > 2 gilt: A} > i vy, € N(vi;_,) \ N(v;_,).

5 Farben von Graphen

Dies ergibt einen Widerspruch zur Endlichkeit von G. Zunachst set-
zen wir ¢ = 1. Da v;, = v; nicht simplizial ist, gibt es zwei nicht-
benachbarte Knoten v;,, v;, € N(v;,); wir kénnen 41 < 45 annehmen
und dass die Bedingung (b) gilt.

Es bleibt, 4; fiir j > 3 zu finden. Da v;,_, € N(v;,_,) — N(vs,_,) gilt
und LexBFS den Knoten v;,_, vor v;;_, ausgewdhlt hat, konnen die
Knoten Vi;_, und Vi;_y ZU dem Zeitpunkt als LexBFS den Knoten (T
ausgewahlt hat nicht mehr in der gleichen Menge sein. Dies ist nur
moglich, wenn es ein 4; > 4;_; gibt mit v;;, € N(v;,_,) — N(v;;_,). Um
zu zeigen, dass ¢; der Bedingung (a) gentigt, miissen wir nachweisen,
dass v;;_, der einzige Nachbar von v;; unter den bisher ausgewdhlten
Knoten ist. Durch Induktion iiber £ > 3 ldsst sich zeigen, dass v;,_,
kein Nachbar von v;; ist: Fur £ = 3 ist dies bereits durch die Wahl
von i; sichergestellt. Und wenn v;; € N(v;;_,) \ N(vs,_,,) fiir k>3
wire, so ergabe sich wegen (b) ein Widerspruch zur Wahl von ¢;_j 4.
SchlieBlich folgt aus der Chordalitat von G, dass {v;,,v;,_,} ¢ E, wo-
mit Bedingung (a) gezeigt ist. AuBlerdem kénnen wir wieder annehmen,
dass i; der Bedingung (b) gentigt. [|

Damit haben wir einen Linearzeitalgorithmus, der fiir chordale Gra-
phen eine perfekte Eliminationsordnung berechnet. Um zu entscheiden,
ob ein gegebener Graph chordal ist, gentigt es nach Satz 5.43, ob die
Umkehrung der durch LexBFS gefundenen Knotenreihenfolge tatséach-
lich eine perfekte Eliminationsordnung ist. Der folgende Algorithmus
realisiert diese Uberpriifung in linearer Zeit:

Algorithmus PEO(V, E)

1 (v1,...,v,) < (LexBFS(V, E))%

2 for i:=1 to n do

5 if N(v;) N{vig1,...,v,} =0 then

! j < min{k >i| v, € N(v;)}

5 if (N(v;)) N {vjs41,-..,0n}) \ N(vj) # 0 then
6 return "nicht chordal"

60

5.3 Kantenfirbungen

7 return (vy,...,v,)

Wegen Lemma 5.46 ist klar, dass der Eingabegraph G nicht chor-
dal ist, wenn der Algorithmus PEO nicht chordal ausgibt. Um-
gekehrt gilt: Wenn G nicht chordal ist, ist Umkehrung (vy,...,v,)
der durch LexBFS berechneten Knotenfolge nach Satz 5.43 keine
perfekte Eliminationsordnung, d.h. es gibt einen Knoten v;, sodass
N(v;) " {vi41,...,v,} zwei nicht-benachbarte Knoten v; und vy, ent-
hélt. Wir kénnen annehmen, dass j der kleinste solche Index ist.
Sei i' der grofite Index mit ¢ <4’ < j und v;, v, € N(vy). Dann gibt
der Algorithmus PEO bei dem Durchlauf der for-Schleife, bei dem
7" betrachtet wird, nicht chordal aus.

Der Algorithmus PEO kann sogar noch so erweitert werden, dass er
fiir nicht-chordale Graphen in Linearzeit einen induzierten Kreis der
Lange > 4 berechnet: Hierzu wird Zeile 6 durch die im Beweis von
Lemma 5.46 angegebene Konstruktion der Knotenfolge ersetzt. Diese
wird mit ¢g = ¢ gestartet. Da der Eingabegraph endlich ist, muss die
Folge irgendwann abbrechen — und dies ist nur dann méglich, wenn die
Kante {v;;,v;,_, } existiert und damit einen induzierten Kreis schlieft.

5.3 Kantenfirbungen

Definition 5.47. Sei G = (V, E) ein Graph und sei k € N.

a) Eine Abbildung f: E — N heifit Kantenfarbung von G, wenn
f(e) # f(€) fir alle Kanten e, e’ mit eNe' # 0 gilt.

b) G heifit k-kantenfdrbbar, falls eine Kantenfirbung f: E —
{1,...,k} existiert.

c¢) Die kantenchromatische Zahl oder der chromatische Index
von G ist

X' (G) = min{k € N | G ist k-kantenfirbbar}.

Ist f eine k-Kantenfirbung von G, so bildet jede Farbklasse

5 Féarben von Graphen

M; = {e € E | f(e) = i} ein Matching in G, d.h. f zerlegt F in
k disjunkte Matchings M;, ..., M. Umgekehrt liefert jede Zerlegung
von F in k disjunkte Matchings eine k-Kantenfirbung von G.

Beispiel 5.48.
3, n ungerade,
X'(Cr) = {
2, sonst,
V(K. =2 n, n ungerade,

(/2] —1:{

n—1, sonst,

(siche Ubungen,).

Lemma 5.49. Fir jeden nicht leeren Graphen gilt A < x' <2A —1
und m/p < x' <2[n/2] — 1.

Beweis. Siehe Ubungen. |

Korollar 5.50. Fiir jeden nicht leeren k-requldren Graphen mit einer
ungeraden Knotenzahl gilt X' (G) > k.

Beweis. Wegen p < (n —1)/2 und 2m = nA folgt X’ > m/u >
nA/(n—1) > A =k. |

Lemma 5.51. Fir jeden bipartiten Graphen gilt X' = A.

Beweis. Sieche Ubungen. Dort wird die Aussage sogar fiir biparti-
te Multigraphen (d.h. zwei Knoten kénnen durch mehrere Kanten
verbunden sein) bewiesen. |

Als néchstes geben wir einen Algorithmus an, der fiir jeden Graphen
G eine k-Kantenfarbung mit & < A(G) + 1 berechnet. Fiir den Beweis
benotigen wir folgende Begriffe.

61

5.3 Kantenfirbungen

Definition 5.52. Sei G = (V, E) ein Graph.

a) Ein Knoten w € V heifit d-gradig, wenn folgende Bedingungen
erfullt sind:

o deg(u) <d,
e alle Nachbarn v € N(u) haben einen Grad deg(v) < d und
o [[{v e N(u) | deg(v) = d}| < 1.

b) u heifit stark d-gradig, wenn folgende Bedingungen erfillt sind:
deg(u) = d,

fir alle v € N(u) gilt d — 1 < deg(v) < d und

{v € N(u) | deg(v) = d}|| = 1.

Sei u ein Knoten in einem Graphen GG und sei f eine k-Kantenfarbung
von G — u mit zugehoriger Partition M, ..., M. Dann bezeichnet
N;(u) = N(u) N free(M;) die Menge der Nachbarn v von u, fir die
die Farbe i noch frei ist (d.h. es ist moglich, die Kante {u,v} mit i
zu farben). Wir sagen f blockiert die Farbe i, falls N;(u) = () ist.

Das nachste Lemma ist eine direkte Folgerung aus obiger Definition.

Lemma 5.53. Sei u ein stark k-gradiger Knoten in G und sei f eine
k-Kantenfarbung von G —u. Dann erfillen die Anzahlen a; = ||N;(u)||
folgende Bedingungen:

(i) SFa; =2k —1,
(it) falls f eine Farbe blockiert, dann gibt es eine Farbe j mit a; > 3,

(iii) falls f keine Farbe blockiert, dann gibt es eine Farbe j mit
a; = 1.

Lemma 5.54. Sei u ein stark k-gradiger Knoten in G = (V, E) und
sei G — u k-kantenfdrbbar. Dann hat G — u eine k-Kantenfirbung g,
die keine Farbe blockiert.

5 Farben von Graphen

Beweis. Sei f eine k-Kantenfirbung fiir G — u. Falls f eine Farbe ¢
blockiert, gibt es nach Lemma 5.53 eine Farbe j mit a; > 3.

Betrachte den Graphen H = (V, M;UM;). Sei v ein beliebiger Knoten
in Nj(u). Da v ¢ free(M;) und somit Endpunkt einer Kante in M
ist, folgt degy(v) = 1. Sei P ein bzgl. Inklusion maximaler Pfad in
H mit Startknoten v. Da A(H) < 2 ist, ist P eine Zusammenhangs-
komponente von H. Vertauschen wir daher die Farben ¢ und j von
allen Kanten auf P, so erhalten wir wieder eine k-Kantenfdrbung
f fir G — u. Fiir diese sind a; und a} grofer 0, da v € free(M]) ist
und free(M;) hochstens 2 Knoten verliert (ndmlich v und evtl. den
anderen Endpunkt von P).

Folglich blockiert f’ eine Farbe weniger als f und wir kénnen diesen
Prozess fortsetzen, bis keine Farben mehr blockiert sind. |

Lemma 5.55. Sei u ein k-gradiger Knoten in G = (V, E) und sei
g eine k-Kantenfarbung fiir G — u. Dann ldsst sich aus g eine k-
Kantenfirbung f fir G konstruieren.

Beweis. Wir fihren Induktion tber k. Im Fall £ = 1 ist u hochstens
mit einem Knoten in G verbunden und daher lasst sich ¢ leicht zu
einer 1-Farbung fiir G erweitern.

Ist £ > 2, so modifizieren G zuerst zu einem Graphen G’, so dass u
stark k-gradig in G’ ist. Hierzu erweitern wir die Nachbarschaft von
u durch Hinzunahme von Blattknoten auf die Grofle k. Anschlieffend
vergroBern wir die Nachbarschaft N(v) jedes Knotens v € N(u) auf
dieselbe Weise, wobei wir sicherstellen, dass genau ein Nachbar von u
den Grad k und alle anderen den Grad k — 1 haben. Zudem erweitern
wir g zu einer k-Kantenfdrbung ¢ fiir G' — u.

Nun benutzen wir Lemma 5.54, um ¢’ in eine k-Kantenfarbung f’ fiir
G’ — u zu transformieren, die keine Farbe blockiert. Nach Lemma 5.53
gibt es eine Farbe j mit a); = 1. Sei v der einzige Nachbar von u in G/,
dessen Kanten nicht mit j gefarbt sind. Nun entfernen wir die Kante

62

5.3 Kantenfirbungen

{u, v} sowie alle mit j gefiarbten Kanten aus G’ und farben alle mit k
gefidrbten Kanten mit j. Dann haben in dem resultierenden Graphen
G" sowohl u als auch alle seine Nachbarn einen um 1 kleineren Grad,
d.h. u ist (k — 1)-gradig (aber evtl. nicht stark (k — 1)-gradig) in G”.
Zudem liefert die Einschrankung f” von f” auf die Kanten von G” —u
eine (k — 1)-Kantenfarbung fir diesen Graphen.

Nach IV lésst sich aus f” eine (k — 1)-Kantenférbung ¢” fiir G” kon-
struieren. Farben wir nun die aus G’ entfernten Kanten mit k, so
erhalten wir eine k-Kantenfiarbung fiir G’ und daraus eine fir G. W

Satz 5.56 (Vizing). Fir jeden Graphen gilt X' < A+ 1.

Beweis. Wir fuhren Induktion tiber n. Der Fall n = 1 ist trivial.

Im Fall n > 2 wéhlen wir einen beliebigen Knoten u in G. Dann ist u
d-gradig fir ein d < A(G) + 1. Sei k = max{A(G — u) + 1,d}. Nach
IV hat G — u eine k-Kantenfarbung, aus der wir nach Lemma 5.55
eine k-Kantenfarbung fiir G' konstruieren konnen. |

Da der Beweis von Satz 5.56 konstruktiv ist, konnen wir daraus leicht
einen Algorithmus ableiten.
Algorithmus Vizing

1 input Graph G = (V,E) mit V = {uy,...,u,}
o fi=0
3
!

for /:=2 to n do
f :=erweitere-faerbung(f, us, G[{u,..

s ue}])

Prozedur erweitere-faerbung(f,u,G)

1 ki=AG)+1
> while deg(u) < k do

3 flige einen neuen Blattnachbarn von u hinzu
i for all v € N(u) do
5 if deg(v) <k —1 then

5 Féarben von Graphen

6 flige k£ — 1 — deg(v) neue Blattnachbarn von v
7 hinzu und erweitere f auf die neuen Kanten
s S:=N(u); C:={1,...,k}

9 while S #(do

10 if vve S:|{ieC|ve free(M;)}|| =2 then

11 wahle einen beliebigen Knoten v € S

12 flige einen neuen Blattnachbarn von v hinzu
13 und erweitere f auf die neue Kante

14 while Ji € C': N;(u) =0 do

15 wahle j € C mit ||[N;(u)] >3

16 berechne einen inklusionsmaximalen Pfad P
17 in G[M; U M;] mit Startpunkt in N;(u)

18 vertausche die Farben ¢ und j auf P

19 wahle i € C' mit ||N;(u)|]| =1 und sei N;(u)= {v}
20 fHu,v}):=1i; C:=C\{i}; S:=5\{v}

21 f:=Einschrankung von f auf die Kanten in G
22 return f

Die Prozedur erweitere-faerbung(f,u,G) erweitert eine k-Kan-
tenfarbung f von G — u zu einer k-Kantenfarbung f von G, wobei
k = A(G) + 1 ist. Hierzu wird G' durch Hinzufiigen von Blattknoten
so zu einem Graphen G’ erweitert, dass u stark k-gradig in G’ ist.
Anschliefend wird f auf die mit u inzidenten Kanten in G’ fortge-
setzt. Schliellich wird die Einschrénkung von f auf die Kanten in G
zuriickgegeben.

Die innere while-Schleife wird fiir jede blockierte Farbe einmal durch-
laufen. Da zu Beginn hochstens k& Farben blockiert sind und bei jedem
der ||S|| = k Durchléufe der duleren while-Schleife maximal eine Far-
be blockiert wird, wird die innere while-Schleife insgesamt hochstens
2k-mal durchlaufen.

Damit der Pfad P in Zeit O(n) gefunden werden kann, speichern
wir fiir jeden Knoten v und jede Farbe j den Matchingpartner M;(v)
von v in einer (k x n)-Matrix M|[i, v]. Dabei setzen wir M[i,v] = L,

63

5.3 Kantenfirbungen

falls v € free(M;) ist. Nun ist leicht zu sehen, dass die Prozedur
erweitere-faerbung eine Laufzeit von O(kn) und somit der Algo-
rithmus Vizing eine Laufzeit von O(n?A(G)) hat.

6 Baum- und Pfadweite

6 Baum- und Pfadweite

Definition 6.1. Sei G = (V, E) ein Graph.

a) Fine Baumzerlegung von G ist ein Paar (T, X), wober T =
(Vr, Er) ein Baum und X = (Xi)iev, eine Familie von Untermen-
gen von V ist, so dass gilt:

b UtGVT Xt = V?
o fir jede Kante {u,v} € E gibt es ein t € Vp mit {u,v} C X,
und

e fiir jeden Knoten v € V ist der durch X '(u):={t € Vr |u €
X} induzierte Untergraph T[X ' (u)] von T zusammenhingend.

b) Die Weite von (T, X) ist w(T, X) = maxsey, || X¢]| — 1.
c) Die Baumweite tw(G) von G ist die kleinste Weite aller magli-
chen Baumzerlegungen von G.

d) FEine Baumzerlegung (T, X) von G heifit Pfadzerlegung, wenn
T ein Pfad ist. Die Pfadweite pw(G) von G ist die kleinste Weite
aller maglichen Pfadzerlegungen von G.

Die Mengen X; werden als Taschen (engl. bags) bezeichnet.
Beispiel 6.2. (i) Betrachte folgenden Graphen G:

64

G hat eine Baumzerlegung mit den Taschen X, = {a,b,d},
Xy =4{b,d, g}, X3 ={b,e,q}, X4 = {b,e,c}, X5 = {e,g,h},
Xo =A{d, f,g} und dem Baum T = ({1,...,6}, Er), wobei Er
folgende Kanten enthdlt: {1,2}, {2,3}, {3,4}, {3,5}, {2,6}.
(ii) Sei Girxe = Py x P, der (k x {)-Gittergraph mit k¢ Knoten.
Dann gilt
tw(Grxe) < pw(Grxe) < min{k, (}.

Der Graph Gsyx4 hat bspw. folgende Pfadzerlegung der Weite 4:

Proposition 6.3. Sei G = (V, E) ein Graph. Dann gilt:
e tw(G)=0<pw(G)=0=E=10
o Wenn G ein nicht-leerer Wald ist, gilt tw(G) = 1.

Beweisidee. Fiir den leeren Graphen kann eine Baumzerlegung der
Weite 0 konstruiert werden, indem fiir jeden Knoten eine Tasche er-
zeugt wird, die nur diesen Knoten enthélt. Diese Taschen konnen dann
in beliebiger Reihenfolge zu einem Pfad verbunden werden. Wenn G
umgekehrt eine Baumdekomposition der Weite 0 hat, kommen nie
zwei Knoten gemeinsam in einer Tasche vor, woraus E = () folgt.

Fiir die zweite Aussage geniigt es zu zeigen, dass jeder nicht-leere
Baum Baumweite 1 hat, da sich die Baumdekompositionen fir die

6 Baum- und Pfadweite

Zusammenhangskomponenten durch Verbinden mit zusatzlichen Kan-
ten leicht zu einer fiir den gesamten Graphen kombinieren lassen. Sei
G = (V, E) ein Baum. Dann ist (T, X) mit Vr = EU{{u} | u € V},

Xy,=tfurt € Vypund Ep = {{s, t} ‘ s C t} eine Baumdekomposition
der Weite 1 von G. [

Definition 6.4. Eine Baumzerlegung (T, X) heiffit kompakt, wenn
alle Taschen paarweise unvergleichbar sind, d.h. fir alle s #t € Vp

gilt Xy € Xy und Xy € X.

Proposition 6.5. Sei G = (V, E) ein Graph.

(i) Jede Baumzerlegung (T, X) von G lasst sich in Polynomialzeit
in eine kompakte Baumzerlegung (T", X') von G transformieren,
die nur Taschen aus X enthalt.

(ii) Fir jede kompakte Baumzerlegung (T, X) von G gilt n(T) <
n(G).

(iii) Fir jeden Untergraphen H wvon G gilt tw(H) < tw(G) und
pw(H) < pw(G).

(iv) Fir jede Kante {u,v} € E gilt tw(Gyw) < tw(G) und
pw(Gu) < pw(G).

Beweisidee.

(i) Der Algorithmus traversiert 7" von einem beliebigen Blatt aus.
Fiir jede Kante {s,t} (wobei s ndher am Startknoten liege als ?)
wird gepriift, ob X, C X; oder X, D X, gilt. In diesem Fall wird
die Kante {s,t} zu s kontrahiert und X, auf X,UX, € {X,, X;}
gesetzt. Anschlieend wird die Graphsuche im so erhaltenen
Graphen T}, fortgesetzt.

Dieser Algorithmus benotigt O(w(T', X)-n(T')) Zeit. Es ist leicht
zu sehen, dass das Ergebnis eine kompakte Baumrepréasentati-
on von G ist. Angewandt auf eine Pfadkomposition findet der
Algorithmus eine kompakte Pfaddekomposition.

65

(ii) Sei (7, X) eine kompakte Baumdekomposition von G = (V| E),
und sei s ein Blatt von 7" und s sein Nachbar. Da (7, X') kom-
pakt ist, muss es einen Knoten vy € X\ Xy. Betrachte nun
einen beliebigen Baumknoten ¢ € Vi \ {s}, und sei ¢’ € Vi der
erste Knoten auf dem Pfad von ¢ nach s. Dann muss es wieder
einen Knoten v; € X; \ Xy geben. Da die Baumknoten, deren
Taschen diese Knoten v, und v; enthalten jeweils einen Teilbaum
bilden, gilt t; # to = vy, # vy, — und damit n(7T") < n(G).

(ili) Sei (7, X) eine Baumdekomposition von G = (V, E) und sei
H = (V'|E') ein Untergraph von G. Dann ist (7, X’) mit
X, = X; NV’ eine Baumdekomposition von H mit w(7T, X’) <
w(T, X).

(iv) Sei (T, X) eine Baumdekomposition von G = (V, E). Dann ist
(T, X') mit

X! = {Xt wenn v ¢ X,
(X \{v}) U{u} wennwv € X,

eine Baumdekomposition von G, mit w(7, X') < w(7,X). W

Korollar 6.6. Fir jeden Minor H eines Graphen G gilt tw(H) <
tw(G) und pw(H) < pw(G).

Als néchstes zeigen wir, dass tw(G) > w(G) — 1 ist. Fir 2 Teilbdume
T" und 7" eines Baumes T' bezeichne dp(7”,T") die minimale Lange
eines Pfades P im Baum 7T, der einen Knoten u € 7" mit einem
Knoten v € T"” verbindet. Man beachte, dass der kiirzeste Pfad P
zwischen 7" und 7" im Fall dp(7",T7") > 0 eindeutig bestimmt ist
und der einzige Pfad zwischen 77 und 7" ist, dessen innere Knoten
weder zu T" noch zu T" gehoren.

Lemma 6.7. Seien T, ...,T}, S Teilbdume von T, so dass Ty N---N

Ty # O ist. Dann gilt
dT<T1 n--- ﬂTk,S) < max{dT(Ti,S) | 1= 1, .- ,]{7}

6 Baum- und Pfadweite

Beweis. Wir fithren Induktion tiber k. Fir £ = 1 ist nichts zu zei-
gen. Im Fall £ > 2 gilt fir S = T3 N --- N T_1; nach IV, dass
dr(S',S) < max{dr(T;,S) | i = 1,...,k — 1} ist. Daher reicht es
zu zeigen, dass dr(S' N Ty, S) < max{dy (5", S),dr(Ty,S)} ist. Sei
d=dp(S"NTy,S) > 0und sei P = (uy,...,uy) der kiirzeste Pfad
zwischen SN T}, und S. Dann gehoren uo, . . ., ug alle nicht zu S” oder
alle nicht zu Tj,. Somit ist P kiirzester S’-S Pfad oder kurzester T-S
Pfad. [|

Definition 6.8. Ein Mengensystem X = (X;);e; hat die Helly-
Eigenschaft, wenn fiir jede Teilmenge J C I gilt:

(Vl,]EJX,ﬂX]%@)i ﬂX]%(D

jed

Lemma 6.9. Die Knotenmengen aller Unterbaume eines Baumes T
haben die Helly-Eigenschaft.

Beweis. Sei Z = {T\,..., Ty} eine beliebige Menge von Unterbdumen
von T', so dass je zwei Unterbdume 7; und 7} aus Z einen nicht leeren
Schnitt haben. Wir zeigen induktiv tiber k& = || Z]|, dass dann auch
(N Z nicht leer ist.

Fir £ < 2 ist nichts zu zeigen. Im Fall £ > 3 gilt nach IV,
dass T' = M=} T; # 0 ist. Zudem folgt mit obigem Lemma, dass
dr(T",Ty,) < max{dr(T;,Ty) | i = 1,...,k — 1} = 0 und somit
T' NTy, # () ist. [|

Satz 6.10. Sei (T, X) eine Baumzerlegung eines Graphen G und
sei C' eine Clique in G. Dann gibt es eine Tasche Xy, in der C' ent-
halten ist.

Beweis. Da je 2 Knoten u,v € C' durch eine Kante verbunden sind,
gibt es eine Tasche X; mit {u,v} € X;. Folglich haben die zugeho-
rigen Unterbdume X ~'(u) und X~ !(v) mindestens einen Knoten ¢

66

gemeinsam. Nach Lemma 6.9 gibt es daher einen Knoten, der in allen
Unterbdumen X ~*(u) mit u € C enthalten ist. [|

Korollar 6.11.
(i) w(G) < tw(G) + 1,
(ii) tw(K,)=n—1.

Definition 6.12. Eine Baumzerleqgung (T, X) von G heifst Baum-
zerlegung in Cliquen, wenn alle Taschen Cliquen in G sind.

Lemma 6.13. Ein Graph G ist genau dann chordal, wenn er eine
Baumzerlegung in Cliquen hat.

Beweis. Sei G chordal. Wir zeigen mittels Induktion iiber die Kno-
tenanzahl n, dass G eine Baumzerlegung in Cliquen hat. Fir n =1
ist dies klar. Fiir n > 2 sei v ein simplizialer Knoten von G. Nach
Induktionsvoraussetzung hat G — v eine Baumzerlegung (7", X') in
Cliquen. Da Ng(v) eine Clique in G — v ist, gibt es nach Satz 6.10
t € Vir mit Ng(v) € X;. Um eine Baumzerlegung (7', X') von G zu
erhalten, konstruieren wir 7" aus 7" durch Anfiigen eines neuen Blatt-
nachbarn s von ¢ und erweitern X’ zu X durch X; = Ng(v) U {v}. Es
ist leicht zu sehen, dass (T, X) eine Baumzerlegung in Cliquen ist.

Sei nun umgekehrt (7', X)) eine Baumzerlegung in Cliquen von G.
Fiir jeden Kreis K der Lange > 4 kann wie im Beweis von Propositi-
on 6.5(iii) eine Baumdekomposition (7", X’) fiir den von K induzierten
Teilgraphen konstruieren; auch hier sind alle Taschen Cliquen. Wegen
tw(G[K]) > 2 gibt es t € Vp» mit || X]|| > 3. Da X] eine Clique
induziert, hat K eine Sehne. |

Frage: Welche Graphen haben eine Pfadzerlegung in Cliquen?

Definition 6.14. Sei G = (V, E) ein Graph. Dann heifst ein Graph
H = (V, E’) eine chordale Erweiterung von G, wenn H chordal
und G ein Teilgraph von H ist.

6 Baum- und Pfadweite

Lemma 6.15. tw(G) = min{w(H) — 1 | H ist eine chordale Erwei-
terung von G}.

Beweis. <: Sei H ein beliebiger chordaler Graph, der GG als Subgraph
enthalt. Dann hat H eine Baumzerlegung (7', X) in Cliquen und es
gilt tw(H) =w(H) — 1. Da (T, X) auch eine Baumzerlegung von G
ist, folgt tw(G) < w(H) — 1.

>: Sei (T, X)) eine Baumzerlegung von G der Weite w = tw(G). Flgen
wir alle Kanten {u,v} zu G hinzu, fir die v und v in einer gemeinsa-

men Tasche liegen, so ist der resultierende Graph H chordal und es
gilt w(H) <w—1. [

Definition 6.16. Sei G = (V, E) ein Graph und seien U/W C V
zwei nichtleere disjunkte Knotenmengen in G. Dann heifst X C V ein
U-W-Separator in G, wenn U \ X und W \ X nichtleer sind und es
in G — X keinen Pfad von einem Knoten u € U zu einem Knoten
we W gibt.

Es ist leicht zu sehen, dass ein Graph G = (V, E) genau dann k-
fach zusammenhéangend ist, wenn es keine Mengen U, W, X C V gibt
sodass X ein U-W-Separator ist mit || X|| < k.

Lemma 6.17. Sei (T, X) eine Baumzerlegung von G = (V, E) und
sei e = {u,w} eine Kante in T. Seien T, und T, die beiden Kompo-
nenten von T — e und seien X (T,,) = Uer, Xt und X(Tyy) = User, Xt-
Falls U = X(T,,) \ X(T\) und W = X(T,) \ X(T.) beide nicht leer
sind, ist X = X, N X, ein U-W-Separator in G.

Beweis. Wegen X, C X(T,) und X,, C X (7)) folgt X = X,,n X, C
X(T,)NX(Ty). Da (T, X) eine Baumzerlegung ist, gilt auch die umge-
kehrte Inklusion, d.h. X, U = X(T,,)\ X(T},) und W = X(T,,)\ X(T,,)
zerlegen V' in 3 Mengen. Daher reicht es zu zeigen, dass in G keine
Kante zwischen U und W existiert.

67

Sei {a,b} € E. Dann gibt es eine Tasche X; mit {a,b} C X;. Falls ¢
zu T, gehort, folgt {a,b} C X(T,) und somit {a,b} N W = (). Falls ¢
zu T, gehort, folgt {a,b} C X(T,,) und somit {a,b} NU = . []

Satz 6.18. Fir jeden Graphen G gilt k(G) < tw(Q).

Beweis. Sei k = tw(G). Dann hat G mindestens k + 1 Knoten. Falls
G genau k + 1 Knoten hat, ist G hochstens k-fach zusammenhéngend.
Falls G n > k + 1 Knoten hat, sei (T, X) eine kompakte Baumzerle-
gung von G und sei e = {u,w} eine Kante in 7. Da (T, X) kompakt
ist, gilt X, \ X, # 0 und X, \ X, # 0 und somit [| X, N X, | < k.
Nach obigem Lemma ist X = X, N X, ein Separator in G und somit
G hochstens k-fach zusammenhéngend. |

Korollar 6.19. Ein Graph G = (V, E) hat genau dann die Baumweite
tw(G) =1, wenn G ein Wald und E #) ist.

Frage: Welche Graphen G haben Pfadweite pw(G) = 17
Satz 6.20. Fir jeden Graphen G gilt m(G) < tw(G) - n(G).

Beweis. Wir fihren den Beweis mittels Induktion uber die Knoten-
zahl n.

n < tw(G) + 1: Jeder Knoten hat maximal tw(G) Nachbarn, folglich
gilt sogar m(G) < 3 - tw(G) - n(G).

n > tw(G) + 1: Sei (T, X) eine Baumdekomposition von G mit mi-
nimaler Weite. Nach Proposition 6.5 konnen wir annehmen,
dass (T, X) kompakt ist. Sei ¢ € Vr ein Blatt von T, und
sei s der Nachbar von t. Wegen der Kompaktheit existiert
ein Knoten u € X; \ Xj; dieser taucht damit nur in der Ta-
sche X, auf. Insbesondere miissen alle Nachbarn von u in X;
enthalten sein, es gilt also degq(u) < [|X¢|| — 1 < tw(G).
Nach Induktionsvoraussetzung gilt auerdem m(G — u) <

6 Baum- und Pfadweite

tw(G —u) -n(G—u) <tw(q) - (n(G) - 1). Zusammen ergibt
sich m(G) = degq(u) + m(G — u) < tw(G) - n(G). |

6.1 Dynamische Programmierung iiber
Baumdekompositionenen

Definition 6.21. Sei P C X* ein Entscheidungsproblem und k: ¥* —
N ein Parameter (beispielsweise die Baumweite des Eingabegraphen).
Dann heifit P fixed parameter tractable (FPT) beziglich k (kurz:
(P, k) € FPT), wenn es eine Funktion f: N — N und einen Algorith-
mus gibt, der fiir jedes x € X* in f(k(x)) - |z|°Y) Zeit entscheidet, ob
x € P gilt.

Die Funktion f ist hierbei beliebig, insbesondere kann sie exponentiell
wachsen. Fiir NP-schwere Probleme sind FPT-Algorithmen dennoch
interessant, weil sie das exponentielle Laufzeitverhalten auf den Para-
meter beschranken. Wird der Parameter als konstant angenommen,
ergibt sich fiir wachsende Eingabegrofien polynomielle Laufzeit. Dabei
ist die Aussage » P ist FPT beziiglich der Baumweite« starker als
»fiir jede Baumweite w ist das Problem P fiir Graphen mit durch w
beschriankter Baumweite in Polynomialzeit 16sbar«, weil letzteres auch
bei einer Laufzeit von n®®) zutrifft.

Viele Probleme, die fiir allgemeine Graphen NP-schwer sind, sind FPT
beziiglich der Baumweite. Haufig lassen sich sogar Laufzeiten der
Form f(w) - n erreichen; die Gréfle der Eingabe geht also nur linear
ein.

Um nachzuweisen, dass ein Problem FPT beziiglich der Baumweite
ist, bietet es sich an, den Dekompositiosbaum an einem beliebigen
Knoten zu wurzeln und dann von den Blédttern aufwérts Teillosungen
zu berechnen, bis eine Losung fiir den gesamten Graphen vorliegt.

68

6.1 Dynamische Programmierung tiber Baumdekompositionenen

Definition 6.22. Sei (T, X) eine Baumdekomposition fir einen Gra-
phen G = (V, E) und sei v € Vp. Dann heifst (T,r, X) gewurzelte
Baumdekomposition von G, wobei alle kannten von der Wurzel r
weggerichtet werden. Zudem definieren wir firt € Vp:

T(t) ={s € V| s ist von u aus erreichbar}
seT'(t)

G(v) = GV (1)

Die Idee ist nun, fiir jeden Baumknoten ¢ € V; und jede lokale Lo-
sung L; auf G[X;] in einer Tabelle zu speichern, ob (und ggf. wie)
sich L, zu einer Losung L; auf G(t) erweitern lisst. Dabei werden wir T
post-order traversieren, um bei der Behandlung eines inneren Knotens
bereits auf die Information iiber seine Kinder zugreifen kénnen. Um
zu prifen, ob zu einer lokalen Losung L; auf G[X;] eine Erweiterung
zu einer Losung L; auf G (t) existiert, werden wir prifen, ob zu L,

kompatible Teillésungen Ly, ..., L, fir die Kinder sq,...,s; von ¢

existieren, die sich zu Losungen auf G(s;),. .., G(sg) erweitern lassen.

Damit ergibt sich folgender Meta-Algorithmus:

| for each t € Vi (bottom-up) do

> for each Teilldsung L; auf G[X;] do

3 Speichere, ob L, mit erweiterbaren Teilldsungen
Lg,...,Ls, fur die Kinder si,...,s; von~t zu
einer Losung L, auf G(t) kombiniert werden
kann

i Prife, ob eine passende "Teil-"Ldsung fur die
Wurzel r existiert

Um diesen Meta-Algorithmus fiir ein konkretes Problem anzupassen,
muss jeweils geklart werden, was eine lokale Teillosung ist, wann Teil-
losungen kompatibel sind und wie kompatible Teillosungen kombiniert
werden konnen.

6 Baum- und Pfadweite

Farbbarkeit

Als erstes Beispiel fiir ein NP-schweres Problem, dass FPT in der
Baumweite ist, werden wir k-Féarbbarkeit betrachten — also die Frage,
ob fiir einen gegebenen Graphen G eine k-Farbung existiert.

Als lokale Teillosung an einem Baumknoten t € Vi verwenden wir
Funktionen f;: X; — [k], wobei [k] = {1,2,...,k}. Um den Algo-
rithmus zu vereinfachen, betrachten wir auch solche f;, die keine
k-Farbung von G[X;] sind.

Fir zwei Teilgraphen G = (Vi, Fy) und Gy = (V4, E5) eines Gra-
phen G = (V, E) nennen wir k-Farbungen f;: Vi — [k] von G; und
fo: Vo — [k] von Gy kompatibel, wenn fi(u) = fo(u) fir alle uw € VNV,
gilt. Falls zusatzlich Vi C V5 gilt, so heiit fo Erweiterung von f.
Fir ¢t € Vp und fi: X; — [k] definieren wir das Pradikat

1 falls es eine k-Farbung f, von G (t) gibt, die f; erweitert

B(f) = {

0 sonst.

Das dynamische Programm wird dieses Pradikat von den Blattern
aus fiir jeden Knoten von T berechnen. Fiir Blatter t € Vi geniigt
es zu priifen, ob f; eine k-Farbung von G[X;] ist. Fiir innere Knoten
muss zusatzlich die Erweiterbarkeit gepriift werden. Dies gelingt mit
dem folgenden Lemma.

Lemma 6.23. Seit € Vp und f;: Xy — [k] eine k-Firbung von G[X].
Dann gilt P(f;) = 1 genau dann, wenn fir alle Kinder s von t ei-
ne lokale Liosung fs: Xy — [k] mit Ps(fs) = 1 ewxistiert, die zu f;
kompatibel ist.

Beweis. »=>«: Sei f; eine k-Farbung von G(t), die f, erweitert. Wir
definieren fiir jedes Kind s von t die k-Farbung f; = ft| x,. Da sich
diese auf die k-Farbung f, = fi|v(s von G(s) erweitern lisst, gilt
Pi(fs) = 1. AuBerdem ist f, nach Konstruktion zu f; kompatibel.

69

6.1 Dynamische Programmierung tliber Baumdekompositionenen

»<=«: Seien sy, ...,sq die Kinder von t. Fiir ¢ € [d] sei f,: X, — [k]
eine lokale Losung, die zu f; kompatibel ist und die sich zu einer k-
Farbung f, von G(s;) erweitern lisst. Wegen i # j = V(s;) NV (s;) C
X sind die Funktionen in F' = {f;, fs,,..., fs,} paarweise kompati-
bel. Thre Vereinigung f; = U F ist eine k-Firbung von G(t), die f,
erweitert. |

Zusammen ergibt sich der folgende Algorithmus:

Prozedur treedec-color(V,E,T,r, X k)

1 for each t € V (bottom-up) do
> for each f;: X; — [k] do
3 P(f) =1
|

if Ju,v e X;: {u,v} € EA fi(u) = fi(v) then

P(fe) =0
6 else
7 for each child s of ¢ do
it Afy: X, = [K]: P(f,) =1 und f,, f;

kompatibel then
9 P,(f;) ==0; break
o return 3f.: X, — [k]: P.(f,) =1

Die Korrektheit folgt aus Lemma 6.23. Um die Laufzeit abzuschétzen,
nehmen wir an, dass die gegebene Baumdekomposition kompakt ist;
damit hat 7" nach Proposition 6.5 hochstens n Knoten und die duflere
Schleife tiber ¢ wird hochstens n mal durchlaufen. Fiir f; stehen dabei
jeweils héchstens k%! Moglichkeiten zur Verfiigung. In den Ubungen
wird x(G) < tw(G) + 1 gezeigt, daher konnen wir k! < (w + 1)¥*!
abschétzen. Der Test in Zeile 4 kann in O(wA) implementiert werden,
indem fiir jeden Knoten u € X; seine Adjazenzliste durchgegangen
wird. Da jeder Baumknoten s hochstens einen Elternknoten t hat,
wird die innere for-Schleife hochstens ((w +1)wtt. n)—mal durchlau-

w—+1

fen. In ihr missen jeweils hochstens (w+ 1) Funktionen f; getestet

werden. Zusammen ergibt sich eine Laufzeit von O((w + 1)2w+2wAn>.

6 Baum- und Pfadweite

Da der Maximalgrad A nicht durch w beschrankt ist (der K A hat
Baumweite 1 und Maximalgrad A), ist diese Laufzeit noch nicht linear
in n. Um dies zu erreichen, kann fiir den Adjazenztest in Zeile 4 eine
Lazy-Adjazenzmatrix verwendet werden, in der nur die 1-Eintrdge
initialisiert werden, und die Giiltigkeit eines Eintrags a, ; beim Zugriff
noch dadurch gepriift wird, ob er auf einen Eintrag einer zusétzlichen
Liste zeigt, in der an dieser Stelle das Tupel (i, j) steht. Hierbei ent-
steht ein Initialisierungsaufwand von O(m) = O(wn) und es kann
fiir ein Paar von Knoten in konstanter Zeit getestet werden, ob sie
benachbart sind. Allerdings wird quadratisch viel Platz in n benotigt.

Um nicht nur die Laufzeit, sondern auch den Platzbedarf linear in n
zu halten, hilft das folgende Lemma. Fir S C Vi definieren wir top(S)
als den Knoten in S, der den kiirzesten Abstand zur Wurzel von T hat.
Fiir u € V sei top(u) = top(X (u)) und Nigp(u) = N(u) N Xiop(u)-

Lemma 6.24. {u,v} € E < u € Nipy(v) VU € Nygp(u)

Beweis. »<=« ist nach Definition klar.
»=>«: Sei S = X~H(u) N X~!(v). Dann gilt top(S) € {top(u),top(v)},
da sonst auch der Elternknoten von top(S) in S enthalten wére. W

Die Mengen Ny, (u) konnen fur alle Knoten v € V in O(n +m) =
O(wn) Zeit berechnet werden, indem 7T traversiert wird und an jeder
Tasche t fur alle Knoten in X, die nicht auch in der Elterntasche
enthalten sind, die Adjazenzliste durchgegangen wird (was jede Kante
nur zweimal besucht). Wegen || Ny, (u)|| < w + 1 sind dann Adja-
zenztests in O(w) Zeit moglich. Dies ergibt fiir treedec-color eine
Gesamtlaufzeit von O((w + 1)2w+2w3n).

Stabile Mengen

Als zweites Beispiel fiir ein NP-schweres Problem, das FPT in der
Baumweite des Eingabegraphen ist, betrachten wir das Stabilitats-
problem. Hier wird fiir einen gegebenen Graphen G = (V, E) und

70

6.1 Dynamische Programmierung tiber Baumdekompositionenen

eine Zahl k € N gefragt, ob es eine stabile Menge U C V' der Grofle
|U|| = k gibt.

Der Algorithmus wird wieder eine Variante des zu Beginn der Ab-
schnitts vorgestellten Meta-Algorithmus sein. Eine lokale Teillosung
fiir einen Baumknoten ¢t € Vp ist eine Menge I; C X;. Dabei inter-
essieren wir uns eigentlich nur fir solche I; die stabil in G[Xy] sind,
nehmen der Einfachheit halber aber alle Teilmengen von X; in die
Tabelle des dynamischen Programms auf.

Seien Gy = (V4,Ey) und Gy = (Vi, Ey) Teilgraphen eines Gra-
phen G = (V| E). Zwei stabile Mengen I; von G; und I von Gs
heiflen kompatibel, wenn I; NV = [NV gilt. In diesem Fall ist 17 U I
stabil in (V3 U Va, By U Es).

Das dynamische Programm berechnet fiir t € Vpy und I; C X, die
Werte

max HfH
P(L) = { t

—00 sonst.

I, ist stabil in G(T)
und kompatibel zu I;

} falls I, stabil in G[X}]

Um die rekursive Berechnungsvorschrift fir P, moglichst einfach zu
halten, werden wir Baumdekompositionen mit einer besonderen Struk-
tur verwenden.

Definition 6.25. Deine gewurzelte Baumdekomposition (T',r, X)
heifit einfach, wenn alle Baumknoten t € Vi eine der folgenden
Bedingungen erfiillen:

(a) t hat keine Kinder und || X;|| = 1. In diesem Fall heifst t Blatt.

(b) t hat ein Kind s mit X; C X, und | X;|| = | Xs|| — 1. In diesem
Fall heifst t Weglass-Knoten.

(¢) t hat ein Kind s mit Xy D X und | X¢|| = || Xs|| + 1. In diesem
Fall heifit t Hinzufiige- Knoten.

(d) t hat zwei Kinder v und s mit X, = Xs; = X;. In diesem Fall
heifit t Kombinationsknoten.

6 Baum- und Pfadweite

Lemma 6.26. Es gibt einen Algorithmus, der aus einer kompakten
Baumdekomposition (T, X) von G = (V, E) in O(wn) Zeit eine einfa-
che Baumdekomposition von G mit gleicher Weite und O(wn) Knoten
berechnet.

Beweis. Der Algorithmus arbeitet wie folgt:

Prozedur simple-treedec(7, X)

| for t € Vr do

2 if degp(t) = 1A || Xy]| > 1 then

3 flige ein neues Blatt ¢ als Nachbarn von ¢ an

4 wahle u € X; und setze Xy = {u}

5 for {s,t} € Er do

6 if Xy € Xy AN X 2 X, then

7 unterteile {s,t} durch einen neuen Knoten r

8 setze X, =X, NX,

o for {s,t} € Er do

0 sei {vy,...,v,} =Xs und {vy,...,v,} =X; und p<yq

11 unterteile {s,t} durch ¢—p—1 Knoten ¢,...,t,_p1

12 setze Xy, ={vi,..., 054}

13 wahle r € V; und betrachte T als in r gewurzelt

14 for t € Vy do

15 seien tq,...,t; die Kinder von ¢

6 if d > 1 then

17 flige einen Binarbaum mit d Blattern zwischen ¢
und seinen Kindern ein, alle neuen Knoten
erhalten die gleiche Tasche wie t

Die erste Schleife stellt sicher, dass alle Bléatter einelementige Taschen
haben. Die zweite und dritte Schleife stellen sicher, dass sich die Ta-
schen von benachbarten Baumknoten um genau einen Graphknoten
unterscheiden. Die vierte Schleife stellt schliefllich sicher, dass interne
Knoten entweder nur ein oder zwei Kinder haben und in letzterem

Fall beide die gleiche Tasche haben.

6.1 Dynamische Programmierung tliber Baumdekompositionenen

Nach Proposition 6.5 gilt zu Beginn des Algorithmus ||Vr|| < n. Nach
der ersten Schleife gilt ||Vr|| < 2n. Nach der zweiten Schleife gilt
IVr]| < 3n, da nur fiir die héchstens n — 1 Kanten des urspriingli-
chen Baums neue Knoten eingefiigt werden kénnen. Nach der dritten
Schleife gilt || V|| < 3wn, da jede Kante durch héchstens w = w(T, X)
Knoten unterteilt wird. Schliellich gilt nach der vierten Schleife
IVr]l < 9wn, da die eingefliigten Bindrbdume hochstens so viele
Bléatter wie zuvor vorhandene Knoten haben und hochstens so viele
innere Knoten wie Blatter.

Es ist leicht zu sehen, dass die Laufzeit linear durch die Ausgabegrofie
und damit durch O(wn) beschrankt ist. |

Das folgende Lemma zeigt, wie P; fiir einfache Baumdekompositionen
rekursiv berechnet werden kann.

Lemma 6.27. Sei (T,r, X) eine einfache Baumdekomposition und
t € Vp. Dann gilt:
(a) Wenn t ein Blatt ist mit X, = {u}, so ist P,({u}) = 1 und
P (0) = 0.
(b) Wenn t ein Weglass-Knoten mit Kind s und {u} = X, \ X; ist,
so gilt P,(I) = maX{PS(I),PS(I U {u})} fiir alle I C X;.
(¢) Wenn t ein Hinzufige-Knoten mit Kind s und {u} = X; \ X; ist,
so gilt fir alle I C X;:

—00 wenn I nicht stabil in G[X]
wenn I stabil in G[X;] und u ¢ I
Py(I\{u})+1 wenn I stabil in G[X;] und u € I

(d) Wenn t ein Kombinationsknoten mit Kindern r und s ist, so gilt
P,(I) = P.(I) + P,(I) — ||I]| fir alle I C X.

Satz 6.28. Es gibt einen Algorithmus, der fiir eine gegebene Baum-
dekomposition (T, X) eines Graphen G = (V| E) der Weite w in
O(2¥wn) Zeit die Stabilititszahl o(G) berechnet.

6 Baum- und Pfadweite

Beweis. Der Algorithmus berechnet zunéchst eine einfache Baum-
dekomposition (77,7, X) von G der Weite w (in O(wn) Zeit nach
Lemma 6.26) und die Mengen Ny, (u) fiir schnelle Adjazenztests nach
Lemma 6.24 (ebenfalls O(wn) Zeit). Dann verwendet er die Berech-
nungsvorschriften aus Lemma 6.27, um bottom-up fiir alle Baum-
knoten ¢t € Vp» und Mengen I; C X; die Werte P;(I;) auszurechnen.
Schlielich gibt er max; cx, P,(I,) zurtck.

Es gibt 2%wn Paare von t und [, fiir die P,(1;) berechnet wird. Je
nachdem, welcher Fall von Lemma 6.27 jeweils zum tragen kommt,
fallt dabei folgender Aufwand an:

Fall (a) kann in O(1) Zeit implementiert werden.

Fall (b) kann in O(w) Zeit implementiert werden, wenn die Indi-
zes I; C X, als Bitfolgen der Lange ||X;|| reprasentiert wer-
den.

Fall (c) kann in O(w?) Zeit implementiert werden, wenn zur Uber-
priifung ob I; stabil in G[X;] ist der O(w)-Adjazenztest nach
Lemma 6.24 verwendet wird.

Fall (d) kann wieder in O(w) Zeit implementiert werden.

Zusammen ergibt sich die angegebene Laufzeit. [

Courcelle hat sogar gezeigt, dass fiir einen gegebenen Graphen G
und eine als MSO-Formel ¢ (monadic second order logic) gegebene
Grapheigenschaft in f(tw, ¢)n Zeit entschieden werden kann, ob ¢
durch G erfillt wird.

72

6.1 Dynamische Programmierung tiber Baumdekompositionenen

	1 Grundlagen
	1.1 Graphentheoretische Grundlagen
	1.2 Datenstrukturen für Graphen
	1.3 Keller und Warteschlange
	1.4 Durchsuchen von Graphen
	1.5 Spannbäume und Spannwälder
	1.6 Berechnung der Zusammenhangskomponenten
	1.7 Breiten- und Tiefensuche

	2 Berechnung kürzester Wege
	2.1 Der Dijkstra-Algorithmus
	2.2 Der Bellman-Ford-Algorithmus
	2.3 Der Bellman-Ford-Moore-Algorithmus
	2.4 Der Floyd-Warshall-Algorithmus

	3 Flüsse in Netzwerken
	3.1 Der Ford-Fulkerson-Algorithmus
	3.2 Der Edmonds-Karp-Algorithmus
	3.3 Der Algorithmus von Dinic
	3.4 Kostenoptimale Flüsse

	4 Matchings
	4.1 Der Algorithmus von Edmonds
	4.2 Effiziente Implementierung von Edmonds' Algorithmus
	4.3 Gewichtete Matchings

	5 Färben von Graphen
	5.1 Färben von planaren Graphen
	5.2 Färben von chordalen Graphen
	5.3 Kantenfärbungen

	6 Baum- und Pfadweite
	6.1 Dynamische Programmierung über Baumdekompositionenen

