Vorlesungsskript
Kryptologie

Sommersemester 2014

Prof. Dr. Johannes Kobler

Humboldt-Universitat zu Berlin
Lehrstuhl Komplexitat und Kryptografie

17. April 2014

ii

Inhaltsverzeichnis

1 Kryptografische Hashverfahren
1.1 Einfilhrung
1.2 Schlissellose Hashfunktionen (MDCs)

1.2.1 Vergleich von Sicherheitsanforderungen
1.2.2 Das Zufallsorakelmodell (ZOM)
1.2.3 Iterierte Hashfunktionen

1 Kryptografische Hashverfahren

1.1 Einfiihrung

Durch kryptographische Verfahren lassen sich unter anderem die folgenden Schutzziele
realisieren.
o Vertraulichkeit
— Geheimhaltung
— Anonymitat (z.B. Mobiltelefon)
— Unbeobachtbarkeit (von Transaktionen)
o [ntegritat
— von Nachrichten und Daten
e Jurechenbarkeit
— Authentikation
— Unabstreitbarkeit
— Identifizierung
o Verfigbarkeit
— von Daten
— von Rechenressourcen
— von Informationsdienstleistungen
Kryptografische Hashverfahren sind ein wirksames Werkzeug zur Sicherstellung der Inte-
gritdt von Nachrichten oder generell von digitalisierten Daten. Sie nehmen somit beim
Schutz der Datenintegritéit eine dhnlich herausragende Stellung ein wie sie Kryptosys-
temen bei der Wahrung der Vertraulichkeit zukommt. Daneben finden kryptografische
Hashfunktionen aber auch vielfach als Bausteine von komplexeren Systemen Verwendung.
Wie wir noch sehen werden, sind kryptografische Hashfunktionen etwa bei der Erstellung
von digitalen Signaturen sehr niitzlich. Auf weitere Anwendungsmoglichkeiten werden
wir spater eingehen.
Vielen Anwendungen von kryptografischen Hashfunktionen h liegt die Idee zugrunde,
dass sie zu einem vorgegebenen Text z eine zwar kompakte aber dennoch représentati-
ve Darstellung h(z) liefern, die unter praktischen Gesichtspunkten als eine eindeutige
Identifikationsnummer von x fungieren kann. Die Berechnungsvorschrift fiir A muss
somit ,charakteristische Merkmale“ von x in den Hashwert h(z) einflielen lassen. Da
der Fingerabdruck eines Menschen ganz dhnliche Eigenschaften besitzt (was ihn fiir
Kriminalisten bekanntlich so wertvoll macht), wird der Hashwert h(z) auch oft als
ein digitaler Fingerabdruck von x bezeichnet. Gebrauchlich sind auch die Bezeich-
nungen kryptografische Priifsumme oder message digest (englische Bezeichnung fiir
,Nachrichtenextrakt*).
Typische Schutzziele, die sich mittels Hashfunktionen realisieren lassen, sind die
Nachrichten- und Teilnehmerauthentikation.

e Nachrichtenauthentikation“ (message authentication)

2 1 Kryptografische Hashverfahren
Kryptografische
Hashverfahren
Sonstige
Hashverfahren

Abbildung 1.1: Eine grobe Einteilung von kryptografischen Hashverfahren.

(Integritatsschutz) (Authentikation)

— Wie lésst sich sicherstellen, dass eine Nachricht (oder eine Datei) wiahrend einer
(rdumlichen oder auch zeitlichen) Ubertragung nicht verindert wurde?

— Wie lasst sich der Urheber (oder Absender) einer Nachricht zweifelsfrei feststellen?
o Teilnehmerauthentikation“ (entity authentication, identification)

— Wie kann sich eine Person (oder ein Gerét) anderen gegeniiber zweifelsfrei auswei-
sen?

Klassifikation von Hashverfahren

Kryptografische Hashverfahren lassen sich grob danach klassifizieren, ob der Hashwert
lediglich in Abhéngigkeit vom Eingabetext berechnet wird oder zusétzlich von einem
symmetrischen Schliissel abhangt (sieche Abbildung 1.1).

Kryptografische Hashfunktionen, bei deren Berechnung keine Schliissel benutzt werden,
dienen vornehmlich der Erkennung von unbefugt vorgenommenen Manipulationen an
Dateien oder Nachrichten. Daher werden sie auch als MDC' bezeichnet (Manipulation
Detection Code [englisch] = Code zur Erkennung von Manipulationen). Zuweilen wird
das Kirzel MDC' auch als eine Abkiirzung fir Modification Detection Code verwendet.
Seltener ist dagegen die Bezeichnung MIC (message integrity codes). Abbildung 1.2
zeigt eine typische Anwendung von MDCs.

Um die Integritat eines Datensatzes x sicherzustellen, der iiber einen ungesicherten
Kanal gesendet (bzw. auf einem vor Manipulationen nicht sicheren Webserver

@ ======================> @
h h
é Authentisierter Kanal A 4 (echt)
> |y=h()

Abbildung 1.2: Einsatz eines MDC h zur Uberpriifung der Integritit eines Datensatzes
x.

1.2 Schliissellose Hashfunktionen (MDCs) 3

Ungesicherter ¥
hk hk
é) Kanal i /r[eCht]
S-S S-S S-S S-S CSCSCSCSESSES=S=S=S=S=S=S=CS => h ml ; /
K@) =y falsch
< O, >

Gesicherter Kanal

k Symmetrischer Authentikationsschliissel
y = hi(x): MAC-Hashwert fiir unter k

Abbildung 1.3: Verwendung eines MAC zur Nachrichtenauthentikation.

abgelegt) wird, kann man wie folgt verfahren. Man sendet den MDC-Hashwert
von x iiber einen authentisierten Kanal und priift, ob der Datensatz nach der
Ubertragung noch denselben Hashwert liefert.

Kryptografische Hashverfahren mit symmetrischen Schliisseln finden hauptséachlich bei
der Authentifizierung von Nachrichten Verwendung. Diese werden daher auch als MAC
(message authentication code [englisch] = Code zur Nachrichtenauthentifizierung) oder
als Authentikationscode bezeichnet. Daneben gibt es auch Hashverfahren mit asym-
metrischen Schliisseln. Diese werden jedoch der Rubrik der Signaturverfahren zugeordnet,
da mit ihnen ausschliefflich digitale Unterschriften gebildet werden. Abbildung 1.3 zeigt,
wie sich Nachrichten mit einem MAC authentisieren lassen. Man beachte, dass nun auch
der Hashwert tiber den unsicheren Kanal gesendet wird.

Mochte Bob eine Nachricht x an Alice tibermitteln, so berechnet er den zuge-
horigen MAC-Hashwert y = hy(x) und figt diesen der Nachricht z hinzu. Alice
tiberpriift die Echtheit der empfangenen Nachricht (2/,y'), indem sie ihrerseits
den zu 2’ gehorigen Hashwert hy(z') berechnet und das Ergebnis mit ¢ ver-
gleicht. Der geheime Authentikationsschliissel £ muss hierbei genau wie bei einem
symmetrischen Kryptosystem iiber einen gesicherten Kanal vereinbart werden.

Indem Bob seine Nachricht z um den Hashwert y = hy(x) ergénzt, gibt er Alice nicht
nur die Moglichkeit, anhand von y die empfangene Nachricht auf Manipulationen zu
tiberpriifen. Die Benutzung des geheimen Schliissels k erlaubt zudem eine Uberpriifung
der Herkunft der Nachricht.

1.2 Schliissellose Hashfunktionen (MDCs)

In diesem Abschnitt betrachten wir verschiedene Sicherheitsanforderungen an einzelne
Hashfunktionen h. Dabei nehmen wir an, dass h o6ffentlich bekannt ist, d.h. h ist eine
schliissellose Hashfunktion (MDC).

Sei h: X — Y eine Hashfunktion. Ein Paar (z,y) € X x Y heifit giiltig fur h, falls
h(z) =y ist. Ein Paar (z,2’) mit h(z) = h(2’) heifit Kollisionspaar fiir h. Die Anzahl

4 1 Kryptografische Hashverfahren

||Y|| der Hashwerte bezeichnen wir mit m. Ist auch der Textraum X endlich, || X|| = n,
so heiit h eine (n, m)-Hashfunktion. In diesem Fall verlangen wir meist, dass n > 2m
ist, und wir nennen h dann eine Kompressionsfunktion (compression function).

Da h offentlich bekannt ist, ist es sehr einfach, fiir einen vorgegebenen Text x ein giiltiges
Paar (z,y) zu erzeugen. Fiir bestimmte kryptografische Anwendungen ist es wichtig, dass
dies nicht moglich ist, falls der Hashwert y vorgegeben wird.

Problem P1: Bestimmung eines Urbilds
Gegeben: FEine Hashfkt. h: X — Y und ein Hashwert y € Y.
Gesucht: Ein Text x € X mit h(z) =y.

Falls es einen immensen Aufwand erfordert, fir einen vorgegebenen Hashwert y einen Text
x mit h(x) = y zu finden, so heifit h Einweg-Hashfunktion (one-way hash function bzw.
preimage resistant hash function). Diese Eigenschaft wird beispielsweise bendtigt, wenn
die Hashwerte der Benutzerpassworter in einer 6ffentlich zugénglichen Datei abgespeichert
werden, wie es bei manchen Unix-Systemen der Fall ist.

Problem P2: Bestimmung eines zweiten Urbilds
Gegeben: Eine Hashfkt. h: X — Y und ein Text z € X.
Gesucht: Ein Text 2’ € X \ {z} mit h(2') = h(z).

Falls sich fiir einen vorgegebenen Text x nur mit groem Aufwand ein weiterer Text x’ # x
mit dem gleichen Hashwert h(z’) = h(z) finden lésst, heifit A schwach kollisionsre-
sistent (weakly collision resistant bzw. second preimage resistant). Diese Eigenschaft
wird in der durch Abbildung 1.2 skizzierten Anwendung benotigt. Beim Versuch, eine
digitale Signatur zu félschen (siehe unten), sieht sich der Gegner dagegen mit folgender
Problemstellung konfrontiert.

Problem P3: Bestimmung einer Kollision
Gegeben: Eine Hashfkt. h: X — Y.
Gesucht: Texte x # o’ € X mit h(z') = h(z).

Falls sich dieses Problem nur mit einem immensen Aufwand losen lasst, heifit h (stark)
kollisionsresistent (collision resistant).

Obwohl die schwache Kollisionsresistenz eine gewisse Ahnlichkeit mit der Einweg-
Eigenschaft aufweist, sind die beiden Eigenschaften im allgemeinen unvergleichbar. So
muss eine schwach kollisionsresistente Funktion nicht notwendigerweise eine Einweg-
funktion sein, da die Bestimmung eines Urbildes gerade fiir diejenigen Funktionswerte
einfach sein kann, die nur ein einziges Urbild besitzen. Umgekehrt impliziert die Einweg-
Eigenschaft auch nicht die schwache Kollisionsresistenz, da die Kenntnis eines Urbildes
das Auffinden weiterer Urbilder sehr stark erleichtern kann.

1.2.1 Vergleich von Sicherheitsanforderungen

In diesem Abschnitt zeigen wir, dass stark kollisionsresistente Hashfunktionen sowohl
schwach kollisionsresistent als auch Einweghashfunktionen sind.

Satz 1. Sei h: X — Y eine (n,m)-Hashfunktion. Dann ist das Problem P3, ein Kol-
listonspaar fir h zu bestimmen, auf das Problem P2, ein zweites Urbild zu bestimmen,
reduzierbar. Folglich sind stark kollisionsresistente Hashfunktionen auch schwach kollisi-
onsresistent.

1.2 Schliissellose Hashfunktionen (MDCs) 5

1 wahle zufallig z € X
2 2= Ax)
5 if 2’ #7 then return(z,2’) else return(?)

Abbildung 1.4: Reduktion des Kollisionsroblems auf das Problem, ein zweites Urbild zu
bestimmen

Beweis. Sei A ein Las-Vegas Algorithmus, der fir ein zufallig aus X gewéhltes x mit
Erfolgswahrscheinlichkeit e ein zweites Urbild x’ fir A liefert und andernfalls 7 aus-
gibt. Dann ist klar, dass der in Abbildung 1.4 dargestellte Las-Vegas Algorithmus mit
Wahrscheinlichkeit ¢ ein Kollisionspaar findet. O

Als néachstes zeigen wir, wie sich das Kollisionsproblem auf das Urbildproblem reduzieren
lasst.

Satz 2. Sei h: X — Y eine (n, m)-Hashfunktion mit n > 2m. Dann ist das Problem P3,
ein Kollisionspaar fir h zu bestimmen, auf das Problem P1, ein Urbild zu bestimmen,
reduzierbar.

Beweis. Sei A ein Invertierungsalgorithmus fir h, d.h. A berechnet fiir jeden Hashwert y
in W(h) = {h(z) | € X} ein Urbild z mit h(x) = y. Betrachte den in Abbildung 1.5
dargestellten Las-Vegas Algorithmus B.

Sei C = {h~'(y) | y € Y}. Dann hat B eine Erfolgswahrscheinlichkeit von

el fef=1_ 1 —1)=(n—m)/n
ZHXII'] =—> (ICl-1)=()/n =

ceC ceC

DN | —

1.2.2 Das Zufallsorakelmodell (ZOM)

Das ZOM dient dazu, den Aufwand verschiedener Angriffe auf eine Hashfunktion h: X —
Y nach oben abzuschatzen. Sind X und Y vorgegeben, so konnen wir eine Hashfunktion
h: X — Y dadurch ,konstruieren®“, dass wir fiir jedes z € X zufillig ein y € Y wahlen
und h(z) auf y setzen. Aquivalent hierzu ist, fiir h eine zufillige Funktion aus der
Klasse FI(X,Y) aller n™ Funktionen von X nach Y zu wéahlen. Dieses Verfahren ist auf
Grund des hohen Aufwands zwar nicht mehr praktikabel, wenn n = || X || eine bestimmte
Grofle iibersteigt. Es liefert uns aber ein theoretisches Modell fiir eine Hashfunktion
mit ,idealen® kryptografischen Eigenschaften. Offensichtlich besteht fiir den Gegner die
einzige Moglichkeit, Informationen tiber h zu erhalten, darin, sich fiir eine Reihe von
Texten die zugehorigen Hashwerte zu besorgen (was der Befragung eines funktionalen
Zufallsorakels entspricht).

I wahle zufallig r € X

2y = h(x)

3 2= Aly)

1 if z # 2’ then return(z,2’) else return(?)

Abbildung 1.5: Reduktion des Kollisionsproblems auf das Urbildproblem

6 1 Kryptografische Hashverfahren

Prozedur FindPreimage(h,v,q)

1 wahle eine beliebige Menge Xy = {zy,...,2,} CX
2 for each z; € Xy do

3 if h(z;) =y then return(z;)

1 return(?)

Abbildung 1.6: Bestimmung eines Urbilds fiir einen Hashwert

Eine Zufallsfunktion A eignet sich deshalb gut als kryptografische Hashfunktion, weil
der Hashwert h(z) fir einen Text x auch dann noch schwer vorhersagbar ist, wenn der
Gegner bereits die Hashwerte einer beliebigen Zahl von anderen Texten kennt.

Proposition 3. Sei Xo = {x1,..., 2z} eine beliebige Menge von k verschiedenen Texten
aus X und seien yy, ..., yx € Y. Dann gilt fir eine zufallig aus F(X,Y") gewdhlte Funktion
h und fir jedes Paar (z,y) € (X — Xo) X Y,

Prih(x) = y|h(z;) = y; furi=1,... k] =1/m.

Um eine obere Komplexitatsschranke fiir das Urbildproblem im ZOM zu erhalten, be-
trachten wir den in Abbildung 1.6 dargestellten Algorithmus. Hier (und bei den beiden
folgenden Algorithmen) gibt der Parameter ¢ die Anzahl der Hashwertberechnungen
(also die Anzahl der gestellten Orakelfragen an das Zufallsorakel h) an. Der Zeitaufwand
der Algorithmen ist dabei proportional zu q.

Satz 4. FINDPREIMAGE(h, y, q) gibt im ZOM mit Wahrscheinlichkeit e =1 —(1—1/m)4
ein Urbild von y aus (unabhdingig von der Wahl der Menge X).

Beweis. Sei y € Y fest und sei Xy = {z1,...,2,}. Firi = 1,...,¢ bezeichne E; das
Ereignis “h(z;) = y”. Nach Proposition 3 sind diese Ereignisse stochastisch unabhéngig
und ihre Wahrscheinlichkeit ist Pr[E;] = 1/m (i =1,...,q). Also folgt

PrlEAU...UE,]=1-Pr[E1N...NE]=1-(1-1/m).
0

Der in Abbildung 1.7 dargestellte Algorithmus liefert uns eine obere Schranke fiir die
Komplexitat des Problems, ein zweites Urbild fir A(z) zu bestimmen. Die Erfolgswahr-
scheinlichkeit ldsst sich vollkommen analog zum vorherigen Satz bestimmen.

Prozedur FindSecondPreimage(h,z,q)

Iy = h(z)

> wahle eine beliebige Menge X, = {zi,...,2,1} C X —{z}
3 for each z; € Xy do

4 if h(z;) =y then return(x;)

5 return(?)

Abbildung 1.7: Bestimmung eines 2. Urbilds fiir einen Hashwert

1.2 Schliissellose Hashfunktionen (MDCs) 7

Prozedur Collision(h,q)

1 wahle eine beliebige Menge X, = {z1,...,2,} CX
> for each z; € Xy do y; := h(x;)
5 if Ji#j:y; =y, then return(z;,z;) else return(?)

Abbildung 1.8: Bestimmung eines Kollisionspaares

Satz 5. FINDSECONDPREIMAGE(h, x,q) gibt im ZOM mit Wahrscheinlichkeit ¢ =
1—(1—1/m)?t ein zweites Urbild xo # x von y = h(x) aus.

Ist ¢ vergleichsweise klein, so ist bei beiden bisher betrachteten Angriffen € ~ ¢/m. Um
also auf eine Erfolgswahrscheinlichkeit von 1/2 zu kommen, ist ¢ ~ m/2 zu wéhlen.

Geht es lediglich darum, irgendein Kollisionspaar (x, z’) aufzuspiiren, so bietet sich ein
sogenannter Geburtstagsangriff an. Dieser ist deutlich zeiteffizienter zu realisieren.
Wie der Name schon andeutet, basiert dieser Angriff auf dem sogenannten Geburtstagspa-
radoxon, welches in seiner einfachsten Form folgendes besagt.

Geburtstagsparadoxon: Bereits in einer Schulklasse mit 23 Schulkindern haben mit einer
Wahrscheinlichkeit grofier 1/2 mindestens zwei Kinder am gleichen Tag Geburtstag
(dies erscheint zwar verbliiffend, wird aber durch die Praxis mehr als bestétigt).

Tatsédchlich zeigt der néchste Satz, dass bei g-maligem Ziehen (mit Zuriicklegen) aus
einer Urne mit m Kugeln mit einer Wahrscheinlichkeit von

I—(m—1)(m—-2)---(m—q+1)/m?!

eine Kugel zweimal gezogen wird. Fiir m = 365 und ¢ = 23 ergibt dies einen Wert von
ungefahr 0, 507.

Zur Kollisionsbestimmung verwenden wir den in Abbildung 1.8 dargestellten Algorithmus.
Bei einer naiven Implementierung wiirde zwar der Zeitaufwand fiir die Auswertung der if-
Bedingung quadratisch von ¢ abhéngen. Trigt man aber jeden Text x unter dem Suchwort
h(z) in eine (herkémmliche) Hashtabelle der Grofe ¢ ein, so wird der Zeitaufwand fiir
die Bearbeitung jedes einzelnen Textes z im wesentlichen durch die Berechnung von h(zx)
bestimmt.

Satz 6. COLLISION(h, q) gibt im ZOM mit Erfolgswahrscheinlichkeit

(m—1)(m—=2)---(m—q+1)

e=1-
ein Kollisionspaar (x,z') fir h aus.

Beweis. Sei Xo = {x1,...,2,}. Fir i =1,...,q bezeichne E; das Ereignis

“h(x;) & {h(xy,...,h(x;1)}.”

Dann beschreibt E1N...NE, das Ereignis “COLLISION(h, ¢) gibt 7 aus” und fiiri = 1,...,q
gilt
m—1i+1

PI"[EZ|E1 n... ﬂEi_l] =
m

8 1 Kryptografische Hashverfahren

Dies fithrt auf die Erfolgswahrscheinlichkeit

e = 1-Pr[EyN...NE,]
= 1- PI‘[EI]PI'[EQ | El] cre PI‘[Eq | E1 n...N Eq—l]

() (25 ()

Mit 1 —x ~ e * folgt

q—1 . g—1
! = —1y (a=1)
5:1—H(1—>z1—Hem:1_6; g=11=1—e’%zq2/2m_
i=1

i=1 m
Somit erhalten wir die Abschatzung

q = co/m

mit ¢, = v/2¢. Fiir e = 1/2 ergibt sich also ¢ & y/m. Besitzt also eine binire Hashfunktion
h: {0,1}" — {0,1}™ die Hashwertlinge m = 128 Bit, so miissen im ZOM ¢ ~ -2¢ Texte
gehasht werden, um mit einer Wahrscheinlichkeit von 1/2 eine Kollision zu finden. Um
einem Geburtstagsangriff widerstehen zu konnen, sollte eine Hashfunktion mindestens
eine Hashwertlange von 128 oder besser 160 Bit haben.

1.2.3 Iterierte Hashfunktionen

In diesem Abschnitt beschéftigen wir uns mit der Frage, wie sich aus einer kollisionsresis-
tenten Kompressionsfunktion

h: {0,1}" — {0,1}™
eine kollisionsresistente Hashfunktion
h:{0,1}* — {0,1}
konstruieren lédsst. Hierzu betrachten wir folgende kanonische Konstruktionsmethode.
Preprocessing: Transformiere z € {0, 1}* mittels einer Funktion

y: {0,1}" = J{o, 13"

r>1

zu einem String y(z) mit der Eigenschaft |y(z)| =; 0.

Processing: Sei IV € {0,1}"™ ein offentlich bekannter Initialisierungsvektor und sei
y(r) =y1-- -y, mit |y;| =t fir i = 1,...,r. Berechne eine Folge zo, ..., z. von Strings

z; € {0, 1} wie folgt:
v, i=0,
Zi =
h(Ziflyi), 1= 1,...,’]”.
Optionale Ausgabetransformation: Berechne den Hashwert h(z) = g(z.), wobei

g:{0,1}™ — {0,1}! eine offentlich bekannte Funktion ist. (Meist wird fiir g die
Identitét verwendet.)

	1 Kryptografische Hashverfahren
	1.1 Einführung
	1.2 Schlüssellose Hashfunktionen (MDCs)
	1.2.1 Vergleich von Sicherheitsanforderungen
	1.2.2 Das Zufallsorakelmodell (ZOM)
	1.2.3 Iterierte Hashfunktionen

