Vorlesungsskript
Graphalgorithmen

Sommersemester 2013

Prof. Dr. Johannes Kobler

Humboldt-Universitat zu Berlin
Lehrstuhl Komplexitat und Kryptografie

2. Juli 2013

Inhaltsverzeichnis

1 Grundlagen
1.1 Graphentheoretische Grundlagen
1.2 Datenstrukturen fir Graphen
1.3 Keller und Warteschlange
1.4 Durchsuchen von Graphen
1.5 Spannbaume und Spannwalder
1.6 Berechnung der Zusammenhangskomponenten
1.7 Breiten- und Tiefensuche

2 Berechnung kiirzester Wege
2.1 Der Dijkstra-Algorithmus
2.2 Der Bellman-Ford-Algorithmus
2.3 Der Bellman-Ford-Moore-Algorithmus
2.4 Der Floyd-Warshall-Algorithmus

3 Matchings

4 Fliisse in Netzwerken
4.1 Der Ford-Fulkerson-Algorithmus
4.2 Der Edmonds-Karp-Algorithmus
4.3 Der Algorithmus von Dinic
4.4 Kostenoptimale Flisse

5 Farben von Graphen
5.1 Férben von planaren Graphen
5.2 Farben von chordalen Graphen
5.3 Kantenfarbungen

15
15
18
19
21

23

27
27
31
33
39

ii

1 Grundlagen

1 Grundlagen

Der Begriff Algorithmus geht auf den persischen Gelehrten Muham-
med Al Chwarizmi (8./9. Jhd.) zuriick. Der élteste bekannte nicht-
triviale Algorithmus ist der nach Euklid benannte Algorithmus zur
Berechnung des grofiten gemeinsamen Teilers zweier natiirlicher Zah-
len (300 v. Chr.). Von einem Algorithmus wird erwartet, dass er
jede Problemeingabe nach endlich vielen Rechenschritten 16st (etwa
durch Produktion einer Ausgabe). Ein Algorithmus ist ein ,Verfah-
ren“ zur Losung eines Entscheidungs- oder Berechnungsproblems, das
sich prinzipiell auf einer Turingmaschine (TM) implementieren lasst
(Church-Turing-These).

Die Registermaschine

Bei Aussagen zur Laufzeit von Algorithmen beziehen wir uns auf die
Registermaschine (engl. random access machine; RAM). Dieses Modell
ist etwas flexibler als die Turingmaschine, da es den unmittelbaren
Lese- und Schreibzugriff (random access) auf eine beliebige Speicher-
einheit (Register) erlaubt. Als Speicher stehen beliebig viele Register
zur Verfligung, die jeweils eine beliebig grofe natiirliche Zahl speichern
konnen. Auf den Registerinhalten sind folgende arithmetische Ope-
rationen in einem Rechenschritt ausfithrbar: Addition, Subtraktion,
abgerundetes Halbieren und Verdoppeln. Unabhéngig davon geben
wir die Algorithmen in Pseudocode an. Das RAM-Modell benutzen
wir nur zur Komplexitdatsabschéitzung.

Die Laufzeit von RAM-Programmen wird wie bei TMs in der Lange

der Eingabe gemessen. Man beachte, dass bei arithmetischen Proble-
men (wie etwa Multiplikation, Division, Primzahltests, etc.) die Lange

einer Zahleingabe n durch die Anzahl [logn]| der fiir die Binarkodie-
rung von n benotigten Bits gemessen wird. Dagegen bestimmt bei
nicht-arithmetischen Problemen (z.B. Graphalgorithmen oder Sortier-
problemen) die Anzahl der gegebenen Zahlen, Knoten oder Kanten
die Lange der Eingabe.

Asymptotische Laufzeit und Landau-Notation

Definition 1. Seien f und g Funktionen von N nach R*. Wir schrei-
ben [(n) = O(g(n)), falls es Zahlen ng und ¢ gibt mit

Yn>ng: f(n) <c-g(n).

Die Bedeutung der Aussage f(n) = O(g(n)) ist, dass f ,nicht
wesentlich schneller” als g wéchst. Formal bezeichnet der Term
O(g(n)) die Klasse aller Funktionen f, die obige Bedingung erfiil-
len. Die Gleichung f(n) = O(g(n)) driickt also in Wahrheit eine
Element-Beziehung f € O(g(n)) aus. O-Terme konnen auch auf
der linken Seite vorkommen. In diesem Fall wird eine Inklusionsbe-
ziechung ausgedriickt. So steht n? + O(n) = O(n?) fir die Aussage
[+ f| f € Om)} C O(?).
Beispiel 2.

e 7log(n) + n® = O(n?) ist richtig.

e 7log(n)n® = O(n?) ist falsch.

e 27O = O(2") ist richtig.

e 2000 = O(2") ist falsch (siehe Ubungen,). q

Es gibt noch eine Reihe weiterer niitzlicher Groflenvergleiche von
Funktionen.

Definition 3. Wir schreiben f(n) = o(g(n)), falls es fir jedes ¢ > 0
eine Zahl ng gibt mit

Vn >ng: f(n) <c-g(n).

Damit wird ausgedrickt, dass f ,wesentlich langsamer® als g wdchst.
Auferdem schreiben wir

o f(n)=Q(g(n)) fir g(n) =0O(f(n)), d.-h. f wichst mindestens so
schnell wie g)
e f(n) = w(g(n)) fir g(n) = o(f(n)), d.h. f wdchst wesentlich

schneller als g, und

o [(n)=06(g(n)) fir f(n) = Og(n)) A f(n) = Qg(n)), d-h. f und

g wachsen ungefihr gleich schnell.

1.1 Graphentheoretische Grundlagen

Definition 4. Fin (ungerichteter) Graph ist ein Paar G =
(V, E), wobei

V' - eine endliche Menge von Knoten/Ecken und

E - die Menge der Kanten ist.
Hierbei gilt

EC (‘2/) :{{u,v}§V|u7év}.

Seiv € V ein Knoten.
a) Die Nachbarschaft von v ist Ng(v) = {u € V | {u,v} € E}.
b) Der Grad von v ist deg,(v) = || Ng(v)||.

¢) Der Minimalgrad von G ist §(G) = min,cy dego(v) und der
Maximalgrad von G ist A(G) = max,ey degq(v).

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach
N(v), deg(v), § usw.

Beispiel 5.

e Der vollstindige Graph (V,E) auf n Knoten, d.h. |V| = n
und E = (V) wird mit K, und der leere Graph (V,0) auf n

2/
Knoten wird mit E,, bezeichnet.

Ky Koy, Koo A Ku f@:@

e Der vollstindige bipartite Graph (A, B, E) auf a+b Knoten,
dh. ANB =10, ||A|| =a, |B]| =bund E = {{u,v} |u € Av €
B} wird mit K, bezeichnet.

Kii:, , K < KQ,Q.-X Kos: § Ks: %

e Der Pfad der Lange n — 1 wird mit P, bezeichnet.

Py: o—o P;: o—e— Py: o—e—eo—e FPy: o0

e Der Kreis der Lange n wird mit C,, bezeichnet.

Co: A O Cy: Q Cy: O

Definition 6. Sei G = (V, E) ein Graph.
a) Fine Knotenmenge U C 'V heifit unabhingig oder stabil, wenn

es keine Kante von G mit beiden Endpunkten in U gibt, d.h. es
gilt EN (Y) = 0. Die Stabilitéitszahl ist

a(G) =max{||U|| | U ist stabile Menge in G}.

b) Eine Knotenmenge U C V heifit Clique, wenn jede Kante mit

beiden Endpunkten in U in E ist, d.h. es gilt ([2]) C E. Dre
Cliquenzahl ist

w(G) = max{||U|| | U ist Clique in G}.

c) Eine Abbildung f: V — N heifst Farbung von G, wenn f(u) #
f(v) fir alle {u,v} € E gilt. G heifit k-firbbar, falls eine Fir-
bung f: V — {1,...,k} existiert. Die chromatische Zahl ist

X(G) = min{k € N | G ist k-farbbar}.
d) Ein Graph heifft bipartit, wenn x(G) < 2 ist.

1 Grundlagen

e) Ein Graph G' = (V' E') heifst Sub-/Teil-/Untergraph von G,
falls V! CV und E' C E ist. Ein Subgraph G' = (V', E') heifit
(durch V') induziert, falls E' = EN (‘;) ist. Hierfiir schreiben
wir auch H = G[V'].

f) Ein Weg ist eine Folge von (nicht notwendig verschiedenen) Kno-
ten vg,...,v; mit {v;, v} € E firi = 0,...,0 —1, der jede
Kante e € E hdchstens einmal durchlduft. Die Lange des Weges
ist die Anzahl der durchlaufenen Kanten, also . Im Fall { = 0
heifit der Weg trivial. Ein Weg vy, ..., v, heifst auch vo-ve-Weg.

g) Ein Graph G = (V| E) heifit zusammenhangend, falls es fir
alle Paare {u,v} € (g) einen u-v-Weg gibt. G heifst k-fach zu-
sammenhidngend, 1 < k < n, falls G nach Entfernen von belie-
bigen | < min{n—1,k—1} Knoten immer noch zusammenhdngend
15t.

h) Ein Zyklus ist ein u-v-Weg der Linge { > 2 mit u = v.

1) Ein Weg heif$t einfach oder Pfad, falls alle durchlaufenen Knoten
verschieden sind.

j) Ein Kreis ist ein Zyklus vg, v ..., v_1,v9 der Linge { > 3, fir
den vy, v1,...,v_1 paarweise verschieden sind.

k) Ein Graph G = (V, E) heifit kreisfrei, azyklisch oder Wald,
falls er keinen Kreis enthdlt.

) Ein Baum ist ein zusammenhdngender Wald.

m) Jeder Knoten uw € V vom Grad deg(u) < 1 heifit Blatt und die
ibrigen Knoten (vom Grad > 2) heiffen innere Knoten.

Es ist leicht zu sehen, dass die Relation
Z ={(u,v) € Vx V| esgibt in G einen u-v-Weg}

eine Aquivalenzrelation ist. Die durch die Aquivalenzklassen von Z in-
duzierten Teilgraphen heiflen die Zusammenhangskomponenten
(engl. connected components) von G.

1.1 Graphentheoretische Grundlagen

Definition 7. Fin gerichteter Graph oder Digraph ist ein Paar
G = (V,E), wobei
V' - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.
Hierbei gilt
EQVXV:{(U,U)\U,UEV},

wobei E auch Schlingen (u,w) enthalten kann. Sei v € V' ein Knoten.

a) Die Nachfolgermenge von v ist Nt(v) ={u e V| (v,u) € E}.

b) Die Vorgdngermenge von v ist N~ (v) = {u €V | (u,v) € E}.

¢) Die Nachbarmenge von v ist N(v) = N*(v) U N~ (v).

d) Der Ausgangsgrad von v ist deg® (v) = ||[N*(v)|| und der Ein-
gangsgrad von v ist deg” (v) = ||[N~(v)||. Der Grad von v ist
deg(v) = deg™ (v) + deg™ (v).

e) Ein (gerichteter) wo-ve-Weg ist eine Folge von Knoten
Vo, - -,V mit (v, vi41) € E fiiri =0,...,0 —1, der jede Kante
e € E héchstens einmal durchlduft.

f) Ein (gerichteter) Zyklus ist ein gerichteter u-v-Weg der Linge
£>1 mitu=mwv.

g) Ein gerichteter Weg heifit einfach oder (gerichteter) Pfad,
falls alle durchlaufenen Knoten verschieden sind.

h) Ein (gerichteter) Kreis in G ist ein gerichteter Zyklus
Vo, V1 ..., V1,09 der Lange £ > 1, fir den vg,v,...,v_1 paar-
weise verschieden sind.

i) G heifst kreisfrei oder azyklisch, wenn es in G keinen gerichte-
ten Kreis gibt.

j) G heifit schwach zusammenhéngend, wenn es in G fir jedes
Knotenpaar u # v € V' einen u-v-Pfad oder einen v-u-Pfad gibt.

k) G heifit stark zusammenhingend, wenn es in G fir jedes
Knotenpaar u # v € V' sowohl einen u-v-Pfad als auch einen
v-u-Pfad gibt.

1 Grundlagen

1.2 Datenstrukturen fiir Graphen

Sei G = (V, E) ein Graph bzw. Digraph und sei V = {vy,...,v,}.
Dann ist die (n x n)-Matrix A = (a;;) mit den Eintrégen

17 i, Vi € E 1, i, Vi) € E
aij = {U UJ} bZW. aij = (U U])
0, sonst 0, sonst

die Adjazenzmatrix von G. Fiir ungerichtete Graphen ist die Ad-
jazenzmatrix symmetrisch mit a; =0 firv=1,...,n.

Bei der Adjazenzlisten-Darstellung wird fiir jeden Knoten v; eine
Liste mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet
man entweder nur die Liste der Nachfolger oder zusétzlich eine weitere
fiir die Vorgéanger. Falls die Anzahl der Knoten gleichbleibt, organi-
siert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit
Index i verweist auf die Adjazenzliste von Knoten v;. Falls sich die
Anzahl der Knoten dynamisch dndert, so werden die Adjazenzlisten
typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 8.

Betrachte den gerichteten Graphen G = (V, E) D @
mit V. = {1,2,3,4} und E = {(2,3),

(2,4), (3,1), (3,4), (4,4)}. Dieser hat folgende ONe

Adjazenzmatriz- und Adjazenzlisten-Darstellung:

12 3 4 —
110 0 0 0 1]

200 0 11 2| 3] 4>{4]]
3100 1 3| {1 [F>a]]
410 0 01 4—__,

Folgende Tabelle gibt den Aufwand der wichtigsten elementaren Opera-
tionen auf Graphen in Abhéngigkeit von der benutzten Datenstruktur

1.2 Datenstrukturen fiir Graphen

an. Hierbei nehmen wir an, dass sich die Knotenmenge V' nicht andert.

Adjazenzmatrix Adjazenzlisten
einfach ‘ clever | einfach ‘ clever
Speicherbedarf | O(n?) | O(n?) | O(n+m) | O(n+m)
Initialisieren | O(n?) | O(1) O(n) O(1)
Kante einfiigen || O(1) | O(1) o(1) O(1)
Kante entfernen || O(1) | O(1) O(n) O(1)
Test auf Kante || O(1) | O(1) O(n) O(n)

Bemerkung 9.

e Der Aufwand fir die Initialisierung des leeren Graphen in der Ad-
jazenzmatrizdarstellung lasst sich auf O(1) dricken, indem man
mathilfe eines zusdtzlichen Feldes B die Giiltigkeit der Matrixein-
trige verwaltet (siehe Ubungen,).

o Die Verbesserung beim Lischen einer Kante in der Adjazenzlisten-
darstellung erhdlt man, indem man die Adjazenzlisten doppelt ver-
kettet und im ungerichteten Fall die beiden Vorkommen jeder Kan-
te in den Adjazenzlisten der beiden Endknoten gegenseitig verlinkt
(siehe die Prozeduren Insert(Di)Edge und Remove(Di)Edge
auf den ndchsten Seiten).

e Bei der Adjazenzlistendarstellung kénnen die Knoten auch in ei-
ner doppelt verketteten Liste organisiert werden. In diesem Fall
kénnen dann auch Knoten in konstanter Zeit hinzugefiigt und in
Zeit O(n) wieder entfernt werden (unter Beibehaltung der wibrigen
Speicher- und Laufzeitschranken).

Es folgen die Prozeduren fiir die in obiger Tabelle aufgefiihrten elemen-
taren Graphoperationen, falls G als ein Feld G[1,...,n] von (Zeigern
auf) doppelt verkettete Adjazenzlisten reprasentiert wird. Wir behan-
deln zuerst den Fall eines Digraphen.

1 Grundlagen

Prozedur Init

1

2

for i:=1 to n do
Gli] =1

Prozedur InsertDiEdge(u,v)

1.3 Keller und Warteschlange

Falls G ungerichtet ist, konnen diese Operationen wie folgt implemen-
tiert werden (die Prozeduren Init und Edge bleiben unverandert).

Prozedur InsertEdge(u,v)

erzeuge Listeneintrag e

source(e) :==u

target(e) :=v

prev(e) := L

next(e) := GJu]

if Glu] # L then
prev(Glu]) :==e

Glu] :==e

return e

Prozedur RemoveDiEdge(e)

1
2
3
A
5

6

if next(e) # L then
prev(next(e)) := prev(e)
if prev(e) # L then
next(prev(e)) := next(e)
else
G[source(e)] := next(e)

erzeuge Listeneintrage e, ¢

opposite(e) := ¢
opposite(e’) :==e
next(e) := Glu]
next(e’) := G[v]
if Glu] # L then

prev(Glu]) :=e
if Glv] # L then
prev(G[v]) :=¢

Glu] :=e; Gv] :=¢
source(e) := target(e’) :==u
target(e) := source(¢) :=v

prev(e) := L
prev(e’) := L
return e

Prozedur RemoveEdge(e)

Prozedur Edge(u,v)

1

2

RemoveDiEdge(e)
RemoveDiEdge(opposite(e))

S T SO OUR N

6

e := Glul
while e # | do
if target(e) =v then
return 1
e := next(e)
return 0

1.3 Keller und Warteschlange

Fiir das Durchsuchen eines Graphen ist es vorteilhaft, die bereits
besuchten (aber noch nicht abgearbeiteten) Knoten in einer Menge B
zu speichern. Damit die Suche effizient ist, sollte die Datenstruktur
fiir B folgende Operationen effizient implementieren.

1 Grundlagen

Init(B): Initialisiert B als leere Menge.
Empty(B): Testet B auf Leerheit.
Insert(B,u): Fugtuin B ein.
): Gibt ein Element aus B zurtck.
)

Gibt ebenfalls Element(B) zuriick und
entfernt es aus B.

Element(B):
Remove(B):

Andere Operationen wie z.B. Remove(B, u) werden nicht benotigt.

Die gewiinschten Operationen lassen sich leicht durch einen Keller
(auch Stapel genannt) (engl. stack) oder eine Warteschlange (engl.
queue) implementieren. Falls maximal n Datensétze gespeichert wer-
den miissen, kann ein Feld zur Speicherung der Elemente benutzt
werden. Andernfalls konnen sie auch in einer einfach verketteten Liste
gespeichert werden.

Stack S — Last-In-First-Out

Top(S): Gibt das oberste Element von S zurtick.
Push(S,z): Fiigt als oberstes Element zum Keller hinzu.

Pop(S): Gibt das oberste Element von S zuriick und ent-
fernt es.

Queue () — Last-In-Last-Out

Enqueue(Q,z): Fiigt am Ende der Schlange hinzu.
Head(®): Gibt das erste Element von) zuriick.

Dequeue(®): Gibt das erste Element von @ zuriick und ent-
fernt es.

Die Kelleroperationen lassen sich wie folgt auf einem Feld S[1...n]
implementieren. Die Variable size(S) enthilt die Anzahl der im
Keller gespeicherten Elemente.

1.3 Keller und Warteschlange

Prozedur StackInit(S)

1 size(S):=0

Prozedur StackEmpty(S)

| return(size(S) =0)

Prozedur Top(S)
if size(S) >0 then
return(S[size(95)])
else
return(L)

=W N

Prozedur Push(S,x)

1 if size(S) < n then

2 size(S):=size(S)+1
3 Slsize(S)] ==z
4

else
return(L)

Prozedur Pop(S)

1 if size(S) >0 then

2 size(S) :=size(S) -1
3 return(S[size(S) + 1))
4

else
return(L)

Es folgen die Warteschlangenoperationen fiir die Speicherung in einem
Feld Q[1...n]. Die Elemente werden der Reihe nach am Ende der
Schlange @ (zyklisch) eingefiigt und am Anfang entnommen. Die
Variable head(Q) enthélt den Index des ersten Elements der Schlan-
ge und tail(Q) den Index des hinter dem letzten Element von
befindlichen Eintrags.

1 Grundlagen

Prozedur QueueInit(Q)

I head(Q) :=1
2 tail(@) :=1
3 size(Q):=0

1.4 Durchsuchen von Graphen

\ head(Q) := head(Q) + 1
9 return(z)

Prozedur QueueEmpty(Q)

I return(size(Q) =0)

Prozedur Head(Q)

i if QueueEmpty(Q) then
2 return(.l)

3 else

4 return@[head(Q)]

Prozedur Enqueue(Q,z)

if size(Q)) =n then

2 return(l)

3 size(Q):=size(Q)+1
o Qtail(@)] ==

5 if tail(Q) =n then

6 tail(Q) =1

7 else

8 tail(Q) := tail(Q) + 1

Prozedur Dequeue(Q)

1 if QueueEmpty(Q) then
2 return(l)

3 size(Q):=size(Q) -1
1z := Q[head(Q)]

5 if head(Q)) =n then

5 head(Q) :=1

Satz 10. Samtliche Operationen fiir einen Keller S und eine Warte-
schlange @ sind in konstanter Zeit O(1) ausfihrbar.

Bemerkung 11. Mit Hilfe von einfach verketteten Listen sind Keller
und Warteschlangen auch fiir eine unbeschrinkte Anzahl von Daten-
satzen mit denselben Laufzeitbeschrinkungen implementierbar.

Die fiir das Durchsuchen von Graphen benotigte Datenstruktur B
lasst sich nun mittels Keller bzw. Schlange wie folgt realisieren.

’ Operation H Keller S ‘ Schlange @ ‘
Init(B) StackInit(S) | QueueInit(Q)
Empty(B) StackEmpty(S) | QueueEmpty(Q)
Insert(B,u) || Push(S,u) Enqueue(Q, u)
Element(B) || Top(S) Head(Q)
Remove(DB) Pop(5) Dequeue(Q)

1.4 Durchsuchen von Graphen

Wir geben nun fiir die Suche in einem Graphen bzw. Digraphen
G = (V, E) einen Algorithmus GraphSearch mit folgenden Eigen-
schaften an:
GraphSearch benutzt eine Prozedur Explore, um alle Knoten
und Kanten von GG zu besuchen.
Explore(w) findet Pfade zu allen von w aus erreichbaren Knoten.
Hierzu speichert Explore(w) fiir jeden tiber eine Kante {u, v} bzw.
(u,v) neu entdeckten Knoten v # w den Knoten u in parent(v).

Wir nennen die bei der Entdeckung eines neuen Knotens v durch-
laufenen Kanten (parent(v),v) parent-Kanten.

1 Grundlagen

Im Folgenden verwenden wir die Schreibweise e = uv sowohl fir
gerichtete als auch fiir ungerichtete Kanten e = (u,v) bzw. e = {u, v}.

Algorithmus GraphSearch(V, E)

1 for all veV, e E do
2 vis(v) := false
3
!

parent(v) := L
vis(e) := false
5 for all weV do
6 if vis(w) = false then Explore(w)

Prozedur Explore(w)

. vis(w) := true

> Init(B)

5 Insert(B,w)

1+ while —Empty(B) do

5 u := Element(B)

6 if 3 e=wuv e EF:vis(e) = false then
7 vis(e) := true

8 if vis(v) = false then
9 vis(v) := true

10 parent(v) :==u

11 Insert(B,v)
12 else

13 Remove(B)

Um die néchste von v ausgehende Kante uv, die noch nicht besucht
wurde, in konstanter Zeit bestimmen zu kénnen, kann man bei der
Adjazenzlistendarstellung fiir jeden Knoten u neben dem Zeiger auf
die erste Kante in der Adjazenzliste von u einen zweiten Zeiger be-
reithalten, der auf die aktuelle Kante in der Liste verweist.

1.4 Durchsuchen von Graphen

Suchwalder

Definition 12. Sei G = (V, E) ein Digraph.
e Fin Knoten w € V heifit Wurzel von G, falls alle Knoten v € V
von w aus erreichbar sind (d.h. es gibt einen gerichteten w-v-Weg
in G).
o G heifit gerichteter Wald, wenn G kreisfrei ist und jeder Knoten
v € V Eingangsgrad deg™ (v) < 1 hat.
e Ein Knoten u € V vom Ausgangsgrad deg™ (u) = 0 heifit Blatt.

e Fin gerichteter Wald, der eine Wurzel hat, heifit gerichteter
Baum.

In einem gerichteten Baum liegen die Kantenrichtungen durch die
Wahl der Wurzel bereits eindeutig fest. Daher kann bei bekannter
Wurzel auf die Angabe der Kantenrichtungen auch verzichtet werden.
Man spricht dann von einem Wurzelbaum.

Betrachte den durch SearchGraph(V, E) erzeugten Digraphen W =
(V, Eparent) mit

Eparent = {(pa rent(v),v) | v € V und parent(v) # L}.

Da parent(v) vor v markiert wird, ist klar, dass W kreisfrei ist. Zu-
dem hat jeder Knoten v hochstens einen Vorgénger parent(v). Dies
zeigt, dass W tatséachlich ein gerichteter Wald ist. W heif3t Such-
wald von G und die Kanten (parent(v),v) von W werden auch als
Baumkanten bezeichnet.

W héangt zum einen davon ab, wie die Datenstruktur B implementiert
ist (z.B. als Keller oder als Warteschlange). Zum anderen hiangt W
aber auch von der Reihenfolge der Knoten in den Adjazenzlisten ab.

Klassifikation der Kanten eines (Di-)Graphen

Die Kanten eines Graphen G = (V, E') werden durch den Suchwald
W = (V, Eparent) in vier Klassen eingeteilt. Dabei erhalt jede Kante

1 Grundlagen

die Richtung, in der sie bei ihrem ersten Besuch durchlaufen wird.

Neben den Baumkanten (parent(v),v) € Eparent gibt es noch
Riickwirts-, Vorwéarts- und Querkanten. Riickwértskanten (u,v)
verbinden einen Knoten u mit einem Knoten v, der auf dem parent-
Pfad P(u) von wu liegt. Liegt dagegen u auf P(v), so wird (u,v)
als Vorwiértskante bezeichnet. Alle tibrigen Kanten heiflen Quer-
kanten. Diese verbinden zwei Knoten, von denen keiner auf dem
parent-Pfad des anderen liegt.

Beispiel 13. Bei Aufruf mit dem Start- 0 e
knoten a konnte die Prozedur Explore a .@
den nebenstehendem Graphen beispiels- e Q

weise wie folgt durchsuchen.

’ Menge B ‘Knoten ‘ Kante ‘ Typ‘ ’ B ‘Knoten ‘ Kante ‘ Typ‘

{a} a (a,b) | B {d,e, f} d (d,e) | V
{a,b} a |(a,f)| B ||{de ft| d |(df)| Q
{a,b, [} a - - {d,e, [} d - -
{b, [} b (b,d) | B {e,f} e (e,d) | R
{b> da f} b - - {67 f} € - -
{d, } d |(dc)| B {f} fo1(fe)] Q
{e.d, f} ¢ |(ce)| B {f} f - -
{c,d,e, [} c - - 0

Dabei entsteht nebenstehender Such-
wald.

Die Klassifikation der Kanten eines Digraphen G erfolgt analog, wobei
die Richtungen jedoch bereits durch G vorgegeben sind (dabei werden
Schlingen der Kategorie der Vorwéartskanten zugeordnet). Tatséchlich

1.4 Durchsuchen von Graphen

durchlauft Explore bei einem Graphen die Knoten und Kanten in der
gleichen Reihenfolge wie bei dem Digraphen, der fiir jede ungerichtete
Kante {u,v} die beiden gerichteten Kanten (u,v) und (v, u) enthilt.

Beispiel 14. Bei Aufruf mit dem
Startknoten a konnte die Prozedur
Explore beispielsweise nebenstehen-
den Suchwald generieren.

] Menge B ‘Knoten ‘ Kante\ ‘ ’ B ‘Knoten ‘ Kante\ ‘
{a} a |{a,e} | Bl {ede fi| ¢ [{ef}]Q
{a,e} a {a, f}|B||{c, d,e, f} c - -
{CL, e7f} a - - {d7€7f} d {d7 b} -
{6, f} e {eva} - {d,e,f} d {dv C} -
{e, f} e {e,c} |B|| {d,e, [} d {d,e} | R
{c,e, f} c {c,b} |B|| {d,e, f} d - -
{ba Cae?f} b {b? C} - {€>f} e {e>d} -
{b,c,e, [} b {b,d} |B {e, f} e - -
Wedeft b | - |- Uy | 1 |ha-
{Ca d7€>f} ¢ {Ca d} Vv {f} f {fa C} -
{Ca d767f} ¢ {Cv 6} - {f} f " "

Satz 15. Fulls der (un)gerichtete Graph G in Adjazenzlisten-
Darstellung gegeben ist, durchliuft GraphSearch alle Knoten und
Kanten von G in Zeit O(n + m).

Beweis. Offensichtlich wird jeder Knoten u genau einmal zu B hin-
zugefiigt. Dies geschieht zu dem Zeitpunkt, wenn u zum ersten Mal
,besucht* und das Feld visited fiir u auf true gesetzt wird. Aufer-
dem werden in Zeile 6 von Explore alle von u ausgehenden Kanten
durchlaufen, bevor u wieder aus B entfernt wird. Folglich werden
tatsédchlich alle Knoten und Kanten von G' besucht.

1 Grundlagen

Wir bestimmen nun die Laufzeit des Algorithmus GraphSearch. In-
nerhalb von Explore wird die while-Schleife fiir jeden Knoten u genau
(deg(u) + 1)-mal bzw. (deg™ (u) + 1)-mal durchlaufen:

e einmal fiir jeden Nachbarn v von v und

e dann noch einmal, um u aus B zu entfernen.

Insgesamt sind das n + 2m im ungerichteten bzw. n + m Durchlaufe
im gerichteten Fall. Bei Verwendung von Adjazenzlisten kann die
nachste von einem Knoten v aus noch nicht besuchte Kante e in
konstanter Zeit ermittelt werden, falls man fiir jeden Knoten v einen
Zeiger auf e in der Adjazenzliste von v vorsieht. Die Gesamtlaufzeit
des Algorithmus GraphSearch betragt somit O(n + m). [

Als néchstes zeigen wir, dass Explore(w) zu allen von w aus erreich-
baren Knoten v einen (gerichteten) w-v-Pfad liefert. Dieser lasst sich
mittels parent wie folgt zuriickverfolgen. Sei

v, 1 =0,
U; =

parent(u;—1), ¢>0und u;—y # L
und sei ¢ = min{i > 0 | w;y1y = L}. Dann ist v, = w und
p = (ug,...,up) ein w-v-Pfad. Wir nennen P den parent-Pfad
von v und bezeichnen ihn mit P(v).

Satz 16. Falls beim Aufruf von Explore alle Knoten und Kanten als
unbesucht markiert sind, berechnet Explore(w) zu allen erreichbaren
Knoten v einen (gerichteten) w-v-Pfad P(v).

Beweis. Wir zeigen zuerst, dass Explore(w) alle von w aus erreich-
baren Knoten besucht. Hierzu fithren wir Induktion tiber die Lange ¢
eines kiirzesten w-v-Weges.

¢ = 0: In diesem Fall ist v = w und w wird in Zeile 1 besucht.

10

1.5 Spannbaume und Spannwalder

¢~ ¢+ 1: Sei v ein Knoten mit Abstand [+ 1 von w. Dann hat ein
Nachbarknoten v € N(v) den Abstand ¢ von w. Folglich wird u
nach IV besucht. Da u erst dann aus B entfernt wird, wenn alle
seine Nachbarn (bzw. Nachfolger) besucht wurden, wird auch v
besucht.

Es bleibt zu zeigen, dass parent einen Pfad P(v) von w zu jedem
besuchten Knoten v liefert. Hierzu fiithren wir Induktion tber die
Anzahl k£ der vor v besuchten Knoten.

k =0: In diesem Fall ist v = w. Da parent(w) = L ist, liefert
parent einen w-v-Pfad (der Lénge 0).

k—1~>k: Sei u = parent(v). Da u vor v besucht wird, liefert
parent nach IV einen w-u-Pfad P(u). Wegen u = parent(v)
ist u der Entdecker von v und daher mit v durch eine Kante
verbunden. Somit liefert parent auch fir v einen w-v-Pfad P(H

1.5 Spannbaume und Spannwilder

In diesem Abschnitt zeigen wir, dass der Algorithmus GraphSearch
fiir jede Zusammenhangskomponente eines (ungerichteten) Graphen
G einen Spannbaum berechnet.

Definition 17. Sei G = (V, E) ein Graph und H = (U, F') ein Un-
tergraph.
e H heifit spannend, falls U =V ist.

e H ist ein spannender Baum (oder Spannbaum) von G, falls
U=V und H ein Baum ist.

e H ist ein spannender Wald (oder Spannwald) von G, falls
U=V und H ein Wald ist.

Es ist leicht zu sehen, dass fiir G genau dann ein Spannbaum existiert,
wenn GG zusammenhangend ist. Allgemeiner gilt, dass die Spannbéu-
me fiir die Zusammenhangskomponenten von G einen Spannwald

1 Grundlagen

bilden. Dieser ist bzgl. der Subgraph-Relation maximal, da er in kei-
nem grofleren Spannwald enthalten ist. Ignorieren wir die Richtungen
der Kanten im Suchwald W, so ist der resultierende Wald W’ ein
maximaler Spannwald fir G.
Da Explore(w) alle von w aus erreichbaren Knoten findet, spannt
jeder Baum des (ungerichteten) Suchwaldes W’ = (V, Ej, ent) mit

’ {{parent(v),v} | v € V und parent(v) # L}

parent —
eine Zusammenhangskomponente von G.

Korollar 18. Sei G ein (ungerichteter) Graph.

e Der Algorithmus GraphSearch(V, E) berechnet in Linearzeit
einen Spannwald W', dessen Bdume die Zusammenhangskom-
ponenten von G spannen.

e Fulls G zusammenhdngend ist, ist W' ein Spannbaum fir G.

1.6 Berechnung der
Zusammenhangskomponenten

Folgende Variante von GraphSearch bestimmt die Zusammenhangs-
komponenten eines (ungerichteten) Eingabegraphen G.

Algorithmus CC(V, E)

1 k=0

2> for all veV, ec E do
3 cc(v):=0

4 cc(e) :==0

5 for all weV do

6 if cc(w) =0 then

7 k:=k+1
ComputeCC(k,w)

oo

11

1.6 Berechnung der Zusammenhangskomponenten

Prozedur ComputeCC(k,w)

cc(w) ==k

Init(B)

Insert(B,w)

while —Empty(B) do
5 u := Element(B)

6 if 3 e={u,v} € E:cc(e) =0 then
7 cc(e) =k

8 if cc(v) =0 then
9 cc(v) =k

10 Insert(B,v)

11 else

12 Remove(B)

= w [\ =

Korollar 19. Der Algorithmus CC(V, E) bestimmdt fiir einen Graphen
G = (V, E) in Linearzeit O(n + m) samtliche Zusammenhangskom-
ponenten Gy = (Vi,, Ey,) von G, wobei Vi, = {v € V | cc(v) = k} und
Ey={e € E|cc(e) =k} ist.

1.7 Breiten- und Tiefensuche

Wie wir gesehen haben, findet Explore(w) sowohl in Graphen als
auch in Digraphen alle von w aus erreichbaren Knoten. Als néchstes
zeigen wir, dass Explore(w) zu allen von w aus erreichbaren Knoten
sogar einen kiirzesten Weg findet, falls wir die Datenstruktur B als
Warteschlange () implementieren.

Die Benutzung einer Warteschlange () zur Speicherung der bereits
entdeckten, aber noch nicht abgearbeiteten Knoten bewirkt, dass
zuerst alle Nachbarknoten wuq, ..., u; des aktuellen Knotens u besucht
werden, bevor ein anderer Knoten aktueller Knoten wird. Da die
Suche also zuerst in die Breite geht, spricht man von einer Breiten-
suche (kurz BF'S, engl. breadth first search). Den hierbei berechneten

1 Grundlagen

Suchwald bezeichnen wir als Breitensuchwald.

Bei Benutzung eines Kellers wird dagegen u; aktueller Knoten, bevor
die iibrigen Nachbarknoten von u besucht werden. Daher fithrt die
Benutzung eines Kellers zu einer Tiefensuche (kurz DFS, engl. depth
first search). Der berechnete Suchwald heifit dann Tiefensuchwald.

Die Breitensuche eignet sich eher fiir Distanzprobleme wie z.B. das
Finden

e kiirzester Wege in Graphen und Digraphen,

e lingster Wege in Baumen (siehe Ubungen) oder

e kiirzester Wege in Distanzgraphen (Dijkstra-Algorithmus).
Dagegen liefert die Tiefensuche interessante Strukturinformationen
wie z.B.

e die zweifachen Zusammenhangskomponenten in Graphen,

e die starken Zusammenhangskomponenten in Digraphen oder

e cine topologische Sortierung bei azyklischen Digraphen (s. Ubun-

gen).

Wir betrachten zuerst den Breitensuchalgorithmus.

Algorithmus BFS(V, E)

1 for all veV, e F do
2 vis(v) := false

3 parent(v) :== L

4 vis(e) := false

5 for all weV do

6 if vis(w) = false then BFS-Explore(w)

Prozedur BFS-Explore(w)

1 vis(w) := true
> QueueInit(Q)
3 Enqueue(Q,w)

1.7 Breiten- und Tiefensuche

. while —QueueEmpty(Q) do

5 u := Head(Q)

6 if 3 e=wuv e E:vis(e) = false then
7 vis(e) := true

8 if vis(v) = false then

9 vis(v) := true

10 parent(v) :=u

11 Enqueue(Q,v)

12 else

13 Dequeue(Q)

Beispiel 20. BFS-Explore generiert
bei Aufruf mit dem Startknoten a ne-
benstehenden Breitensuchwald.

bes. bes. bes. bes.
Schlange @) | Knoten | Kante | Typ | | @ Knoten | Kante | Typ
—a« a (a,b) | B ||c,e,d c (c,e) | Q
a,b a (a,f)| B ||¢ced c (e,)| Q
a,b, f a - - c,e,d c - -
b, f b (b,c) | B ||ed e (e,c) | Q
b, f,c b - - e,d e (e,d) | Q
f,c f (f,e) | B ||ed e (e,f) | R
f,ce f - - e, d e - -
c e c (¢c,d)| B ||d d - -

<

Satz 21. Sei G ein Graph oder Digraph und sei w Wurzel des von
BFS-Explore(w) berechneten Suchbaumes T. Dann liefert parent
fiir jeden Knoten v in T einen kiirzesten w-v-Weg P(v).

1 Grundlagen 1.7 Breiten- und Tiefensuche

Beweis. Wir fithren Induktion tiber die kiirzeste Weglange ¢ von w 7 vis(e) := true

nach v in G. 8 if vis(v) = false then
9 vis(v) := true

10 parent(v) :=u

11 Push(S,v)

12 else

13 Pop(S)

¢ = 0: Dann ist v = w und parent liefert einen Weg der Léange 0.

{~ f+1: Sei v ein Knoten, der den Abstand ¢ + 1 von w in G hat.
Dann existiert ein Knoten u € N~ (v) (bzw. u € N(v)) mit Ab-
stand £ von w in G hat. Nach IV liefert also parent einen w-u-Weg
P(u) der Lénge £. Da u erst aus @) entfernt wird, nachdem alle
Nachfolger von u entdeckt sind, wird v von u oder einem bereits
zuvor in @) eingefiigten Knoten z entdeckt. Da @) als Schlange or-
ganisiert ist, ist P(u) nicht kiirzer als P(z). Daher folgt in beiden
Féllen, dass P(v) die Lange ¢ + 1 hat.

Beispiel 22. Bei Aufruf mit dem
Startknoten a generiert die Prozedur
| DFS-Explore nebenstehenden Tiefen-
suchwald.

Wir werden spéater noch eine Modifikation der Breitensuche kennen ler-
nen, die kiirzeste Wege in Graphen mit nichtnegativen Kantenlangen

findet (Algorithmus von Dijkstra). bes. | bes. bes. | bes.
Als néchstes betrachten wir den Tiefensuchalgorithmus. Keller S | Knoten | Kante | Typ IS Knoten | Kante | Typ
Algorithmus DFS(V, E) a+ a (a,b) | B ||a,b,c c (¢, /)| B
I for all veV, ec€ E do a,b b (b,c) | B ||a,bc,f f (f.e)| Q
2 vis(v) := false a,b,c ¢ (c.,d) | B ||abe,f| f - -
5 parent(v):= L a,b,c,d d - - || abc ¢ - -

4 vis(e) := false a,b,c c (c,e) | B || a,b b - -
5 for all weV do a,b,c,e e (e,e) | R |]a a (a, f)| V
6 if vis(w) = false then DFS-Explore(w) a,b,c,e e (e,d) | Q ||a a - -

a,b,c,e e - -

Prozedur DFS-Explore(w)

vis(w) := true

1 . .
. StackInit(s) Die Tiefensuche auf nebenstehendem
|

Graphen fithrt auf folgende Klassifika-

Push(S
(S, w) tion der Kanten (wobei wir annehmen,

while —StackEmpty(S) do
5 u :=Top(S)
6 if 3 e=wuv e E:vis(e) = false then

13

1 Grundlagen

dass die Nachbarknoten in den Ad-
jazenzlisten alphabetisch angeordnet
sind):

] Keller S ‘Kante\TypH Keller S ‘Kante‘Typ‘

a {a,b} | B ||a,b,c,d,e, f|{f,c}| R
a,b {b,a}| - a,bye,d,e, f1{f,e}| -
a,b {b,c} | B ||a,bcde f| - -
a,b,c {¢,b} | - a,b,c,d, e - -
a,b,c {¢,d}| B ||a,b,c,d - -
a,b,c,d {d,c}| - a,b,c {c,e} | -
a,b,c,d {d,e} | B ||a,b,c {e, f}| -
a,b,c,d,e | {e,c}| R ||a,bc - -
a,b,c,d,e | {e,d}| - a,b - -
a,b,c,d,e |{e,f}| B ||a {a, f}| -
a,b,c,d,e, f1{f,a}| R ||a - -

<

Die Tiefensuche lédsst sich auch rekursiv implementieren. Dies hat den
Vorteil, dass kein (expliziter) Keller benotigt wird.

Prozedur DFS-Explore-rec(w)

1 vis(w) := true

> while 3 e=wv € E:vis(e) = false do
3 vis(e) := true

4 if vis(v) = false then

5 parent(v) :=w

6 DFS-Explore-rec(v)

Da DFS-Explore-rec(w) zu parent(w) zurtickspringt, kann auch
das Feld parent(w) als Keller fungieren. Daher lésst sich die Prozedur

14

1.7 Breiten- und Tiefensuche

auch nicht-rekursiv ohne zuséatzlichen Keller implementieren, indem
die Riickspriinge explizit innerhalb einer Schleife ausgefiithrt werden
(siche Ubungen).

Bei der Tiefensuche lasst sich der Typ jeder Kante algorithmisch leicht
bestimmen, wenn wir noch folgende Zusatzinformationen speichern.

e Fin neu entdeckter Knoten wird bei seinem ersten Besuch grau
geféarbt. Sobald er abgearbeitet ist, also bei seinem letzten Besuch,
wird er schwarz. Zu Beginn sind alle Knoten weif3.

e Zudem merken wir uns die Reihenfolge, in der die Knoten entdeckt
werden, in einem Feld r.

Dann léasst sich der Typ jeder Kante e = (u,v) bei ihrem ersten
Besuch wie folgt bestimmen:

Baumkante: farbe(v) = weiB,
Vorwirtskante: farbe(v) # weifl und r(v) > r(u),
Riickwiartskante: farbe(v) = grau und r(v) < r(u),
Querkante: farbe(v) = schwarz und r(v) < r(u).

Die folgende Variante von DFS berechnet diese Informationen.

Algorithmus DFS(V, E)

1 r:=0

> for all veV, e€ E do

3 farbe(v) := weill

] vis(e) := false

5 for all weV do

6 if farbe(u) =weiB then DFS-Explore(u)

Prozedur DFS-Explore(u)

farbe(u) := grau

r=r+1

r(u):=r

while 3 e = (u,v) € F: vis(e) = false do

N

2 Berechnung kiirzester Wege

5 vis(e) := true

6 if farbe(v) =weiB then
7 DFS-Explore(v)

s farbe(u) := schwarz

Beispiel 23. Bei Aufruf mit dem
Startknoten a werden die Knoten im
nebenstehenden Digraphen wvon der
Prozedur DFS-Explore wie folgt ge-
farbt (die Knoten sind mit ihren r-
Werten markiert).

]Keller \Farbe ‘Kante ‘ Typ‘ ’ Keller |Farbe \Kante ‘ Typ‘
a a: grau (a,b) | B || a,b,c e |e:schwarz - -
a,b b: grau (b,e) | B ||a,bc |- (¢,f)| B
a,b,c |c:grau (c,d) | B ||a,b,c, f|f:grau (f,e) | Q
a,b,c,d|d: grau - - a,b,c, f| f:schwarz| - -
d: schwarz a,b,c |c:schwarz - -
a,b,c |- (c,e) | B |]a,b b: schwarz - -
a,b,c, e|e: grau (e,c) | R |]a - (a, f)| V
a,b,c e|- (e,d) | Q ||la a:schwarz | - -

q

Bei der Tiefensuche in ungerichteten Graphen kénnen weder Quer-
noch Vorwértskanten auftreten. Da v beim ersten Besuch einer sol-
chen Kante (u,v) nicht weif§ ist und alle grauen Knoten auf dem
parent-Pfad P(u) liegen, misste v namlich bereits schwarz sein. Dies
ist aber nicht moglich, da die Kante {u,v} in v-u-Richtung noch
gar nicht durchlaufen wurde. Folglich sind alle Kanten, die nicht zu
einem neuen Knoten fithren, Riickwartskanten. Das Fehlen von Quer-
und Vorwértskanten spielt bei manchen Anwendungen eine wichtige
Rolle, etwa bei der Zerlegung eines Graphen G in seine zweifachen
Zusammenhangskomponenten.

15

2 Berechnung kiirzester Wege

In vielen Anwendungen tritt das Problem auf, einen kiirzesten Weg
von einem Startknoten s zu einem Zielknoten ¢ in einem Digraphen
zu finden, dessen Kanten (u,v) vorgegebene Lingen [(u,v) haben.

Die Lénge eines Weges W = (vy, ..., vy) ist
-1
Z(W) = Z I(Ui, 'Ui+1>.
i=0

Die kiirzeste Weglange von s nach ¢t wird als Distanz dist(s,t) zwi-
schen s und ¢ bezeichnet,

dist(s,t) = min{l(W) | W ist ein s-t-Weg}.

Falls kein s-t-Weg existiert, setzen wir dist(s,t) = co. Man beachte,
dass die Distanz auch dann nicht beliebig klein werden kann, wenn
Kreise mit negativer Lange existieren, da ein Weg jede Kante hochs-
tens einmal durchlaufen kann. In vielen Féllen haben jedoch alle
Kanten in E eine nichtnegative Lange [(u,v) > 0. In diesem Fall
nennen wir D = (V| E|l) einen Distanzgraphen.

2.1 Der Dijkstra-Algorithmus

Der Dijkstra-Algorithmus findet einen kurzesten Weg P(u) von s
zu allen erreichbaren Knoten u (single-source shortest-path problem,).
Hierzu fithrt der Algorithmus eine modifizierte Breitensuche aus. Dabei
werden die in Bearbeitung befindlichen Knoten in einer Prioritats-
warteschlange U verwaltet. Genauer werden alle Knoten u, zu denen

2 Berechnung kiirzester Wege

bereits ein s-u-Weg P(u) bekannt ist, zusammen mit der Weglinge ¢
solange in U gespeichert bis P(u) optimal ist. Auf der Datenstruktur
U sollten folgende Operationen (moéglichst effizient) ausfithrbar sein.

Init(U): Initialisiert U als leere Menge.

Update(U, u, g): Erniedrigt den Wert von u auf g (nur wenn der
aktuelle Wert grofer als g ist). Ist w noch nicht
in U enthalten, wird v mit dem Wert g zu U
hinzugefiigt.

RemoveMin(U): Gibt ein Element aus U mit dem kleinsten Wert
zuriick und entfernt es aus U (ist U leer, wird der
Wert L (nil) zuriickgegeben).

Voraussetzung fir die Korrektheit des Algorithmus ist, dass alle Kan-
ten eine nichtnegative Lange haben. Wéhrend der Suche werden be-
stimmte Kanten e = (u, v) daraufhin getestet, ob g(u) 4 €(u,v) < g(v)
ist. Da in diesem Fall die Kante e auf eine Herabsetzung von ¢(v)
auf den Wert g(u) + ¢(u,v) ,drangt*, wird diese Wertzuweisung als
Relaxation von e bezeichnet. Welche Kanten (u,v) auf Relaxation
getestet werden, wird beim Dijkstra-Algorithmus durch eine einfache
Greedystrategie bestimmt: Wéahle v unter allen noch nicht fertigen
Knoten mit minimalem g-Wert und teste alle Kanten (u,v), fir die v
nicht schon fertig ist.

Algorithmus Dijkstra(V, E, [s)

1 for all veV do

2 g(v) == 00

3 parent(v) :== L

| done(v) := false

5 g(s) =0

6 Init(P)

7 Update(P,s,0)

s while u :=RemoveMin(P) # L do
9 done(u) := true

16

2.1 Der Dijkstra-Algorithmus

10 for all v € N*(u) do

11 if done(v) = false A g(u) +Il(u,v) < g(v) then
12 g(v) == g(u) + l(u,v)

13 Update(P, v, g(v))

14 parent(v) :==u

Der Algorithmus speichert die aktuelle Lange des Pfades P(u) in g(u).
Knoten auflerhalb des aktuellen Breitensuchbaums 7" haben den Wert
g(u) = 0o. In jedem Schleifendurchlauf wird in Zeile 8 ein Knoten u
mit minimalem g-Wert aus U entfernt und als fertig markiert. An-
schlieend werden alle von u wegfithrenden Kanten e = (u,v) auf
Relaxation getestet sowie g, U und T gegebenenfalls aktualisiert.
Beispiel 24. Betrachte den nebenste-

henden Distanzgraphen G. Bei Aus- 1 6 e 8

3
fiihrung des Dijkstra-Algorithmus mit @ 3 1{ /6 @
dem Startknoten a werden die folgen- 7 3
F—

den kiirzesten Wege berechnet.
‘entfernt ‘ besuchte Kanten ‘Update—Op. ‘

’ Inhalt von P

(a,0) (a,0) |(a,b),(a,e) (b,1),(e,7)

(b,1), (e, 7) (b,1) |(b,c) (c,4)

(c,4), (e, 7) (c;4) |(c,d), (e e),(c, f)|(d,12),(f,10)
(e,7),(f,10),(d,12) | (e,7) | (e, f) (f,8)
(f,8),(d,12) (f,8) |(f,0),(f,d) d,11)

(d,11) (d,11) | — — -

Als néchstes beweisen wir die Korrektheit des Dijkstra-Algorithmus.

Satz 25. Sei D = (V, E,l) ein Distanzgraph und sei s € V.. Dann
berechnet Dijkstra(V, E,l,s) im Feld parent fir alle von s aus
erreichbaren Knoten t € V' einen kiirzesten s-t-Weg P(t).

Beweis. Wir zeigen zuerst, dass alle von s aus erreichbaren Knoten
t € V zu U hinzugefiigt werden. Dies folgt aus der Tatsache, dass s zu

2 Berechnung kiirzester Wege

U hinzugefiigt wird, und spétestens dann, wenn ein Knoten u in Zeile
8 aus U entfernt wird, siémtliche Nachfolger von u zu U hinzugefiigt
werden.

Zudem ist klar, dass g(u) > dist(s,u) ist, da P(u) im Fall g(u) < oo
ein s-u-Weg der Lénge g(u) ist. Es bleibt also nur noch zu zeigen,
dass P(u) fir jeden aus U entfernten Knoten u ein kiirzester s-u-Weg
ist, d.h. es gilt g(u) < dist(s,u).

Hierzu zeigen wir induktiv tiber die Anzahl k der vor u aus U entfern-
ten Knoten, dass g(u) < dist(s,u) ist.

k = 0: In diesem Fall ist w = s und P(u) hat die Lange g(u) = 0.

k—1~k: Sei W =wy,...,v, = u ein kiirzester s-u-Weg in G und
sei v; der Knoten mit maximalem Index ¢ auf diesem Weg, der
vor u aus P entfernt wird.

Nach IV gilt dann

g(v;) = dist(s,v;). (2.1)
Zudem ist
9(it1) < g(vi) + 1(vi, viga). (2.2)
Da u im Fall v # v;,1 vor v;;1 aus P entfernt wird, ist
9(u) < g(visr). (2.3)
Daher folgt
(2.3) (2.2)
g(u) < g(vip) < g(vi) + 1(vi, vig1)
= dist(s,v;) + 1(vi, Vig1)
= dist(s,vi41) < dist(s,u). [

Um die Laufzeit des Dijkstra-Algorithmus abzuschétzen, iiberlegen
wir uns zuerst, wie oft die einzelnen Operationen auf der Datenstruk-
tur P ausgefiihrt werden. Sei n = ||V|| die Anzahl der Knoten und
m = || F|| die Anzahl der Kanten des Eingabegraphen.

17

2.1 Der Dijkstra-Algorithmus

e Die Init-Operation wird nur einmal ausgefiihrt.

e Da die while-Schleife fiir jeden von s aus erreichbaren Knoten
genau einmal durchlaufen wird, wird die RemoveMin-Operation
hochstens min{n, m}-mal ausgefiihrt.

e Wie die Prozedur BFS-Explore besucht der Dijkstra-Algorithmus
jede Kante maximal einmal. Daher wird die Update-Operation
hochstens m-mal ausgefiihrt.

Beobachtung 26. Bezeichne Init(n), RemoveMin(n) und Update(n)
den Aufwand zum Ausfiihren der Operationen Init, RemoveMin und
Update fir den Fuall, dass P nicht mehr als n Elemente aufzunehmen
hat. Dann ist die Laufzeit des Dijkstra-Algorithmus durch

O(n +m + Init(n) + min{n, m} - RemoveMin(n) +m - Update(n))
beschrankt.

Die Laufzeit hangt also wesentlich davon ab, wie wir die Datenstruktur
U implementieren. Falls alle Kanten die gleiche Lange haben, wachsen
die Distanzwerte der Knoten monoton in der Reihenfolge ihres (ers-
ten) Besuchs. D.h. wir kénnen U als Warteschlange implementieren.
Dies fithrt wie bei der Prozedur BFS-Explore auf eine Laufzeit von
O(n+m).

Fiir den allgemeinen Fall, dass die Kanten unterschiedliche Langen
haben, betrachten wir folgende drei Mdoglichkeiten.

1. Da die Felder g und done bereits alle zur Verwaltung von U be-

notigten Informationen enthalten, kann man auf die (explizite)
Implementierung von U auch verzichten. In diesem Fall kostet die
RemoveMin-Operation allerdings Zeit O(n), was auf eine Gesamt-
laufzeit von O(n?) fiihrt.
Dies ist asymptotisch optimal, wenn G relativ dicht ist, also
m = Q(n?) Kanten enthélt. Ist G dagegen relativ diinn, d.h.
m = o(n?), so empfiehlt es sich, U als Priorititswarteschlange zu
implementieren.

2 Berechnung kiirzester Wege

2. Es ist naheliegend, U in Form eines Heaps H zu implementieren.
In diesem Fall lasst sich die Operation RemoveMin in Zeit O(logn)
implementieren. Da die Prozedur Update einen linearen Zeitauf-
wand erfordert, ist es effizienter, sie durch eine Insert-Operation
zu simulieren. Dies fiihrt zwar dazu, dass derselbe Knoten evtl.
mehrmals mit unterschiedlichen Werten in H gespeichert wird.
Die Korrektheit bleibt aber dennoch erhalten, wenn wir nur die
erste Entnahme eines Knotens aus H beachten und die tibrigen
ignorieren.

Da fir jede Kante hochstens ein Knoten in H eingefiigt
wird, erreicht H maximal die Grofie n? und daher sind die
Heap-Operationen Insert und RemoveMin immer noch in Zeit
O(logn?) = O(logn) ausfithrbar. Insgesamt erhalten wir somit
eine Laufzeit von O(n + mlogn), da sowohl Insert als auch
RemoveMin maximal m-mal ausgefithrt werden.

Die Laufzeit von O(n + mlogn) bei Benutzung eines Heaps ist
zwar fiir diinne Graphen sehr gut, aber fiir dichte Graphen schlech-
ter als die implizite Implementierung von U mithilfe der Felder g
und done.

3. Als weitere Moglichkeit kann U auch in Form eines so genannten
Fibonacci-Heaps F implementiert werden. Dieser ben6tigt nur eine
konstante amortisierte Laufzeit O(1) fiir die Update-Operation
und O(logn) fiir die RemoveMin-Operation. Insgesamt fihrt dies
auf eine Laufzeit von O(m + nlogn). Allerdings sind Fibonacci-
Heaps erst bei sehr grofien Graphen mit mittlerer Dichte schneller.

H implizit Heap Fibonacci-Heap ‘
Init O(1) O(1) O(1)
Update o(1) O(logn) o(1)
RemoveMin O(n) O(logn) O(logn)

Gesamtlaufzeit H On?) O(n+mlogn) O(m+nlogn) ‘

2.2 Der Bellman-Ford-Algorithmus

Die Tabelle fasst die Laufzeiten des Dijkstra-Algorithmus fiir die
verschiedenen Moglichkeiten zur Implementation der Datenstruktur
U zusammen. Eine offene Frage ist, ob es auch einen Algorithmus
mit linearer Laufzeit O(n + m) zur Bestimmung kiirzester Wege in
Distanzgraphen gibt.

2.2 Der Bellman-Ford-Algorithmus

In manchen Anwendungen treten negative Kantengewichte auf. Geben
die Kantengewichte beispielsweise die mit einer Kante verbundenen
Kosten wider, so kann ein Gewinn durch negative Kosten modelliert
werden. Auf diese Weise lassen sich auch langste Wege in Distanz-
graphen berechnen, indem man alle Kantenlangen [(u,v) mit —1
multipliziert und in dem resultierenden Graphen einen kiirzesten Weg
bestimmt.

Die Komplexitét des Problems hangt wesentlich davon ab, ob man (ge-
richtete) Kreise mit negativer Lange zuldsst oder nicht. Falls negative
Kreise zugelassen werden, ist das Problem NP-hart. Andernfalls exis-
tieren effiziente Algorithmen wie z.B. der Bellman-Ford-Algorithmus
(BF-Algorithmus) oder der Bellman-Ford-Moore-Algorithmus (BFM-
Algorithmus). Diese Algorithmen 16sen das single-source shortest-path
Problem mit einer Laufzeit von O(nm) im schlechtesten Fall.

Der Ford-Algorithmus arbeitet ganz &ahnlich wie der Dijkstra-
Algorithmus, betrachtet aber jede Kante nicht wie dieser nur einmal,
sondern eventuell mehrmals. In seiner einfachsten Form sucht der
Algorithmus wiederholt eine Kante e = (u,v) mit

g(u) +£(u,v) < g(v)

und aktualisiert den Wert von g(v) auf g(u)+£¢(u,v) (Relaxation). Die
Laufzeit hangt dann wesentlich davon ab, in welcher Reihenfolge die
Kanten auf Relaxation getestet werden. Im besten Fall lasst sich eine
lineare Laufzeit erreichen (z.B. wenn der zugrunde liegende Digraph

2 Berechnung kiirzester Wege

azyklisch ist). Bei der Bellman-Ford-Variante wird in O(nm) Schrit-
ten ein kiirzester Weg von s zu allen erreichbaren Knoten gefunden
(sofern keine negativen Kreise existieren).

Wir zeigen induktiv tiber die Anzahl k der Kanten eines kiirzesten
s-u-Weges, dass g(u) = dist(s,u) gilt, falls ¢ fiir alle Kanten (u,v) die
Dreiecksungleichung g(v) < g(u) + ¢(u,v) erfiillt (also keine Relaxa-
tionen mehr maoglich sind).

Im Fall £ = 0 ist ndmlich v = s und somit g(s) = 0 = dist(s, s).
Im Fall £ > 0 sei v ein Knoten, dessen kiirzester s-v-Weg W aus k
Kanten besteht. Dann gilt nach IV fiir den Vorgénger u von v auf W
g(u) = dist(s,u). Aufgrund der Dreiecksungleichung folgt dann

g(v) < g(u) + l(u,v) = dist(s,u) + L(u,v) = dist(s,v).

Aus dem Beweis folgt zudem, dass nach Relaxation aller Kanten eines
kiirzesten s-v-Weges W (in der Reihenfolge, in der die Kanten in W
durchlaufen werden) den Wert dist(s,v) hat. Dies gilt auch fir den
Fall, dass zwischendurch noch weitere Kantenrelaxationen stattfinden.

Der Bellman-Ford-Algorithmus priift in n — 1 Iterationen jeweils alle
Kanten auf Relaxation. Sind in der n-ten Runde noch weitere Relaxa-
tionen moglich, muss ein negativer Kreis existieren. Die Laufzeit ist
offensichtlich O(nm) und die Korrektheit folgt leicht durch Induktion
iiber die minimale Anzahl von Kanten eines kiirzesten s-t-Weges.
Zudem wird bei jeder Relaxation einer Kante (u,v) der Vorginger u
im Feld parent(v) vermerkt, so dass sich ein kiirzester Weg von s zu
allen erreichbaren Knoten (bzw. ein negativer Kreis) rekonstruieren
lasst.

Algorithmus BF(V, E,[,s)
1 for all veV do

2 g(v) := 00

3 parent(v) := L

1 g(s) =0

5 for 1: =1 ton—-1 do

19

2.3 Der Bellman-Ford-Moore-Algorithmus

6 for al

. ent
0 for all (u,v) € FE do

1 if g(u)+l(u,v) < g(v) then

12 error(es gibt einen negativen Kreis)

2.3 Der Bellman-Ford-Moore-Algorithmus

Die BFM-Variante priift in jeder Runde nur diejenigen Kanten (u, v)
auf Relaxation, fiir die g(u) in der vorigen Runde erniedrigt wurde.
Dies fithrt auf eine deutliche Verbesserung der durchschnittlichen
Laufzeit. Wurde nédmlich g(u) in der (i — 1)-ten Runde nicht ver-
ringert, dann steht in der i-ten Runde sicher keine Relaxation der
Kante (u,v) an. Es liegt nahe, die in der nichsten Runde zu priifenden
Knoten w in einer Schlange () zu speichern. Dabei kann mit v auch die
aktuelle Rundenzahl 7 in () gespeichert werden. In Runde 0 wird der
Startknoten s in () eingefiigt. Kénnen in Runde n immer noch Kanten
relaxiert werden, so bricht der Algorithmus mit der Fehlermeldung
ab, dass negative Kreise existieren. Da die BFM-Variante die Kanten
in derselben Reihenfolge relaxiert wie der BF-Algorithmus, fithrt sie
auf dasselbe Ergebnis.

Algorithmus BFM(V, E, [, s)

1 for all veV do

2 g(v) := o0, parent(v):= 1, inQueue(v):= false
3

|

g(s) :==0, Init(Q), Enqueue(Q, (0,s)), inQueue(s) := true
while (i,u) := Dequeue(Q) # L and i <n do

5 inQueue(u) := false

6 for all v € N*(u) do

if g(u)+l(u,v) < g(v) then

=~

2 Berechnung kiirzester Wege

8 g(v) == g(u) + l(u,v)
9 parent(v) :==u
10 if inQueue(v) = false then
11 Enqueue(Q, (i + 1,v))
12 inQueue(v) := true
13 if +=n then
1 error(es gibt einen negativen Kreis)

Fiir kreisfreie Graphen lasst sich eine lineare Laufzeit O(n + m) er-
zielen, indem die Nachfolger in Zeile 6 in topologischer Sortierung
gewahlt werden. Dies bewirkt, dass jeder Knoten hochstens einmal in
die Schlange eingefiigt wird.

Beispiel 27. Betrachte untenstehenden kantenbewerteten Digraphen
mit dem Startknoten a.

Die folgende Tabelle zeigt jeweils den Inhalt der Schlange @, bevor
der BFM-Algorithmus das ndachste Paar (i,u) von Q entfernt. Dabei
enthdlt jeder Eintrag (i,u,v,g) neben der Rundenzahl i und dem Kno-
ten u auch noch den parent-Knoten v und den g-Wert von u, obwohl
diese nicht in () gespeichert werden.

2.3 Der Bellman-Ford-Moore-Algorithmus

ﬂ (1,b,a,2)
(1797a75) (17g7b7_1>

(2’d’g’7)
(2,¢,9,0) (2,¢,9,0)
(3, f,d,9) (3, f,d,9)
(3,¢,d,9)| (3,¢,d,9)
(3,d,e,4)| (3,d,e,4) |(3,d,e,4)

(4, f,d,6)|

Die berechneten Entfernungen mit den zugehorigen parent-Pfaden
sind in folgendem Suchbaum widergegeben:

Da dieser einen negativen Kreis enthdlt, der vom Startknoten aus
erreichbar ist, lassen sich die Entfernungen zu allen Knoten, die von
diesem Kreis aus erreichbar sind, beliebig verkleinern.

2 Berechnung kiirzester Wege

f
(0, a,L,0)
f (1,b,a,4)
(1,9,a,5)|(1,9,b,1)
(2,d,9,6)
(2,e,9,2)(2,e,9,2)
(3,1.d,8)|(3, f.d,8)
(3,¢,e,5)
‘ (3,¢,€,5)
(4,b,¢,3)
(5797 b7 O)
(67 d7g75)
(6,e,9.1)|(2,e,9,1)
(7. f,d,T)|(7, [.d,7)
(7,c,e,4)

Da nun der Knoten f mit der Rundenzahl i =n =7 aus der Schlange
entnommen wird, bricht der Algorithmus an dieser Stelle mit der
Meldung ab, dass negative Kreise existieren. Ein solcher Kreis (im
Beispiel: g, e, ¢, b, g) lasst sich bei Bedarf anhand der parent-Funktion
aufspiiren, indem wir den parent-Weg zu f zurickverfolgen: f, d, g,
b, c,e,q.

21

2.4 Der Floyd-Warshall-Algorithmus

2.4 Der Floyd-Warshall-Algorithmus

Der Algorithmus von Floyd-Warshall berechnet die Distanzen zwi-
schen allen Knoten unter der Voraussetzung, dass keine negativen
Kreise existieren.

Algorithmus Floyd-Warshall(V, E,l)

I for 1:=1 to n do
2 for j:=1 to n do

3 if (i,7) € E then dy(i,7) :=1(i,7) else dy(i,j) := o0
1 for k:=1 to n do

5 for 1:=1 to n do

6 for j:=1 to n do

7 di(i, 5) = min {dx_1(i, 5), de_1(i, k) + dy_1 (k. j) }

Hierzu speichert der Algorithmus in di (7, j) die Lénge eines kiirzesten
Weges von i nach j, der aufler 7 und 7 nur Knoten < k besucht. Die
Laufzeit ist offenbar O(n?). Da die d,-Werte nur von den dj,_;-Werten
abhiingen, ist der Speicherplatzbedarf O(n?). Die Existenz negativer
Kreise lasst sich daran erkennen, dass mindestens ein Diagonalelement
dx(7,7) einen negativen Wert erhélt.

Beispiel 28. Betrachte folgenden kantenbewerteten Digraphen:

2 Berechnung kiirzester Wege 2.4 Der Floyd-Warshall-Algorithmus

do|1 2 3 4 5 d|1 2 3 4 5 d|1 2 3 4 5 ds|1 2 3 4 5
1]Joo 2 oo 00 o0 l1]oo 2 o0 o0 o0 1]Joo 2 o0 o0 —1 1 oo 2 o0 o0 —1
2|00 00 00 00 —3 2 oo 00 00 o0 —3 2 oo 0o 0o o0 —3 2 o0 00 00 00 —3
3100 —2 00 00 0 3100 —2 00 00 3 oo =2 00 00 =D 3 |loo —2 00 00 —H
4100 0 4 o0 o0 410 00 4 00 4 1o 00 4 o0 410 2 4 o0 —1
5110 0o 9 1 o 5110 12 9 1 5110 12 3 1 9 5110 1 3 1 =2
d|1 2 3 4 5 d;|1 2 3 4 5 d,|1 2 3 4 5 ds|1 2 3 4 5
1]oo 2 o0 o0 —1 1o 2 o0 o0 —1 1]Joo 2 o0 o0 —1 119 0 2 0 =3
2 loo o0 co o0 —3 2 oo 00 00 o0 —3 2 oo 0o 00 00 —3 217 -2 0 -2 -5
3100 —2 00 00 —d 3|00 —2 00 00 =5 3 |oo —2 00 00 —H 3156 —4 -2 -4-7
410 o0 4 00 o0 410 2 4 oo —1 4 1looc 2 4 oo —1 419 0 2 0 -3
5110 12 9 1 9 5110 7 9 1 4 5110 1 3 1 -2 518 -1 1 -1 -4
dg| 1 2 3 4 5 d; [1 2 3 4 5 Wegen ds(5,5) = —2 liegt der Knoten 5 auf einem negativen Kreis.
I']oo 2 o0 o0 —1 119 2 4 0 -1 Folglich ist die Weglange nicht fiir alle Knotenpaare nach unten be-
2 o0 00 00 00 —3 217 0 2 -2 -3 schrankt. 4
3|00 —2 00 00 —H 3156 -2 0 —4 -5
4100 2 4 oo -1 419 2 4 0 —1 Ohne groflen Mehraufwand lassen sich auch die kiirzesten Wege selbst
5110 3 5 1 O 5|10 3 5 1 O berechnen, indem man in einem Feld parent[:, j] den Vorginger von
) . , j auf einem kiirzesten Weg von ¢ nach j speichert (falls ein Weg
Als ndchstes betrachten wir folgenden Digraphen: von ¢ nach j existiert). Eine elegantere Moglichkeit besteht jedoch
darin, die Kantenfunktion [in eine dquivalente Distanzfunktion I’ zu
transformieren, die keine negativen Werte annimmt, aber dieselben
kiirzesten Wege in G wie [hat. Da wir fiir diese Transformation nur
alle kiirzesten Wege von einem festen Knoten s zu allen anderen
Knoten berechnen miissen, ist sie in Zeit O(nm) durchfiithrbar.
do|1 2 3 4 5 d|1 2 3 4 5
1 oo 2 o0 o0 o0 1 [oo 2 o0 00 o0
2 oo 00 00 00 —3 2 oo 00 00 00 —3
3100 —2 00 00 o0 300 —2 0o 00 o0
4 oo 00 4 o0 410 00 4 00
5110 0o 3 1 o0 5110 12 3 1 o0

22

3 Matchings

3 Matchings

Definition 29. Sei G = (V, E) ein Graph.
e Zwei Kanten e, e’ € E heiflen unabhéngig, falls e Ne' = () ist.

e Fine Kantenmenge M C FE heifst Matching in G, falls alle
Kanten in M paarweise unabhdngig sind.

FEin Knoten v € V' heifst gebunden, falls v Endpunkt einer Mat-
chingkante (also v € UM) ist und sonst frei.

M heifit perfekt, falls alle Knoten von G gebunden sind (also
V=UM ist).

Die Matchingzahl von G ist

w(G) = max{||M|| | M ist ein Matching in G}

Ein Matching M heifft maximal, falls |M|| = u(G) ist. M heifst
geséattigt, falls es in keinem gréfseren Matching enthalten ist.

Offensichtlich ist M C E genau dann ein Matching, wenn ||J M| =
2|| M| ist. Das Ziel besteht nun darin, ein maximales Matching M in
G zu finden.

Beispiel 30. Ein gesdattigtes Matching muss nicht maximal sein:

M = {{v,w}} ist gesdttigt, da es sich nicht erweitern lisst. M ist
jedoch kein mazimales Matching, da M’ = {{v,z}, {u,w}} grofier ist.

23

Die Greedy-Methode, ausgehend von M = () solange Kanten zu M
hinzuzufigen, bis sich M nicht mehr zu einem gréfferen Matching
erweitern ldsst, funktioniert also nicht.

Es gibt jedoch eine Methode, mit der sich jedes Matching, das nicht
maximal ist, vergroffern lésst.

Definition 31. Sei G = (V, E) ein Graph und sei M ein Matching

in G.

1. Ein Pfad P = (uy,...
1. k—1 gilt:

,ur) heifft alternierend, falls fir i =

e; = {ui, U1} € M & ejp1 = {1, uire} € B\ M.

2. Ein Kreis C = (uy,...,u;) heifit alternierend, falls der Pfad
P = (uy,...,ux_1) alternierend ist und zusdtzlich gilt:

€1€M<:>6k_1EE\M.

3. Ein alternierender Pfad P heifit vergrofernd, falls weder e,
noch e,_1 zu M gehdren.

Satz 32. Ein Matching M in G ist genau dann maximal, wenn es
keinen vergréfsernden Pfad in G bzgl. M gibt.

Beweis. Ist P ein vergroBernder Pfad, so liefert M’ = MAP ein
Matching der Grole | M'|| = ||M|| + 1 in G. Hierbei identifizieren
wir P mit der Menge {¢; |i=1,...,k — 1} der auf P = (uy,...,ug)
liegenden Kanten e; = {u;, w1}

Ist dagegen M nicht maximal und M’ ein gréferes Matching, so
betrachten wir die Kantenmenge M AM’'. Da jeder Knoten in dem
Graphen G’ = (V, MAM') hochstens den Grad 2 hat, lasst sich die
Kantenmenge M AM’ in disjunkte Kreise und Pfade partitionieren.
Da diese Kreise und Pfade alternierend sind, und M’ grofer als M
ist, muss mindestens einer dieser Pfade zunehmend sein. |

3 Matchings

Damit haben wir das Problem, ein maximales Matching in einem Gra-
phen G zu finden, auf das Problem reduziert, zu einem Matching M
in G einen vergroflernden Pfad zu finden, sofern ein solcher existiert.

Der Algorithmus von Edmonds bestimmt einen vergrofernden Pfad
wie folgt. Jeder Knoten v hat einen von 3 Zustanden, welcher ent-
weder mit gerade (falls v frei ist) oder unerreicht (falls v gebunden
ist) initialisiert wird. Dann wird ausgehend von den freien Knoten
als Wurzeln ein Suchwald W aufgebaut, indem fiir einen beliebigen
geraden Knoten v eine Kante zu einem Knoten v besucht wird, der
entweder ebenfalls gerade oder unerreicht ist.

Ist v" unerreicht, so wird der aktuelle Suchwald W um die beiden Kan-
ten (v,v’) und (v', M (v')) erweitert, wobei M (v’) der Matchingpartner
von v’ ist (d.h. {v/, M (v")} € M). Zudem wechselt der Zustand von
v" von unerreicht zu ungerade und der von M (v') von unerreicht zu
gerade. Damit wird erreicht, dass jeder Knoten in W genau dann
gerade (bzw. ungerade) ist, wenn der Abstand zu seiner Wurzel in W
gerade (bzw. ungerade) ist.

Ist v' dagegen gerade, so gibt es zwei Unterfille. Sind die beiden
Wurzeln von v und v’ verschieden, so wurde ein vergrofSernder Pfad
gefunden, der von der Wurzel von v zu v iiber v' zur Wurzel von v’
verlauft.

Andernfalls befindet sich v" im gleichen Suchbaum wie v, d.h. es gibt
einen gemeinsamen Vorfahren v”, so dass durch Verbinden der beiden
Pfade von v” nach v und von v” nach v" zusammen mit der Kante
{v,v'} ein Kreis C entsteht. Da v und v’ beide gerade sind, hat C' eine
ungerade Linge. Zudem muss auch v” gerade sein, da jeder ungerade
Knoten in W genau ein Kind hat. Der Pfad von der Wurzel von v”
zu v” zusammen mit dem Kreis C' wird als Blume mit der Bliite C'
bezeichnet. Der Knoten v” heifit Basis der Bliite C.

Zwar fiihrt das Auffinden einer Blite C nicht direkt zu einem ver-
groBlernden Pfad, sie bedeutet aber dennoch einen Fortschritt, da
sich der Graph wie folgt vereinfachen lésst. Wir kontrahieren C'

24

zu einem einzelnen geraden Knoten b, der die Nachbarschaften aller
Knoten in C zu Knoten auflerhalb von C' erbt, und setzen die Suche
nach einem vergrofiernden Pfad fort. Bezeichnen wir den aus G durch
Kontraktion von C' entstandenen Graphen mit G¢ und das aus M
durch Kontraktion von C entstandene Matching in G¢ mit Mg, so
stellt folgendes Lemma die Korrektheit dieser Vorgehensweise sicher.

Lemma 33. In G ldsst sich ausgehend von M genau dann ein vergri-
fernder Pfad finden, wenn dies in G¢ ausgehend von Mg mdglich ist.
Zudem kann jeder vergroflernde Pfad in G¢ zu einem vergréffernden
Pfad in G expandiert werden.

Beweis. Sei P ein vergroflernder Pfad in G¢. Falls P nicht den Kno-
ten b besucht, zu dem die Bliite C' kontrahiert wurde, so ist P auch
ein vergroBernder Pfad in G. Besucht P dagegen den Knoten b, so
betrachten wir die beiden Nachbarn a und ¢ von b in P (0.B.d.A sei
{a,b} in M¢). Dann existiert in M eine Kante zwischen a und der
Basis v” von C. Zudem gibt es in C' mindestens einen Nachbarn v,
von c. Im Fall v” = v, gentigt es, b durch v” zu ersetzen. Andernfalls
ersetzen wir b durch denjenigen der beiden Pfade P, und P, von
v” nach v, auf C, der v, Uber eine Matchingkante erreicht. Falls b
Endknoten von P ist, also nur einen Nachbarn ¢ in P hat, ersetzen
wir b durch den gleichen Pfad.

Der Beweis der Riickrichtung ist komplizierter, da viele verschiedene
Félle moglich sind. Alternativ ergibt sich die Riickrichtung aber auch
als Folgerung aus der Korrektheit des Edmonds-Algorithmus (siehe
Satz 36). [|

Die folgende Prozedur VergréBernderPfad berechnet einen vergro-
Bernden Pfad fiir G, falls das aktuelle Matching M nicht maximal
ist. Da M nicht mehr als n/2 Kanten enthalten kann, wird diese
Prozedur hochstens (n/2 + 1)-mal aufgerufen. In den Ubungen wird
gezeigt, dass die Prozedur die Laufzeit O(m) hat, woraus sich eine
Gesamtlaufzeit von O(nm) fir den Edmonds-Algorithmus ergibt.

3 Matchings

Prozedur VergroBernderPfad(G, M)

L Q<+ 0
2> for ve V(G) do

3
1

5

if Je € M : v € ¢ then zustand(v) < unerreicht
else

zustand(v) < gerade

root(v) < v

depth(v) <+ 0

for ue N(v) do Q + QU {(v,u)}

while Q # () do

entferne eine Kante (v,v') aus @
if zustand(v’) = ungerade or
inblite(v) = inblite(v’) # L then // tue
nichts
else if zustand(v’) = unerreicht then
zustand(v’') < ungerade
parent (v') < v
root(v') < root(v)
depth(v') < depth(v) +1
v” < partner(v’)
zustand(v”) <+ gerade
parent (v”) < v/
root(v”) < root(v’)
depth(v”) < depth(v') +1
for ue N(v")\ {v'} do Q<+ QU {(v",u)}
else // zustand(v') = gerade
if root(v) =root(v') then // v und ¢’ sind im
gleichen Baum: kontrahiere Blite
v” < tiefster gemeinsamer Vorfahr von v und ¢’
// verwende depth(v) und depth(v’)
b < neuer Knoten
blite(b) < (v",...,v,0',...,v") // setze die
beiden Pfade entlang der Baum-Kanten zu

25

28
29
30
31
32

33

35

36

49

einem ungeraden Kreis zusammen
parent(b) < parent(v”)
root(b) < root(v”)
depth(b) < depth(v”)
for v € blite(d) do
inbliate(u) < b
if zustand(u) = ungerade then
zustand(u) < gerade
for we N(u) do @+ QU {(u,w)}
else // vergroBernder Pfad gefunden, muss noch
expandiert werden
P < leere doppelt verkettete Liste
U< v
while u # 1 do
while inblite(u) # 1L do w <+ inblite(u)
hange u vorne an P an
u < parent(u)
u<+v
while u # 1 do
while inblite(u) do u <+ inblite(u)
hange v hinten an P an
u < parent(u)
u < der erste Knoten auf P
while u # 1 do
if blite(u) = L then
u < succp(u)
else // blite(u) = (vg,...,vx) Mit vy = vy
ersetze u in P durch den alternierenden
Pfad in blite(u), der predp(u) und
succp(u) verbindet und auf der Nicht-
Basis-Seite mit einer Kante aus M endet
u < der erste Knoten dieses Pfads
return P

3 Matchings

Fiir den Beweis der Korrektheit des Edmonds-Algorithmus benotigen
wir den Begriff des OSC.

Definition 34. Sei G = (V,E) ein Graph. Eine Menge S =
{v1,.. ., 06, V1, ..., Vi} von Knoten vq,...,ux € V und Teilmengen
Vi,..., Vo CV heifit OSC (engl. odd set cover) in G, falls

I.Yee E:enNVy£0VIi>1:eCV;, wobei Vo ={vy,...,0x}.
2. Vi>1:n; =51, wobei n; = ||V;]].
Das Gewicht von S ist weight(S) = k + S%_,(n; — 1)/2. Im Fall

¢ = 0 nennen wir Vy auch Knoteniiberdeckung (oder kurz VC
fir engl. vertex cover) in G.

Lemma 35. Fir jedes Matching M in einem Graphen G = (V, E)
und jedes OSC S in G gilt || M|| < weight(S).

Beweis. M kann fiir jeden Knoten v; € S hochstens eine Kante und
von den Kanten in V;, i > 1, hochstens (n; — 1)/2 Kanten enthalten.
[

Satz 36. Der Algorithmus von Edmonds berechnet ein mazimales
Matching M fir G.

Beweis. Es ist klar, dass der Algorithmus von Edmonds terminiert.
Wir analysieren die Struktur des Suchwalds zu diesem Zeitpunkt. Jede
Kante e € E lasst sich in genau eine von drei Kategorien einteilen:

1. e hat mindestens einen ungeraden Endpunkt,
2. beide Endpunkte von e sind unerreicht,
3. e liegt komplett innerhalb einer Bliite.

Wiirde nédmlich e keine dieser 3 Bedingungen erfiillen, so wiirde der Al-
gorithmus nicht terminieren, da alle Kanten e = (v, v’), die mindestens
einen geraden Endpunkt v haben, von dem Algorithmus betrachtet
werden und im Fall,

26

1. dass auch v’ gerade ist, e entweder zur Kontraktion einer weiteren
Bliite oder zu einem vergroflernden Pfad fithren

2. dass v’ unerreicht ist, v’ in einen ungeraden Knoten verwandelt

wiirde. Folglich konnen wir ein OSC S wie folgt konstruieren. Sei U die
Menge der unerreichten Knoten. Jede Bliite bildet eine Menge V; in .S
und jeder ungerade Knoten wird als Einzelknoten zu S hinzugefiigt.
Falls U nicht leer ist, fiigen wir einen beliebigen unerreichten Knoten
ug € U als Einzelknoten zu S hinzu. Falls U mindestens 4 Knoten
enthalt, figen wir auch die Menge U \ {up} zu S hinzu.

Nun ist leicht zu sehen, dass S alle Kanten iiberdeckt und jeder
Einzelknoten in S mit einer Matchingkante inzident. Da zudem jede
Bliite V; der GroBe n; genau (n; —1)/2 (und auch die Menge U \ {uo}
im Fall ||U|| > 4 genau (||U]| — 2)/2) Matchingkanten enthélt, folgt
weight(S) = || M||. [|

Korollar 37. Fiir jeden Graphen G gilt

p1(G) = min{weight(S) | S ist ein OSC in G}.

Ein Spezialfall hiervon ist der Satz von Konig fiir bipartite Graphen
(siehe Ubungen).

Der Algorithmus von Edmonds lésst sich leicht dahingehend modifi-
zieren, dass er nicht nur ein maximales Matching M, sondern auch ein
OSC S ausgibt, das die Optimalitit von M beweist. In den Ubungen
werden wir noch eine weitere Moglichkeit zur ,,Zertifizierung“ der
Optimalitat von M kennenlernen.

4 Fliisse in Netzwerken

4 Fliusse in Netzwerken

Definition 38. Ein Netzwerk N = (V| E, s, t,c) besteht aus einem
gerichteten Graphen G = (V, E) mit einer Quelle s € V' und einer
Senke t € V sowie einer Kapazitatsfunktion ¢ : V x V — N.
Zudem muss jede Kante (u,v) € E positive Kapazitit c(u,v) > 0 und
jede Nichtkante (u,v) € E muss die Kapazitit c(u,v) = 0 haben.

Die folgende Abbildung zeigt ein Netzwerk N.

Definition 39.
a) Fin Fluss in N ist eine Funktion f :V xV — Z mit
f(u,v) < e(u,v),
fu,0) = =f(v,u),
Svey f(u,v) =0 fir allew € V' \ {s,t}
b) Der Fluss in den Knoten w ist f~(u) = Y,y max{0, f(v,u)}.
¢) Der Fluss aus w ist f*(u) =Y,y max{0, f(u,v)}.
d) Der Nettofluss durch w ist f™(u) — [~ (u) = X ,ev f(u,v).
e) Die GroBe von f ist |f| = fT(s) — f(s).
Die Antisymmetrie impliziert, dass f(u,u) = 0 fir alle u € V ist,

d.h. wir kénnen annehmen, dass G schlingenfrei ist. Die folgende
Abbildung zeigt einen Fluss f in N.

(Kapazitatsbedingung)
(Antisymmetrie)
(Kontinuitdt)

27

U s a b c dt
ff(w)|8 4 79 6 0
f7(w)|]0O 4 79 6 8

4.1 Der Ford-Fulkerson-Algorithmus

Wie lésst sich fiir einen Fluss f in einem Netzwerk N entscheiden, ob
er vergroflert werden kann? Diese Frage lasst sich leicht beantworten,
falls f der konstante Nullfluss f = 0 ist: In diesem Fall geniigt es, in
G = (V, E) einen Pfad von s nach ¢ zu finden. Andernfalls kénnen
wir zu N und f ein Netzwerk /Ny konstruieren, so dass f genau dann
vergroflert werden kann, wenn sich in Ny der Nullfluss vergrofern
lasst.

Definition 40. Sei N = (V, E,s,t,c) ein Netzwerk und sei [ein
Fluss in N. Das zugeordnete Restnetzwerk ist Ny = (V, Ey, s,t,cy)
mit der Kapazitdt

s (u,v) = e(u,v) — f(u,v)
und der Kantenmenge

Er ={(u,v) € VxV|cs(u,v) >0}
Zum Beispiel fithrt der Fluss

12/12

4 Fliisse in Netzwerken 4.1 Der Ford-Fulkerson-Algorithmus

auf das folgende Restnetzwerk N;: Es ist leicht zu sehen, dass fp tatsachlich ein Fluss in Ny ist. Durch Ad-
dition der beiden Fliisse f und fp erhalten wir einen Fluss [= f+ fp
in N der GroBe |f'| = |f|+ |fe| > |f]-

Fluss f: Fluss f + fp:

Definition 41. Sei Ny = (V, Ey,s,t,cf) ein Restnetzwerk. Dann
heifst jeder s-t-Pfad P in (V,E;) Zunahmepfad in N;. Die Kapa-
zitat von P in Ny ist

cp(P) = min{cs(u,v) | (u,v) liegt auf P}
und der zu P gehorige Fluss in Ny ist . . .
Nun kénnen wir den Ford-Fulkerson-Algorithmus angeben.

cs(P), (u,v) liegt auf P Algorithmus Ford-Fulkerson(V, E, s,t,c)

Jelu,v) =3 =es(P), (v,u) liegt auf P, 1 for all (u,v) €V xV do
0, sonst. 2 f(u,v) =0
_)) 3 while es gibt einen Zunahmepfad P in N; do
P = (ug, ..., u) ist also genau dann ein Zunahmepfad in Ny, falls 1 Fo=f+ fp

e uy = s und ug =t ist,

o die Knoten u, ..., uy paarweise verschieden sind Beispiel 42. Fir den neuen Fluss erhalten wir nun folgendes Rest-
o und cp(u;,uip1) >0 firi=0,...,k— 1 ist. netzwerk:
Die folgende Abbildung zeigt den zum Zunahmepfad P = s,c¢,b,t
gehorigen Fluss fp in Ny. Die Kapazitit von P ist ¢;(P) = 4.
In diesem existiert kein Zunahmepfad mehr. N

28

4 Fliisse in Netzwerken

Um zu beweisen, dass der Algorithmus von Ford-Fulkerson tatsach-
lich einen Maximalfluss berechnet, zeigen wir, dass es nur dann im
Restnetzwerk Ny keinen Zunahmepfad mehr gibt, wenn der Fluss f
maximal ist. Hierzu benotigen wir den Begriff des Schnitts.

Definition 43. Sei N = (V, E, s,t,c) ein Netzwerk und sei) T S C
V. Dann heifit die Menge E(S) = {(u,v) € E | u € S,v ¢ S}
Kantenschnitt (oder einfach Schnitt; oft wird auch einfach S als
Schnitt bezeichnet). Die Kapazitdt eines Schnittes S ist

> clu,v).

ueSvgS

c(S) =

Ist f ein Fluss in N, so heifst

f(S) = Z f(uav)

u€eS, ¢S
der Nettofluss (oder einfach Fluss) durch den Schnitt S.

Beispiel 44. Betrachte den Schnitt S = {s,a,c} in folgendem Netz-
werk N mit dem Fluss f:

11/16 k3
12/13 ‘&!!

Dieser Schnitt hat die Kapazitdit

13/13

11/14

c(S) =c(a,b) +c(e,d) =134 14 =27

29

4.1 Der Ford-Fulkerson-Algorithmus

und der Fluss f(S) durch diesen Schnitt ist
F(S) = fla,b) + f(e,b) + f(c,d) =13 — 1 + 11 = 23.

Dagegen hat der Schnitt S" = {s,a,b,c,d}

13/13

die Kapazitat
(') = c(b,t)+c(d,t) = 19+4 = f(b, 1)+ f(d,t) = f(5'),
die mit dem Fluss durch diesen Schnitt ibereinstimmd. N

Lemma 45. Fir jeden Schnitt S mit s € S, t ¢ S und jeden Fluss f
qilt
[f1 = F(5) < e(9).

Beweis. Die Gleichheit |f| = f(S) zeigen wir durch Induktion iiber
k=S].
k = 1: In diesem Fall ist S = {s} und somit

1fl=fT ()= f(s) = > fls,0) = f(s,8)+ > f(s,v) = f(9).

veV b v#ES

k — 1~ k: Sei S ein Schnitt mit ||S]| =% > 1 und sei w € S — {s}.
Betrachte den Schnitt S" = S — {w}. Dann gilt

f8)= > flwv)= > fluv)+) flww)

ueS,vgS uesS’ w¢sS vgS

4 Fliisse in Netzwerken

und

f8)="% fluv)=

ues' vgs’

Z flu,v) + Z f(u,w).

uesS’ wgs ues’

Wegen f(w,w) =01ist > ,cq f(u,w) =>,cq f(u, w) und daher

f(S) - f(S/) = Z f(w,v) - Z f(lu’t ““‘) = Z f(w,v) =0.

veES u€es veV

Nach Induktionsvoraussetzung folgt somit f(S) = f(5') = |f]-
Schlieflich folgt wegen f(u,v) < ¢(u,v) die Ungleichung

> fluw) <00)

(u,w)EE(S) (u,w)EE(S)

f(S) = c(u,v) = ¢(9).

Satz 46 (Min-Cut-Max-Flow-Theorem). Sei f ein Fluss in einem
Netzwerk N = (V, E, s,t,c). Dann sind folgende Aussagen dquivalent:

1. f ist mazimal.
2. In Ny existiert kein Zunahmepfad.
3. Es gibt einen Schnitt S mit ¢(S) = | f].

Beweis. Die Implikation ,, 7 = 2“ ist klar, da die Existenz eines Zu-
nahmepfads zu einer Vergroflerung von f fiihren wiirde.

Fir die Implikation ,,2 = 5 betrachten wir den Schnitt
S ={ueV |uistin Ny von s aus erreichbar}.

Da in Ny kein Zunahmepfad existiert, gilt dann
e sc S, t¢ S und
o ci(u,v) =0firalleue Sundv ¢ S.

30

4.1 Der Ford-Fulkerson-Algorithmus

Wegen cf(u,v) = c(u,v) — f(u,v) folgt somit

fl=f(8)= > fluv)= > clu,v)=cS)

ueS,v¢S ueSweS

Die Implikation ,,3 = 1 ist wiederum klar, da im Fall ¢(S) = | f| fiir
jeden Fluss f’ die Abschéitzung |f'| = f/(S) < ¢(S) = | f] gilt. [

Der obige Satz gilt auch fur Netzwerke mit Kapazitaten in RT.

Sei ¢g = ¢(5) die Kapazitat des Schnittes S = {s}. Dann durchlauft
der Ford-Fulkerson-Algorithmus die while-Schleife héchstens cg-mal.
Bei jedem Durchlauf ist zuerst das Restnetzwerk Ny und danach ein
Zunahmepfad in Ny zu berechnen.

Die Berechnung des Zunahmepfads P kann durch Breitensuche in
Zeit O(n + m) erfolgen. Da sich das Restnetzwerk nur entlang von
P andert, kann es in Zeit O(n) aktualisiert werden. Jeder Durch-
lauf benoétigt also Zeit O(n + m), was auf eine Gesamtlaufzeit von
O(co(n + m)) fihrt. Da der Wert von ¢, jedoch exponentiell in der
Lénge der Eingabe (also der Beschreibung des Netzwerkes N) sein
kann, ergibt dies keine polynomielle Zeitschranke. Bei Netzwerken
mit Kapazitaten in R kann der Ford-Fulkerson-Algorithmus sogar
unendlich lange laufen (sieche Ubungen).

210 @ 210

Bei nebenstehendem Netzwerk benotigt Ford-
Fulkerson zur Bestimmung des Maximalflusses
abhéngig von der Wahl der Zunahmepfade zwi- 910 @ 910
schen 2 und 2! Schleifendurchlaufe.

Im ginstigsten Fall wird ndmlich zuerst der Zunahmepfad (s, a,t)
und dann der Pfad (s, b,t) gewéhlt. Im ungiinstigsten Fall werden ab-
wechselnd die beiden Zunahmepfade (s, a,b,t) und (s, b, a,t) gewéhlt:

4 Fliisse in Netzwerken

i ‘ Zunahmepfad P; in Ny, | ‘ neuer Fluss f; in N ‘

2j +1

2j +2

Nicht nur in diesem Beispiel lasst sich die exponentielle Laufzeit wie
folgt vermeiden:
e Man betrachtet nur Zunahmepfade mit einer geeignet gewéahlten
Mindestkapazitat. Dies fithrt auf eine Laufzeit, die polynomiell in
n, m und log ¢y ist.
e Man bestimmt in jeder Iteration einen kiirzesten Zunahmepfad
im Restnetzwerk mittels Breitensuche in Zeit O(n + m). Diese

31

4.2 Der Edmonds-Karp-Algorithmus

Vorgehensweise fithrt auf den FEdmonds-Karp-Algorithmus, der
eine Laufzeit von O(nm?) hat (unabhéngig von der Kapazitéts-
funktion).

Man bestimmt in jeder Iteration einen Fluss g im Restnetzwerk
Ny, der nur Kanten benutzt, die auf einem kiirzesten s-t-Pfad in
Ny liegen. Zudem hat g die Eigenschaft, dass g auf jedem kiirzesten
s-t-Pfad P mindestens eine Kante e € P blockiert (d.h. der Fluss
g(e) durch e schopft die Restkapazitit c(e) von e vollkommen
aus), weshalb diese Kante in der nichsten Iteration fehlt. Dies
fithrt auf den Algorithmus von Dinic. Da die Linge der kiirzesten
s-t-Pfade im Restnetzwerk in jeder Iteration um mindestens 1
zunimmt, liegt nach spatestens n — 1 Iterationen ein maximaler
Fluss vor. Dinic hat gezeigt, dass ein blockierender Fluss g in Zeit
O(nm) bestimmt werden kann. Folglich hat der Algorithmus von
Dinic eine Laufzeit von O(n?m). Malhotra, Kumar und Maheswa-
ri fanden spéter einen O(n?)-Algorithmus zur Bestimmung eines
blockierenden Flusses. Damit lasst sich die Gesamtlaufzeit auf
O(n?) verbessern.

4.2 Der Edmonds-Karp-Algorithmus

Der Edmonds-Karp-Algorithmus beschréankt die Suche nach P auf
kiirzeste Zunahmepfade. Ansonsten ist er mit dem Ford-Fulkerson-
Algorithmus identisch.

Algorithmus Edmonds-Karp(V, E, s,t,¢)

1

DN

for all (u,v) €V xV do
flu,v):=0
repeat
P <+ zunahmepfad(f)
if P=# 1 then add(f,P)
until P =1

4 Fliisse in Netzwerken

Prozedur zunahmepfad(f)

1 for all veV, ec EUE® do
2 vis(v) :=vis(e) := false
3
1

parent(v) ;== L

vis(s) := true
5 QueueInit(Q®)
¢ Enqueue(Q, s)
7 while —QueueEmpty(Q) A Head(Q) # t do
8 u := Head(Q)
o if 3 e=wuwe EUE®R:vis(e) = false then
10 vis(e) := true
1 if c(e) — f(e) > 0 Avis(v) = false then
12 d(e) :=c(e) — f(e)
13 vis(v) := true
14 parent(v) :==u
15 Enqueue(Q,v)
16 else Dequeue(Q)
17 if Head(Q) =t then

18 P :=parent-Pfad von s nach ¢
19 cf(P) :==min{c(e) | e € P}

20 else

21 P=_1

22 return P

Prozedur add(f, P)

1 for all e€ P do

2 [fle) = f(e) +¢p(P)
R =) el (P)

Satz 47. Der Edmonds-Karp-Algorithmus durchldiuft die repeat-
Schleife hochstens nm/2-mal.

Beweis. Sei fy der triviale Fluss und seien Py, ..., P, die Zunahme-

32

4.2 Der Edmonds-Karp-Algorithmus

pfade, die der Edmonds-Karp-Algorithmus der Reihe nach berechnet,
d.h. f; = fi-1 + fp,. Eine Kante e heifit kritisch in P;, falls der Fluss
fp, die Kante e sattigt, d.h. ¢;, ,(e) = fr.(e) = ¢y, ,(F;). Man beachte,
dass eine kritische Kante e in P, wegen cy,(e) = ¢, ,(e) — fp(e) =0

nicht in Ny, enthalten ist, wohl aber ef.

Wir tiberlegen uns zunéchst, dass die Léngen ¢; von P; (schwach)
monoton wachsen. Hierzu beweisen wir die starkere Behauptung,
dass sich die Abstéinde jedes Knotens v € V von s und von ¢t beim
Ubergang von Ny, , zu Ny, nicht veringern konnen. Sei d;(u,v) die
minimale Lange eines Pfades von u nach v im Restnetzwerk Ny, .

Behauptung 48. Fir jeden Knoten uw € V' gilt diy1(s,u) > d;(s,u)
und diyq(u,t) > d;(u,t).

Hierzu zeigen wir folgende Behauptung.

Behauptung 49. Fulls die Kante e = (u;,uj11) auf einem kiirzesten
Pfad P = (ug,...,u,) von s = ug nach u = uy, in Ny, liegt (d.h.
diy1(8,uj11) = dig1(s,u5) + 1), dann gilt di(s,uj11) < di(s,u;) + 1.

Die Behauptung ist klar, wenn die Kante e = (uj,u;4+1) auch in
Ny, , enthalten ist. Ist dies nicht der Fall, muss fi_1(e) # fi(e)
sein, d.h. e oder e miissen in P, vorkommen. Da e nicht in Ny, ,
ist, muss e = (uj;1,u;) auf P; liegen. Da P; ein kiirzester Pfad
von s nach t in Ny, ist, folgt d;(s,u;) = di(s,uj41) + 1, was
di(s,ujt1) = di(s,uj) — 1 < d;(s,u;) + 1 impliziert.

Damit ist Behauptung 49 bewiesen und es folgt

di(s,u) < di(s,up—q1) +1<---<di(s,s) +h=h=d(s,u).

Die Ungleichung d; 4 (u,t) > d;(u,t) folgt analog, womit auch Behaup-
tung 48 bewiesen ist. Als néchstes zeigen wir folgende Behauptung.

Behauptung 50. Firl <i<j <k gilt: Falls e = (u,v) in P; und
e® = (v,u) in P; enthalten ist, so ist l; > l; + 2.

4 Fliisse in Netzwerken

Dies folgt direkt aus Behauptung 48:

lj = dj(S,t> = dj(S,’U) + d](u,t) +1> di(S,U> + dl(u, t) +1 = ll + 2.
—_—— ~——
di(s,u)+1 di(s,v)+1

Da jeder Zunahmepfad P; mindestens eine kritische Kante enthalt und
EUE* hochstens m Kantenpaare der Form {e, e®} enthilt, impliziert
schliellich folgende Behauptung, dass k < mn/2 ist.

Behauptung 51. Zwei Kanten e und e sind zusammen héchstens
n/2-mal kritisch.

Seien P,,...,P, die Pfade, in denen e oder et kritisch ist. Falls
k € {e, e} kritisch in P, ist, dann fallt k aus N fi;+1 heraus. Damit
also e oder e kritisch in P, sein kénnen, muss ein Pfad Pj mit
ij < j' <41 existieren, der £ enthdlt. Wegen Behauptung 48 und
Behauptung 50 ist &Hl >l > Eij + 2. Daher ist

n—1>4, >4, +2h—1)>1+2h—-1)=2h—1,
was h < n/2 impliziert. |

Man beachte, dass der Beweis auch bei Netzwerken mit reellen Kapa-
zitdten seine Giiltigkeit behélt.

4.3 Der Algorithmus von Dinic

Man kann zeigen, dass sich in jedem Netzwerk ein maximaler Fluss
durch Addition von héchstens m Zunahmepfaden P; konstruieren lésst.
Es ist nicht bekannt, ob sich jeder solche Pfad P; in Zeit O(n + m)
bestimmen lasst. Wenn ja, wiirde dies auf eine Gesamtlaufzeit von
O(n + m?) fithren. Fiir dichte Netzwerke (d.h. m = ©(n?)) hat der
Algorithmus von Dinic die gleiche Laufzeit O(n*m) = O(n*) und die
verbesserte Version ist mit O(n?) sogar noch schneller.

33

4.3 Der Algorithmus von Dinic

Definition 52. Sei N = (V, E,s,t,c) ein Netzwerk und sei g ein
Fluss in N. g sdttigt eine Kante e € E, falls g(e) = c(e) ist. g heifst
blockierend, falls g auf jedem Pfad P von s nach t mindestens eine
Kante e € I sdttigt.

Nach dem Min-Cut-Max-Flow-Theorem gibt es zu jedem maximalen
Fluss f einen Schnitt S, so dass alle Kanten in E(S) geséttigt sind.
Da jeder Pfad von s nach ¢ mindestens eine Kante in E(S) enthalten
muss, ist jeder maximale Fluss auch blockierend. Fiir die Umkehrung
gibt es jedoch einfache Gegenbeispiele, wie etwa

Ein blockierender Fluss muss also nicht unbedingt maximal sein. Tat-
sachlich ist g genau dann ein blockierender Fluss in N, wenn es im
Restnetzwerk N, keinen Zunahmepfad gibt, der nur aus Vorwéartskan-
ten e € E mit g(e) < c(e) besteht. Wir werden sehen, dass sich ein
blockierender Fluss in Zeit O(n?) berechnen lésst.

Der Algorithmus von Dinic arbeitet wie folgt.
Algorithmus Dinic(V, E,s,t,c)

1 for all (u,v) eV xV do

2 f(u,v):=0

3 while schichtnetzwerk(f) do

! g := blockfluss(f)

5 f=r+y

Die Prozedur blockfluss(f) berechnet einen blockierenden Fluss im
Restnetzwerk Ny, der fiir alle Kanten den Wert 0 hat, die nicht auf ei-
nem kiirzesten Pfad P von s nach ¢ in Ny liegen. Hierzu werden aus Ny

4 Fliisse in Netzwerken

alle Knoten u # t entfernt, die einen Abstand d(s,u) > d(s,t) in Ny
haben. Falls in N kein Pfad von s nach ¢ existiert (d.h. d(s,t) = 00),
wird auch ¢ entfernt.

Das resultierende Netzwerk N} wird als Schichtnetzwerk bezeich-
net, da jeder Knoten in N} einer Schicht S; zugeordnet werden kann:
Fir j = 0,...,max{d(s,u) | d(s,u) < d(s,t)} ist S; = {u € V|
d(s,u) = j}. Im Fall d(s,t) < oo kommt fiir j = d(s,t) noch die
Schicht S; = {t} hinzu. Zudem werden alle Kanten aus N entfernt,
die nicht auf einem kiirzesten Pfad von s zu einem Knoten in N} lie-
gen, d.h. jede Kante (u,v) in N} verbindet einen Knoten u in Schicht
S; mit einem Knoten v in Schicht S;; von Nj.

Das Schichtnetzwerk N} wird von der Prozedur schichtnetzwerk
durch eine modifizierte Breitensuche in Zeit O(n + m) berechnet.
Diese Prozedur gibt den Wert true zuriick, falls ¢ im berechneten
Schichtnetzwerk N} enthalten (und somit der aktuelle Fluss f noch
nicht maximal) ist, und sonst den Wert false.

Satz 53. Der Algorithmus von Dinic durchliuft die while-Schleife
hochstens n-mal.

Beweis. Sei k die Anzahl der Schleifendurchlaufe und firi=1,...)k
sei g; der blockierende Fluss, den der Dinic-Algorithmus im Schicht-
netzwerk N - berechnet, d.h. f; = fi 1 + g;. Zudem sei d;(u,v)
wieder die minimale Linge eines Pfades von u nach v im Restnetz-
werk Ny, . Wir zeigen, dass d;i11(s,t) > d;(s,t) ist. Da dy(s,t) > 1
und d(s,t) <n —1 ist, folgt k <n — 1.

Behauptung 54. Fir jeden Knoten uw € V' gilt d;y1(s,u) > d;(s,u).
Hierzu zeigen wir folgende Behauptung.

Behauptung 55. Fulls die Kante e = (u;, uj+1) auf einem kirzesten
Pfad P = (ug,...,up) von s = uy nach u = uy, in Ny, liegt (d.h.
di+1(5,u]'+1) = di+1(5,uj') + 1), dann g’l,lt di(S, Uj+1) < di(S,Uj> + 1.

34

4.3 Der Algorithmus von Dinic

Die Behauptung ist klar, wenn die Kante e = (u;, u;4+1) auch in Ny, |
enthalten ist. Ist dies nicht der Fall, muss f;_1(e) # fi(e) sein, d.h.
gi(e) muss ungleich 0 sein. Da e nicht in Ny, , und somit auch nicht
in Ny ist, muss e = (u;1,u;) in Ny, sein. Da N}, nur Kanten
auf kurzesten Pfaden von s zu einem Knoten in N}, enthilt, folgt
di(s,uj) = di(s,ujp1)+ 1, was di(s, ujp1) = di(s,u;) —1 < d;(s, u])+1
impliziert.

Damit ist Behauptung 55 bewiesen und Behauptung 54 folgt wie im
Beweis von Satz 47. Als nédchstes zeigen wir folgende Behauptung.

Behauptung 56. Firi=1,...,k—1 gilt d;y1(s,t) > d;(s,1).

Sei P = (ug,uq,...,up) ein kiirzester Pfad von s = g nach t = u;, in
Ny,. Dann gilt wegen Behauptung 54, dass d;(s,u;) < d;y1(s,u;) =j
fiir j =0, ..., h ist.

Wir betrachten zwei Félle. Wenn alle Knoten w; in N}~ enthalten
sind, fihren wir die Annahme d;(s,t) = d;+1(s,t) auf einen Wider-
spruch. Wegen Behauptung 55 folgt aus dieser Annahme ndmlich
die Gleichheit d;(s,u;j41) = d;(s,u;) + 1, da sonst d;(s,t) < h wére.
Folglich ist P auch ein kiirzester Pfad von s nach ¢ in Ny, | und somit
g; kein blockierender Fluss in Ny, .

Es bleibt der Fall, dass mindestens ein Knoten u; nicht in N}, | enthal-
ten ist. Sei u;; ;1 der erste Knoten auf P, der nicht in N}, | enthalten ist.
Dann ist u;1 # ¢t und daher d;1(s,t) > di11(s, uj41). Zudem liegt die
Kante e = (u;, uj;+1) nicht nur in Ny,, sondern wegen f;(e) = fi_1(e)
(da weder e noch e® zu N} gehéren) auch in Ny,_,. Da somit u;
in N; und e in Ny,_, ist, kann u;y; nur aus dem Grund nicht
zu Nj, . gehoren, dass di(s,uj41) = di(s,t) ist. Daher folgt wegen
dit1(s,uj) > di(s,u;) (Behauptung 54) und d;(s,u;) +1 > d;(s, uj41)
(Behauptung 55)

dz‘+1(3=t) > dz’+1(37Uj+1) = dz’+1(San> +1> di(‘S?uj-‘rl) = di<svt)'

4 Fliisse in Netzwerken

Die Prozedur schichtnetzwerk fithrt eine Breitensuche mit Start-
knoten s im Restnetzwerk /Ny aus und speichert dabei in der Menge
E’ nicht nur alle Baumkanten, sondern zuséatzlich alle Querkanten
(u,v), die auf einem kiirzesten Weg von s zu v liegen. Sobald alle von
s aus erreichbaren Knoten besucht (und in V' gespeichert) wurden
oder t am Kopf der Warteschlange () erscheint, bricht die Suche ab.
Falls der Kopf von @ gleich ¢ ist, werden alle Knoten v # ¢, die die
gleiche Entfernung von s wie t haben, sowie alle Kanten, die in diesen
Knoten enden, wieder aus N} entfernt.

Die Laufzeitschranke O(n+m) folgt aus der Tatsache, dass jede Kante
in £'U E® hochstens einmal besucht wird und jeder Besuch mit einem
konstantem Zeitaufwand verbunden ist.

Prozedur schichtnetzwerk(f)

1 for all veV, ec EUER do

2 niv(v) :==n

3 vis(e) := false

1 niv(s):=0

5 Vii={s}

6 E':=10

7 QueueInit(Q)

s Enqueue(Q, s)

o while —QueueEmpty(Q) A Head(Q) #t do

10 u := Head(Q)

11 if 3 e=w e EUE"R:vis(e) = false then
12 vis(e) := true

13 if ¢(e) — f(e) > 0 Aniv(v) > niv(u) then
14 V' =V'u{v}

15 E = E'"U{e}

16 d(e) :=c(e) — f(e)

17 niv(v) :=niv(u) +1
18 Enqueue(Q,v)

19 else Dequeue(Q)

35

4.3 Der Algorithmus von Dinic

if Head(Q) =t then
V':={veV'|v#tniv(v) =niv(t)}
V=V \V
E =FE\ (V' xV"
return true

else
return false

IS w [\

[\~ [\~ [\~} [N} DN Do [\~
ot w 5

Die Prozedur blockflussl berechnet einen blockierenden Fluss g
im Schichtnetzwerk N} in der Zeit O(nm). Hierzu bestimmt sie in der
repeat-Schleife mittels Tiefensuche einen Zunahmepfad P in N},
addiert den Fluss (f + ¢g)p zum aktuellen Fluss ¢ hinzu, und ent-
fernt die gesattigten Kanten e € P aus F’. Falls die Tiefensuche in
einer Sackgasse endet (weil £’ keine weiterfiihrenden Kanten enthélt),
wird die zuletzt besuchte Kante (u/, u) ebenfalls aus E’ entfernt und
die Tiefensuche vom Startpunkt u’ dieser Kante fortgesetzt (back
tracking). Die Prozedur blockfluss1 bricht ab, falls keine weiteren
Pfade von s nach t existieren. Folglich ist der berechnete Fluss g

tatsichlich blockierend.

Die Laufzeitschranke O(nm) folgt aus der Tatsache, dass sich die
Anzahl der aus E’ entfernten Kanten nach spéatestens n Schleifen-
durchldufen um 1 erhoht.

Prozedur blockflussl(f)

1 for all ec VxV do g(e) =0
> StackInit(S)

3 Push(S,s)

I UI=S

5 done := false

6 repeat

7 if 3 e=wv € FE' then
8 Push(S,v)

9 d"(e) .= (e) —g(e)

4 Fliisse in Netzwerken

10 u::=v

11 elsif v =t then

12 P :=S5-Pfad von s nach ¢
13 c,(P) := min{c"(e) | e € P}

14 for all ec P do

15 if g(e) = c,(P) then E':= E'\ {e}
g(e) == g(e) + ¢ (P)
g(e®) = g(e) * c)(P)
18 u=s

19 StackInit(S)

20 Push(S, s)

21 elsif u # s then

2 Pop(.5)

3 u' = Top(S)

1 E = FE'\{(v,u)}

5 u =

26 else done := true

>7 until done

28 return g

Die Prozedur blockfluss2 benétigt nur Zeit O(n?), um einen blo-
ckierenden Fluss g im Schichtnetzwerk N} zu berechnen. Zu ihrer
Beschreibung benotigen wir folgende Notation.

Definition 57. Sei N = (V| E,s,t,c) ein Netzwerk und sei u ein
Knoten in N. Die Ausgangskapazitat von u ist

> c(u,v)

(u,v)EE

ct(u) =

und die Eingangskapazitit von u ist

36

4.3 Der Algorithmus von Dinic

Der Durchsatz von u ist

c(u), u=s,
d(u) = ¢ (u), u=t,
min{ct(u),c (u)}, sonst.

Fin Fluss g in N sdttigt einen Knoten uw € V, falls d(u) =
max{f*(u), f~(u)} ist.

Die Korrektheit der Prozedur blockfluss2 basiert auf folgender
Proposition.

Proposition 58. Sei N = (V, E, s,t,c) ein Netzwerk und sei g ein
Fluss in N. g ist blockierend, falls jeder s-t-Pfad in N mindestens
einen Knoten enthdlt, der durch g gesdttigt wird.

Beweis. Dies folgt aus der Tatsache, dass ein Fluss g in N, der auf
jedem s-t-Pfad P mindestens einen Knoten u sattigt, auch mindestens
eine Kante in P sattigt. |

Beginnend mit dem trivialen Fluss ¢ = 0 berechnet die Prozedur
blockfluss2 fiir jeden Knoten u den Durchsatz D(u) im Schicht-
netzwerk N; und wihlt in jedem Durchlauf der repeat-Schleife einen
Knoten u mit minimalem Durchsatz D(u), um den aktuellen Fluss
g um den Wert D(u) zu erhohen. Hierzu benutzt sie die Prozeduren
propagierevor und propagiereriick, die dafiir Sorge tragen, dass
der zusatzliche Fluss tatsachlich durch den Knoten v flieft und die
Durchsatzwerte D(v) von allen Knoten aktualisiert werden, die von
der Flusserhohung betroffen sind. Aus diesem Grund wird u durch
den zusatzlichen Fluss gesattigt und kann aus dem Netzwerk entfernt
werden.

In der Menge B werden alle Knoten gespeichert, deren Durchsatz
durch die Erhohungen des Flusses g oder durch die Entfernung von

4 Fliisse in Netzwerken

Kanten aus E’ auf 0 gesunken ist. Diese Knoten und die mit ih-
nen verbundenen Kanten werden in der while-Schleife der Prozedur
blockfluss2 aus dem Schichtnetzwerk N J/c entfernt.

Prozedur blockfluss2(f)

for all ec V xV do g(e):=0
for all ue V' do
D+(U) = ZuveE’ Cl(“? U)
D~ (1) i= e (0,0)
5 repeat
6 for all ue V'\ {s,t} do
7 D(u) := min{D~ (u), D" (u)}
8 D(s) := D" (s)
9 D(t) := D (¢)
10 wahle v € V' mit D(u) minimal
11 Init(B);Insert(B,u)
12 propagierevor(u)
13 propagiereriick(u)
14 while u :=Remove(B) ¢ {s,t} do
15 V=V {u}
16 for all e=uv € E' do
17 D= (v):= D (v) — d(u,v)
18 if D=(v) =0 then Insert(B,v)
19 E = FE'\ {e}
20 for all e=vu € E' do
21 Dt (v) := D" (v) — (v, u)
2 if DT (v) =0 then Insert(B,v)
E' = FE'\ {e}
until v € {s,t}
return g

B~ W N =

DO [\ [NV [V
z > W

ot

Da in jedem Durchlauf der repeat-Schleife mindestens ein Knoten u
gesattigt und aus V' entfernt wird, wird nach hochstens n — 1 Itera-

37

4.3 Der Algorithmus von Dinic

tionen einer der beiden Knoten s oder ¢ als Knoten u mit minimalem
Durchsatz D(u) gewahlt und die repeat-Schleife verlassen. Da nach
Beendigung des letzten Durchlaufs der Durchsatz von s oder von ¢t
gleich 0 ist, wird einer dieser beiden Knoten zu diesem Zeitpunkt von
g gesattigt. Nach Proposition 58 ist somit g ein blockierender Fluss.

Die Prozeduren propagierevor und propagiererick propagieren
den Fluss durch u in Vorwértsrichtung hin zu ¢ bzw. in Riickwérts-
richtung hin zu s. Dies geschieht in Form einer Breitensuche mit
Startknoten u unter Benutzung der Kanten in £’ bzw. E'. Da der
Durchsatz D(u) von u unter allen Knoten minimal ist, ist sicherge-
stellt, dass der Durchsatz D(v) jedes Knoten v ausreicht, um den fiir
ihn ermittelten Zusatzfluss in Hohe von z(v) weiterzuleiten.

Prozedur propagierevor(u)

1 for all ve V' do z(v):=0
> z(u) = D(u)

3 QueueInit(Q);Enqueue(Q,u)

i while v :=Dequeue(Q) # L do

5 while z(v) #0AJe=vu e E' do

6 m := min{z(v), ' (e)}

7 z(v) = z(v) —m; z(u) = z(u) + m
8 aktualisierekante(e,m)

9 Enqueue(Q, u)

Prozedur aktualisierekante(e = vu,m)
9(e) = gle) +m

d(e):=d(e)—m

if d(e) =0 then E' :=F'\ {e}
D*(v) := Dt (v) —m

if D*(v) =0 then Insert(B,v)

6 D= (u):= D (u) —m

7 if D7 (u) =0 then Insert(B,u)

A I

4 Fliisse in Netzwerken

Die Prozedur propagiererick unterscheidet sich von der Proze-
dur propagierevor nur dadurch, dass in Zeile 5 die Bedingung
Jde = vu € £’ durch die Bedingung de = uv € E' ersetzt wird.

Da die repeat-Schleife von blockfluss2 maximal (n — 1)-mal durch-
laufen wird, werden die Prozeduren propagierevor und propa-
giereriick hochstens (n — 1)-mal aufgerufen. Sei a die Gesamtzahl
der Durchléufe der inneren while-Schleife von propagierevor, sum-
miert tiber alle Aufrufe. Da in jedem Durchlauf eine Kante aus E’
entfernt wird (falls m = ¢/(u,v) ist) oder der zu propagierende Fluss
z(v) durch einen Knoten v auf 0 sinkt (falls m = z(v) ist), was pro
Knoten und pro Aufruf héchstens einmal vorkommt, ist a < n? + m.
Der gesamte Zeitaufwand ist daher O(n? + m) innerhalb der beiden
while-Schleifen und O(n?) aufierhalb. Die gleichen Schranken gelten
fiir propagiererick.

Eine ahnliche Uberlegung zeigt, dass die while-Schleife von
blockfluss2 einen Gesamtaufwand von O(n + m) hat. Folglich
ist die Laufzeit von blockfluss2 O(n?).

Korollar 59. Der Algorithmus von Dinic berechnet bei Verwendung
der Prozedur blockfluss2 einen mazimalen Fluss in Zeit O(n?).

Auf Netzwerken, deren Fliisse durch jede Kante oder durch jeden Kno-
ten durch eine relativ kleine Zahl C' beschriankt sind, lassen sich noch
bessere Laufzeitschranken fiir den Dinic-Algorithmus nachweisen.

Satz 60. Sei N = (V, E, s,t,c) ein Netzwerk.

(i) Falls jeder Knotenuw € V' \{s,t} einen Durchsatz d(u) < C hat, so
durchlduft der Algorithmus von Dinic die while-Schleife hichstens
(2(Cn)'% + 1)-mal.

(ii) Falls jede Kante e € E eine Kapazitit c(e) < C' hat, so durchlduft
der Algorithmus von Dinic die while-Schleife hichstens (2°Cn?)Y/3-
mal.

Beweis. Sei M = |f| die Grofle eines maximalen Flusses f in N.

38

4.3 Der Algorithmus von Dinic

(i) Da die Anzahl a der Schleifendurchlaufe durch M beschrénkt ist,
kénnen wir M > (Cn)'/? annehmen. Betrachte den i-ten Schleifen-
durchlauf, in dem ein blockierender Fluss g; im Schichtnetzwerk
N§._ mit den Schichten Sy = {s},S1,..., 84,1, 5, = {t} berech-
net wird. Da ein maximaler Fluss in Ny,_, (in N, | kann er kleiner
sein) die GroBe r; = M — | f;_1] hat und dieser durch die Knoten
jeder einzelnen Schicht Sj, 1 < j <d; — 1, flieBit, muss

ri < OS5l baw. ri/C < 1S5,
sein, woraus
folgt. Damit ist die Anzahl a der Schleifendurchléufe durch
a<i+rin <di+rip1 <rig+1+nC/ry
beschrinkt. Nun wihlen wir i so, dass 7; > (Cn)"/? und r;;; <
(Cn)*/? ist. Dann folgt
a—1<riq+nC/r; < (Cn)Y? +nC/(Cn)Y? =2(Cn)"2

(it) Da die Anzahl a der Schleifendurchlédufe durch M beschréinkt ist,

konnen wir M > (2nv/C)?? annehmen. Betrachte den i-ten Schlei-

fendurchlauf, in dem ein blockierender Fluss ¢g; im Schichtnetzwerk

Nj._ | mit den Schichten Sy = {s},S1,...,54,1, 54 berechnet

wird. Hierbei nehmen wir zu Sy, alle Knoten hinzu, die nicht in

N§, | liegen. Sei k; die Anzahl der Kanten von S; nach Sj;1. Da

ein maximaler Fluss in Ny,_, (in N kann er wieder kleiner sein)

die GroBe r; = M — |fi—1| hat und dieser fir j = 0,...,d; — 1

durch die £; Kanten von S; nach Sj;; flieBt, muss

ri < Ckj < ClISjll1Sj]l baw. 7i/C < [Sj]|[|:Sj41]]

sein. Somit enthilt mindestens eine von zwei benachbarten Schich-

ten S; und S;;; mindestens /r;/C Knoten, woraus

4 Fliisse in Netzwerken

folgt. Damit ist die Anzahl a der Schleifendurchlédufe durch
a<i+rip <di+1i1 <rig+2n4/C/ry

beschréankt. Nun wihlen wir i so, dass r; > (2nV/C)*? und
riy1 < (2nv/C)?3 ist. Dann folgt

a < (2nV)3 4 2nV/C/(2nV OV = (2°Cn?)V3.

Korollar 61. Set N = (V, E,s,t,c) ein Netzwerk.

(i) Falls jeder Knoten u € V\{s,t} einen Durchsatz d(u) < C hat, so
berechnet der Algorithmus von Dinic bei Verwendung der Prozedur
blockflussl einen mazimalen Fluss in Zeit O((nC' 4+ m)v/Chn).

(it) Falls jede Kante e € E eine Kapazitit c(e) < C hat, so be-
rechnet der Algorithmus von Dinic bei Verwendung der Prozedur
blockflussl einen maximalen Fluss in Zeit O(C**n**m).

Beweis. Zunachst ist leicht zu sehen, dass die Kapazitatschranke auf
den Kanten oder Knoten auch fiir jedes Schichtnetzwerk N} gilt.

(i) Jedesmal wenn blockflussl einen s-t-Pfad P im Schichtnetz-
werk findet, verringert sich der Durchsatz ¢’ (u) der auf P liegenden
Knoten v um den Wert ¢ (P) > 1, da der Fluss g durch diese
Knoten um diesen Wert steigt. Daher kann jeder Knoten an ma-
ximal C' Flusserhohungen beteiligt sein, bevor sein Durchsatz auf
0 sinkt. Da somit pro Knoten ein Zeitaufwand von O(C) fiir alle
erfolgreichen Tiefensuchschritte, die zu einem s-t-Pfad fithren, und
zusdtzlich pro Kante ein Zeitaufwand von O(1) fiir alle nicht er-
folgreichen Tiefensuchschritte anfallt, lauft blockflussl in Zeit
O(nC +m).

4.4 Kostenoptimale Fliisse

(ii) Jedesmal wenn blockflussl einen s-t-Pfad P im Schichtnetz-
werk findet, verringert sich die Kapazitét ¢”(e) der auf P liegenden
Kanten e um den Wert ¢ (P) > 1. Da somit pro Kante ein Zeit-
aufwand von O(C) fir alle erfolgreichen Tiefensuchschritte und
O(1) fiir alle nicht erfolgreichen Tiefensuchschritte anfallt, lauft
blockflussl in Zeit O(C'm + m) = O(Cm).

Durch eine einfache Reduktion des bipartiten Matchingproblems auf
ein Flussproblem erhilt man folgendes Resultat (siche Ubungen).

Korollar 62. In einem bipartiten Graphen ldsst sich ein maximales

Matching in Zeit O(y/p(G)m) bestimmen.

4.4 Kostenoptimale Fliisse

In manchen Anwendungen fallen fiir die Benutzung jeder Kante e
eines Netzwerkes Kosten an, die proportional zur Hohe des Flusses
f(e) durch diese Kante sind. Falls die Kosten fiir die einzelnen Kanten
differieren, ist es moglich, dass zwei Fliisse unterschiedliche Kosten
verursachen, obwohl sie die gleiche Gréfle haben. Man mochte also
einen maximalen Fluss f berechnen, der minimale Kosten hat.

Die Kosten eines Flusses f werden auf der Basis einer Kostenfunk-
tion k : E — 7 berechnet, wobei fiir jede Kante e € E mit f(e) >0
Kosten in Héhe von f(e)k(e) anfallen.

Die Gesamtkosten von f im Netzwerk berechnen sich also zu

K(f)= > fle)k(e).

f(e)>0

Ein negativer Kostenwert k(e) < 0 bedeutet, dass eine Erhthung des
Flusses durch die Kante e um 1 mit einem Gewinn in Hoéhe von —k(e)

*Natiirlich kann man diese Einschrankung bspw. dadurch umgehen, dass man die Kante e = (u,v) durch einen Pfad (u,w,v) iber einen neuen Knoten w ersetzt.

39

4 Fliisse in Netzwerken

verbunden ist. Ist zu einer Kante e € FE auch die gegenldufige Kante
e® in E enthalten, so muss k die Bedingung k(e®) = —k(e) erfiillen.”
Der Grund hierfiir ist, dass die Erniedrigung von f(e) > 0 um einen
bestimmten Wert w < f(e) gleichbedeutend mit einer Erhéhung von
f(e®) um diesen Wert im Restnetzwerk N; ist und die Kostenfunktion
auch fiir N; gelten soll. Daher kénnen wir &k mittels k(e) = —k(ef?),
falls et € £ und k(e) = 0 fiirr alle e € (V x V)\ (EUE™) auf die Menge
V x V erweitern. Zudem definieren wir fiir beliebige Multimengen
F CV xV die Kosten von F' als k(F) =Y .cp k(e) (d.h. jede Kante
e € F wird bei der Berechnung von k(F') entsprechend der Héaufigkeit
ihres Vorkommens in F' berticksichtigt). Wir nennen F' negativ, falls
F negative Kosten k(F') < 0 hat.

Das néchste Lemma liefert einen Algorithmus, mit dem sich iiberprii-
fen lésst, ob ein Fluss minimale Kosten unter allen Fliissen derselben
Grofle hat. Fiir einen Fluss f sei

Emin(f) = min{k(g) | g ist ein Fluss in N mit |g| = | f|}
das Minimum der Kosten aller Fliisse der Grofe | f].

Lemma 63. Ein Fluss f in N hat genau dann minimale Kosten
k(f) = kmin(f), wenn es im Restnetzwerk Ny keinen negativen Kreis
K mit k(K) <0 gibt.

Beweis. Falls es in Ny einen Kreis K mit Kosten k(K) < 0 gibt, dann
koénnen wir den Fluss durch alle Kanten e € K um 1 erhéhen. Dies
fihrt auf einen Fluss g mit |g| = |f| und k(g) = k(f) + k(K) < k(f).

Sei umgekehrt ¢ ein Fluss in N mit |g| = |f] und k(g) < k(f). Dann
ist g — f wegen g(e) — f(e) < c(e) — f(e) ein Fluss in Ny. Da g — f
die Grofle |g — f| = 0 hat, konnen wir g — f als Summe von Fliissen
hi, ..., hy in Ny darstellen, wobei h; nur fir Kanten e auf einem Kreis
K; in Ny einen positiven Wert h;(e) = w; > 0 annimmt (siehe néchs-
ten Abschnitt). Da k(hy) + -+ k(hy) = k(g — f) = k(g) — k(f) <0
ist, muss wegen k(h;) = X .ck, hi(e)k(e) = w;k(K;) mindestens ein
Kreis K; negativ sein.

40

4.4 Kostenoptimale Fliisse

Um h; und die zugehoérigen Kreise K; fir ¢ = 1,...,k zu fin-
den, wahlen wir eine beliebige Kante e;; aus Ey, fir die der Fluss
h, y = g—f—h —---— h;_y einen minimalen positiven Wert
w = h_,(e;1) > 0 annimmt (falls es keine solche Kante e;; gibt, sind
wir fertig, weil dann h}_, der triviale Fluss ist). Da h_, den Wert 0
hat und somit die Kontinuitatsbedingung fir alle Knoten (inklusive
s und t) erfiillt, lasst sich nun zu jeder Kante e;; = (a,b) € Ey
solange eine Fortsetzung e; ;11 = (b,c) € Ey mit hl_,(e;j41) > 0
(und damit h]_,(e;;+1) > w) finden bis sich ein Kreis K; schliefit.
Nun setzen wir h;(e;;) = w; fur alle Kanten e;; € K;, wobei
w; = min{h;_,(e) | e € K;} ist.

Da sich die Anzahl der Kanten in Ey, die unter dem verbleibenden

Fluss h; = g— f —hy—- - - —h; einen Wert ungleich 0 haben, gegeniiber
h;_, mindestens um 1 verringert, ist die Anzahl der Kreise K; durch
| E¢]| < 2m beschrankt. [|

Mithilfe von Lemma 63 ldsst sich ein maximaler Fluss mit minimalen
Kosten wie folgt berechnen. Wir berechnen zuerst einen maximalen
Fluss f. Dann suchen wir beginnend mit ¢ = 1 und fy = f einen
negativen Kreis K; in Ny, ,. Hierzu kann der Bellman-Ford-Moore
Algorithmus benutzt werden, wenn wir zu Ny, , einen neuen Knoten
s" hinzufiigen und diesen mit allen Knoten u durch eine neue Kante
(s',u) verbinden.

Falls kein negativer Kreis existiert, ist f;_; ein maximaler Fluss mit
minimalen Kosten. Andernfalls bilden wir den Fluss f;, indem wir
zu f;—1 den Fluss fg, addieren, der auf jeder Kante e € K, den
Wert fg,(e) = ¢y, ,(K;) = min{cy, ,(e) | e € K;} hat. Da sich
die Kosten k(f;) = k(fi—1) + k(fx,) = k(fi—1) + ¢5,_, (Ki)k(K;) von
fi wegen k(K;) < —1 bei jeder Iteration um mindestens 1 verrin-
gern und die Kostendifferenz zwischen zwei beliebigen Fliissen durch
D =Y cv |k(s,u)|(c(s,u) + c(u, s)) beschrankt ist, liegt nach k < D
Iterationen ein kostenminimaler Fluss f vor.

Der néchste Satz bereitet den Weg fiir einen Algorithmus zur Bestim-

4 Fliisse in Netzwerken

mung eines kostenminimalen Flusses, dessen Laufzeit nicht von D,
sondern von der Grofle M = | f| eines maximalen Flusses f in N ab-
hangt. Voraussetzung hierfiir ist jedoch, dass es in N keine negativen
Kreise gibt.

Lemma 64. Ist f;_; ein Fluss in N mit k(fi—1) = kmin(fi—1) und ist
P, ein Zunahmepfad in Ny, | mit

k(P;) = min{k(P') | P’ ist ein Zunahmepfad in Ny, .},

so ist f; = fi_1 + fp, ein Fluss in N mit k(f;) = kmin(f3)-

Beweis. Angenommen, es gibt einen Fluss ¢ in N mit |g| = |f;
und k(g) < k(f;). Dann gibt es in Ny, einen negativen Kreis K
mit k(K) < 0. Wir benutzen K, um einen Zunahmepfad P’ mit
k(fp) < k(fp,) zu konstruieren.

Sei F' die Multimenge aller Kanten, die auf K oder P; liegen, d.h.
jede Kante in KAP, = (K \ P,) U (P;\ K) kommt genau einmal und
jede Kante in K N P; kommt genau zweimal in F' vor. F' ist also ein
Multigraph bestehend aus dem s-t-Pfad P; und dem Kreis K und es
gilt k(F) = k(P;) + k(K) < k(F).

Da jede Kante e € [' = K \ Ej,_, wegen fi_1(e) = c(e) zwar von
fi—1 aber wegen e € K C FEy nicht von f; gesattigt wird, muss
fi—1(e) # fi(e) und somit e® € P sein, was F' C PF impliziert. Somit
ist jede Kante ¢ € F' und mit ihr auch e® genau einmal in F enthalten.
Entfernen wir nun fiir jede Kante e € F' die beiden Kanten e und e®
aus F, so erhalten wir die Multimenge F' = F'\ (F'U F'?), die wegen
k(e) + k(eff) = 0 dieselben Kosten k(F") = k(F) < k(P;) wie F hat.
Zudem gilt F' C Ey, . Da F' aus F' durch Entfernen von Kreisen
(der Lénge 2) entsteht, ist auch F” ein Multigraph, der sich in einen
s-t-Pfad P’ und eine gewisse Anzahl von Kreisen Ki,..., K, in Ny, |
zerlegen lasst. Da nach Voraussetzung keine negativen Kreise in Ny, |

41

4.4 Kostenoptimale Fliisse

existieren, folgt

k(P') = k(F') - ik(m) < k(F) = k(F) < k(P).

i=1

Basierend auf Lemma 64 kénnen wir nun leicht einen Algorithmus
zur Bestimmung eines maximalen Flusses mit minimalen Kosten in
einem Netzwerk N angeben, falls es in N keine negativen Kreise gibt.

Algorithmus Min-Cost-Flow(V, E,s,t,c, k)
1 for all (u,v) eV xV do
2 f(u,v):=0
3 repeat
{ P < min-zunahmepfad(f)
5 if P# 1 then add(f,P)
6 until P= 1

Hierbei berechnet die Prozedur min-zunahmepfad(f) einen Zunah-
mepfad in Ny, der minimale Kosten unter allen Zunahmepfaden in
Ny hat. Da es in Ny keine negativen Kreise gibt, kann hierzu bspw.
der Bellman-Ford-Moore Algorithmus benutzt werden, der in Zeit
O(mn) lauft. Dies fithrt auf eine Gesamtlaufzeit von O(Mmn), wobei
M = |f] die GroBe eines maximalen Flusses f in IV ist.

Satz 65. In einem Netzwerk N kann ein mazximaler Fluss f mit
minimalen Kosten in Zeit O(|f|mn) bestimmt werden, falls es in N
keine negativen Kreise bzgl. der Kostenfunktion k gibt.

Tatsédchlich lasst sich fiir Netzwerke ohne negative Kreise die Laufzeit
unter Verwendung des Dijkstra-Algorithmus in Kombination mit einer
Preisfunktion auf O(Mmlogn) verbessern.

4 Fliisse in Netzwerken

Definition 66. Sei G = (V,E) ein Digraph mit Kostenfunktion
k . E — Z. Eine Funktion p : V — Z heifst Preisfunktion fir
(G, k), falls fiir jede Kante e = (z,y) in E die Ungleichung

k(z,y) +p(z) —ply) >0

gilt. Die bzgl. p reduzierte Kostenfunktion kP : E — Ny ist

kP(z,y) = k(z,y) + p(z) — p(y).

Lemma 67. Ein Digraph G = (V, E) mit Kostenfunktion k : E — Z
hat genau dann keine negativen Kreise, wenn es eine Preisfunktion
p fir (G, k) gibt. Zudem ldsst sich eine geeignete Preisfunktion p in
Zeit O(nm) finden.

Bewets. Wir zeigen zuerst die Riickwartsrichtung. Sei also p eine Preis-
funktion mit kP (e) > 0 fir alle e € E. Dann gilt fiir jede Kantenmenge
F C FE die Ungleichung k*(F) > 0. Da zudem fir jeden Kreis K in
G die Gleichheit k(K) = kP(K) gilt, folgt sofort k(K) = kP(K) > 0.
Sei nun G ein Digraph und sei k : E — Z eine Kostenfunktion oh-
ne negativen Kreise. Betrachte den Digraphen G’, der aus G durch
Hinzunahme eines neuen Knotens s und Kanten (s, x) fiir alle x € V/
entsteht. Zudem erweitern wir k& mittels &'(s,) = 0 zu einer Kosten-
funktion k" auf G'. Da es auch in (G’, k") keine negativen Kreise gibt,
existiert in G’ fiir jeden Knoten z € V' ein bzgl. k' kiirzester Pfad von
s nach z, dessen Linge wir mit d* (s, z) bezeichnen. Da nun fiir jede
Kante e = (z,y) € F die Ungleichung

d(s,x) + k(z,y) = d"(s,y)

gilt, ist p(z) = d* (s,2) die gesuchte Preisfunktion. Diese lisst sich
mit BFM in Zeit O(nm) finden. |

Sobald wir eine Preisfunktion p fiir das Restnetzwerk Ny haben,
konnen wir Dijkstra zur Berechnung eines bzgl. kP kiirzesten Zunah-
mepfades P in Ny benutzen. P ist dann auch ein kiirzester Pfad bzgl.

42

4.4 Kostenoptimale Fliisse

k, da fiir jeden s-t-Pfad P die Beziehung kP(P) = k(P) + p(s) — p(t)
gilt und p(s) — p(t) eine von P unabhingige Konstante ist.

Falls N keine negativen Kreise hat, konnen wir fir N = Ny, eine
Preisfunktion pg(x) = min{k(P) | P ist ein s-z-Pfad} mit dem BFM-
Algorithmus in Zeit O(nm) berechnen. Angenommen, wir haben fir
ein ¢ > 1 einen Fluss f;_; mit minimalen Kosten k(f;_1) = kmin(fi—1)
und eine Preisfunktion p;_; fiir (Ny, ,, k). Sofern in Ny, | ein Zunah-
mepfad existiert, konnen wir mit dem Dijkstra-Algorithmus in Zeit
O(mlogn) einen bzgl. kPi-! kiirzesten Zunahmepfad P, berechnen
und erhalten einen grofleren Fluss f; = f;—1 + fp, mit minimalen
Kosten k(f;) = kmin(fi). Andernfalls ist f;_; ein maximaler Fluss.

Es bleibt die Frage, wie wir im Fall, dass P; existiert, eine Preisfunktion
p; fiir Ny, finden konnen, ohne erneut BEM zu benutzen.

Lemma 68. Sei d;(s,x) die minimale Pfadlinge von s nach x in
Ny, | bzgl. kPi=1, wobei p;—y : V' — Z eine beliebige Funktion ist. Dann
ist pi(z) = pi—1(x) + di(s, x) eine Preisfunktion fir k in Ny, , und in
Ny,.
Beweis. Wir zeigen zuerst, dass p; eine Preisfunktion fiir (Ny, |, k) ist.
Fir jede Kante e = (z,y) € Ey,_, gilt namlich d;(y) < d;(x) + kP~ (e)
und kPi-1(e) = k(e) + pi—1(z) — pi—1(y). Somit ist

kPi(e) = k(e) + pi(x) — pi(y)
=k(e) +pi-1(x) + di(s,z) — pi-1(y) — di(s,y)
= kP (e) + di(s, v) — di(s,y) > 0.

Falls e auf P, liegt, gilt sogar kPi(e) = 0, da P; ein bzgl. kPi-1 kiirzester
s-t-Pfad in Ny, |, und daher d;(s,y) = di(s,) + kP~ (e) ist.

Da zudem fiir jede Kante e in Ny,, die nicht zu Ny, | gehort, die ge-
spiegelte Kante eft auf dem Pfad P; liegt, folgt kPi(e®) = 0 und somit
kPi(e) = k(e) +pi(x) — pily) = —k(e) —pi(y) + pi(x) = —k" (") = 0.
Dies zeigt, dass p; eine Preisfunktion fur (Ny,, k) ist. [|

4 Fliisse in Netzwerken

Satz 69. In einem Netzwerk N kann ein maximaler Fluss f mit
minimalen Kosten in Zeit O(mn + | flmlogn) bestimmt werden, falls
es in N keine negativen Kreise bzgl. der Kostenfunktion k gibt.

Beweis. Wir berechnen zuerst mit BEM in Zeit O(nm) eine Preis-
funktion py fiir die Kostenfunktion & im Netzwerk N = Ny,. Dann
bestimmen wir in < |f| Iterationen eine Folge von kostenminimalen
Flissen f;, indem wir mit dem Dijkstra-Algorithmus in Zeit O(m logn)
einen bzgl. kPi-! kiirzesten Zunahmepfad P; in Ny, |, berechnen. Da
hierbei bereits die Distanzen d;(x) fiir alle Knoten x berechnet werden
konnen, erfordert die Bestimmung von p; in jeder Iteration nur O(n)
Zeit. [

Das gewichtete Matchingproblem in einem bipartiten Graphen G =
(U, W, E) lasst sich wie folgt auf die Berechnung eines kostenminimalen
maximalen Flusses in einem azyklischen Netzwerk N(G) reduzieren.
Wir fiigen zwei neue Knoten s und ¢ hinzu und verbinden s mit
allen Knoten v € U durch eine neue Kante (s,u) sowie alle Kno-
ten w € W durch eine neue Kante (w,t) mit ¢. Alle Kanten in E
werden von U nach W gerichtet und haben die vorgegebenen Kos-
ten/Gewichte. Alle neue Kanten e haben die Kosten k(e) = 0 und
alle Kanten e in N(G) haben die Kapazitidt c¢(e) = 1. Dann ent-
spricht jedem Fluss f in N(G) genau ein Matching M von G mit
M = {{u,w} € U x W | f(u,w) = 1} (und umgekehrt entspricht
jedem Matching M genau ein Fluss f mit dieser Eigenschaft).

Da die maximale Flussgrofle M in N(G) durch n/2 beschrankt ist,
erhalten wir einen O(mnlogn) Algorithmus fiir das gewichtete Mat-
chingproblem in bipartiten Graphen. Da N(G) kreisfrei ist, konnen
wir hierbei beliebige Kantengewichte zulassen.

Korollar 70. In einem bipartiten Graphen G = (V, E) ldsst sich ein
mazimales Matching mit minimalen Kosten in Zeit O(u(G)mlogn)
berechnen.

43

4.4 Kostenoptimale Fliisse

Beweis. Wir transformieren G in das zugehorige Netzwerk N = N(G).
Da N eine sehr spezielle Form hat, ldsst sich eine Preisfunktion p
fir (IV, k) in Linearzeit bestimmen. Dann berechnen wir in hochstens
w1(G) Tterationen, die jeweils Zeit O(mlogn) beanspruchen, einen
kostenminimalen maximalen Fluss f in V. Aus diesem lésst sich ein
Matching M in G gewinnen, das wegen || M;|| = |f| maximal und
wegen k(My) = k(f) kostenminimal ist. Die beiden Transformationen
von G in N und von f in My bendtigen nur Linearzeit. |

Tatséchlich leistet der Algorithmus von Korollar 70 noch mehr. Er
berechnet fir jede Zahl ¢ mit 1 < i < p(G) ein Matching M; der
GroBe 7, das minimale Kosten unter allen Matchings dieser Grofle hat,
und eine zu M; kompatible Preisfunktion p; ; (siehe Ubungen). Dabei
heif}t eine Preisfunktion p kompatibel zu einem Matching M in G,
falls die reduzierten Kosten von allen Kanten e = (u,w) € U x W
mit {u,w} € E einen nichtnegativen Wert kP(e) > 0 und alle Kanten
e=(u,w) € Ux W mit {u,w} € M den Wert kP(e) = 0 haben.

5 Farben von Graphen

5 Farben von Graphen

Definition 71. Sei G = (V, E) ein Graph und sei k € N.

a) Eine Abbildung f: V — N heifst Farbung von G, wenn f(u) #
f(v) fir alle {u,v} € E gilt.

b) G heifit k-farbbar, falls eine Farbung f: V. — {1,...,k} exis-
tiert.

c¢) Die chromatische Zahl ist

X(G) = min{k € N | G ist k-farbbar}.
Beispiel 72.

X(En) = 1 X(Kpm) = 2, x(Kq) =n,

, n gerade

3, sonst.

Ein wichtiges Entscheidungsproblem ist, ob ein gegebener Graph
k-farbbar ist. Dieses Problem ist fiir jedes feste k£ > 3 schwierig.

k-Farbbarkeit (k-COLORING):

Gegeben: Ein Graph G.
Gefragt: Ist G k-farbbar?

Satz 73. k-COLORING st fir k > 3 NP-vollstandig.
Lemma 74. n/a(G) < x(G) <n—a(G) + 1.

Beweis. Sei G ein Graph und sei ¢ eine x(G)-Féarbung von G. Da
dann die Mengen S; = {u € V | ¢(u) =i}, i = 1,..., x(G), stabil

44

sind, folgt [|.S;]| < a(G) und somit gilt

x(G)
n= 3 ISI < x(@)a(G).

Fiir den Beweis von x(G) < n — a(G) + 1 sei S eine stabile Menge in
G mit ||S]| = a(G). Dann ist G — S k-farbbar fiir ein k& < n — ||.S]|.
Da wir alle Knoten in S mit der Farbe k + 1 firben koénnen, folgt
X(G)<k+1<n-alG)+1. [|

Beide Abschétzungen sind scharf, konnen andererseits aber auch
beliebig schlecht werden.

Lemma 75. (X(zG)) <m.

Beweis. Zwischen je zwei Farbklassen einer optimalen Farbung muss
es mindestens eine Kante geben. |

Lemma 76. w(G) < x(G) < A(G) + 1.

Beweis. Betrachte folgenden Farbungsalgorithmus:

Algorithmus greedy-color

i input ein Graph G = (V,E) mit V ={vy,...,u,}
> c(vy) =1

3 for i:=2 to n do

4

F;:={c(v)) | 7 <i,v; € N(v;)}
c(v;) =min{k > 1|k & F}

Da fir die Farbe c(v;) von v; nur ||F;|| < A(G) Farben verboten sind,
gilt ¢(v;) < A(G) + 1. []

Satz 77 (Brooks 1941 (vereinfachter Beweis von Lovasz, 1975)). Sei
G ein Graph mit A(G) > 3. Dann gilt x(G) = A(G) + 1 nur dann,
wenn Kaqy+1 ein Teilgraph von G ist.

5 Féarben von Graphen

Beweis. Wir fiihren Induktion iiber n. Fir n < 4 gibt es genau 3
Graphen G mit A(G) > 3. Diese erfiillen die Behauptung.

Sein nun G ein Graph mit n > 4 Knoten und Maximalgrad
d = A(G) > 3, der K1 nicht als Teilgraph enthalt. Wir kénnen
annehmen, dass G zusammenhéngend ist.

Falls es in G einen Knoten u mit deg(u) < d gibt, dann ist G — u
nach IV d-farbbar und somit auch G.

Es bleibt der Fall, dass alle Knoten v den Grad d haben. Da G # Ky
ist, folgt n > d + 2. Falls G einen Schnittknoten s hat, d.h. in G — s
gibt es k > 2 Komponenten Gy, ... Gy, folgt nach IV x(G;) < d und
somit auch x(G) < d.

Behauptung 78. In G gibt es einen Knoten u, der zwei Nachbarn
a und b mit {a,b} ¢ E hat, so dass G — {a,b} zusammenhdingend ist.

Da G den K41 nicht als Teilgraph enthélt, hat jeder Knoten u zwei
Nachbarn v,w € N(u) mit {v,w} € E. Falls G — v 2-fach zusammen-
héngend ist, ist G — {v, w} zusammenhéangend und die Behauptung
folgt.

Falls G — v nicht 2-fach zusammenhangend ist, hat G — v mindes-
tens zwei 2-fach-Zusammenhangskomponenten (Blocke) By, ..., By
der Blockbaum 7" hat mindestens zwei Blitter B;, B;. Da k(G) > 2
ist, ist v in G zu mindestens einem Knoten in jedem Blatt B von
T benachbart, der kein Schnittknoten ist. Wéahlen wir fiir ¢ und b
zwei dieser Knoten, so ist G — {a, b} zusammenhédngend und somit
die Behauptung bewiesen.

Sei also u ein Knoten, der zwei Nachbarn a und b mit {a,b} ¢ E
hat, so dass G — {a, b} zusammenhéngend ist. Wir wenden auf den
Graphen G — {a,b} eine Tiefensuche an mit Startknoten u; = w.
Sei (uq,...,u,_2) die Reihenfolge, in der die Knoten besucht werden.
Nun lassen wir greedy-color mit der Reihenfolge (a, b, u, 2, ..., u1)
laufen.

Behauptung 79. greedy-color benutzt < d Farben.

45

5.1 Férben von planaren Graphen

Die Knoten a und b erhalten die Farbe c¢(a) = ¢(b) = 1. Jeder Knoten
u;, © > 1, ist mit einem Knoten u; mit j < ¢ verbunden. Daher ist
seine Farbe c(u;) < deg(u;) < d. Da u = u; bereits zwei Nachbarn a
und b mit derselben Farbe hat, folgt auch c(u) < d. [|

Korollar 80. FEs gibt einen Linearzeitalgorithmus, der alle Graphen
G mit A(G) < 3 mit x(G) Farben farbt.

5.1 Farben von planaren Graphen

Ein Graph G heifit planar, wenn er so in die Ebene einbettbar ist,
dass sich zwei verschiedene Kanten hochstens in ihren Endpunkten
berithren. Dabei werden die Knoten von G als Punkte und die Kanten
von G als Verbindungslinien zwischen den zugehorigen Endpunkten
dargestellt.

Bereits im 19. Jahrhundert wurde die Frage aufgeworfen, wie viele
Farben hochstens benotigt werden, um eine Landkarte so zu farben,
dass aneinander grenzende Lander unterschiedliche Farben erhalten.
Offensichtlich ldsst sich eine Landkarte in einen planaren Graphen
transformieren, indem man fiir jedes Land einen Knoten zeichnet und
benachbarte Lander durch eine Kante verbindet. Lander, die sich nur
in einem Punkt beriihren, gelten dabei nicht als benachbart.

Die Vermutung, dass 4 Farben ausreichen, wurde 1878 von Kempe
,bewiesen“ und erst 1890 entdeckte Heawood einen Fehler in Kempes
,Beweis“. Ubrig blieb der 5-Farben-Satz. Der j/-Farben-Satz wurde erst
1976 von Appel und Haken bewiesen. Hierbei handelt es sich jedoch
nicht um einen Beweis im klassischen Sinne, da zur Uberpriifung der
vielen auftretenden Spezialfalle Computer benétigt werden.

Satz 81 (Appel, Haken 1976).
Jeder planare Graph ist J-farbbar.

5 Farben von Graphen

Aus dem Beweis des 4-Farben-Satzes von Appel und Haken lasst sich
ein 4-Farbungsalgorithmus fiir planare Graphen mit einer Laufzeit
von O(n*) gewinnen.

In 1997 fanden Robertson, Sanders, Seymour und Thomas einen ein-
facheren Beweis fiir den 4-Farben-Satz, welcher zwar einen deutlich
schnelleren O(n?) Algorithmus liefert, aber auch nicht ohne Computer-
Unterstiitzung verifizierbar ist.

Beispiel 82. Wie die folgenden Einbettungen von K4 und Ks3 in die
Ebene zeigen, sind Ky und Ky 3 planar.

K4.' K273.'

Um eine Antwort auf die Frage zu finden, ob auch K5 und K33 pla-
nar sind, betrachten wir die Gebiete von in die Ebene eingebetteten
Graphen.

Durch die Kanten eines eingebetteten Graphen wird die Ebene in
so genannte Gebiete unterteilt. Nur eines dieser Gebiete ist unbe-
schrinkt und dieses wird als duBeres Gebiet bezeichnet. Die Anzahl
der Gebiete von G bezeichnen wir mit 7(G) oder kurz mit r. Der
Rand rand(g) eines Gebiets g ist die (zirkuldre) Folge aller Kanten,
die an g grenzen, wobei jede Kante so durchlaufen wird, dass g ,in
Fahrtrichtung links* liegt bzw. bei Erreichen eines Knotens iiber ei-
ne Kante e, u tiber die im Uhrzeigersinn nichste Kante ¢ wieder
verlassen wird. Die Anzahl der an ein Gebiet g grenzenden Kanten
bezeichnen wir mit d(g), wobei von g eingeschlossene Kanten doppelt
gezahlt werden.

Die Gesamtzahl -, d(g) aller Inzidenzen von Gebieten und Kanten
bezeichnen wir mit i(G). Da jede Kante genau 2 Inzidenzen zu dieser

46

5.1 Farben von planaren Graphen

Summe beitrigt, folgt

Ein ebener Graph wird durch das Tripel G = (V, E, R) beschrieben,
wobei R aus den Réandern aller Gebiete von G besteht. Wir nennen
G auch ebene Realisierung des Graphen (V, E). Durch R ist fiir
jeden Knoten u die (zirkuldre) Ordnung 7 auf allen mit u inzidenten
Kanten eindeutig festgelegt (und umgekehrt). Man nennt 7 das zu
G gehorige Rotationssystem. Dieses kann bei Verwendung der Ad-
jazenzlistendarstellung, ohne zusatzlichen Platzaufwand gespeichert
werden, indem man die zu u adjazenten Knoten geméfl = anordnet.

Beispiel 83. Nebenstehender ebener i
Graph hat 13 Kanten a,...,m und 7
Gebiete mit den Rdndern
Das zugehorige Rotationssystem ist
™= {<a7 f’ 2)7 (a/7j7 b7 g)? (b7 C’ h)7 (67 k? f? g)? <d7 e? h)?

R={(a f,9), ,(b,9,¢,h),
(¢, 7,4, k,d),(I,m), (m)}.

(b,e,4), (e, h,d),(d,e, k),

(f7 7;7 l? m7 m7 l7 k)}'
Man beachte, dass sowohl in R als auch in 7 jede Kante genau zweimal
vorkommdt. <

Satz 84 (Polyederformel von Euler, 1750).
Fiir einen zusammenhdngenden ebenen Graphen G = (V, E, R) gilt

n(G) —m(G) +r(G) = 2. (%)

Beweis. Wir fihren den Beweis durch Induktion tiber die Kantenzahl
m(G) = m.

5 Féarben von Graphen

m = 0: Da G zusammenhéngend ist, muss dann n = 1 sein.
Somit ist auch r = 1, also (x) erfiillt.

m — 1~ m: Sei GG ein zusammenhédngender ebener Graph mit m
Kanten.

Ist G ein Baum, so entfernen wir ein Blatt und erhalten einen
zusammenhédngenden ebenen Graphen G’ mit n —1 Knoten, m — 1
Kanten und r Gebieten. Nach IV folgt (n — 1) — (m — 1) +r = 2,
d.h. (%) ist erfiillt.

Falls G kein Baum ist, entfernen wir eine Kante auf einem Kreis
in G und erhalten einen zusammenhéangenden ebenen Graphen G’
mit n Knoten, m — 1 Kanten und r — 1 Gebieten. Nach IV folgt
n—(m—1)+ (r —1) = 2 und daher ist () auch in diesem Fall
erfiillt. [|

Korollar 85. Sei G = (V, E) ein planarer Graph mit n > 3 Knoten.
Dann ist m < 3n — 6. Falls G dretecksfrei ist gilt sogar m < 2n — 4.

Beweis. O.B.d.A. sei G zusammenhéngend. Wir betrachten eine be-
liebige planare Einbettung von G. Da n > 3 ist, ist jedes Gebiet g
von d(g) > 3 Kanten umgeben. Daher ist 2m = i = >, d(g) > 3r
bzw. r < 2m/3. Eulers Formel liefert

m=n+r—2<n+2m/3 -2,

was (1 —2/3)m < n — 2 und somit m < 3n — 6 impliziert.

Wenn G dreiecksfrei ist, ist jedes Gebiet von d(g) > 4 Kanten umge-
ben. Daher ist 2m =i = Y, d(g) > 4r bzw. r < m/2. Eulers Formel
liefert daher m =n+r —2 <n+m/2 — 2, was m/2 < n — 2 und
somit m < 2n — 4 impliziert. [|

Korollar 86. K5 ist nicht planar.

47

5.1 Férben von planaren Graphen

Beweis. Wegen n =5, also 3n — 6 = 9, und wegen m = (g) = 10 gilt
m £ 3n — 6. (]

Korollar 87. K33 ist nicht planar.

Beweis. Wegen n = 6, also 2n — 4 = 8, und wegen m = 3 -3 =9 gilt
m £ 2n — 4. |

Als weitere interessante Folgerung aus der Polyederformel kénnen wir
zeigen, dass jeder planare Graph einen Knoten v vom Grad deg(v) < 5
hat.

Lemma 88. Jeder planare Graph hat einen Minimalgrad 6(G) < 5.

Beweis. Fiir n < 6 ist die Behauptung klar. Fiir n > 6 impliziert die
Annahme §(G) > 6 die Ungleichung

m = % ZuGV d@g(U) Z %ZUEV 6= 3”7

was im Widerspruch zu m < 3n — 6 steht. |

Definition 89. Sei G = (V, E) ein Graph und seien u,v € V. Dann
entsteht der Graph G, = (V — {v}, E') mit

E'={eeE|vdetU{{u,v}|{v,v'} € E—{u,v}}.

durch Fusion von u und v. Ist e = {u,v} eine Kante von G (also
e € F), so sagen wir auch, G, ensteht aus G durch Kontraktion
der Kante e. G heifit zu H kontrahierbar, falls H aus einer iso-
morphen Kopie von G durch eine Folge von Kontraktionen gewonnen
werden kann.

Satz 90 (Kempe 1878, Heawood 1890).
Jeder planare Graph ist 5-farbbar.

Beweis. Wir beweisen den Satz durch Induktion tiber n.
n = 1: Klar.

5 Farben von Graphen

n — 1~»n: Da G planar ist, existiert ein Knoten v mit deg(u) < 5.
Zunéchst entfernen wir v aus G. Falls u fiinf Nachbarn hat, existie-
ren zwei Nachbarn v und w, die nicht durch eine Kante verbunden
sind, und wir fusionieren diese zu v.

Der resultierende Graph G’ ist planar und hat n’ < n — 1 Knoten.
Daher existiert nach IV eine 5-Farbung ¢ fiir G'. Da wir nun w
mit ¢(v) farben konnen und somit die Nachbarn von u hochstens

4 verschiedene Farben haben, ist G 5-farbbar. |
Definition 91. Seien G = (V, E) ein Graph, v € V und e € (‘2/)
e Durch Entfernen des Knotens v entsteht der Graph G|V — {v}]
aus G, den wir mit G — v bezeichnen.
e Den Graphen (V, E — {e}) bezeichnen wir mit G — e und den
Graphen (V, E U {e}) mit G U e.
e Hatv den Grad 2 und sind v und w die beiden Nachbarn von v, so

entsteht der Graph G' = (G —v) U {u,w} durch Uberbriickung
von v aus G.

e H heifst Unterteilung von G, wenn G durch sukzessive Uber-
briickungen aus einer isomorphen Kopie von H entsteht.

Beispiel 92. Betrachte folgende Graphen.

Offensichtlich ist H keine Unterteilung von G. Entfernen wir jedoch
die beiden diinnen Kanten aus H, so ist der resultierende Teilgraph
eine Unterteilung von G. Dagegen ist kein Teilgraph von H' eine
Unterteilung von G. <

Kuratowski konnte 1930 beweisen, dass jeder nichtplanare Graph G
eine Unterteilung des K33 oder des K als Teilgraph enthalt. Fiir den
Beweis benétigen wir noch folgende Notationen.

5.1 Farben von planaren Graphen

Definition 93. Sei G ein Graph und sei K ein Kreis in G. Ein
Teilgraph B von G heifit Briicke von K in G, falls

e B nur aus einer Kante besteht, die zwei Knoten von K wverbindet,
aber nicht auf K liegt, oder

e B — K eine Zusammenhangskomponente von G — K ist und B
aus B — K durch Hinzufiigen aller Kanten zwischen B — K und
K (und der zugehorigen Endpunkte auf K) entsteht.

Die Knoten von B, die auf K liegen heiflen Kontaktpunkte von B.
Zwei Briicken B und B' von K heiffen inkompatibel, falls

e B Kontaktpunkte u,v und B’ Kontaktpunkte u',v'" hat, so dass
diese vier Punkte in der Reihenfolge u,u',v,v" auf K liegen, oder

e B und B’ mindestens 3 gemeinsame Kontaktpunkte haben.

Es ist leicht zu sehen, dass ein Graph G genau dann planar ist, wenn
sich die Briicken jedes Kreises K von G in hochstens zwei Mengen
partitionieren lassen, so dass jede Menge nur kompatible Briicken
enthélt.

Satz 94 (Kuratowski 1930).
Fiir einen Graphen G sind folgende Aussagen dquivalent:

- G ist planar.
- Keine Unterteilung des K33 oder des K5 ist ein Teilgraph von G.

Beweis. Wenn eine Unterteilung G’ des K33 3 oder des K ein Teilgraph
von G ist, so ist G’ und folglich auch G nicht planar.

Sei nun G = (V, E) nicht planar. Durch Entfernen von Knoten und
Kanten erhalten wir einen 3-zusammenhangenden nicht planaren Teil-
graphen G' = (V' E'), so dass G’ — ¢’ fiir jede Kante ¢ € E’ planar
ist (sieche Ubungen). Wir entfernen eine beliebige Kante eq = {aq, by}
aus G'. Da G’ — ey 2-zusammenhéngend ist, gibt es einen Kreis durch
die beiden Knoten ag und by in G’ — ey. Sei H' eine ebene Realisierung
von G’ — ¢y und sei K ein Kreis durch die beiden Knoten ag und by.

5 Féarben von Graphen

Dabei wahlen wir H' und K so, dass es keine ebene Realisierung H”
von G’ — eq gibt, in der ein Kreis durch ag und b, existiert, der in H”
mehr Gebiete als K in H’ einschlief}t.

Dann ist eq eine Briicke von K in G’. Die tibrigen Briicken von K in
G’ sind auch Briicken von K in H’. Die Kanten jeder solchen Briicke
B verlaufen entweder alle innerhalb oder alle aulerhalb von K in H'.
Im ersten Fall nennen wir B eine innere Briicke und im zweiten
eine duflere Briicke.

Fir zwei Knoten a,b auf K bezeichnen wir mit KJa,b] die Menge
aller Knoten, die auf dem Bogen von @ nach b (im Uhrzeigersinn) auf
K liegen. Zudem sei K|a,b) = KJa,b] \ {b}. Die Mengen K (a,b) und
K (a, b] sind analog definiert.

Behauptung 95. Jede duffere Briicke B besteht aus einer Kante, die
einen Knoten in K(ag, by) mit einem Knoten in K (by, ay) verbindet.

Zum Beweis der Behauptung nehmen wir an, dass B mindestens 3
Kontaktpunkte oder mindestens einen Kontaktpunkt in {ag, by} hat.
Dann liegen mindestens zwei dieser Punkte auf K|ag, by] oder auf
Kby, ag|. Folglich kann K zu einem Kreis K’ erweitert werden, der
mehr Gebiete einschlieBt (bzw. ausschliefit) als K, was der Wahl von
K und H’ widerspricht.

Nun wahlen wir eine innere Briicke B*, die sowohl zu ey als auch zu
einer duferen Briicke B inkompatibel ist. Eine solche Briicke muss es
geben, da wir sonst alle mit ey inkompatiblen inneren Briicken nach
auflen klappen und ey als innere Briicke hinzunehmen kénnten, ohne
die Planaritit zu verletzen.

Sei B = {a1,b1}. Da ey und B inkompatibel sind, kénnen wir anneh-
men, dass diese vier Knoten in der Reihenfolge ag,aq, by, by auf K
liegen. Wir zeigen nun, dass G’ eine Unterteilung des K33 oder des
K5 als Teilgraph enthalt. Hierzu geben wir entweder zwei disjunkte
Mengen A, B C V' mit jeweils 3 Knoten an, so dass 9 knotendisjunk-
te Pfade zwischen allen Knoten a € A und b € B existieren. Oder

5.1 Férben von planaren Graphen

wir geben fiinf Knoten an, zwischen denen 10 knotendisjunkte Pfade
existieren.

Fall 1: B* hat einen Kontaktpunkt k; & {ao, ai, by, b1}. Aus Symme-
triegrinden konnen wir k; € K(ag, a;) annehmen. Da B* weder
7u eo noch zu B kompatibel ist, hat B* weitere Kontaktpunkte
ke € K(bo,ap) und k3 € K(ay,b1), wobei ky = k3 sein kann.

Fall 1a: 3k € {ko, k3} N K(by,b1). In diesem Fall existieren 9
knotendisjunkte Pfade zwischen {ag, a1, k} und {bg, b1, k1 }.

Fall 1b: {ko, k3} N K(by,b1) = 0. In diesem Fall ist ky € Kby, ao)
und k3 € K(ay,b]. Dann gibt es in B* einen Knoten u, von
dem aus 3 knotendisjunkte Pfade zu {ky, ko, k3} existieren.
Folglich gibt es 9 knotendisjunkte Pfade zwischen {ag, a;,u}
und {]{1, k’g,]{33}

Fall 2: B* hat nur Kontaktpunkte k € {ag, a1, bg, b1}. In diesem Fall
miissen alle vier Punkte zu B* gehdren und es gibt in B* einen
ap-bp-Pfad P, sowie einen a;-b;-Pfad P;.

Fall 2a: F, und P, haben nur einen Knoten u gemeinsam. Dann
gibt es in B* vier knotendisjunkte Pfade von u zu {ay, a1, by, b1 }
und somit 10 knotendisjunkte Pfade zwischen den Knoten
u, ap, ay, b(), bl.

Fall 2b: P, und P, haben mindestens zwei Knoten gemeinsam.
Seien u der erste und v der letzte Knoten auf Fy, die auch
auf P; liegen. Dann gibt es in B* drei knotendisjunkte Pfade
zwischen u und allen Knoten in {v, ag, a1 } und zwei zwischen v
und allen Knoten in {bg, b; }. Folglich gibt es 9 knotendisjunkte
Pfade zwischen {ag, a1, v} und {by, by, u}. m

Definition 96. Seien G, H Graphen. H heifst Minor von G, wenn
sich H aus einem zu G isomorphen Graphen durch wiederholte An-
wendung folgender Operationen gewinnen ldsst:

e FEntfernen von Kanten,

49

5 Farben von Graphen

e Fntfernen von isolierten Knoten und

o Kontraktion von Kanten.

G heifit H-frei, falls H kein Minor von G ist. Fir eine Menge H
von Graphen heifst G H-frei, falls G fir alle H € H H-frei ist.

Da die Kantenkontraktionen zuletzt ausgefithrt werden kénnen, ist
H genau dann ein Minor von GG, wenn ein Teilgraph von G zu H
kontrahierbar ist. Zudem ist leicht zu sehen, dass G und H genau
dann Minoren voneinander sind, wenn sie isomorph sind.

Beispiel 97. Wir betrachten nochmals die Graphen G und H'.

G ist ein Minor von H', da durch Fusion der Knoten c,d, e, f ein zu
G isomorpher Graph aus H' entsteht. <

Wagner beobachtete, dass sich aus dem Satz von Kuratowski folgende
Charakterisierung der Klasse der planaren Graphen ableiten lésst
(siche Ubungen).

Korollar 98 (Wagner 1937). Ein Graph ist genau dann planar, wenn
er { K33, K5}-frei ist.

Beispiel 99. Betrachte folgenden Graphen.

20

5.1 Farben von planaren Graphen

Durch Entfernen der diinnen Kanten entsteht eine Unterteilung des
K5. Aus dieser erhalten wir den Ks, indem wir alle diinn umrandeten
Knoten (also alle Knoten vom Grad 2) tberbriicken.

Alternativ lasst sich der Ks auch durch Fusion aller Knoten in
den farblich unterlegten Umgebungen der dick umrandeten Knoten
gewinnen. <

Definition 100. Sei < eine bindre Relation auf einer Menge A.

a) (A, <) heifit Quasiordnung, wenn < reflexiv und transitiv auf
A ist.

b) (A, <) heiffit Wohlquasiordnung, wenn es zudem zu jeder Folge
ai,as, ... von Elementen aus A Indizes i < j mit a; < a; gibt.

Proposition 101. Eine Quasiordnung (A, <) ist genau dann eine
Wohlquasiordnung, wenn es in (A, <) weder unendliche absteigende
Ketten ay > ag > - -+ noch unendliche Antiketten B gibt (d.h. fir alle
b#b € B gilt weder b <V noch b <b).

Beweis. Es ist klar, dass (A, <) keine Wohlquasiordnung ist, wenn
es eine unendliche absteigende Kette oder eine unendliche Antikette
gibt.

Wenn umgekehrt weder unendliche absteigende Ketten noch unendli-
che Antikette existieren, so kénnen wir in jeder Folge aq, ao,... alle

5 Féarben von Graphen

Elemente a; streichen, fiir die ein ¢ < j existiert, so dass a; > a; ist.
Da hierbei von jeder absteigenden Kette ein Element in der Folge
verbleibt und alle diese Ketten endlich sind, enthéalt die verbleibende
Folge immer noch unendlich viele Elemente.

Als néchstes streichen wir alle Elemente a;, fir die ein 7 < j existiert,
so dass a; und a; unvergleichbar sind. Die verbleibende Folge ist dann
immer noch unendlich und sogar monoton, d.h. es gilt a; < a;, fir
alle 1. |

Proposition 102. In einer Wohlquasiordnung (A, <) hat jede Teil-
menge B C A bis auf Aquivalenz nur endlich viele minimale Elemente.
Dabei heiffen a,b € A dquivalent, falls a < b und b < a gilt.

Satz 103 (Satz von Robertson und Seymour, 1983-2004). Die Mino-
renrelation bildet auf der Menge aller endlichen ungerichteten Graphen
eine Wohlquasiordnung.

Korollar 104. Sei K eine Graphklasse, die unter Minorenbildung
abgeschlossen ist (d.h. wenn G € K und H ein Minor von G ist, dann
folgt H € K). Dann gibt es eine endliche Menge H von Graphen mit

K ={G |G ist H-frei}.

Die Graphen in H sind bis auf Isomorphie eindeutig bestimmt und
heiflen verbotene Minoren fiir die Klasse K. Fiir den Beweis des
Korollars betrachten wir die komplementére Klasse K aller endlichen
Graphen, die nicht zu IC gehoren. Nach Satz 103 in Kombination mit
Proposition 102 hat K bis auf Isomorphie nur endlich viele minimale
Elemente. Da mit H auch jeder Graph G, der H als Minor enthélt,
zu K gehort, gibt es demnach eine endliche Menge H von Graphen
mit

K ={G|3H € H : H ist ein Minor von G},

womit Korollar 104 bewiesen ist.

o1

5.2 Farben von chordalen Graphen

Das Problem, fiir zwei gegebene Graphen G und H zu entscheiden,
ob H ein Minor von G ist, ist zwar NP-vollstandig. Fiir einen festen
Graphen H ist das Problem dagegen effizient entscheidbar.

Satz 105 (Robertson und Seymour, 1995). Fir jeden Graphen H gibt
es einen O(n3)-zeitbeschrinkten Algorithmus, der fiir einen gegebenen
Graphen G entscheidet, ob er H-frei ist.

Korollar 106. Die Zugehorigkeit zu jeder unter Minorenbildung ab-
geschlossenen Graphklasse K ist in P entscheidbar.

Der Entscheidungsalgorithmus fiir & ldsst sich allerdings nur ange-
ben, wenn wir die verbotenen Minoren fiir IC kennen. Leider ist der
Beweis von Theorem 103 in dieser Hinsicht nicht konstruktiv, so dass
der Nachweis, dass IC unter Minorenbildung abgeschlossen ist, nicht
automatisch zu einem effizienten Erkennungsalgorithmus fir K fiithrt.

5.2 Farben von chordalen Graphen

Definition 107. Ein Graph G = (V,E) heifit chordal, wenn er
keinen induzierten Kreis der Linge > 4 enthdlt.

Ein induzierter Kreis G[{uy, ..., ux}] enthélt also nur die Kreiskan-
ten {uy, ua}, ..., {wp—1, up}, {ug, w1}, aber keine Sehnen {u;, u;} mit
i—j £y +1.

Definition 108. Sei G ein Graph. Eine Menge S C V' heifst Sepa-
rator von G, wenn G — S mehr Komponenten als G hat.

Lemma 109. Fir einen Graphen G sind folgende Aussagen dquiva-
lent.

(i) G ist chordal.

(ii) Jeder inklusionsminimale Separator von G ist eine Clique.

(iii) Jedes Paar von nicht adjazenten Knoten x und y in G hat einen
inklusionsminimalen x-y-Separator S, der eine Clique ist.

5 Farben von Graphen

Beweis. Sei G chordal und sei S ein minimaler Separator von G.
Dann hat G — S mindestens zwei Komponenten G[V;] und G[V5].
Angenommen, S enthélt zwei nicht adjazente Knoten z und y. Da S
minimal ist, sind beide Knoten sowohl mit G[V;] als auch mit G[V5]
verbunden. Betrachte die beiden Teilgraphen G; = G[V; U {z,y}] und
wahle jeweils einen kiirzesten z-y-Pfad P; in G;. Da diese eine Lange
> 2 haben, bilden sie zusammen einen Kreis K = P; U P, der Lange
> 4. Aufgrund der Konstruktion von K ist klar, dass K keine Sehne
in G hat. Dies zeigt, dass die erste Aussage die zweite impliziert.

Dass die zweite die dritte impliziert, ist klar. Um zu zeigen, dass die
erste aus der dritten folgt, nehmen wir an, dass G nicht chordal ist.
Dann gibt es in G einen induzierten Kreis K der Lange > 4. Seien
x und y zwei beliebige nicht adjazente Knoten auf K und sei S ein
minimaler z-y-Separator in G. Dann muss S mindestens zwei nicht
adjazente Knoten aus K enthalten. [

Definition 110. Sei G = (V, E) ein Graph und sei k > 0. Ein Kno-
ten u € V heifit k-simplizial in G, wenn die Nachbarschaft N(u)
eine Clique der Grofie k in G bildet. Jeder k-simpliziale Knoten wird
auch als simplizial bezeichnet.

Zusammenhéangende chordale Graphen konnen als eine Verallgemeine-
rung von Baumen aufgefasst werden. Ein Graph G ist ein Baum, wenn
er aus K, durch sukzessives Hinzufiigen von 1-simplizialen Knoten
erzeugt werden kann. Entsprechend heifit G k-Baum, wenn G aus
K}, durch sukzessives Hinzufiigen von k-simplizialen Knoten erzeugt
werden kann. Wir werden sehen, dass ein zusammenhéangender Graph
G genau dann chordal ist, wenn er aus einem isolierten Knoten (also
aus einer 1-Clique) durch sukzessives Hinzufligen von simplizialen
Knoten erzeugt werden kann. Aquivalent hierzu ist, dass G durch
sukzessives Entfernen von simplizialen Knoten auf einen isolierten
Knoten reduziert werden kann.

52

5.2 Farben von chordalen Graphen

Definition 111. Sei G = (V, E) ein Graph. Fine lineare Ordnung
(v1,...,v,) auf V heifst perfekte Eliminationsordnung von G,
wenn v; simplizial in G[{vy,...,v;}] firi=1,... n ist.

Lemma 112. Jeder nicht vollstindige chordale Graph G = (V, E)
besitzt mindestens zwei simpliziale Knoten, die nicht durch eine Kante
verbunden sind.

Beweis. Wir fithren Induktion iiber n. Fiir n < 2 ist die Behauptung
klar. Sei G ein zusammenhéngender Graph mit n > 3 Knoten. Falls
G nicht vollsténdig ist, enthélt G' zwei nichtadjazente Knoten z; und
T9. Sei S ein minimaler x1-zo-Separator und seien G[V;] und G[V5]
die beiden Komponenten von G — S mit x; € V;. Nach Lemma 109
ist S eine Clique in G. Betrachte die Teilgraphen G; = G[V; U S]. Da
G; chordal ist und weniger als n Knoten hat, ist V; U S entweder eine
Clique oder G; enthélt mindestens zwei nicht adjazente simpliziale
Knoten y;, z;, wovon hochstens einer zu S gehort. Da im zweiten Fall
y; oder z; in Vj ist, ist mindestens einer der drei Knoten z;, y; und z;
ohne Nachbarn in G[V3_;] und somit auch simplizial in G. |

Satz 113. Ein Graph ist genau dann chordal, wenn er eine perfekte
Eliminationsordnung hat.

Beweis. Falls G chordal ist, lasst sich eine perfekte Eliminations-
ordnung geméafl Lemma 112 bestimmen, indem wir beginnend mit
i = n sukzessive einen simplizialen Knoten v; in G[V —{v; 41, ..., v,}]
wahlen.

Fiir die umgekehrte Richtung sei (vy, ..., v,) eine perfekte Elimina-
tionsordnung von G. Wir zeigen induktiv, dass G; = G[{vy,...,v;}]
chordal ist. Da v;y; simplizial in G, ist, enthélt jeder Kreis K der
Léange > 4 in G, 1, auf dem v;, liegt, eine Sehne zwischen den beiden
Kreisnachbarn von v;, ;. Daher ist mit G; auch G;,; chordal. [|

5 Féarben von Graphen

Korollar 114. Es gibt einen Algorithmus A, der das Erkennungspro-
blem fiir chordale Graphen in Polynomialzeit lost. A gibt zudem eine
perfekte Eliminationsordnung, eine k-Fdrbung sowie eine k-Clique

mit k = x(G) = w(G) von G aus, falls G chordal ist, und andernfalls

einen induzierten Kreis der Linge > 4.

Beweis. A versucht wie im Beweis von Theorem 113 beschrieben, eine
perfekte Eliminationsordnung zu bestimmen. Stellt sich heraus, dass
Gi = GV — {vit1,. .., v,}] keinen simplizialen Knoten v; hat, so ist
G; wegen Lemma 112 nicht chordal. Folglich gibt es wegen Lemma 109
in G; zwei nicht adjazente Knoten x und y, so dass kein minimaler
x-y-Separator S eine Clique ist. Wie im Beweis von Lemma 109 be-
schrieben, lésst sich mithilfe von S ein induzierter Kreis K der Lénge
> 4 in G; konstruieren. Da G; ein induzierter Teilgraph von G ist, ist
K auch ein induzierter Kreis in G.

Gelingt die Konstruktion einer perfekten FEliminationsordnung
(v1,...,v,) fir G, so benutzen wir greedy-color mit dieser Rei-
henfolge, um eine Farbung f : G — {1,..., k} fir G zu berechnen. Ist
v; ein beliebiger Knoten mit f(v;) = k, so muss v; mindestens k — 1
Nachbarn in der Menge {v1, ..., v;_1} haben. Folglich bildet v; zusam-
men mit diesen Nachbarn eine k-Clique, woraus k = x(G) = w(G)
folgt. |

5.3 Kantenfarbungen

Definition 115. Sei G = (V, E) ein Graph und sei k € N,

a) Eine Abbildung f: E — N heiffit Kantenfarbung von G, wenn
fle) # f(€) fir alle Kanten e, e mit ene' # 0 gilt.

b) G heifit k-kantenfdrbbar, falls eine Kantenfirbung f: E —
{1,...,k} existiert.

53

5.3 Kantenfirbungen

c) Die kantenchromatische Zahl oder der chromatische In-
dex von G ist

X' (G) = min{k € N | G ist k-kantenfirbbar}.

Ist f eine k-Kantenfirbung von G, so bildet jede Farbklasse
M; = {e € E | f(e) = i} ein Matching in G, d.h. f zerlegt F in
k disjunkte Matchings M, ..., M. Umgekehrt liefert jede Zerlegung
von FE in k disjunkte Matchings eine k-Kantenfarbung von G.

Beispiel 116.

3, n ungerade,
2, sonst,

X' (Cn) = {

Y (K,) =2[n/2] —1= {7% n ungerade,

n—1, sonst,
(siehe Ubungen,).

Lemma 117. Fir jeden nicht leeren Graphen gilt A < x' <2A —1
und m/p < x' < 2[n/2] — 1.

Beweis. Siehe Ubungen. [|

Korollar 118. Fir jeden nicht leeren k-reguldren Graphen mit einer
ungeraden Knotenzahl gilt X' (G) > k.

Beweis. Wegen p < (n —1)/2 und 2m = nA folgt X’ > m/u >
nA/(n—1) > A =k. [
Lemma 119. Fir jeden bipartiten Graphen gilt x' = A.

Beweis. Sieche Ubungen. Dort wird die Aussage sogar fiir biparti-
te Multigraphen (d.h. zwei Knoten kénnen durch mehrere Kanten
verbunden sein) bewiesen. |

5 Farben von Graphen 5.3 Kantenfirbungen

Als nachstes geben wir einen Algorithmus an, der fiir jeden Graphen
G eine k-Kantenfarbung mit £ < A(G) + 1 berechnet. Fiir den Beweis
benotigen wir folgende Begriffe.

Definition 120. Sei G = (V, E) ein Graph.

a) Ein Knoten u € V heifst d-gradig, wenn folgende Bedingungen
erfullt sind:

o deg(u) <d,
e alle Nachbarn v € N(u) haben einen Grad deg(v) < d und
e [{v € N(u) | deg(v) = d}|| < 1.
b) u heifst stark d-gradig, wenn folgende Bedingungen erfillt sind:
o deg(u) =d,
e fir allev € N(u) gilt d — 1 < deg(v) < d und
e [{v € N(u) | deg(v) = d}[| = 1.

Sei u ein Knoten in einem Graphen G und sei f eine k-Kantenfiarbung
von G — u mit zugehoriger Partition M, ..., M. Dann bezeichnet
N;(u) = N(u) N free(M;) die Menge der Nachbarn v von u, fir die
die Farbe i noch frei ist (d.h. es ist moglich, die Kante {u,v} mit i
zu farben). Wir sagen f blockiert die Farbe i, falls N;(u) = 0 ist.

Das néchste Lemma ist eine direkte Folgerung aus obiger Definition.

Lemma 121. Sei u ein stark k-gradiger Knoten in G und sei f eine
k-Kantenfirbung von G —u. Dann erfillen die Anzahlen a; = ||N;(u)]|
folgende Bedingungen:

(i) Yisiai=2k—1,
(it) falls f eine Farbe blockiert, dann gibt es eine Farbe j mit a; > 3,
(iii) falls f keine Farbe blockiert, dann gibt es eine Farbe j mit a; = 1.

54

	1 Grundlagen
	1.1 Graphentheoretische Grundlagen
	1.2 Datenstrukturen für Graphen
	1.3 Keller und Warteschlange
	1.4 Durchsuchen von Graphen
	1.5 Spannbäume und Spannwälder
	1.6 Berechnung der Zusammenhangskomponenten
	1.7 Breiten- und Tiefensuche

	2 Berechnung kürzester Wege
	2.1 Der Dijkstra-Algorithmus
	2.2 Der Bellman-Ford-Algorithmus
	2.3 Der Bellman-Ford-Moore-Algorithmus
	2.4 Der Floyd-Warshall-Algorithmus

	3 Matchings
	4 Flüsse in Netzwerken
	4.1 Der Ford-Fulkerson-Algorithmus
	4.2 Der Edmonds-Karp-Algorithmus
	4.3 Der Algorithmus von Dinic
	4.4 Kostenoptimale Flüsse

	5 Färben von Graphen
	5.1 Färben von planaren Graphen
	5.2 Färben von chordalen Graphen
	5.3 Kantenfärbungen

