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1 Kryptografische Hashverfahren

1.1 Einfiihrung

Durch kryptographische Verfahren lassen sich unter anderem die folgenden Schutzziele
realisieren.
o Vertraulichkeit
— Geheimhaltung
— Anonymitat (z.B. Mobiltelefon)
— Unbeobachtbarkeit (von Transaktionen)
o [ntegritat
— von Nachrichten und Daten
e Jurechenbarkeit
— Authentikation
— Unabstreitbarkeit
— Identifizierung
o Verfigbarkeit
— von Daten
— von Rechenressourcen
— von Informationsdienstleistungen
Kryptografische Hashverfahren sind ein wirksames Werkzeug zur Sicherstellung der In-
tegritat von Nachrichten oder generell von digitalisierten Daten. In der Tat nehmen
kryptografische Hashverfahren beim Schutz der Datenintegritat eine dhnlich herausragen-
de Stellung ein wie sie Kryptosystemen bei der Wahrung der Vertraulichkeit zukommt.
Daneben finden kryptografische Hashfunktionen aber auch vielfach als Bausteine von
komplexeren Systemen Verwendung. Wie wir noch sehen werden, sind kryptografische
Hashfunktionen etwa bei der Bildung von digitalen Signaturen sehr niutzlich. Auf weitere
Anwendungsmoglichkeiten werden wir spéter eingehen.
Den iiberaus meisten Anwendungen von kryptografischen Hashfunktionen h liegt die
Idee zugrunde, dass sie zu einem vorgegebenen Text = eine zwar kompakte aber dennoch
reprasentative Darstellung h(z) liefern, die unter praktischen Gesichtspunkten als eine
eindeutige Identifikationsnummer von z fungieren kann. Die Berechnungsvorschrift fiir
h muss daher gewissermaflen darauf abzielen, ,charakteristische Merkmale* von x in
den Hashwert h(z) einfliefen zu lassen. Da der Fingerabdruck eines Menschen ganz
ahnliche Eigenschaften besitzt (was ihn fir Kriminalisten bekanntlich so wertvoll macht),
wird der Hashwert h(z) auch oft als ein digitaler Fingerabdruck von z bezeichnet.
Gebrauchlich sind auch die Bezeichnungen kryptografische Priifsumme oder message
digest (englische Bezeichnung fiir ,Nachrichtenextrakt®).
Typische Schutzziele, die sich mittels Hashfunktionen realisieren lassen, sind die
Nachrichten- und Teilnehmerauthentikation.

e  Nachrichtenauthentikation“ (message authentication)



2 1 Kryptografische Hashverfahren

Kryptografische
Hashverfahren

MACs
(Authentikation)

MDCs
(Integritatsschutz)

Sonstige
Hashverfahren

Abbildung 1.1: Eine grobe Einteilung von kryptografischen Hashverfahren.

— Wie lésst sich sicherstellen, dass eine Nachricht (oder eine Datei) wiahrend einer
(rdumlichen oder auch zeitlichen) Ubertragung nicht verdndert wurde?

— Wie lésst sich der Urheber (oder Absender) einer Nachricht zweifelsfrei feststellen?
e Teilnehmerauthentikation® (entity authentication, identification)

— Wie kann sich eine Person (oder ein Gerét) anderen gegeniiber zweifelsfrei auswei-
sen?

Klassifikation von Hashverfahren

Kryptografische Hashverfahren lassen sich grob danach klassifizieren, ob der Hashwert
lediglich in Abhéngigkeit vom Eingabetext berechnet wird oder zusétzlich von einem
symmetrischen Schliissel abhangt (siehe Abbildung 1.1).

Kryptografische Hashfunktionen, bei deren Berechnung keine Schliissel benutzt werden,
dienen vornehmlich der Erkennung von unbefugt vorgenommenen Manipulationen an
Dateien oder Nachrichten. Daher werden sie auch als MDC bezeichnet (Manipulation
Detection Code [englisch] = Code zur Erkennung von Manipulationen). Zuweilen wird
das Kiirzel MDC auch als eine Abkiirzung fir Modification Detection Code verwendet.
Seltener ist dagegen die Bezeichnung MIC (message integrity codes). Abbildung 1.2
zeigt eine typische Anwendung von MDCs.

Um die Integritat eines Datensatzes x sicherzustellen, der iiber einen ungesicherten
Kanal gesendet (bzw. auf einem vor Manipulationen nicht sicheren Webserver
abgelegt) wird, kann man wie folgt verfahren. Man sendet den MDC-Hashwert
von x iiber einen authentisierten Kanal und priift, ob der Datensatz nach der
Ubertragung noch denselben Hashwert liefert.

Kryptografische Hashverfahren mit symmetrischen Schliisseln finden hauptséchlich bei
der Authentifizierung von Nachrichten Verwendung. Diese werden daher auch als MAC
(message authentication code [englisch] = Code zur Nachrichtenauthentifizierung) oder
als Authentikationscode bezeichnet. Daneben gibt es auch Hashverfahren mit asym-
metrischen Schliisseln. Diese werden jedoch der Rubrik der Signaturverfahren zugeordnet,
da mit ihnen ausschlieBlich digitale Unterschriften gebildet werden. Wie sich Nachrichten
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mit einem MAC authentisieren lassen, ist in Abbildung 1.3 dargestellt. Man beachte,
dass nun auch der Hashwert tiber den unsicheren Kanal gesendet wird.

Mochte Bob eine Nachricht x an Alice ibermitteln, so berechnet er den zuge-
horigen MAC-Hashwert y = hy(x) und figt diesen der Nachricht = hinzu. Alice
tiberpriift die Echtheit der empfangenen Nachricht (2/,y’), indem sie ihrerseits
den zu 2z’ gehorigen Hashwert hi(2’) berechnet und das Ergebnis mit 3 ver-
gleicht. Der geheime Authentikationsschliissel & muss hierbei genau wie bei einem
symmetrischen Kryptosystem iiber einen gesicherten Kanal vereinbart werden.
Indem Bob seine Nachricht z um den Hashwert y = hy(z) ergdnzt, gibt er Alice nicht
nur die Moglichkeit, anhand von y die empfangene Nachricht auf Manipulationen zu

iiberpriifen. Die Benutzung des geheimen Schliissels k erlaubt zudem eine Uberpriifung
der Herkunft der Nachricht.

1.2 Schliissellose Hashfunktionen (MDCs)

In diesem Abschnitt betrachten wir verschiedene Sicherheitsanforderungen an einzelne
Hashfunktionen h. Dabei nehmen wir an, dass h offentlich bekannt ist, d.h. h ist eine
schliissellose Hashfunktion (MDC).

Sei h: X — Y eine Hashfunktion. Ein Paar (z,y) € X x Y heifit giiltig fir A, falls
h(z) =y ist. Ein Paar (z,2’) mit h(z) = h(z’) heifit Kollisionspaar fiir h. Die Anzahl
||Y|| der Hashwerte bezeichnen wir mit m. Ist auch der Textraum X endlich, || X|| = n,
so heifit h eine (n, m)-Hashfunktion. In diesem Fall verlangen wir meist, dass n > 2m
ist, und wir nennen i dann eine Kompressionsfunktion (compression function).

Da h offentlich bekannt ist, ist es sehr einfach, fiir einen vorgegebenen Text x ein giiltiges
Paar (x,y) zu erzeugen. Fir bestimmte kryptografische Anwendungen ist es wichtig, dass
dies nicht moglich ist, falls der Hashwert y vorgegeben wird.

Problem P1: Bestimmung eines Urbilds
Gegeben: Eine Hashfkt. h: X — Y und ein Hashwert y € Y.
Gesucht: Ein Text z € X mit h(z) = y.

Falls es einen immensen Aufwand erfordert, fiir einen vorgegebenen Hashwert y einen Text
x mit h(x) = y zu finden, so heifit h Einweg-Hashfunktion (one-way hash function bzw.

Ungesicherter Kanal

h h

(echt)

Authentisierter Kanal Y g

= |y;h(:1c’)‘

falsch

Abbildung 1.2: Einsatz eines MDC h zur Uberpriifung der Integritit eines Datensatzes
x.
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k: Symmetrischer Authentikationsschliissel
y = hi(x): MAC-Hashwert fiir z unter k

Abbildung 1.3: Verwendung eines MAC zur Nachrichtenauthentikation.

preimage resistant hash function). Diese Eigenschaft wird beispielsweise benotigt, wenn
die Hashwerte der Benutzerpassworter in einer 6ffentlich zuganglichen Datei abgespeichert
werden, wie es bei manchen Unix-Systemen der Fall ist.

Problem P2: Bestimmung eines zweiten Urbilds
Gegeben: FEine Hashfkt. h: X — Y und ein Text = € X.
Gesucht: Ein Text 2’ € X \ {z} mit h(2') = h(z).

Falls sich fiir einen vorgegebenen Text x nur mit grofem Aufwand ein weiterer Text x’ # x
mit dem gleichen Hashwert h(z') = h(z) finden lésst, heifit h schwach kollisionsre-
sistent (weakly collision resistant bzw. second preimage resistant). Diese Eigenschaft
wird in der durch Abbildung 1.2 skizzierten Anwendung benotigt. Beim Versuch, eine
digitale Signatur zu falschen (siehe unten), sieht sich der Gegner dagegen mit folgender
Problemstellung konfrontiert.

Problem P3: Bestimmung einer Kollision
Gegeben: Fine Hashfkt. h: X — Y.
Gesucht: Texte x # o’ € X mit h(z') = h(z).

Falls sich dieses Problem nur mit einem immensen Aufwand losen lasst, heifit h (stark)
kollisionsresistent (collision resistant).

Obwohl die schwache Kollisionsresistenz eine gewisse Ahnlichkeit mit der Einweg-
Eigenschaft aufweist, sind die beiden Eigenschaften im allgemeinen unvergleichbar. So
muss eine schwach kollisionsresistente Funktion nicht notwendigerweise eine Einweg-
funktion sein, da die Bestimmung eines Urbildes gerade fiir diejenigen Funktionswerte
einfach sein kann, die nur ein einziges Urbild besitzen. Umgekehrt impliziert die Einweg-
Eigenschaft auch nicht die schwache Kollisionsresistenz, da die Kenntnis eines Urbildes
das Auffinden weiterer Urbilder sehr stark erleichtern kann.
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Prozedur FindPreimage(h,v,q)

1 wahle eine beliebige Menge X, = {z1,...,2,} CX
> for each z; € Xy do
3 if h(z;) =y then return(x;) else return(?)

Abbildung 1.4: Bestimmung eines Urbilds fiir einen Hashwert

1.2.1 Das Zufallsorakelmodell (ZOM)

Das ZOM dient dazu, die Effizienz verschiedener Angriffe auf eine Hashfunktion h: X — Y
nach oben abzuschéitzen. Sind X und Y vorgegeben, so kénnen wir eine Hashfunktion
h: X — Y dadurch ,konstruieren, dass wir fiir jedes z € X zuféllig ein y € Y wihlen
und h(z) auf y setzen. Aquivalent hierzu ist, fiir h eine zufillige Funktion aus der
Klasse F'(X,Y) aller n™ Funktionen von X nach Y zu wéhlen. Dieses Verfahren ist auf
Grund des hohen Aufwands zwar nicht mehr praktikabel, wenn n = || X|| eine bestimmte
Grofe iibersteigt. Es liefert uns aber ein theoretisches Modell fiir eine Hashfunktion
mit ,idealen* kryptografischen Eigenschaften. Offensichtlich besteht fiir den Gegner die
einzige Moglichkeit, Informationen iiber A zu erhalten, darin, sich fiir eine Reihe von
Texten die zugehorigen Hashwerte zu besorgen (was der Befragung eines funktionalen
Zufallsorakels entspricht).

Dass eine Zufallsfunktion h gute kryptografische Eigenschaften aufweist, rithrt daher,
dass der Hashwert h(z) fir einen neuen Text x auch dann noch schwer vorhersagbar ist,
wenn der Gegner bereits die Hashwerte einer beliebigen Zahl von Texten kennt.

Proposition 1. Sei Xo = {x1,..., 2} eine beliebige Menge von k verschiedenen Texten
aus X und seien yy, ..., yx € Y. Dann gilt fir eine zufdllig aus F(X,Y') gewdhlte Funktion
h und fiir jedes Paar (z,y) € (X — Xo) XY,

Prih(z) = y|h(z;) = y; furi=1,... k] =1/m.

Um eine obere Komplexitatsschranke fiir das Urbildproblem im ZOM zu erhalten, be-
trachten wir den in Abbildung 1.4 dargestellten Algorithmus. Hier (und bei den beiden
folgenden Algorithmen) gibt der Parameter ¢ die Anzahl der Hashwertberechnungen (also
die Anzahl der gestellten Orakelfragen an das Zufallsorakel h) wider. Der Zeitaufwand
der Berechnung ist dabei proportional zu q.

Satz 2. FINDPREIMAGE(h,y, q) gibt mit Wahrscheinlichkeit ¢ = 1 — (1 — 1/m)? ein
Urbild von y aus (unabhdngig von der Wahl der Menge X, ).

Beweis. Sei y € Y fest und sei X = {z1,...,2,}. Fir i = 1,...,q bezeichne E; das
Ereignis “h(z;) = y”. Nach Proposition 1 sind diese Ereignisse stochastisch unabhéngig
und ihre Wahrscheinlichkeit ist Pr[E;] = 1/m (i =1,...,q). Also folgt

Pr[EyU...UE,]=1-Pr[E;N...NE]=1—(1-1/m)".
O

Der in Abbildung 1.5 dargestellte Algorithmus liefert uns eine obere Schranke fiir die
Komplexitat des Problems, ein zweites Urbild fir A(z) zu bestimmen. Die Erfolgswahr-
scheinlichkeit lasst sich vollkommen analog zum vorherigen Satz bestimmen.
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Prozedur FindSecondPreimage(h,z,q)
y = h(z)
wahle eine beliebige Menge X, = {z1,...,2,1} C X —{z}
for each z; € Xy do
if h(z;) =y then return(x;)
return(?)

=W N

ot

Abbildung 1.5: Bestimmung eines 2. Urbilds fiir einen Hashwert

Satz 3. FINDSECONDPREIMAGE(h, z, q) gibt mit Wahrscheinlichkeite = 1—(1—1/m)4™!
ein zweites Urbild xo # = von y = h(z) aus.

Ist g vergleichsweise klein, so ist bei beiden bisher betrachteten Angriffen ¢ ~ ¢/m. Um
also auf eine Erfolgswahrscheinlichkeit von 1/2 zu kommen, ist ¢ &~ m/2 zu wéhlen.

Geht es lediglich darum, irgendein Kollisionspaar (z,2") aufzusptiren, so bietet sich ein
sogenannter Geburtstagsangriff an. Dieser ist deutlich zeiteffizienter zu realisieren.
Wie der Name schon andeutet, basiert dieser Angriff auf dem sogenannten Geburtstagspa-
radoxon, welches in seiner einfachsten Form folgendes besagt.

Geburtstagsparadoxon: Bereits in einer Schulklasse mit 23 Schulkindern haben mit einer
Wahrscheinlichkeit grofer 1/2 mindestens zwei Kinder am gleichen Tag Geburtstag
(dies erscheint zwar verbliiffend, wird aber durch die Praxis mehr als bestétigt).

Tatséchlich zeigt der néchste Satz, dass bei g-maligem Ziehen (mit Zuriicklegen) aus
einer Urne mit m Kugeln mit einer Wahrscheinlichkeit von

L= (m=1)(m—2)--(m—q+1)/m""

eine Kugel zweimal gezogen wird. Fiir m = 365 und ¢ = 23 ergibt dies einen Wert von
ungefahr 0, 507.

Zur Kollisionsbestimmung verwenden wir den in Abbildung 1.6 dargestellten Algorithmus.
Bei einer naiven Implementierung wiirde zwar der Zeitaufwand fiir die Auswertung der if-
Bedingung quadratisch von g abhéngen. Trégt man aber jeden Text z unter dem Suchwort
h(x) in eine (herkommliche) Hashtabelle der Grofe ¢ ein, so wird der Zeitaufwand fir
die Bearbeitung jedes einzelnen Textes x im wesentlichen durch die Berechnung von h(x)
bestimmt.

Satz 4. COLLISION(h, q) gibt mit Erfolgswahrscheinlichkeit

(m—1)(m—2)---(m—q+1)

e=1-—
ma—1

ein Kollisionspaar (z,z") fir h aus.

Prozedur Collision(h,q)

1 wahle eine beliebige Menge Xy = {zy,...,2,} € X — {z}
> for each z; € Xy do y; := h(x;)
3 if 3i#j:y; =y, then return(z;,z;) else return(?)

Abbildung 1.6: Bestimmung eines Kollisionspaares
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1 wahle zufallig z € X
2 2= Ax)
5 if 2’ #7 then return(z,2’) else return(?)

Abbildung 1.7: Reduktion des Kollisionsroblems auf das Problem, ein zweites Urbild zu
bestimmen

Beweis. Sei Xo = {x1,...,2,}. Fir i =1,...,q bezeichne E; das Ereignis

“h(l’,‘) QI {h(J?l, ey h(x,-_l}.”
Dann beschreibt E1N...NE, das Ereignis “COLLISION(h, ¢) gibt 7 aus” und fiiri = 1,...,¢
gilt
m—1+1

PI'[E,L‘El n... ﬂEi,l] =
m

Dies fithrt auf die Erfolgswahrscheinlichkeit

e = 1=Pr[E\N...NE,]
= 1—Pr[E\|Pr[Ey|Ey) - Pr[E,|ExN...NE, ]

- () ) () ;

Mit 1 —x ~ e™* folgt

a1 7 a1 —i 1 q-1 a(g—1)
6:1—H<1—> ml-J[em =1—emiim’=1—¢ 20 ~g¢°/2m.
=1 =1

Somit erhalten wir die Abschatzung

q = coym

mit c. = v/2¢. Fiir € = 1/2 ergibt sich also ¢ ~ \/m. Besitzt also eine bindre Hashfunktion
h: {0,1}™ — {0,1}™ die Hashwertlinge m = 128 Bit, so miissen im ZOM ¢ ~ -2%* Texte
gehasht werden, um mit einer Wahrscheinlichkeit von 1/2 eine Kollision zu finden. Um
einem Geburtstagsangriff widerstehen zu koénnen, sollte eine Hashfunktion mindestens
eine Hashwertlange von 128 oder besser 160 Bit haben.

1.2.2 Vergleich von Sicherheitsanforderungen

In diesem Abschnitt zeigen wir, dass stark kollisionsresistente Hashfunktionen sowohl
schwach kollisionsresistent als auch Einweghashfunktionen sein miissen.

Satz 5. Sei h: X — Y eine (n, m)-Hashfunktion. Dann ist das Problem P3, ein Kol-
listonspaar fir h zu bestimmen, auf das Problem P2, ein zweites Urbild zu bestimmen,
reduzierbar. Folglich sind stark kollisionsresistente Hashfunktionen auch schwach kollisi-
onsresistent.

Beweis. Sei A ein Las-Vegas Algorithmus, der fiir ein zufillig aus X gewahltes x mit
Erfolgswahrscheinlichkeit e ein zweites Urbild 2’ fir h liefert. Dann ist klar, dass der in
Abbildung 1.7 dargestellte Las-Vegas Algorithmus mit Wahrscheinlichkeit € ein Kollisi-
onspaar ausgibt. O
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wahle zufallig x € X

]

>y = h(z)

3 a = Aly)

1 if x # 2’ then return(z,z’) else return(?)

Abbildung 1.8: Reduktion des Kollisionsproblems auf das Urbildproblem

Als néchstes zeigen wir, wie sich das Kollisionsproblem auf das Urbildproblem reduzieren
lasst.

Satz 6. Sei h: X — Y eine (n, m)-Hashfunktion mit n > 2m. Dann ist das Problem P3,
ein Kollisionspaar fiir h zu bestimmen, auf das Problem P1, ein Urbild zu bestimmen,
reduzierbar.

Beweis. Sei A ein Invertierungsalgorithmus fir h, d.h. A berechnet fiir jeden Hashwert y
in W(h) = {h(z) | x € X} ein Urbild z mit h(x) = y. Betrachte den in Abbildung 1.8
dargestellten Las-Vegas Algorithmus B.

Sei C = {h~!(y) | y € Y}. Dann hat B eine Erfolgswahrscheinlichkeit von
el iel-1_ 1
' =—2 UCl=1)=n-m)/n=
2XIICT T nis

cecC cecC

N

1.2.3 Iterierte Hashfunktionen

In diesem Abschnitt beschéftigen wir uns mit der Frage, wie sich aus einer kollisionsresis-
tenten Kompressionsfunktion

h:{0,1}" — {0,1}™
eine kollisionsresistente Hashfunktion
h:{0,1}* — {0, 1}
konstruieren lasst. Hierzu betrachten wir folgende kanonische Konstruktionsmethode.
Preprocessing: Transformiere x € {0, 1}* mittels einer Funktion

y: {0,1}" = J{o, 13"

r>1

zu einem String y(x) mit der Eigenschaft |y(z)| =, 0.

Processing: Sei IV € {0,1}™ ein offentlich bekannter Initialisierungsvektor und sei
y(x) =yy -+ -y, mit |y;| =t firi = 1,...,r. Berechne eine Folge z, ..., 2z, von Strings

z; € {0, 1} wie folgt:
{IV, i =0,
Z; =

h(zi—lyi>; 1= ]_,...,7’.

Optionale Ausgabetransformation: Berechne den Hashwert h(z) = g(z,), wobei
g: {0,1}™ — {0,1} eine o6ffentlich bekannte Funktion ist. (Meist wird fiir g die
Identitat verwendet.)
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Um h(z) zu berechnen, muss also die Kompressionsfunktion i genau r-mal aufgeru-
fen werden. Wir formulieren nun eine fiir Preprocessing-Funktionen wiinschenswerte
Eigenschatft.

Definition 7. Fine Funktion y: {0,1}* — {0, 1}* heifsit suffizfrei, falls es keine Strings
x # & und z in {0,1}* mit y(T) = zy(x) gibt (d.h. kein Funktionswert y(x) ist Suffix
eines Funktionswertes y(Z) an einer Stelle & # x).

Man beachte, dass jede suffixfreie Funktion insbesondere injektiv ist.

Satz 8. Falls die Preprocessing-Funktion y suffizfrei und die Ausgabetransformation g
injektiv ist, so ist mit h auch h kollisionsresistent.

Beweis. Angenommen, es gelingt, ein Kollisionspaar z, # fiir h mit fz(:v) = ﬁ(:%) zu finden.
Sei
y(x) =y . Y—1yr und y(Z) = $1Ys - . . Gr_1y; mit k < [

Da y suffixfrei ist, muss ein Index i € {1,...,k} mit y; # §;_x4; existieren. Weiter seien
2 (i=0,....k)und Z; (j =0,...,1) die in der Processing-Phase berechneten Hashwerte.
Da g injektiv ist, muss mit g(zj) = iL(x) = iL(:i‘) = ¢g(Z) auch z, = Z; gelten. Sei i,0,
der grofite Index i € {1,...,k} mit z;_1y; # Zi_k+i—1U1—k+i- Dann bilden z;,_ 4y, . und
2l ktiman—1Ul—ktima, WEZEN

ein Kollisionspaar fir h. O

1.2.4 Die Merkle-Damgard-Konstruktion

Merkle und Damgard schlugen 1989 folgende konkrete Realisierung ihrer Konstruktion
vor. Als Initialisierungsvektors wird der Nullvektor IV = 0™ benutzt, die optionale
Ausgabetransformation entfillt, und fiir y(z) wird im Fall ¢ > 2 die folgende Funktion
verwendet. (Den Fall ¢ = 1 betrachten wir spéter.)

Fir z = ¢ sei y(z) = 0" und fir z € {0,1}" mit n > 0 sei & = [;%] und = =
T1Ty ... Tp_1Zg Mit |x1| = |zo| = ... = |xp_q| = t — 1 sowie |z = t — 1 — d, wobei
0 <d<t—1 Im Fall £ = 1 ist dann y(z) = 020%1bin,_1(d) und fir k > 1 ist
Y(r) = y1 -+ Yry1, Wobei

01’1, 1= 17
12, 2<i<k,
12,09, 1=k,

Lbing_1(d), i=Fk+1,

und bing_1(d) die durch fithrende Nullen auf die Lange ¢ — 1 aufgefiillte Bindrdarstellung
von d ist.

Satz 9. Die durch (1.1) definierte Preprocessing-Funktion y ist suffizfrei.

Beweis. Seien x # & zwei Texte mit |z| < |Z|. Wir miissen zeigen, dass y(z) = 11y . . . Y41
kein Suffix von y(Z) = 7192 . . . Yi41 ist. Im Fall z = ¢ ist dies klar. Fiir x # ¢ machen wir
folgende Fallunterscheidung.
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1. Fall: |z| #,_; |Z|. Dann folgt d # d und somit Y41 # Fis1-

2. Fall:  |z| = |Z|. In diesem Fall ist £ = [. Wegen x # T existiert ein Index i €
{1,...,k} mit z; # Z;. Dies impliziert y; # ¥;, also ist y(z) kein Suffix von y(Z).

3. Fall: |z # |#| und |z| =, |2'|. In diesem Fall ist & < I. Da y(x) mit einer Null
beginnt, aber das (I — k + 1)-te Bit von y(Z) eine Eins ist, kann y(z) kein Suffix von
y(Z) sein. 0

Nun kommen wir zum Fall ¢ = 1. Sei y die durch y(x) := 11f(x) definierte Funktion,
wobei f wie folgt definiert ist:

flzr, .. xn) = f(x1) ... f(x2) mit f(0) =0 und f(1) =01.

Dann ist leicht zu sehen, dass y suffixfrei ist. Da die Kompressionsfunktion A bei der
Berechnung von A(z) im Fall ¢ = 1 fiir jedes Bit von y(z) einmal aufgerufen wird, wird h
genau |y(z)| < 2(n+1)-mal aufgerufen. Im Fall ¢ > 1 werden dagegen nur k+1 = [ 5] +1
Aufrufe benotigt.

1.2.5 Die MD4-Hashfunktion

Die MD4-Hashfunktion (Message Digest) wurde 1990 von Rivest vorgeschlagen. Die
Bitlange von MD4 betriagt | = 128 Bit. Bei einer Wortlange von 32 Bit entspricht
dies 4 Wortern. Die im Folgenden vorgestellten Hashfunktionen benutzen u.a. folgende
Operationen auf Wortern.

Operatoren auf {0,1}3
X AY | bitweises ,,Und*“ von X und Y
X VY | bitweises ,,Oder” von X und Y
X @Y | bitweises ,,exklusives Oder* von X und Y
=X | bitweises Komplement von X
X +Y | Ganzzahl-Addition modulo 232
X — s | Rechtsshift um s Stellen
X « s | zirkuldrer Linksshift um s Stellen

Wihrend die Ganzzahl-Addition bei MD4 und MD5 in little endian Architektur (d.h.
ein aus 4 Bytes azasaiag, 0 < a; < 255 zusammengesetztes Wort repréasentiert die Zahl
a92%* + a12'% + a»2® + a3) ausgefithrt wird, verwendet SHA-1 eine big endian Architektur
(d.h. azasaiag, 0 < a; < 255 reprisentiert die Zahl a32? + a92' + ;2% + ag). Der
MD4-Algorithmus benutzt die folgenden Konstanten y;, 2,55, 7 =0,...,47

y; (in Hexadezimaldarstellung)
i =0,...,15 0

i —=16,...,31 50827999

g =32,...,47 6ed9ebal
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“j

j=0,...,15 | 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15
j=16,...,31| 0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15
j=32,...,47| 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15
Sj

j=0,...,15 | 3,7,11,19,3,7,11,19,3,7,11,19,3,7,11,19
j=16,...,31]3,5,9,13, 3,5,9,13, 3,5, 9,13, 3,5, 9, 13
j=32,...,473,9,11,15,3,9,11,15,3,9,11,15,3,9,11, 15

und folgende Funktionen f;, 7 =0,...,47

(X AY)V (~X A Z), j= 0,...,15,
(XY, Z) = ((XAY)V(XAZ)V(YANZ), j=16,...,31,
XpY ez J=32,...,47.

Fiir MD4 konnten nach ca. 22 Hashwertberechnungen Kollisionen aufgespiirt werden.
Deshalb gilt MD4 nicht mehr als kollisionsresistent.

MD4(x)

1 input z € {0,1}*, |z| =n

oy :=x10%bing(n), k€ {0,1,...,511} mit n+1+k+64=0 (mod 512)
s (Hy, Hy, Hs, Hy) := (67452301, e fcdab89, 98badc fe, 10325476)

i sel y=»M,---M,, r=(n+1+k+64)/512

5 for 1:=1 to r do

6 seli M,; = X|[0]--- X[15]

7 (A,B,C, D) = (Hl,HQ,H3,H4)

8 for j:=0 to 47 do

9 (A,B,C,D) := (D,(A+ f;(B,C,D) + X[z] +v;) < s;,B,C)
10 (Hy,Hy, H3, Hy) == (H1 + A,Hy + B,Hs + C,Hy + D)
11 output H H,H3;H,

1.2.6 Die MD5-Hashfunktion

Der MD?5 ist eine 1991 von Rivest prasentierte verbesserte Version von MD4. Die Bitlange
von MD5 betragt wie bei MD4 [ = 128 Bit. Bei einer Wortlange von 32 Bit entspricht
dies 4 Wortern. In MD5 werden teilweise andere Konstanten als in MD4 verwendet.
Zudem besitzt MD5 eine zusitzliche 4. Runde (j = 48,...,63), in der die Funktion
[i(X,Y,Z) =Y & (X V~Z) verwendet wird. Auflerdem wurde die in Runde 2 von MD4
verwendete Funktion durch f;(X,Y,Z) := (X ANZ)V (Y AN=Z), j = 16...31, ersetzt.
Die y-Konstanten sind definiert als y; := die ersten 32 Bit der Binardarstellung von
abs(sin(j + 1)), 0 < j < 63, und fiir z; und s; werden folgende Konstanten benutzt.
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Zj

j=0,...,15 |z =j: 0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15
j=16,...,31 | z;=(5j+ 1) mod 16 : 1,6,11,0,5,10,15,4,9,14,3,8,13,2,7,12
j=232,...,47] 2= (3j+5) mod 16 : 5,8,11,14,1,4,7,10,13,0,3,6,9,12, 15,2

j=48,...,63 | z; = 7j mod 16 : 0,7,14,5,12,3,10, 1,8, 15,6, 13,4,11,2,9
5

j=0,...,15 7,12,17,22,7,12,17,22,7,12,17,22, 7,12, 17, 22

j=16,...,31 5,9,14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14,20

j=32,...,47 4,11,16,23,4,11,16,23,4, 11, 16,23, 4, 11, 16,23

j=48,...,63 6,10, 15,21,6, 10, 15, 21,6, 10, 15,21, 6, 10, 15, 21

Fiir MD5 konnten in 2004 ebenfalls Kollisionspaare gefunden werden (fiir die Kompressi-
onsfunktion von MD5 gelang dies bereits 1996).

MDb5(z)

1 input z € {0,1}*,|z| =n

oy = x10%bings(n), k€ {0,1,...,511} mit n+1+k+64 =0 (mod 512)
s (Hy, Hy, Hs, Hy) := (67452301, e fcdab89, 98badc fe, 10325476)

1 sei y=M,---M,, r=(n+1+k+64)/512

5 for i:=1 to r do

6 seli M; = X][0]--- X[15]

7 (A,B,C,D) := (Hy, Hy, H3, Hy)

8 for j:=0 to 63 do

9 (A,B,C,D):=(D,B+ (A+ fj(B,C,D)+ X[zj] + y;) < s;,B,C)
10 (Hl,Hg,H3,H4) = (H1+A,H2+B,H3+C,H4+D)

11 output H1H2H3H4

1.2.7 Die SHA-1-Hashfunktion

Der Secure Hash Algorithm (SHA-1) ist eine Weiterentwicklung des MD4 bzw. MD5
Algorithmus. Er gilt in den USA als Standard und ist Bestandteil des DSS (Digital
Signature Standard). Die Bitlinge von SHA-1 betragt | = 160 Bit. Bei einer Wortlénge
von 32 Bit entspricht dies 5 Woértern. SHA-1 unterscheidet sich nur geringfiigig von
der SHA-0 Hashfunktion, in der eine Schwachstelle dazu fiihrt, dass nach Berechnung
von ca. 280 Hashwerten ein Kollisionspaar gefunden werden kann (obwohl bei einem
Geburtstagsangriff auf Grund der Hashwertlinge von 160 Bit ca. 2%° Berechnungen
erforderlich sein miissten). Diese potentielle Schwéiche von SHA-0 wurde im SHA-1
dadurch entfernt, dass SHA-1 in Zeile 8 einen zirkuldren Shift um eine Bitstelle ausfiihrt.
Der SHA-1-Algorithmus benutzt die folgenden Konstanten K, j =0,...,79

K; (in Hexadezimaldarstellung)

j=0,...,19 50827999
J=20,...,39 6ed9ebal
J=40,...,59 8 f1bbedc

Jj=260,...,79 ca62c1d6
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und folgende Funktionen f;, 7 =0,...,79

(XAY)V (=X AZ), j= 0,...,19,
XY a7, Jj=20,...,39,
L(XY, 2) = .
(XAY)V(XANZ)V(YANZ), j=40,...,59,
XpYadZ, Jj=060,...,79.
SHA-1(x)

input = € {0,1}*, |z| =n

y:=x10%bings(n), k€ {0,1,...,511} mit n+1+k+64 =0 (mod 512)
(Hy, Hy, Hy, H3, Hy) := (67452301, e fcdab89, 98badc fe, 10325476, c3d2el f0)
sei y=M,---M,, r=(n+1+k+64)/512

5 for i:=1 to r do

6 seli M; = X|[0]--- X[15]

7 for t:=16 to 79 do

8 X[t =X[t-3]eX[t—-8 e X[t—14]eX[t—-16]) 1

9 (A,B,C,D,E) = (Hy,Hy,Hs, H3, Hy)

10 for j:=0 to 79 do

11 temp := (A< 5)+ f;(B,C,D) + E+ X[j] + K;

12 (A,B,C,D, E) := (temp, A, B <> 30,C, D)

13 (Hy,Hy,Hy, H3, Hy) := (Hy+ A ,Hi+ B,Hy + C,Hs + D,Hy + F)

11 output H\HyH3;H,

BW N =

1.2.8 Die SHA-2-Familie

Im Jahr 2001 veroffentlichte NIST 4 weitere Hashfunktionen der SHA-Familie: SHA-224,
SHA-256, SHA-384, and SHA-512. Diese Funktionen werden auch als SHA-2 Hashfunk-
tionen bezeichnet. In 2004 kam noch SHA-224 als fiinfte Variante hinzu.

SHA-256 und SHA-512 haben denselben Aufbau, unterscheiden sich aber in erster Linie
in der benutzten Wortldnge: 32 Bit bei SHA-256 und 64 Bit bei SHA-512. Zudem werden
unterschiedliche Shift- und Summationskonstanten verwendet und auch die Rundenzahlen
differieren. SHA-224 und SHA-384 sind reduzierte Varianten von SHA-256 und SHA-
512. Der SHA-256-Algorithmus benutzt die folgenden Konstanten K, j =0,...,63 (in
Hexadezimaldarstellung).

428a2 98, 71374491, b5c0 focf, e9bbdbab, 3956¢25b, 59111 1,923 f82a4, ablchedb,
d807aa98, 12835001, 243185be, 550c7dc3, T2bebd74, 80debl fe, 9bdc06a7, c19bf174,
e49b69cl, efbed786, 0fc19dc6, 240calce, 2de92¢6 f, 4aT7484aa, 5cb0a9de, 76 fI88da,
983e5152, a831c¢66d, b00327¢8, bf597 fc7, c6e00bf3, d5a79147, 06ca6351, 14292967,
27b70a85, 2e1b2138, 4d2c6df ¢, 53380d13, 650a7354, 766a0abb, 81c2c92e, 92722¢85,
a2bfe8al, a81a664b, c24b8b70, c76¢H1a3, d192e819, d6990624, f40e3585, 106aa070,
19a4¢116, 1e376¢08, 2748774c, 34b0bcbb, 391c0cb3, 4ed8aada, 509ccad f, 682¢6 f f3,
748 f82ee, T8a5636 f, 84c87814, 8cc70208, 90be f f fa, a4506ceb, be f9ad f7, c6T178f2

Dies sind jeweils die ersten 32 Bit der bindren Nachkommastellen der dritten Wurzeln
der ersten 64 Primzahlen 2,...,311. SHA-256 arbeitet wie folgt.
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SHA-256(x)

1 input z € {0,1}, |z| =n

> y:=x10%bings(n), k€ {0,1,...,511} mit n+1+k+64=0 (mod 512)
5 (Ho, Hy, Ho, Hy, Hy, Hs, He, Hr) := (6a09¢667, bb6Tae85, 3c6e f372, a5af f53a,
A 510e527 f,9b05688¢, 1 f83d9ab, 5be0cd19)

5 sei y=M;---M., r=(n+1+k+64)/512

¢ for ::=1 to r do

7 sei M; = X][0]--- X[15]

8 for t:=16 to 63 do

9 s0:= (X[t —15] = 7) @ (X[t — 15] — 18) & (X[t — 15] — 3)

" sl = (X[t —2] = 17) & (X[t — 2] = 19) @ (X[t — 2] — 10)
11 Xt] == X[t —16] 4+ s0+ X[t — 7] + s1
12 (A,B,C,D,E, F7 G7 H) = (HO7H17H27H37H47H57H67H7>

13 for j:=0 to 63 do
14 s0:= (a = 2) ® (a — 13) & (a — 22)

15 maj = (aAb) @ (aNc)® (bAc)

16 t2 := s0+ may

17 sl:=(e—=6)@(e—11) ® (e — 25)
18 ch:= (e f) @ ((note) A g)

tl := h+ sl + ch + k[i] + X[i]
(A,B,C,D,E,F,G,H) = (t1+t2,A,B,C,D +t1,E, F,G)

21 (H()aHlaHQaH3aH47H5aH67H7)
22 = (Hy+A,Hi+B,Hy,+C,Hy+ D,H,+ E,Hs + F,Hs + G,H; + H)
23 output H0H1H2H3H4H5H6H7

Die Initialwerte von Hy, ..., H; in den Zeilen 3 und 4 sind jeweils die ersten 32 Bit der
bindren Nachkommastellen der Wurzeln der Primzahlen 2,3,5,7,11,13,17, 19.

1.2.9 Kryptoanalyse von Hashfunktionen

Bereits 1991 wurden von Den Boer und Bosselaers Schwéchen im MD4 aufgedeckt. Im
August 2004 erschien ein Bericht [1] mit einer Anleitung, wie sich Kollisionen fiir MD4
mittels “hand calculation” finden lassen.

In 1993, fanden den Boer und Bosselaers einen Weg, so genannte “Pseudo-Kollisionen” fiir
die MD5 Kompressionsfunktion zu generieren. In 1996, fand Dobbertin ein Kollisionspaar
fiir die MD5 Kompressionsfunktion.

Im August 2004 wurden schlielich Kollisionen fiir MD5 von Xiaoyun Wang, Dengguo
Feng, Xuejia Lai and Hongbo Yu berechnet. Der bendtigte Aufwand wurde mit ca. 1
Stunde auf einem IBM p690 Cluster abgeschatzt.

Im Marz 2005 veroffentlichten Arjen Lenstra, Xiaoyun Wang, and Benne de Weger zwei
X.509 Zertifikate mit unterschiedlichen Public-keys, die auf denselben MD5-Hashwert
fithrten. Nur wenige Tage spéter beschrieb Vlastimil Klima eine Moglichkeit, Kollisionen
fiir MD5 innerhalb weniger Stunden auf einem Notebook zu berechnen. Mittels der so
genannten Tunneling-Methode wurde die Rechenzeit vom gleichen Autor im Mérz 2006
auf eine Minute verkiirzt.

Auf der CRYPTO 98 stellten Chabaud und Joux einen Angriff auf SHA-0 vor, der ein
Kollisionspaar mit nur 2°' Hashwertberechnungen (anstelle von 2% bei einem Geburts-
tagsangriff) aufsptrt.
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In 2004 fanden Biham und Chen Beinahe-Kollisionen fiir den SHA-0, bei denen sich die
Hashwerte nur an 18 von den 160 Bitpositionen unterschieden. Zudem legten sie volle
Kollisionen fiir den auf 62 Runden reduzierten SHA-0 Algorithmus vor.

Schliefflich wurde im August 2004 die Berechnung einer Kollision fiir den vollen 80-Runden
SHA-0 Algorithmus von Joux, Carribault, Lemuet and Jalby bekannt gegeben. Hierzu
wurden lediglich 2°! Hashwerte berechnet, die ca. 80000 Stunden CPU-Rechenzeit auf
einem 2-Prozessor 256-Itanium Supercomputer benotigten.

Im August 2004 wurde von Wang, Feng, Lai und Yu auf der CRYPTO 2004 eine
Angriffsmethode fiir MD5, SHA-0 und andere Hashfunktionen vorgestellt, mit der sich
die Anzahl der Hashwertberechnungen auf 2° senken lisst. Dies wurde im Februar 2005
von Xiaoyun Wang, Yiqun Lisa Yin und Hongbo Yu leicht auf 239 Hashwertberechnungen
verbessert.

Aufgrund der erfolgreichen Angriffe auf SHA-0 rieten mehrere Experten von einer weiteren
Anwendung des SHA-1 ab. Daraufhin kiindigte die amerikanische Behérde NIST an,
SHA-1 in 2010 zugunsten der SHA-2 Varianten abzulosen.

In 2005 veroffentlichten Rijmen und Oswald einen Angriff, der mit weniger als 2%
Hashwertberechnungen ein Kollisionspaar fiir den auf 53 Runden reduzierten SHA-1
Algorithmus findet. Nur wenig spéater kiindigten Xiaoyun Wang, Yiqun Lisa Yin und
Hongbo Yu einen Angriff auf den vollen 80-Runden SHA-1 mit 2% Hashwertberechnungen
an. Im August 2005 erfuhr der benétigte Aufwand von Xiaoyun Wang, Andrew Yao and
Frances Yao auf der CRYPTO 2005 eine weitere Reduktion auf 2% Berechnungen.

Die besten bekannten Angriffe gegen SHA-2 brechen die von 64 auf 41 Runden reduzierte
Variante von SHA-256 und die von 80 auf 46 Runden reduzierte Variante von SHA-512.

1.3 Nachrichten-Authentikationscodes (MACs)

Definition 10. Fine Hashfamilie H = (X,), KC, H) wird durch folgende Komponenten
beschrieben:

e X, eine endliche oder unendliche Menge von Texten,
e Y, endliche Menge aller maéglichen Hashwerte, ||Y|| < || X/,

e K, endlicher Schliisselraum (key space), wobei jeder Schlissel k € K eine Hash-
funktion h: X — Y spezifiziert.

Im folgenden werden wir die Grofle || X || des Textraumes mit n, die des Hashwertbereiches
Y mit m und die des Schliisselraumes K mit | bezeichnen. Wir nennen dann ‘H auch eine
(n, m, 1)-Hashfamilie.

Damit ein geheimer Schliissel £ fiir die Authentifizierung mehrerer Nachrichten benutzt
werden kann, ohne dass dies einem potentiellen Gegner zur nichtautorisierten Berechnung
von giiltigen MAC-Werten verhilft, sollte folgende Bedingung erfiillt sein.

Berechnungsresistenz: Auch wenn eine Reihe von unter einem Schliissel £ generierten
Text-Hashwert-Paaren (z1, h(x1)),. .., (zn, hx(z,)) bekannt ist, erfordert es einen
immensen Aufwand, ohne Kenntnis von k ein weiteres Paar (x,y) mit y = hg(z) zu
finden.

Bei Verwendung einer berechnungsresistenten Hashfunktion ist es einem Gegner nicht
moglich, an Alice eine Nachricht = zu schicken, die Alice als von Bob stammend anerkennt.
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Verwendung eines MAC zur Versiegelung von Software

Mithilfe einer berechnungsresistenten Hashfunktion kann der Integritétsschutz fiir mehrere
Datensétze auf die Geheimhaltung eines Schliissels k£ zurtickgefithrt werden.

Um die Datenséitze x4, ..., z, gegen unbefugt vorgenommene Verdnderungen zu
schiitzen, legt man sie zusammen mit ihren Hashwerten y; = hy(z1),...,y, =
hi(z,) auf einem unsicheren Speichermedium ab und bewahrt den geheimen
Schliissel £ an einem sicheren Ort auf. Bei einem spéteren Zugriff auf einen
Datensatz x; lasst sich dessen Unversehrtheit durch einen Vergleich von y; mit
dem Ergebnis hy(x;) einer erneuten MAC-Berechnung iiberpriifen.

Da auf diese Weise ein wirksamer Schutz der Datensétze gegen Viren und andere
Manipulationen erreicht wird, spricht man von einer Versiegelung der gespeicherten
Datensétze.

1.3.1 Angriffe gegen symmetrische Hashfunktionen

Ein Angriff gegen einen MAC hat die unbefugte Berechnung von Hashwerten zum Ziel.
Das heifit, der Gegner versucht, Hashwerte hy(x) ohne Kenntnis des geheimen Schliissels
k zu berechnen. Entsprechend der Art des zur Verfiigung stehenden Textmaterials lassen
sich die Angriffe gegen einen MAC wie folgt klassifizieren.
Impersonation
Der Gegner kennt nur den benutzten MAC und versucht ein Paar (z,y) mit hy(z) =y
zu generieren, wobei k der (dem Gegner unbekannte) Schliissel ist.
Substitution
Der Gegner versucht in Kenntnis eines Paares (z, hi(x)) ein Paar (2/,y) mit 2’ # x
und hg(z') = y' zu generieren.
Angriff bei bekanntem Text (known-text attack)

Der Gegner kennt fiir eine Reihe von Texten zy, ..., z, (die er nicht selbst wéhlen
konnte) die zugehorigen MAC-Werte hy(z1), ..., hi(x,) und versucht, ein Paar (2',y')
mit hg(2") =y und 2’ & {x1,..., 2.} zu generieren.

Angriff bei frei wahlbarem Text (chosen-text attack)
Der Gegner kann die Texte z; selbst wéhlen.

Angriff bei adaptiv wahlbarem Text (adaptive chosen-text attack)
Der Gegner kann die Wahl des Textes x; von den zuvor erhaltenen MAC-Werten
hi(x;), j < i, abhingig machen.
Wechseln die Anwender nach jeder Hashwertberechnung den Schliissel, so geniigt es, dass
‘H einem Impersonationsangriff widersteht.

1.3.2 Informationstheoretische Sicherheit von M ACs

Modell: Schliissel £ und Nachrichten = werden unabhingig geméfl einer Wahrscheinlich-
keitsverteilung p(k, ) = p(k)p(x) generiert, welche dem Gegner (im Folgenden auch
Oskar genannt) bekannt ist. Wir nehmen 0.B.d.A. an, dass p(z) > 0 und p(k) > 0
fir alle x € X und alle k € K gilt.
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Erfolgswahrscheinlichkeit fiir Impersonation

a: Wahrscheinlichkeit mit der sich ein Gegner bei optimaler Strategie als Bob ausgeben
kann, ohne dass Alice dies bemerkt.

Fir ein Paar (z,y) sei p(x — y) die Wahrscheinlichkeit, dass ein zufillig gewéhlter
Schliissel den Text z auf den Hashwert y abbildet:

plr—=y)= > pk).

keK (z,y)

wobei K(z,y) = {k € K | hi(z) = y} alle Schliissel enthilt, die = auf y abbilden. D.h.
p(x — y) ist die Wahrscheinlichkeit, dass Alice das (vom Gegner gewdhlte) Paar (z,y)
als echt akzeptiert. Dann gilt « = max{a(x) | z € X}, wobei

e

(z) = max{p(r —y) |y €Y}

die Wahrscheinlichkeit ist, mit der ein Gegner bei optimaler Strategie Alice den Text x
als von Bob stammend zukommen lassen kann.

Beispiel 11. Sei K = {1,2,3}, X = {a,b,c,d} und Y = {0,1}.

0,1 10.2] [0,3] |04

hi(z) | a b c d

(0,25 1 0 1
(030 2 1 1 0 1
0.45] 3 0 1 1 0

Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(x) bzw. p(k) an. Dann hat der
Gegner folgende Erfolgsaussichten a(z,y), falls er das Paar (x,y) an Alice sendet.

0 1
a| 0,7 0,3
bl 025 0,75
c| 0,55 045
d| 0,45 0,55
Folglich ist o« = 0, 75. <

Beispiel 12. Sei X =Y ={0,1,2} = Z3 und sei K = Z3 x Zs3. Fir k = (a,b) € K und
x € X sei

hi(x) = ax + b mod 3.

Die zugehdrige Authentikationsmatrix erhalten wir, indem wir die Zeilen mit den
Schliisseln k € K und die Spalten mit den Texten x € X indizieren und in Zeile k und
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Spalte © den Hashwert hy(x) eintragen.

N —m O N R O N R OO
— O N ON RN R O
O R = O NN~ OIN

AN -TIN - N AN IIN AN NN TN
MM R o oo
N = O N = O N O

S N N e e e N N

Angenommen, jeder Schlissel (a,b) hat die gleiche Wk p(a,b) = 1/9. Versucht der Gegner
dann eine Impersonation mit dem Paar (x,y), so akzeptieren genau 8 der 9 moglichen
Schlissel dieses Paar. Dies liegt daran, dass in jeder Spalte jeder Hashwert genau dreimal
vorkommt. Also gilt p(x — y) = 3/9 = 1/3 fiir alle Paare (z,y) € X XY, was fir «
ebenfalls den Wert oo = 1/3 ergibt.

Satz 13. Fir alle x € X ist a(x) > - und daher gilt o >

1 1
m m’

Beweis. Sei x € X beliebig. Dann gilt

Sopleey) =3 Y pk)=> pk)=1

yey yeY ke K (z,y) keK

Somit existiert fiir jedes z € X ein y € Y mit p(z — y) > % und dies impliziert

1
= > —.
az) = maxp(z = y) = —

O

Bemerkung 14. Wie der Beweis zeigt, gilt o = % genau dann, wenn fir alle Paare
(x,y) € X XY gilt,
1
k)= —.
>, (k) = —

keK (x,y)

D.h. bei Gleichverteilung der Schliissel muss in jeder Spalte der Authentikationsmatriz
jeder Hashwert gleich oft vorkommen.

Erfolgswahrscheinlichkeit fiir Substitution

B: Wahrscheinlichkeit mit der ein Gegner bei optimaler Strategie eine von Bob gesendete
Nachricht (x,y) durch eine andere Nachricht (2/,y’) ersetzen kann, ohne dass Alice
dies bemerkt.

Angenommen, Bob sendet die Nachricht (x,y) und der Gegner ersetzt diese durch (2, /).
Dann ist die Erfolgswahrscheinlichkeit des Gegners gleich der bedingten Wk

p(&} ==Y, z y') _ ZkeK(x,y,x’,y/) p(k)
p(z—y) YkeK(wy) P(F)

pa =y |z —y) =
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dass ein zuféllig gewéahlter Schliissel & den Text 2’ auf ¢ abbildet, wenn bereits bekannt
ist, dass er x auf y abbildet. Falls Bob also das Paar (z,y) sendet, so kann der Gegner
bestenfalls die Erfolgswahrscheinlichkeit

Blz,y) = max{p(a’ = y'[z—y) | ' € X —{z},y' €V}
erzielen. Da Bob auf die Wahl von (z,y) keinen Einfluss hat, berechnet sich § als der
erwartete Wert von [(x,y), wobei das Paar (z,y) von Bob mit Wk
p(z,y) = p(@)p(yle) = p(x)p(z — y)
gesendet wird. Somit ergibt sich 3 zu

B= > play)blzy) => )Y By,

zeX,yey zeX yey

wobei
f'(x,y) = max{p(x = y,2" = y) |2’ € X —{a},y €V}

ist.

Beispiel 15.

(z,y) Py ) B'(zy) | Blz.y)
(a,0)  (a,1) | (30)  (b]1) (c,0) (c,1) (d,0) (d)1)

(a,0) 0,25 0,45 0,25 0,45 | 0,45 0,25 | 0,45 | 0,643
(a,1) 0 0,3 | 0,3 0 0 0,3 0,3 1
o) | 0,25 0 0,25 0 0 0,25 | 0,25 1
1) | 0,45 0,8 0,3 0,451 0,45 0,3 | 0,45 0,6
o) | 0,25 0,81 0,25 0,8 0 0,55 | 0,55 1
(1) | 0,45 0 0 0,45 0,45 0 0,45 1
0 | 0,45 0 0 0,45 0 0,45 0,45 1
@n | 0,25 0,31 025 038 | 0,55 0 0,55 1

Fiir 8 erhalten wir also den Wert

B = 0,1-(0,45+0,3)+0,2-(0,25+0,45) + 0,3 - (0,55 + 0,45) + 0,4 - (0,45 + 0, 55)
= 0,915.

Satz 16. Fir jeden MAC (X,Y, K, H) gilt § > .

Beweis. Sei (x,y) € X xY ein Paar mit p(z,y) > 0. Dann gilt fiir beliebige 2" € X —{z},

4 oyl k
Yo' =y |z —y) = Lyey LkeK (e y'wy) PK)

=1.
y'EY ZkEK(ac,y) p(k)

Somit existiert ein ¢’ € Y mit p(z’ — ¢ |z — y) > - und dies impliziert fir alle (z,y)
mit p(x,y) > 0,
1

Blz,y) = max{p(x' =y |z—y) |2’ e X —{z},y/ €Y} > — (1.2)

was wiederum

1

1
— > plry) =—
meX,er m

B= 3 plz,y)Blz,y) >

zeX,yeY

impliziert. O
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Lemma 17. Sei (X,Y, K, H) ein MAC mit § = i Dann gilt
p(@’ =y e y)=1/m
fiir alle Doppelpaare (x,y,x',y") mit x # z'.

Beweis. Wir zeigen zuerst, dass im Fall

1
B=—
m
fir alle Paare (z,y) € X x Y
plz—y) >0
ist. Ist ndmlich
plw = z) =0,

so ist auch
p(w — z|u— v) =0,

wobei (u,v) € X x Y ein beliebiges Paar mit
p(u—v) >0

ist. Wegen

1=> plwr | u—v)= >  pw—2|u o)
Z'eYy Z'eY —{z}

impliziert dies die Existenz eines Hashwertes 2z’ mit
plw 2 urv)>1/(m—1)>1/m.
Dann ist aber auch
B(u,v) = max{p(u' — v'|urv)|u € X —{u},v" €Y} >1/m.

Da
Blz,y) = 1/m
fir alle Paare (z,y) gilt (siehe (1.2)) und da

p(u,v) = p(u)p(u — v) >0

ist, folgt
B= > ply)bxy) >1/m.

zeX,yeyY
Ist nun
pla’ =yl —y) #1/m

fiir ein Doppelpaar (z,y,2’,y") mit = # 2/, so muss wegen

Zp(:c’r—>z’|xl—>y) =1
z'eY

auch ein Doppelpaar (z, 2/, 2/, ') mit
pla' =2z —y)>1/m

existieren, was genau wie im ersten Teil des Beweises zu einem Widerspruch fiihrt. 0O
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Satz 18. Ein MAC (X,Y, K, H) erfillt p = % genau dann, wenn
plr =y, 2’ = y)=1/m?
fir alle Doppelpaare (z,y,x',y'") mit x # x' gilt.
Beweis. Sei (X,Y, K, H) ein MAC mit § = % Nach obigem Lemma impliziert dies, dass
p(@’ =y |z —y) =1/m
fir alle Doppelpaare (x,y,z’,y’) mit z # x’ gilt. Dies impliziert nun
pla’ =) = Zy:p(w = y)p(a’ =y |z = y) =1/m
und daher

plz =y, 2" = y) =p — Y )plz =yl — ) =1/m?

Umgekehrt rechnet man leicht nach, dass ‘H tatsachlich die Bedingung

1
=
m
erfiillt, wenn
ple = y,a' = y) = 1/m’

fir alle Doppelpaare (x,y,z’,y’) mit z # x’ gilt. O

Bemerkung 19. Nach obigem Satz gilt § = % genau dann, wenn fir alle Doppelpaare
(z,y,2',y") mit x # 2" gilt,

plr =y, —y) = Z pk) = —.
keK (zy,x'y")

D.h. bei Gleichverteilung der Schliissel gilt = % genau dann, wenn in je zwei Spalten
der Authentikationsmatrixz jedes Hashwertpaar gleich oft vorkommit.

Ab jetzt setzen wir voraus, dass der Schliissel unter Gleichverteilung gewéhlt wird, d.h.

es gilt p(k) = m fir alle k € K.

Definition 20. Fin MAC (X,Y, K, H) heifit 2-universal, falls fir alle x,2’ € M mit
x #£ 2 und alle y,y' €Y gilt:

I

| K (z,y,2",9)| = -

Bemerkung 21. Bei der Konstruktion von 2-universalen Hashfamilien spielt der Pa-
rameter A\ = ”7%” eine wichtige Rolle. Da A notwendigerweise positiv und ganzzahlig ist,
muss insbesondere || K| > m? gelten.

Im folgenden nennen wir eine 2-universale (n, m,)-Hashfamilie mit A = [/m? kurz einen

(n,m,l, \)-MAC.
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Beispiel 22. Betrachten wir den MAC (X,Y, K, H) mit X = {0,1,2,3}, Y ={0,1, 2},
K =1{0,1,...,8}, wobei H durch folgende Authentikationsmatriz beschrieben wird.

0123
0/0 0 0 O
11111 0
212 2 20
3101 21
411 2 0 1
512 0 1 1
6/0 2 1 2
7110 2 2
812 1 0 2

Da in je zwei Spalten jedes Hashwertpaar genau einmal vorkommdt, ist (X,Y, K, H) ein
(4,3,9,1)-MAC.

Auf Grund von Bemerkung 19 ist klar, dass ein MAC bei gleichverteilten Schliisseln genau
dann die Bedingung g = % erfiillt, wenn er 2-universal ist. Auf Grund von Bemerkung 14
nimmt in diesem Fall auch o den optimalen Wert % an.

Der nachste Satz zeigt fiir primes p eine Konstruktionsmoglichkeit von 2-universalen
MACs mit dem Parameterwert \ = 1.

Satz 23. Sei p prim und fir a,b,x € Z, sei
hap(z) = az + b mod p.
Dann ist (X,Y,K,H) mit X =Y =Z, und K = 7, X Z, ein (p,p,p*, 1)-MAC.

Beweis. Wir miissen zeigen, dass die GroBle von K(z,y,2’,y’) fir alle Doppelpaare
(z,y,2',y") mit x # 2’ konstant ist. Ein Schliissel (a,b) gehort genau dann zu dieser
Menge, wenn er die beiden Kongruenzen

ar+b =, v,
ar’ +b =, o

erfilllt. Da dies jedoch nur auf den Schliissel (a, b) mit

= (V=)@ — )" mod p,
b = y—a(y —y)(=' —z)" mod p
zutrifft, folgt || K (2, v, z,y)| = 1. 0

Die Hashfunktionen des vorigen Satzes erfiillen wegen n = m = p nicht die Kompressi-
onseigenschaft. Zwar lasst sich n noch geringfiigig von p auf p + 1 vergroflern, ohne K
und Y (und damit \) zu veréindern (siche Ubungen), aber eine stéirkere Kompression ist
mit dem Parameterwert A = 1 nicht realisierbar.

Satz 24. Fir einen (n,m,l,1)-MAC gilt
n<m+1

und somit | = m? > (n — 1)
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Beweis. O.B.d.A. sei ||K|| ={1,...,l} und Y ={1,...,m}. Es ist leicht zu sehen, dass
eine (bijektive) Umbenennung 7: Y — Y der Hashwerte in einer einzelnen Spalte der
Authentikationsmatrix A wieder auf einen 2-universalen MAC fithrt. Also kénnen wir
weiterhin annehmen, dass die erste Zeile der Authentikationsmatrix A nur Einsen enthélt.
Da A 2-universal ist, gilt:

e In jeder Zeile i = 2,...,m? kommt hochstens eine Eins vor.

e Jede Spalte j enthélt eine Eins in Zeile 1 und m — 1 Einsen in den iibrigen Zeilen.

2

Da in den Zeilen i = 2,...,m* insgesamt genau n(m — 1) Einsen vorkommen, folgt

Anzahl der Zeilen > Anzahl der Zeilen mit einer Eins,

m2 1+n(m-1)
was m? — 1> n(m — 1) bzw. n < m + 1 impliziert. O

Der néchste Satz liefert 2-universale MACs mit beliebig groem Kompressionsfaktor. Fiir
den Beweis benotigen wir das folgende Lemma.

Lemma 25. Sei A eine k x {-Matrixz iber einem endlichen Kérper F, deren k Zeilen
linear unabhdngig sind. Dann besitzt das lineare Gleichungssystem

Ax =y
fiir jedes y € F* genau ||F||*"* Lisungen x € F*.

Beweis. Siehe Ubungen. O

Satz 26. Sei p prim und fir x = (x1,...,2,) € {0,1} und k = (k1,..., ki) € Zf; sei

¢
hi(x) = kx = Z k;z; mod p.
i=1
Dann ist (X, Y, K, H) mit X = {0,1}*={0°}, Y = Z, und K = Z ein (2°=1,p, p*, p*?)-
MAC.

Beweis. Wir miissen zeigen, dass die GroBle von K(x,y,z’,y’) fur alle Doppelpaare
(z,y,2',y") mit  # 2’ konstant ist. Es gilt

ke K(zr,yay) & h(x)=yAh)=y
&S k-x=yANk-2' =y

Fassen wir x = x;---2, und 2’ = 2 --- 2, zu einer Matrix A zusammen, so ist dies
1 y4 )
aquivalent zu
k1

<x1 - l.e) . : N <y>

oL, / . / :

Ly Ly k Y

Da die beiden Zeilen von A verschieden und damit linear unabhéngig sind, folgt mit

obigem Lemma, dass genau | K (z,y,2,y')|| = p*~2 Schliissel k = (ki, ..., k¢) mit dieser
Eigenschaft existieren. O
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Bemerkung 27. Obige Konstruktion liefert einen \-Wert von ”mLQ” = p*~2. Durch Er-
weiterung von X auf eine geeignete Teilmenge X' C Zf; lasst sich der Textraum wvon
26 — 1 auf ’;:%11 vergrifiern (siehe Ubungen). Dies fiihrt auf einen beliebig grof§ wihlbaren

Kompressionsfaktor von p’(’;j) bei einem \-Wert von A = p*~2. Wie der ndichste Satz

zeigt, ldsst sich dies nicht mit einem kleineren \-Wert erreichen.

Im Beweis des nachsten Satzes benotigen wir folgendes Lemma.

Lemma 28. Fiur beliebige reelle Zahlen by, ..., b, € R gilt (Z?;l bi)2 <mym. b2

=17 "

Beweis. Siehe Ubungen. O
Satz 29. Fir einen (n,m,l, \)-MAC gilt
)\ > n(m-—1)+1
Z 7
und somit | > n(m —1) 4 1.

Beweis. O.B.d.A. kénnen wir wieder ||K|| = {1,...,{} und Y = {1,...,m} annchmen,
und dass die 1. Zeile der Authentikationsmatrix A nur aus Einsen besteht. Fiir jede Zeile
i =1,...,1 bezeichne x; die Anzahl der Einsen in dieser Zeile (also z; = n). Da in jeder
Spalte jeder Hashwert genau Am-mal vorkommt, gilt

! !
inzknm und in:)\nm—n:n()\m—l).

i=1 i=2
Nun ist die Anzahl z der Vorkommen von Indexpaaren (j, ') mit Afs, j] = Afi,j'] =1 in
den Zeilen i = 2,...,[ gleich

z:zxi(zi—l) =>"a? = >z => a7 —n(hm—1).

=2 =2 =2
Mit obigem Lemma ergibt sich

(Clem)  (mOm -1y

!
2
P =
= I—1 [—1
Da andererseits in jedem Spaltenpaar das Hashwert-Paar (1,1) in genau A Zeilen vor-
kommt (genauer: einmal in Zeile 1 und (A — 1)-mal in den Zeilen i = 2,...,[), und da

n(n— 1) solche Spaltenpaare existieren, ist die Anzahl z der Vorkommen von Indexpaaren
(7,7") mit Az, j] = Ali,j'] =1 in den Zeilen ¢ = 2,...,[ gleich

z=(A=1n(n—1).
Somit ergibt sich

(A=1n(n—1) :ix?—n(/\m— 1) > (n()\lm—ll))z
(A =Dnm —1)+n(0m—1)Mm* —1) > (n(Am — 1))?
(An —n — X+ 2dm)(Am? — 1) > n(Am — 1)?

—N°m® 4+ X°m?® > dnm® + An — X+ Am — 2 nm

N (m? —m?) > An(m —1)*+m —1)
axm?>n(m—1)+1

[>n(m—1)+1

—n(Am —1)

L
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Fir den Beweis des néchsten Satzes benétigen wir folgendes Lemma (Beweis siehe
Ubungen).

Lemma 30. Sei X eine Zufallsvariable mit endlichem Wertebereich W (X) O R*. Dann
gilt log E(X) > E(log X).

Satz 31. Fir jeden MAC (X,Y, K, H) gilt:

1
o> o H(K)—H(K|X,Y) "

Hierbei sind X,Y, K Zufallsvariablen, die die Verteilungen der Nachrichten, der Has-
hwerte und der Schliissel beschreiben.

Beweis. Wir zeigen: loga > H(K | X,)) — H(K). Es gilt: @ = max, , p(z — y), wobei

= Proby =y| X =2z
= Dylz
=a > Y ProbX =2,V =yl p(z—y)

T,y

= E(a(X,)))

=loga > logE(a(X,)))

> E(loga(X,Y))(*)

= 2 Peylogpy,
z,y
> Do Dyl - 108y
z,y

= —H|X)

> H(K|X,Y)— H(K)(*x)

Hierbei gilt (*) wegen obigem Lemma und (**) ergibt sich aus

HK,Y,X) = HX)+HY|X)+HK|X,Y)
= H(K,X) +HY|K,X).

—H(K)+H(X) =0

1.3.3 Weitere Konstruktionsmoglichkeiten fiir M ACs
Aus einer schliissellosen Hashfunktion

Sei h: {0,1}™" — {0,1}™ die Kompressionsfunktion einer schliissellosen Hashfunktion
h (etwa MD5). Dann konnen wir mithilfe von h einen MAC konstruieren, indem wir als
Initialisierungsvektor IV den symmetrischen Schliissel £ € K benutzen. Wir betrachten
zunachst den Fall, dass auf das Preprocessing verzichtet wird.

Sei H = (X,Y, K) die Hashfamilie mit X = U,>1{0,1}"*, Y = {0,1}"" = K und
H ={hy | k € K}, wobei hy(x) wie folgt berechnet wird:
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Sei x=uxy,...,xpn, |z =t fUr i=1,...,n
zo =k
for i:=1 to n do
zi = h(zi_12;)
output z,

T W N =

Bei diesem MAC fiihrt beispielsweise folgender Substitutionsangriff zum Erfolg.

Sei (z,z) ein Paar mit hy(z) = 2z, wobei k der dem Gegner unbekannte Schliissel ist.
Dann lasst sich fiir einen beliebigen String u € {0, 1}' leicht der MAC-Wert des Textes
x’ = zu mittels hg(z") = h(zu) berechnen.

Ein &hnlicher Angriff ist auch bei Verwendung einer Preprocessing-Funktion moglich.
Hat diese beispielsweise die Form y(z) = xpad(z), so ldsst sich obiger Angriff wie folgt
modifizieren.

Sei (z,2) gegeben mit hg(y(z)) = 2z und sei y(z) = rpad(z) = y; ... y,. Dann kénnen
wir fiir einen beliebigen String v € {0,1}* den MAC-Wert hg(y(z')) fiir den Text
x’ = zpad(z)u wie folgt berechnen. Wegen

y(2") = 2'pad(2’) = wpad(z)upad(z’) = y; . .. yyupad(x’)

lasst sich das Suffix upad(z’) in eine Folge u ... u,, von Blocken u; der Lange |u;| =t
zerlegen. Setzen wir nun z, = z und

Zn4i = h(zn—l-i—lun—l-i)

fir i =1,...,m, so erhalten wir den gewiinschten MAC-Wert hi(y(z')) = znim.

CBC-MACs

Als Basis fir die Konstruktion eines MAC kann auch ein symmetrisches Kryptosystem
dienen.

Sei (M,C, K, E, D) ein endomorphes Kryptosystem (d.h. M = C) mit M = {0, 1}*. Sei
IV := 0" und sei k € K ein geheimer Schliissel. Sei y eine Funktion fiir den Preprocessing-
Schritt.

Berechnung von hy(z):

Cy=y@) =gy, n 21,y =t
2 zp:=1V

3 for 1=1 to n do

A zi = E(k, zi1 D y:)

5 output hi(x) = z,

Wird auf den Preprocessing-Schritt verzichtet, so lasst sich leicht ein Angriff mit 2
adaptiven Fragen ausfithren. Kennt der Gegner die MAC-Werte z = hi(x) und 2’ = hy(2')
fir die Texte © = o1+ x, und 2/ = (2,01 B IV B 2)Tpio - Tpgm, wobei |x;| = ¢ fir
i=1,...,n+ m ist, so muss auch der Text 2" = 1y - - - T, 1, den MAC-Wert hy(z") = 2/
haben.

Diesen Angriff kann man zwar ausschliefen, indem man eine feste Lange fiir die Texte
x vorschreibt. Dies schrankt jedoch die Anwendbarkeit des CBC-MACS erheblich ein.
Zudem ist dann immer noch folgender Geburtstagsangriff auf den CBC-MAC moglich.
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Geburtstagsangriff auf einen CBC-MAC

Der Gegner wahlt zunichst n — 2 beliebige Blocke z3, ..., x, € {0,1}' und ¢ ~ 1,17 - 23
paarweise verschiedene Blocke z1,... 2% € {0,1}!. AnschlieBend wéihlt er zufillig ¢
weitere Blocke o3, ... 24 € {0,1} und erfragt die MAC-Werte z; = hy(2°) fiir die Texte
vt =2labrs o w,, i =1,...,q.

Wegen 2% # 2 fiir i # j sind auch die Texte ', ..., 29 paarweise verschieden. Seien
z1,..., 2} die nach der ersten Iteration des CBC-MACSs berechneten Kryptotexte 2} =
E,(IV & z}). Da die Blocke 7% zufillig gewihlt werden, sind auch die Eingangsblécke

2t @ b fiir die 2. Tteration zufillig, d.h. es gilt

. . , . , : 1

Pr3i#£j: 2@, =2zl =Pr[Fi#£j: 2, =2)] ~ 5

Da die Gleichheit der Eingangsblocke fiir die 2. Iteration mit der Gleichheit der Ausgangs-

blocke fiir die n-te Iteration und damit mit der Gleichheit der zugehorigen MAC-Werte

2t und 27 dquivalent ist, kann der Gegner das Indexpaar (i,j) auch finden, sofern es
existiert.

Befindet sich unter den erfragten Texten ein Kollisionspaar (z°,27) mit 2z = 27, so
erfragt der Gegner fiir einen beliebigen Bitblock u € {0,1}* — {0’} den MAC-Wert
2 = hy(2"%) fiir den Text 2" = 2! (2}, Du)xs - - - x,, welcher zugleich MAC-Wert des Textes

2/ = (2 ® u)xs - - - x, ist, den er zuvor nicht erfragt hat.
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