Vorlesungsskript
Graphalgorithmen

Sommersemester 2013

Prof. Dr. Johannes Kobler

Humboldt-Universitat zu Berlin
Lehrstuhl Komplexitat und Kryptografie

13. Juni 2013

Inhaltsverzeichnis

1 Grundlagen
1.1 Graphentheoretische Grundlagen
1.2 Datenstrukturen fir Graphen
1.3 Keller und Warteschlange
1.4 Durchsuchen von Graphen
1.5 Spannbaume und Spannwalder
1.6 Berechnung der Zusammenhangskomponenten
1.7 Breiten- und Tiefensuche

2 Berechnung kiirzester Wege
2.1 Der Dijkstra-Algorithmus
2.2 Der Bellman-Ford-Algorithmus
2.3 Der Bellman-Ford-Moore-Algorithmus
2.4 Der Floyd-Warshall-Algorithmus

3 Matchings

4 Fliisse in Netzwerken
4.1 Der Ford-Fulkerson-Algorithmus
4.2 Der Edmonds-Karp-Algorithmus
4.3 Der Algorithmus von Dinic
4.4 Kostenoptimale Flisse

5 Farben von Graphen
5.1 Férben von planaren Graphen

15
15
18
19
21

23

27
27
31
33
39

44

ii

1 Grundlagen

1 Grundlagen

Der Begriff Algorithmus geht auf den persischen Gelehrten Muham-
med Al Chwarizmi (8./9. Jhd.) zuriick. Der élteste bekannte nicht-
triviale Algorithmus ist der nach Euklid benannte Algorithmus zur
Berechnung des grofiten gemeinsamen Teilers zweier natiirlicher Zah-
len (300 v. Chr.). Von einem Algorithmus wird erwartet, dass er
jede Problemeingabe nach endlich vielen Rechenschritten 16st (etwa
durch Produktion einer Ausgabe). Ein Algorithmus ist ein ,Verfah-
ren“ zur Losung eines Entscheidungs- oder Berechnungsproblems, das
sich prinzipiell auf einer Turingmaschine (TM) implementieren lasst
(Church-Turing-These).

Die Registermaschine

Bei Aussagen zur Laufzeit von Algorithmen beziehen wir uns auf die
Registermaschine (engl. random access machine; RAM). Dieses Modell
ist etwas flexibler als die Turingmaschine, da es den unmittelbaren
Lese- und Schreibzugriff (random access) auf eine beliebige Speicher-
einheit (Register) erlaubt. Als Speicher stehen beliebig viele Register
zur Verfligung, die jeweils eine beliebig grofe natiirliche Zahl speichern
konnen. Auf den Registerinhalten sind folgende arithmetische Ope-
rationen in einem Rechenschritt ausfithrbar: Addition, Subtraktion,
abgerundetes Halbieren und Verdoppeln. Unabhéngig davon geben
wir die Algorithmen in Pseudocode an. Das RAM-Modell benutzen
wir nur zur Komplexitdatsabschéitzung.

Die Laufzeit von RAM-Programmen wird wie bei TMs in der Lange

der Eingabe gemessen. Man beachte, dass bei arithmetischen Proble-
men (wie etwa Multiplikation, Division, Primzahltests, etc.) die Lange

einer Zahleingabe n durch die Anzahl [logn]| der fiir die Binarkodie-
rung von n benotigten Bits gemessen wird. Dagegen bestimmt bei
nicht-arithmetischen Problemen (z.B. Graphalgorithmen oder Sortier-
problemen) die Anzahl der gegebenen Zahlen, Knoten oder Kanten
die Lange der Eingabe.

Asymptotische Laufzeit und Landau-Notation

Definition 1. Seien f und g Funktionen von N nach R*. Wir schrei-
ben [(n) = O(g(n)), falls es Zahlen ng und ¢ gibt mit

Yn>ng: f(n) <c-g(n).

Die Bedeutung der Aussage f(n) = O(g(n)) ist, dass f ,nicht
wesentlich schneller” als g wéchst. Formal bezeichnet der Term
O(g(n)) die Klasse aller Funktionen f, die obige Bedingung erfiil-
len. Die Gleichung f(n) = O(g(n)) driickt also in Wahrheit eine
Element-Beziehung f € O(g(n)) aus. O-Terme konnen auch auf
der linken Seite vorkommen. In diesem Fall wird eine Inklusionsbe-
ziechung ausgedriickt. So steht n? + O(n) = O(n?) fir die Aussage
[+ f| f € Om)} C O(?).
Beispiel 2.

e 7log(n) + n® = O(n?) ist richtig.

e 7log(n)n® = O(n?) ist falsch.

e 27O = O(2") ist richtig.

e 2000 = O(2") ist falsch (siehe Ubungen,). q

Es gibt noch eine Reihe weiterer niitzlicher Groflenvergleiche von
Funktionen.

Definition 3. Wir schreiben f(n) = o(g(n)), falls es fir jedes ¢ > 0
eine Zahl ng gibt mit

Vn >ng: f(n) <c-g(n).

Damit wird ausgedrickt, dass f ,wesentlich langsamer® als g wdchst.
Auferdem schreiben wir

o f(n)=Q(g(n)) fir g(n) =0O(f(n)), d.-h. f wichst mindestens so
schnell wie g)
e f(n) = w(g(n)) fir g(n) = o(f(n)), d.h. f wdchst wesentlich

schneller als g, und

o [(n)=06(g(n)) fir f(n) = Og(n)) A f(n) = Qg(n)), d-h. f und

g wachsen ungefihr gleich schnell.

1.1 Graphentheoretische Grundlagen

Definition 4. Fin (ungerichteter) Graph ist ein Paar G =
(V, E), wobei

V' - eine endliche Menge von Knoten/Ecken und

E - die Menge der Kanten ist.
Hierbei gilt

EC (‘2/) :{{u,v}§V|u7év}.

Seiv € V ein Knoten.
a) Die Nachbarschaft von v ist Ng(v) = {u € V | {u,v} € E}.
b) Der Grad von v ist deg,(v) = || Ng(v)||.

¢) Der Minimalgrad von G ist §(G) = min,cy dego(v) und der
Maximalgrad von G ist A(G) = max,ey degq(v).

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach
N(v), deg(v), § usw.

Beispiel 5.

e Der vollstindige Graph (V,E) auf n Knoten, d.h. |V| = n
und E = (V) wird mit K, und der leere Graph (V,0) auf n

2/
Knoten wird mit E,, bezeichnet.

Ky Koy, Koo A Ku f@:@

e Der vollstindige bipartite Graph (A, B, E) auf a+b Knoten,
dh. ANB =10, ||A|| =a, |B]| =bund E = {{u,v} |u € Av €
B} wird mit K, bezeichnet.

Kii:, , K < KQ,Q.-X Kos: § Ks: %

e Der Pfad der Lange n — 1 wird mit P, bezeichnet.

Py: o—o P;: o—e— Py: o—e—eo—e FPy: o0

e Der Kreis der Lange n wird mit C,, bezeichnet.

Co: A O Cy: Q Cy: O

Definition 6. Sei G = (V, E) ein Graph.
a) Fine Knotenmenge U C 'V heifit unabhingig oder stabil, wenn

es keine Kante von G mit beiden Endpunkten in U gibt, d.h. es
gilt EN (Y) = 0. Die Stabilitéitszahl ist

a(G) =max{||U|| | U ist stabile Menge in G}.

b) Eine Knotenmenge U C V heifit Clique, wenn jede Kante mit

beiden Endpunkten in U in E ist, d.h. es gilt ([2]) C E. Dre
Cliquenzahl ist

w(G) = max{||U|| | U ist Clique in G}.

c) Eine Abbildung f: V — N heifst Farbung von G, wenn f(u) #
f(v) fir alle {u,v} € E gilt. G heifit k-firbbar, falls eine Fir-
bung f: V — {1,...,k} existiert. Die chromatische Zahl ist

X(G) = min{k € N | G ist k-farbbar}.
d) Ein Graph heifft bipartit, wenn x(G) < 2 ist.

1 Grundlagen

e) Ein Graph G' = (V' E') heifst Sub-/Teil-/Untergraph von G,
falls V! CV und E' C E ist. Ein Subgraph G' = (V', E') heifit
(durch V') induziert, falls E' = EN (‘;) ist. Hierfiir schreiben
wir auch H = G[V'].

f) Ein Weg ist eine Folge von (nicht notwendig verschiedenen) Kno-
ten vg,...,v; mit {v;, v} € E firi = 0,...,0 —1, der jede
Kante e € E hdchstens einmal durchlduft. Die Lange des Weges
ist die Anzahl der durchlaufenen Kanten, also . Im Fall { = 0
heifit der Weg trivial. Ein Weg vy, ..., v, heifst auch vo-ve-Weg.

g) Ein Graph G = (V| E) heifit zusammenhangend, falls es fir
alle Paare {u,v} € (g) einen u-v-Weg gibt. G heifst k-fach zu-
sammenhidngend, 1 < k < n, falls G nach Entfernen von belie-
bigen | < min{n—1,k—1} Knoten immer noch zusammenhdngend
15t.

h) Ein Zyklus ist ein u-v-Weg der Linge { > 2 mit u = v.

1) Ein Weg heif$t einfach oder Pfad, falls alle durchlaufenen Knoten
verschieden sind.

j) Ein Kreis ist ein Zyklus vg, v ..., v_1,v9 der Linge { > 3, fir
den vy, v1,...,v_1 paarweise verschieden sind.

k) Ein Graph G = (V, E) heifit kreisfrei, azyklisch oder Wald,
falls er keinen Kreis enthdlt.

) Ein Baum ist ein zusammenhdngender Wald.

m) Jeder Knoten uw € V vom Grad deg(u) < 1 heifit Blatt und die
ibrigen Knoten (vom Grad > 2) heiffen innere Knoten.

Es ist leicht zu sehen, dass die Relation
Z ={(u,v) € Vx V| esgibt in G einen u-v-Weg}

eine Aquivalenzrelation ist. Die durch die Aquivalenzklassen von Z in-
duzierten Teilgraphen heiflen die Zusammenhangskomponenten
(engl. connected components) von G.

1.1 Graphentheoretische Grundlagen

Definition 7. Fin gerichteter Graph oder Digraph ist ein Paar
G = (V,E), wobei
V' - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.
Hierbei gilt
EQVXV:{(U,U)\U,UEV},

wobei E auch Schlingen (u,w) enthalten kann. Sei v € V' ein Knoten.

a) Die Nachfolgermenge von v ist Nt(v) ={u e V| (v,u) € E}.

b) Die Vorgdngermenge von v ist N~ (v) = {u €V | (u,v) € E}.

¢) Die Nachbarmenge von v ist N(v) = N*(v) U N~ (v).

d) Der Ausgangsgrad von v ist deg® (v) = ||[N*(v)|| und der Ein-
gangsgrad von v ist deg” (v) = ||[N~(v)||. Der Grad von v ist
deg(v) = deg™ (v) + deg™ (v).

e) Ein (gerichteter) wo-ve-Weg ist eine Folge von Knoten
Vo, - -,V mit (v, vi41) € E fiiri =0,...,0 —1, der jede Kante
e € E héchstens einmal durchlduft.

f) Ein (gerichteter) Zyklus ist ein gerichteter u-v-Weg der Linge
£>1 mitu=mwv.

g) Ein gerichteter Weg heifit einfach oder (gerichteter) Pfad,
falls alle durchlaufenen Knoten verschieden sind.

h) Ein (gerichteter) Kreis in G ist ein gerichteter Zyklus
Vo, V1 ..., V1,09 der Lange £ > 1, fir den vg,v,...,v_1 paar-
weise verschieden sind.

i) G heifst kreisfrei oder azyklisch, wenn es in G keinen gerichte-
ten Kreis gibt.

j) G heifit schwach zusammenhéngend, wenn es in G fir jedes
Knotenpaar u # v € V' einen u-v-Pfad oder einen v-u-Pfad gibt.

k) G heifit stark zusammenhingend, wenn es in G fir jedes
Knotenpaar u # v € V' sowohl einen u-v-Pfad als auch einen
v-u-Pfad gibt.

1 Grundlagen

1.2 Datenstrukturen fiir Graphen

Sei G = (V, E) ein Graph bzw. Digraph und sei V = {vy,...,v,}.
Dann ist die (n x n)-Matrix A = (a;;) mit den Eintrégen

17 i, Vi € E 1, i, Vi) € E
aij = {U UJ} bZW. aij = (U U])
0, sonst 0, sonst

die Adjazenzmatrix von G. Fiir ungerichtete Graphen ist die Ad-
jazenzmatrix symmetrisch mit a; =0 firv=1,...,n.

Bei der Adjazenzlisten-Darstellung wird fiir jeden Knoten v; eine
Liste mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet
man entweder nur die Liste der Nachfolger oder zusétzlich eine weitere
fiir die Vorgéanger. Falls die Anzahl der Knoten gleichbleibt, organi-
siert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit
Index i verweist auf die Adjazenzliste von Knoten v;. Falls sich die
Anzahl der Knoten dynamisch dndert, so werden die Adjazenzlisten
typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 8.

Betrachte den gerichteten Graphen G = (V, E) D @
mit V. = {1,2,3,4} und E = {(2,3),

(2,4), (3,1), (3,4), (4,4)}. Dieser hat folgende ONe

Adjazenzmatriz- und Adjazenzlisten-Darstellung:

12 3 4 —
110 0 0 0 1]

200 0 11 2| 3] 4>{4]]
3100 1 3| {1 [F>a]]
410 0 01 4—__,

Folgende Tabelle gibt den Aufwand der wichtigsten elementaren Opera-
tionen auf Graphen in Abhéngigkeit von der benutzten Datenstruktur

1.2 Datenstrukturen fiir Graphen

an. Hierbei nehmen wir an, dass sich die Knotenmenge V' nicht andert.

Adjazenzmatrix Adjazenzlisten
einfach ‘ clever | einfach ‘ clever
Speicherbedarf | O(n?) | O(n?) | O(n+m) | O(n+m)
Initialisieren | O(n?) | O(1) O(n) O(1)
Kante einfiigen || O(1) | O(1) o(1) O(1)
Kante entfernen || O(1) | O(1) O(n) O(1)
Test auf Kante || O(1) | O(1) O(n) O(n)

Bemerkung 9.

e Der Aufwand fir die Initialisierung des leeren Graphen in der Ad-
jazenzmatrizdarstellung lasst sich auf O(1) dricken, indem man
mathilfe eines zusdtzlichen Feldes B die Giiltigkeit der Matrixein-
trige verwaltet (siehe Ubungen,).

o Die Verbesserung beim Lischen einer Kante in der Adjazenzlisten-
darstellung erhdlt man, indem man die Adjazenzlisten doppelt ver-
kettet und im ungerichteten Fall die beiden Vorkommen jeder Kan-
te in den Adjazenzlisten der beiden Endknoten gegenseitig verlinkt
(siehe die Prozeduren Insert(Di)Edge und Remove(Di)Edge
auf den ndchsten Seiten).

e Bei der Adjazenzlistendarstellung kénnen die Knoten auch in ei-
ner doppelt verketteten Liste organisiert werden. In diesem Fall
kénnen dann auch Knoten in konstanter Zeit hinzugefiigt und in
Zeit O(n) wieder entfernt werden (unter Beibehaltung der wibrigen
Speicher- und Laufzeitschranken).

Es folgen die Prozeduren fiir die in obiger Tabelle aufgefiihrten elemen-
taren Graphoperationen, falls G als ein Feld G[1,...,n] von (Zeigern
auf) doppelt verkettete Adjazenzlisten reprasentiert wird. Wir behan-
deln zuerst den Fall eines Digraphen.

1 Grundlagen

Prozedur Init

1

2

for i:=1 to n do
Gli] =1

Prozedur InsertDiEdge(u,v)

1.3 Keller und Warteschlange

Falls G ungerichtet ist, konnen diese Operationen wie folgt implemen-
tiert werden (die Prozeduren Init und Edge bleiben unverandert).

Prozedur InsertEdge(u,v)

erzeuge Listeneintrag e

source(e) :==u

target(e) :=v

prev(e) := L

next(e) := GJu]

if Glu] # L then
prev(Glu]) :==e

Glu] :==e

return e

Prozedur RemoveDiEdge(e)

1
2
3
A
5

6

if next(e) # L then
prev(next(e)) := prev(e)
if prev(e) # L then
next(prev(e)) := next(e)
else
G[source(e)] := next(e)

erzeuge Listeneintrage e, ¢

opposite(e) := ¢
opposite(e’) :==e
next(e) := Glu]
next(e’) := G[v]
if Glu] # L then

prev(Glu]) :=e
if Glv] # L then
prev(G[v]) :=¢

Glu] :=e; Gv] :=¢
source(e) := target(e’) :==u
target(e) := source(¢) :=v

prev(e) := L
prev(e’) := L
return e

Prozedur RemoveEdge(e)

Prozedur Edge(u,v)

1

2

RemoveDiEdge(e)
RemoveDiEdge(opposite(e))

S T SO OUR N

6

e := Glul
while e # | do
if target(e) =v then
return 1
e := next(e)
return 0

1.3 Keller und Warteschlange

Fiir das Durchsuchen eines Graphen ist es vorteilhaft, die bereits
besuchten (aber noch nicht abgearbeiteten) Knoten in einer Menge B
zu speichern. Damit die Suche effizient ist, sollte die Datenstruktur
fiir B folgende Operationen effizient implementieren.

1 Grundlagen

Init(B): Initialisiert B als leere Menge.
Empty(B): Testet B auf Leerheit.
Insert(B,u): Fugtuin B ein.
): Gibt ein Element aus B zurtck.
)

Gibt ebenfalls Element(B) zuriick und
entfernt es aus B.

Element(B):
Remove(B):

Andere Operationen wie z.B. Remove(B, u) werden nicht benotigt.

Die gewiinschten Operationen lassen sich leicht durch einen Keller
(auch Stapel genannt) (engl. stack) oder eine Warteschlange (engl.
queue) implementieren. Falls maximal n Datensétze gespeichert wer-
den miissen, kann ein Feld zur Speicherung der Elemente benutzt
werden. Andernfalls konnen sie auch in einer einfach verketteten Liste
gespeichert werden.

Stack S — Last-In-First-Out

Top(S): Gibt das oberste Element von S zurtick.
Push(S,z): Fiigt als oberstes Element zum Keller hinzu.

Pop(S): Gibt das oberste Element von S zuriick und ent-
fernt es.

Queue () — Last-In-Last-Out

Enqueue(Q,z): Fiigt am Ende der Schlange hinzu.
Head(®): Gibt das erste Element von) zuriick.

Dequeue(®): Gibt das erste Element von @ zuriick und ent-
fernt es.

Die Kelleroperationen lassen sich wie folgt auf einem Feld S[1...n]
implementieren. Die Variable size(S) enthilt die Anzahl der im
Keller gespeicherten Elemente.

1.3 Keller und Warteschlange

Prozedur StackInit(S)

1 size(S):=0

Prozedur StackEmpty(S)

| return(size(S) =0)

Prozedur Top(S)
if size(S) >0 then
return(S[size(95)])
else
return(L)

=W N

Prozedur Push(S,x)

1 if size(S) < n then

2 size(S):=size(S)+1
3 Slsize(S)] ==z
4

else
return(L)

Prozedur Pop(S)

1 if size(S) >0 then

2 size(S) :=size(S) -1
3 return(S[size(S) + 1))
4

else
return(L)

Es folgen die Warteschlangenoperationen fiir die Speicherung in einem
Feld Q[1...n]. Die Elemente werden der Reihe nach am Ende der
Schlange @ (zyklisch) eingefiigt und am Anfang entnommen. Die
Variable head(Q) enthélt den Index des ersten Elements der Schlan-
ge und tail(Q) den Index des hinter dem letzten Element von
befindlichen Eintrags.

1 Grundlagen

Prozedur QueueInit(Q)

I head(Q) :=1
2 tail(@) :=1
3 size(Q):=0

1.4 Durchsuchen von Graphen

\ head(Q) := head(Q) + 1
9 return(z)

Prozedur QueueEmpty(Q)

I return(size(Q) =0)

Prozedur Head(Q)

i if QueueEmpty(Q) then
2 return(.l)

3 else

4 return@[head(Q)]

Prozedur Enqueue(Q,z)

if size(Q)) =n then

2 return(l)

3 size(Q):=size(Q)+1
o Qtail(@)] ==

5 if tail(Q) =n then

6 tail(Q) =1

7 else

8 tail(Q) := tail(Q) + 1

Prozedur Dequeue(Q)

1 if QueueEmpty(Q) then
2 return(l)

3 size(Q):=size(Q) -1
1z := Q[head(Q)]

5 if head(Q)) =n then

5 head(Q) :=1

Satz 10. Samtliche Operationen fiir einen Keller S und eine Warte-
schlange @ sind in konstanter Zeit O(1) ausfihrbar.

Bemerkung 11. Mit Hilfe von einfach verketteten Listen sind Keller
und Warteschlangen auch fiir eine unbeschrinkte Anzahl von Daten-
satzen mit denselben Laufzeitbeschrinkungen implementierbar.

Die fiir das Durchsuchen von Graphen benotigte Datenstruktur B
lasst sich nun mittels Keller bzw. Schlange wie folgt realisieren.

’ Operation H Keller S ‘ Schlange @ ‘
Init(B) StackInit(S) | QueueInit(Q)
Empty(B) StackEmpty(S) | QueueEmpty(Q)
Insert(B,u) || Push(S,u) Enqueue(Q, u)
Element(B) || Top(S) Head(Q)
Remove(DB) Pop(5) Dequeue(Q)

1.4 Durchsuchen von Graphen

Wir geben nun fiir die Suche in einem Graphen bzw. Digraphen
G = (V, E) einen Algorithmus GraphSearch mit folgenden Eigen-
schaften an:
GraphSearch benutzt eine Prozedur Explore, um alle Knoten
und Kanten von GG zu besuchen.
Explore(w) findet Pfade zu allen von w aus erreichbaren Knoten.
Hierzu speichert Explore(w) fiir jeden tiber eine Kante {u, v} bzw.
(u,v) neu entdeckten Knoten v # w den Knoten u in parent(v).

Wir nennen die bei der Entdeckung eines neuen Knotens v durch-
laufenen Kanten (parent(v),v) parent-Kanten.

1 Grundlagen

Im Folgenden verwenden wir die Schreibweise e = uv sowohl fir
gerichtete als auch fiir ungerichtete Kanten e = (u,v) bzw. e = {u, v}.

Algorithmus GraphSearch(V, E)

1 for all veV, e E do
2 vis(v) := false
3
!

parent(v) := L
vis(e) := false
5 for all weV do
6 if vis(w) = false then Explore(w)

Prozedur Explore(w)

. vis(w) := true

> Init(B)

5 Insert(B,w)

1+ while —Empty(B) do

5 u := Element(B)

6 if 3 e=wuv e EF:vis(e) = false then
7 vis(e) := true

8 if vis(v) = false then
9 vis(v) := true

10 parent(v) :==u

11 Insert(B,v)
12 else

13 Remove(B)

Um die néchste von v ausgehende Kante uv, die noch nicht besucht
wurde, in konstanter Zeit bestimmen zu kénnen, kann man bei der
Adjazenzlistendarstellung fiir jeden Knoten u neben dem Zeiger auf
die erste Kante in der Adjazenzliste von u einen zweiten Zeiger be-
reithalten, der auf die aktuelle Kante in der Liste verweist.

1.4 Durchsuchen von Graphen

Suchwalder

Definition 12. Sei G = (V, E) ein Digraph.
e Fin Knoten w € V heifit Wurzel von G, falls alle Knoten v € V
von w aus erreichbar sind (d.h. es gibt einen gerichteten w-v-Weg
in G).
o G heifit gerichteter Wald, wenn G kreisfrei ist und jeder Knoten
v € V Eingangsgrad deg™ (v) < 1 hat.
e Ein Knoten u € V vom Ausgangsgrad deg™ (u) = 0 heifit Blatt.

e Fin gerichteter Wald, der eine Wurzel hat, heifit gerichteter
Baum.

In einem gerichteten Baum liegen die Kantenrichtungen durch die
Wahl der Wurzel bereits eindeutig fest. Daher kann bei bekannter
Wurzel auf die Angabe der Kantenrichtungen auch verzichtet werden.
Man spricht dann von einem Wurzelbaum.

Betrachte den durch SearchGraph(V, E) erzeugten Digraphen W =
(V, Eparent) mit

Eparent = {(pa rent(v),v) | v € V und parent(v) # L}.

Da parent(v) vor v markiert wird, ist klar, dass W kreisfrei ist. Zu-
dem hat jeder Knoten v hochstens einen Vorgénger parent(v). Dies
zeigt, dass W tatséachlich ein gerichteter Wald ist. W heif3t Such-
wald von G und die Kanten (parent(v),v) von W werden auch als
Baumkanten bezeichnet.

W héangt zum einen davon ab, wie die Datenstruktur B implementiert
ist (z.B. als Keller oder als Warteschlange). Zum anderen hiangt W
aber auch von der Reihenfolge der Knoten in den Adjazenzlisten ab.

Klassifikation der Kanten eines (Di-)Graphen

Die Kanten eines Graphen G = (V, E') werden durch den Suchwald
W = (V, Eparent) in vier Klassen eingeteilt. Dabei erhalt jede Kante

1 Grundlagen

die Richtung, in der sie bei ihrem ersten Besuch durchlaufen wird.

Neben den Baumkanten (parent(v),v) € Eparent gibt es noch
Riickwirts-, Vorwéarts- und Querkanten. Riickwértskanten (u,v)
verbinden einen Knoten u mit einem Knoten v, der auf dem parent-
Pfad P(u) von wu liegt. Liegt dagegen u auf P(v), so wird (u,v)
als Vorwiértskante bezeichnet. Alle tibrigen Kanten heiflen Quer-
kanten. Diese verbinden zwei Knoten, von denen keiner auf dem
parent-Pfad des anderen liegt.

Beispiel 13. Bei Aufruf mit dem Start- 0 e
knoten a konnte die Prozedur Explore a .@
den nebenstehendem Graphen beispiels- e Q

weise wie folgt durchsuchen.

’ Menge B ‘Knoten ‘ Kante ‘ Typ‘ ’ B ‘Knoten ‘ Kante ‘ Typ‘

{a} a (a,b) | B {d,e, f} d (d,e) | V
{a,b} a |(a,f)| B ||{de ft| d |(df)| Q
{a,b, [} a - - {d,e, [} d - -
{b, [} b (b,d) | B {e,f} e (e,d) | R
{b> da f} b - - {67 f} € - -
{d, } d |(dc)| B {f} fo1(fe)] Q
{e.d, f} ¢ |(ce)| B {f} f - -
{c,d,e, [} c - - 0

Dabei entsteht nebenstehender Such-
wald.

Die Klassifikation der Kanten eines Digraphen G erfolgt analog, wobei
die Richtungen jedoch bereits durch G vorgegeben sind (dabei werden
Schlingen der Kategorie der Vorwéartskanten zugeordnet). Tatséchlich

1.4 Durchsuchen von Graphen

durchlauft Explore bei einem Graphen die Knoten und Kanten in der
gleichen Reihenfolge wie bei dem Digraphen, der fiir jede ungerichtete
Kante {u,v} die beiden gerichteten Kanten (u,v) und (v, u) enthilt.

Beispiel 14. Bei Aufruf mit dem
Startknoten a konnte die Prozedur
Explore beispielsweise nebenstehen-
den Suchwald generieren.

] Menge B ‘Knoten ‘ Kante\ ‘ ’ B ‘Knoten ‘ Kante\ ‘
{a} a |{a,e} | Bl {ede fi| ¢ [{ef}]Q
{a,e} a {a, f}|B||{c, d,e, f} c - -
{CL, e7f} a - - {d7€7f} d {d7 b} -
{6, f} e {eva} - {d,e,f} d {dv C} -
{e, f} e {e,c} |B|| {d,e, [} d {d,e} | R
{c,e, f} c {c,b} |B|| {d,e, f} d - -
{ba Cae?f} b {b? C} - {€>f} e {e>d} -
{b,c,e, [} b {b,d} |B {e, f} e - -
Wedeft b | - |- Uy | 1 |ha-
{Ca d7€>f} ¢ {Ca d} Vv {f} f {fa C} -
{Ca d767f} ¢ {Cv 6} - {f} f " "

Satz 15. Fulls der (un)gerichtete Graph G in Adjazenzlisten-
Darstellung gegeben ist, durchliuft GraphSearch alle Knoten und
Kanten von G in Zeit O(n + m).

Beweis. Offensichtlich wird jeder Knoten u genau einmal zu B hin-
zugefiigt. Dies geschieht zu dem Zeitpunkt, wenn u zum ersten Mal
,besucht* und das Feld visited fiir u auf true gesetzt wird. Aufer-
dem werden in Zeile 6 von Explore alle von u ausgehenden Kanten
durchlaufen, bevor u wieder aus B entfernt wird. Folglich werden
tatsédchlich alle Knoten und Kanten von G' besucht.

1 Grundlagen

Wir bestimmen nun die Laufzeit des Algorithmus GraphSearch. In-
nerhalb von Explore wird die while-Schleife fiir jeden Knoten u genau
(deg(u) + 1)-mal bzw. (deg™ (u) + 1)-mal durchlaufen:

e einmal fiir jeden Nachbarn v von v und

e dann noch einmal, um u aus B zu entfernen.

Insgesamt sind das n + 2m im ungerichteten bzw. n + m Durchlaufe
im gerichteten Fall. Bei Verwendung von Adjazenzlisten kann die
nachste von einem Knoten v aus noch nicht besuchte Kante e in
konstanter Zeit ermittelt werden, falls man fiir jeden Knoten v einen
Zeiger auf e in der Adjazenzliste von v vorsieht. Die Gesamtlaufzeit
des Algorithmus GraphSearch betragt somit O(n + m). [

Als néchstes zeigen wir, dass Explore(w) zu allen von w aus erreich-
baren Knoten v einen (gerichteten) w-v-Pfad liefert. Dieser lasst sich
mittels parent wie folgt zuriickverfolgen. Sei

v, 1 =0,
U; =

parent(u;—1), ¢>0und u;—y # L
und sei ¢ = min{i > 0 | w;y1y = L}. Dann ist v, = w und
p = (ug,...,up) ein w-v-Pfad. Wir nennen P den parent-Pfad
von v und bezeichnen ihn mit P(v).

Satz 16. Falls beim Aufruf von Explore alle Knoten und Kanten als
unbesucht markiert sind, berechnet Explore(w) zu allen erreichbaren
Knoten v einen (gerichteten) w-v-Pfad P(v).

Beweis. Wir zeigen zuerst, dass Explore(w) alle von w aus erreich-
baren Knoten besucht. Hierzu fithren wir Induktion tiber die Lange ¢
eines kiirzesten w-v-Weges.

¢ = 0: In diesem Fall ist v = w und w wird in Zeile 1 besucht.

10

1.5 Spannbaume und Spannwalder

¢~ ¢+ 1: Sei v ein Knoten mit Abstand [+ 1 von w. Dann hat ein
Nachbarknoten v € N(v) den Abstand ¢ von w. Folglich wird u
nach IV besucht. Da u erst dann aus B entfernt wird, wenn alle
seine Nachbarn (bzw. Nachfolger) besucht wurden, wird auch v
besucht.

Es bleibt zu zeigen, dass parent einen Pfad P(v) von w zu jedem
besuchten Knoten v liefert. Hierzu fiithren wir Induktion tber die
Anzahl k£ der vor v besuchten Knoten.

k =0: In diesem Fall ist v = w. Da parent(w) = L ist, liefert
parent einen w-v-Pfad (der Lénge 0).

k—1~>k: Sei u = parent(v). Da u vor v besucht wird, liefert
parent nach IV einen w-u-Pfad P(u). Wegen u = parent(v)
ist u der Entdecker von v und daher mit v durch eine Kante
verbunden. Somit liefert parent auch fir v einen w-v-Pfad P(H

1.5 Spannbaume und Spannwilder

In diesem Abschnitt zeigen wir, dass der Algorithmus GraphSearch
fiir jede Zusammenhangskomponente eines (ungerichteten) Graphen
G einen Spannbaum berechnet.

Definition 17. Sei G = (V, E) ein Graph und H = (U, F') ein Un-
tergraph.
e H heifit spannend, falls U =V ist.

e H ist ein spannender Baum (oder Spannbaum) von G, falls
U=V und H ein Baum ist.

e H ist ein spannender Wald (oder Spannwald) von G, falls
U=V und H ein Wald ist.

Es ist leicht zu sehen, dass fiir G genau dann ein Spannbaum existiert,
wenn GG zusammenhangend ist. Allgemeiner gilt, dass die Spannbéu-
me fiir die Zusammenhangskomponenten von G einen Spannwald

1 Grundlagen

bilden. Dieser ist bzgl. der Subgraph-Relation maximal, da er in kei-
nem grofleren Spannwald enthalten ist. Ignorieren wir die Richtungen
der Kanten im Suchwald W, so ist der resultierende Wald W’ ein
maximaler Spannwald fir G.
Da Explore(w) alle von w aus erreichbaren Knoten findet, spannt
jeder Baum des (ungerichteten) Suchwaldes W’ = (V, Ej, ent) mit

’ {{parent(v),v} | v € V und parent(v) # L}

parent —
eine Zusammenhangskomponente von G.

Korollar 18. Sei G ein (ungerichteter) Graph.

e Der Algorithmus GraphSearch(V, E) berechnet in Linearzeit
einen Spannwald W', dessen Bdume die Zusammenhangskom-
ponenten von G spannen.

e Fulls G zusammenhdngend ist, ist W' ein Spannbaum fir G.

1.6 Berechnung der
Zusammenhangskomponenten

Folgende Variante von GraphSearch bestimmt die Zusammenhangs-
komponenten eines (ungerichteten) Eingabegraphen G.

Algorithmus CC(V, E)

1 k=0

2> for all veV, ec E do
3 cc(v):=0

4 cc(e) :==0

5 for all weV do

6 if cc(w) =0 then

7 k:=k+1
ComputeCC(k,w)

oo

11

1.6 Berechnung der Zusammenhangskomponenten

Prozedur ComputeCC(k,w)

cc(w) ==k

Init(B)

Insert(B,w)

while —Empty(B) do
5 u := Element(B)

6 if 3 e={u,v} € E:cc(e) =0 then
7 cc(e) =k

8 if cc(v) =0 then
9 cc(v) =k

10 Insert(B,v)

11 else

12 Remove(B)

= w [\ =

Korollar 19. Der Algorithmus CC(V, E) bestimmdt fiir einen Graphen
G = (V, E) in Linearzeit O(n + m) samtliche Zusammenhangskom-
ponenten Gy = (Vi,, Ey,) von G, wobei Vi, = {v € V | cc(v) = k} und
Ey={e € E|cc(e) =k} ist.

1.7 Breiten- und Tiefensuche

Wie wir gesehen haben, findet Explore(w) sowohl in Graphen als
auch in Digraphen alle von w aus erreichbaren Knoten. Als néchstes
zeigen wir, dass Explore(w) zu allen von w aus erreichbaren Knoten
sogar einen kiirzesten Weg findet, falls wir die Datenstruktur B als
Warteschlange () implementieren.

Die Benutzung einer Warteschlange () zur Speicherung der bereits
entdeckten, aber noch nicht abgearbeiteten Knoten bewirkt, dass
zuerst alle Nachbarknoten wuq, ..., u; des aktuellen Knotens u besucht
werden, bevor ein anderer Knoten aktueller Knoten wird. Da die
Suche also zuerst in die Breite geht, spricht man von einer Breiten-
suche (kurz BF'S, engl. breadth first search). Den hierbei berechneten

1 Grundlagen

Suchwald bezeichnen wir als Breitensuchwald.

Bei Benutzung eines Kellers wird dagegen u; aktueller Knoten, bevor
die iibrigen Nachbarknoten von u besucht werden. Daher fithrt die
Benutzung eines Kellers zu einer Tiefensuche (kurz DFS, engl. depth
first search). Der berechnete Suchwald heifit dann Tiefensuchwald.

Die Breitensuche eignet sich eher fiir Distanzprobleme wie z.B. das
Finden

e kiirzester Wege in Graphen und Digraphen,

e lingster Wege in Baumen (siehe Ubungen) oder

e kiirzester Wege in Distanzgraphen (Dijkstra-Algorithmus).
Dagegen liefert die Tiefensuche interessante Strukturinformationen
wie z.B.

e die zweifachen Zusammenhangskomponenten in Graphen,

e die starken Zusammenhangskomponenten in Digraphen oder

e cine topologische Sortierung bei azyklischen Digraphen (s. Ubun-

gen).

Wir betrachten zuerst den Breitensuchalgorithmus.

Algorithmus BFS(V, E)

1 for all veV, e F do
2 vis(v) := false

3 parent(v) :== L

4 vis(e) := false

5 for all weV do

6 if vis(w) = false then BFS-Explore(w)

Prozedur BFS-Explore(w)

1 vis(w) := true
> QueueInit(Q)
3 Enqueue(Q,w)

1.7 Breiten- und Tiefensuche

. while —QueueEmpty(Q) do

5 u := Head(Q)

6 if 3 e=wuv e E:vis(e) = false then
7 vis(e) := true

8 if vis(v) = false then

9 vis(v) := true

10 parent(v) :=u

11 Enqueue(Q,v)

12 else

13 Dequeue(Q)

Beispiel 20. BFS-Explore generiert
bei Aufruf mit dem Startknoten a ne-
benstehenden Breitensuchwald.

bes. bes. bes. bes.
Schlange @) | Knoten | Kante | Typ | | @ Knoten | Kante | Typ
—a« a (a,b) | B ||c,e,d c (c,e) | Q
a,b a (a,f)| B ||¢ced c (e,)| Q
a,b, f a - - c,e,d c - -
b, f b (b,c) | B ||ed e (e,c) | Q
b, f,c b - - e,d e (e,d) | Q
f,c f (f,e) | B ||ed e (e,f) | R
f,ce f - - e, d e - -
c e c (¢c,d)| B ||d d - -

<

Satz 21. Sei G ein Graph oder Digraph und sei w Wurzel des von
BFS-Explore(w) berechneten Suchbaumes T. Dann liefert parent
fiir jeden Knoten v in T einen kiirzesten w-v-Weg P(v).

1 Grundlagen 1.7 Breiten- und Tiefensuche

Beweis. Wir fithren Induktion tiber die kiirzeste Weglange ¢ von w 7 vis(e) := true

nach v in G. 8 if vis(v) = false then
9 vis(v) := true

10 parent(v) :=u

11 Push(S,v)

12 else

13 Pop(S)

¢ = 0: Dann ist v = w und parent liefert einen Weg der Léange 0.

{~ f+1: Sei v ein Knoten, der den Abstand ¢ + 1 von w in G hat.
Dann existiert ein Knoten u € N~ (v) (bzw. u € N(v)) mit Ab-
stand £ von w in G hat. Nach IV liefert also parent einen w-u-Weg
P(u) der Lénge £. Da u erst aus @) entfernt wird, nachdem alle
Nachfolger von u entdeckt sind, wird v von u oder einem bereits
zuvor in @) eingefiigten Knoten z entdeckt. Da @) als Schlange or-
ganisiert ist, ist P(u) nicht kiirzer als P(z). Daher folgt in beiden
Féllen, dass P(v) die Lange ¢ + 1 hat.

Beispiel 22. Bei Aufruf mit dem
Startknoten a generiert die Prozedur
| DFS-Explore nebenstehenden Tiefen-
suchwald.

Wir werden spéater noch eine Modifikation der Breitensuche kennen ler-
nen, die kiirzeste Wege in Graphen mit nichtnegativen Kantenlangen

findet (Algorithmus von Dijkstra). bes. | bes. bes. | bes.
Als néchstes betrachten wir den Tiefensuchalgorithmus. Keller S | Knoten | Kante | Typ IS Knoten | Kante | Typ
Algorithmus DFS(V, E) a+ a (a,b) | B ||a,b,c c (¢, /)| B
I for all veV, ec€ E do a,b b (b,c) | B ||a,bc,f f (f.e)| Q
2 vis(v) := false a,b,c ¢ (c.,d) | B ||abe,f| f - -
5 parent(v):= L a,b,c,d d - - || abc ¢ - -

4 vis(e) := false a,b,c c (c,e) | B || a,b b - -
5 for all weV do a,b,c,e e (e,e) | R |]a a (a, f)| V
6 if vis(w) = false then DFS-Explore(w) a,b,c,e e (e,d) | Q ||a a - -

a,b,c,e e - -

Prozedur DFS-Explore(w)

vis(w) := true

1 . .
. StackInit(s) Die Tiefensuche auf nebenstehendem
|

Graphen fithrt auf folgende Klassifika-

Push(S
(S, w) tion der Kanten (wobei wir annehmen,

while —StackEmpty(S) do
5 u :=Top(S)
6 if 3 e=wuv e E:vis(e) = false then

13

1 Grundlagen

dass die Nachbarknoten in den Ad-
jazenzlisten alphabetisch angeordnet
sind):

] Keller S ‘Kante\TypH Keller S ‘Kante‘Typ‘

a {a,b} | B ||a,b,c,d,e, f|{f,c}| R
a,b {b,a}| - a,bye,d,e, f1{f,e}| -
a,b {b,c} | B ||a,bcde f| - -
a,b,c {¢,b} | - a,b,c,d, e - -
a,b,c {¢,d}| B ||a,b,c,d - -
a,b,c,d {d,c}| - a,b,c {c,e} | -
a,b,c,d {d,e} | B ||a,b,c {e, f}| -
a,b,c,d,e | {e,c}| R ||a,bc - -
a,b,c,d,e | {e,d}| - a,b - -
a,b,c,d,e |{e,f}| B ||a {a, f}| -
a,b,c,d,e, f1{f,a}| R ||a - -

<

Die Tiefensuche lédsst sich auch rekursiv implementieren. Dies hat den
Vorteil, dass kein (expliziter) Keller benotigt wird.

Prozedur DFS-Explore-rec(w)

1 vis(w) := true

> while 3 e=wv € E:vis(e) = false do
3 vis(e) := true

4 if vis(v) = false then

5 parent(v) :=w

6 DFS-Explore-rec(v)

Da DFS-Explore-rec(w) zu parent(w) zurtickspringt, kann auch
das Feld parent(w) als Keller fungieren. Daher lésst sich die Prozedur

14

1.7 Breiten- und Tiefensuche

auch nicht-rekursiv ohne zuséatzlichen Keller implementieren, indem
die Riickspriinge explizit innerhalb einer Schleife ausgefiithrt werden
(siche Ubungen).

Bei der Tiefensuche lasst sich der Typ jeder Kante algorithmisch leicht
bestimmen, wenn wir noch folgende Zusatzinformationen speichern.

e Fin neu entdeckter Knoten wird bei seinem ersten Besuch grau
geféarbt. Sobald er abgearbeitet ist, also bei seinem letzten Besuch,
wird er schwarz. Zu Beginn sind alle Knoten weif3.

e Zudem merken wir uns die Reihenfolge, in der die Knoten entdeckt
werden, in einem Feld r.

Dann léasst sich der Typ jeder Kante e = (u,v) bei ihrem ersten
Besuch wie folgt bestimmen:

Baumkante: farbe(v) = weiB,
Vorwirtskante: farbe(v) # weifl und r(v) > r(u),
Riickwiartskante: farbe(v) = grau und r(v) < r(u),
Querkante: farbe(v) = schwarz und r(v) < r(u).

Die folgende Variante von DFS berechnet diese Informationen.

Algorithmus DFS(V, E)

1 r:=0

> for all veV, e€ E do

3 farbe(v) := weill

] vis(e) := false

5 for all weV do

6 if farbe(u) =weiB then DFS-Explore(u)

Prozedur DFS-Explore(u)

farbe(u) := grau

r=r+1

r(u):=r

while 3 e = (u,v) € F: vis(e) = false do

N

2 Berechnung kiirzester Wege

5 vis(e) := true

6 if farbe(v) =weiB then
7 DFS-Explore(v)

s farbe(u) := schwarz

Beispiel 23. Bei Aufruf mit dem
Startknoten a werden die Knoten im
nebenstehenden Digraphen wvon der
Prozedur DFS-Explore wie folgt ge-
farbt (die Knoten sind mit ihren r-
Werten markiert).

]Keller \Farbe ‘Kante ‘ Typ‘ ’ Keller |Farbe \Kante ‘ Typ‘
a a: grau (a,b) | B || a,b,c e |e:schwarz - -
a,b b: grau (b,e) | B ||a,bc |- (¢,f)| B
a,b,c |c:grau (c,d) | B ||a,b,c, f|f:grau (f,e) | Q
a,b,c,d|d: grau - - a,b,c, f| f:schwarz| - -
d: schwarz a,b,c |c:schwarz - -
a,b,c |- (c,e) | B |]a,b b: schwarz - -
a,b,c, e|e: grau (e,c) | R |]a - (a, f)| V
a,b,c e|- (e,d) | Q ||la a:schwarz | - -

q

Bei der Tiefensuche in ungerichteten Graphen kénnen weder Quer-
noch Vorwértskanten auftreten. Da v beim ersten Besuch einer sol-
chen Kante (u,v) nicht weif§ ist und alle grauen Knoten auf dem
parent-Pfad P(u) liegen, misste v namlich bereits schwarz sein. Dies
ist aber nicht moglich, da die Kante {u,v} in v-u-Richtung noch
gar nicht durchlaufen wurde. Folglich sind alle Kanten, die nicht zu
einem neuen Knoten fithren, Riickwartskanten. Das Fehlen von Quer-
und Vorwértskanten spielt bei manchen Anwendungen eine wichtige
Rolle, etwa bei der Zerlegung eines Graphen G in seine zweifachen
Zusammenhangskomponenten.

15

2 Berechnung kiirzester Wege

In vielen Anwendungen tritt das Problem auf, einen kiirzesten Weg
von einem Startknoten s zu einem Zielknoten ¢ in einem Digraphen
zu finden, dessen Kanten (u,v) vorgegebene Lingen [(u,v) haben.

Die Lénge eines Weges W = (vy, ..., vy) ist
-1
Z(W) = Z I(Ui, 'Ui+1>.
i=0

Die kiirzeste Weglange von s nach ¢t wird als Distanz dist(s,t) zwi-
schen s und ¢ bezeichnet,

dist(s,t) = min{l(W) | W ist ein s-t-Weg}.

Falls kein s-t-Weg existiert, setzen wir dist(s,t) = co. Man beachte,
dass die Distanz auch dann nicht beliebig klein werden kann, wenn
Kreise mit negativer Lange existieren, da ein Weg jede Kante hochs-
tens einmal durchlaufen kann. In vielen Féllen haben jedoch alle
Kanten in E eine nichtnegative Lange [(u,v) > 0. In diesem Fall
nennen wir D = (V| E|l) einen Distanzgraphen.

2.1 Der Dijkstra-Algorithmus

Der Dijkstra-Algorithmus findet einen kurzesten Weg P(u) von s
zu allen erreichbaren Knoten u (single-source shortest-path problem,).
Hierzu fithrt der Algorithmus eine modifizierte Breitensuche aus. Dabei
werden die in Bearbeitung befindlichen Knoten in einer Prioritats-
warteschlange U verwaltet. Genauer werden alle Knoten u, zu denen

2 Berechnung kiirzester Wege

bereits ein s-u-Weg P(u) bekannt ist, zusammen mit der Weglinge ¢
solange in U gespeichert bis P(u) optimal ist. Auf der Datenstruktur
U sollten folgende Operationen (moéglichst effizient) ausfithrbar sein.

Init(U): Initialisiert U als leere Menge.

Update(U, u, g): Erniedrigt den Wert von u auf g (nur wenn der
aktuelle Wert grofer als g ist). Ist w noch nicht
in U enthalten, wird v mit dem Wert g zu U
hinzugefiigt.

RemoveMin(U): Gibt ein Element aus U mit dem kleinsten Wert
zuriick und entfernt es aus U (ist U leer, wird der
Wert L (nil) zuriickgegeben).

Voraussetzung fir die Korrektheit des Algorithmus ist, dass alle Kan-
ten eine nichtnegative Lange haben. Wéhrend der Suche werden be-
stimmte Kanten e = (u, v) daraufhin getestet, ob g(u) 4 €(u,v) < g(v)
ist. Da in diesem Fall die Kante e auf eine Herabsetzung von ¢(v)
auf den Wert g(u) + ¢(u,v) ,drangt*, wird diese Wertzuweisung als
Relaxation von e bezeichnet. Welche Kanten (u,v) auf Relaxation
getestet werden, wird beim Dijkstra-Algorithmus durch eine einfache
Greedystrategie bestimmt: Wéahle v unter allen noch nicht fertigen
Knoten mit minimalem g-Wert und teste alle Kanten (u,v), fir die v
nicht schon fertig ist.

Algorithmus Dijkstra(V, E, [s)

1 for all veV do

2 g(v) == 00

3 parent(v) :== L

| done(v) := false

5 g(s) =0

6 Init(P)

7 Update(P,s,0)

s while u :=RemoveMin(P) # L do
9 done(u) := true

16

2.1 Der Dijkstra-Algorithmus

10 for all v € N*(u) do

11 if done(v) = false A g(u) +Il(u,v) < g(v) then
12 g(v) == g(u) + l(u,v)

13 Update(P, v, g(v))

14 parent(v) :==u

Der Algorithmus speichert die aktuelle Lange des Pfades P(u) in g(u).
Knoten auflerhalb des aktuellen Breitensuchbaums 7" haben den Wert
g(u) = 0o. In jedem Schleifendurchlauf wird in Zeile 8 ein Knoten u
mit minimalem g-Wert aus U entfernt und als fertig markiert. An-
schlieend werden alle von u wegfithrenden Kanten e = (u,v) auf
Relaxation getestet sowie g, U und T gegebenenfalls aktualisiert.
Beispiel 24. Betrachte den nebenste-

henden Distanzgraphen G. Bei Aus- 1 6 e 8

3
fiihrung des Dijkstra-Algorithmus mit @ 3 1{ /6 @
dem Startknoten a werden die folgen- 7 3
F—

den kiirzesten Wege berechnet.
‘entfernt ‘ besuchte Kanten ‘Update—Op. ‘

’ Inhalt von P

(a,0) (a,0) |(a,b),(a,e) (b,1),(e,7)

(b,1), (e, 7) (b,1) |(b,c) (c,4)

(c,4), (e, 7) (c;4) |(c,d), (e e),(c, f)|(d,12),(f,10)
(e,7),(f,10),(d,12) | (e,7) | (e, f) (f,8)
(f,8),(d,12) (f,8) |(f,0),(f,d) d,11)

(d,11) (d,11) | — — -

Als néchstes beweisen wir die Korrektheit des Dijkstra-Algorithmus.

Satz 25. Sei D = (V, E,l) ein Distanzgraph und sei s € V.. Dann
berechnet Dijkstra(V, E,l,s) im Feld parent fir alle von s aus
erreichbaren Knoten t € V' einen kiirzesten s-t-Weg P(t).

Beweis. Wir zeigen zuerst, dass alle von s aus erreichbaren Knoten
t € V zu U hinzugefiigt werden. Dies folgt aus der Tatsache, dass s zu

2 Berechnung kiirzester Wege

U hinzugefiigt wird, und spétestens dann, wenn ein Knoten u in Zeile
8 aus U entfernt wird, siémtliche Nachfolger von u zu U hinzugefiigt
werden.

Zudem ist klar, dass g(u) > dist(s,u) ist, da P(u) im Fall g(u) < oo
ein s-u-Weg der Lénge g(u) ist. Es bleibt also nur noch zu zeigen,
dass P(u) fir jeden aus U entfernten Knoten u ein kiirzester s-u-Weg
ist, d.h. es gilt g(u) < dist(s,u).

Hierzu zeigen wir induktiv tiber die Anzahl k der vor u aus U entfern-
ten Knoten, dass g(u) < dist(s,u) ist.

k = 0: In diesem Fall ist w = s und P(u) hat die Lange g(u) = 0.

k—1~k: Sei W =wy,...,v, = u ein kiirzester s-u-Weg in G und
sei v; der Knoten mit maximalem Index ¢ auf diesem Weg, der
vor u aus P entfernt wird.

Nach IV gilt dann

g(v;) = dist(s,v;). (2.1)
Zudem ist
9(it1) < g(vi) + 1(vi, viga). (2.2)
Da u im Fall v # v;,1 vor v;;1 aus P entfernt wird, ist
9(u) < g(visr). (2.3)
Daher folgt
(2.3) (2.2)
g(u) < g(vip) < g(vi) + 1(vi, vig1)
= dist(s,v;) + 1(vi, Vig1)
= dist(s,vi41) < dist(s,u). [

Um die Laufzeit des Dijkstra-Algorithmus abzuschétzen, iiberlegen
wir uns zuerst, wie oft die einzelnen Operationen auf der Datenstruk-
tur P ausgefiihrt werden. Sei n = ||V|| die Anzahl der Knoten und
m = || F|| die Anzahl der Kanten des Eingabegraphen.

17

2.1 Der Dijkstra-Algorithmus

e Die Init-Operation wird nur einmal ausgefiihrt.

e Da die while-Schleife fiir jeden von s aus erreichbaren Knoten
genau einmal durchlaufen wird, wird die RemoveMin-Operation
hochstens min{n, m}-mal ausgefiihrt.

e Wie die Prozedur BFS-Explore besucht der Dijkstra-Algorithmus
jede Kante maximal einmal. Daher wird die Update-Operation
hochstens m-mal ausgefiihrt.

Beobachtung 26. Bezeichne Init(n), RemoveMin(n) und Update(n)
den Aufwand zum Ausfiihren der Operationen Init, RemoveMin und
Update fir den Fuall, dass P nicht mehr als n Elemente aufzunehmen
hat. Dann ist die Laufzeit des Dijkstra-Algorithmus durch

O(n +m + Init(n) + min{n, m} - RemoveMin(n) +m - Update(n))
beschrankt.

Die Laufzeit hangt also wesentlich davon ab, wie wir die Datenstruktur
U implementieren. Falls alle Kanten die gleiche Lange haben, wachsen
die Distanzwerte der Knoten monoton in der Reihenfolge ihres (ers-
ten) Besuchs. D.h. wir kénnen U als Warteschlange implementieren.
Dies fithrt wie bei der Prozedur BFS-Explore auf eine Laufzeit von
O(n+m).

Fiir den allgemeinen Fall, dass die Kanten unterschiedliche Langen
haben, betrachten wir folgende drei Mdoglichkeiten.

1. Da die Felder g und done bereits alle zur Verwaltung von U be-

notigten Informationen enthalten, kann man auf die (explizite)
Implementierung von U auch verzichten. In diesem Fall kostet die
RemoveMin-Operation allerdings Zeit O(n), was auf eine Gesamt-
laufzeit von O(n?) fiihrt.
Dies ist asymptotisch optimal, wenn G relativ dicht ist, also
m = Q(n?) Kanten enthélt. Ist G dagegen relativ diinn, d.h.
m = o(n?), so empfiehlt es sich, U als Priorititswarteschlange zu
implementieren.

2 Berechnung kiirzester Wege

2. Es ist naheliegend, U in Form eines Heaps H zu implementieren.
In diesem Fall lasst sich die Operation RemoveMin in Zeit O(logn)
implementieren. Da die Prozedur Update einen linearen Zeitauf-
wand erfordert, ist es effizienter, sie durch eine Insert-Operation
zu simulieren. Dies fiihrt zwar dazu, dass derselbe Knoten evtl.
mehrmals mit unterschiedlichen Werten in H gespeichert wird.
Die Korrektheit bleibt aber dennoch erhalten, wenn wir nur die
erste Entnahme eines Knotens aus H beachten und die tibrigen
ignorieren.

Da fir jede Kante hochstens ein Knoten in H eingefiigt
wird, erreicht H maximal die Grofie n? und daher sind die
Heap-Operationen Insert und RemoveMin immer noch in Zeit
O(logn?) = O(logn) ausfithrbar. Insgesamt erhalten wir somit
eine Laufzeit von O(n + mlogn), da sowohl Insert als auch
RemoveMin maximal m-mal ausgefithrt werden.

Die Laufzeit von O(n + mlogn) bei Benutzung eines Heaps ist
zwar fiir diinne Graphen sehr gut, aber fiir dichte Graphen schlech-
ter als die implizite Implementierung von U mithilfe der Felder g
und done.

3. Als weitere Moglichkeit kann U auch in Form eines so genannten
Fibonacci-Heaps F implementiert werden. Dieser ben6tigt nur eine
konstante amortisierte Laufzeit O(1) fiir die Update-Operation
und O(logn) fiir die RemoveMin-Operation. Insgesamt fihrt dies
auf eine Laufzeit von O(m + nlogn). Allerdings sind Fibonacci-
Heaps erst bei sehr grofien Graphen mit mittlerer Dichte schneller.

H implizit Heap Fibonacci-Heap ‘
Init O(1) O(1) O(1)
Update o(1) O(logn) o(1)
RemoveMin O(n) O(logn) O(logn)

Gesamtlaufzeit H On?) O(n+mlogn) O(m+nlogn) ‘

2.2 Der Bellman-Ford-Algorithmus

Die Tabelle fasst die Laufzeiten des Dijkstra-Algorithmus fiir die
verschiedenen Moglichkeiten zur Implementation der Datenstruktur
U zusammen. Eine offene Frage ist, ob es auch einen Algorithmus
mit linearer Laufzeit O(n + m) zur Bestimmung kiirzester Wege in
Distanzgraphen gibt.

2.2 Der Bellman-Ford-Algorithmus

In manchen Anwendungen treten negative Kantengewichte auf. Geben
die Kantengewichte beispielsweise die mit einer Kante verbundenen
Kosten wider, so kann ein Gewinn durch negative Kosten modelliert
werden. Auf diese Weise lassen sich auch langste Wege in Distanz-
graphen berechnen, indem man alle Kantenlangen [(u,v) mit —1
multipliziert und in dem resultierenden Graphen einen kiirzesten Weg
bestimmt.

Die Komplexitét des Problems hangt wesentlich davon ab, ob man (ge-
richtete) Kreise mit negativer Lange zuldsst oder nicht. Falls negative
Kreise zugelassen werden, ist das Problem NP-hart. Andernfalls exis-
tieren effiziente Algorithmen wie z.B. der Bellman-Ford-Algorithmus
(BF-Algorithmus) oder der Bellman-Ford-Moore-Algorithmus (BFM-
Algorithmus). Diese Algorithmen 16sen das single-source shortest-path
Problem mit einer Laufzeit von O(nm) im schlechtesten Fall.

Der Ford-Algorithmus arbeitet ganz &ahnlich wie der Dijkstra-
Algorithmus, betrachtet aber jede Kante nicht wie dieser nur einmal,
sondern eventuell mehrmals. In seiner einfachsten Form sucht der
Algorithmus wiederholt eine Kante e = (u,v) mit

g(u) +£(u,v) < g(v)

und aktualisiert den Wert von g(v) auf g(u)+£¢(u,v) (Relaxation). Die
Laufzeit hangt dann wesentlich davon ab, in welcher Reihenfolge die
Kanten auf Relaxation getestet werden. Im besten Fall lasst sich eine
lineare Laufzeit erreichen (z.B. wenn der zugrunde liegende Digraph

2 Berechnung kiirzester Wege

azyklisch ist). Bei der Bellman-Ford-Variante wird in O(nm) Schrit-
ten ein kiirzester Weg von s zu allen erreichbaren Knoten gefunden
(sofern keine negativen Kreise existieren).

Wir zeigen induktiv tiber die Anzahl k der Kanten eines kiirzesten
s-u-Weges, dass g(u) = dist(s,u) gilt, falls ¢ fiir alle Kanten (u,v) die
Dreiecksungleichung g(v) < g(u) + ¢(u,v) erfiillt (also keine Relaxa-
tionen mehr maoglich sind).

Im Fall £ = 0 ist ndmlich v = s und somit g(s) = 0 = dist(s, s).
Im Fall £ > 0 sei v ein Knoten, dessen kiirzester s-v-Weg W aus k
Kanten besteht. Dann gilt nach IV fiir den Vorgénger u von v auf W
g(u) = dist(s,u). Aufgrund der Dreiecksungleichung folgt dann

g(v) < g(u) + l(u,v) = dist(s,u) + L(u,v) = dist(s,v).

Aus dem Beweis folgt zudem, dass nach Relaxation aller Kanten eines
kiirzesten s-v-Weges W (in der Reihenfolge, in der die Kanten in W
durchlaufen werden) den Wert dist(s,v) hat. Dies gilt auch fir den
Fall, dass zwischendurch noch weitere Kantenrelaxationen stattfinden.

Der Bellman-Ford-Algorithmus priift in n — 1 Iterationen jeweils alle
Kanten auf Relaxation. Sind in der n-ten Runde noch weitere Relaxa-
tionen moglich, muss ein negativer Kreis existieren. Die Laufzeit ist
offensichtlich O(nm) und die Korrektheit folgt leicht durch Induktion
iiber die minimale Anzahl von Kanten eines kiirzesten s-t-Weges.
Zudem wird bei jeder Relaxation einer Kante (u,v) der Vorginger u
im Feld parent(v) vermerkt, so dass sich ein kiirzester Weg von s zu
allen erreichbaren Knoten (bzw. ein negativer Kreis) rekonstruieren
lasst.

Algorithmus BF(V, E,[,s)
1 for all veV do

2 g(v) := 00

3 parent(v) := L

1 g(s) =0

5 for 1: =1 ton—-1 do

19

2.3 Der Bellman-Ford-Moore-Algorithmus

6 for al

. ent
0 for all (u,v) € FE do

1 if g(u)+l(u,v) < g(v) then

12 error(es gibt einen negativen Kreis)

2.3 Der Bellman-Ford-Moore-Algorithmus

Die BFM-Variante priift in jeder Runde nur diejenigen Kanten (u, v)
auf Relaxation, fiir die g(u) in der vorigen Runde erniedrigt wurde.
Dies fithrt auf eine deutliche Verbesserung der durchschnittlichen
Laufzeit. Wurde nédmlich g(u) in der (i — 1)-ten Runde nicht ver-
ringert, dann steht in der i-ten Runde sicher keine Relaxation der
Kante (u,v) an. Es liegt nahe, die in der nichsten Runde zu priifenden
Knoten w in einer Schlange () zu speichern. Dabei kann mit v auch die
aktuelle Rundenzahl 7 in () gespeichert werden. In Runde 0 wird der
Startknoten s in () eingefiigt. Kénnen in Runde n immer noch Kanten
relaxiert werden, so bricht der Algorithmus mit der Fehlermeldung
ab, dass negative Kreise existieren. Da die BFM-Variante die Kanten
in derselben Reihenfolge relaxiert wie der BF-Algorithmus, fithrt sie
auf dasselbe Ergebnis.

Algorithmus BFM(V, E, [, s)

1 for all veV do

2 g(v) := o0, parent(v):= 1, inQueue(v):= false
3

|

g(s) :==0, Init(Q), Enqueue(Q, (0,s)), inQueue(s) := true
while (i,u) := Dequeue(Q) # L and i <n do

5 inQueue(u) := false

6 for all v € N*(u) do

if g(u)+l(u,v) < g(v) then

=~

2 Berechnung kiirzester Wege

8 g(v) == g(u) + l(u,v)
9 parent(v) :==u
10 if inQueue(v) = false then
11 Enqueue(Q, (i + 1,v))
12 inQueue(v) := true
13 if +=n then
1 error(es gibt einen negativen Kreis)

Fiir kreisfreie Graphen lasst sich eine lineare Laufzeit O(n + m) er-
zielen, indem die Nachfolger in Zeile 6 in topologischer Sortierung
gewahlt werden. Dies bewirkt, dass jeder Knoten hochstens einmal in
die Schlange eingefiigt wird.

Beispiel 27. Betrachte untenstehenden kantenbewerteten Digraphen
mit dem Startknoten a.

Die folgende Tabelle zeigt jeweils den Inhalt der Schlange @, bevor
der BFM-Algorithmus das ndachste Paar (i,u) von Q entfernt. Dabei
enthdlt jeder Eintrag (i,u,v,g) neben der Rundenzahl i und dem Kno-
ten u auch noch den parent-Knoten v und den g-Wert von u, obwohl
diese nicht in () gespeichert werden.

2.3 Der Bellman-Ford-Moore-Algorithmus

ﬂ (1,b,a,2)
(1797a75) (17g7b7_1>

(2’d’g’7)
(2,¢,9,0) (2,¢,9,0)
(3, f,d,9) (3, f,d,9)
(3,¢,d,9)| (3,¢,d,9)
(3,d,e,4)| (3,d,e,4) |(3,d,e,4)

(4, f,d,6)|

Die berechneten Entfernungen mit den zugehorigen parent-Pfaden
sind in folgendem Suchbaum widergegeben:

Da dieser einen negativen Kreis enthdlt, der vom Startknoten aus
erreichbar ist, lassen sich die Entfernungen zu allen Knoten, die von
diesem Kreis aus erreichbar sind, beliebig verkleinern.

2 Berechnung kiirzester Wege

f
(0, a,L,0)
f (1,b,a,4)
(1,9,a,5)|(1,9,b,1)
(2,d,9,6)
(2,e,9,2)(2,e,9,2)
(3,1.d,8)|(3, f.d,8)
(3,¢,e,5)
‘ (3,¢,€,5)
(4,b,¢,3)
(5797 b7 O)
(67 d7g75)
(6,e,9.1)|(2,e,9,1)
(7. f,d,T)|(7, [.d,7)
(7,c,e,4)

Da nun der Knoten f mit der Rundenzahl i =n =7 aus der Schlange
entnommen wird, bricht der Algorithmus an dieser Stelle mit der
Meldung ab, dass negative Kreise existieren. Ein solcher Kreis (im
Beispiel: g, e, ¢, b, g) lasst sich bei Bedarf anhand der parent-Funktion
aufspiiren, indem wir den parent-Weg zu f zurickverfolgen: f, d, g,
b, c,e,q.

21

2.4 Der Floyd-Warshall-Algorithmus

2.4 Der Floyd-Warshall-Algorithmus

Der Algorithmus von Floyd-Warshall berechnet die Distanzen zwi-
schen allen Knoten unter der Voraussetzung, dass keine negativen
Kreise existieren.

Algorithmus Floyd-Warshall(V, E,l)

I for 1:=1 to n do
2 for j:=1 to n do

3 if (i,7) € E then dy(i,7) :=1(i,7) else dy(i,j) := o0
1 for k:=1 to n do

5 for 1:=1 to n do

6 for j:=1 to n do

7 di(i, 5) = min {dx_1(i, 5), de_1(i, k) + dy_1 (k. j) }

Hierzu speichert der Algorithmus in di (7, j) die Lénge eines kiirzesten
Weges von i nach j, der aufler 7 und 7 nur Knoten < k besucht. Die
Laufzeit ist offenbar O(n?). Da die d,-Werte nur von den dj,_;-Werten
abhiingen, ist der Speicherplatzbedarf O(n?). Die Existenz negativer
Kreise lasst sich daran erkennen, dass mindestens ein Diagonalelement
dx(7,7) einen negativen Wert erhélt.

Beispiel 28. Betrachte folgenden kantenbewerteten Digraphen:

2 Berechnung kiirzester Wege 2.4 Der Floyd-Warshall-Algorithmus

do|1 2 3 4 5 d|1 2 3 4 5 d|1 2 3 4 5 ds|1 2 3 4 5
1]Joo 2 oo 00 o0 l1]oo 2 o0 o0 o0 1]Joo 2 o0 o0 —1 1 oo 2 o0 o0 —1
2|00 00 00 00 —3 2 oo 00 00 o0 —3 2 oo 0o 0o o0 —3 2 o0 00 00 00 —3
3100 —2 00 00 0 3100 —2 00 00 3 oo =2 00 00 =D 3 |loo —2 00 00 —H
4100 0 4 o0 o0 410 00 4 00 4 1o 00 4 o0 410 2 4 o0 —1
5110 0o 9 1 o 5110 12 9 1 5110 12 3 1 9 5110 1 3 1 =2
d|1 2 3 4 5 d;|1 2 3 4 5 d,|1 2 3 4 5 ds|1 2 3 4 5
1]oo 2 o0 o0 —1 1o 2 o0 o0 —1 1]Joo 2 o0 o0 —1 119 0 2 0 =3
2 loo o0 co o0 —3 2 oo 00 00 o0 —3 2 oo 0o 00 00 —3 217 -2 0 -2 -5
3100 —2 00 00 —d 3|00 —2 00 00 =5 3 |oo —2 00 00 —H 3156 —4 -2 -4-7
410 o0 4 00 o0 410 2 4 oo —1 4 1looc 2 4 oo —1 419 0 2 0 -3
5110 12 9 1 9 5110 7 9 1 4 5110 1 3 1 -2 518 -1 1 -1 -4
dg| 1 2 3 4 5 d; [1 2 3 4 5 Wegen ds(5,5) = —2 liegt der Knoten 5 auf einem negativen Kreis.
I']oo 2 o0 o0 —1 119 2 4 0 -1 Folglich ist die Weglange nicht fiir alle Knotenpaare nach unten be-
2 o0 00 00 00 —3 217 0 2 -2 -3 schrankt. 4
3|00 —2 00 00 —H 3156 -2 0 —4 -5
4100 2 4 oo -1 419 2 4 0 —1 Ohne groflen Mehraufwand lassen sich auch die kiirzesten Wege selbst
5110 3 5 1 O 5|10 3 5 1 O berechnen, indem man in einem Feld parent[:, j] den Vorginger von
) . , j auf einem kiirzesten Weg von ¢ nach j speichert (falls ein Weg
Als ndchstes betrachten wir folgenden Digraphen: von ¢ nach j existiert). Eine elegantere Moglichkeit besteht jedoch
darin, die Kantenfunktion [in eine dquivalente Distanzfunktion I’ zu
transformieren, die keine negativen Werte annimmt, aber dieselben
kiirzesten Wege in G wie [hat. Da wir fiir diese Transformation nur
alle kiirzesten Wege von einem festen Knoten s zu allen anderen
Knoten berechnen miissen, ist sie in Zeit O(nm) durchfiithrbar.
do|1 2 3 4 5 d|1 2 3 4 5
1 oo 2 o0 o0 o0 1 [oo 2 o0 00 o0
2 oo 00 00 00 —3 2 oo 00 00 00 —3
3100 —2 00 00 o0 300 —2 0o 00 o0
4 oo 00 4 o0 410 00 4 00
5110 0o 3 1 o0 5110 12 3 1 o0

22

3 Matchings

3 Matchings

Definition 29. Sei G = (V, E) ein Graph.
e Zwei Kanten e, e’ € E heiflen unabhéngig, falls e Ne' = () ist.

e Fine Kantenmenge M C FE heifst Matching in G, falls alle
Kanten in M paarweise unabhdngig sind.

FEin Knoten v € V' heifst gebunden, falls v Endpunkt einer Mat-
chingkante (also v € UM) ist und sonst frei.

M heifit perfekt, falls alle Knoten von G gebunden sind (also
V=UM ist).

Die Matchingzahl von G ist

w(G) = max{||M|| | M ist ein Matching in G}

Ein Matching M heifft maximal, falls |M|| = u(G) ist. M heifst
geséattigt, falls es in keinem gréfseren Matching enthalten ist.

Offensichtlich ist M C E genau dann ein Matching, wenn ||J M| =
2|| M| ist. Das Ziel besteht nun darin, ein maximales Matching M in
G zu finden.

Beispiel 30. Ein gesdattigtes Matching muss nicht maximal sein:

M = {{v,w}} ist gesdttigt, da es sich nicht erweitern lisst. M ist
jedoch kein mazimales Matching, da M’ = {{v,z}, {u,w}} grofier ist.

23

Die Greedy-Methode, ausgehend von M = () solange Kanten zu M
hinzuzufigen, bis sich M nicht mehr zu einem gréfferen Matching
erweitern ldsst, funktioniert also nicht.

Es gibt jedoch eine Methode, mit der sich jedes Matching, das nicht
maximal ist, vergroffern lésst.

Definition 31. Sei G = (V, E) ein Graph und sei M ein Matching

in G.

1. Ein Pfad P = (uy,...
1. k—1 gilt:

,ur) heifft alternierend, falls fir i =

e; = {ui, U1} € M & ejp1 = {1, uire} € B\ M.

2. Ein Kreis C = (uy,...,u;) heifit alternierend, falls der Pfad
P = (uy,...,ux_1) alternierend ist und zusdtzlich gilt:

€1€M<:>6k_1EE\M.

3. Ein alternierender Pfad P heifit vergrofernd, falls weder e,
noch e,_1 zu M gehdren.

Satz 32. Ein Matching M in G ist genau dann maximal, wenn es
keinen vergréfsernden Pfad in G bzgl. M gibt.

Beweis. Ist P ein vergroBernder Pfad, so liefert M’ = MAP ein
Matching der Grole | M'|| = ||M|| + 1 in G. Hierbei identifizieren
wir P mit der Menge {¢; |i=1,...,k — 1} der auf P = (uy,...,ug)
liegenden Kanten e; = {u;, w1}

Ist dagegen M nicht maximal und M’ ein gréferes Matching, so
betrachten wir die Kantenmenge M AM’'. Da jeder Knoten in dem
Graphen G’ = (V, MAM') hochstens den Grad 2 hat, lasst sich die
Kantenmenge M AM’ in disjunkte Kreise und Pfade partitionieren.
Da diese Kreise und Pfade alternierend sind, und M’ grofer als M
ist, muss mindestens einer dieser Pfade zunehmend sein. |

3 Matchings

Damit haben wir das Problem, ein maximales Matching in einem Gra-
phen G zu finden, auf das Problem reduziert, zu einem Matching M
in G einen vergroflernden Pfad zu finden, sofern ein solcher existiert.

Der Algorithmus von Edmonds bestimmt einen vergrofernden Pfad
wie folgt. Jeder Knoten v hat einen von 3 Zustanden, welcher ent-
weder mit gerade (falls v frei ist) oder unerreicht (falls v gebunden
ist) initialisiert wird. Dann wird ausgehend von den freien Knoten
als Wurzeln ein Suchwald W aufgebaut, indem fiir einen beliebigen
geraden Knoten v eine Kante zu einem Knoten v besucht wird, der
entweder ebenfalls gerade oder unerreicht ist.

Ist v" unerreicht, so wird der aktuelle Suchwald W um die beiden Kan-
ten (v,v’) und (v', M (v')) erweitert, wobei M (v’) der Matchingpartner
von v’ ist (d.h. {v/, M (v")} € M). Zudem wechselt der Zustand von
v" von unerreicht zu ungerade und der von M (v') von unerreicht zu
gerade. Damit wird erreicht, dass jeder Knoten in W genau dann
gerade (bzw. ungerade) ist, wenn der Abstand zu seiner Wurzel in W
gerade (bzw. ungerade) ist.

Ist v" dagegen gerade, so gibt es 2 Unterfélle. Sind die beiden Wurzeln
von v und v’ verschieden, so wurde ein vergroBernder Pfad gefunden,
der von der Wurzel von v zu v iiber v' zur Wurzel von v verlauft.

Andernfalls befindet sich v" im gleichen Suchbaum wie v, d.h. es gibt
einen gemeinsamen Vorfahren v”, so dass durch Verbinden der beiden
Pfade von v” nach v und von v” nach v' zusammen mit der Kante
{v,v'} ein Kreis C' entsteht. Da v und v beide gerade sind, hat C' eine
ungerade Lange. Zudem muss auch v” gerade sein, da jeder ungerade
Knoten in W genau ein Kind hat. Der Pfad von der Wurzel von v”
zu v” zusammen mit dem Kreis C' wird als Blume mit der Bliite C'
bezeichnet. Der Knoten v” heifit Basis der Bliite C.

Zwar fithrt das Auffinden einer Bliite C' nicht direkt zu einem ver-
groflernden Pfad, sie bedeutet aber dennoch einen Fortschritt, da
sich der Graph wie folgt vereinfachen lasst. Wir kontrahieren C'
zu einem einzelnen geraden Knoten b, der die Nachbarschaften aller

24

Knoten in C zu Knoten auflerhalb von C' erbt, und setzen die Suche
nach einem vergréfiernden Pfad fort. Bezeichnen wir den aus G durch
Kontraktion von C' entstandenen Graphen mit G¢ und das aus M
durch Kontraktion von C' entstandene Matching in G mit Mg, so
stellt folgendes Lemma die Korrektheit dieser Vorgehensweise sicher.

Lemma 33. In G ldsst sich ausgehend von M genau dann ein vergri-
fernder Pfad finden, wenn dies in G¢ ausgehend von Mg mdglich ist.
Zudem kann jeder vergrofiernde Pfad in G¢ zu einem vergréfsernden
Pfad in G expandiert werden.

Beweis. Sei P ein vergroflernder Pfad in G¢. Falls P nicht den Kno-
ten b besucht, zu dem die Blite C' kontrahiert wurde, so ist P auch
ein vergroflernder Pfad in G. Besucht P dagegen den Knoten b, so
betrachten wir die beiden Nachbarn a und ¢ von b in P (0.B.d.A sei
{a,b} in M¢). Dann existiert in M eine Kante zwischen a und der
Basis v” von C. Zudem gibt es in C' mindestens einen Nachbarn v,
von c¢. Im Fall v = v, geniigt es, b durch v” zu ersetzen. Andernfalls
ersetzen wir b durch denjenigen der beiden Pfade P, und P, von
v” nach v, auf C, der v, Uber eine Matchingkante erreicht. Falls b
Endknoten von P ist, also nur einen Nachbarn ¢ in P hat, ersetzen
wir b durch den gleichen Pfad.

Der Beweis der Riickrichtung ist komplizierter, da viele verschiedene
Falle moglich sind. Alternativ ergibt sich die Riickrichtung aber auch
als Folgerung aus der Korrektheit des Edmonds-Algorithmus (siehe
Satz 36). [|

Die folgende Prozedur VergréBernderPfad berechnet einen vergro-
Bernden Pfad fiir G, falls das aktuelle Matching M nicht maximal
ist. Da M nicht mehr als n/2 Kanten enthalten kann, wird diese
Prozedur hochstens (n/2 + 1)-mal aufgerufen. In den Ubungen wird
gezeigt, dass die Prozedur die Laufzeit O(m) hat, woraus sich eine
Gesamtlaufzeit von O(nm) fir den Edmonds-Algorithmus ergibt.

3 Matchings

Prozedur VergroBernderPfad(G, M)

L Q<+ 0
2> for ve V(G) do

3
1

5

if Je € M : v € ¢ then zustand(v) < unerreicht
else

zustand(v) < gerade

root(v) < v

depth(v) <+ 0

for ue N(v) do Q + QU {(v,u)}

while Q # () do

entferne eine Kante (v,v') aus @
if zustand(v’) = ungerade or
inblite(v) = inblite(v’) # L then // tue
nichts
else if zustand(v’) = unerreicht then
zustand(v’') < ungerade
parent (v') < v
root(v') < root(v)
depth(v') < depth(v) +1
v” < partner(v’)
zustand(v”) <+ gerade
parent (v”) < v/
root(v”) < root(v’)
depth(v”) < depth(v') +1
for ue N(v")\ {v'} do Q<+ QU {(v",u)}
else // zustand(v') = gerade
if root(v) =root(v') then // v und ¢’ sind im
gleichen Baum: kontrahiere Blite
v” < tiefster gemeinsamer Vorfahr von v und ¢’
// verwende depth(v) und depth(v’)
b < neuer Knoten
blite(b) < (v",...,v,0',...,v") // setze die
beiden Pfade entlang der Baum-Kanten zu

25

28
29
30
31
32

33

35

36

49

einem ungeraden Kreis zusammen
parent(b) < parent(v”)
root(b) < root(v”)
depth(b) < depth(v”)
for v € blite(d) do
inbliate(u) < b
if zustand(u) = ungerade then
zustand(u) < gerade
for we N(u) do @+ QU {(u,w)}
else // vergroBernder Pfad gefunden, muss noch
expandiert werden
P < leere doppelt verkettete Liste
U< v
while u # 1 do
while inblite(u) # 1L do w <+ inblite(u)
hange u vorne an P an
u < parent(u)
u<+v
while u # 1 do
while inblite(u) do u <+ inblite(u)
hange v hinten an P an
u < parent(u)
u < der erste Knoten auf P
while u # 1 do
if blite(u) = L then
u < succp(u)
else // blite(u) = (vg,...,vx) Mit vy = vy
ersetze u in P durch den alternierenden
Pfad in blite(u), der predp(u) und
succp(u) verbindet und auf der Nicht-
Basis-Seite mit einer Kante aus M endet
u < der erste Knoten dieses Pfads
return P

3 Matchings

Fiir den Beweis der Korrektheit des Edmonds-Algorithmus benotigen
wir den Begriff des OSC.

Definition 34. Sei G = (V,E) ein Graph. Eine Menge S =
{v1,.. ., 06, V1, ..., Vi} von Knoten vq,...,ux € V und Teilmengen
Vi,..., Vo CV heifit OSC (engl. odd set cover) in G, falls

I.Yee E:enNVy£0VIi>1:eCV;, wobei Vo ={vy,...,0x}.
2. Vi>1:n; =51, wobei n; = ||V;]].
Das Gewicht von S ist weight(S) = k + S%_,(n; — 1)/2. Im Fall

¢ = 0 nennen wir Vy auch Knoteniiberdeckung (oder kurz VC
fir engl. vertex cover) in G.

Lemma 35. Fir jedes Matching M in einem Graphen G = (V, E)
und jedes OSC S in G gilt || M|| < weight(S).

Beweis. M kann fiir jeden Knoten v; € S hochstens eine Kante und
von den Kanten in V;, i > 1, hochstens (n; — 1)/2 Kanten enthalten.
[

Satz 36. Der Algorithmus von Edmonds berechnet ein mazimales
Matching M fir G.

Beweis. Es ist klar, dass der Algorithmus von Edmonds terminiert.
Wir analysieren die Struktur des Suchwalds zu diesem Zeitpunkt. Jede
Kante e € E lasst sich in genau eine von drei Kategorien einteilen:

1. e hat mindestens einen ungeraden Endpunkt,
2. beide Endpunkte von e sind unerreicht,
3. e liegt komplett innerhalb einer Bliite.

Wiirde nédmlich e keine dieser 3 Bedingungen erfiillen, so wiirde der Al-
gorithmus nicht terminieren, da alle Kanten e = (v, v’), die mindestens
einen geraden Endpunkt v haben, von dem Algorithmus betrachtet
werden und im Fall,

26

1. dass auch v’ gerade ist, e entweder zur Kontraktion einer weiteren
Bliite oder zu einem vergroflernden Pfad fithren

2. dass v’ unerreicht ist, v’ in einen ungeraden Knoten verwandelt

wiirde. Folglich konnen wir ein OSC S wie folgt konstruieren. Sei U die
Menge der unerreichten Knoten. Jede Bliite bildet eine Menge V; in .S
und jeder ungerade Knoten wird als Einzelknoten zu S hinzugefiigt.
Falls U nicht leer ist, fiigen wir einen beliebigen unerreichten Knoten
ug € U als Einzelknoten zu S hinzu. Falls U mindestens 4 Knoten
enthalt, figen wir auch die Menge U \ {up} zu S hinzu.

Nun ist leicht zu sehen, dass S alle Kanten iiberdeckt und jeder
Einzelknoten in S mit einer Matchingkante inzident. Da zudem jede
Bliite V; der GroBe n; genau (n; —1)/2 (und auch die Menge U \ {uo}
im Fall ||U|| > 4 genau (||U]| — 2)/2) Matchingkanten enthélt, folgt
weight(S) = || M||. [|

Korollar 37. Fiir jeden Graphen G gilt

p1(G) = min{weight(S) | S ist ein OSC in G}.

Ein Spezialfall hiervon ist der Satz von Konig fiir bipartite Graphen
(siehe Ubungen).

Der Algorithmus von Edmonds lésst sich leicht dahingehend modifi-
zieren, dass er nicht nur ein maximales Matching M, sondern auch ein
OSC S ausgibt, das die Optimalitit von M beweist. In den Ubungen
werden wir noch eine weitere Moglichkeit zur ,,Zertifizierung“ der
Optimalitat von M kennenlernen.

4 Fliisse in Netzwerken

4 Fliusse in Netzwerken

Definition 38. Ein Netzwerk N = (V| E, s,t,c) besteht aus einem
gerichteten Graphen G = (V, E) mit einer Quelle s € V' und einer
Senke t € V sowie einer Kapazitatsfunktion ¢ : V x V — N.
Zudem muss jede Kante (u,v) € E positive Kapazitit c(u,v) > 0 und
jede Nichtkante (u,v) € E muss die Kapazitit c(u,v) = 0 haben.

Die folgende Abbildung zeigt ein Netzwerk N.

Definition 39.

a) Fin Fluss in N ist eine Funktion f :V xV — Z mit
f(uv U) < C(U7U)7
fu,v) = —f(v,u), (Antisymmetrie)
Svey f(u,v) =0 fir allew € V \ {s,t} (Kontinuitdt)

b) Der Fluss in den Knoten w ist f~(u) = Y,y max{0, f(v,u)}.

¢) Der Fluss aus w ist f*(u) =Y,y max{0, f(u,v)}.

d) Der Fluss durch w ist f(u) = max{f*(u), f~(u)}.

e) Der Nettofluss in u ist f~(u) — fT(u).

f) Der Nettofluss aus wu ist f*(u) — f~(u).

g) Die GréBe von f ist |f| = f1(s) — f(s).

(Kapazitatsbedingung)

27

Die Antisymmetrie impliziert, dass f(u,u) = 0 fur alle u € V ist,
d.h. wir kénnen annehmen, dass G schlingenfrei ist. Die folgende
Abbildung zeigt einen Fluss f in V.

U s a b c d t
ff(w)|8 4 79 6 0
f7(w)y|0 4 79 6 8

4.1 Der Ford-Fulkerson-Algorithmus

Wie lasst sich fiir einen Fluss f in einem Netzwerk N entscheiden, ob
er vergrofert werden kann? Diese Frage lédsst sich leicht beantworten,
falls f der konstante Nullfluss f = 0 ist: In diesem Fall geniigt es, in
G = (V, E) einen Pfad von s nach ¢ zu finden. Andernfalls konnen
wir zu NV und f ein Netzwerk N; konstruieren, so dass f genau dann
vergrofert werden kann, wenn sich in Ny der Nullfluss vergrofiern
lasst.

Definition 40. Sei N = (V, E,s,t,¢) ein Netzwerk und sei [ein
Fluss in N. Das zugeordnete Restnetzwerk ist Ny = (V, Ey, s,t,¢y)
mit der Kapazitdt

Cf(ua U) = C<u7 U) - f(U,, ’U)
und der Kantenmenge

Er ={(u,v) € VxV|c¢s(u,v) >0}

Zum Beispiel fiihrt der Fluss

4 Fliisse in Netzwerken 4.1 Der Ford-Fulkerson-Algorithmus

Die folgende Abbildung zeigt den zum Zunahmepfad P = s,c¢,b,t
gehorigen Fluss fp in Ny. Die Kapazitdt von P ist ¢;(P) = 4.

Es ist leicht zu sehen, dass fp tatséchlich ein Fluss in N; ist. Durch Ad-
dition der beiden Fliisse f und fp erhalten wir einen Fluss f' = f+ fp
in N der GroBe |f'| = |f| + |fp| > |f]-

Fluss f: Fluss f + fp:

Definition 41. Sei Ny = (V, Ey,s,t,cs) ein Restnetzwerk. Dann
heifst jeder s-t-Pfad P in (V, E;) Zunahmepfad in N;. Die Kapa-
zitdt von P in Ny ist

cr(P) = min{cs(u,v) | (u,v) liegt auf P}

und der zu P gehorige Fluss in Ny ist

) Nun kénnen wir den Ford-Fulkerson-Algorithmus angeben.
cr(P), (u,v) liegt auf P,
fr(u,v) = —cp(P), (v,u) liegt auf P, Algorithmus Ford-Fulkerson(V, E, s, t,c)

0, sonst. 1 for all (u,v) eV xV do
2 f(u,v) =0
P = (ug,...,uy) ist also genau dann ein Zunahmepfad in Ny, falls s while es gibt einen Zunahmepfad P in N; do
! J=f+Jp
e uy = s und ug =t ist,
e die Knoten wuy, ..., u; paarweise verschieden sind Beispiel 42. Fir den neuen Fluss erhalten wir nun folgendes Rest-
o und cp(u;,uipq) >0 fiir i =0,...,k— 1 ist. netzwerk:

28

4 Fliisse in Netzwerken

In diesem existiert kein Zunahmepfad mehr. <

Um zu beweisen, dass der Algorithmus von Ford-Fulkerson tatséch-
lich einen Maximalfluss berechnet, zeigen wir, dass es nur dann im
Restnetzwerk Ny keinen Zunahmepfad mehr gibt, wenn der Fluss f
maximal ist. Hierzu benétigen wir den Begriff des Schnitts.

Definition 43. Sei N = (V, E, s,t,¢) ein Netzwerk und sei) S C
V. Dann heifit die Menge ET(S) = {(u,v) € E | u € S;v ¢ S}
Kantenschnitt (oder Schnitt; oft wird auch einfach S als Schnitt
bezeichnet). Die Kapazitdt eines Schnittes S ist

(9= > cluw).
(u,w)EET(S)
Ist f ein Fluss in N, so heif§t
fr(s) = fu,v)

(u,w)EET(S)
der Fluss durch den Schnitt S.

Beispiel 44. Betrachte den Schnitt S = {s,a,c} in folgendem Netz-
werk N mit dem Fluss f:

4.1 Der Ford-Fulkerson-Algorithmus

13/13

11/14

Dieser Schnitt hat die Kapazitdit
ct(S) =c(a,b) +c(c,d) =13+ 14 =27
und der Fluss fT(S) durch diesen Schnitt ist
IT(S) = f(a,b) + f(c,b) + f(c,d) =13 — 1411 = 23,
Dagegen hat der Schnitt S" = {s,a,b,c,d}

13/13

die Kapazitat
c™(S) = c(b,t)+e(d, 1) = 19+4 = f(b,t)+f(d, 1) = f7(95),

die mit dem Fluss durch diesen Schnitt ibereinstimmdt.

Lemma 45. Fir jeden Schnitt S mit s € S, t ¢ S und jeden Fluss f

qilt
[fl = fT(S) < c™(9).

29

4 Fliisse in Netzwerken

Beweis. Die Gleichheit f*(s) = f7(S) zeigen wir durch Induktion
tiber k = ||S]].

k = 1: In diesem Fall ist S = {s} und somit

[fl = fH(s) = X fls,v) = fls,8)+) f(s,0) = fH(S).

veV -0 vF#S

k— 1~ k: Sei S ein Schnitt mit ||S]| =k > 1 und sei w € S — {s}.

Betrachte den Schnitt S" =S — {w}. Dann gilt

f+(S): Z f(uvv): Z f(u,v)—i—Zf(w,v)
u€S,weES ueS’ w¢sS v¢S
und
1) = > fluv)= > fluv)+ > flu,w)

ueS’ wg S’ ueS’ v¢sS ues’

Wegen f(w,w) =01ist > ,cqo f(u,w) =>,cq f(u,w) und daher
FHS) = f1(8) =2 flw,v) = > fluyw) =37 flw,v) =0.

vgS uesS veV

Nach Induktionsvoraussetzung folgt somit f(S) = f*(S") = |f].

SchlieBlich folgt wegen f(u,v) < ¢(u,v) die Ungleichung

9 = Y flue) <Y

(u,w)EET(S) (u,w)eET(S)

c(u,v) = c*(9).
[

Satz 46 (Min-Cut-Max-Flow-Theorem). Sei f ein Fluss in einem

Netzwerk N = (V, E, s,t,c). Dann sind folgende Aussagen dquivalent:

1. f ist mazimal.
2. In Ny existiert kein Zunahmepfad.
3. Es gibt einen Schnitt S mit ¢t (S) = |f].

30

4.1 Der Ford-Fulkerson-Algorithmus

Beweis. Die Implikation ,,7 = 2 ist klar, da die Existenz eines Zu-
nahmepfads zu einer VergroBerung von f fithren wiirde.

Fir die Implikation ,,2 = 3¢ betrachten wir den Schnitt
S ={u eV |uistin N von s aus erreichbar}.

Da in Ny kein Zunahmepfad existiert, gilt dann
e s S, t¢ S und
o ci(u,v) =0firalleue Sundv ¢ S.
Wegen cf(u,v) = c(u,v) — f(u,v) folgt somit

Yo flu,v)= > e(u,v) =c(9).

u€eS, ¢S ueSvegS

[fI=f7(5) =

Die Implikation ,,3 = 1* ist wiederum klar, da im Fall ¢*(S) = | f]
fir jeden Fluss f’ die Abschatzung |f/| = f/7(S) < ¢T(S) = |f] gilt.
|

Der obige Satz gilt auch fir Netzwerke mit Kapazitaten in RT.

Sei ¢y = ¢(s) die Kapazitit des Schnittes S = {s}. Dann durchlduft
der Ford-Fulkerson-Algorithmus die while-Schleife hochstens cyp-mal.
Bei jedem Durchlauf ist zuerst das Restnetzwerk N; und danach ein
Zunahmepfad in Ny zu berechnen.

Die Berechnung des Zunahmepfads P kann durch Breitensuche in
Zeit O(n + m) erfolgen. Da sich das Restnetzwerk nur entlang von
P andert, kann es in Zeit O(n) aktualisiert werden. Jeder Durch-
lauf benétigt also Zeit O(n + m), was auf eine Gesamtlaufzeit von
O(co(n + m)) fihrt. Da der Wert von ¢ jedoch exponentiell in der
Lange der Eingabe (also der Beschreibung des Netzwerkes N) sein
kann, ergibt dies keine polynomielle Zeitschranke. Bei Netzwerken
mit Kapazitaten in Rt kann der Ford-Fulkerson-Algorithmus sogar
unendlich lange laufen (siche Ubungen).

4 Fliisse in Netzwerken

Bei nebenstehendem Netzwerk benotigt Ford-
Fulkerson zur Bestimmung des Maximalflusses
abhangig von der Wahl der Zunahmepfade zwi-
schen 2 und 2! Schleifendurchliufe.

Im giinstigsten Fall wird ndmlich zuerst der Zunahmepfad (s, a,t)
und dann der Pfad (s, b,t) gewahlt. Im ungiinstigsten Fall werden ab-
wechselnd die beiden Zunahmepfade (s, a,b,t) und (s, b, a,t) gewéhlt:

7 ‘ Zunahmepfad P; in Ny, | ‘ neuer Fluss f; in N ‘

2j +1

2j +2

31

4.2 Der Edmonds-Karp-Algorithmus

Nicht nur in diesem Beispiel lasst sich die exponentielle Laufzeit wie
folgt vermeiden:

e Man betrachtet nur Zunahmepfade mit einer geeignet gewéhlten
Mindestkapazitédt. Dies fithrt auf eine Laufzeit, die polynomiell in
n, m und log ¢y ist.

e Man bestimmt in jeder Iteration einen kiirzesten Zunahmepfad
im Restnetzwerk mittels Breitensuche in Zeit O(n + m). Diese
Vorgehensweise fithrt auf den Edmonds-Karp-Algorithmus, der
eine Laufzeit von O(nm?) hat (unabhéngig von der Kapazitéits-
funktion).

e Man bestimmt in jeder Iteration einen Fluss g im Restnetzwerk
Ny, der nur Kanten benutzt, die auf einem kiirzesten s-t-Pfad in
Ny liegen. Zudem hat g die Eigenschaft, dass g auf jedem kiirzesten
s-t-Pfad P mindestens eine Kante e € P blockiert (d.h. der Fluss
g(e) durch e schopft die Restkapazitit c(e) von e vollkommen
aus), weshalb diese Kante in der nichsten Iteration fehlt. Dies
fithrt auf den Algorithmus von Dinic. Da die Linge der kiirzesten
s-t-Pfade im Restnetzwerk in jeder Iteration um mindestens 1
zunimmt, liegt nach spatestens n — 1 Iterationen ein maximaler
Fluss vor. Dinic hat gezeigt, dass ein blockierender Fluss g in Zeit
O(nm) bestimmt werden kann. Folglich hat der Algorithmus von
Dinic eine Laufzeit von O(n?m). Malhotra, Kumar und Maheswa-
ri fanden spéter einen O(n?)-Algorithmus zur Bestimmung eines
blockierenden Flusses. Damit lasst sich die Gesamtlaufzeit auf
O(n?) verbessern.

4.2 Der Edmonds-Karp-Algorithmus

Der Edmonds-Karp-Algorithmus beschriankt die Suche nach P auf
kiirzeste Zunahmepfade. Ansonsten ist er mit dem Ford-Fulkerson-
Algorithmus identisch.

4 Fliisse in Netzwerken

Algorithmus Edmonds-Karp(V, E, s,t,c)

1
2
3
1

5

6

for all (u,v) €V xV do
f(u,v):=0
repeat

P < zunahmepfad(f)
if P# 1L then add(f,P)

until P = 1

Prozedur zunahmepfad(/f)

AW N

16

for all ve€V, ec FUER do

vis(v) :=vis(e) := false
parent(v) :== L

vis(s) := true
QueueInit(Q)

Enqueue(Q, s)
while —QueueEmpty(Q) A Head(Q) #t do

u := Head(Q)
if 3 e=uve EUE":vis(e) = false then
vis(e) := true
if c(e) — f(e) > 0 Avis(v) = false then
¢(e) = c(e) — f(e)
vis(v) := true
parent(v) :==u
Enqueue(Q,v)
else Dequeue(Q)

if Head(Q) =t then

P :=parent-Pfad von s nach ¢
cf(P) :=min{d(e) | e € P}

else
P.=1
return P

32

4.2 Der Edmonds-Karp-Algorithmus

Prozedur add(f,P)

1 for all e P do

2 () ()+Cf()
s flef) = flef) —er(P)

Satz 47. Der Edmonds-Karp-Algorithmus durchliuft die repeat-
Schleife hochstens nm/2-mal.

Beweis. Sei fy der triviale Fluss und seien Py, ..., P, die Zunahme-
pfade, die der Edmonds-Karp-Algorithmus der Reihe nach berechnet,
d.h. f; = fi-1 + fp,. Eine Kante e heifit kritisch in P;, falls der Fluss
fp, die Kante e sattigt, d.h. ¢s, ,(e) = fr,(e) = ¢y, ,(F;). Man beachte,
dass eine kritische Kante e in P, wegen cy,(e) = ¢y, ,(e) — fp(e) =0
nicht in Ny, enthalten ist, wohl aber ef.

Wir tberlegen uns zunéchst, dass die Léngen ¢; von P; (schwach)
monoton wachsen. Hierzu beweisen wir die starkere Behauptung,
dass sich die Absténde jedes Knotens v € V von s und von ¢t beim
Ubergang von Ny, , zu Ny, nicht veringern konnen. Sei d;(u,v) die
minimale Lange eines Pfades von u nach v im Restnetzwerk Ny, .

Behauptung 48. Fir jeden Knoten w € V' gilt d;11(s,u) > d;(s,u)
und diyq(u,t) > d;(u,t).

Hierzu zeigen wir folgende Behauptung.

Behauptung 49. Fulls die Kante e = (u;, uj+1) auf einem kirzesten
Pfad P = (ug,...,up) von s = ug nach uw = uy, in Ny, liegt (d.h.
di+1<8,’u]‘+1) = di+1<8’uj) + 1), dann gllt di(S, uj+1) < di(S, 'LL]') + 1.

Die Behauptung ist klar, wenn die Kante e =

(uj,uj41) auch in
Ny, | enthalten ist. Ist dies nicht der Fall, muss f;_

1(e) # fi(e)
sein, d.h. e oder e miissen in P, vorkommen. Da e nicht in Ny, ,
ist, muss e = (uj;1,u;) auf P; liegen. Da P; ein kiirzester Pfad
von s nach t in Ny, ist, folgt d;(s,u;) = di(s,uj41) + 1, was
di<8,Uj+1) = d,L'(S,Uj) —1< di(s,uj) +1 anthel"t

4 Fliisse in Netzwerken

Damit ist Behauptung 49 bewiesen und es folgt
di(s,u) < di(s,up_1)+ 1< <di(s,8) +h=h=di1(s,u).

Die Ungleichung d; 1 (u,t) > d;(u,t) folgt analog, womit auch Behaup-
tung 48 bewiesen ist. Als néchstes zeigen wir folgende Behauptung.

Behauptung 50. Fir 1 <i< j <k gilt: Falls e = (u,v) in P; und
e = (v,u) in P; enthalten ist, so ist l; > 1; + 2.

Dies folgt direkt aus Behauptung 48:

L =d;i(s,t) =d;(s,v) + dj(u,t) + 1> di(s,v) + di(u,t) +1 = [; + 2.
—_———— ——
di(s,u)+1 d;i(s,v)+1

Da jeder Zunahmepfad P; mindestens eine kritische Kante enthalt und
EUE® hochstens m Kantenpaare der Form {e, e®} enthélt, impliziert
schlieflich folgende Behauptung, dass k < mn/2 ist.

Behauptung 51. Zwei Kanten e und e® sind zusammen héchstens
n/2-mal kritisch.

Seien P, ,..., P, die Pfade, in denen e oder e kritisch ist. Falls
k € {e, e} kritisch in P, ist, dann fallt k aus N fi;+1 heraus. Damit
also e oder e® kritisch in P;;,, sein konnen, muss ein Pfad Py mit
ij < j' < i1 existieren, der £ enthilt. Wegen Behauptung 48 und
Behauptung 50 ist £;,,, > 5 > {;; + 2. Daher ist

n—1>40, >4, +2h—-1)>142h—-1)=2h—1,
was h < n/2 impliziert. [

Man beachte, dass der Beweis auch bei Netzwerken mit reellen Kapa-
zitdten seine Gilltigkeit behélt.

33

4.3 Der Algorithmus von Dinic

4.3 Der Algorithmus von Dinic

Man kann zeigen, dass sich in jedem Netzwerk ein maximaler Fluss
durch Addition von hochstens m Zunahmepfaden P; konstruieren lasst.
Es ist nicht bekannt, ob sich jeder solche Pfad P; in Zeit O(n + m)
bestimmen lasst. Wenn ja, wiirde dies auf eine Gesamtlaufzeit von
O(n + m?) fithren. Fiir dichte Netzwerke (d.h. m = ©(n?)) hat der
Algorithmus von Dinic die gleiche Laufzeit O(n?m) = O(n*) und die
verbesserte Version ist mit O(n?) sogar noch schneller.

Definition 52. Sei N = (V, E,s,t,c) ein Netzwerk und sei g ein
Fluss in N. g séttigt eine Kante e € F, falls g(e) = c(e) ist. g heifit
blockierend, falls g auf jedem Pfad P von s nach t mindestens eine
Kante e € E sattigt.

Nach dem Min-Cut-Max-Flow-Theorem gibt es zu jedem maximalen
Fluss f einen Schnitt S, so dass alle Kanten in ET(S) geséttigt sind.
Da jeder Pfad von s nach ¢ mindestens eine Kante in E*(S) enthalten
muss, ist jeder maximale Fluss auch blockierend. Fiir die Umkehrung
gibt es jedoch einfache Gegenbeispiele, wie etwa

Ein blockierender Fluss muss also nicht unbedingt maximal sein. Tat-
sachlich ist g genau dann ein blockierender Fluss in /N, wenn es im
Restnetzwerk Ny keinen Zunahmepfad gibt, der nur aus Vorwéartskan-
ten e € ' mit g(e) < c(e) besteht. Wir werden sehen, dass sich ein
blockierender Fluss in Zeit O(n?) berechnen lésst.

Der Algorithmus von Dinic arbeitet wie folgt.

4 Fliisse in Netzwerken

Algorithmus Dinic(V, E,s,t,c)
1 for all (u,v) eV xV do

2 f(u,v):=0
3
!

while schichtnetzwerk(f) do
g := blockfluss(f)

5 f=r+y

Die Prozedur blockfluss(f) berechnet einen blockierenden Fluss im
Restnetzwerk Ny, der fiir alle Kanten den Wert 0 hat, die nicht auf ei-
nem kirzesten Pfad P von s nach ¢ in Ny liegen. Hierzu werden aus Ny
alle Knoten u # t entfernt, die einen Abstand d(s,u) > d(s,t) in Ny
haben. Falls in N kein Pfad von s nach ¢ existiert (d.h. d(s,t) = 00),
wird auch ¢ entfernt.

Das resultierende Netzwerk N} wird als Schichtnetzwerk bezeich-
net, da jeder Knoten in N} einer Schicht S; zugeordnet werden kann:
Fir j = 0,...,max{d(s,u) | d(s,u) < d(s,t)} ist S; = {u € V|
d(s,u) = j}. Im Fall d(s,t) < oo kommt fiir j = d(s,t) noch die
Schicht S; = {t} hinzu. Zudem werden alle Kanten aus Ny entfernt,
die nicht auf einem kiirzesten Pfad von s zu einem Knoten in N} lie-
gen, d.h. jede Kante (u,v) in N} verbindet einen Knoten u in Schicht
S; mit einem Knoten v in Schicht Sj;; von Nj.

Das Schichtnetzwerk N} wird von der Prozedur schichtnetzwerk
durch eine modifizierte Breitensuche in Zeit O(n + m) berechnet.
Diese Prozedur gibt den Wert true zurtck, falls ¢ im berechneten
Schichtnetzwerk N} enthalten (und somit der aktuelle Fluss f noch
nicht maximal) ist, und sonst den Wert false.

Satz 53. Der Algorithmus von Dinic durchliuft die while-Schleife
hochstens n-mal.

Beweis. Sei k die Anzahl der Schleifendurchlaufe und firi=1,...,k
sei g; der blockierende Fluss, den der Dinic-Algorithmus im Schicht-
netzwerk N - berechnet, d.h. fi = fi 1 + g;. Zudem sei d;(u,v)

34

4.3 Der Algorithmus von Dinic

wieder die minimale Lénge eines Pfades von u nach v im Restnetz-
werk Ny, . Wir zeigen, dass di1(s,t) > d;(s,t) ist. Da dy(s,t) > 1
und dj(s,t) < n — 1 ist, folgt £ <n — 1.

Behauptung 54. Fir jeden Knoten v € V' gilt d;1(s,u) > d;(s,u).
Hierzu zeigen wir folgende Behauptung.

Behauptung 55. Fulls die Kante e = (u;, uj+1) auf einem kirzesten
Pfad P = (ug,...,up) von s = ug nach uw = uy, in Ny, liegt (d.h.
di+1(8,uj‘+1) = di+1(8,uj‘) + 1), dann g’élt di(S, ’U/jJrl) < di(S, Uj) + 1.

Die Behauptung ist klar, wenn die Kante e = (u;, u;4+1) auch in Ny, |
enthalten ist. Ist dies nicht der Fall, muss f;_i(e) # fi(e) sein, d.h.
gi(e) muss ungleich 0 sein. Da e nicht in Ny, , und somit auch nicht
in Ny ist, muss e = (u;y1,u;) in Ny, sein. Da N}, nur Kanten
auf kiirzesten Pfaden von s zu einem Knoten in N}, | enthilt, folgt
di(s,uj) = d;(s,ujp1) +1, was di(s,ujq1) = di(s,u;) —1 < di(s,uj)+1
impliziert.

Damit ist Behauptung 55 bewiesen und Behauptung 54 folgt wie im
Beweis von Satz 47. Als néachstes zeigen wir folgende Behauptung.

Behauptung 56. Firi=1,... k—1 gilt d; 1(s,t) > d;(s,t).

Sei P = (ug,uq,...,up) ein kiirzester Pfad von s = ug nach ¢t = u;, in
Ny,. Dann gilt wegen Behauptung 54, dass d;(s,u;) < d;+1(s,uj) = j
fir 7 =0,...,h ist.

Wir betrachten 2 Félle. Wenn alle Knoten u; in N enthalten sind,
fithren wir die Annahme d;(s,t) = d;11(s,t) auf einen Widerspruch.
Wegen Behauptung 55 folgt aus dieser Annahme nédmlich die Gleich-
heit d;(s,u;j+1) = d;i(s,u;) + 1, da sonst d;(s,t) < h ware. Folglich ist
P auch ein kiirzester Pfad von s nach ¢ in Ny, , und somit g; kein
blockierender Fluss in Ny, .

Es bleibt der Fall, dass mindestens ein Knoten u; nicht in N, enthal-
ten ist. Sei u;;, der erste Knoten auf P, der nicht in N}, enthalten ist.

4 Fliisse in Netzwerken

Dann ist w;4; # t und daher d; (s, t) > di11(S, u;4+1). Zudem liegt die
Kante e = (u;j, u;41) nicht nur in Ny,, sondern wegen f;(e) = fi_1(e)
(da weder e noch e zu N} _ gehéren) auch in Ny, ,. Da somit wu;
in N; und e in Ny_, ist, kann w;,; nur aus dem Grund nicht
zu N} gehéren, dass d;(s,u;j41) = di(s,t) ist. Daher folgt wegen
dit1(s,u;) > di(s,u;) (Behauptung 54) und d;(s,u;) +1 > di(s,ujt1)
(Behauptung 55)

dis1(s,t) > diga(s,uj11) = diga(s,u5) + 1 2 di(s, uja) = di(s, 0).
[

Die Prozedur schichtnetzwerk fithrt eine Breitensuche mit Start-
knoten s im Restnetzwerk Ny aus und speichert dabei in der Menge
E’ nicht nur alle Baumkanten, sondern zusatzlich alle Querkanten
(u,v), die auf einem kiirzesten Weg von s zu v liegen. Sobald alle von
s aus erreichbaren Knoten besucht (und in V' gespeichert) wurden
oder t am Kopf der Warteschlange () erscheint, bricht die Suche ab.
Falls der Kopf von @ gleich t ist, werden alle Knoten v # ¢, die die
gleiche Entfernung von s wie ¢ haben, sowie alle Kanten, die in diesen
Knoten enden, wieder aus N }' entfernt.

Die Laufzeitschranke O(n+m) folgt aus der Tatsache, dass jede Kante
in £ U E® hochstens einmal besucht wird und jeder Besuch mit einem
konstantem Zeitaufwand verbunden ist.

Prozedur schichtnetzwerk(f)

. for all veV, ec EUER do
2 niv(v) :==n

3 vis(e) := false

4+ niv(s):=0

5 V9= {s}

6 E':=10

7 QueueInit(Q®)

s Enqueue(Q, s)

35

4.3 Der Algorithmus von Dinic

o while —QueueEmpty(Q) AHead(Q) #t do

10 u := Head(Q)

11 if 3 e=wuv € EUER:vis(e) = false then
12 vis(e) := true

13 if c(e) — f(e) > 0Aniv(v) > niv(u) then
14 Vi=V'u{v}

15 E' = FE U{e}

16 d(e) :=cle) — f(e)

17 niv(v) :=niv(u) +1
18 Enqueue(Q,v)

19 else Dequeue(Q)

20 if Head(Q) =t then

21 V':i={veV'|v#tniv(v) = niv(t)}
2 Vi=VI\V

3 E =E"\ (V' xV")

A return true

5 else

26 return false

Die Prozedur blockflussl berechnet einen blockierenden Fluss g
im Schichtnetzwerk N} in der Zeit O(nm). Hierzu bestimmt sie in der
repeat-Schleife mittels Tiefensuche einen Zunahmepfad P in N},
addiert den Fluss (f + ¢g)p zum aktuellen Fluss ¢ hinzu, und ent-
fernt die gesittigten Kanten e € P aus E’'. Falls die Tiefensuche in
einer Sackgasse endet (weil £’ keine weiterfithrenden Kanten enthélt),
wird die zuletzt besuchte Kante (u/, u) ebenfalls aus E’ entfernt und
die Tiefensuche vom Startpunkt u’ dieser Kante fortgesetzt (back
tracking). Die Prozedur blockfluss1 bricht ab, falls keine weiteren
Pfade von s nach ¢ existieren. Folglich ist der berechnete Fluss g
tatsachlich blockierend.

Die Laufzeitschranke O(nm) folgt aus der Tatsache, dass sich die
Anzahl der aus E’ entfernten Kanten nach spéatestens n Schleifen-
durchlaufen um 1 erhoht.

4 Fliisse in Netzwerken

Prozedur blockflussl1(f)
for all ecV xV do g(e):=0

1

> StackInit(S)

3 Push(S,s)

L ui=s

5 done:= false

6 repeat

7 if 3 e=wuv € E' then

8 Push(S,v)

9 d"(e) :=(e) —g(e)

10 u::=v

11 elsif u =1t then

12 P :=S5-Pfad von s nach ¢
13 c,(P) := min{c"(e) | e € P}

14 for all e€ P do

15 if g(e) = c,(P) then E':= E'\ {e}
9(c) = g(e) + &, (P)

gle™) i g(e) ¢, (P)

18 u:i=s
19 StackInit(S)
20 Push(S, s)

21 elsif u # s then

22 Pop(S)

23 u' = Top(S)

24 E = FE\{(v,u)}
25 u =

26 else done := true

27 until done
28 return g

Die Prozedur blockfluss2 benétigt nur Zeit O(n?), um einen blo-
ckierenden Fluss g im Schichtnetzwerk N} zu berechnen. Zu ihrer
Beschreibung benotigen wir folgende Notation.

36

4.3 Der Algorithmus von Dinic

Definition 57. Sei N = (V, E,s,t,c) ein Netzwerk und sei u ein
Knoten in N. Die Ausgangskapazitat von u ist

cHu)= Y clu,v)

(u,v)EE

und die Eingangskapazitat von u ist

()= Y clv,u).

(v,u)€EE
Der Durchsatz von u ist
c(u), u=s,
d(w) = 3 e (u), u=t,

min{c(u),c (u)}, sonst.
Ein Fluss g in N sdttigt einen Knoten u € V, falls g(u) = d(u) ist.

Die Korrektheit der Prozedur blockfluss2 basiert auf folgender
Proposition.

Proposition 58. Sei N = (V, E,s,t,c) ein Netzwerk und sei g ein
Fluss in N. g ist blockierend, falls jeder s-t-Pfad in N mindestens
einen Knoten enthdlt, der durch g gesdttigt wird.

Beweis. Dies folgt aus der Tatsache, dass ein Fluss g in N, der auf
jedem s-t-Pfad P mindestens einen Knoten u sattigt, auch mindestens
eine Kante in P sattigt. |

Beginnend mit dem trivialen Fluss ¢ = 0 berechnet die Prozedur
blockfluss2 fiir jeden Knoten u den Durchsatz D(u) im Schicht-
netzwerk N; und wihlt in jedem Durchlauf der repeat-Schleife einen
Knoten u mit minimalem Durchsatz D(u), um den aktuellen Fluss
g um den Wert D(u) zu erhohen. Hierzu benutzt sie die Prozeduren
propagierevor und propagiereriick, die dafiir Sorge tragen, dass
der zusatzliche Fluss tatsachlich durch den Knoten v flieft und die

4 Fliisse in Netzwerken

Durchsatzwerte D(v) von allen Knoten aktualisiert werden, die von
der Flusserhohung betroffen sind. Aus diesem Grund wird « durch
den zusatzlichen Fluss geséttigt und kann aus dem Netzwerk entfernt
werden.

In der Menge B werden alle Knoten gespeichert, deren Durchsatz
durch die Erhohungen des Flusses g oder durch die Entfernung von
Kanten aus E’ auf 0 gesunken ist. Diese Knoten und die mit ih-
nen verbundenen Kanten werden in der while-Schleife der Prozedur
blockfluss2 aus dem Schichtnetzwerk N} entfernt.

Prozedur blockfluss2(f)

1 for all eV xV do g(e) =0
> for all we V' do
3 Dt (u) == em ¢ (u,v)
D) = S 0 0)
5 repeat
6 for all ue V'\ {s,t} do
7 D(u) := min{D~ (u), D" (u)}
8 D(s) := D" (s)
9 D(t) := D~ (t)
10 wahle v € V' mit D(u) minimal
11 Init(B);Insert(B,u)
12 propagierevor(u)
13 propagiererick(u)
14 while u :=Remove(B) ¢ {s,t} do
15 V=V {u}
16 for all e=uv € E' do
17 D= (v):= D (v) — d(u,v)
18 if D=(v) =0 then Insert(B,v)
19 E = FE'\ {e}
20 for all e=vu € E' do
21 Dt (v) := D" (v) — (v, u)
22 if DT (v) =0 then Insert(B,v)

4.3 Der Algorithmus von Dinic

3 E' = FE\{e}
. until u € {s,t}

2
2
25 return g

Da in jedem Durchlauf der repeat-Schleife mindestens ein Knoten u
gesittigt und aus V' entfernt wird, wird nach hochstens n — 1 Itera-
tionen einer der beiden Knoten s oder ¢ als Knoten u mit minimalem
Durchsatz D(u) gewahlt und die repeat-Schleife verlassen. Da nach
Beendigung des letzten Durchlaufs der Durchsatz von s oder von ¢
gleich 0 ist, wird einer dieser beiden Knoten zu diesem Zeitpunkt von
g geséttigt. Nach Proposition 58 ist somit g ein blockierender Fluss.

Die Prozeduren propagierevor und propagiererick propagieren
den Fluss durch u in Vorwértsrichtung hin zu ¢ bzw. in Rickwarts-
richtung hin zu s. Dies geschieht in Form einer Breitensuche mit
Startknoten u unter Benutzung der Kanten in £’ bzw. E'®. Da der
Durchsatz D(u) von u unter allen Knoten minimal ist, ist sicherge-
stellt, dass der Durchsatz D(v) jedes Knoten v ausreicht, um den fiir
ihn ermittelten Zusatzfluss in Hohe von z(v) weiterzuleiten.

Prozedur propagierevor(u)

1 for all ve V' do z(v):=0

> z(u) := D(u)

3 QueueInit(Q);Enqueue(Q,u)

i while v := Dequeue(Q) # L do

5 while z(v) #0A Je=vu € E' do

6 m := min{z(v), d(e)}

7 z(v) == z(v) = m; z(u) = z(u) +m
8 aktualisierekante(e, m)

9 Enqueue(Q, u)

Prozedur aktualisierekante(e = vu,m)

! gle) == gle) +m
2 d(e):=d(e)—m

4 Fliisse in Netzwerken

3 if ¢(e) =0 then E' :=FE'\ {e}

| D*(v) := Dt (v) —m

5 if DT (v) =0 then Insert(B,v)
6 D~ (u) :== D (u) —m

7 if D7(u) =0 then Insert(B,u)

Die Prozedur propagiererick unterscheidet sich von der Proze-
dur propagierevor nur dadurch, dass in Zeile 5 die Bedingung
Je = vu € £’ durch die Bedingung Je = uwv € E’ ersetzt wird.

Da die repeat-Schleife von blockfluss2 maximal (n — 1)-mal durch-
laufen wird, werden die Prozeduren propagierevor und propa-
giereriick hochstens (n — 1)-mal aufgerufen. Sei a die Gesamtzahl
der Durchléufe der inneren while-Schleife von propagierevor, sum-
miert iiber alle Aufrufe. Da in jedem Durchlauf eine Kante aus E’
entfernt wird (falls m = ¢/(u,v) ist) oder der zu propagierende Fluss
z(v) durch einen Knoten v auf 0 sinkt (falls m = z(v) ist), was pro
Knoten und pro Aufruf héchstens einmal vorkommt, ist a < n? + m.
Der gesamte Zeitaufwand ist daher O(n? + m) innerhalb der beiden
while-Schleifen und O(n?) aulerhalb. Die gleichen Schranken gelten
fir propagiererick.

Eine é&hnliche Uberlegung zeigt, dass die while-Schleife von
blockfluss2 einen Gesamtaufwand von O(n + m) hat. Folglich
ist die Laufzeit von blockfluss2 O(n?).

Korollar 59. Der Algorithmus von Dinic berechnet bei Verwendung
der Prozedur blockfluss2 einen mazimalen Fluss in Zeit O(n?).

Auf Netzwerken, deren Flisse durch jede Kante oder durch jeden Kno-
ten durch eine relativ kleine Zahl C' beschriankt sind, lassen sich noch
bessere Laufzeitschranken fiir den Dinic-Algorithmus nachweisen.

Satz 60. Sei N = (V, E, s,t,c) ein Netzwerk.

(i) Falls jeder Knotenu € V' \{s,t} einen Durchsatz d(u) < C hat, so
durchlduft der Algorithmus von Dinic die while-Schleife hochstens
(2(Cn)Y2 +1)-mal.

38

4.3 Der Algorithmus von Dinic

(it) Falls jede Kante e € E eine Kapazitit c(e) < C hat, so durchlduft
der Algorithmus von Dinic die while-Schleife hichstens (2°Cn?)1/3-
mal.

Beweis. Sei M = |f| die Grofle eines maximalen Flusses f in N.

(i) Da die Anzahl a der Schleifendurchlaufe durch M beschréinkt ist,
kénnen wir M > (Cn)'/? annehmen. Betrachte den i-ten Schleifen-
durchlauf, in dem ein blockierender Fluss g; im Schichtnetzwerk
N%._ mit den Schichten Sy = {s},S1,..., 84,1, 5, = {t} berech-
net wird. Da ein maximaler Fluss in Ny,_, (in N, kann er kleiner
sein) die GroBe r; = M — | f;_1] hat und dieser durch die Knoten
jeder einzelnen Schicht §;, 1 < j < d; — 1, fliet, muss

IS;I1C = 73 baw. ri/C < |||,
sein, woraus
(d;=1)r;/C < ||S1||+- - -+ Sa;-1]]| L n—2 < n bzw. d; < 1+nC/r;
folgt. Damit ist die Anzahl a der Schleifendurchléufe durch
a<i+rig <di+rig <rg1+1+nC/r;

beschrinkt. Nun wihlen wir 7 so, dass 7; > (Cn)"/? und r; <
(Cn)'/? ist. Dann folgt

a—1<riq+nC/r < (Cn)Y? +nC/(Cn)Y? = 2(Cn)"2

(i1) Da die Anzahl a der Schleifendurchlaufe durch M beschrankt ist,
kénnen wir M > (2ny/C)?/? annehmen. Betrachte den i-ten Schlei-
fendurchlauf, in dem ein blockierender Fluss g; im Schichtnetzwerk
Nj,_, mit den Schichten Sy = {s},51,...,S4-1,S4 berechnet
wird. Hierbei nehmen wir zu Sy, alle Knoten hinzu, die nicht in
Ni. | liegen. Da ein maximaler Fluss in Ny,_, (in N} | kann er
wieder kleiner sein) die Grofe r; = M — | f;_1| hat und dieser durch

4 Fliisse in Netzwerken

die k; Kanten in Ef._ (S;)NEy,_ (Sjy1) firj =0,...,d;—1, fliefit,
muss

rifC < kj < [IS5][[19544

sein. Somit enthélt mindestens eine von 2 benachbarten Schichten
S; und S;4+; mindestens (/7;/C Knoten, woraus

(di/2)\/r:/C < |ISoll + -+~ + [|Sa,]| < n baw. d; < 20,/C/r,

folgt. Damit ist die Anzahl a der Schleifendurchléufe durch

a<i+ri <di+1ri1 <rig+2n4/C/r

beschrankt. Nun wihlen wir ¢ so, dass r; > (2nv/C)*? und
riv1 < (2n1/C)?/3 ist. Dann folgt

a < (2nV)3 4 2nV/C/(2nV O = (2°Cn?)V3.

Korollar 61. Set N = (V, E,s,t,c) ein Netzwerk.

(i) Falls jeder Knotenw € V' \{s,t} einen Durchsatz d(u) < C hat, so
berechnet der Algorithmus von Dinic bei Verwendung der Prozedur
blockflussl einen mazimalen Fluss in Zeit O((nC' 4+ m)v/Chn).

(it) Falls jede Kante e € E eine Kapazitit c(e) < C hat, so be-
rechnet der Algorithmus von Dinic bei Verwendung der Prozedur
blockflussl einen maximalen Fluss in Zeit O(CY3n**m).

Beweis. Zunachst ist leicht zu sehen, dass die Kapazitatschranke auf
den Kanten oder Knoten auch fiir jedes Schichtnetzwerk N} gilt.

(i) Jedesmal wenn blockflussl einen s-t-Pfad P im Schichtnetz-
werk findet, verringert sich der Durchsatz ¢’ (u) der auf P liegenden
Knoten v um den Wert ¢ (P) > 1, da der Fluss g durch diese

39

4.4 Kostenoptimale Fliisse

Knoten um diesen Wert steigt. Daher kann jeder Knoten an ma-
ximal C' Flusserhohungen beteiligt sein, bevor sein Durchsatz auf
0 sinkt. Da somit pro Knoten ein Zeitaufwand von O(C) fiir alle
erfolgreichen Tiefensuchschritte, die zu einem s-t-Pfad fithren, und
zusétzlich pro Kante ein Zeitaufwand von O(1) fiir alle nicht er-
folgreichen Tiefensuchschritte anfallt, lauft blockflussl in Zeit
O(nC +m).

(ii) Jedesmal wenn blockflussl einen s-t-Pfad P im Schichtnetz-
werk findet, verringert sich die Kapazitét ¢”’(e) der auf P liegenden
Kanten e um den Wert ¢ (P) > 1. Da somit pro Kante ein Zeit-
aufwand von O(C) fur alle erfolgreichen Tiefensuchschritte und
O(1) fiir alle nicht erfolgreichen Tiefensuchschritte anfallt, lauft
blockflussl in Zeit O(Cm + m) = O(Cm).

Durch eine einfache Reduktion des bipartiten Matchingproblems auf
ein Flussproblem erhilt man folgendes Resultat (siche Ubungen).

Korollar 62. In einem bipartiten Graphen ldsst sich ein maximales
Matching in Zeit O(y/p(G)m) bestimmen.

4.4 Kostenoptimale Fliisse

In manchen Anwendungen fallen fiir die Benutzung jeder Kante e
eines Netzwerkes Kosten an, die proportional zur Hohe des Flusses
f(e) durch diese Kante sind. Falls die Kosten fiir die einzelnen Kan-
ten differieren, ist es moglich, dass 2 Fliisse unterschiedliche Kosten
verursachen, obwohl sie die gleiche Gréfle haben. Man mochte also
einen maximalen Fluss f berechnen, der minimale Kosten hat.

Die Kosten eines Flusses f werden auf der Basis einer Kostenfunk-
tion k : £ — Z berechnet, wobei fiir jede Kante e € £ mit f(e) > 0
Kosten in Hohe von f(e)k(e) anfallen.

4 Fliisse in Netzwerken

Die Gesamtkosten von f im Netzwerk berechnen sich also zu

k(f)= > fle)k(e).

fle)>0

Ein negativer Kostenwert k(e) < 0 bedeutet, dass eine Erhohung des
Flusses durch die Kante e um 1 mit einem Gewinn in Hohe von —k(e)
verbunden ist. Ist zu einer Kante e € E auch die gegenlaufige Kante
e in E enthalten, so muss k die Bedingung k(e') = —k(e) erfiillen.*
Der Grund hierfur ist, dass die Erniedrigung von f(e) > 0 um einen
bestimmten Wert w < f(e) gleichbedeutend mit einer Erhhung von
f(e®) um diesen Wert im Restnetzwerk N; ist und die Kostenfunktion
auch fir N; gelten soll. Daher kénnen wir & mittels k(e) = —k(e®),
falls e® € Eund k(e) = 0 fir alle e € (V xV)\ (EUER) auf die Menge
V x V erweitern. Zudem definieren wir fiir beliebige Multimengen
F CV xV die Kosten von F als k(F) = Y .crk(e) (d.h. jede Kante
e € I wird bei der Berechnung von k(F) entsprechend der Haufigkeit
ihres Vorkommens in F' berticksichtigt). Wir nennen F' negativ, falls
F negative Kosten k(F') < 0 hat.

Das néchste Lemma liefert einen Algorithmus, mit dem sich iiberprii-
fen lésst, ob ein Fluss minimale Kosten unter allen Fliissen derselben
Grofle hat. Fiir einen Fluss f sei

Emin(f) = min{k(g) | g ist ein Fluss in N mit |g| = |f|}
das Minimum der Kosten aller Fliisse der Grofe | f].

Lemma 63. Ein Fluss f in N hat genau dann minimale Kosten

k(f) = kmin(f), wenn es im Restnetzwerk Ny keinen negativen Kreis
K mit k(K) <0 gibt.

Beweis. Falls es in Ny einen Kreis K mit Kosten k(K) < 0 gibt, dann
konnen wir den Fluss durch alle Kanten e € K um 1 erhohen. Dies
fiihrt auf einen Fluss g mit |g| = | f| und k(g) = k(f) + k(K) < k(f).

4.4 Kostenoptimale Fliisse

Sei umgekehrt ¢ ein Fluss in N mit |g| = | f| und k(g) < k(f). Dann
ist g — f wegen g(e) — f(e) < c(e) — f(e) ein Fluss in Ny. Da g — f
die GroBe |g — f| = 0 hat, konnen wir g — f als Summe von Fliissen
hi, ..., hy in Ny darstellen, wobei h; nur fiir Kanten e auf einem Kreis
K; in Ny einen positiven Wert h;(e) = w; > 0 annimmt (siehe néchs-
ten Abschnitt). Da k(hy) + -+ k(hy) = k(g — f) = k(g9) — k(f) <0
ist, muss wegen k(h;) = Y .ck, hi(e)k(e) = w;k(K;) mindestens ein
Kreis K; negativ sein.

Um h; und die zugehorigen Kreise K; fur ¢ = 1,...,k zu fin-
den, wahlen wir eine beliebige Kante e;; aus Ey, fir die der Fluss
h; y =g—f—h —- - — hj—1 einen minimalen positiven Wert
w = h_;(e;1) > 0 annimmt (falls es keine solche Kante e;; gibt, sind
wir fertig, weil dann h}_, der triviale Fluss ist). Da h_; den Wert 0
hat und somit die Kontinuitatsbedingung fiir alle Knoten (inklusive
s und t) erfillt, lasst sich nun zu jeder Kante e;; = (a,b) € Ey
solange eine Fortsetzung e; 41 = (b,c) € Ef mit hl_,(e; j11) > 0
(und damit h]_,(e; j+1) > w) finden bis sich ein Kreis K; schliefit.
Nun setzen wir h;(e;;) = w; fur alle Kanten e;; € K;, wobei
w; = min{h;_,(e) | e € K;} ist.

Da sich die Anzahl der Kanten in £, die unter dem verbleibenden

Fluss b} = g— f —hy—- - - —h; einen Wert ungleich 0 haben, gegeniiber
h;_, mindestens um 1 verringert, ist die Anzahl der Kreise K; durch
| E¢|| < 2m beschrankt. |

Mithilfe von Lemma 63 lasst sich ein maximaler Fluss mit minimalen
Kosten wie folgt berechnen. Wir berechnen zuerst einen maximalen
Fluss f. Dann suchen wir beginnend mit ¢ = 1 und fy, = f einen
negativen Kreis K; in Ny, ,. Hierzu kann der Bellman-Ford-Moore
Algorithmus benutzt werden, wenn wir zu Ny, | einen neuen Knoten
s’ hinzufiigen und diesen mit allen Knoten u durch eine neue Kante
(s',u) verbinden.

*Natiirlich kann man diese Einschrdnkung bspw. dadurch umgehen, dass man die Kante e = (u, v) durch einen Pfad (u,w, v) tiber einen neuen Knoten w ersetzt.

40

4 Fliisse in Netzwerken

Falls kein negativer Kreis existiert, ist f;_; ein maximaler Fluss mit
minimalen Kosten. Andernfalls bilden wir den Fluss f;, indem wir
zu f;—1 den Fluss fg, addieren, der auf jeder Kante e € K; den
Wert fg,(e) = ¢ (K;) = min{cy, (e) | e € K;} hat. Da sich
die Kosten k(f;) = k(fi-1) + k(fx,) = k(fi-1) + ¢5,_, (Ki)k(K;) von
fi wegen k(K;) < —1 bei jeder Iteration um mindestens 1 verrin-
gern und die Kostendifferenz zwischen zwei beliebigen Fliissen durch
D =3 ,cv k(s,u)|(c(s,u) + c(u, s)) beschrankt ist, liegt nach k < D
[terationen ein kostenminimaler Fluss f; vor.

Der néichste Satz bereitet den Weg fiir einen Algorithmus zur Bestim-
mung eines kostenminimalen Flusses, dessen Laufzeit nicht von D,
sondern von der GroBe M = |f| eines maximalen Flusses f in N ab-
hangt. Voraussetzung hierfiir ist jedoch, dass es in N keine negativen
Kreise gibt.

Lemma 64. Ist f;_1 ein Fluss in N mit k(fi—1) = kmin(fi—1) und ist
P; ein Zunahmepfad in Ny, | mit

k(P;) = min{k(P") | P’ ist ein Zunahmepfad in Ny, .},
so ist fi = fio1 + fp, ein Fluss in N mit k(f;) = kmin([3)-

Beweis. Angenommen, es gibt einen Fluss ¢ in N mit |g| = |fi
und k(g) < k(f;). Dann gibt es in Ny, einen negativen Kreis K
mit k(K) < 0. Wir benutzen K, um einen Zunahmepfad P’ mit
k(fp) < k(fp,) zu konstruieren.

Sei F' die Multimenge aller Kanten, die auf K oder P; liegen, d.h.
jede Kante in KAP, = (K \ P;) U (P, \ K) kommt genau einmal und
jede Kante in K N P; kommt genau zweimal in F' vor. F ist also ein
Multigraph bestehend aus dem s-t-Pfad P; und dem Kreis K und es
gilt k(F) = k(P) + k(K) < k(P,).

Da jede Kante e € I = K \ Ej,_, wegen fi_1(e) = c(e) zwar von
fi—1 aber wegen e € K C Ey, nicht von f; gesattigt wird, muss
fi_1(e) # fi(e) und somit ef € P, sein, was FC P impliziert. Somit

41

4.4 Kostenoptimale Fliisse

ist jede Kante e € F und mit ihr auch e® genau einmal in F' enthalten.
Entfernen wir nun fiir jede Kante e € F' die beiden Kanten e und e®
aus F, so erhalten wir die Multimenge F' = F'\ (F'U F'?), die wegen
k(e) + k(ef) = 0 dieselben Kosten k(F') = k(F) < k(P;) wie F hat.
Zudem gilt F' C Ey, . Da F'" aus F durch Entfernen von Kreisen
(der Lénge 2) entsteht, ist auch F’ ein Multigraph, der sich in einen
s-t-Pfad P’ und eine gewisse Anzahl von Kreisen Ki,..., Ky in Ny, |
zerlegen lasst. Da nach Voraussetzung keine negativen Kreise in Ny, |
existieren, folgt

KP) = () — S R(K) < K(F) = K(F) < k().

i=1

Basierend auf Lemma 64 kénnen wir nun leicht einen Algorithmus
zur Bestimmung eines maximalen Flusses mit minimalen Kosten in
einem Netzwerk N angeben, falls es in N keine negativen Kreise gibt.

Algorithmus Min-Cost-Flow(V, E,|s,t,c, k)
1 for all (u,v) €V xV do

2 f(u,v):=0
|

repeat
P < min-zunahmepfad(f)
5 if P# 1 then add(f,P)
6 until P= 1

Hierbei berechnet die Prozedur min-zunahmepfad(f) einen Zunah-
mepfad in Ny, der minimale Kosten unter allen Zunahmepfaden in
Ny hat. Da es in Ny keine negativen Kreise gibt, kann hierzu bspw.
der Bellman-Ford-Moore Algorithmus benutzt werden, der in Zeit
O(mn) lauft. Dies fithrt auf eine Gesamtlaufzeit von O(Mmn), wobei
M = |f] die GroBe eines maximalen Flusses f in NV ist.

4 Fliisse in Netzwerken

Satz 65. In einem Netzwerk N kann ein maximaler Fluss f mit
minimalen Kosten in Zeit O(|f|mn) bestimmt werden, falls es in N
keine negativen Kreise bzgl. der Kostenfunktion k gibt.

Tatsachlich lasst sich fiir Netzwerke ohne negative Kreise die Laufzeit
unter Verwendung des Dijkstra-Algorithmus in Kombination mit einer
Preisfunktion auf O(Mmlogn) verbessern.

Definition 66. Sei G = (V,E) ein Digraph mit Kostenfunktion
k : E — Z. FEine Funktion p : V — Z heifst Preisfunktion fir
(G, k), falls fiir jede Kante e = (z,y) in E die Ungleichung

k(z,y) +p(x) —ply) = 0
gilt. Die bzgl. p reduzierte Kostenfunktion kP : E — Ny ist

kP (x,y) = k(z,y) +p(x) — p(y).

Lemma 67. Ein Digraph G = (V, E) mit Kostenfunktion k : E — Z
hat genau dann keine negativen Kreise, wenn es eine Preisfunktion

p fir (G, k) gibt. Zudem lasst sich eine geeignete Preisfunktion p in
Zeit O(nm) finden.

Beweis. Wir zeigen zuerst die Riickwértsrichtung. Sei also p eine Preis-
funktion mit kP(e) > 0 fir alle e € E. Dann gilt fiir jede Kantenmenge
F C FE die Ungleichung kP(F) > 0. Da zudem fir jeden Kreis K in
G die Gleichheit k(K) = kP (K) gilt, folgt sofort k(K) = kP(K) > 0.
Sei nun G ein Digraph und sei k£ : £ — Z eine Kostenfunktion oh-
ne negativen Kreise. Betrachte den Digraphen G’, der aus G durch
Hinzunahme eines neuen Knotens s und Kanten (s, x) fiir alle x € V/
entsteht. Zudem erweitern wir &k mittels &'(s,) = 0 zu einer Kosten-
funktion & auf G’. Da es auch in (G’, k') keine negativen Kreise gibt,
existiert in G’ fiir jeden Knoten = € V' ein bzgl. k" kiirzester Pfad von
s nach z, dessen Linge wir mit d* (s, z) bezeichnen. Da nun fiir jede
Kante e = (x,y) € E die Ungleichung

d(s,x) + k(z,y) = d"(s,y)

42

4.4 Kostenoptimale Fliisse

gilt, ist p(x) = d¥ (s,) die gesuchte Preisfunktion. Diese lisst sich
mit BFM in Zeit O(nm) finden. [|

Sobald wir eine Preisfunktion p fir das Restnetzwerk N; haben,
konnen wir Dijkstra zur Berechnung eines bzgl. kP kiirzesten Zunah-
mepfades P in Ny benutzen. P ist dann auch ein kiirzester Pfad bzgl.
k, da fiir jeden s-t-Pfad P die Bezichung kP(P) = k(P) + p(s) — p(t)
gilt und p(s) — p(t) eine von P unabhingige Konstante ist.

Falls N keine negativen Kreise hat, konnen wir fir N = Ny, eine
Preisfunktion po(z) = min{k(P) | P ist ein s-z-Pfad} mit dem BFM-
Algorithmus in Zeit O(nm) berechnen. Angenommen, wir haben fir
ein i > 1 einen Fluss f;_; mit minimalen Kosten k(f;_1) = kmin(fi—1)
und eine Preisfunktion p;_; fiir (Ny, ,, k). Sofern in Ny, | ein Zunah-
mepfad existiert, konnen wir mit dem Dijkstra-Algorithmus in Zeit
O(mlogn) einen bzgl. kPi-! kiirzesten Zunahmepfad P, berechnen
und erhalten einen grofleren Fluss f; = fi—1 + fp, mit minimalen
Kosten k(f;) = kmin(fi). Andernfalls ist f;_; ein maximaler Fluss.

Es bleibt die Frage, wie wir im Fall, dass P; existiert, eine Preisfunktion
p; fiir Ny, finden konnen, ohne erneut BEM zu benutzen.

Lemma 68. Sei d;(s,z) die minimale Pfadlinge von s nach x in
Ny, | bzgl. kPi=*, wobei p;_y : V — Z eine beliebige Funktion ist. Dann
ist pi(x) = pi—1(x) + d;(s, x) eine Preisfunktion fir k in Ny, und in
Ny,.
Beweis. Wir zeigen zuerst, dass p; eine Preisfunktion fir (Ny, ,, k) ist.
Fir jede Kante e = (z,y) € Ey, , gilt namlich d;(y) < d;(z) + kP~ (e)
und kP~ (e) = k(e) + pi—1(z) — pi—1(y). Somit ist

kP () = k(e) + pi(x) — pi(y)
=k(e)+ pi_1(z) + di(s,x) — pi_1(y) — di(s,y)
= kPi=t(e) + di(s,x) — di(s,y) > 0.

4 Fliisse in Netzwerken

Falls e auf P, liegt, gilt sogar kPi(e) = 0, da P; ein bzgl. kPi~1 kiirzester
s-t-Pfad in Ny, | und daher d;(s,y) = di(s, x) + kP~ (e) ist.

Da zudem fiir jede Kante e in Ny,, die nicht zu Ny, | gehort, die ge-
spiegelte Kante et auf dem Pfad P, liegt, folgt kPi(e®) = 0 und somit
kPi(e) = k(e) +pi(z) — pi(y) = —k(e™) —pi(y) + pi(x) = —kP () = 0.
Dies zeigt, dass p; eine Preisfunktion fur (Ny,, k) ist. [

Satz 69. In einem Netzwerk N kann ein maximaler Fluss f mit
minimalen Kosten in Zeit O(mn + |f|mlogn) bestimmt werden, falls
es in N keine negativen Kreise bzgl. der Kostenfunktion k gibt.

Beweis. Wir berechnen zuerst mit BEM in Zeit O(nm) eine Preis-
funktion py fiir die Kostenfunktion k& im Netzwerk N = Ny . Dann
bestimmen wir in < |f| Iterationen eine Folge von kostenminimalen
Flissen f;, indem wir mit dem Dijkstra-Algorithmus in Zeit O(m logn)
einen bzgl. kPi-t kiirzesten Zunahmepfad P; in Ny, , berechnen. Da
hierbei bereits die Distanzen d;(x) fiir alle Knoten x berechnet werden
konnen, erfordert die Bestimmung von p; in jeder Iteration nur O(n)
Zeit. |

Das gewichtete Matchingproblem in einem bipartiten Graphen G =
(U, W, E) lasst sich wie folgt auf die Berechnung eines kostenminimalen
maximalen Flusses in einem azyklischen Netzwerk N(G) reduzieren.
Wir fiigen zwei neue Knoten s und ¢ hinzu und verbinden s mit
allen Knoten v € U durch eine neue Kante (s,u) sowie alle Kno-
ten w € W durch eine neue Kante (w,t) mit ¢. Alle Kanten in £
werden von U nach W gerichtet und haben die vorgegebenen Kos-
ten/Gewichte. Alle neue Kanten e haben die Kosten k(e) = 0 und
alle Kanten e in N(G) haben die Kapazitit c(e) = 1. Dann ent-
spricht jedem Fluss f in N(G) genau ein Matching M von G mit
M = {{u,w} €e U x W | f(u,w) = 1} (und umgekehrt entspricht
jedem Matching M genau ein Fluss f mit dieser Eigenschaft).

43

4.4 Kostenoptimale Fliisse

Da die maximale Flussgrofie M in N(G) durch n/2 beschrankt ist,
erhalten wir einen O(mnlogn) Algorithmus fiir das gewichtete Mat-
chingproblem in bipartiten Graphen. Da N(G) kreisfrei ist, konnen
wir hierbei beliebige Kantengewichte zulassen.

Korollar 70. In einem bipartiten Graphen G = (V, E) ldsst sich ein
mazximales Matching mit minimalen Kosten in Zeit O(u(G)mlogn)
berechnen.

Beweis. Wir transformieren G in das zugehorige Netzwerk N = N(G).
Da N eine sehr spezielle Form hat, ldsst sich eine Preisfunktion p
fir (IV, k) in Linearzeit bestimmen. Dann berechnen wir in hochstens
1(G) Tterationen, die jeweils Zeit O(mlogn) beanspruchen, einen
kostenminimalen maximalen Fluss f in N. Aus diesem lésst sich ein
Matching M in G gewinnen, das wegen ||M;|| = |f| maximal und
wegen k(My) = k(f) kostenminimal ist. Die beiden Transformationen
von G in N und von f in My bendtigen nur Linearzeit. |

Tatséchlich leistet der Algorithmus von Korollar 70 noch mehr. Er
berechnet fir jede Zahl ¢ mit 1 < i < p(G) ein Matching M; der
GroBe 7, das minimale Kosten unter allen Matchings dieser Grofle hat,
und eine zu M; kompatible Preisfunktion p;_; (siche Ubungen). Dabei
heif}t eine Preisfunktion p kompatibel zu einem Matching M in G,
falls die reduzierten Kosten von allen Kanten e = (u,w) € U x W
mit {u,w} € E einen nichtnegativen Wert k”(e) > 0 und alle Kanten
e= (u,w) € Ux W mit {u,w} € M den Wert kP(e) = 0 haben.

5 Farben von Graphen

5 Farben von Graphen

Definition 71. Sei G = (V, E) ein Graph und sei k € N.

a) Eine Abbildung f: V — N heifst Farbung von G, wenn f(u) #
f(v) fir alle {u,v} € E gilt.

b) G heifit k-farbbar, falls eine Farbung f: V. — {1,...,k} exis-
tiert.

c¢) Die chromatische Zahl ist

X(G) = min{k € N | G ist k-farbbar}.
Beispiel 72.

X(En) = 1 X(Kpm) = 2, x(Kq) =n,

, n gerade

3, sonst.

Ein wichtiges Entscheidungsproblem ist, ob ein gegebener Graph
k-farbbar ist. Dieses Problem ist fiir jedes feste k£ > 3 schwierig.

k-Farbbarkeit (k-COLORING):

Gegeben: Ein Graph G.
Gefragt: Ist G k-farbbar?

Satz 73. k-COLORING st fir k > 3 NP-vollstandig.
Lemma 74. n/a(G) < x(G) <n—a(G) + 1.

Beweis. Sei G ein Graph und sei ¢ eine x(G)-Féarbung von G. Da
dann die Mengen S; = {u € V | ¢(u) =i}, i = 1,..., x(G), stabil

44

sind, folgt [|.S;]| < a(G) und somit gilt

x(G)
n= 3 ISI < x(@)a(G).

Fiir den Beweis von x(G) < n — a(G) + 1 sei S eine stabile Menge in
G mit ||S]| = a(G). Dann ist G — S k-farbbar fiir ein k& < n — ||.S]|.
Da wir alle Knoten in S mit der Farbe k + 1 firben koénnen, folgt
X(G)<k+1<n-alG)+1. [|

Beide Abschétzungen sind scharf, konnen andererseits aber auch
beliebig schlecht werden.

Lemma 75. (X(zG)) <m.

Beweis. Zwischen je 2 Farbklassen einer optimalen Farbung muss es
mindestens eine Kante geben. |

Lemma 76. w(G) < x(G) < A(G) + 1.

Beweis. Betrachte folgenden Farbungsalgorithmus:

Algorithmus greedy-color

i input ein Graph G = (V,E) mit V ={vy,...,u,}
> c(vy) =1

3 for i:=2 to n do

4

F;:={c(v)) | 7 <i,v; € N(v;)}
c(v;) =min{k > 1|k & F}

Da fir die Farbe c(v;) von v; nur ||F;|| < A(G) Farben verboten sind,
gilt ¢(v;) < A(G) + 1. []

Satz 77 (Brooks 1941 (vereinfachter Beweis von Lovasz, 1975)). Sei
G ein Graph mit A(G) > 3. Dann gilt x(G) = A(G) + 1 nur dann,
wenn Kaqy+1 ein Teilgraph von G ist.

5 Féarben von Graphen

Beweis. Wir fiihren Induktion iiber n. Fir n < 4 gibt es genau 3
Graphen G mit A(G) > 3. Diese erfiillen die Behauptung.

Sein nun G ein Graph mit n > 4 Knoten und Maximalgrad
d = A(G) > 3, der K1 nicht als Teilgraph enthalt. Wir kénnen
annehmen, dass G zusammenhéngend ist.

Falls es in G einen Knoten u mit deg(u) < d gibt, dann ist G — u
nach IV d-farbbar und somit auch G.

Es bleibt der Fall, dass alle Knoten v den Grad d haben. Da G # Ky
ist, folgt n > d + 2. Falls G einen Schnittknoten s hat, d.h. in G — s
gibt es k > 2 Komponenten Gy, ... Gy, folgt nach IV x(G;) < d und
somit auch x(G) < d.

Behauptung 78. In G gibt es einen Knoten u, der 2 Nachbarn a
und b mit {a,b} & E hat, so dass G — {a,b} zusammenhdngend ist.

Da G den Ky.1 nicht als Teilgraph enthélt, hat jeder Knoten u 2
Nachbarn v,w € N(u) mit {v,w} € E. Falls G — v 2-fach zusammen-
héngend ist, ist G — {v, w} zusammenhéangend und die Behauptung
folgt.

Falls G — v nicht 2-fach zusammenhangend ist, hat G — v mindes-
tens zwei 2-fach-Zusammenhangskomponenten (Blocke) By, ..., By
der Blockbaum T hat mindestens 2 Blatter B;, B;. Da k(G) > 2
ist, ist v in G zu mindestens einem Knoten in jedem Blatt B von
T benachbart, der kein Schnittknoten ist. Wéahlen wir fiir ¢ und b
zwei dieser Knoten, so ist G — {a, b} zusammenhédngend und somit
die Behauptung bewiesen.

Sei also u ein Knoten, der 2 Nachbarn a und b mit {a,b} ¢ E hat,
so dass G — {a, b} zusammenhéngend ist. Wir wenden auf den Gra-
phen G — {a,b} eine Tiefensuche an mit Startknoten u; = u. Sei
(u,...,u,_o) die Reihenfolge, in der die Knoten besucht werden.
Nun lassen wir greedy-color mit der Reihenfolge (a, b, u, 2, ..., u1)
laufen.

Behauptung 79. greedy-color benutzt < d Farben.

45

5.1 Férben von planaren Graphen

Die Knoten a und b erhalten die Farbe c¢(a) = ¢(b) = 1. Jeder Knoten
u;, © > 1, ist mit einem Knoten u; mit j < ¢ verbunden. Daher ist
seine Farbe c(u;) < deg(u;) < d. Da u = u; bereits 2 Nachbarn a und
b mit derselben Farbe hat, folgt auch ¢(u) < d. [|

Korollar 80. FEs gibt einen Linearzeitalgorithmus, der alle Graphen
G mit A(G) < 3 mit x(G) Farben farbt.

5.1 Farben von planaren Graphen

Ein Graph G heifit planar, wenn er so in die Ebene einbettbar ist,
dass sich zwei verschiedene Kanten hochstens in ihren Endpunkten
berithren. Dabei werden die Knoten von G als Punkte und die Kanten
von G als Verbindungslinien zwischen den zugehorigen Endpunkten
dargestellt.

Bereits im 19. Jahrhundert wurde die Frage aufgeworfen, wie viele
Farben hochstens benotigt werden, um eine Landkarte so zu farben,
dass aneinander grenzende Lander unterschiedliche Farben erhalten.
Offensichtlich ldsst sich eine Landkarte in einen planaren Graphen
transformieren, indem man fiir jedes Land einen Knoten zeichnet und
benachbarte Lander durch eine Kante verbindet. Lander, die sich nur
in einem Punkt beriihren, gelten dabei nicht als benachbart.

Die Vermutung, dass 4 Farben ausreichen, wurde 1878 von Kempe
,bewiesen“ und erst 1890 entdeckte Heawood einen Fehler in Kempes
,Beweis“. Ubrig blieb der 5-Farben-Satz. Der j/-Farben-Satz wurde erst
1976 von Appel und Haken bewiesen. Hierbei handelt es sich jedoch
nicht um einen Beweis im klassischen Sinne, da zur Uberpriifung der
vielen auftretenden Spezialfalle Computer benétigt werden.

Satz 81 (Appel, Haken 1976).
Jeder planare Graph ist J-farbbar.

5 Farben von Graphen

Aus dem Beweis des 4-Farben-Satzes von Appel und Haken lasst sich
ein 4-Farbungsalgorithmus fiir planare Graphen mit einer Laufzeit
von O(n*) gewinnen.

In 1997 fanden Robertson, Sanders, Seymour und Thomas einen ein-
facheren Beweis fiir den 4-Farben-Satz, welcher zwar einen deutlich
schnelleren O(n?) Algorithmus liefert, aber auch nicht ohne Computer-
Unterstiitzung verifizierbar ist.

Ein ebener Graph ist ein in die Ebene eingebetteter Graph.

Beispiel 82. Wie die folgenden Einbettungen von K4 und Ks 3 in die
Ebene zeigen, sind Ky und Ky 3 planar.

K4.’ K2,3.'

<

Um eine Antwort auf die Frage zu finden, ob auch K5 und K33 planar
sind, betrachten wir die Gebiete von ebenen Graphen.

Durch die Kanten eines ebenen Graphen wird die Ebene in so genann-
te Gebiete unterteilt. Nur eines dieser Gebiete ist unbeschrankt und
dieses wird als duBeres Gebiet bezeichnet. Die Anzahl der Gebiete
von G bezeichnen wir mit 7(G) oder kurz mit r. Der Rand eines
Gebiets Rand(g) ist die (zirkulare) Folge aller Kanten, die der Reihe
nach an dieses Gebiet grenzen. Die Anzahl der an ein Gebiet g gren-
zenden Kanten bezeichnen wir mit d(g), wobei von g eingeschlossene
Kanten doppelt gezahlt werden.

Die Gesamtzahl -, d(g) aller Inzidenzen von Gebieten und Kanten
bezeichnen wir mit i(G). Da jede Kante genau 2 Inzidenzen zu dieser
Summe beitragt, folgt

S d(g) = i(G) = 2m(G).

46

5.1 Farben von planaren Graphen

Ein ebener Graph wird durch das Tripel G = (V, E, R) beschrieben,
wobeil R aus den Randern aller Gebiete von G besteht.

Beispiel 83. Nebenstehender ebener i

Graph hat 13 Kanten a,...,m und 7
Gebiete mit den Rdandern
R={(a,g,f), ,(b,hye,g), V A
<b7 j? C)’ (C‘ (l’/ h)? (67 d7 k)?
(f,k,l,m,m,l,q)}.
Satz 84 (Polyederformel von Euler, 1750).
Fiir einen zusammenhdngenden ebenen Graphen G = (V, E, R) gilt
n(G) —m(G) +r(G) = 2. (%)
Beweis. Wir fithren den Beweis durch Induktion tiber die Kantenzahl
m(G) = m.

m = 0: Da G zusammenhéngend ist, muss dann n = 1 sein.

Somit ist auch r = 1, also (x) erfiillt.

m — 1~ m: Sei GG ein zusammenhangender ebener Graph mit m
Kanten.

Ist G ein Baum, so entfernen wir ein Blatt und erhalten einen
zusammenhéingenden ebenen Graphen G’ mit n — 1 Knoten, m — 1
Kanten und r Gebieten. Nach IV folgt (n —1) — (m — 1) +r = 2,
d.h. (%) ist erfillt.

Falls G kein Baum ist, entfernen wir eine Kante auf einem Kreis
in G und erhalten einen zusammenhéngenden ebenen Graphen G’
mit n Knoten, m — 1 Kanten und » — 1 Gebieten. Nach IV folgt
n—(m—1)+ (r —1) = 2 und daher ist (*) auch in diesem Fall
erfiillt. |

Korollar 85. Sei G = (V, E) ein planarer Graph mit n > 3 Knoten.
Dann ist m < 3n — 6. Falls G dreiecksfrei ist gilt sogar m < 2n — 4.

5 Féarben von Graphen

Beweis. O.B.d.A. sei G zusammenhangend. Wir betrachten eine be-
liebige planare Einbettung von G. Da n > 3 ist, ist jedes Gebiet g
von d(g) > 3 Kanten umgeben. Daher ist 2m =i = 3, d(g) > 3r
bzw. r < 2m/3. Eulers Formel liefert

m=n+r—2<n+2m/3—2,

was (1 —2/3)m < n — 2 und somit m < 3n — 6 impliziert.

Wenn G dreiecksfrei ist, ist jedes Gebiet von d(g) > 4 Kanten umge-
ben. Daher ist 2m =i = Y, d(g) > 4r bzw. r < m/2. Eulers Formel
liefert daher m =n+r—2 <n+m/2 -2, was m/2 <n — 2 und
somit m < 2n — 4 impliziert. [|
Korollar 86. K5 ist nicht planar.

Beweis. Wegen n =5, also 3n — 6 = 9, und wegen m = (g) = 10 gilt
m £ 3n — 6.]
Korollar 87. K33 ist nicht planar.

Beweis. Wegen n = 6, also 2n — 4 = 8, und wegen m = 3 -3 = 9 gilt
m £ 2n — 4. [|

Als weitere interessante Folgerung aus der Polyederformel kénnen wir
zeigen, dass jeder planare Graph einen Knoten v vom Grad deg(v) < 5
hat.

Lemma 88. Jeder planare Graph hat einen Minimalgrad 6(G) < 5.

Beweis. Fir n < 6 ist die Behauptung klar. Fiir n > 6 impliziert die
Annahme §(G) > 6 die Ungleichung

m = %Zue\/ deg(u) 2 %EUEV 6= 3”7

was im Widerspruch zu m < 3n — 6 steht. [|

5.1 Férben von planaren Graphen

Definition 89. Sei G = (V, E) ein Graph und seien u,v € V. Dann
entsteht der Graph G, = (V — {v}, E') mit

E'={ecE|vge}U{{u,v'}|{v,v'} € E—{u,v}}.

durch Fusion von u und v. Ist e = {u,v} eine Kante von G (also
e € E), so sagen wir auch, G, ensteht aus G durch Kontraktion
der Kante e.

Satz 90 (Kempe 1878, Heawood 1890).
Jeder planare Graph ist 5-farbbar.

Beweis. Wir beweisen den Satz durch Induktion tiber n.
n = 1: Klar.

n — 1~ n: Da G planar ist, existiert ein Knoten v mit deg(u) < 5.
Zunéchst entfernen wir v aus G. Falls u fiinf Nachbarn hat, existie-
ren zwei Nachbarn v und w, die nicht durch eine Kante verbunden
sind, und wir fusionieren diese zu v.

Der resultierende Graph G’ ist planar und hat n’ < n — 1 Knoten.
Daher existiert nach IV eine 5-Farbung ¢ fiur G'. Da wir nun w
mit ¢(v) farben kénnen und somit die Nachbarn von u héchstens
4 verschiedene Farben haben, ist G 5-farbbar.]

Definition 91. Seien G = (V, E) ein Graph, v € V und e € (g)
e Durch Entfernen des Knotens v entsteht der Graph G[V — {v}]
aus G, den wir mit G — v bezeichnen.
e Den Graphen (V,E — {e}) bezeichnen wir mit G — e und den
Graphen (V, E'U{e}) mit G U e.
e Hatv den Grad 2 und sind v und w die beiden Nachbarn von v, so

entsteht der Graph G' = (G —v) U {u,w} durch Uberbriickung
von v aus G.

e H heifit Unterteilung von G, wenn G durch sukzessive Uber-
briickungen aus einer isomorphen Kopie von H entsteht.

5 Farben von Graphen 5.1 Farben von planaren Graphen

Beispiel 92. Betrachte folgende Graphen.

Offensichtlich ist H keine Unterteilung von G. Entfernen wir jedoch
die beiden dinnen Kanten aus H, so ist der resultierende Teilgraph
eine Unterteilung von G. Dagegen ist kein Teilgraph von H' eine
Unterteilung von G. <

48

	1 Grundlagen
	1.1 Graphentheoretische Grundlagen
	1.2 Datenstrukturen für Graphen
	1.3 Keller und Warteschlange
	1.4 Durchsuchen von Graphen
	1.5 Spannbäume und Spannwälder
	1.6 Berechnung der Zusammenhangskomponenten
	1.7 Breiten- und Tiefensuche

	2 Berechnung kürzester Wege
	2.1 Der Dijkstra-Algorithmus
	2.2 Der Bellman-Ford-Algorithmus
	2.3 Der Bellman-Ford-Moore-Algorithmus
	2.4 Der Floyd-Warshall-Algorithmus

	3 Matchings
	4 Flüsse in Netzwerken
	4.1 Der Ford-Fulkerson-Algorithmus
	4.2 Der Edmonds-Karp-Algorithmus
	4.3 Der Algorithmus von Dinic
	4.4 Kostenoptimale Flüsse

	5 Färben von Graphen
	5.1 Färben von planaren Graphen

