
Vorlesungsskript

Graphalgorithmen
Sommersemester 2013

Prof. Dr. Johannes Köbler
Humboldt-Universität zu Berlin

Lehrstuhl Komplexität und Kryptografie

6. Juni 2013

Inhaltsverzeichnis

1 Grundlagen 1
1.1 Graphentheoretische Grundlagen 2
1.2 Datenstrukturen für Graphen 4
1.3 Keller und Warteschlange 5
1.4 Durchsuchen von Graphen 7
1.5 Spannbäume und Spannwälder 10
1.6 Berechnung der Zusammenhangskomponenten 11
1.7 Breiten- und Tiefensuche 11

2 Berechnung kürzester Wege 15
2.1 Der Dijkstra-Algorithmus 15
2.2 Der Bellman-Ford-Algorithmus 18
2.3 Der Bellman-Ford-Moore-Algorithmus 19
2.4 Der Floyd-Warshall-Algorithmus 21

3 Matchings 23

4 Flüsse in Netzwerken 27
4.1 Der Ford-Fulkerson-Algorithmus 27
4.2 Der Edmonds-Karp-Algorithmus 31
4.3 Der Algorithmus von Dinic 33
4.4 Kostenoptimale Flüsse 39

5 Färben von Graphen 44

ii

1 Grundlagen

1 Grundlagen

Der Begriff Algorithmus geht auf den persischen Gelehrten Muham-
med Al Chwarizmi (8./9. Jhd.) zurück. Der älteste bekannte nicht-
triviale Algorithmus ist der nach Euklid benannte Algorithmus zur
Berechnung des größten gemeinsamen Teilers zweier natürlicher Zah-
len (300 v. Chr.). Von einem Algorithmus wird erwartet, dass er
jede Problemeingabe nach endlich vielen Rechenschritten löst (etwa
durch Produktion einer Ausgabe). Ein Algorithmus ist ein „Verfah-
ren“ zur Lösung eines Entscheidungs- oder Berechnungsproblems, das
sich prinzipiell auf einer Turingmaschine (TM) implementieren lässt
(Church-Turing-These).

Die Registermaschine

Bei Aussagen zur Laufzeit von Algorithmen beziehen wir uns auf die
Registermaschine (engl. random access machine; RAM). Dieses Modell
ist etwas flexibler als die Turingmaschine, da es den unmittelbaren
Lese- und Schreibzugriff (random access) auf eine beliebige Speicher-
einheit (Register) erlaubt. Als Speicher stehen beliebig viele Register
zur Verfügung, die jeweils eine beliebig große natürliche Zahl speichern
können. Auf den Registerinhalten sind folgende arithmetische Ope-
rationen in einem Rechenschritt ausführbar: Addition, Subtraktion,
abgerundetes Halbieren und Verdoppeln. Unabhängig davon geben
wir die Algorithmen in Pseudocode an. Das RAM-Modell benutzen
wir nur zur Komplexitätsabschätzung.
Die Laufzeit von RAM-Programmen wird wie bei TMs in der Länge
der Eingabe gemessen. Man beachte, dass bei arithmetischen Proble-
men (wie etwa Multiplikation, Division, Primzahltests, etc.) die Länge

einer Zahleingabe n durch die Anzahl dlog ne der für die Binärkodie-
rung von n benötigten Bits gemessen wird. Dagegen bestimmt bei
nicht-arithmetischen Problemen (z.B. Graphalgorithmen oder Sortier-
problemen) die Anzahl der gegebenen Zahlen, Knoten oder Kanten
die Länge der Eingabe.

Asymptotische Laufzeit und Landau-Notation

Definition 1. Seien f und g Funktionen von N nach R+. Wir schrei-
ben f(n) = O(g(n)), falls es Zahlen n0 und c gibt mit

∀n ≥ n0 : f(n) ≤ c · g(n).

Die Bedeutung der Aussage f(n) = O(g(n)) ist, dass f „nicht
wesentlich schneller“ als g wächst. Formal bezeichnet der Term
O(g(n)) die Klasse aller Funktionen f , die obige Bedingung erfül-
len. Die Gleichung f(n) = O(g(n)) drückt also in Wahrheit eine
Element-Beziehung f ∈ O(g(n)) aus. O-Terme können auch auf
der linken Seite vorkommen. In diesem Fall wird eine Inklusionsbe-
ziehung ausgedrückt. So steht n2 +O(n) = O(n2) für die Aussage
{n2 + f | f ∈ O(n)} ⊆ O(n2).
Beispiel 2.
• 7 log(n) + n3 = O(n3) ist richtig.
• 7 log(n)n3 = O(n3) ist falsch.
• 2n+O(1) = O(2n) ist richtig.
• 2O(n) = O(2n) ist falsch (siehe Übungen). /

Es gibt noch eine Reihe weiterer nützlicher Größenvergleiche von
Funktionen.
Definition 3. Wir schreiben f(n) = o(g(n)), falls es für jedes c > 0
eine Zahl n0 gibt mit

∀n ≥ n0 : f(n) ≤ c · g(n).

1

Damit wird ausgedrückt, dass f „wesentlich langsamer“ als g wächst.
Außerdem schreiben wir
• f(n) = Ω(g(n)) für g(n) = O(f(n)), d.h. f wächst mindestens so
schnell wie g)
• f(n) = ω(g(n)) für g(n) = o(f(n)), d.h. f wächst wesentlich
schneller als g, und
• f(n) = Θ(g(n)) für f(n) = O(g(n))∧ f(n) = Ω(g(n)), d.h. f und
g wachsen ungefähr gleich schnell.

1.1 Graphentheoretische Grundlagen

Definition 4. Ein (ungerichteter) Graph ist ein Paar G =
(V,E), wobei
V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.

Hierbei gilt
E ⊆

(
V
2

)
=
{
{u, v} ⊆ V | u 6= v

}
.

Sei v ∈ V ein Knoten.
a) Die Nachbarschaft von v ist NG(v) = {u ∈ V | {u, v} ∈ E}.
b) Der Grad von v ist degG(v) = ‖NG(v)‖.
c) Der Minimalgrad von G ist δ(G) = minv∈V degG(v) und der

Maximalgrad von G ist ∆(G) = maxv∈V degG(v).

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach
N(v), deg(v), δ usw.

Beispiel 5.

• Der vollständige Graph (V,E) auf n Knoten, d.h. ‖V ‖ = n

und E =
(
V
2

)
, wird mit Kn und der leere Graph (V, ∅) auf n

Knoten wird mit En bezeichnet.

K1: K2: K3: K4: K5:

• Der vollständige bipartite Graph (A,B,E) auf a+b Knoten,
d.h. A ∩ B = ∅, ‖A‖ = a, ‖B‖ = b und E = {{u, v} | u ∈ A, v ∈
B} wird mit Ka,b bezeichnet.

K1,1: K1,2: K2,2: K2,3: K3,3:

• Der Pfad der Länge n− 1 wird mit Pn bezeichnet.

P2: P3: P4: P5:

• Der Kreis der Länge n wird mit Cn bezeichnet.

C3: C4: C5: C6:

Definition 6. Sei G = (V,E) ein Graph.
a) Eine Knotenmenge U ⊆ V heißt unabhängig oder stabil, wenn

es keine Kante von G mit beiden Endpunkten in U gibt, d.h. es
gilt E ∩

(
U
2

)
= ∅. Die Stabilitätszahl ist

α(G) = max{‖U‖ | U ist stabile Menge in G}.

b) Eine Knotenmenge U ⊆ V heißt Clique, wenn jede Kante mit
beiden Endpunkten in U in E ist, d.h. es gilt

(
U
2

)
⊆ E. Die

Cliquenzahl ist
ω(G) = max{‖U‖ | U ist Clique in G}.

c) Eine Abbildung f : V → N heißt Färbung von G, wenn f(u) 6=
f(v) für alle {u, v} ∈ E gilt. G heißt k-färbbar, falls eine Fär-
bung f : V → {1, . . . , k} existiert. Die chromatische Zahl ist

χ(G) = min{k ∈ N | G ist k-färbbar}.

d) Ein Graph heißt bipartit, wenn χ(G) ≤ 2 ist.

2

1 Grundlagen 1.1 Graphentheoretische Grundlagen

e) Ein Graph G′ = (V ′, E ′) heißt Sub-/Teil-/Untergraph von G,
falls V ′ ⊆ V und E ′ ⊆ E ist. Ein Subgraph G′ = (V ′, E ′) heißt
(durch V ′) induziert, falls E ′ = E ∩

(
V ′

2

)
ist. Hierfür schreiben

wir auch H = G[V ′].
f) Ein Weg ist eine Folge von (nicht notwendig verschiedenen) Kno-

ten v0, . . . , v` mit {vi, vi+1} ∈ E für i = 0, . . . , ` − 1, der jede
Kante e ∈ E höchstens einmal durchläuft. Die Länge des Weges
ist die Anzahl der durchlaufenen Kanten, also `. Im Fall ` = 0
heißt der Weg trivial. Ein Weg v0, . . . , v` heißt auch v0-v`-Weg.

g) Ein Graph G = (V,E) heißt zusammenhängend, falls es für
alle Paare {u, v} ∈

(
V
2

)
einen u-v-Weg gibt. G heißt k-fach zu-

sammenhängend, 1 < k < n, falls G nach Entfernen von belie-
bigen l ≤ min{n−1, k−1} Knoten immer noch zusammenhängend
ist.

h) Ein Zyklus ist ein u-v-Weg der Länge ` ≥ 2 mit u = v.
i) Ein Weg heißt einfach oder Pfad, falls alle durchlaufenen Knoten

verschieden sind.
j) Ein Kreis ist ein Zyklus v0, v1 . . . , v`−1, v0 der Länge ` ≥ 3, für

den v0, v1, . . . , v`−1 paarweise verschieden sind.
k) Ein Graph G = (V,E) heißt kreisfrei, azyklisch oder Wald,

falls er keinen Kreis enthält.
l) Ein Baum ist ein zusammenhängender Wald.
m) Jeder Knoten u ∈ V vom Grad deg(u) ≤ 1 heißt Blatt und die

übrigen Knoten (vom Grad ≥ 2) heißen innere Knoten.

Es ist leicht zu sehen, dass die Relation

Z = {(u, v) ∈ V × V | es gibt in G einen u-v-Weg}

eine Äquivalenzrelation ist. Die durch die Äquivalenzklassen von Z in-
duzierten Teilgraphen heißen die Zusammenhangskomponenten
(engl. connected components) von G.

Definition 7. Ein gerichteter Graph oder Digraph ist ein Paar
G = (V,E), wobei
V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.

Hierbei gilt
E ⊆ V × V =

{
(u, v) | u, v ∈ V

}
,

wobei E auch Schlingen (u, u) enthalten kann. Sei v ∈ V ein Knoten.
a) Die Nachfolgermenge von v ist N+(v) = {u ∈ V | (v, u) ∈ E}.
b) Die Vorgängermenge von v ist N−(v) = {u ∈ V | (u, v) ∈ E}.
c) Die Nachbarmenge von v ist N(v) = N+(v) ∪N−(v).
d) Der Ausgangsgrad von v ist deg+(v) = ‖N+(v)‖ und der Ein-

gangsgrad von v ist deg−(v) = ‖N−(v)‖. Der Grad von v ist
deg(v) = deg+(v) + deg−(v).

e) Ein (gerichteter) v0-v`-Weg ist eine Folge von Knoten
v0, . . . , v` mit (vi, vi+1) ∈ E für i = 0, . . . , ` − 1, der jede Kante
e ∈ E höchstens einmal durchläuft.

f) Ein (gerichteter) Zyklus ist ein gerichteter u-v-Weg der Länge
` ≥ 1 mit u = v.

g) Ein gerichteter Weg heißt einfach oder (gerichteter) Pfad,
falls alle durchlaufenen Knoten verschieden sind.

h) Ein (gerichteter) Kreis in G ist ein gerichteter Zyklus
v0, v1 . . . , v`−1, v0 der Länge ` ≥ 1, für den v0, v1, . . . , v`−1 paar-
weise verschieden sind.

i) G heißt kreisfrei oder azyklisch, wenn es in G keinen gerichte-
ten Kreis gibt.

j) G heißt schwach zusammenhängend, wenn es in G für jedes
Knotenpaar u 6= v ∈ V einen u-v-Pfad oder einen v-u-Pfad gibt.

k) G heißt stark zusammenhängend, wenn es in G für jedes
Knotenpaar u 6= v ∈ V sowohl einen u-v-Pfad als auch einen
v-u-Pfad gibt.

3

1 Grundlagen 1.2 Datenstrukturen für Graphen

1.2 Datenstrukturen für Graphen

Sei G = (V,E) ein Graph bzw. Digraph und sei V = {v1, . . . , vn}.
Dann ist die (n× n)-Matrix A = (aij) mit den Einträgen

aij =

1, {vi, vj} ∈ E
0, sonst

bzw. aij =

1, (vi, vj) ∈ E
0, sonst

die Adjazenzmatrix von G. Für ungerichtete Graphen ist die Ad-
jazenzmatrix symmetrisch mit aii = 0 für i = 1, . . . , n.
Bei der Adjazenzlisten-Darstellung wird für jeden Knoten vi eine
Liste mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet
man entweder nur die Liste der Nachfolger oder zusätzlich eine weitere
für die Vorgänger. Falls die Anzahl der Knoten gleichbleibt, organi-
siert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit
Index i verweist auf die Adjazenzliste von Knoten vi. Falls sich die
Anzahl der Knoten dynamisch ändert, so werden die Adjazenzlisten
typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 8.
Betrachte den gerichteten Graphen G = (V,E)
mit V = {1, 2, 3, 4} und E = {(2, 3),
(2, 4), (3, 1), (3, 4), (4, 4)}. Dieser hat folgende
Adjazenzmatrix- und Adjazenzlisten-Darstellung:

1 2

43

1 2 3 4
1 0 0 0 0
2 0 0 1 1
3 1 0 0 1
4 0 0 0 1

1
2
3
4

3 4
1 4
4

/

Folgende Tabelle gibt den Aufwand der wichtigsten elementaren Opera-
tionen auf Graphen in Abhängigkeit von der benutzten Datenstruktur

an. Hierbei nehmen wir an, dass sich die Knotenmenge V nicht ändert.

Adjazenzmatrix Adjazenzlisten
einfach clever einfach clever

Speicherbedarf O(n2) O(n2) O(n+m) O(n+m)
Initialisieren O(n2) O(1) O(n) O(1)

Kante einfügen O(1) O(1) O(1) O(1)
Kante entfernen O(1) O(1) O(n) O(1)
Test auf Kante O(1) O(1) O(n) O(n)

Bemerkung 9.

• Der Aufwand für die Initialisierung des leeren Graphen in der Ad-
jazenzmatrixdarstellung lässt sich auf O(1) drücken, indem man
mithilfe eines zusätzlichen Feldes B die Gültigkeit der Matrixein-
träge verwaltet (siehe Übungen).
• Die Verbesserung beim Löschen einer Kante in der Adjazenzlisten-
darstellung erhält man, indem man die Adjazenzlisten doppelt ver-
kettet und im ungerichteten Fall die beiden Vorkommen jeder Kan-
te in den Adjazenzlisten der beiden Endknoten gegenseitig verlinkt
(siehe die Prozeduren Insert(Di)Edge und Remove(Di)Edge
auf den nächsten Seiten).
• Bei der Adjazenzlistendarstellung können die Knoten auch in ei-
ner doppelt verketteten Liste organisiert werden. In diesem Fall
können dann auch Knoten in konstanter Zeit hinzugefügt und in
Zeit O(n) wieder entfernt werden (unter Beibehaltung der übrigen
Speicher- und Laufzeitschranken).

Es folgen die Prozeduren für die in obiger Tabelle aufgeführten elemen-
taren Graphoperationen, falls G als ein Feld G[1, . . . , n] von (Zeigern
auf) doppelt verkettete Adjazenzlisten repräsentiert wird. Wir behan-
deln zuerst den Fall eines Digraphen.

4

1 Grundlagen 1.3 Keller und Warteschlange

Prozedur Init

1 for i := 1 to n do
2 G[i] := ⊥

Prozedur InsertDiEdge(u, v)
1 erzeuge Listeneintrag e
2 source(e) := u
3 target(e) := v
4 prev(e) := ⊥
5 next(e) := G[u]
6 if G[u] 6= ⊥ then
7 prev(G[u]) := e
8 G[u] := e
9 return e

Prozedur RemoveDiEdge(e)
1 if next(e) 6= ⊥ then
2 prev(next(e)) := prev(e)
3 if prev(e) 6= ⊥ then
4 next(prev(e)) := next(e)
5 else
6 G[source(e)] := next(e)

Prozedur Edge(u, v)
1 e := G[u]
2 while e 6= ⊥ do
3 if target(e) = v then
4 return 1
5 e := next(e)
6 return 0

Falls G ungerichtet ist, können diese Operationen wie folgt implemen-
tiert werden (die Prozeduren Init und Edge bleiben unverändert).

Prozedur InsertEdge(u, v)
1 erzeuge Listeneinträge e, e′

2 opposite(e) := e′

3 opposite(e′) := e
4 next(e) := G[u]
5 next(e′) := G[v]
6 if G[u] 6= ⊥ then
7 prev(G[u]) := e
8 if G[v] 6= ⊥ then
9 prev(G[v]) := e′

10 G[u] := e; G[v] := e′

11 source(e) := target(e′) := u
12 target(e) := source(e′) := v
13 prev(e) := ⊥
14 prev(e′) := ⊥
15 return e

Prozedur RemoveEdge(e)
1 RemoveDiEdge(e)
2 RemoveDiEdge(opposite(e))

1.3 Keller und Warteschlange

Für das Durchsuchen eines Graphen ist es vorteilhaft, die bereits
besuchten (aber noch nicht abgearbeiteten) Knoten in einer Menge B
zu speichern. Damit die Suche effizient ist, sollte die Datenstruktur
für B folgende Operationen effizient implementieren.

5

1 Grundlagen 1.3 Keller und Warteschlange

Init(B): Initialisiert B als leere Menge.
Empty(B): Testet B auf Leerheit.

Insert(B, u): Fügt u in B ein.
Element(B): Gibt ein Element aus B zurück.
Remove(B): Gibt ebenfalls Element(B) zurück und

entfernt es aus B.

Andere Operationen wie z.B. Remove(B, u) werden nicht benötigt.
Die gewünschten Operationen lassen sich leicht durch einen Keller
(auch Stapel genannt) (engl. stack) oder eine Warteschlange (engl.
queue) implementieren. Falls maximal n Datensätze gespeichert wer-
den müssen, kann ein Feld zur Speicherung der Elemente benutzt
werden. Andernfalls können sie auch in einer einfach verketteten Liste
gespeichert werden.

Stack S – Last-In-First-Out

Top(S): Gibt das oberste Element von S zurück.
Push(S, x): Fügt x als oberstes Element zum Keller hinzu.

Pop(S): Gibt das oberste Element von S zurück und ent-
fernt es.

Queue Q – Last-In-Last-Out

Enqueue(Q, x): Fügt x am Ende der Schlange hinzu.
Head(Q): Gibt das erste Element von Q zurück.

Dequeue(Q): Gibt das erste Element von Q zurück und ent-
fernt es.

Die Kelleroperationen lassen sich wie folgt auf einem Feld S[1 . . . n]
implementieren. Die Variable size(S) enthält die Anzahl der im
Keller gespeicherten Elemente.

Prozedur StackInit(S)
1 size(S) := 0

Prozedur StackEmpty(S)
1 return(size(S) = 0)

Prozedur Top(S)
1 if size(S) > 0 then
2 return(S[size(S)])
3 else
4 return(⊥)

Prozedur Push(S, x)
1 if size(S) < n then
2 size(S) := size(S) + 1
3 S[size(S)] := x
4 else
5 return(⊥)

Prozedur Pop(S)
1 if size(S) > 0 then
2 size(S) := size(S)− 1
3 return(S[size(S) + 1])
4 else
5 return(⊥)

Es folgen die Warteschlangenoperationen für die Speicherung in einem
Feld Q[1 . . . n]. Die Elemente werden der Reihe nach am Ende der
Schlange Q (zyklisch) eingefügt und am Anfang entnommen. Die
Variable head(Q) enthält den Index des ersten Elements der Schlan-
ge und tail(Q) den Index des hinter dem letzten Element von Q
befindlichen Eintrags.

6

1 Grundlagen 1.4 Durchsuchen von Graphen

Prozedur QueueInit(Q)
1 head(Q) := 1
2 tail(Q) := 1
3 size(Q) := 0

Prozedur QueueEmpty(Q)
1 return(size(Q) = 0)

Prozedur Head(Q)
1 if QueueEmpty(Q) then
2 return(⊥)
3 else
4 returnQ[head(Q)]

Prozedur Enqueue(Q, x)
1 if size(Q) = n then
2 return(⊥)
3 size(Q) := size(Q) + 1
4 Q[tail(Q)] := x
5 if tail(Q) = n then
6 tail(Q) := 1
7 else
8 tail(Q) := tail(Q) + 1

Prozedur Dequeue(Q)
1 if QueueEmpty(Q) then
2 return(⊥)
3 size(Q) := size(Q)− 1
4 x := Q[head(Q)]
5 if head(Q) = n then
6 head(Q) := 1

7 else
8 head(Q) := head(Q) + 1
9 return(x)

Satz 10. Sämtliche Operationen für einen Keller S und eine Warte-
schlange Q sind in konstanter Zeit O(1) ausführbar.
Bemerkung 11. Mit Hilfe von einfach verketteten Listen sind Keller
und Warteschlangen auch für eine unbeschränkte Anzahl von Daten-
sätzen mit denselben Laufzeitbeschränkungen implementierbar.

Die für das Durchsuchen von Graphen benötigte Datenstruktur B
lässt sich nun mittels Keller bzw. Schlange wie folgt realisieren.

Operation Keller S Schlange Q
Init(B) StackInit(S) QueueInit(Q)
Empty(B) StackEmpty(S) QueueEmpty(Q)
Insert(B, u) Push(S, u) Enqueue(Q, u)
Element(B) Top(S) Head(Q)
Remove(B) Pop(S) Dequeue(Q)

1.4 Durchsuchen von Graphen

Wir geben nun für die Suche in einem Graphen bzw. Digraphen
G = (V,E) einen Algorithmus GraphSearch mit folgenden Eigen-
schaften an:

GraphSearch benutzt eine Prozedur Explore, um alle Knoten
und Kanten von G zu besuchen.
Explore(w) findet Pfade zu allen von w aus erreichbaren Knoten.
Hierzu speichert Explore(w) für jeden über eine Kante {u, v} bzw.
(u, v) neu entdeckten Knoten v 6= w den Knoten u in parent(v).
Wir nennen die bei der Entdeckung eines neuen Knotens v durch-
laufenen Kanten (parent(v), v) parent-Kanten.

7

1 Grundlagen 1.4 Durchsuchen von Graphen

Im Folgenden verwenden wir die Schreibweise e = uv sowohl für
gerichtete als auch für ungerichtete Kanten e = (u, v) bzw. e = {u, v}.

Algorithmus GraphSearch(V,E)
1 for all v ∈ V, e ∈ E do
2 vis(v) := false
3 parent(v) := ⊥
4 vis(e) := false
5 for all w ∈ V do
6 if vis(w) = false then Explore(w)

Prozedur Explore(w)
1 vis(w) := true
2 Init(B)
3 Insert(B,w)
4 while ¬Empty(B) do
5 u := Element(B)
6 if ∃ e = uv ∈ E : vis(e) = false then
7 vis(e) := true
8 if vis(v) = false then
9 vis(v) := true

10 parent(v) := u
11 Insert(B, v)
12 else
13 Remove(B)

Um die nächste von u ausgehende Kante uv, die noch nicht besucht
wurde, in konstanter Zeit bestimmen zu können, kann man bei der
Adjazenzlistendarstellung für jeden Knoten u neben dem Zeiger auf
die erste Kante in der Adjazenzliste von u einen zweiten Zeiger be-
reithalten, der auf die aktuelle Kante in der Liste verweist.

Suchwälder

Definition 12. Sei G = (V,E) ein Digraph.
• Ein Knoten w ∈ V heißt Wurzel von G, falls alle Knoten v ∈ V
von w aus erreichbar sind (d.h. es gibt einen gerichteten w-v-Weg
in G).
• G heißt gerichteter Wald, wenn G kreisfrei ist und jeder Knoten
v ∈ V Eingangsgrad deg−(v) ≤ 1 hat.
• Ein Knoten u ∈ V vom Ausgangsgrad deg+(u) = 0 heißt Blatt.
• Ein gerichteter Wald, der eine Wurzel hat, heißt gerichteter
Baum.

In einem gerichteten Baum liegen die Kantenrichtungen durch die
Wahl der Wurzel bereits eindeutig fest. Daher kann bei bekannter
Wurzel auf die Angabe der Kantenrichtungen auch verzichtet werden.
Man spricht dann von einem Wurzelbaum.
Betrachte den durch SearchGraph(V,E) erzeugten Digraphen W =
(V,Eparent) mit

Eparent =
{

(parent(v), v) | v ∈ V und parent(v) 6= ⊥
}
.

Da parent(v) vor v markiert wird, ist klar, dass W kreisfrei ist. Zu-
dem hat jeder Knoten v höchstens einen Vorgänger parent(v). Dies
zeigt, dass W tatsächlich ein gerichteter Wald ist. W heißt Such-
wald von G und die Kanten (parent(v), v) von W werden auch als
Baumkanten bezeichnet.
W hängt zum einen davon ab, wie die Datenstruktur B implementiert
ist (z.B. als Keller oder als Warteschlange). Zum anderen hängt W
aber auch von der Reihenfolge der Knoten in den Adjazenzlisten ab.

Klassifikation der Kanten eines (Di-)Graphen

Die Kanten eines Graphen G = (V,E) werden durch den Suchwald
W = (V,Eparent) in vier Klassen eingeteilt. Dabei erhält jede Kante

8

1 Grundlagen 1.4 Durchsuchen von Graphen

die Richtung, in der sie bei ihrem ersten Besuch durchlaufen wird.
Neben den Baumkanten (parent(v), v) ∈ Eparent gibt es noch
Rückwärts-, Vorwärts- und Querkanten. Rückwärtskanten (u, v)
verbinden einen Knoten u mit einem Knoten v, der auf dem parent-
Pfad P (u) von u liegt. Liegt dagegen u auf P (v), so wird (u, v)
als Vorwärtskante bezeichnet. Alle übrigen Kanten heißen Quer-
kanten. Diese verbinden zwei Knoten, von denen keiner auf dem
parent-Pfad des anderen liegt.

Beispiel 13. Bei Aufruf mit dem Start-
knoten a könnte die Prozedur Explore
den nebenstehendem Graphen beispiels-
weise wie folgt durchsuchen.

f c

a b

e d

Menge B Knoten Kante Typ B Knoten Kante Typ
{a} a (a, b) B {d, e, f} d (d, e) V
{a, b} a (a, f) B {d, e, f} d (d, f) Q
{a, b, f} a - - {d, e, f} d - -
{b, f} b (b, d) B {e, f} e (e, d) R
{b, d, f} b - - {e, f} e - -
{d, f} d (d, c) B {f} f (f, e) Q
{c, d, f} c (c, e) B {f} f - -
{c, d, e, f} c - - ∅

Dabei entsteht nebenstehender Such-
wald.

b d

a c

f e

Die Klassifikation der Kanten eines Digraphen G erfolgt analog, wobei
die Richtungen jedoch bereits durch G vorgegeben sind (dabei werden
Schlingen der Kategorie der Vorwärtskanten zugeordnet). Tatsächlich

durchläuft Explore bei einem Graphen die Knoten und Kanten in der
gleichen Reihenfolge wie bei dem Digraphen, der für jede ungerichtete
Kante {u, v} die beiden gerichteten Kanten (u, v) und (v, u) enthält.

Beispiel 14. Bei Aufruf mit dem
Startknoten a könnte die Prozedur
Explore beispielsweise nebenstehen-
den Suchwald generieren.

f c

a b

e d

Menge B Knoten Kante B Knoten Kante
{a} a {a, e} B {c, d, e, f} c {c, f} Q
{a, e} a {a, f} B {c, d, e, f} c - -
{a, e, f} a - - {d, e, f} d {d, b} -
{e, f} e {e, a} - {d, e, f} d {d, c} -
{e, f} e {e, c} B {d, e, f} d {d, e} R
{c, e, f} c {c, b} B {d, e, f} d - -
{b, c, e, f} b {b, c} - {e, f} e {e, d} -
{b, c, e, f} b {b, d} B {e, f} e - -
{b, c, d, e, f} b - - {f} f {f, a} -
{c, d, e, f} c {c, d} V {f} f {f, c} -
{c, d, e, f} c {c, e} - {f} f - -

Satz 15. Falls der (un)gerichtete Graph G in Adjazenzlisten-
Darstellung gegeben ist, durchläuft GraphSearch alle Knoten und
Kanten von G in Zeit O(n+m).

Beweis. Offensichtlich wird jeder Knoten u genau einmal zu B hin-
zugefügt. Dies geschieht zu dem Zeitpunkt, wenn u zum ersten Mal
„besucht“ und das Feld visited für u auf true gesetzt wird. Außer-
dem werden in Zeile 6 von Explore alle von u ausgehenden Kanten
durchlaufen, bevor u wieder aus B entfernt wird. Folglich werden
tatsächlich alle Knoten und Kanten von G besucht.

9

1 Grundlagen 1.5 Spannbäume und Spannwälder

Wir bestimmen nun die Laufzeit des Algorithmus GraphSearch. In-
nerhalb von Explore wird die while-Schleife für jeden Knoten u genau
(deg(u) + 1)-mal bzw. (deg+(u) + 1)-mal durchlaufen:

• einmal für jeden Nachbarn v von u und
• dann noch einmal, um u aus B zu entfernen.

Insgesamt sind das n+ 2m im ungerichteten bzw. n+m Durchläufe
im gerichteten Fall. Bei Verwendung von Adjazenzlisten kann die
nächste von einem Knoten v aus noch nicht besuchte Kante e in
konstanter Zeit ermittelt werden, falls man für jeden Knoten v einen
Zeiger auf e in der Adjazenzliste von v vorsieht. Die Gesamtlaufzeit
des Algorithmus GraphSearch beträgt somit O(n+m). �

Als nächstes zeigen wir, dass Explore(w) zu allen von w aus erreich-
baren Knoten v einen (gerichteten) w-v-Pfad liefert. Dieser lässt sich
mittels parent wie folgt zurückverfolgen. Sei

ui =

v, i = 0,
parent(ui−1), i > 0 und ui−1 6= ⊥

und sei ` = min{i ≥ 0 | ui+1 = ⊥}. Dann ist u` = w und
p = (u`, . . . , u0) ein w-v-Pfad. Wir nennen P den parent-Pfad
von v und bezeichnen ihn mit P (v).

Satz 16. Falls beim Aufruf von Explore alle Knoten und Kanten als
unbesucht markiert sind, berechnet Explore(w) zu allen erreichbaren
Knoten v einen (gerichteten) w-v-Pfad P (v).

Beweis. Wir zeigen zuerst, dass Explore(w) alle von w aus erreich-
baren Knoten besucht. Hierzu führen wir Induktion über die Länge `
eines kürzesten w-v-Weges.

` = 0: In diesem Fall ist v = w und w wird in Zeile 1 besucht.

` ; `+ 1: Sei v ein Knoten mit Abstand l + 1 von w. Dann hat ein
Nachbarknoten u ∈ N(v) den Abstand ` von w. Folglich wird u
nach IV besucht. Da u erst dann aus B entfernt wird, wenn alle
seine Nachbarn (bzw. Nachfolger) besucht wurden, wird auch v
besucht.

Es bleibt zu zeigen, dass parent einen Pfad P (v) von w zu jedem
besuchten Knoten v liefert. Hierzu führen wir Induktion über die
Anzahl k der vor v besuchten Knoten.
k = 0: In diesem Fall ist v = w. Da parent(w) = ⊥ ist, liefert

parent einen w-v-Pfad (der Länge 0).
k − 1 ; k: Sei u = parent(v). Da u vor v besucht wird, liefert

parent nach IV einen w-u-Pfad P (u). Wegen u = parent(v)
ist u der Entdecker von v und daher mit v durch eine Kante
verbunden. Somit liefert parent auch für v einen w-v-Pfad P (v).�

1.5 Spannbäume und Spannwälder

In diesem Abschnitt zeigen wir, dass der Algorithmus GraphSearch
für jede Zusammenhangskomponente eines (ungerichteten) Graphen
G einen Spannbaum berechnet.
Definition 17. Sei G = (V,E) ein Graph und H = (U, F) ein Un-
tergraph.
• H heißt spannend, falls U = V ist.
• H ist ein spannender Baum (oder Spannbaum) von G, falls
U = V und H ein Baum ist.
• H ist ein spannender Wald (oder Spannwald) von G, falls
U = V und H ein Wald ist.

Es ist leicht zu sehen, dass für G genau dann ein Spannbaum existiert,
wenn G zusammenhängend ist. Allgemeiner gilt, dass die Spannbäu-
me für die Zusammenhangskomponenten von G einen Spannwald

10

1 Grundlagen 1.6 Berechnung der Zusammenhangskomponenten

bilden. Dieser ist bzgl. der Subgraph-Relation maximal, da er in kei-
nem größeren Spannwald enthalten ist. Ignorieren wir die Richtungen
der Kanten im Suchwald W , so ist der resultierende Wald W ′ ein
maximaler Spannwald für G.
Da Explore(w) alle von w aus erreichbaren Knoten findet, spannt
jeder Baum des (ungerichteten) Suchwaldes W ′ = (V,E ′parent) mit

E ′parent =
{
{parent(v), v} | v ∈ V und parent(v) 6= ⊥

}
eine Zusammenhangskomponente von G.

Korollar 18. Sei G ein (ungerichteter) Graph.
• Der Algorithmus GraphSearch(V,E) berechnet in Linearzeit
einen Spannwald W ′, dessen Bäume die Zusammenhangskom-
ponenten von G spannen.
• Falls G zusammenhängend ist, ist W ′ ein Spannbaum für G.

1.6 Berechnung der
Zusammenhangskomponenten

Folgende Variante von GraphSearch bestimmt die Zusammenhangs-
komponenten eines (ungerichteten) Eingabegraphen G.

Algorithmus CC(V,E)
1 k := 0
2 for all v ∈ V, e ∈ E do
3 cc(v) := 0
4 cc(e) := 0
5 for all w ∈ V do
6 if cc(w) = 0 then
7 k := k + 1
8 ComputeCC(k, w)

Prozedur ComputeCC(k, w)
1 cc(w) := k
2 Init(B)
3 Insert(B,w)
4 while ¬Empty(B) do
5 u := Element(B)
6 if ∃ e = {u, v} ∈ E : cc(e) = 0 then
7 cc(e) := k
8 if cc(v) = 0 then
9 cc(v) := k

10 Insert(B, v)
11 else
12 Remove(B)

Korollar 19. Der Algorithmus CC(V,E) bestimmt für einen Graphen
G = (V,E) in Linearzeit O(n+m) sämtliche Zusammenhangskom-
ponenten Gk = (Vk, Ek) von G, wobei Vk = {v ∈ V | cc(v) = k} und
Ek = {e ∈ E | cc(e) = k} ist.

1.7 Breiten- und Tiefensuche

Wie wir gesehen haben, findet Explore(w) sowohl in Graphen als
auch in Digraphen alle von w aus erreichbaren Knoten. Als nächstes
zeigen wir, dass Explore(w) zu allen von w aus erreichbaren Knoten
sogar einen kürzesten Weg findet, falls wir die Datenstruktur B als
Warteschlange Q implementieren.
Die Benutzung einer Warteschlange Q zur Speicherung der bereits
entdeckten, aber noch nicht abgearbeiteten Knoten bewirkt, dass
zuerst alle Nachbarknoten u1, . . . , uk des aktuellen Knotens u besucht
werden, bevor ein anderer Knoten aktueller Knoten wird. Da die
Suche also zuerst in die Breite geht, spricht man von einer Breiten-
suche (kurz BFS, engl. breadth first search). Den hierbei berechneten

11

1 Grundlagen 1.7 Breiten- und Tiefensuche

Suchwald bezeichnen wir als Breitensuchwald.
Bei Benutzung eines Kellers wird dagegen u1 aktueller Knoten, bevor
die übrigen Nachbarknoten von u besucht werden. Daher führt die
Benutzung eines Kellers zu einer Tiefensuche (kurz DFS, engl. depth
first search). Der berechnete Suchwald heißt dann Tiefensuchwald.
Die Breitensuche eignet sich eher für Distanzprobleme wie z.B. das
Finden
• kürzester Wege in Graphen und Digraphen,
• längster Wege in Bäumen (siehe Übungen) oder
• kürzester Wege in Distanzgraphen (Dijkstra-Algorithmus).

Dagegen liefert die Tiefensuche interessante Strukturinformationen
wie z.B.
• die zweifachen Zusammenhangskomponenten in Graphen,
• die starken Zusammenhangskomponenten in Digraphen oder
• eine topologische Sortierung bei azyklischen Digraphen (s. Übun-

gen).
Wir betrachten zuerst den Breitensuchalgorithmus.

Algorithmus BFS(V,E)
1 for all v ∈ V, e ∈ E do
2 vis(v) := false
3 parent(v) := ⊥
4 vis(e) := false
5 for all w ∈ V do
6 if vis(w) = false then BFS-Explore(w)

Prozedur BFS-Explore(w)
1 vis(w) := true
2 QueueInit(Q)
3 Enqueue(Q,w)

4 while ¬QueueEmpty(Q) do
5 u := Head(Q)
6 if ∃ e = uv ∈ E : vis(e) = false then
7 vis(e) := true
8 if vis(v) = false then
9 vis(v) := true

10 parent(v) := u
11 Enqueue(Q, v)
12 else
13 Dequeue(Q)

Beispiel 20. BFS-Explore generiert
bei Aufruf mit dem Startknoten a ne-
benstehenden Breitensuchwald.

b c

a d

f e

bes. bes. bes. bes.
Schlange Q Knoten Kante Typ Q Knoten Kante Typ
←a← a (a, b) B c, e, d c (c, e) Q
a, b a (a, f) B c, e, d c (c, f) Q
a, b, f a - - c, e, d c - -
b, f b (b, c) B e, d e (e, c) Q
b, f, c b - - e, d e (e, d) Q
f, c f (f, e) B e, d e (e,f) R
f, c, e f - - e, d e - -
c, e c (c, d) B d d - -

/

Satz 21. Sei G ein Graph oder Digraph und sei w Wurzel des von
BFS-Explore(w) berechneten Suchbaumes T . Dann liefert parent
für jeden Knoten v in T einen kürzesten w-v-Weg P (v).

12

1 Grundlagen 1.7 Breiten- und Tiefensuche

Beweis. Wir führen Induktion über die kürzeste Weglänge ` von w
nach v in G.
` = 0: Dann ist v = w und parent liefert einen Weg der Länge 0.
` ; `+ 1: Sei v ein Knoten, der den Abstand `+ 1 von w in G hat.

Dann existiert ein Knoten u ∈ N−(v) (bzw. u ∈ N(v)) mit Ab-
stand ` von w in G hat. Nach IV liefert also parent einen w-u-Weg
P (u) der Länge `. Da u erst aus Q entfernt wird, nachdem alle
Nachfolger von u entdeckt sind, wird v von u oder einem bereits
zuvor in Q eingefügten Knoten z entdeckt. Da Q als Schlange or-
ganisiert ist, ist P (u) nicht kürzer als P (z). Daher folgt in beiden
Fällen, dass P (v) die Länge `+ 1 hat.

�

Wir werden später noch eine Modifikation der Breitensuche kennen ler-
nen, die kürzeste Wege in Graphen mit nichtnegativen Kantenlängen
findet (Algorithmus von Dijkstra).
Als nächstes betrachten wir den Tiefensuchalgorithmus.

Algorithmus DFS(V,E)
1 for all v ∈ V, e ∈ E do
2 vis(v) := false
3 parent(v) := ⊥
4 vis(e) := false
5 for all w ∈ V do
6 if vis(w) = false then DFS-Explore(w)

Prozedur DFS-Explore(w)
1 vis(w) := true
2 StackInit(S)
3 Push(S,w)
4 while ¬StackEmpty(S) do
5 u := Top(S)
6 if ∃ e = uv ∈ E : vis(e) = false then

7 vis(e) := true
8 if vis(v) = false then
9 vis(v) := true

10 parent(v) := u
11 Push(S, v)
12 else
13 Pop(S)

Beispiel 22. Bei Aufruf mit dem
Startknoten a generiert die Prozedur
DFS-Explore nebenstehenden Tiefen-
suchwald.

b c

a d

f e

bes. bes. bes. bes.
Keller S Knoten Kante Typ S Knoten Kante Typ
a↔ a (a, b) B a, b, c c (c, f) B

a, b b (b, c) B a, b, c, f f (f, e) Q
a, b, c c (c, d) B a, b, c, f f - -
a, b, c, d d - - a, b, c c - -
a, b, c c (c, e) B a, b b - -
a, b, c, e e (e, c) R a a (a, f) V
a, b, c, e e (e, d) Q a a - -
a, b, c, e e - -

Die Tiefensuche auf nebenstehendem
Graphen führt auf folgende Klassifika-
tion der Kanten (wobei wir annehmen,

b c

a d

f e

13

1 Grundlagen 1.7 Breiten- und Tiefensuche

b c

a d

f e

dass die Nachbarknoten in den Ad-
jazenzlisten alphabetisch angeordnet
sind):

Keller S Kante Typ Keller S Kante Typ
a↔ {a, b} B a, b, c, d, e, f {f, c} R
a, b {b, a} - a, b, c, d, e, f {f, e} -
a, b {b, c} B a, b, c, d, e, f - -
a, b, c {c, b} - a, b, c, d, e - -
a, b, c {c, d} B a, b, c, d - -
a, b, c, d {d, c} - a, b, c {c, e} -
a, b, c, d {d, e} B a, b, c {c, f} -
a, b, c, d, e {e, c} R a, b, c - -
a, b, c, d, e {e, d} - a, b - -
a, b, c, d, e {e, f} B a {a, f} -
a, b, c, d, e, f {f, a} R a - -

/

Die Tiefensuche lässt sich auch rekursiv implementieren. Dies hat den
Vorteil, dass kein (expliziter) Keller benötigt wird.

Prozedur DFS-Explore-rec(w)
1 vis(w) := true
2 while ∃ e = uv ∈ E : vis(e) = false do
3 vis(e) := true
4 if vis(v) = false then
5 parent(v) := w
6 DFS-Explore-rec(v)

Da DFS-Explore-rec(w) zu parent(w) zurückspringt, kann auch
das Feld parent(w) als Keller fungieren. Daher lässt sich die Prozedur

auch nicht-rekursiv ohne zusätzlichen Keller implementieren, indem
die Rücksprünge explizit innerhalb einer Schleife ausgeführt werden
(siehe Übungen).
Bei der Tiefensuche lässt sich der Typ jeder Kante algorithmisch leicht
bestimmen, wenn wir noch folgende Zusatzinformationen speichern.
• Ein neu entdeckter Knoten wird bei seinem ersten Besuch grau

gefärbt. Sobald er abgearbeitet ist, also bei seinem letzten Besuch,
wird er schwarz. Zu Beginn sind alle Knoten weiß.
• Zudem merken wir uns die Reihenfolge, in der die Knoten entdeckt
werden, in einem Feld r.

Dann lässt sich der Typ jeder Kante e = (u, v) bei ihrem ersten
Besuch wie folgt bestimmen:

Baumkante: farbe(v) = weiß,
Vorwärtskante: farbe(v) 6= weiß und r(v) ≥ r(u),

Rückwärtskante: farbe(v) = grau und r(v) < r(u),
Querkante: farbe(v) = schwarz und r(v) < r(u).

Die folgende Variante von DFS berechnet diese Informationen.

Algorithmus DFS(V,E)
1 r := 0
2 for all v ∈ V, e ∈ E do
3 farbe(v) := weiß
4 vis(e) := false
5 for all u ∈ V do
6 if farbe(u) = weiß then DFS-Explore(u)

Prozedur DFS-Explore(u)
1 farbe(u) := grau
2 r := r + 1
3 r(u) := r
4 while ∃ e = (u, v) ∈ E : vis(e) = false do

14

2 Berechnung kürzester Wege

5 vis(e) := true
6 if farbe(v) = weiß then
7 DFS-Explore(v)
8 farbe(u) := schwarz

Beispiel 23. Bei Aufruf mit dem
Startknoten a werden die Knoten im
nebenstehenden Digraphen von der
Prozedur DFS-Explore wie folgt ge-
färbt (die Knoten sind mit ihren r-
Werten markiert).

b

2
c

3

a

1
d

4

f

6
e

5
Keller Farbe Kante Typ Keller Farbe Kante Typ
a a: grau (a, b) B a, b, c, e e: schwarz - -
a, b b: grau (b, c) B a, b, c - (c, f) B
a, b, c c: grau (c, d) B a, b, c, f f : grau (f, e) Q
a, b, c, d d: grau - - a, b, c, f f : schwarz - -

d: schwarz a, b, c c: schwarz - -
a, b, c - (c, e) B a, b b: schwarz - -
a, b, c, e e: grau (e, c) R a - (a, f) V
a, b, c, e - (e, d) Q a a: schwarz - -

/

Bei der Tiefensuche in ungerichteten Graphen können weder Quer-
noch Vorwärtskanten auftreten. Da v beim ersten Besuch einer sol-
chen Kante (u, v) nicht weiß ist und alle grauen Knoten auf dem
parent-Pfad P (u) liegen, müsste v nämlich bereits schwarz sein. Dies
ist aber nicht möglich, da die Kante {u, v} in v-u-Richtung noch
gar nicht durchlaufen wurde. Folglich sind alle Kanten, die nicht zu
einem neuen Knoten führen, Rückwärtskanten. Das Fehlen von Quer-
und Vorwärtskanten spielt bei manchen Anwendungen eine wichtige
Rolle, etwa bei der Zerlegung eines Graphen G in seine zweifachen
Zusammenhangskomponenten.

2 Berechnung kürzester Wege

In vielen Anwendungen tritt das Problem auf, einen kürzesten Weg
von einem Startknoten s zu einem Zielknoten t in einem Digraphen
zu finden, dessen Kanten (u, v) vorgegebene Längen l(u, v) haben.
Die Länge eines Weges W = (v0, . . . , v`) ist

l(W) =
`−1∑
i=0

l(vi, vi+1).

Die kürzeste Weglänge von s nach t wird als Distanz dist(s, t) zwi-
schen s und t bezeichnet,

dist(s, t) = min{l(W) | W ist ein s-t-Weg}.

Falls kein s-t-Weg existiert, setzen wir dist(s, t) =∞. Man beachte,
dass die Distanz auch dann nicht beliebig klein werden kann, wenn
Kreise mit negativer Länge existieren, da ein Weg jede Kante höchs-
tens einmal durchlaufen kann. In vielen Fällen haben jedoch alle
Kanten in E eine nichtnegative Länge l(u, v) ≥ 0. In diesem Fall
nennen wir D = (V,E, l) einen Distanzgraphen.

2.1 Der Dijkstra-Algorithmus

Der Dijkstra-Algorithmus findet einen kürzesten Weg P (u) von s
zu allen erreichbaren Knoten u (single-source shortest-path problem).
Hierzu führt der Algorithmus eine modifizierte Breitensuche aus. Dabei
werden die in Bearbeitung befindlichen Knoten in einer Prioritäts-
warteschlange U verwaltet. Genauer werden alle Knoten u, zu denen

15

2 Berechnung kürzester Wege 2.1 Der Dijkstra-Algorithmus

bereits ein s-u-Weg P (u) bekannt ist, zusammen mit der Weglänge g
solange in U gespeichert bis P (u) optimal ist. Auf der Datenstruktur
U sollten folgende Operationen (möglichst effizient) ausführbar sein.

Init(U): Initialisiert U als leere Menge.
Update(U, u, g): Erniedrigt den Wert von u auf g (nur wenn der

aktuelle Wert größer als g ist). Ist u noch nicht
in U enthalten, wird u mit dem Wert g zu U
hinzugefügt.

RemoveMin(U): Gibt ein Element aus U mit dem kleinsten Wert
zurück und entfernt es aus U (ist U leer, wird der
Wert ⊥ (nil) zurückgegeben).

Voraussetzung für die Korrektheit des Algorithmus ist, dass alle Kan-
ten eine nichtnegative Länge haben. Während der Suche werden be-
stimmte Kanten e = (u, v) daraufhin getestet, ob g(u) + `(u, v) < g(v)
ist. Da in diesem Fall die Kante e auf eine Herabsetzung von g(v)
auf den Wert g(u) + `(u, v) „drängt“, wird diese Wertzuweisung als
Relaxation von e bezeichnet. Welche Kanten (u, v) auf Relaxation
getestet werden, wird beim Dijkstra-Algorithmus durch eine einfache
Greedystrategie bestimmt: Wähle u unter allen noch nicht fertigen
Knoten mit minimalem g-Wert und teste alle Kanten (u, v), für die v
nicht schon fertig ist.

Algorithmus Dijkstra(V,E, l, s)
1 for all v ∈ V do
2 g(v) :=∞
3 parent(v) := ⊥
4 done(v) := false
5 g(s) := 0
6 Init(P)
7 Update(P, s, 0)
8 while u := RemoveMin(P) 6= ⊥ do
9 done(u) := true

10 for all v ∈ N+(u) do
11 if done(v) = false ∧ g(u) + l(u, v) < g(v) then
12 g(v) := g(u) + l(u, v)
13 Update(P, v, g(v))
14 parent(v) := u

Der Algorithmus speichert die aktuelle Länge des Pfades P (u) in g(u).
Knoten außerhalb des aktuellen Breitensuchbaums T haben den Wert
g(u) =∞. In jedem Schleifendurchlauf wird in Zeile 8 ein Knoten u
mit minimalem g-Wert aus U entfernt und als fertig markiert. An-
schließend werden alle von u wegführenden Kanten e = (u, v) auf
Relaxation getestet sowie g, U und T gegebenenfalls aktualisiert.
Beispiel 24. Betrachte den nebenste-
henden Distanzgraphen G. Bei Aus-
führung des Dijkstra-Algorithmus mit
dem Startknoten a werden die folgen-
den kürzesten Wege berechnet.

b c

a d

e f

1

7

3

3 6
8

1

1
3

Inhalt von P entfernt besuchte Kanten Update-Op.
(a, 0) (a, 0) (a, b), (a, e) (b, 1), (e, 7)
(b, 1), (e, 7) (b, 1) (b, c) (c, 4)
(c, 4), (e, 7) (c, 4) (c, d), (c, e), (c, f) (d, 12), (f, 10)
(e, 7), (f, 10), (d, 12) (e, 7) (e, f) (f, 8)
(f, 8), (d, 12) (f, 8) (f, c), (f, d) (d, 11)
(d, 11) (d, 11) − −

/

Als nächstes beweisen wir die Korrektheit des Dijkstra-Algorithmus.

Satz 25. Sei D = (V,E, l) ein Distanzgraph und sei s ∈ V . Dann
berechnet Dijkstra(V,E, l, s) im Feld parent für alle von s aus
erreichbaren Knoten t ∈ V einen kürzesten s-t-Weg P (t).

Beweis. Wir zeigen zuerst, dass alle von s aus erreichbaren Knoten
t ∈ V zu U hinzugefügt werden. Dies folgt aus der Tatsache, dass s zu

16

2 Berechnung kürzester Wege 2.1 Der Dijkstra-Algorithmus

U hinzugefügt wird, und spätestens dann, wenn ein Knoten u in Zeile
8 aus U entfernt wird, sämtliche Nachfolger von u zu U hinzugefügt
werden.
Zudem ist klar, dass g(u) ≥ dist(s, u) ist, da P (u) im Fall g(u) <∞
ein s-u-Weg der Länge g(u) ist. Es bleibt also nur noch zu zeigen,
dass P (u) für jeden aus U entfernten Knoten u ein kürzester s-u-Weg
ist, d.h. es gilt g(u) ≤ dist(s, u).
Hierzu zeigen wir induktiv über die Anzahl k der vor u aus U entfern-
ten Knoten, dass g(u) ≤ dist(s, u) ist.
k = 0: In diesem Fall ist u = s und P (u) hat die Länge g(u) = 0.
k − 1 ; k: Sei W = v0, . . . , v` = u ein kürzester s-u-Weg in G und

sei vi der Knoten mit maximalem Index i auf diesem Weg, der
vor u aus P entfernt wird.
Nach IV gilt dann

g(vi) = dist(s, vi). (2.1)

Zudem ist
g(vi+1) ≤ g(vi) + l(vi, vi+1). (2.2)

Da u im Fall u 6= vi+1 vor vi+1 aus P entfernt wird, ist

g(u) ≤ g(vi+1). (2.3)

Daher folgt

g(u)
(2.3)
≤ g(vi+1)

(2.2)
≤ g(vi) + l(vi, vi+1)

(2.1)= dist(s, vi) + l(vi, vi+1)
= dist(s, vi+1) ≤ dist(s, u). �

Um die Laufzeit des Dijkstra-Algorithmus abzuschätzen, überlegen
wir uns zuerst, wie oft die einzelnen Operationen auf der Datenstruk-
tur P ausgeführt werden. Sei n = ‖V ‖ die Anzahl der Knoten und
m = ‖E‖ die Anzahl der Kanten des Eingabegraphen.

• Die Init-Operation wird nur einmal ausgeführt.
• Da die while-Schleife für jeden von s aus erreichbaren Knoten
genau einmal durchlaufen wird, wird die RemoveMin-Operation
höchstens min{n,m}-mal ausgeführt.
• Wie die Prozedur BFS-Explore besucht der Dijkstra-Algorithmus
jede Kante maximal einmal. Daher wird die Update-Operation
höchstens m-mal ausgeführt.

Beobachtung 26. Bezeichne Init(n), RemoveMin(n) und Update(n)
den Aufwand zum Ausführen der Operationen Init, RemoveMin und
Update für den Fall, dass P nicht mehr als n Elemente aufzunehmen
hat. Dann ist die Laufzeit des Dijkstra-Algorithmus durch

O(n+m+ Init(n) + min{n,m} · RemoveMin(n) +m · Update(n))

beschränkt.

Die Laufzeit hängt also wesentlich davon ab, wie wir die Datenstruktur
U implementieren. Falls alle Kanten die gleiche Länge haben, wachsen
die Distanzwerte der Knoten monoton in der Reihenfolge ihres (ers-
ten) Besuchs. D.h. wir können U als Warteschlange implementieren.
Dies führt wie bei der Prozedur BFS-Explore auf eine Laufzeit von
O(n+m).
Für den allgemeinen Fall, dass die Kanten unterschiedliche Längen
haben, betrachten wir folgende drei Möglichkeiten.
1. Da die Felder g und done bereits alle zur Verwaltung von U be-

nötigten Informationen enthalten, kann man auf die (explizite)
Implementierung von U auch verzichten. In diesem Fall kostet die
RemoveMin-Operation allerdings Zeit O(n), was auf eine Gesamt-
laufzeit von O(n2) führt.
Dies ist asymptotisch optimal, wenn G relativ dicht ist, also
m = Ω(n2) Kanten enthält. Ist G dagegen relativ dünn, d.h.
m = o(n2), so empfiehlt es sich, U als Prioritätswarteschlange zu
implementieren.

17

2 Berechnung kürzester Wege 2.2 Der Bellman-Ford-Algorithmus

2. Es ist naheliegend, U in Form eines Heaps H zu implementieren.
In diesem Fall lässt sich die Operation RemoveMin in Zeit O(log n)
implementieren. Da die Prozedur Update einen linearen Zeitauf-
wand erfordert, ist es effizienter, sie durch eine Insert-Operation
zu simulieren. Dies führt zwar dazu, dass derselbe Knoten evtl.
mehrmals mit unterschiedlichen Werten in H gespeichert wird.
Die Korrektheit bleibt aber dennoch erhalten, wenn wir nur die
erste Entnahme eines Knotens aus H beachten und die übrigen
ignorieren.
Da für jede Kante höchstens ein Knoten in H eingefügt
wird, erreicht H maximal die Größe n2 und daher sind die
Heap-Operationen Insert und RemoveMin immer noch in Zeit
O(log n2) = O(log n) ausführbar. Insgesamt erhalten wir somit
eine Laufzeit von O(n + m log n), da sowohl Insert als auch
RemoveMin maximal m-mal ausgeführt werden.
Die Laufzeit von O(n + m log n) bei Benutzung eines Heaps ist
zwar für dünne Graphen sehr gut, aber für dichte Graphen schlech-
ter als die implizite Implementierung von U mithilfe der Felder g
und done.

3. Als weitere Möglichkeit kann U auch in Form eines so genannten
Fibonacci-Heaps F implementiert werden. Dieser benötigt nur eine
konstante amortisierte Laufzeit O(1) für die Update-Operation
und O(log n) für die RemoveMin-Operation. Insgesamt führt dies
auf eine Laufzeit von O(m+ n log n). Allerdings sind Fibonacci-
Heaps erst bei sehr großen Graphen mit mittlerer Dichte schneller.

implizit Heap Fibonacci-Heap
Init O(1) O(1) O(1)
Update O(1) O(log n) O(1)

RemoveMin O(n) O(log n) O(log n)
Gesamtlaufzeit O(n2) O(n+m log n) O(m+ n log n)

Die Tabelle fasst die Laufzeiten des Dijkstra-Algorithmus für die
verschiedenen Möglichkeiten zur Implementation der Datenstruktur
U zusammen. Eine offene Frage ist, ob es auch einen Algorithmus
mit linearer Laufzeit O(n+m) zur Bestimmung kürzester Wege in
Distanzgraphen gibt.

2.2 Der Bellman-Ford-Algorithmus

In manchen Anwendungen treten negative Kantengewichte auf. Geben
die Kantengewichte beispielsweise die mit einer Kante verbundenen
Kosten wider, so kann ein Gewinn durch negative Kosten modelliert
werden. Auf diese Weise lassen sich auch längste Wege in Distanz-
graphen berechnen, indem man alle Kantenlängen l(u, v) mit −1
multipliziert und in dem resultierenden Graphen einen kürzesten Weg
bestimmt.
Die Komplexität des Problems hängt wesentlich davon ab, ob man (ge-
richtete) Kreise mit negativer Länge zulässt oder nicht. Falls negative
Kreise zugelassen werden, ist das Problem NP-hart. Andernfalls exis-
tieren effiziente Algorithmen wie z.B. der Bellman-Ford-Algorithmus
(BF-Algorithmus) oder der Bellman-Ford-Moore-Algorithmus (BFM-
Algorithmus). Diese Algorithmen lösen das single-source shortest-path
Problem mit einer Laufzeit von O(nm) im schlechtesten Fall.
Der Ford-Algorithmus arbeitet ganz ähnlich wie der Dijkstra-
Algorithmus, betrachtet aber jede Kante nicht wie dieser nur einmal,
sondern eventuell mehrmals. In seiner einfachsten Form sucht der
Algorithmus wiederholt eine Kante e = (u, v) mit

g(u) + `(u, v) < g(v)

und aktualisiert den Wert von g(v) auf g(u)+`(u, v) (Relaxation). Die
Laufzeit hängt dann wesentlich davon ab, in welcher Reihenfolge die
Kanten auf Relaxation getestet werden. Im besten Fall lässt sich eine
lineare Laufzeit erreichen (z.B. wenn der zugrunde liegende Digraph

18

2 Berechnung kürzester Wege 2.3 Der Bellman-Ford-Moore-Algorithmus

azyklisch ist). Bei der Bellman-Ford-Variante wird in O(nm) Schrit-
ten ein kürzester Weg von s zu allen erreichbaren Knoten gefunden
(sofern keine negativen Kreise existieren).
Wir zeigen induktiv über die Anzahl k der Kanten eines kürzesten
s-u-Weges, dass g(u) = dist(s, u) gilt, falls g für alle Kanten (u, v) die
Dreiecksungleichung g(v) ≤ g(u) + `(u, v) erfüllt (also keine Relaxa-
tionen mehr möglich sind).
Im Fall k = 0 ist nämlich u = s und somit g(s) = 0 = dist(s, s).
Im Fall k > 0 sei v ein Knoten, dessen kürzester s-v-Weg W aus k
Kanten besteht. Dann gilt nach IV für den Vorgänger u von v auf W
g(u) = dist(s, u). Aufgrund der Dreiecksungleichung folgt dann

g(v) ≤ g(u) + `(u, v) = dist(s, u) + `(u, v) = dist(s, v).

Aus dem Beweis folgt zudem, dass nach Relaxation aller Kanten eines
kürzesten s-v-Weges W (in der Reihenfolge, in der die Kanten in W
durchlaufen werden) den Wert dist(s, v) hat. Dies gilt auch für den
Fall, dass zwischendurch noch weitere Kantenrelaxationen stattfinden.
Der Bellman-Ford-Algorithmus prüft in n− 1 Iterationen jeweils alle
Kanten auf Relaxation. Sind in der n-ten Runde noch weitere Relaxa-
tionen möglich, muss ein negativer Kreis existieren. Die Laufzeit ist
offensichtlich O(nm) und die Korrektheit folgt leicht durch Induktion
über die minimale Anzahl von Kanten eines kürzesten s-t-Weges.
Zudem wird bei jeder Relaxation einer Kante (u, v) der Vorgänger u
im Feld parent(v) vermerkt, so dass sich ein kürzester Weg von s zu
allen erreichbaren Knoten (bzw. ein negativer Kreis) rekonstruieren
lässt.

Algorithmus BF(V,E, l, s)
1 for all v ∈ V do
2 g(v) :=∞
3 parent(v) := ⊥
4 g(s) := 0
5 for i := 1 to n− 1 do

6 for all (u, v) ∈ E do
7 if g(u) + l(u, v) < g(v) then
8 g(v) := g(u) + l(u, v)
9 parent(v) := u

10 for all (u, v) ∈ E do
11 if g(u) + l(u, v) < g(v) then
12 error(es gibt einen negativen Kreis)

2.3 Der Bellman-Ford-Moore-Algorithmus

Die BFM-Variante prüft in jeder Runde nur diejenigen Kanten (u, v)
auf Relaxation, für die g(u) in der vorigen Runde erniedrigt wurde.
Dies führt auf eine deutliche Verbesserung der durchschnittlichen
Laufzeit. Wurde nämlich g(u) in der (i − 1)-ten Runde nicht ver-
ringert, dann steht in der i-ten Runde sicher keine Relaxation der
Kante (u, v) an. Es liegt nahe, die in der nächsten Runde zu prüfenden
Knoten u in einer Schlange Q zu speichern. Dabei kann mit u auch die
aktuelle Rundenzahl i in Q gespeichert werden. In Runde 0 wird der
Startknoten s in Q eingefügt. Können in Runde n immer noch Kanten
relaxiert werden, so bricht der Algorithmus mit der Fehlermeldung
ab, dass negative Kreise existieren. Da die BFM-Variante die Kanten
in derselben Reihenfolge relaxiert wie der BF-Algorithmus, führt sie
auf dasselbe Ergebnis.

Algorithmus BFM(V,E, l, s)
1 for all v ∈ V do
2 g(v) :=∞, parent(v) := ⊥, inQueue(v) := false
3 g(s) := 0, Init(Q), Enqueue(Q, (0, s)), inQueue(s) := true
4 while (i, u) := Dequeue(Q) 6= ⊥ and i < n do
5 inQueue(u) := false
6 for all v ∈ N+(u) do
7 if g(u) + l(u, v) < g(v) then

19

2 Berechnung kürzester Wege 2.3 Der Bellman-Ford-Moore-Algorithmus

8 g(v) := g(u) + l(u, v)
9 parent(v) := u

10 if inQueue(v) = false then
11 Enqueue(Q, (i+ 1, v))
12 inQueue(v) := true
13 if i = n then
14 error(es gibt einen negativen Kreis)

Für kreisfreie Graphen lässt sich eine lineare Laufzeit O(n+m) er-
zielen, indem die Nachfolger in Zeile 6 in topologischer Sortierung
gewählt werden. Dies bewirkt, dass jeder Knoten höchstens einmal in
die Schlange eingefügt wird.

Beispiel 27. Betrachte untenstehenden kantenbewerteten Digraphen
mit dem Startknoten a.

a b

gf

d e

c

2
−23 5 −3

8 1

4
92

Die folgende Tabelle zeigt jeweils den Inhalt der Schlange Q, bevor
der BFM-Algorithmus das nächste Paar (i, u) von Q entfernt. Dabei
enthält jeder Eintrag (i, u, v, g) neben der Rundenzahl i und dem Kno-
ten u auch noch den parent-Knoten v und den g-Wert von u, obwohl
diese nicht in Q gespeichert werden.

⇑
(0, a,⊥, 0)
⇑ (1, b, a, 2)

(1, g, a, 5) (1, g, b,−1)
(2, d, g, 7)
(2, e, g, 0)(2, e, g, 0)

(3, f, d, 9) (3, f, d, 9)
(3, c, d, 9) (3, c, d, 9)
(3, d, e, 4) (3, d, e, 4) (3, d, e, 4)

(4, f, d, 6)

Die berechneten Entfernungen mit den zugehörigen parent-Pfaden
sind in folgendem Suchbaum widergegeben:

a
0

b
2

g
−1

f
6

d
4

e
0

c
9

2

−3

4

1
92

Als nächstes betrachten wir den folgenden Digraphen:

a b

gf

d e

c

4
−23 5 −3

5 1

4
32

Da dieser einen negativen Kreis enthält, der vom Startknoten aus
erreichbar ist, lassen sich die Entfernungen zu allen Knoten, die von
diesem Kreis aus erreichbar sind, beliebig verkleinern.

20

2 Berechnung kürzester Wege 2.4 Der Floyd-Warshall-Algorithmus

⇑
(0, a,⊥, 0)
⇑ (1, b, a, 4)

(1, g, a, 5) (1, g, b, 1)
(2, d, g, 6)
(2, e, g, 2) (2, e, g, 2)

(3, f, d, 8) (3, f, d, 8)
(3, c, e, 5)

(3, c, e, 5)
(4, b, c, 3)

(5, g, b, 0)
(6, d, g, 5)
(6, e, g, 1) (2, e, g, 1)

(7, f, d, 7) (7, f, d, 7)
(7, c, e, 4)

Da nun der Knoten f mit der Rundenzahl i = n = 7 aus der Schlange
entnommen wird, bricht der Algorithmus an dieser Stelle mit der
Meldung ab, dass negative Kreise existieren. Ein solcher Kreis (im
Beispiel: g, e, c, b, g) lässt sich bei Bedarf anhand der parent-Funktion
aufspüren, indem wir den parent-Weg zu f zurückverfolgen: f , d, g,
b, c, e, g.

a
0

b
3

g
0

f
7

d
5

e
1

c
4

−2
−3

5 1
32

/

2.4 Der Floyd-Warshall-Algorithmus

Der Algorithmus von Floyd-Warshall berechnet die Distanzen zwi-
schen allen Knoten unter der Voraussetzung, dass keine negativen
Kreise existieren.

Algorithmus Floyd-Warshall(V,E, l)
1 for i := 1 to n do
2 for j := 1 to n do
3 if (i, j) ∈ E then d0(i, j) := l(i, j) else d0(i, j) :=∞
4 for k := 1 to n do
5 for i := 1 to n do
6 for j := 1 to n do
7 dk(i, j) = min

{
dk−1(i, j), dk−1(i, k) + dk−1(k, j)

}

Hierzu speichert der Algorithmus in dk(i, j) die Länge eines kürzesten
Weges von i nach j, der außer i und j nur Knoten ≤ k besucht. Die
Laufzeit ist offenbar O(n3). Da die dk-Werte nur von den dk−1-Werten
abhängen, ist der Speicherplatzbedarf O(n2). Die Existenz negativer
Kreise lässt sich daran erkennen, dass mindestens ein Diagonalelement
dk(i, i) einen negativen Wert erhält.

Beispiel 28. Betrachte folgenden kantenbewerteten Digraphen:

1

2

5 4

32
−2

10
−3

1

49

21

2 Berechnung kürzester Wege 2.4 Der Floyd-Warshall-Algorithmus

d0 1 2 3 4 5
1 ∞ 2 ∞ ∞ ∞
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ ∞
4 ∞ ∞ 4 ∞ ∞
5 10 ∞ 9 1 ∞

d1 1 2 3 4 5
1 ∞ 2 ∞ ∞ ∞
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ ∞
4 ∞ ∞ 4 ∞ ∞
5 10 12 9 1 ∞

d2 1 2 3 4 5
1 ∞ 2 ∞ ∞ −1
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ −5
4 ∞ ∞ 4 ∞ ∞
5 10 12 9 1 9

d3 1 2 3 4 5
1 ∞ 2 ∞ ∞ −1
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ −5
4 ∞ 2 4 ∞ −1
5 10 7 9 1 4

d4 1 2 3 4 5
1 ∞ 2 ∞ ∞ −1
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ −5
4 ∞ 2 4 ∞ −1
5 10 3 5 1 0

d5 1 2 3 4 5
1 9 2 4 0 −1
2 7 0 2 −2 −3
3 5 −2 0 −4 −5
4 9 2 4 0 −1
5 10 3 5 1 0

Als nächstes betrachten wir folgenden Digraphen:

1

2

5 4

32
−2

10
−3

1

496 3

d0 1 2 3 4 5
1 ∞ 2 ∞ ∞ ∞
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ ∞
4 ∞ ∞ 4 ∞ ∞
5 10 ∞ 3 1 ∞

d1 1 2 3 4 5
1 ∞ 2 ∞ ∞ ∞
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ ∞
4 ∞ ∞ 4 ∞ ∞
5 10 12 3 1 ∞

d2 1 2 3 4 5
1 ∞ 2 ∞ ∞ −1
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ −5
4 ∞ ∞ 4 ∞ ∞
5 10 12 3 1 9

d3 1 2 3 4 5
1 ∞ 2 ∞ ∞ −1
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ −5
4 ∞ 2 4 ∞ −1
5 10 1 3 1 −2

d4 1 2 3 4 5
1 ∞ 2 ∞ ∞ −1
2 ∞ ∞ ∞ ∞ −3
3 ∞ −2 ∞ ∞ −5
4 ∞ 2 4 ∞ −1
5 10 1 3 1 −2

d5 1 2 3 4 5
1 9 0 2 0 −3
2 7 −2 0 −2 −5
3 5 −4 −2 −4 −7
4 9 0 2 0 −3
5 8 −1 1 −1 −4

Wegen d3(5, 5) = −2 liegt der Knoten 5 auf einem negativen Kreis.
Folglich ist die Weglänge nicht für alle Knotenpaare nach unten be-
schränkt. /

Ohne großen Mehraufwand lassen sich auch die kürzesten Wege selbst
berechnen, indem man in einem Feld parent[i, j] den Vorgänger von
j auf einem kürzesten Weg von i nach j speichert (falls ein Weg
von i nach j existiert). Eine elegantere Möglichkeit besteht jedoch
darin, die Kantenfunktion l in eine äquivalente Distanzfunktion l′ zu
transformieren, die keine negativen Werte annimmt, aber dieselben
kürzesten Wege in G wie l hat. Da wir für diese Transformation nur
alle kürzesten Wege von einem festen Knoten s zu allen anderen
Knoten berechnen müssen, ist sie in Zeit O(nm) durchführbar.

22

3 Matchings

3 Matchings

Definition 29. Sei G = (V,E) ein Graph.
• Zwei Kanten e, e′ ∈ E heißen unabhängig, falls e ∩ e′ = ∅ ist.
• Eine Kantenmenge M ⊆ E heißt Matching in G, falls alle
Kanten in M paarweise unabhängig sind.
• Ein Knoten v ∈ V heißt gebunden, falls v Endpunkt einer Mat-
chingkante (also v ∈ ⋃M) ist und sonst frei.
• M heißt perfekt, falls alle Knoten von G gebunden sind (also
V = ⋃

M ist).
• Die Matchingzahl von G ist

µ(G) = max{‖M‖ | M ist ein Matching in G}

• Ein Matching M heißt maximal, falls ‖M‖ = µ(G) ist. M heißt
gesättigt, falls es in keinem größeren Matching enthalten ist.

Offensichtlich ist M ⊆ E genau dann ein Matching, wenn ‖⋃M‖ =
2‖M‖ ist. Das Ziel besteht nun darin, ein maximales Matching M in
G zu finden.

Beispiel 30. Ein gesättigtes Matching muss nicht maximal sein:

v

u

x

w

v

u

x

w

M = {{v, w}} ist gesättigt, da es sich nicht erweitern lässt. M ist
jedoch kein maximales Matching, da M ′ = {{v, x}, {u,w}} größer ist.

Die Greedy-Methode, ausgehend von M = ∅ solange Kanten zu M
hinzuzufügen, bis sich M nicht mehr zu einem größeren Matching
erweitern lässt, funktioniert also nicht.

Es gibt jedoch eine Methode, mit der sich jedes Matching, das nicht
maximal ist, vergrößern lässt.

Definition 31. Sei G = (V,E) ein Graph und sei M ein Matching
in G.
1. Ein Pfad P = (u1, . . . , uk) heißt alternierend, falls für i =

1, . . . , k − 1 gilt:

ei = {ui, ui+1} ∈M ⇔ ei+1 = {ui+1, ui+2} ∈ E \M.

2. Ein Kreis C = (u1, . . . , uk) heißt alternierend, falls der Pfad
P = (u1, . . . , uk−1) alternierend ist und zusätzlich gilt:

e1 ∈M ⇔ ek−1 ∈ E \M.

3. Ein alternierender Pfad P heißt vergrößernd, falls weder e1
noch ek−1 zu M gehören.

Satz 32. Ein Matching M in G ist genau dann maximal, wenn es
keinen vergrößernden Pfad in G bzgl. M gibt.

Beweis. Ist P ein vergrößernder Pfad, so liefert M ′ = M∆P ein
Matching der Größe ‖M ′‖ = ‖M‖ + 1 in G. Hierbei identifizieren
wir P mit der Menge {ei | i = 1, . . . , k − 1} der auf P = (u1, . . . , uk)
liegenden Kanten ei = {ui, ui+1}.
Ist dagegen M nicht maximal und M ′ ein größeres Matching, so
betrachten wir die Kantenmenge M∆M ′. Da jeder Knoten in dem
Graphen G′ = (V,M∆M ′) höchstens den Grad 2 hat, lässt sich die
Kantenmenge M∆M ′ in disjunkte Kreise und Pfade partitionieren.
Da diese Kreise und Pfade alternierend sind, und M ′ größer als M
ist, muss mindestens einer dieser Pfade zunehmend sein. �

23

3 Matchings

Damit haben wir das Problem, ein maximales Matching in einem Gra-
phen G zu finden, auf das Problem reduziert, zu einem Matching M
in G einen vergrößernden Pfad zu finden, sofern ein solcher existiert.
Der Algorithmus von Edmonds bestimmt einen vergrößernden Pfad
wie folgt. Jeder Knoten v hat einen von 3 Zuständen, welcher ent-
weder mit gerade (falls v frei ist) oder unerreicht (falls v gebunden
ist) initialisiert wird. Dann wird ausgehend von den freien Knoten
als Wurzeln ein Suchwald W aufgebaut, indem für einen beliebigen
geraden Knoten v eine Kante zu einem Knoten v′ besucht wird, der
entweder ebenfalls gerade oder unerreicht ist.
Ist v′ unerreicht, so wird der aktuelle Suchwald W um die beiden Kan-
ten (v, v′) und (v′,M(v′)) erweitert, wobeiM(v′) der Matchingpartner
von v′ ist (d.h. {v′,M(v′)} ∈ M). Zudem wechselt der Zustand von
v′ von unerreicht zu ungerade und der von M(v′) von unerreicht zu
gerade. Damit wird erreicht, dass jeder Knoten in W genau dann
gerade (bzw. ungerade) ist, wenn der Abstand zu seiner Wurzel in W
gerade (bzw. ungerade) ist.
Ist v′ dagegen gerade, so gibt es 2 Unterfälle. Sind die beiden Wurzeln
von v und v′ verschieden, so wurde ein vergrößernder Pfad gefunden,
der von der Wurzel von v zu v über v′ zur Wurzel von v′ verläuft.
Andernfalls befindet sich v′ im gleichen Suchbaum wie v, d.h. es gibt
einen gemeinsamen Vorfahren v′′, so dass durch Verbinden der beiden
Pfade von v′′ nach v und von v′′ nach v′ zusammen mit der Kante
{v, v′} ein Kreis C entsteht. Da v und v′ beide gerade sind, hat C eine
ungerade Länge. Zudem muss auch v′′ gerade sein, da jeder ungerade
Knoten in W genau ein Kind hat. Der Pfad von der Wurzel von v′′
zu v′′ zusammen mit dem Kreis C wird als Blume mit der Blüte C
bezeichnet. Der Knoten v′′ heißt Basis der Blüte C.
Zwar führt das Auffinden einer Blüte C nicht direkt zu einem ver-
größernden Pfad, sie bedeutet aber dennoch einen Fortschritt, da
sich der Graph wie folgt vereinfachen lässt. Wir kontrahieren C
zu einem einzelnen geraden Knoten b, der die Nachbarschaften aller

Knoten in C zu Knoten außerhalb von C erbt, und setzen die Suche
nach einem vergrößernden Pfad fort. Bezeichnen wir den aus G durch
Kontraktion von C entstandenen Graphen mit GC und das aus M
durch Kontraktion von C entstandene Matching in GC mit MC , so
stellt folgendes Lemma die Korrektheit dieser Vorgehensweise sicher.

Lemma 33. In G lässt sich ausgehend von M genau dann ein vergrö-
ßernder Pfad finden, wenn dies in GC ausgehend von MC möglich ist.
Zudem kann jeder vergrößernde Pfad in GC zu einem vergrößernden
Pfad in G expandiert werden.

Beweis. Sei P ein vergrößernder Pfad in GC . Falls P nicht den Kno-
ten b besucht, zu dem die Blüte C kontrahiert wurde, so ist P auch
ein vergrößernder Pfad in G. Besucht P dagegen den Knoten b, so
betrachten wir die beiden Nachbarn a und c von b in P (o.B.d.A sei
{a, b} in MC). Dann existiert in M eine Kante zwischen a und der
Basis v′′ von C. Zudem gibt es in C mindestens einen Nachbarn vc
von c. Im Fall v′′ = vc genügt es, b durch v′′ zu ersetzen. Andernfalls
ersetzen wir b durch denjenigen der beiden Pfade P1 und P2 von
v′′ nach vc auf C, der vc über eine Matchingkante erreicht. Falls b
Endknoten von P ist, also nur einen Nachbarn c in P hat, ersetzen
wir b durch den gleichen Pfad.
Der Beweis der Rückrichtung ist komplizierter, da viele verschiedene
Fälle möglich sind. Alternativ ergibt sich die Rückrichtung aber auch
als Folgerung aus der Korrektheit des Edmonds-Algorithmus (siehe
Satz 36). �

Die folgende Prozedur VergrößernderPfad berechnet einen vergrö-
ßernden Pfad für G, falls das aktuelle Matching M nicht maximal
ist. Da M nicht mehr als n/2 Kanten enthalten kann, wird diese
Prozedur höchstens (n/2 + 1)-mal aufgerufen. In den Übungen wird
gezeigt, dass die Prozedur die Laufzeit O(m) hat, woraus sich eine
Gesamtlaufzeit von O(nm) für den Edmonds-Algorithmus ergibt.

24

3 Matchings

Prozedur VergrößernderPfad(G,M)
1 Q← ∅
2 for v ∈ V (G) do
3 if ∃e ∈M : v ∈ e then zustand(v)← unerreicht
4 else
5 zustand(v)← gerade
6 root(v)← v
7 depth(v)← 0
8 for u ∈ N(v) do Q← Q ∪ {(v, u)}
9 while Q 6= ∅ do

10 entferne eine Kante (v, v′) aus Q
11 if zustand(v′) = ungerade or

inblüte(v) = inblüte(v′) 6= ⊥ then // tue
nichts

12 else if zustand(v′) = unerreicht then
13 zustand(v′)← ungerade
14 parent(v′)← v
15 root(v′)← root(v)
16 depth(v′)← depth(v) + 1
17 v′′ ← partner(v′)
18 zustand(v′′)← gerade
19 parent(v′′)← v′

20 root(v′′)← root(v′)
21 depth(v′′)← depth(v′) + 1
22 for u ∈ N(v′′) \ {v′} do Q← Q ∪ {(v′′, u)}
23 else // zustand(v′) = gerade
24 if root(v) =root(v′) then // v und v′ sind im

gleichen Baum: kontrahiere Blüte
25 v′′ ← tiefster gemeinsamer Vorfahr von v und v′

// verwende depth(v) und depth(v′)
26 b← neuer Knoten
27 blüte(b)← (v′′, . . . , v, v′, . . . , v′′) // setze die

beiden Pfade entlang der Baum-Kanten zu

einem ungeraden Kreis zusammen
28 parent(b)← parent(v′′)
29 root(b)← root(v′′)
30 depth(b)← depth(v′′)
31 for u ∈ blüte(b) do
32 inblüte(u)← b
33 if zustand(u) = ungerade then
34 zustand(u)← gerade
35 for w ∈ N(u) do Q← Q ∪ {(u,w)}
36 else // vergrößernder Pfad gefunden, muss noch

expandiert werden
37 P ← leere doppelt verkettete Liste
38 u← v
39 while u 6= ⊥ do
40 while inblüte(u) 6= ⊥ do u← inblüte(u)
41 hänge u vorne an P an
42 u← parent(u)
43 u← v′

44 while u 6= ⊥ do
45 while inblüte(u) do u← inblüte(u)
46 hänge u hinten an P an
47 u← parent(u)
48 u← der erste Knoten auf P
49 while u 6= ⊥ do
50 if blüte(u) = ⊥ then
51 u← succP(u)
52 else // blüte(u) = (v0, . . . , vk) mit v0 = vk
53 ersetze u in P durch den alternierenden

Pfad in blüte(u), der predP(u) und
succP(u) verbindet und auf der Nicht-
Basis-Seite mit einer Kante aus M endet

54 u← der erste Knoten dieses Pfads
55 return P

25

3 Matchings

Für den Beweis der Korrektheit des Edmonds-Algorithmus benötigen
wir den Begriff des OSC.

Definition 34. Sei G = (V,E) ein Graph. Eine Menge S =
{v1, . . . , vk, V1, . . . , V`} von Knoten v1, . . . , vk ∈ V und Teilmengen
V1, . . . , V` ⊆ V heißt OSC (engl. odd set cover) in G, falls
1. ∀e ∈ E : e ∩ V0 6= ∅ ∨ ∃i ≥ 1 : e ⊆ Vi, wobei V0 = {v1, . . . , vk}.
2. ∀i ≥ 1 : ni ≡2 1, wobei ni = ‖Vi‖.
Das Gewicht von S ist weight(S) = k + ∑`

i=1(ni − 1)/2. Im Fall
` = 0 nennen wir V0 auch Knotenüberdeckung (oder kurz VC
für engl. vertex cover) in G.

Lemma 35. Für jedes Matching M in einem Graphen G = (V,E)
und jedes OSC S in G gilt ‖M‖ ≤ weight(S).

Beweis. M kann für jeden Knoten vj ∈ S höchstens eine Kante und
von den Kanten in Vi, i ≥ 1, höchstens (ni − 1)/2 Kanten enthalten.

�

Satz 36. Der Algorithmus von Edmonds berechnet ein maximales
Matching M für G.

Beweis. Es ist klar, dass der Algorithmus von Edmonds terminiert.
Wir analysieren die Struktur des Suchwalds zu diesem Zeitpunkt. Jede
Kante e ∈ E lässt sich in genau eine von drei Kategorien einteilen:
1. e hat mindestens einen ungeraden Endpunkt,
2. beide Endpunkte von e sind unerreicht,
3. e liegt komplett innerhalb einer Blüte.
Würde nämlich e keine dieser 3 Bedingungen erfüllen, so würde der Al-
gorithmus nicht terminieren, da alle Kanten e = (v, v′), die mindestens
einen geraden Endpunkt v haben, von dem Algorithmus betrachtet
werden und im Fall,

1. dass auch v′ gerade ist, e entweder zur Kontraktion einer weiteren
Blüte oder zu einem vergrößernden Pfad führen

2. dass v′ unerreicht ist, v′ in einen ungeraden Knoten verwandelt
würde. Folglich können wir ein OSC S wie folgt konstruieren. Sei U die
Menge der unerreichten Knoten. Jede Blüte bildet eine Menge Vi in S
und jeder ungerade Knoten wird als Einzelknoten zu S hinzugefügt.
Falls U nicht leer ist, fügen wir einen beliebigen unerreichten Knoten
u0 ∈ U als Einzelknoten zu S hinzu. Falls U mindestens 4 Knoten
enthält, fügen wir auch die Menge U \ {u0} zu S hinzu.
Nun ist leicht zu sehen, dass S alle Kanten überdeckt und jeder
Einzelknoten in S mit einer Matchingkante inzident. Da zudem jede
Blüte Vi der Größe ni genau (ni− 1)/2 (und auch die Menge U \ {u0}
im Fall ‖U‖ ≥ 4 genau (‖U‖ − 2)/2) Matchingkanten enthält, folgt
weight(S) = ‖M‖. �

Korollar 37. Für jeden Graphen G gilt

µ(G) = min{weight(S) | S ist ein OSC in G}.

Ein Spezialfall hiervon ist der Satz von König für bipartite Graphen
(siehe Übungen).
Der Algorithmus von Edmonds lässt sich leicht dahingehend modifi-
zieren, dass er nicht nur ein maximales Matching M , sondern auch ein
OSC S ausgibt, das die Optimalität von M beweist. In den Übungen
werden wir noch eine weitere Möglichkeit zur „Zertifizierung“ der
Optimalität von M kennenlernen.

26

4 Flüsse in Netzwerken

4 Flüsse in Netzwerken

Definition 38. Ein Netzwerk N = (V,E, s, t, c) besteht aus einem
gerichteten Graphen G = (V,E) mit einer Quelle s ∈ V und einer
Senke t ∈ V sowie einer Kapazitätsfunktion c : V × V → N.
Zudem muss jede Kante (u, v) ∈ E positive Kapazität c(u, v) > 0 und
jede Nichtkante (u, v) 6∈ E muss die Kapazität c(u, v) = 0 haben.

Die folgende Abbildung zeigt ein Netzwerk N .

a b

s t

c d

6

8

4

59

9

8

4 3
7

Definition 39.
a) Ein Fluss in N ist eine Funktion f : V × V → Z mit

f(u, v) ≤ c(u, v), (Kapazitätsbedingung)
f(u, v) = −f(v, u), (Antisymmetrie)∑
v∈V f(u, v) = 0 für alle u ∈ V \ {s, t} (Kontinuität)

b) Der Fluss in den Knoten u ist f−(u) = ∑
v∈V max{0, f(v, u)}.

c) Der Fluss aus u ist f+(u) = ∑
v∈V max{0, f(u, v)}.

d) Der Fluss durch u ist f(u) = max{f+(u), f−(u)}.
e) Der Nettofluss in u ist f−(u)− f+(u).
f) Der Nettofluss aus u ist f+(u)− f−(u).
g) Die Größe von f ist |f | = f+(s)− f−(s).

Die Antisymmetrie impliziert, dass f(u, u) = 0 für alle u ∈ V ist,
d.h. wir können annehmen, dass G schlingenfrei ist. Die folgende
Abbildung zeigt einen Fluss f in N .

a b

s t

c d

1/6

7/8

4/4

2/5
−3/9

5/9

6/8

3/4 3/3

3/7

u s a b c d t

f+(u) 8 4 7 9 6 0
f−(u) 0 4 7 9 6 8

4.1 Der Ford-Fulkerson-Algorithmus

Wie lässt sich für einen Fluss f in einem Netzwerk N entscheiden, ob
er vergrößert werden kann? Diese Frage lässt sich leicht beantworten,
falls f der konstante Nullfluss f = 0 ist: In diesem Fall genügt es, in
G = (V,E) einen Pfad von s nach t zu finden. Andernfalls können
wir zu N und f ein Netzwerk Nf konstruieren, so dass f genau dann
vergrößert werden kann, wenn sich in Nf der Nullfluss vergrößern
lässt.

Definition 40. Sei N = (V,E, s, t, c) ein Netzwerk und sei f ein
Fluss in N . Das zugeordnete Restnetzwerk ist Nf = (V,Ef , s, t, cf)
mit der Kapazität

cf (u, v) = c(u, v)− f(u, v)

und der Kantenmenge

Ef = {(u, v) ∈ V × V | cf (u, v) > 0}.

Zum Beispiel führt der Fluss

27

4 Flüsse in Netzwerken 4.1 Der Ford-Fulkerson-Algorithmus

a b

s t

c d

11/16

8/13

12/12

4/9
−1/8

15/20

11/14

1/4 7/7

4/4

auf das folgende Restnetzwerk Nf :

a b

s t

c d

5
11

5
8

12

5
49

5

15
3

11

3 7
4

Definition 41. Sei Nf = (V,Ef , s, t, cf) ein Restnetzwerk. Dann
heißt jeder s-t-Pfad P in (V,Ef) Zunahmepfad in Nf . Die Kapa-
zität von P in Nf ist

cf (P) = min{cf (u, v) | (u, v) liegt auf P}

und der zu P gehörige Fluss in Nf ist

fP (u, v) =


cf (P), (u, v) liegt auf P,
−cf (P), (v, u) liegt auf P,
0, sonst.

P = (u0, . . . , uk) ist also genau dann ein Zunahmepfad in Nf , falls
• u0 = s und uk = t ist,
• die Knoten u0, . . . , uk paarweise verschieden sind
• und cf (ui, ui+1) > 0 für i = 0, . . . , k − 1 ist.

Die folgende Abbildung zeigt den zum Zunahmepfad P = s, c, b, t
gehörigen Fluss fP in Nf . Die Kapazität von P ist cf (P) = 4.

a b

s t

c d

5
11

4/5
8

12

5

4/4
9

4/5
15

3

11

3 7
4

Es ist leicht zu sehen, dass fP tatsächlich ein Fluss in Nf ist. Durch Ad-
dition der beiden Flüsse f und fP erhalten wir einen Fluss f ′ = f+fP
in N der Größe |f ′| = |f |+ |fP | > |f |.

Fluss f :

a b

s t

c d

11/16

8/13

12/12

4/9
−1/8

15/20

11/14

1/4 7/7

4/4

Fluss f + fP :

a b

s t

c d

11/16

12/13

12/12

0/9
−1/8

19/20

11/14

1/4 7/7

4/4

Nun können wir den Ford-Fulkerson-Algorithmus angeben.

Algorithmus Ford-Fulkerson(V,E, s, t, c)
1 for all (u, v) ∈ V × V do
2 f(u, v) := 0
3 while es gibt einen Zunahmepfad P in Nf do
4 f := f + fP

Beispiel 42. Für den neuen Fluss erhalten wir nun folgendes Rest-
netzwerk:

28

4 Flüsse in Netzwerken 4.1 Der Ford-Fulkerson-Algorithmus

a b

s t

c d

5
11

1
12

12

99

1
19

3

11

3 7
4

In diesem existiert kein Zunahmepfad mehr. /

Um zu beweisen, dass der Algorithmus von Ford-Fulkerson tatsäch-
lich einen Maximalfluss berechnet, zeigen wir, dass es nur dann im
Restnetzwerk Nf keinen Zunahmepfad mehr gibt, wenn der Fluss f
maximal ist. Hierzu benötigen wir den Begriff des Schnitts.

Definition 43. Sei N = (V,E, s, t, c) ein Netzwerk und sei ∅ (S (
V . Dann heißt die Menge E+(S) = {(u, v) ∈ E | u ∈ S, v /∈ S}
Kantenschnitt (oder Schnitt; oft wird auch einfach S als Schnitt
bezeichnet). Die Kapazität eines Schnittes S ist

c+(S) =
∑

(u,v)∈E+(S)
c(u, v).

Ist f ein Fluss in N , so heißt

f+(S) =
∑

(u,v)∈E+(S)
f(u, v)

der Fluss durch den Schnitt S.

Beispiel 44. Betrachte den Schnitt S = {s, a, c} in folgendem Netz-
werk N mit dem Fluss f :

a b

s t

c d

11/16

12/13

13/13

1/9

−2/8
19/19

11/14

2/4 7/7

4/4

a b

s t

c d

Dieser Schnitt hat die Kapazität

c+(S) = c(a, b) + c(c, d) = 13 + 14 = 27

und der Fluss f+(S) durch diesen Schnitt ist

f+(S) = f(a, b) + f(c, b) + f(c, d) = 13− 1 + 11 = 23.

Dagegen hat der Schnitt S ′ = {s, a, b, c, d}

a b

s t

c d

11/16

12/13

13/13

1/9

−2/8
19/19

11/14

2/4 7/7

4/4

a b

s t

c d

die Kapazität

c+(S) = c(b, t)+c(d, t) = 19+4 = f(b, t)+f(d, t) = f+(S),

die mit dem Fluss durch diesen Schnitt übereinstimmt. /

Lemma 45. Für jeden Schnitt S mit s ∈ S, t /∈ S und jeden Fluss f
gilt

|f | = f+(S) ≤ c+(S).

29

4 Flüsse in Netzwerken 4.1 Der Ford-Fulkerson-Algorithmus

Beweis. Die Gleichheit f+(s) = f+(S) zeigen wir durch Induktion
über k = ‖S‖.
k = 1: In diesem Fall ist S = {s} und somit

|f | = f+(s) =
∑
v∈V

f(s, v) = f(s, s)︸ ︷︷ ︸
=0

+
∑
v 6=s

f(s, v) = f+(S).

k − 1 ; k: Sei S ein Schnitt mit ‖S‖ = k > 1 und sei w ∈ S − {s}.
Betrachte den Schnitt S ′ = S − {w}. Dann gilt

f+(S) =
∑

u∈S,v /∈S
f(u, v) =

∑
u∈S′,v /∈S

f(u, v) +
∑
v/∈S

f(w, v)

und

f+(S ′) =
∑

u∈S′,v /∈S′
f(u, v) =

∑
u∈S′,v /∈S

f(u, v) +
∑
u∈S′

f(u,w).

Wegen f(w,w) = 0 ist ∑u∈S′ f(u,w) = ∑
u∈S f(u,w) und daher

f+(S)− f+(S ′) =
∑
v 6∈S

f(w, v)−
∑
u∈S

f(u,w) =
∑
v∈V

f(w, v) = 0.

Nach Induktionsvoraussetzung folgt somit f+(S) = f+(S ′) = |f |.
Schließlich folgt wegen f(u, v) ≤ c(u, v) die Ungleichung

f+(S) =
∑

(u,v)∈E+(S)
f(u, v) ≤

∑
(u,v)∈E+(S)

c(u, v) = c+(S).

�

Satz 46 (Min-Cut-Max-Flow-Theorem). Sei f ein Fluss in einem
Netzwerk N = (V,E, s, t, c). Dann sind folgende Aussagen äquivalent:
1. f ist maximal.
2. In Nf existiert kein Zunahmepfad.
3. Es gibt einen Schnitt S mit c+(S) = |f |.

Beweis. Die Implikation „1 ⇒ 2“ ist klar, da die Existenz eines Zu-
nahmepfads zu einer Vergrößerung von f führen würde.
Für die Implikation „2 ⇒ 3“ betrachten wir den Schnitt

S = {u ∈ V | u ist in Nf von s aus erreichbar}.

Da in Nf kein Zunahmepfad existiert, gilt dann
• s ∈ S, t /∈ S und
• cf (u, v) = 0 für alle u ∈ S und v /∈ S.

Wegen cf (u, v) = c(u, v)− f(u, v) folgt somit

|f | = f+(S) =
∑

u∈S,v /∈S
f(u, v) =

∑
u∈S,v /∈S

c(u, v) = c+(S).

Die Implikation „3 ⇒ 1“ ist wiederum klar, da im Fall c+(S) = |f |
für jeden Fluss f ′ die Abschätzung |f ′| = f ′+(S) ≤ c+(S) = |f | gilt.

�

Der obige Satz gilt auch für Netzwerke mit Kapazitäten in R+.
Sei c0 = c+(s) die Kapazität des Schnittes S = {s}. Dann durchläuft
der Ford-Fulkerson-Algorithmus die while-Schleife höchstens c0-mal.
Bei jedem Durchlauf ist zuerst das Restnetzwerk Nf und danach ein
Zunahmepfad in Nf zu berechnen.
Die Berechnung des Zunahmepfads P kann durch Breitensuche in
Zeit O(n + m) erfolgen. Da sich das Restnetzwerk nur entlang von
P ändert, kann es in Zeit O(n) aktualisiert werden. Jeder Durch-
lauf benötigt also Zeit O(n + m), was auf eine Gesamtlaufzeit von
O(c0(n + m)) führt. Da der Wert von c0 jedoch exponentiell in der
Länge der Eingabe (also der Beschreibung des Netzwerkes N) sein
kann, ergibt dies keine polynomielle Zeitschranke. Bei Netzwerken
mit Kapazitäten in R+ kann der Ford-Fulkerson-Algorithmus sogar
unendlich lange laufen (siehe Übungen).

30

4 Flüsse in Netzwerken 4.2 Der Edmonds-Karp-Algorithmus

Bei nebenstehendem Netzwerk benötigt Ford-
Fulkerson zur Bestimmung des Maximalflusses
abhängig von der Wahl der Zunahmepfade zwi-
schen 2 und 211 Schleifendurchläufe.

a

s t

b

210

210

210

210

1

Im günstigsten Fall wird nämlich zuerst der Zunahmepfad (s, a, t)
und dann der Pfad (s, b, t) gewählt. Im ungünstigsten Fall werden ab-
wechselnd die beiden Zunahmepfade (s, a, b, t) und (s, b, a, t) gewählt:

i Zunahmepfad Pi in Nfi−1 neuer Fluss fi in N

1

a

s t

b

210

210

210

210

1

a

s t

b

1/210

0/210

0/210

1/210

1/1

2

a

s t

b

210−1

1

210

210

210−1

11

a

s t

b

1/210

1/210

1/210

1/210

0/1

2j + 1

a

s t

b

210−j
j

210−j
j

210−1
j

210−j
j

1

a

s t

b

j+1/210

j/210

j/210

j+1/210

1/1

2j + 2

a

s t

b

210−j−1

j+1

210−j
j

210−j
j

210−j−1

j+11

a

s t

b

j+1/210

j+1/210

j+1/210

j+1/210

0/1

Nicht nur in diesem Beispiel lässt sich die exponentielle Laufzeit wie
folgt vermeiden:
• Man betrachtet nur Zunahmepfade mit einer geeignet gewählten

Mindestkapazität. Dies führt auf eine Laufzeit, die polynomiell in
n, m und log c0 ist.
• Man bestimmt in jeder Iteration einen kürzesten Zunahmepfad
im Restnetzwerk mittels Breitensuche in Zeit O(n + m). Diese
Vorgehensweise führt auf den Edmonds-Karp-Algorithmus, der
eine Laufzeit von O(nm2) hat (unabhängig von der Kapazitäts-
funktion).
• Man bestimmt in jeder Iteration einen Fluss g im Restnetzwerk
Nf , der nur Kanten benutzt, die auf einem kürzesten s-t-Pfad in
Nf liegen. Zudem hat g die Eigenschaft, dass g auf jedem kürzesten
s-t-Pfad P mindestens eine Kante e ∈ P blockiert (d.h. der Fluss
g(e) durch e schöpft die Restkapazität cf(e) von e vollkommen
aus), weshalb diese Kante in der nächsten Iteration fehlt. Dies
führt auf den Algorithmus von Dinic. Da die Länge der kürzesten
s-t-Pfade im Restnetzwerk in jeder Iteration um mindestens 1
zunimmt, liegt nach spätestens n− 1 Iterationen ein maximaler
Fluss vor. Dinic hat gezeigt, dass ein blockierender Fluss g in Zeit
O(nm) bestimmt werden kann. Folglich hat der Algorithmus von
Dinic eine Laufzeit von O(n2m). Malhotra, Kumar und Maheswa-
ri fanden später einen O(n2)-Algorithmus zur Bestimmung eines
blockierenden Flusses. Damit lässt sich die Gesamtlaufzeit auf
O(n3) verbessern.

4.2 Der Edmonds-Karp-Algorithmus

Der Edmonds-Karp-Algorithmus beschränkt die Suche nach P auf
kürzeste Zunahmepfade. Ansonsten ist er mit dem Ford-Fulkerson-
Algorithmus identisch.

31

4 Flüsse in Netzwerken 4.2 Der Edmonds-Karp-Algorithmus

Algorithmus Edmonds-Karp(V,E, s, t, c)
1 for all (u, v) ∈ V × V do
2 f(u, v) := 0
3 repeat
4 P ← zunahmepfad(f)
5 if P 6= ⊥ then add(f,P)
6 until P = ⊥

Prozedur zunahmepfad(f)
1 for all v ∈ V, e ∈ E ∪ ER do
2 vis(v) := vis(e) := false
3 parent(v) := ⊥
4 vis(s) := true
5 QueueInit(Q)
6 Enqueue(Q, s)
7 while ¬QueueEmpty(Q) ∧ Head(Q) 6= t do
8 u := Head(Q)
9 if ∃ e = uv ∈ E ∪ ER : vis(e) = false then

10 vis(e) := true
11 if c(e)− f(e) > 0 ∧ vis(v) = false then
12 c′(e) := c(e)− f(e)
13 vis(v) := true
14 parent(v) := u
15 Enqueue(Q, v)
16 else Dequeue(Q)
17 if Head(Q) = t then
18 P := parent-Pfad von s nach t
19 cf (P) := min{c′(e) | e ∈ P}
20 else
21 P := ⊥
22 return P

Prozedur add(f, P)
1 for all e ∈ P do
2 f(e) := f(e) + cf (P)
3 f(eR) := f(eR)− cf (P)

Satz 47. Der Edmonds-Karp-Algorithmus durchläuft die repeat-
Schleife höchstens nm/2-mal.

Beweis. Sei f0 der triviale Fluss und seien P1, . . . , Pk die Zunahme-
pfade, die der Edmonds-Karp-Algorithmus der Reihe nach berechnet,
d.h. fi = fi−1 + fPi

. Eine Kante e heißt kritisch in Pi, falls der Fluss
fPi

die Kante e sättigt, d.h. cfi−1(e) = fPi
(e) = cfi−1(Pi). Man beachte,

dass eine kritische Kante e in Pi wegen cfi
(e) = cfi−1(e)− fPi

(e) = 0
nicht in Nfi

enthalten ist, wohl aber eR.
Wir überlegen uns zunächst, dass die Längen `i von Pi (schwach)
monoton wachsen. Hierzu beweisen wir die stärkere Behauptung,
dass sich die Abstände jedes Knotens u ∈ V von s und von t beim
Übergang von Nfi−1 zu Nfi

nicht veringern können. Sei di(u, v) die
minimale Länge eines Pfades von u nach v im Restnetzwerk Nfi−1 .
Behauptung 48. Für jeden Knoten u ∈ V gilt di+1(s, u) ≥ di(s, u)
und di+1(u, t) ≥ di(u, t).

Hierzu zeigen wir folgende Behauptung.
Behauptung 49. Falls die Kante e = (uj, uj+1) auf einem kürzesten
Pfad P = (u0, . . . , uh) von s = u0 nach u = uh in Nfi

liegt (d.h.
di+1(s, uj+1) = di+1(s, uj) + 1), dann gilt di(s, uj+1) ≤ di(s, uj) + 1.

Die Behauptung ist klar, wenn die Kante e = (uj, uj+1) auch in
Nfi−1 enthalten ist. Ist dies nicht der Fall, muss fi−1(e) 6= fi(e)
sein, d.h. e oder eR müssen in Pi vorkommen. Da e nicht in Nfi−1

ist, muss eR = (uj+1, uj) auf Pi liegen. Da Pi ein kürzester Pfad
von s nach t in Nfi−1 ist, folgt di(s, uj) = di(s, uj+1) + 1, was
di(s, uj+1) = di(s, uj)− 1 ≤ di(s, uj) + 1 impliziert.

32

4 Flüsse in Netzwerken 4.3 Der Algorithmus von Dinic

Damit ist Behauptung 49 bewiesen und es folgt

di(s, u) ≤ di(s, uh−1) + 1 ≤ · · · ≤ di(s, s) + h = h = di+1(s, u).

Die Ungleichung di+1(u, t) ≥ di(u, t) folgt analog, womit auch Behaup-
tung 48 bewiesen ist. Als nächstes zeigen wir folgende Behauptung.

Behauptung 50. Für 1 ≤ i < j ≤ k gilt: Falls e = (u, v) in Pi und
eR = (v, u) in Pj enthalten ist, so ist lj ≥ li + 2.

Dies folgt direkt aus Behauptung 48:

lj = dj(s, t) = dj(s, v) + dj(u, t) + 1 ≥ di(s, v)︸ ︷︷ ︸
di(s,u)+1

+ di(u, t)︸ ︷︷ ︸
di(s,v)+1

+1 = li + 2.

Da jeder Zunahmepfad Pi mindestens eine kritische Kante enthält und
E∪ER höchstens m Kantenpaare der Form {e, eR} enthält, impliziert
schließlich folgende Behauptung, dass k ≤ mn/2 ist.

Behauptung 51. Zwei Kanten e und eR sind zusammen höchstens
n/2-mal kritisch.

Seien Pi1 , . . . , Pih die Pfade, in denen e oder eR kritisch ist. Falls
k ∈ {e, eR} kritisch in Pij ist, dann fällt k aus Nfij +1 heraus. Damit
also e oder eR kritisch in Pij+1 sein können, muss ein Pfad Pj′ mit
ij < j′ ≤ ij+1 existieren, der kR enthält. Wegen Behauptung 48 und
Behauptung 50 ist `ij+1 ≥ `j′ ≥ `ij + 2. Daher ist

n− 1 ≥ `ih ≥ `i1 + 2(h− 1) ≥ 1 + 2(h− 1) = 2h− 1,

was h ≤ n/2 impliziert. �

Man beachte, dass der Beweis auch bei Netzwerken mit reellen Kapa-
zitäten seine Gültigkeit behält.

4.3 Der Algorithmus von Dinic

Man kann zeigen, dass sich in jedem Netzwerk ein maximaler Fluss
durch Addition von höchstensm Zunahmepfaden Pi konstruieren lässt.
Es ist nicht bekannt, ob sich jeder solche Pfad Pi in Zeit O(n + m)
bestimmen lässt. Wenn ja, würde dies auf eine Gesamtlaufzeit von
O(n + m2) führen. Für dichte Netzwerke (d.h. m = Θ(n2)) hat der
Algorithmus von Dinic die gleiche Laufzeit O(n2m) = O(n4) und die
verbesserte Version ist mit O(n3) sogar noch schneller.

Definition 52. Sei N = (V,E, s, t, c) ein Netzwerk und sei g ein
Fluss in N . g sättigt eine Kante e ∈ E, falls g(e) = c(e) ist. g heißt
blockierend, falls g auf jedem Pfad P von s nach t mindestens eine
Kante e ∈ E sättigt.

Nach dem Min-Cut-Max-Flow-Theorem gibt es zu jedem maximalen
Fluss f einen Schnitt S, so dass alle Kanten in E+(S) gesättigt sind.
Da jeder Pfad von s nach t mindestens eine Kante in E+(S) enthalten
muss, ist jeder maximale Fluss auch blockierend. Für die Umkehrung
gibt es jedoch einfache Gegenbeispiele, wie etwa

a b

s t

c d

1/1

1

1

1/1
1

1
1/1

Ein blockierender Fluss muss also nicht unbedingt maximal sein. Tat-
sächlich ist g genau dann ein blockierender Fluss in N , wenn es im
Restnetzwerk Ng keinen Zunahmepfad gibt, der nur aus Vorwärtskan-
ten e ∈ E mit g(e) < c(e) besteht. Wir werden sehen, dass sich ein
blockierender Fluss in Zeit O(n2) berechnen lässt.
Der Algorithmus von Dinic arbeitet wie folgt.

33

4 Flüsse in Netzwerken 4.3 Der Algorithmus von Dinic

Algorithmus Dinic(V,E, s, t, c)
1 for all (u, v) ∈ V × V do
2 f(u, v) := 0
3 while schichtnetzwerk(f) do
4 g := blockfluss(f)
5 f := f + g

Die Prozedur blockfluss(f) berechnet einen blockierenden Fluss im
Restnetzwerk Nf , der für alle Kanten den Wert 0 hat, die nicht auf ei-
nem kürzesten Pfad P von s nach t in Nf liegen. Hierzu werden aus Nf

alle Knoten u 6= t entfernt, die einen Abstand d(s, u) ≥ d(s, t) in Nf

haben. Falls in Nf kein Pfad von s nach t existiert (d.h. d(s, t) =∞),
wird auch t entfernt.
Das resultierende Netzwerk N ′f wird als Schichtnetzwerk bezeich-
net, da jeder Knoten in N ′f einer Schicht Sj zugeordnet werden kann:
Für j = 0, . . . ,max{d(s, u) | d(s, u) < d(s, t)} ist Sj = {u ∈ V |
d(s, u) = j}. Im Fall d(s, t) < ∞ kommt für j = d(s, t) noch die
Schicht Sj = {t} hinzu. Zudem werden alle Kanten aus Nf entfernt,
die nicht auf einem kürzesten Pfad von s zu einem Knoten in N ′f lie-
gen, d.h. jede Kante (u, v) in N ′f verbindet einen Knoten u in Schicht
Sj mit einem Knoten v in Schicht Sj+1 von N ′f .
Das Schichtnetzwerk N ′f wird von der Prozedur schichtnetzwerk
durch eine modifizierte Breitensuche in Zeit O(n + m) berechnet.
Diese Prozedur gibt den Wert true zurück, falls t im berechneten
Schichtnetzwerk N ′f enthalten (und somit der aktuelle Fluss f noch
nicht maximal) ist, und sonst den Wert false.

Satz 53. Der Algorithmus von Dinic durchläuft die while-Schleife
höchstens n-mal.

Beweis. Sei k die Anzahl der Schleifendurchläufe und für i = 1, . . . , k
sei gi der blockierende Fluss, den der Dinic-Algorithmus im Schicht-
netzwerk N ′fi−1

berechnet, d.h. fi = fi−1 + gi. Zudem sei di(u, v)

wieder die minimale Länge eines Pfades von u nach v im Restnetz-
werk Nfi−1 . Wir zeigen, dass di+1(s, t) > di(s, t) ist. Da d1(s, t) ≥ 1
und dk(s, t) ≤ n− 1 ist, folgt k ≤ n− 1.

Behauptung 54. Für jeden Knoten u ∈ V gilt di+1(s, u) ≥ di(s, u).

Hierzu zeigen wir folgende Behauptung.

Behauptung 55. Falls die Kante e = (uj, uj+1) auf einem kürzesten
Pfad P = (u0, . . . , uh) von s = u0 nach u = uh in Nfi

liegt (d.h.
di+1(s, uj+1) = di+1(s, uj) + 1), dann gilt di(s, uj+1) ≤ di(s, uj) + 1.

Die Behauptung ist klar, wenn die Kante e = (uj, uj+1) auch in Nfi−1

enthalten ist. Ist dies nicht der Fall, muss fi−1(e) 6= fi(e) sein, d.h.
gi(e) muss ungleich 0 sein. Da e nicht in Nfi−1 und somit auch nicht
in N ′fi−1

ist, muss eR = (uj+1, uj) in N ′fi−1
sein. Da N ′fi−1

nur Kanten
auf kürzesten Pfaden von s zu einem Knoten in N ′fi−1

enthält, folgt
di(s, uj) = di(s, uj+1)+1, was di(s, uj+1) = di(s, uj)−1 ≤ di(s, uj)+1
impliziert.
Damit ist Behauptung 55 bewiesen und Behauptung 54 folgt wie im
Beweis von Satz 47. Als nächstes zeigen wir folgende Behauptung.

Behauptung 56. Für i = 1, . . . , k − 1 gilt di+1(s, t) > di(s, t).

Sei P = (u0, u1, . . . , uh) ein kürzester Pfad von s = u0 nach t = uh in
Nfi

. Dann gilt wegen Behauptung 54, dass di(s, uj) ≤ di+1(s, uj) = j
für j = 0, . . . , h ist.
Wir betrachten 2 Fälle. Wenn alle Knoten uj in N ′fi−1

enthalten sind,
führen wir die Annahme di(s, t) = di+1(s, t) auf einen Widerspruch.
Wegen Behauptung 55 folgt aus dieser Annahme nämlich die Gleich-
heit di(s, uj+1) = di(s, uj) + 1, da sonst di(s, t) < h wäre. Folglich ist
P auch ein kürzester Pfad von s nach t in Nfi−1 und somit gi kein
blockierender Fluss in Nfi−1 .
Es bleibt der Fall, dass mindestens ein Knoten uj nicht in N ′fi−1

enthal-
ten ist. Sei uj+1 der erste Knoten auf P , der nicht in N ′fi−1

enthalten ist.

34

4 Flüsse in Netzwerken 4.3 Der Algorithmus von Dinic

Dann ist uj+1 6= t und daher di+1(s, t) > di+1(s, uj+1). Zudem liegt die
Kante e = (uj, uj+1) nicht nur in Nfi

, sondern wegen fi(e) = fi−1(e)
(da weder e noch eR zu N ′fi−1

gehören) auch in Nfi−1 . Da somit uj
in N ′fi−1

und e in Nfi−1 ist, kann uj+1 nur aus dem Grund nicht
zu N ′fi−1

gehören, dass di(s, uj+1) = di(s, t) ist. Daher folgt wegen
di+1(s, uj) ≥ di(s, uj) (Behauptung 54) und di(s, uj) + 1 ≥ di(s, uj+1)
(Behauptung 55)

di+1(s, t) > di+1(s, uj+1) = di+1(s, uj) + 1 ≥ di(s, uj+1) = di(s, t).

�

Die Prozedur schichtnetzwerk führt eine Breitensuche mit Start-
knoten s im Restnetzwerk Nf aus und speichert dabei in der Menge
E ′ nicht nur alle Baumkanten, sondern zusätzlich alle Querkanten
(u, v), die auf einem kürzesten Weg von s zu v liegen. Sobald alle von
s aus erreichbaren Knoten besucht (und in V ′ gespeichert) wurden
oder t am Kopf der Warteschlange Q erscheint, bricht die Suche ab.
Falls der Kopf von Q gleich t ist, werden alle Knoten v 6= t, die die
gleiche Entfernung von s wie t haben, sowie alle Kanten, die in diesen
Knoten enden, wieder aus N ′f entfernt.
Die Laufzeitschranke O(n+m) folgt aus der Tatsache, dass jede Kante
in E ∪ER höchstens einmal besucht wird und jeder Besuch mit einem
konstantem Zeitaufwand verbunden ist.

Prozedur schichtnetzwerk(f)
1 for all v ∈ V, e ∈ E ∪ ER do
2 niv(v) := n
3 vis(e) := false
4 niv(s) := 0
5 V ′ := {s}
6 E ′ := ∅
7 QueueInit(Q)
8 Enqueue(Q, s)

9 while ¬QueueEmpty(Q) ∧ Head(Q) 6= t do
10 u := Head(Q)
11 if ∃ e = uv ∈ E ∪ ER : vis(e) = false then
12 vis(e) := true
13 if c(e)− f(e) > 0 ∧ niv(v) > niv(u) then
14 V ′ := V ′ ∪ {v}
15 E ′ := E ′ ∪ {e}
16 c′(e) := c(e)− f(e)
17 niv(v) := niv(u) + 1
18 Enqueue(Q, v)
19 else Dequeue(Q)
20 if Head(Q) = t then
21 V ′′ := {v ∈ V ′ | v 6= t, niv(v) = niv(t)}
22 V ′ := V ′ \ V ′′
23 E ′ := E ′ \ (V ′ × V ′′)
24 return true
25 else
26 return false

Die Prozedur blockfluss1 berechnet einen blockierenden Fluss g
im Schichtnetzwerk N ′f in der Zeit O(nm). Hierzu bestimmt sie in der
repeat-Schleife mittels Tiefensuche einen Zunahmepfad P in N ′f+g,
addiert den Fluss (f + g)P zum aktuellen Fluss g hinzu, und ent-
fernt die gesättigten Kanten e ∈ P aus E ′. Falls die Tiefensuche in
einer Sackgasse endet (weil E ′ keine weiterführenden Kanten enthält),
wird die zuletzt besuchte Kante (u′, u) ebenfalls aus E ′ entfernt und
die Tiefensuche vom Startpunkt u′ dieser Kante fortgesetzt (back
tracking). Die Prozedur blockfluss1 bricht ab, falls keine weiteren
Pfade von s nach t existieren. Folglich ist der berechnete Fluss g
tatsächlich blockierend.
Die Laufzeitschranke O(nm) folgt aus der Tatsache, dass sich die
Anzahl der aus E ′ entfernten Kanten nach spätestens n Schleifen-
durchläufen um 1 erhöht.

35

4 Flüsse in Netzwerken 4.3 Der Algorithmus von Dinic

Prozedur blockfluss1(f)
1 for all e ∈ V × V do g(e) := 0
2 StackInit(S)
3 Push(S, s)
4 u := s
5 done := false
6 repeat
7 if ∃ e = uv ∈ E ′ then
8 Push(S, v)
9 c′′(e) := c′(e)− g(e)

10 u := v
11 elsif u = t then
12 P := S-Pfad von s nach t
13 c′g(P) := min{c′′(e) | e ∈ P}
14 for all e ∈ P do
15 if g(e) = c′g(P) then E ′ := E ′ \ {e}
16 g(e) := g(e) + c′g(P)
17 g(eR) := g(eR)− c′g(P)
18 u := s
19 StackInit(S)
20 Push(S, s)
21 elsif u 6= s then
22 Pop(S)
23 u′ := Top(S)
24 E ′ := E ′ \ {(u′, u)}
25 u := u′

26 else done := true
27 until done
28 return g

Die Prozedur blockfluss2 benötigt nur Zeit O(n2), um einen blo-
ckierenden Fluss g im Schichtnetzwerk N ′f zu berechnen. Zu ihrer
Beschreibung benötigen wir folgende Notation.

Definition 57. Sei N = (V,E, s, t, c) ein Netzwerk und sei u ein
Knoten in N . Die Ausgangskapazität von u ist

c+(u) =
∑

(u,v)∈E
c(u, v)

und die Eingangskapazität von u ist

c−(u) =
∑

(v,u)∈E
c(v, u).

Die Kapazität (auch Durchsatz genannt) von u ist

c(u) =


c+(u), u = s,

c−(u), u = t,

min{c+(u), c−(u)}, sonst.

Ein Fluss g in N sättigt einen Knoten u ∈ V , falls g(u) = c(u) ist.

Die Korrektheit der Prozedur blockfluss2 basiert auf folgender
Proposition.

Proposition 58. Sei N = (V,E, s, t, c) ein Netzwerk und sei g ein
Fluss in N . g ist blockierend, falls jeder s-t-Pfad in N mindestens
einen Knoten enthält, der durch g gesättigt wird.

Beweis. Dies folgt aus der Tatsache, dass ein Fluss g in N , der auf
jedem s-t-Pfad P mindestens einen Knoten u sättigt, auch mindestens
eine Kante in P sättigt. �

Beginnend mit dem trivialen Fluss g = 0 und dem Durchsatz
D(u) = c′(u) für jeden Knoten u im Schichtnetzwerk N ′f wählt die
Prozedur blockfluss2 in jedem Durchlauf der repeat-Schleife einen
Knoten u mit minimalem Durchsatz D(u) und erhöht den aktuel-
len Fluss g um den Wert D(u). Hierzu benutzt sie die Prozeduren
propagierevor und propagiererück, die dafür Sorge tragen, dass
der zusätzliche Fluss tatsächlich durch den Knoten u fließt und die

36

4 Flüsse in Netzwerken 4.3 Der Algorithmus von Dinic

Durchsatzwerte D(v) von allen Knoten aktualisiert werden, die von
der Flusserhöhung betroffen sind. Aus diesem Grund wird u durch
den zusätzlichen Fluss gesättigt und kann aus dem Netzwerk entfernt
werden.
In der Menge B werden alle Knoten gespeichert, deren Durchsatz
durch die Erhöhungen des Flusses g oder durch die Entfernung von
Kanten aus E ′ auf 0 gesunken ist. Diese Knoten und die mit ih-
nen verbundenen Kanten werden in der while-Schleife der Prozedur
blockfluss2 aus dem Schichtnetzwerk N ′f entfernt.

Prozedur blockfluss2(f)
1 for all e ∈ V × V do g(e) := 0
2 for all u ∈ V ′ do
3 D+(u) := ∑

uv∈E′ c
′(u, v)

4 D−(u) := ∑
vu∈E′ c

′(v, u)
5 repeat
6 for all u ∈ V ′ \ {s, t} do
7 D(u) := min{D−(u), D+(u)}
8 D(s) := D+(s)
9 D(t) := D−(t)

10 wähle u ∈ V ′ mit D(u) minimal
11 Init(B); Insert(B, u)
12 propagierevor(u)
13 propagiererück(u)
14 while u := Remove(B) 6∈ {s, t} do
15 V ′ := V ′ \ {u}
16 for all e = uv ∈ E ′ do
17 D−(v) := D−(v)− c′(u, v)
18 if D−(v) = 0 then Insert(B, v)
19 E ′ := E ′ \ {e}
20 for all e = vu ∈ E ′ do
21 D+(v) := D+(v)− c′(v, u)
22 if D+(v) = 0 then Insert(B, v)

23 E ′ := E ′ \ {e}
24 until u ∈ {s, t}
25 return g

Da in jedem Durchlauf der repeat-Schleife mindestens ein Knoten u
gesättigt und aus V ′ entfernt wird, wird nach höchstens n− 1 Itera-
tionen einer der beiden Knoten s oder t als Knoten u mit minimalem
Durchsatz D(u) gewählt und die repeat-Schleife verlassen. Da nach
Beendigung des letzten Durchlaufs der Durchsatz von s oder von t
gleich 0 ist, wird einer dieser beiden Knoten zu diesem Zeitpunkt von
g gesättigt. Nach Proposition 58 ist somit g ein blockierender Fluss.
Die Prozeduren propagierevor und propagiererück propagieren
den Fluss durch u in Vorwärtsrichtung hin zu t bzw. in Rückwärts-
richtung hin zu s. Dies geschieht in Form einer Breitensuche mit
Startknoten u unter Benutzung der Kanten in E ′ bzw. E ′R. Da der
Durchsatz D(u) von u unter allen Knoten minimal ist, ist sicherge-
stellt, dass die Kapazität D(v) jedes Knoten v ausreicht, um den für
ihn ermittelten Zusatzfluss in Höhe von d(v) weiterzuleiten.

Prozedur propagierevor(u)
1 for all v ∈ V ′ do d(v) := 0
2 d(u) := D(u)
3 QueueInit(Q); Enqueue(Q, u)
4 while v := Dequeue(Q) 6= ⊥ do
5 while d(v) 6= 0 ∧ ∃e = vu ∈ E ′ do
6 m := min{d(v), c′(e)}
7 d(v) := d(v)−m; d(u) := d(u) +m
8 aktualisierekante(e,m)
9 Enqueue(Q, u)

Prozedur aktualisierekante(e = vu,m)
1 g(e) := g(e) +m
2 c′(e) := c′(e)−m

37

4 Flüsse in Netzwerken 4.3 Der Algorithmus von Dinic

3 if c′(e) = 0 then E ′ := E ′ \ {e}
4 D+(v) := D+(v)−m
5 if D+(v) = 0 then Insert(B, v)
6 D−(u) := D−(u)−m
7 if D−(u) = 0 then Insert(B, u)

Die Prozedur propagiererück unterscheidet sich von der Proze-
dur propagierevor nur dadurch, dass in Zeile 5 die Bedingung
∃e = vu ∈ E ′ durch die Bedingung ∃e = uv ∈ E ′ ersetzt wird.
Da die repeat-Schleife von blockfluss2 maximal (n− 1)-mal durch-
laufen wird, werden die Prozeduren propagierevor und propa-
giererück höchstens (n− 1)-mal aufgerufen. Sei a die Gesamtzahl
der Durchläufe der inneren while-Schleife von propagierevor, sum-
miert über alle Aufrufe. Da in jedem Durchlauf eine Kante aus E ′
entfernt wird (falls m = c′(u, v) ist) oder der zu propagierende Fluss
d(v) durch einen Knoten v auf 0 sinkt (falls m = d(v) ist), was pro
Knoten und pro Aufruf höchstens einmal vorkommt, ist a ≤ n2 +m.
Der gesamte Zeitaufwand ist daher O(n2 +m) innerhalb der beiden
while-Schleifen und O(n2) außerhalb. Die gleichen Schranken gelten
für propagiererück.
Eine ähnliche Überlegung zeigt, dass die while-Schleife von
blockfluss2 einen Gesamtaufwand von O(n + m) hat. Folglich
ist die Laufzeit von blockfluss2 O(n2).
Korollar 59. Der Algorithmus von Dinic berechnet bei Verwendung
der Prozedur blockfluss2 einen maximalen Fluss in Zeit O(n3).

Auf Netzwerken, deren Flüsse durch jede Kante oder durch jeden Kno-
ten durch eine relativ kleine Zahl C beschränkt sind, lassen sich noch
bessere Laufzeitschranken für den Dinic-Algorithmus nachweisen.
Satz 60. Sei N = (V,E, s, t, c) ein Netzwerk.
(i) Falls jeder Knoten u ∈ V \{s, t} einen Durchsatz c(u) ≤ C hat, so

durchläuft der Algorithmus von Dinic die while-Schleife höchstens
(2(Cn)1/2 + 1)-mal.

(ii) Falls jede Kante e ∈ E eine Kapazität c(e) ≤ C hat, so durchläuft
der Algorithmus von Dinic die while-Schleife höchstens (25Cn2)1/3-
mal.

Beweis. Sei M = |f | die Größe eines maximalen Flusses f in N .
(i) Da die Anzahl a der Schleifendurchläufe durch M beschränkt ist,

können wirM > (Cn)1/2 annehmen. Betrachte den i-ten Schleifen-
durchlauf, in dem ein blockierender Fluss gi im Schichtnetzwerk
N ′fi−1

mit den Schichten S0 = {s}, S1, . . . , Sdi−1, Sdi
= {t} berech-

net wird. Da ein maximaler Fluss in Nfi−1 (in N ′fi−1
kann er kleiner

sein) die Größe ri = M − |fi−1| hat und dieser durch die Knoten
jeder einzelnen Schicht Sj, 1 ≤ j ≤ di − 1, fließt, muss

‖Sj‖C ≥ ri bzw. ri/C ≤ ‖Sj‖,

sein, woraus

(di−1)ri/C ≤ ‖S1‖+· · ·+‖Sdi−1‖ ≤ n−2 ≤ n bzw. di ≤ 1+nC/ri

folgt. Damit ist die Anzahl a der Schleifendurchläufe durch

a ≤ i+ ri+1 ≤ di + ri+1 ≤ ri+1 + 1 + nC/ri

beschränkt. Nun wählen wir i so, dass ri > (Cn)1/2 und ri+1 ≤
(Cn)1/2 ist. Dann folgt

a− 1 ≤ ri+1 + nC/ri ≤ (Cn)1/2 + nC/(Cn)1/2 = 2(Cn)1/2.

(ii) Da die Anzahl a der Schleifendurchläufe durch M beschränkt ist,
können wirM > (2n

√
C)2/3 annehmen. Betrachte den i-ten Schlei-

fendurchlauf, in dem ein blockierender Fluss gi im Schichtnetzwerk
N ′fi−1

mit den Schichten S0 = {s}, S1, . . . , Sdi−1, Sdi
berechnet

wird. Hierbei nehmen wir zu Sdi
alle Knoten hinzu, die nicht in

N ′fi−1
liegen. Da ein maximaler Fluss in Nfi−1 (in N ′fi−1

kann er
wieder kleiner sein) die Größe ri = M−|fi−1| hat und dieser durch

38

4 Flüsse in Netzwerken 4.4 Kostenoptimale Flüsse

die kj Kanten in E+
fi−1

(Sj)∩E−fi−1
(Sj+1) für j = 0, . . . , di−1, fließt,

muss
ri/C ≤ kj ≤ ‖Sj‖‖Sj+1‖

sein. Somit enthält mindestens eine von 2 benachbarten Schichten
Sj und Sj+1 mindestens

√
ri/C Knoten, woraus

(di/2)
√
ri/C ≤ ‖S0‖+ · · ·+ ‖Sdi

‖ ≤ n bzw. di ≤ 2n
√
C/ri

folgt. Damit ist die Anzahl a der Schleifendurchläufe durch

a ≤ i+ ri+1 ≤ di + ri+1 ≤ ri+1 + 2n
√
C/ri

beschränkt. Nun wählen wir i so, dass ri > (2n
√
C)2/3 und

ri+1 ≤ (2n
√
C)2/3 ist. Dann folgt

a ≤ (2n
√
C)2/3 + 2n

√
C/(2n

√
C)1/3 = (25Cn2)1/3.

�

Korollar 61. Sei N = (V,E, s, t, c) ein Netzwerk.
(i) Falls jeder Knoten u ∈ V \{s, t} einen Durchsatz c(u) ≤ C hat, so

berechnet der Algorithmus von Dinic bei Verwendung der Prozedur
blockfluss1 einen maximalen Fluss in Zeit O((nC +m)

√
Cn).

(ii) Falls jede Kante e ∈ E eine Kapazität c(e) ≤ C hat, so be-
rechnet der Algorithmus von Dinic bei Verwendung der Prozedur
blockfluss1 einen maximalen Fluss in Zeit O(C4/3n2/3m).

Beweis. Zunächst ist leicht zu sehen, dass die Kapazitätschranke auf
den Kanten oder Knoten auch für jedes Schichtnetzwerk N ′fi

gilt.
(i) Jedesmal wenn blockfluss1 einen s-t-Pfad P im Schichtnetz-

werk findet, verringert sich der Durchsatz c′′(u) der auf P liegenden
Knoten u um den Wert c′g(P) ≥ 1, da der Fluss g durch diese

Knoten um diesen Wert steigt. Daher kann jeder Knoten an ma-
ximal C Flusserhöhungen beteiligt sein, bevor sein Durchsatz auf
0 sinkt. Da somit pro Knoten ein Zeitaufwand von O(C) für alle
erfolgreichen Tiefensuchschritte, die zu einem s-t-Pfad führen, und
zusätzlich pro Kante ein Zeitaufwand von O(1) für alle nicht er-
folgreichen Tiefensuchschritte anfällt, läuft blockfluss1 in Zeit
O(nC +m).

(ii) Jedesmal wenn blockfluss1 einen s-t-Pfad P im Schichtnetz-
werk findet, verringert sich die Kapazität c′′(e) der auf P liegenden
Kanten e um den Wert c′g(P) ≥ 1. Da somit pro Kante ein Zeit-
aufwand von O(C) für alle erfolgreichen Tiefensuchschritte und
O(1) für alle nicht erfolgreichen Tiefensuchschritte anfällt, läuft
blockfluss1 in Zeit O(Cm+m) = O(Cm).

�

Durch eine einfache Reduktion des bipartiten Matchingproblems auf
ein Flussproblem erhält man folgendes Resultat (siehe Übungen).

Korollar 62. In einem bipartiten Graphen lässt sich ein maximales
Matching in Zeit O(

√
µ(G)m) bestimmen.

4.4 Kostenoptimale Flüsse

In manchen Anwendungen fallen für die Benutzung jeder Kante e
eines Netzwerkes Kosten an, die proportional zur Höhe des Flusses
f(e) durch diese Kante sind. Falls die Kosten für die einzelnen Kan-
ten differieren, ist es möglich, dass 2 Flüsse unterschiedliche Kosten
verursachen, obwohl sie die gleiche Größe haben. Man möchte also
einen maximalen Fluss f berechnen, der minimale Kosten hat.
Die Kosten eines Flusses f werden auf der Basis einer Kostenfunk-
tion k : E → Z berechnet, wobei für jede Kante e ∈ E mit f(e) ≥ 0
Kosten in Höhe von f(e)k(e) anfallen.

39

4 Flüsse in Netzwerken 4.4 Kostenoptimale Flüsse

Die Gesamtkosten von f im Netzwerk berechnen sich also zu

k(f) =
∑

f(e)>0
f(e)k(e).

Ein negativer Kostenwert k(e) < 0 bedeutet, dass eine Erhöhung des
Flusses durch die Kante e um 1 mit einem Gewinn in Höhe von −k(e)
verbunden ist. Ist zu einer Kante e ∈ E auch die gegenläufige Kante
eR in E enthalten, so muss k die Bedingung k(eR) = −k(e) erfüllen.∗
Der Grund hierfür ist, dass die Erniedrigung von f(e) > 0 um einen
bestimmten Wert w ≤ f(e) gleichbedeutend mit einer Erhöhung von
f(eR) um diesen Wert im Restnetzwerk Nf ist und die Kostenfunktion
auch für Nf gelten soll. Daher können wir k mittels k(e) = −k(eR),
falls eR ∈ E und k(e) = 0 für alle e ∈ (V ×V)\(E∪ER) auf die Menge
V × V erweitern. Zudem definieren wir für beliebige Multimengen
F ⊆ V × V die Kosten von F als k(F) = ∑

e∈F k(e) (d.h. jede Kante
e ∈ F wird bei der Berechnung von k(F) entsprechend der Häufigkeit
ihres Vorkommens in F berücksichtigt). Wir nennen F negativ, falls
F negative Kosten k(F) < 0 hat.
Das nächste Lemma liefert einen Algorithmus, mit dem sich überprü-
fen lässt, ob ein Fluss minimale Kosten unter allen Flüssen derselben
Größe hat. Für einen Fluss f sei

kmin(f) = min{k(g) | g ist ein Fluss in N mit |g| = |f |}

das Minimum der Kosten aller Flüsse der Größe |f |.

Lemma 63. Ein Fluss f in N hat genau dann minimale Kosten
k(f) = kmin(f), wenn es im Restnetzwerk Nf keinen negativen Kreis
K mit k(K) < 0 gibt.

Beweis. Falls es in Nf einen Kreis K mit Kosten k(K) < 0 gibt, dann
können wir den Fluss durch alle Kanten e ∈ K um 1 erhöhen. Dies
führt auf einen Fluss g mit |g| = |f | und k(g) = k(f) + k(K) < k(f).

Sei umgekehrt g ein Fluss in N mit |g| = |f | und k(g) < k(f). Dann
ist g − f wegen g(e)− f(e) ≤ c(e)− f(e) ein Fluss in Nf . Da g − f
die Größe |g − f | = 0 hat, können wir g − f als Summe von Flüssen
h1, . . . , hk in Nf darstellen, wobei hi nur für Kanten e auf einem Kreis
Ki in Nf einen positiven Wert hi(e) = wi > 0 annimmt (siehe nächs-
ten Abschnitt). Da k(h1) + · · ·+ k(hk) = k(g − f) = k(g)− k(f) < 0
ist, muss wegen k(hi) = ∑

e∈Ki
hi(e)k(e) = wik(Ki) mindestens ein

Kreis Ki negativ sein.
Um hi und die zugehörigen Kreise Ki für i = 1, . . . , k zu fin-
den, wählen wir eine beliebige Kante ei,1 aus Ef , für die der Fluss
h′i−1 = g − f − h1 − · · · − hi−1 einen minimalen positiven Wert
w = h′i−1(ei,1) > 0 annimmt (falls es keine solche Kante ei,1 gibt, sind
wir fertig, weil dann h′i−1 der triviale Fluss ist). Da h′i−1 den Wert 0
hat und somit die Kontinuitätsbedingung für alle Knoten (inklusive
s und t) erfüllt, lässt sich nun zu jeder Kante ei,j = (a, b) ∈ Ef
solange eine Fortsetzung ei,j+1 = (b, c) ∈ Ef mit h′i−1(ei,j+1) > 0
(und damit h′i−1(ei,j+1) ≥ w) finden bis sich ein Kreis Ki schließt.
Nun setzen wir hi(ei,j) = wi für alle Kanten ei,j ∈ Ki, wobei
wi = min{h′i−1(e) | e ∈ Ki} ist.
Da sich die Anzahl der Kanten in Ef , die unter dem verbleibenden
Fluss h′i = g−f−h1−· · ·−hi einen Wert ungleich 0 haben, gegenüber
h′i−1 mindestens um 1 verringert, ist die Anzahl der Kreise Ki durch
‖Ef‖ ≤ 2m beschränkt. �

Mithilfe von Lemma 63 lässt sich ein maximaler Fluss mit minimalen
Kosten wie folgt berechnen. Wir berechnen zuerst einen maximalen
Fluss f . Dann suchen wir beginnend mit i = 1 und f0 = f einen
negativen Kreis Ki in Nfi−1 . Hierzu kann der Bellman-Ford-Moore
Algorithmus benutzt werden, wenn wir zu Nfi−1 einen neuen Knoten
s′ hinzufügen und diesen mit allen Knoten u durch eine neue Kante
(s′, u) verbinden.

∗Natürlich kann man diese Einschränkung bspw. dadurch umgehen, dass man die Kante e = (u, v) durch einen Pfad (u, w, v) über einen neuen Knoten w ersetzt.

40

4 Flüsse in Netzwerken 4.4 Kostenoptimale Flüsse

Falls kein negativer Kreis existiert, ist fi−1 ein maximaler Fluss mit
minimalen Kosten. Andernfalls bilden wir den Fluss fi, indem wir
zu fi−1 den Fluss fKi

addieren, der auf jeder Kante e ∈ Ki den
Wert fKi

(e) = cfi−1(Ki) = min{cfi−1(e) | e ∈ Ki} hat. Da sich
die Kosten k(fi) = k(fi−1) + k(fKi

) = k(fi−1) + cfi−1(Ki)k(Ki) von
fi wegen k(Ki) ≤ −1 bei jeder Iteration um mindestens 1 verrin-
gern und die Kostendifferenz zwischen zwei beliebigen Flüssen durch
D = ∑

u∈V |k(s, u)|(c(s, u) + c(u, s)) beschränkt ist, liegt nach k ≤ D
Iterationen ein kostenminimaler Fluss fk vor.
Der nächste Satz bereitet den Weg für einen Algorithmus zur Bestim-
mung eines kostenminimalen Flusses, dessen Laufzeit nicht von D,
sondern von der Größe M = |f | eines maximalen Flusses f in N ab-
hängt. Voraussetzung hierfür ist jedoch, dass es in N keine negativen
Kreise gibt.

Lemma 64. Ist fi−1 ein Fluss in N mit k(fi−1) = kmin(fi−1) und ist
Pi ein Zunahmepfad in Nfi−1 mit

k(Pi) = min{k(P ′) | P ′ ist ein Zunahmepfad in Nfi−1},

so ist fi = fi−1 + fPi
ein Fluss in N mit k(fi) = kmin(fi).

Beweis. Angenommen, es gibt einen Fluss g in N mit |g| = |fi|
und k(g) < k(fi). Dann gibt es in Nfi

einen negativen Kreis K
mit k(K) < 0. Wir benutzen K, um einen Zunahmepfad P ′ mit
k(fP ′) < k(fPi

) zu konstruieren.
Sei F die Multimenge aller Kanten, die auf K oder Pi liegen, d.h.
jede Kante in K∆Pi = (K \ Pi) ∪ (Pi \K) kommt genau einmal und
jede Kante in K ∩ Pi kommt genau zweimal in F vor. F ist also ein
Multigraph bestehend aus dem s-t-Pfad Pi und dem Kreis K und es
gilt k(F) = k(Pi) + k(K) < k(Pi).
Da jede Kante e ∈ F̂ = K \ Efi−1 wegen fi−1(e) = c(e) zwar von
fi−1 aber wegen e ∈ K ⊆ Efi

nicht von fi gesättigt wird, muss
fi−1(e) 6= fi(e) und somit eR ∈ Pi sein, was F̂ ⊆ PR

i impliziert. Somit

ist jede Kante e ∈ F̂ und mit ihr auch eR genau einmal in F enthalten.
Entfernen wir nun für jede Kante e ∈ F̂ die beiden Kanten e und eR
aus F , so erhalten wir die Multimenge F ′ = F \ (F̂ ∪ F̂R), die wegen
k(e) + k(eR) = 0 dieselben Kosten k(F ′) = k(F) < k(Pi) wie F hat.
Zudem gilt F ′ ⊆ Efi−1 . Da F ′ aus F durch Entfernen von Kreisen
(der Länge 2) entsteht, ist auch F ′ ein Multigraph, der sich in einen
s-t-Pfad P ′ und eine gewisse Anzahl von Kreisen K1, . . . , K` in Nfi−1

zerlegen lässt. Da nach Voraussetzung keine negativen Kreise in Nfi−1

existieren, folgt

k(P ′) = k(F ′)−
∑̀
i=1

k(Ki) ≤ k(F ′) = k(F) < k(Pi).

�

Basierend auf Lemma 64 können wir nun leicht einen Algorithmus
zur Bestimmung eines maximalen Flusses mit minimalen Kosten in
einem Netzwerk N angeben, falls es in N keine negativen Kreise gibt.

Algorithmus Min-Cost-Flow(V,E, s, t, c, k)
1 for all (u, v) ∈ V × V do
2 f(u, v) := 0
3 repeat
4 P ← min-zunahmepfad(f)
5 if P 6= ⊥ then add(f,P)
6 until P = ⊥

Hierbei berechnet die Prozedur min-zunahmepfad(f) einen Zunah-
mepfad in Nf , der minimale Kosten unter allen Zunahmepfaden in
Nf hat. Da es in Nf keine negativen Kreise gibt, kann hierzu bspw.
der Bellman-Ford-Moore Algorithmus benutzt werden, der in Zeit
O(mn) läuft. Dies führt auf eine Gesamtlaufzeit von O(Mmn), wobei
M = |f | die Größe eines maximalen Flusses f in N ist.

41

4 Flüsse in Netzwerken 4.4 Kostenoptimale Flüsse

Satz 65. In einem Netzwerk N kann ein maximaler Fluss f mit
minimalen Kosten in Zeit O(|f |mn) bestimmt werden, falls es in N
keine negativen Kreise bzgl. der Kostenfunktion k gibt.

Tatsächlich lässt sich für Netzwerke ohne negative Kreise die Laufzeit
unter Verwendung des Dijkstra-Algorithmus in Kombination mit einer
Preisfunktion auf O(Mm log n) verbessern.
Definition 66. Sei G = (V,E) ein Digraph mit Kostenfunktion
k : E → Z. Eine Funktion p : V → Z heißt Preisfunktion für
(G, k), falls für jede Kante e = (x, y) in E die Ungleichung

k(x, y) + p(x)− p(y) ≥ 0

gilt. Die bzgl. p reduzierte Kostenfunktion kp : E → N0 ist

kp(x, y) = k(x, y) + p(x)− p(y).

Lemma 67. Ein Digraph G = (V,E) mit Kostenfunktion k : E → Z
hat genau dann keine negativen Kreise, wenn es eine Preisfunktion
p für (G, k) gibt. Zudem lässt sich eine geeignete Preisfunktion p in
Zeit O(nm) finden.

Beweis. Wir zeigen zuerst die Rückwärtsrichtung. Sei also p eine Preis-
funktion mit kp(e) ≥ 0 für alle e ∈ E. Dann gilt für jede Kantenmenge
F ⊆ E die Ungleichung kp(F) ≥ 0. Da zudem für jeden Kreis K in
G die Gleichheit k(K) = kp(K) gilt, folgt sofort k(K) = kp(K) ≥ 0.
Sei nun G ein Digraph und sei k : E → Z eine Kostenfunktion oh-
ne negativen Kreise. Betrachte den Digraphen G′, der aus G durch
Hinzunahme eines neuen Knotens s und Kanten (s, x) für alle x ∈ V
entsteht. Zudem erweitern wir k mittels k′(s, x) = 0 zu einer Kosten-
funktion k′ auf G′. Da es auch in (G′, k′) keine negativen Kreise gibt,
existiert in G′ für jeden Knoten x ∈ V ein bzgl. k′ kürzester Pfad von
s nach x, dessen Länge wir mit dk′(s, x) bezeichnen. Da nun für jede
Kante e = (x, y) ∈ E die Ungleichung

dk
′(s, x) + k(x, y) ≥ dk

′(s, y)

gilt, ist p(x) = dk
′(s, x) die gesuchte Preisfunktion. Diese lässt sich

mit BFM in Zeit O(nm) finden. �

Sobald wir eine Preisfunktion p für das Restnetzwerk Nf haben,
können wir Dijkstra zur Berechnung eines bzgl. kp kürzesten Zunah-
mepfades P in Nf benutzen. P ist dann auch ein kürzester Pfad bzgl.
k, da für jeden s-t-Pfad P die Beziehung kp(P) = k(P) + p(s)− p(t)
gilt und p(s)− p(t) eine von P unabhängige Konstante ist.
Falls N keine negativen Kreise hat, können wir für N = Nf0 eine
Preisfunktion p0(x) = min{k(P) | P ist ein s-x-Pfad} mit dem BFM-
Algorithmus in Zeit O(nm) berechnen. Angenommen, wir haben für
ein i ≥ 1 einen Fluss fi−1 mit minimalen Kosten k(fi−1) = kmin(fi−1)
und eine Preisfunktion pi−1 für (Nfi−1 , k). Sofern in Nfi−1 ein Zunah-
mepfad existiert, können wir mit dem Dijkstra-Algorithmus in Zeit
O(m log n) einen bzgl. kpi−1 kürzesten Zunahmepfad Pi berechnen
und erhalten einen größeren Fluss fi = fi−1 + fPi

mit minimalen
Kosten k(fi) = kmin(fi). Andernfalls ist fi−1 ein maximaler Fluss.
Es bleibt die Frage, wie wir im Fall, dass Pi existiert, eine Preisfunktion
pi für Nfi

finden können, ohne erneut BFM zu benutzen.

Lemma 68. Sei di(s, x) die minimale Pfadlänge von s nach x in
Nfi−1 bzgl. kpi−1, wobei pi−1 : V → Z eine beliebige Funktion ist. Dann
ist pi(x) = pi−1(x) + di(s, x) eine Preisfunktion für k in Nfi−1 und in
Nfi

.

Beweis. Wir zeigen zuerst, dass pi eine Preisfunktion für (Nfi−1 , k) ist.
Für jede Kante e = (x, y) ∈ Efi−1 gilt nämlich di(y) ≤ di(x) + kpi−1(e)
und kpi−1(e) = k(e) + pi−1(x)− pi−1(y). Somit ist

kpi(e) = k(e) + pi(x)− pi(y)
= k(e) + pi−1(x) + di(s, x)− pi−1(y)− di(s, y)
= kpi−1(e) + di(s, x)− di(s, y) ≥ 0.

42

4 Flüsse in Netzwerken 4.4 Kostenoptimale Flüsse

Falls e auf Pi liegt, gilt sogar kpi(e) = 0, da Pi ein bzgl. kpi−1 kürzester
s-t-Pfad in Nfi−1 und daher di(s, y) = di(s, x) + kpi−1(e) ist.
Da zudem für jede Kante e in Nfi

, die nicht zu Nfi−1 gehört, die ge-
spiegelte Kante eR auf dem Pfad Pi liegt, folgt kpi(eR) = 0 und somit
kpi(e) = k(e) +pi(x)−pi(y) = −k(eR)−pi(y) +pi(x) = −kpi(eR) = 0.
Dies zeigt, dass pi eine Preisfunktion für (Nfi

, k) ist. �

Satz 69. In einem Netzwerk N kann ein maximaler Fluss f mit
minimalen Kosten in Zeit O(mn+ |f |m log n) bestimmt werden, falls
es in N keine negativen Kreise bzgl. der Kostenfunktion k gibt.

Beweis. Wir berechnen zuerst mit BFM in Zeit O(nm) eine Preis-
funktion p0 für die Kostenfunktion k im Netzwerk N = Nf0 . Dann
bestimmen wir in ≤ |f | Iterationen eine Folge von kostenminimalen
Flüssen fi, indem wir mit dem Dijkstra-Algorithmus in Zeit O(m log n)
einen bzgl. kpi−1 kürzesten Zunahmepfad Pi in Nfi−1 berechnen. Da
hierbei bereits die Distanzen di(x) für alle Knoten x berechnet werden
können, erfordert die Bestimmung von pi in jeder Iteration nur O(n)
Zeit. �

Das gewichtete Matchingproblem in einem bipartiten Graphen G =
(U,W,E) lässt sich wie folgt auf die Berechnung eines kostenminimalen
maximalen Flusses in einem azyklischen Netzwerk N(G) reduzieren.
Wir fügen zwei neue Knoten s und t hinzu und verbinden s mit
allen Knoten u ∈ U durch eine neue Kante (s, u) sowie alle Kno-
ten w ∈ W durch eine neue Kante (w, t) mit t. Alle Kanten in E
werden von U nach W gerichtet und haben die vorgegebenen Kos-
ten/Gewichte. Alle neue Kanten e haben die Kosten k(e) = 0 und
alle Kanten e in N(G) haben die Kapazität c(e) = 1. Dann ent-
spricht jedem Fluss f in N(G) genau ein Matching M von G mit
M = {{u,w} ∈ U ×W | f(u,w) = 1} (und umgekehrt entspricht
jedem Matching M genau ein Fluss f mit dieser Eigenschaft).

Da die maximale Flussgröße M in N(G) durch n/2 beschränkt ist,
erhalten wir einen O(mn log n) Algorithmus für das gewichtete Mat-
chingproblem in bipartiten Graphen. Da N(G) kreisfrei ist, können
wir hierbei beliebige Kantengewichte zulassen.

Korollar 70. In einem bipartiten Graphen G = (V,E) lässt sich ein
maximales Matching mit minimalen Kosten in Zeit O(µ(G)m log n)
berechnen.

Beweis. Wir transformieren G in das zugehörige Netzwerk N = N(G).
Da N eine sehr spezielle Form hat, lässt sich eine Preisfunktion p0
für (N, k) in Linearzeit bestimmen. Dann berechnen wir in höchstens
µ(G) Iterationen, die jeweils Zeit O(m log n) beanspruchen, einen
kostenminimalen maximalen Fluss f in N . Aus diesem lässt sich ein
Matching Mf in G gewinnen, das wegen ‖Mf‖ = |f | maximal und
wegen k(Mf) = k(f) kostenminimal ist. Die beiden Transformationen
von G in N und von f in Mf benötigen nur Linearzeit. �

Tatsächlich leistet der Algorithmus von Korollar 70 noch mehr. Er
berechnet für jede Zahl i mit 1 ≤ i ≤ µ(G) ein Matching Mi der
Größe i, das minimale Kosten unter allen Matchings dieser Größe hat,
und eine zu Mi kompatible Preisfunktion pi−1 (siehe Übungen). Dabei
heißt eine Preisfunktion p kompatibel zu einem Matching M in G,
falls die reduzierten Kosten von allen Kanten e = (u,w) ∈ U ×W
mit {u,w} ∈ E einen nichtnegativen Wert kp(e) ≥ 0 und alle Kanten
e = (u,w) ∈ U ×W mit {u,w} ∈M den Wert kp(e) = 0 haben.

43

5 Färben von Graphen

5 Färben von Graphen

Definition 71. Sei G = (V,E) ein Graph und sei k ∈ N.
a) Eine Abbildung f : V → N heißt Färbung von G, wenn f(u) 6=

f(v) für alle {u, v} ∈ E gilt.
b) G heißt k-färbbar, falls eine Färbung f : V → {1, . . . , k} existiert.
c) Die chromatische Zahl ist

χ(G) = min{k ∈ N | G ist k-färbbar}.

Beispiel 72.

χ(En) = 1, χ(Kn,m) = 2, χ(Kn) = n,

χ(Cn) =

2, n gerade
3, sonst.

Ein wichtiges Entscheidungsproblem ist, ob ein gegebener Graph
k-färbbar ist. Dieses Problem ist für jedes feste k ≥ 3 schwierig.

k-Färbbarkeit (k-Coloring):
Gegeben: Ein Graph G.
Gefragt: Ist G k-färbbar?

Satz 73. k-Coloring ist für k ≥ 3 NP-vollständig.

Lemma 74. n/α(G) ≤ χ(G) ≤ n− α(G) + 1.

Beweis. Sei G ein Graph und sei c eine χ(G)-Färbung von G. Da
dann die Mengen Si = {u ∈ V | c(u) = i}, i = 1, . . . , χ(G), stabil

sind, folgt ‖Si‖ ≤ α(G) und somit gilt

n =
χ(G)∑
i=1
‖Si‖ ≤ χ(G)α(G).

Für den Beweis von χ(G) ≤ n− α(G) + 1 sei S eine stabile Menge in
G mit ‖S‖ = α(G). Dann ist G − S k-färbbar für ein k ≤ n − ‖S‖.
Da wir alle Knoten in S mit der Farbe k + 1 färben können, folgt
χ(G) ≤ k + 1 ≤ n− α(G) + 1. �

Beide Abschätzungen sind scharf, können andererseits aber auch
beliebig schlecht werden.

Lemma 75.
(
χ(G)

2

)
≤ m.

Beweis. Zwischen je 2 Farbklassen einer optimalen Färbung muss es
mindestens eine Kante geben. �

Lemma 76. ω(G) ≤ χ(G) ≤ ∆(G) + 1.

Beweis. Betrachte folgenden Färbungsalgorithmus:

Algorithmus greedy-color

1 input ein Graph G = (V,E) mit V = {v1, . . . , vn}
2 c(v1) := 1
3 for i := 2 to n do
4 Fi := {c(vj) | j < i, vj ∈ N(vi)}
5 c(vi) := min{k ≥ 1 | k 6∈ F}

Da für die Farbe c(vi) von vi nur ‖Fi‖ ≤ ∆(G) Farben verboten sind,
gilt c(vi) ≤ ∆(G) + 1. �

Satz 77. Sei G ein Graph mit ∆(G) ≥ 3. Dann gilt χ(G) = ∆(G)+1
nur dann, wenn K∆(G)+1 ein Teilgraph von G ist.

44

	1 Grundlagen
	1.1 Graphentheoretische Grundlagen
	1.2 Datenstrukturen für Graphen
	1.3 Keller und Warteschlange
	1.4 Durchsuchen von Graphen
	1.5 Spannbäume und Spannwälder
	1.6 Berechnung der Zusammenhangskomponenten
	1.7 Breiten- und Tiefensuche

	2 Berechnung kürzester Wege
	2.1 Der Dijkstra-Algorithmus
	2.2 Der Bellman-Ford-Algorithmus
	2.3 Der Bellman-Ford-Moore-Algorithmus
	2.4 Der Floyd-Warshall-Algorithmus

	3 Matchings
	4 Flüsse in Netzwerken
	4.1 Der Ford-Fulkerson-Algorithmus
	4.2 Der Edmonds-Karp-Algorithmus
	4.3 Der Algorithmus von Dinic
	4.4 Kostenoptimale Flüsse

	5 Färben von Graphen

