
Vorlesungsskript

Kryptologie 2
Sommersemester 2010

Prof. Dr. Johannes Köbler
Humboldt-Universität zu Berlin

Lehrstuhl Komplexität und Kryptografie

7. Mai 2010

ii

Inhaltsverzeichnis

1 Kryptografische Hashverfahren 1
1.1 Einführung . 1
1.2 Schlüssellose Hashfunktionen (MDCs) . 3

1.2.1 Das Zufallsorakelmodell (ZOM) 5
1.2.2 Vergleich von Sicherheitsanforderungen 7
1.2.3 Iterierte Hashfunktionen . 8
1.2.4 Die Merkle-Damgard-Konstruktion 9
1.2.5 Die MD4-Hashfunktion . 10
1.2.6 Die MD5-Hashfunktion . 11
1.2.7 Die SHA-1-Hashfunktion . 12
1.2.8 Die SHA-2-Familie . 13
1.2.9 Kryptoanalyse von Hashfunktionen 14

1.3 Nachrichten-Authentikationscodes (MACs) 15
1.3.1 Angriffe gegen symmetrische Hashfunktionen 16
1.3.2 Informationstheoretische Sicherheit von MACs 16
1.3.3 Weitere Konstruktionsmöglichkeiten für MACs 25

1

1 Kryptografische Hashverfahren

1.1 Einführung

Durch kryptographische Verfahren lassen sich unter anderem die folgenden Schutzziele
realisieren.
• Vertraulichkeit

– Geheimhaltung
– Anonymität (z.B. Mobiltelefon)
– Unbeobachtbarkeit (von Transaktionen)

• Integrität
– von Nachrichten und Daten

• Zurechenbarkeit
– Authentikation
– Unabstreitbarkeit
– Identifizierung

• Verfügbarkeit
– von Daten
– von Rechenressourcen
– von Informationsdienstleistungen

Kryptografische Hashverfahren sind ein wirksames Werkzeug zur Sicherstellung der In-
tegrität von Nachrichten oder generell von digitalisierten Daten. In der Tat nehmen
kryptografische Hashverfahren beim Schutz der Datenintegrität eine ähnlich herausragen-
de Stellung ein wie sie Kryptosystemen bei der Wahrung der Vertraulichkeit zukommt.
Daneben finden kryptografische Hashfunktionen aber auch vielfach als Bausteine von
komplexeren Systemen Verwendung. Wie wir noch sehen werden, sind kryptografische
Hashfunktionen etwa bei der Bildung von digitalen Signaturen sehr nützlich. Auf weitere
Anwendungsmöglichkeiten werden wir später eingehen.
Den überaus meisten Anwendungen von kryptografischen Hashfunktionen h liegt die
Idee zugrunde, dass sie zu einem vorgegebenen Text x eine zwar kompakte aber dennoch
repräsentative Darstellung h(x) liefern, die unter praktischen Gesichtspunkten als eine
eindeutige Identifikationsnummer von x fungieren kann. Die Berechnungsvorschrift für
h muss daher gewissermaßen darauf abzielen, „charakteristische Merkmale“ von x in
den Hashwert h(x) einfließen zu lassen. Da der Fingerabdruck eines Menschen ganz
ähnliche Eigenschaften besitzt (was ihn für Kriminalisten bekanntlich so wertvoll macht),
wird der Hashwert h(x) auch oft als ein digitaler Fingerabdruck von x bezeichnet.
Gebräuchlich sind auch die Bezeichnungen kryptografische Prüfsumme oder message
digest (englische Bezeichnung für „Nachrichtenextrakt“).
Typische Schutzziele, die sich mittels Hashfunktionen realisieren lassen, sind die
Nachrichten- und Teilnehmerauthentikation.
• „Nachrichtenauthentikation“ (message authentication)

2 1 Kryptografische Hashverfahren

Kryptografische
Hashverfahren

schlüssellos symmetrisch

MDCs
(Integritätsschutz)

Sonstige
Hashverfahren

MACs
(Authentikation)

Abbildung 1.1: Eine grobe Einteilung von kryptografischen Hashverfahren.

– Wie lässt sich sicherstellen, dass eine Nachricht (oder eine Datei) während einer
(räumlichen oder auch zeitlichen) Übertragung nicht verändert wurde?

– Wie lässt sich der Urheber (oder Absender) einer Nachricht zweifelsfrei feststellen?
• „Teilnehmerauthentikation“ (entity authentication, identification)

– Wie kann sich eine Person (oder ein Gerät) anderen gegenüber zweifelsfrei auswei-
sen?

Klassifikation von Hashverfahren

Kryptografische Hashverfahren lassen sich grob danach klassifizieren, ob der Hashwert
lediglich in Abhängigkeit vom Eingabetext berechnet wird oder zusätzlich von einem
symmetrischen Schlüssel abhängt (siehe Abbildung 1.1).
Kryptografische Hashfunktionen, bei deren Berechnung keine Schlüssel benutzt werden,
dienen vornehmlich der Erkennung von unbefugt vorgenommenen Manipulationen an
Dateien oder Nachrichten. Daher werden sie auch als MDC bezeichnet (Manipulation
Detection Code [englisch] = Code zur Erkennung von Manipulationen). Zuweilen wird
das Kürzel MDC auch als eine Abkürzung für Modification Detection Code verwendet.
Seltener ist dagegen die Bezeichnung MIC (message integrity codes). Abbildung 1.2
zeigt eine typische Anwendung von MDCs.

Um die Integrität eines Datensatzes x sicherzustellen, der über einen ungesicherten
Kanal gesendet (bzw. auf einem vor Manipulationen nicht sicheren Webserver
abgelegt) wird, kann man wie folgt verfahren. Man sendet den MDC-Hashwert
von x über einen authentisierten Kanal und prüft, ob der Datensatz nach der
Übertragung noch denselben Hashwert liefert.

Kryptografische Hashverfahren mit symmetrischen Schlüsseln finden hauptsächlich bei
der Authentifizierung von Nachrichten Verwendung. Diese werden daher auch als MAC
(message authentication code [englisch] = Code zur Nachrichtenauthentifizierung) oder
als Authentikationscode bezeichnet. Daneben gibt es auch Hashverfahren mit asym-
metrischen Schlüsseln. Diese werden jedoch der Rubrik der Signaturverfahren zugeordnet,
da mit ihnen ausschließlich digitale Unterschriften gebildet werden. Wie sich Nachrichten

1.2 Schlüssellose Hashfunktionen (MDCs) 3

mit einem MAC authentisieren lassen, ist in Abbildung 1.3 dargestellt. Man beachte,
dass nun auch der Hashwert über den unsicheren Kanal gesendet wird.

Möchte Bob eine Nachricht x an Alice übermitteln, so berechnet er den zuge-
hörigen MAC-Hashwert y = hk(x) und fügt diesen der Nachricht x hinzu. Alice
überprüft die Echtheit der empfangenen Nachricht (x′, y′), indem sie ihrerseits
den zu x′ gehörigen Hashwert hk(x′) berechnet und das Ergebnis mit y′ ver-
gleicht. Der geheime Authentikationsschlüssel k muss hierbei genau wie bei einem
symmetrischen Kryptosystem über einen gesicherten Kanal vereinbart werden.

Indem Bob seine Nachricht x um den Hashwert y = hk(x) ergänzt, gibt er Alice nicht
nur die Möglichkeit, anhand von y die empfangene Nachricht auf Manipulationen zu
überprüfen. Die Benutzung des geheimen Schlüssels k erlaubt zudem eine Überprüfung
der Herkunft der Nachricht.

1.2 Schlüssellose Hashfunktionen (MDCs)

In diesem Abschnitt betrachten wir verschiedene Sicherheitsanforderungen an einzelne
Hashfunktionen h. Dabei nehmen wir an, dass h öffentlich bekannt ist, d.h. h ist eine
schlüssellose Hashfunktion (MDC).
Sei h : X → Y eine Hashfunktion. Ein Paar (x, y) ∈ X × Y heißt gültig für h, falls
h(x) = y ist. Ein Paar (x, x′) mit h(x) = h(x′) heißt Kollisionspaar für h. Die Anzahl
‖Y ‖ der Hashwerte bezeichnen wir mit m. Ist auch der Textraum X endlich, ‖X‖ = n,
so heißt h eine (n,m)-Hashfunktion. In diesem Fall verlangen wir meist, dass n ≥ 2m
ist, und wir nennen h dann eine Kompressionsfunktion (compression function).
Da h öffentlich bekannt ist, ist es sehr einfach, für einen vorgegebenen Text x ein gültiges
Paar (x, y) zu erzeugen. Für bestimmte kryptografische Anwendungen ist es wichtig, dass
dies nicht möglich ist, falls der Hashwert y vorgegeben wird.

Problem P1: Bestimmung eines Urbilds
Gegeben: Eine Hashfkt. h : X → Y und ein Hashwert y ∈ Y .
Gesucht: Ein Text x ∈ X mit h(x) = y.

Falls es einen immensen Aufwand erfordert, für einen vorgegebenen Hashwert y einen Text
x mit h(x) = y zu finden, so heißt h Einweg-Hashfunktion (one-way hash function bzw.

x x′

y y
?= h(x′)

h h

echt

falsch

Ungesicherter Kanal

Authentisierter Kanal

Abbildung 1.2: Einsatz eines MDC h zur Überprüfung der Integrität eines Datensatzes
x.

4 1 Kryptografische Hashverfahren

x x′

y hk(x′)
?= y′

hk hk

echt

falsch

Ungesicherter

Kanal

Gesicherter Kanal

Bob Alicek

k: Symmetrischer Authentikationsschlüssel
y = hk(x): MAC-Hashwert für x unter k

Abbildung 1.3: Verwendung eines MAC zur Nachrichtenauthentikation.

preimage resistant hash function). Diese Eigenschaft wird beispielsweise benötigt, wenn
die Hashwerte der Benutzerpasswörter in einer öffentlich zugänglichen Datei abgespeichert
werden, wie es bei manchen Unix-Systemen der Fall ist.

Problem P2: Bestimmung eines zweiten Urbilds
Gegeben: Eine Hashfkt. h : X → Y und ein Text x ∈ X.
Gesucht: Ein Text x′ ∈ X \ {x} mit h(x′) = h(x).

Falls sich für einen vorgegebenen Text x nur mit großem Aufwand ein weiterer Text x′ 6= x
mit dem gleichen Hashwert h(x′) = h(x) finden lässt, heißt h schwach kollisionsre-
sistent (weakly collision resistant bzw. second preimage resistant). Diese Eigenschaft
wird in der durch Abbildung 1.2 skizzierten Anwendung benötigt. Beim Versuch, eine
digitale Signatur zu fälschen (siehe unten), sieht sich der Gegner dagegen mit folgender
Problemstellung konfrontiert.

Problem P3: Bestimmung einer Kollision
Gegeben: Eine Hashfkt. h : X → Y .
Gesucht: Texte x 6= x′ ∈ X mit h(x′) = h(x).

Falls sich dieses Problem nur mit einem immensen Aufwand lösen lässt, heißt h (stark)
kollisionsresistent (collision resistant).
Obwohl die schwache Kollisionsresistenz eine gewisse Ähnlichkeit mit der Einweg-
Eigenschaft aufweist, sind die beiden Eigenschaften im allgemeinen unvergleichbar. So
muss eine schwach kollisionsresistente Funktion nicht notwendigerweise eine Einweg-
funktion sein, da die Bestimmung eines Urbildes gerade für diejenigen Funktionswerte
einfach sein kann, die nur ein einziges Urbild besitzen. Umgekehrt impliziert die Einweg-
Eigenschaft auch nicht die schwache Kollisionsresistenz, da die Kenntnis eines Urbildes
das Auffinden weiterer Urbilder sehr stark erleichtern kann.

1.2 Schlüssellose Hashfunktionen (MDCs) 5

Prozedur FindPreimage(h, y, q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X
2 for each xi ∈ X0 do
3 if h(xi) = y then return(xi) else return(?)

Abbildung 1.4: Bestimmung eines Urbilds für einen Hashwert

1.2.1 Das Zufallsorakelmodell (ZOM)

Das ZOM dient dazu, die Effizienz verschiedener Angriffe auf eine Hashfunktion h : X → Y
nach oben abzuschätzen. Sind X und Y vorgegeben, so können wir eine Hashfunktion
h : X → Y dadurch „konstruieren“, dass wir für jedes x ∈ X zufällig ein y ∈ Y wählen
und h(x) auf y setzen. Äquivalent hierzu ist, für h eine zufällige Funktion aus der
Klasse F (X, Y) aller nm Funktionen von X nach Y zu wählen. Dieses Verfahren ist auf
Grund des hohen Aufwands zwar nicht mehr praktikabel, wenn n = ‖X‖ eine bestimmte
Größe übersteigt. Es liefert uns aber ein theoretisches Modell für eine Hashfunktion
mit „idealen“ kryptografischen Eigenschaften. Offensichtlich besteht für den Gegner die
einzige Möglichkeit, Informationen über h zu erhalten, darin, sich für eine Reihe von
Texten die zugehörigen Hashwerte zu besorgen (was der Befragung eines funktionalen
Zufallsorakels entspricht).
Dass eine Zufallsfunktion h gute kryptografische Eigenschaften aufweist, rührt daher,
dass der Hashwert h(x) für einen neuen Text x auch dann noch schwer vorhersagbar ist,
wenn der Gegner bereits die Hashwerte einer beliebigen Zahl von Texten kennt.

Proposition 1. Sei X0 = {x1, . . . , xk} eine beliebige Menge von k verschiedenen Texten
aus X und seien y1, . . . , yk ∈ Y . Dann gilt für eine zufällig aus F (X, Y) gewählte Funktion
h und für jedes Paar (x, y) ∈ (X −X0)× Y ,

Pr[h(x) = y |h(xi) = yi für i = 1, . . . , k] = 1/m.

Um eine obere Komplexitätsschranke für das Urbildproblem im ZOM zu erhalten, be-
trachten wir den in Abbildung 1.4 dargestellten Algorithmus. Hier (und bei den beiden
folgenden Algorithmen) gibt der Parameter q die Anzahl der Hashwertberechnungen (also
die Anzahl der gestellten Orakelfragen an das Zufallsorakel h) wider. Der Zeitaufwand
der Berechnung ist dabei proportional zu q.

Satz 2. FindPreimage(h, y, q) gibt mit Wahrscheinlichkeit ε = 1 − (1 − 1/m)q ein
Urbild von y aus (unabhängig von der Wahl der Menge X0).

Beweis. Sei y ∈ Y fest und sei X0 = {x1, . . . , xq}. Für i = 1, . . . , q bezeichne Ei das
Ereignis “h(xi) = y”. Nach Proposition 1 sind diese Ereignisse stochastisch unabhängig
und ihre Wahrscheinlichkeit ist Pr[Ei] = 1/m (i = 1, . . . , q). Also folgt

Pr[E1 ∪ . . . ∪ Eq] = 1− Pr[E1 ∩ . . . ∩ Eq] = 1− (1− 1/m)q.
�

Der in Abbildung 1.5 dargestellte Algorithmus liefert uns eine obere Schranke für die
Komplexität des Problems, ein zweites Urbild für h(x) zu bestimmen. Die Erfolgswahr-
scheinlichkeit lässt sich vollkommen analog zum vorherigen Satz bestimmen.

6 1 Kryptografische Hashverfahren

Prozedur FindSecondPreimage(h, x, q)
1 y := h(x)
2 wähle eine beliebige Menge X0 = {x1, . . . , xq−1} ⊆ X − {x}
3 for each xi ∈ X0 do
4 if h(xi) = y then return(xi)
5 return(?)

Abbildung 1.5: Bestimmung eines 2. Urbilds für einen Hashwert

Satz 3. FindSecondPreimage(h, x, q) gibt mit Wahrscheinlichkeit ε = 1−(1−1/m)q−1

ein zweites Urbild x0 6= x von y = h(x) aus.
Ist q vergleichsweise klein, so ist bei beiden bisher betrachteten Angriffen ε ≈ q/m. Um
also auf eine Erfolgswahrscheinlichkeit von 1/2 zu kommen, ist q ≈ m/2 zu wählen.
Geht es lediglich darum, irgendein Kollisionspaar (x, x′) aufzuspüren, so bietet sich ein
sogenannter Geburtstagsangriff an. Dieser ist deutlich zeiteffizienter zu realisieren.
Wie der Name schon andeutet, basiert dieser Angriff auf dem sogenannten Geburtstagspa-
radoxon, welches in seiner einfachsten Form folgendes besagt.
Geburtstagsparadoxon: Bereits in einer Schulklasse mit 23 Schulkindern haben mit einer

Wahrscheinlichkeit größer 1/2 mindestens zwei Kinder am gleichen Tag Geburtstag
(dies erscheint zwar verblüffend, wird aber durch die Praxis mehr als bestätigt).

Tatsächlich zeigt der nächste Satz, dass bei q-maligem Ziehen (mit Zurücklegen) aus
einer Urne mit m Kugeln mit einer Wahrscheinlichkeit von

1− (m− 1)(m− 2) · · · (m− q + 1)/mq−1

eine Kugel zweimal gezogen wird. Für m = 365 und q = 23 ergibt dies einen Wert von
ungefähr 0, 507.
Zur Kollisionsbestimmung verwenden wir den in Abbildung 1.6 dargestellten Algorithmus.
Bei einer naiven Implementierung würde zwar der Zeitaufwand für die Auswertung der if-
Bedingung quadratisch von q abhängen. Trägt man aber jeden Text x unter dem Suchwort
h(x) in eine (herkömmliche) Hashtabelle der Größe q ein, so wird der Zeitaufwand für
die Bearbeitung jedes einzelnen Textes x im wesentlichen durch die Berechnung von h(x)
bestimmt.

Satz 4. Collision(h, q) gibt mit Erfolgswahrscheinlichkeit

ε = 1− (m− 1)(m− 2) · · · (m− q + 1)
mq−1

ein Kollisionspaar (x, x′) für h aus.

Prozedur Collision(h, q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X − {x}
2 for each xi ∈ X0 do yi := h(xi)
3 if ∃i 6= j : yi = yj then return(xi, xj) else return(?)

Abbildung 1.6: Bestimmung eines Kollisionspaares

1.2 Schlüssellose Hashfunktionen (MDCs) 7

1 wähle zufällig x ∈ X
2 x′ := A(x)
3 if x′ 6= ? then return(x, x′) else return(?)

Abbildung 1.7: Reduktion des Kollisionsroblems auf das Problem, ein zweites Urbild zu
bestimmen

Beweis. Sei X0 = {x1, . . . , xq}. Für i = 1, . . . , q bezeichne Ei das Ereignis

“h(xi) 6∈ {h(x1, . . . , h(xi−1}.”

Dann beschreibt E1∩. . .∩Eq das Ereignis “Collision(h, q) gibt ? aus” und für i = 1, . . . , q
gilt

Pr[Ei |E1 ∩ . . . ∩ Ei−1] = m− i+ 1
m

.

Dies führt auf die Erfolgswahrscheinlichkeit

ε = 1− Pr[E1 ∩ . . . ∩ Eq]
= 1− Pr[E1]Pr[E2 |E1] · · ·Pr[Eq |E1 ∩ . . . ∩ Eq−1]

= 1−
(
m− 1
m

)(
m− 2
m

)
· · ·

(
m− q + 1

m

)
.

�

Mit 1− x ≈ e−x folgt

ε = 1−
q−1∏
i=1

(
1− i

m

)
≈ 1−

q−1∏
i=1

e
−i
m = 1− e− 1

m

∑q−1
i=1 i = 1− e−

q(q−1)
2m ≈ q2/2m.

Somit erhalten wir die Abschätzung

q ≈ cε
√
m

mit cε =
√

2ε. Für ε = 1/2 ergibt sich also q ≈
√
m. Besitzt also eine binäre Hashfunktion

h : {0, 1}n → {0, 1}m die Hashwertlänge m = 128 Bit, so müssen im ZOM q ≈ ·264 Texte
gehasht werden, um mit einer Wahrscheinlichkeit von 1/2 eine Kollision zu finden. Um
einem Geburtstagsangriff widerstehen zu können, sollte eine Hashfunktion mindestens
eine Hashwertlänge von 128 oder besser 160 Bit haben.

1.2.2 Vergleich von Sicherheitsanforderungen

In diesem Abschnitt zeigen wir, dass stark kollisionsresistente Hashfunktionen sowohl
schwach kollisionsresistent als auch Einweghashfunktionen sein müssen.

Satz 5. Sei h : X → Y eine (n,m)-Hashfunktion. Dann ist das Problem P3, ein Kol-
lisionspaar für h zu bestimmen, auf das Problem P2, ein zweites Urbild zu bestimmen,
reduzierbar. Folglich sind stark kollisionsresistente Hashfunktionen auch schwach kollisi-
onsresistent.

Beweis. Sei A ein Las-Vegas Algorithmus, der für ein zufällig aus X gewähltes x mit
Erfolgswahrscheinlichkeit ε ein zweites Urbild x′ für h liefert. Dann ist klar, dass der in
Abbildung 1.7 dargestellte Las-Vegas Algorithmus mit Wahrscheinlichkeit ε ein Kollisi-
onspaar ausgibt. �

8 1 Kryptografische Hashverfahren

1 wähle zufällig x ∈ X
2 y := h(x)
3 x′ := A(y)
4 if x 6= x′ then return(x, x′) else return(?)

Abbildung 1.8: Reduktion des Kollisionsproblems auf das Urbildproblem

Als nächstes zeigen wir, wie sich das Kollisionsproblem auf das Urbildproblem reduzieren
lässt.

Satz 6. Sei h : X → Y eine (n,m)-Hashfunktion mit n ≥ 2m. Dann ist das Problem P3,
ein Kollisionspaar für h zu bestimmen, auf das Problem P1, ein Urbild zu bestimmen,
reduzierbar.

Beweis. Sei A ein Invertierungsalgorithmus für h, d.h. A berechnet für jeden Hashwert y
in W (h) = {h(x) | x ∈ X} ein Urbild x mit h(x) = y. Betrachte den in Abbildung 1.8
dargestellten Las-Vegas Algorithmus B.
Sei C = {h−1(y) | y ∈ Y }. Dann hat B eine Erfolgswahrscheinlichkeit von

∑
C∈C

‖C‖
‖X‖

· ‖C‖ − 1
‖C‖

= 1
n

∑
C∈C

(‖C‖ − 1) = (n−m)/n ≥ 1
2 .

�

1.2.3 Iterierte Hashfunktionen

In diesem Abschnitt beschäftigen wir uns mit der Frage, wie sich aus einer kollisionsresis-
tenten Kompressionsfunktion

h : {0, 1}m+t → {0, 1}m

eine kollisionsresistente Hashfunktion

ĥ : {0, 1}∗ → {0, 1}l

konstruieren lässt. Hierzu betrachten wir folgende kanonische Konstruktionsmethode.
Preprocessing: Transformiere x ∈ {0, 1}∗ mittels einer Funktion

y : {0, 1}∗ →
⋃
r≥1
{0, 1}rt

zu einem String y(x) mit der Eigenschaft |y(x)| ≡t 0.
Processing: Sei IV ∈ {0, 1}m ein öffentlich bekannter Initialisierungsvektor und sei

y(x) = y1 · · · yr mit |yi| = t für i = 1, . . . , r. Berechne eine Folge z0, . . . , zr von Strings
zi ∈ {0, 1}m wie folgt:

zi =

IV, i = 0,
h(zi−1yi), i = 1, . . . , r.

Optionale Ausgabetransformation: Berechne den Hashwert ĥ(x) = g(zr), wobei
g : {0, 1}m → {0, 1}l eine öffentlich bekannte Funktion ist. (Meist wird für g die
Identität verwendet.)

1.2 Schlüssellose Hashfunktionen (MDCs) 9

Um ĥ(x) zu berechnen, muss also die Kompressionsfunktion h genau r-mal aufgeru-
fen werden. Wir formulieren nun eine für Preprocessing-Funktionen wünschenswerte
Eigenschaft.

Definition 7. Eine Funktion y : {0, 1}∗ → {0, 1}∗ heißt suffixfrei, falls es keine Strings
x 6= x̃ und z in {0, 1}∗ mit y(x̃) = zy(x) gibt (d.h. kein Funktionswert y(x) ist Suffix
eines Funktionswertes y(x̃) an einer Stelle x̃ 6= x).

Man beachte, dass jede suffixfreie Funktion insbesondere injektiv ist.

Satz 8. Falls die Preprocessing-Funktion y suffixfrei und die Ausgabetransformation g
injektiv ist, so ist mit h auch ĥ kollisionsresistent.

Beweis. Angenommen, es gelingt, ein Kollisionspaar x, x̃ für ĥ mit ĥ(x) = ĥ(x̃) zu finden.
Sei

y(x) = y1y2 . . . yk−1yk und y(x̃) = ỹ1ỹ2 . . . ỹl−1ỹl mit k ≤ l.

Da y suffixfrei ist, muss ein Index i ∈ {1, . . . , k} mit yi 6= ỹl−k+i existieren. Weiter seien
zi (i = 0, . . . , k) und z̃j (j = 0, . . . , l) die in der Processing-Phase berechneten Hashwerte.
Da g injektiv ist, muss mit g(zk) = ĥ(x) = ĥ(x̃) = g(z̃l) auch zk = z̃l gelten. Sei imax
der größte Index i ∈ {1, . . . , k} mit zi−1yi 6= z̃l−k+i−1ỹl−k+i. Dann bilden zimax−1yimax und
z̃l−k+imax−1ỹl−k+imax wegen

h(zimax−1yimax) = zimax = z̃l−k+imax = h(z̃l−k+imax−1ỹl−k+imax)

ein Kollisionspaar für h. �

1.2.4 Die Merkle-Damgard-Konstruktion

Merkle und Damgard schlugen 1989 folgende konkrete Realisierung ihrer Konstruktion
vor. Als Initialisierungsvektors wird der Nullvektor IV = 0m benutzt, die optionale
Ausgabetransformation entfällt, und für y(x) wird im Fall t ≥ 2 die folgende Funktion
verwendet. (Den Fall t = 1 betrachten wir später.)
Für x = ε sei y(x) = 0t und für x ∈ {0, 1}n mit n > 0 sei k = d n

t−1e und x =
x1x2 . . . xk−1xk mit |x1| = |x2| = . . . = |xk−1| = t − 1 sowie |xk| = t − 1 − d, wobei
0 ≤ d < t − 1. Im Fall k = 1 ist dann y(x) = 0x0d1bint−1(d) und für k > 1 ist
y(x) = y1 · · · yk+1, wobei

yi =



0x1, i = 1,
1xi, 2 ≤ i < k,

1xk0d, i = k,

1bint−1(d), i = k + 1,

(1.1)

und bint−1(d) die durch führende Nullen auf die Länge t− 1 aufgefüllte Binärdarstellung
von d ist.

Satz 9. Die durch (1.1) definierte Preprocessing-Funktion y ist suffixfrei.

Beweis. Seien x 6= x̃ zwei Texte mit |x| ≤ |x̃|. Wir müssen zeigen, dass y(x) = y1y2 . . . yk+1
kein Suffix von y(x̃) = ỹ1ỹ2 . . . ỹl+1 ist. Im Fall x = ε ist dies klar. Für x 6= ε machen wir
folgende Fallunterscheidung.

10 1 Kryptografische Hashverfahren

1. Fall: |x| 6≡t−1 |x̃|. Dann folgt d 6= d̃ und somit yk+1 6= ỹl+1.
2. Fall: |x| = |x̃|. In diesem Fall ist k = l. Wegen x 6= x̃ existiert ein Index i ∈
{1, . . . , k} mit xi 6= x̃i. Dies impliziert yi 6= ỹi, also ist y(x) kein Suffix von y(x̃).

3. Fall: |x| 6= |x̃| und |x| ≡t−1 |x
′|. In diesem Fall ist k < l. Da y(x) mit einer Null

beginnt, aber das (l − k + 1)-te Bit von y(x̃) eine Eins ist, kann y(x) kein Suffix von
y(x̃) sein. �

Nun kommen wir zum Fall t = 1. Sei y die durch y(x) := 11f(x) definierte Funktion,
wobei f wie folgt definiert ist:

f(x1, . . . , xn) = f(x1) . . . f(x2) mit f(0) = 0 und f(1) = 01.

Dann ist leicht zu sehen, dass y suffixfrei ist. Da die Kompressionsfunktion h bei der
Berechnung von ĥ(x) im Fall t = 1 für jedes Bit von y(x) einmal aufgerufen wird, wird h
genau |y(x)| ≤ 2(n+1)-mal aufgerufen. Im Fall t > 1 werden dagegen nur k+1 = d n

t−1e+1
Aufrufe benötigt.

1.2.5 Die MD4-Hashfunktion

Die MD4-Hashfunktion (Message Digest) wurde 1990 von Rivest vorgeschlagen. Die
Bitlänge von MD4 beträgt l = 128 Bit. Bei einer Wortlänge von 32 Bit entspricht
dies 4 Wörtern. Die im Folgenden vorgestellten Hashfunktionen benutzen u.a. folgende
Operationen auf Wörtern.

Operatoren auf {0, 1}32

X ∧ Y bitweises „Und“ von X und Y
X ∨ Y bitweises „Oder“ von X und Y
X ⊕ Y bitweises „exklusives Oder“ von X und Y
¬X bitweises Komplement von X

X + Y Ganzzahl-Addition modulo 232

X → s Rechtsshift um s Stellen
X ←↩ s zirkulärer Linksshift um s Stellen

Während die Ganzzahl-Addition bei MD4 und MD5 in little endian Architektur (d.h.
ein aus 4 Bytes a3a2a1a0, 0 ≤ ai ≤ 255 zusammengesetztes Wort repräsentiert die Zahl
a0224 + a1216 + a228 + a3) ausgeführt wird, verwendet SHA-1 eine big endian Architektur
(d.h. a3a2a1a0, 0 ≤ ai ≤ 255 repräsentiert die Zahl a3224 + a2216 + a128 + a0). Der
MD4-Algorithmus benutzt die folgenden Konstanten yj, zj, sj, j = 0, . . . , 47

yj (in Hexadezimaldarstellung)
j = 0, . . . , 15 0
j = 16, . . . , 31 5a827999
j = 32, . . . , 47 6ed9eba1

1.2 Schlüssellose Hashfunktionen (MDCs) 11

zj
j = 0, . . . , 15 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
j = 16, . . . , 31 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15
j = 32, . . . , 47 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

sj
j = 0, . . . , 15 3, 7, 11, 19, 3, 7, 11, 19, 3, 7, 11, 19, 3, 7, 11, 19
j = 16, . . . , 31 3, 5, 9, 13, 3, 5, 9, 13, 3, 5, 9, 13, 3, 5, 9, 13
j = 32, . . . , 47 3, 9, 11, 15, 3, 9, 11, 15, 3, 9, 11, 15, 3, 9, 11, 15

und folgende Funktionen fj, j = 0, . . . , 47

fj(X, Y, Z) :=


(X ∧ Y) ∨ (¬X ∧ Z), j = 0, . . . , 15,
(X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z), j = 16, . . . , 31,
X ⊕ Y ⊕ Z, j = 32, . . . , 47.

Für MD4 konnten nach ca. 220 Hashwertberechnungen Kollisionen aufgespürt werden.
Deshalb gilt MD4 nicht mehr als kollisionsresistent.

MD4(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 (A,B,C,D) := (H1, H2, H3, H4)
8 for j := 0 to 47 do
9 (A,B,C,D) := (D, (A+ fj(B,C,D) +X[zj] + yj)←↩ sj, B, C)

10 (H1, H2, H3, H4) := (H1 + A,H2 +B,H3 + C,H4 +D)
11 output H1H2H3H4

1.2.6 Die MD5-Hashfunktion

Der MD5 ist eine 1991 von Rivest präsentierte verbesserte Version von MD4. Die Bitlänge
von MD5 beträgt wie bei MD4 l = 128 Bit. Bei einer Wortlänge von 32 Bit entspricht
dies 4 Wörtern. In MD5 werden teilweise andere Konstanten als in MD4 verwendet.
Zudem besitzt MD5 eine zusätzliche 4. Runde (j = 48, . . . , 63), in der die Funktion
fj(X, Y, Z) = Y ⊕ (X ∨ ¬Z) verwendet wird. Außerdem wurde die in Runde 2 von MD4
verwendete Funktion durch fj(X, Y, Z) := (X ∧ Z) ∨ (Y ∧ ¬Z), j = 16 . . . 31, ersetzt.
Die y-Konstanten sind definiert als yj := die ersten 32 Bit der Binärdarstellung von
abs(sin(j + 1)), 0 ≤ j ≤ 63, und für zj und sj werden folgende Konstanten benutzt.

12 1 Kryptografische Hashverfahren

zj
j = 0, . . . , 15 zj = j : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
j = 16, . . . , 31 zj = (5j + 1) mod 16 : 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12
j = 32, . . . , 47 zj = (3j + 5) mod 16 : 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2
j = 48, . . . , 63 zj = 7j mod 16 : 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9

sj
j = 0, . . . , 15 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22
j = 16, . . . , 31 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20
j = 32, . . . , 47 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23
j = 48, . . . , 63 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21

Für MD5 konnten in 2004 ebenfalls Kollisionspaare gefunden werden (für die Kompressi-
onsfunktion von MD5 gelang dies bereits 1996).

MD5(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 (A,B,C,D) := (H1, H2, H3, H4)
8 for j := 0 to 63 do
9 (A,B,C,D) := (D,B + (A+ fj(B,C,D) +X[zj] + yj)←↩ sj, B, C)

10 (H1, H2, H3, H4) := (H1 + A,H2 +B,H3 + C,H4 +D)
11 output H1H2H3H4

1.2.7 Die SHA-1-Hashfunktion

Der Secure Hash Algorithm (SHA-1) ist eine Weiterentwicklung des MD4 bzw. MD5
Algorithmus. Er gilt in den USA als Standard und ist Bestandteil des DSS (Digital
Signature Standard). Die Bitlänge von SHA-1 beträgt l = 160 Bit. Bei einer Wortlänge
von 32 Bit entspricht dies 5 Wörtern. SHA-1 unterscheidet sich nur geringfügig von
der SHA-0 Hashfunktion, in der eine Schwachstelle dazu führt, dass nach Berechnung
von ca. 261 Hashwerten ein Kollisionspaar gefunden werden kann (obwohl bei einem
Geburtstagsangriff auf Grund der Hashwertlänge von 160 Bit ca. 280 Berechnungen
erforderlich sein müssten). Diese potentielle Schwäche von SHA-0 wurde im SHA-1
dadurch entfernt, dass SHA-1 in Zeile 8 einen zirkulären Shift um eine Bitstelle ausführt.
Der SHA-1-Algorithmus benutzt die folgenden Konstanten Kj, j = 0, . . . , 79

Kj (in Hexadezimaldarstellung)
j = 0, . . . , 19 5a827999
j = 20, . . . , 39 6ed9eba1
j = 40, . . . , 59 8f1bbcdc
j = 60, . . . , 79 ca62c1d6

1.2 Schlüssellose Hashfunktionen (MDCs) 13

und folgende Funktionen fj, j = 0, . . . , 79

fj(X, Y, Z) :=



(X ∧ Y) ∨ (¬X ∧ Z), j = 0, . . . , 19,
X ⊕ Y ⊕ Z, j = 20, . . . , 39,
(X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z), j = 40, . . . , 59,
X ⊕ Y ⊕ Z, j = 60, . . . , 79.

SHA-1(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H0, H1, H2, H3, H4) := (67452301, efcdab89, 98badcfe, 10325476, c3d2e1f0)
4 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
5 for i := 1 to r do
6 sei Mi = X[0] · · ·X[15]
7 for t := 16 to 79 do
8 X[t] := (X[t− 3]⊕X[t− 8]⊕X[t− 14]⊕X[t− 16])←↩ 1
9 (A,B,C,D,E) := (H0, H1, H2, H3, H4)

10 for j := 0 to 79 do
11 temp := (A←↩ 5) + fj(B,C,D) + E +X[j] +Kj

12 (A,B,C,D,E) := (temp,A,B ←↩ 30, C,D)
13 (H0, H1, H2, H3, H4) := (H0 + A,H1 +B,H2 + C,H3 +D,H4 + E)
14 output H1H2H3H4

1.2.8 Die SHA-2-Familie

Im Jahr 2001 veröffentlichte NIST 4 weitere Hashfunktionen der SHA-Familie: SHA-224,
SHA-256, SHA-384, and SHA-512. Diese Funktionen werden auch als SHA-2 Hashfunk-
tionen bezeichnet. In 2004 kam noch SHA-224 als fünfte Variante hinzu.
SHA-256 und SHA-512 haben denselben Aufbau, unterscheiden sich aber in erster Linie
in der benutzten Wortlänge: 32 Bit bei SHA-256 und 64 Bit bei SHA-512. Zudem werden
unterschiedliche Shift- und Summationskonstanten verwendet und auch die Rundenzahlen
differieren. SHA-224 und SHA-384 sind reduzierte Varianten von SHA-256 und SHA-
512. Der SHA-256-Algorithmus benutzt die folgenden Konstanten Kj, j = 0, . . . , 63 (in
Hexadezimaldarstellung).

428a2f98, 71374491, b5c0fbcf, e9b5dba5, 3956c25b, 59f111f1, 923f82a4, ab1c5ed5,
d807aa98, 12835b01, 243185be, 550c7dc3, 72be5d74, 80deb1fe, 9bdc06a7, c19bf174,
e49b69c1, efbe4786, 0fc19dc6, 240ca1cc, 2de92c6f, 4a7484aa, 5cb0a9dc, 76f988da,
983e5152, a831c66d, b00327c8, bf597fc7, c6e00bf3, d5a79147, 06ca6351, 14292967,
27b70a85, 2e1b2138, 4d2c6dfc, 53380d13, 650a7354, 766a0abb, 81c2c92e, 92722c85,
a2bfe8a1, a81a664b, c24b8b70, c76c51a3, d192e819, d6990624, f40e3585, 106aa070,
19a4c116, 1e376c08, 2748774c, 34b0bcb5, 391c0cb3, 4ed8aa4a, 5b9cca4f, 682e6ff3,
748f82ee, 78a5636f, 84c87814, 8cc70208, 90befffa, a4506ceb, bef9a3f7, c67178f2

Dies sind jeweils die ersten 32 Bit der binären Nachkommastellen der dritten Wurzeln
der ersten 64 Primzahlen 2, . . . , 311. SHA-256 arbeitet wie folgt.

14 1 Kryptografische Hashverfahren

SHA-256(x)
1 input x ∈ {0, 1}∗, |x| = n
2 y := x10kbin64(n), k ∈ {0, 1, . . . , 511} mit n+ 1 + k + 64 ≡ 0 (mod 512)
3 (H0, H1, H2, H3, H4, H5, H6, H7) := (6a09e667, bb67ae85, 3c6ef372, a54ff53a,
4 510e527f, 9b05688c, 1f83d9ab, 5be0cd19)
5 sei y = M1 · · ·Mr, r = (n+ 1 + k + 64)/512
6 for i := 1 to r do
7 sei Mi = X[0] · · ·X[15]
8 for t := 16 to 63 do
9 s0 := (X[t− 15] ↪→ 7)⊕ (X[t− 15] ↪→ 18)⊕ (X[t− 15]→ 3)

10 s1 := (X[t− 2] ↪→ 17)⊕ (X[t− 2] ↪→ 19)⊕ (X[t− 2]→ 10)
11 X[t] := X[t− 16] + s0 +X[t− 7] + s1
12 (A,B,C,D,E, F,G,H) := (H0, H1, H2, H3, H4, H5, H6, H7)
13 for j := 0 to 63 do
14 s0 := (a ↪→ 2)⊕ (a ↪→ 13)⊕ (a ↪→ 22)
15 maj := (a ∧ b)⊕ (a ∧ c)⊕ (b ∧ c)
16 t2 := s0 +maj
17 s1 := (e ↪→ 6)⊕ (e ↪→ 11)⊕ (e ↪→ 25)
18 ch := (e ∧ f)⊕ ((note) ∧ g)
19 t1 := h+ s1 + ch+ k[i] +X[i]
20 (A,B,C,D,E, F,G,H) := (t1 + t2, A,B,C,D + t1, E, F,G)
21 (H0, H1, H2, H3, H4, H5, H6, H7)
22 := (H0 + A,H1 +B,H2 + C,H3 +D,H4 + E,H5 + F,H6 +G,H7 +H)
23 output H0H1H2H3H4H5H6H7

Die Initialwerte von H0, . . . , H7 in den Zeilen 3 und 4 sind jeweils die ersten 32 Bit der
binären Nachkommastellen der Wurzeln der Primzahlen 2, 3, 5, 7, 11, 13, 17, 19.

1.2.9 Kryptoanalyse von Hashfunktionen

Bereits 1991 wurden von Den Boer und Bosselaers Schwächen im MD4 aufgedeckt. Im
August 2004 erschien ein Bericht [1] mit einer Anleitung, wie sich Kollisionen für MD4
mittels “hand calculation” finden lassen.
In 1993, fanden den Boer und Bosselaers einen Weg, so genannte “Pseudo-Kollisionen” für
die MD5 Kompressionsfunktion zu generieren. In 1996, fand Dobbertin ein Kollisionspaar
für die MD5 Kompressionsfunktion.
Im August 2004 wurden schließlich Kollisionen für MD5 von Xiaoyun Wang, Dengguo
Feng, Xuejia Lai and Hongbo Yu berechnet. Der benötigte Aufwand wurde mit ca. 1
Stunde auf einem IBM p690 Cluster abgeschätzt.
Im März 2005 veröffentlichten Arjen Lenstra, Xiaoyun Wang, and Benne de Weger zwei
X.509 Zertifikate mit unterschiedlichen Public-keys, die auf denselben MD5-Hashwert
führten. Nur wenige Tage später beschrieb Vlastimil Klima eine Möglichkeit, Kollisionen
für MD5 innerhalb weniger Stunden auf einem Notebook zu berechnen. Mittels der so
genannten Tunneling-Methode wurde die Rechenzeit vom gleichen Autor im März 2006
auf eine Minute verkürzt.
Auf der CRYPTO 98 stellten Chabaud und Joux einen Angriff auf SHA-0 vor, der ein
Kollisionspaar mit nur 261 Hashwertberechnungen (anstelle von 280 bei einem Geburts-
tagsangriff) aufspürt.

1.3 Nachrichten-Authentikationscodes (MACs) 15

In 2004 fanden Biham und Chen Beinahe-Kollisionen für den SHA-0, bei denen sich die
Hashwerte nur an 18 von den 160 Bitpositionen unterschieden. Zudem legten sie volle
Kollisionen für den auf 62 Runden reduzierten SHA-0 Algorithmus vor.
Schließlich wurde im August 2004 die Berechnung einer Kollision für den vollen 80-Runden
SHA-0 Algorithmus von Joux, Carribault, Lemuet and Jalby bekannt gegeben. Hierzu
wurden lediglich 251 Hashwerte berechnet, die ca. 80 000 Stunden CPU-Rechenzeit auf
einem 2-Prozessor 256-Itanium Supercomputer benötigten.
Im August 2004 wurde von Wang, Feng, Lai und Yu auf der CRYPTO 2004 eine
Angriffsmethode für MD5, SHA-0 und andere Hashfunktionen vorgestellt, mit der sich
die Anzahl der Hashwertberechnungen auf 240 senken lässt. Dies wurde im Februar 2005
von Xiaoyun Wang, Yiqun Lisa Yin und Hongbo Yu leicht auf 239 Hashwertberechnungen
verbessert.
Aufgrund der erfolgreichen Angriffe auf SHA-0 rieten mehrere Experten von einer weiteren
Anwendung des SHA-1 ab. Daraufhin kündigte die amerikanische Behörde NIST an,
SHA-1 in 2010 zugunsten der SHA-2 Varianten abzulösen.
In 2005 veröffentlichten Rijmen und Oswald einen Angriff, der mit weniger als 280

Hashwertberechnungen ein Kollisionspaar für den auf 53 Runden reduzierten SHA-1
Algorithmus findet. Nur wenig später kündigten Xiaoyun Wang, Yiqun Lisa Yin und
Hongbo Yu einen Angriff auf den vollen 80-Runden SHA-1 mit 269 Hashwertberechnungen
an. Im August 2005 erfuhr der benötigte Aufwand von Xiaoyun Wang, Andrew Yao and
Frances Yao auf der CRYPTO 2005 eine weitere Reduktion auf 263 Berechnungen.
Die besten bekannten Angriffe gegen SHA-2 brechen die von 64 auf 41 Runden reduzierte
Variante von SHA-256 und die von 80 auf 46 Runden reduzierte Variante von SHA-512.

1.3 Nachrichten-Authentikationscodes (MACs)

Definition 10. Eine Hashfamilie H = (X ,Y ,K,H) wird durch folgende Komponenten
beschrieben:
• X, eine endliche oder unendliche Menge von Texten,
• Y , endliche Menge aller möglichen Hashwerte, ‖Y ‖ ≤ ‖X‖,
• K, endlicher Schlüsselraum (key space), wobei jeder Schlüssel k ∈ K eine Hash-
funktion hk : X → Y spezifiziert.

Im folgenden werden wir die Größe ‖X‖ des Textraumes mit n, die des Hashwertbereiches
Y mit m und die des Schlüsselraumes K mit l bezeichnen. Wir nennen dann H auch eine
(n,m, l)-Hashfamilie.
Damit ein geheimer Schlüssel k für die Authentifizierung mehrerer Nachrichten benutzt
werden kann, ohne dass dies einem potentiellen Gegner zur nichtautorisierten Berechnung
von gültigen MAC-Werten verhilft, sollte folgende Bedingung erfüllt sein.

Berechnungsresistenz: Auch wenn eine Reihe von unter einem Schlüssel k generierten
Text-Hashwert-Paaren (x1, hk(x1)), . . . , (xn, hk(xn)) bekannt ist, erfordert es einen
immensen Aufwand, ohne Kenntnis von k ein weiteres Paar (x, y) mit y = hk(x) zu
finden.

Bei Verwendung einer berechnungsresistenten Hashfunktion ist es einem Gegner nicht
möglich, an Alice eine Nachricht x zu schicken, die Alice als von Bob stammend anerkennt.

16 1 Kryptografische Hashverfahren

Verwendung eines MAC zur Versiegelung von Software

Mithilfe einer berechnungsresistenten Hashfunktion kann der Integritätsschutz für mehrere
Datensätze auf die Geheimhaltung eines Schlüssels k zurückgeführt werden.

Um die Datensätze x1, . . . , xn gegen unbefugt vorgenommene Veränderungen zu
schützen, legt man sie zusammen mit ihren Hashwerten y1 = hk(x1), . . . , yn =
hk(xn) auf einem unsicheren Speichermedium ab und bewahrt den geheimen
Schlüssel k an einem sicheren Ort auf. Bei einem späteren Zugriff auf einen
Datensatz xi lässt sich dessen Unversehrtheit durch einen Vergleich von yi mit
dem Ergebnis hk(xi) einer erneuten MAC-Berechnung überprüfen.

Da auf diese Weise ein wirksamer Schutz der Datensätze gegen Viren und andere
Manipulationen erreicht wird, spricht man von einer Versiegelung der gespeicherten
Datensätze.

1.3.1 Angriffe gegen symmetrische Hashfunktionen

Ein Angriff gegen einen MAC hat die unbefugte Berechnung von Hashwerten zum Ziel.
Das heißt, der Gegner versucht, Hashwerte hk(x) ohne Kenntnis des geheimen Schlüssels
k zu berechnen. Entsprechend der Art des zur Verfügung stehenden Textmaterials lassen
sich die Angriffe gegen einen MAC wie folgt klassifizieren.
Impersonation

Der Gegner kennt nur den benutzten MAC und versucht ein Paar (x, y) mit hk(x) = y
zu generieren, wobei k der (dem Gegner unbekannte) Schlüssel ist.

Substitution
Der Gegner versucht in Kenntnis eines Paares (x, hk(x)) ein Paar (x′, y′) mit x′ 6= x
und hk(x′) = y′ zu generieren.

Angriff bei bekanntem Text (known-text attack)
Der Gegner kennt für eine Reihe von Texten x1, . . . , xr (die er nicht selbst wählen
konnte) die zugehörigen MAC-Werte hk(x1), . . . , hk(xr) und versucht, ein Paar (x′, y′)
mit hk(x′) = y′ und x′ 6∈ {x1, . . . , xr} zu generieren.

Angriff bei frei wählbarem Text (chosen-text attack)
Der Gegner kann die Texte xi selbst wählen.

Angriff bei adaptiv wählbarem Text (adaptive chosen-text attack)
Der Gegner kann die Wahl des Textes xi von den zuvor erhaltenen MAC-Werten
hk(xj), j < i, abhängig machen.

Wechseln die Anwender nach jeder Hashwertberechnung den Schlüssel, so genügt es, dass
H einem Impersonationsangriff widersteht.

1.3.2 Informationstheoretische Sicherheit von MACs

Modell: Schlüssel k und Nachrichten x werden unabhängig gemäß einer Wahrscheinlich-
keitsverteilung p(k, x) = p(k)p(x) generiert, welche dem Gegner (im Folgenden auch
Oskar genannt) bekannt ist. Wir nehmen o.B.d.A. an, dass p(x) > 0 und p(k) > 0
für alle x ∈ X und alle k ∈ K gilt.

1.3 Nachrichten-Authentikationscodes (MACs) 17

Erfolgswahrscheinlichkeit für Impersonation

α: Wahrscheinlichkeit mit der sich ein Gegner bei optimaler Strategie als Bob ausgeben
kann, ohne dass Alice dies bemerkt.

Für ein Paar (x, y) sei p(x 7→ y) die Wahrscheinlichkeit, dass ein zufällig gewählter
Schlüssel den Text x auf den Hashwert y abbildet:

p(x 7→ y) =
∑

k∈K(x,y)
p(k).

wobei K(x, y) = {k ∈ K | hk(x) = y} alle Schlüssel enthält, die x auf y abbilden. D.h.
p(x 7→ y) ist die Wahrscheinlichkeit, dass Alice das (vom Gegner gewählte) Paar (x, y)
als echt akzeptiert. Dann gilt α = max{α(x) | x ∈ X}, wobei

α(x) = max{p(x 7→ y) | y ∈ Y }

die Wahrscheinlichkeit ist, mit der ein Gegner bei optimaler Strategie Alice den Text x
als von Bob stammend zukommen lassen kann.

Beispiel 11. Sei K = {1, 2, 3}, X = {a, b, c, d} und Y = {0, 1}.

0,1 0,2 0,3 0,4
hk(x) a b c d

0,25 1 0 0 0 1
0,30 2 1 1 0 1
0,45 3 0 1 1 0

Die umrahmten Zahlen geben die Wahrscheinlichkeiten p(x) bzw. p(k) an. Dann hat der
Gegner folgende Erfolgsaussichten α(x, y), falls er das Paar (x, y) an Alice sendet.

0 1
a 0,7 0,3
b 0,25 0,75
c 0,55 0,45
d 0,45 0,55

Folglich ist α = 0, 75. /

Beispiel 12. Sei X = Y = {0, 1, 2} = Z3 und sei K = Z3 × Z3. Für k = (a, b) ∈ K und
x ∈ X sei

hk(x) = ax+ b mod 3.

Die zugehörige Authentikationsmatrix erhalten wir, indem wir die Zeilen mit den
Schlüsseln k ∈ K und die Spalten mit den Texten x ∈ X indizieren und in Zeile k und

18 1 Kryptografische Hashverfahren

Spalte x den Hashwert hk(x) eintragen.

0 1 2
(0, 0) 0 0 0
(0, 1) 1 1 1
(0, 2) 2 2 2
(1, 0) 0 1 2
(1, 1) 1 2 0
(1, 2) 2 0 1
(2, 0) 0 2 1
(2, 1) 1 0 2
(2, 2) 2 1 0

Angenommen, jeder Schlüssel (a, b) hat die gleiche Wk p(a, b) = 1/9. Versucht der Gegner
dann eine Impersonation mit dem Paar (x, y), so akzeptieren genau 3 der 9 möglichen
Schlüssel dieses Paar. Dies liegt daran, dass in jeder Spalte jeder Hashwert genau dreimal
vorkommt. Also gilt p(x 7→ y) = 3/9 = 1/3 für alle Paare (x, y) ∈ X × Y , was für α
ebenfalls den Wert α = 1/3 ergibt.

Satz 13. Für alle x ∈ X ist α(x) ≥ 1
m

und daher gilt α ≥ 1
m
.

Beweis. Sei x ∈ X beliebig. Dann gilt∑
y∈Y

p(x 7→ y) =
∑
y∈Y

∑
k∈K(x,y)

p(k) =
∑
k∈K

p(k) = 1.

Somit existiert für jedes x ∈ X ein y ∈ Y mit p(x 7→ y) ≥ 1
m

und dies impliziert

α(x) = max
y∈Y

p(x 7→ y) ≥ 1
m
.

�

Bemerkung 14. Wie der Beweis zeigt, gilt α = 1
m

genau dann, wenn für alle Paare
(x, y) ∈ X × Y gilt, ∑

k∈K(x,y)
p(k) = 1

m
.

D.h. bei Gleichverteilung der Schlüssel muss in jeder Spalte der Authentikationsmatrix
jeder Hashwert gleich oft vorkommen.

Erfolgswahrscheinlichkeit für Substitution

β: Wahrscheinlichkeit mit der ein Gegner bei optimaler Strategie eine von Bob gesendete
Nachricht (x, y) durch eine andere Nachricht (x′, y′) ersetzen kann, ohne dass Alice
dies bemerkt.

Angenommen, Bob sendet die Nachricht (x, y) und der Gegner ersetzt diese durch (x′, y′).
Dann ist die Erfolgswahrscheinlichkeit des Gegners gleich der bedingten Wk

p(x′ 7→ y′ |x 7→ y) = p(x 7→ y, x′ 7→ y′)
p(x 7→ y) =

∑
k∈K(x,y,x′,y′) p(k)∑
k∈K(x,y) p(k) ,

1.3 Nachrichten-Authentikationscodes (MACs) 19

dass ein zufällig gewählter Schlüssel k den Text x′ auf y′ abbildet, wenn bereits bekannt
ist, dass er x auf y abbildet. Falls Bob also das Paar (x, y) sendet, so kann der Gegner
bestenfalls die Erfolgswahrscheinlichkeit

β(x, y) = max{p(x′ 7→ y′ |x 7→ y) | x′ ∈ X − {x}, y′ ∈ Y }

erzielen. Da Bob auf die Wahl von (x, y) keinen Einfluss hat, berechnet sich β als der
erwartete Wert von β(x, y), wobei das Paar (x, y) von Bob mit Wk

p(x, y) = p(x)p(y|x) = p(x)p(x 7→ y)

gesendet wird. Somit ergibt sich β zu

β =
∑

x∈X,y∈Y
p(x, y)β(x, y) =

∑
x∈X

p(x)
∑
y∈Y

β′(x, y),

wobei
β′(x, y) = max{p(x 7→ y, x′ 7→ y′) | x′ ∈ X − {x}, y′ ∈ Y }

ist.
Beispiel 15.

p(x 7→y,x′ 7→y′)
(x,y)

(a,0) (a,1) (b,0) (b,1) (c,0) (c,1) (d,0) (d,1)
β′(x,y) β(x,y)

(a,0) 0,25 0,45 0,25 0,45 0,45 0,25 0,45 0,643
(a,1) 0 0,3 0,3 0 0 0,3 0,3 1
(b,0) 0,25 0 0,25 0 0 0,25 0,25 1
(b,1) 0,45 0,3 0,3 0,45 0,45 0,3 0,45 0,6
(c,0) 0,25 0,3 0,25 0,3 0 0,55 0,55 1
(c,1) 0,45 0 0 0,45 0,45 0 0,45 1
(d,0) 0,45 0 0 0,45 0 0,45 0,45 1
(d,1) 0,25 0,3 0,25 0,3 0,55 0 0,55 1

Für β erhalten wir also den Wert

β = 0, 1 · (0, 45 + 0, 3) + 0, 2 · (0, 25 + 0, 45) + 0, 3 · (0, 55 + 0, 45) + 0, 4 · (0, 45 + 0, 55)
= 0, 915.

Satz 16. Für jeden MAC (X, Y,K,H) gilt β ≥ 1
m
.

Beweis. Sei (x, y) ∈ X×Y ein Paar mit p(x, y) > 0. Dann gilt für beliebige x′ ∈ X−{x},
∑
y′∈Y

p(x′ 7→ y′ |x 7→ y) =
∑
y′∈Y

∑
k∈K(x′,y′;x,y) p(k)∑

k∈K(x,y) p(k) = 1.

Somit existiert ein y′ ∈ Y mit p(x′ 7→ y′ |x 7→ y) ≥ 1
m

und dies impliziert für alle (x, y)
mit p(x, y) > 0,

β(x, y) = max{p(x′ 7→ y′ |x 7→ y) | x′ ∈ X − {x}, y′ ∈ Y } ≥ 1
m
, (1.2)

was wiederum

β =
∑

x∈X,y∈Y
p(x, y)β(x, y) ≥ 1

m

∑
x∈X,y∈Y

p(x, y) = 1
m

impliziert. �

20 1 Kryptografische Hashverfahren

Lemma 17. Sei (X, Y,K,H) ein MAC mit β = 1
m
. Dann gilt

p(x′ 7→ y′ |x 7→ y) = 1/m

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′.

Beweis. Wir zeigen zuerst, dass im Fall

β = 1
m

für alle Paare (x, y) ∈ X × Y
p(x 7→ y) > 0

ist. Ist nämlich
p(w 7→ z) = 0,

so ist auch
p(w 7→ z |u 7→ v) = 0,

wobei (u, v) ∈ X × Y ein beliebiges Paar mit

p(u 7→ v) > 0

ist. Wegen
1 =

∑
z′∈Y

p(w 7→ z′ |u 7→ v) =
∑

z′∈Y−{z}
p(w 7→ z′ |u 7→ v)

impliziert dies die Existenz eines Hashwertes z′ mit

p(w 7→ z′ |u 7→ v) ≥ 1/(m− 1) > 1/m.

Dann ist aber auch

β(u, v) = max{p(u′ 7→ v′ |u 7→ v) | u′ ∈ X − {u}, v′ ∈ Y } > 1/m.

Da
β(x, y) ≥ 1/m

für alle Paare (x, y) gilt (siehe (1.2)) und da

p(u, v) = p(u)p(u 7→ v) > 0

ist, folgt
β =

∑
x∈X,y∈Y

p(x, y)β(x, y) > 1/m.

Ist nun
p(x′ 7→ y′ |x 7→ y) 6= 1/m

für ein Doppelpaar (x, y, x′, y′) mit x 6= x′, so muss wegen∑
z′∈Y

p(x′ 7→ z′ |x 7→ y) = 1

auch ein Doppelpaar (x, z′, x′, y′) mit

p(x′ 7→ z′ |x 7→ y) > 1/m

existieren, was genau wie im ersten Teil des Beweises zu einem Widerspruch führt. �

1.3 Nachrichten-Authentikationscodes (MACs) 21

Satz 18. Ein MAC (X, Y,K,H) erfüllt β = 1
m

genau dann, wenn

p(x 7→ y, x′ 7→ y′) = 1/m2

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′ gilt.

Beweis. Sei (X, Y,K,H) ein MAC mit β = 1
m
. Nach obigem Lemma impliziert dies, dass

p(x′ 7→ y′ |x 7→ y) = 1/m

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′ gilt. Dies impliziert nun

p(x′ 7→ y′) =
∑
y

p(x 7→ y)p(x′ 7→ y′ |x 7→ y) = 1/m

und daher
p(x 7→ y, x′ 7→ y′) = p(x′ 7→ y′)p(x 7→ y |x′ 7→ y′) = 1/m2.

Umgekehrt rechnet man leicht nach, dass H tatsächlich die Bedingung

β = 1
m

erfüllt, wenn
p(x 7→ y, x′ 7→ y′) = 1/m2

für alle Doppelpaare (x, y, x′, y′) mit x 6= x′ gilt. �

Bemerkung 19. Nach obigem Satz gilt β = 1
m

genau dann, wenn für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ gilt,

p(x 7→ y, x′ 7→ y′) =
∑

k∈K(x,y,x′,y′)
p(k) = 1

m2 .

D.h. bei Gleichverteilung der Schlüssel gilt β = 1
m

genau dann, wenn in je zwei Spalten
der Authentikationsmatrix jedes Hashwertpaar gleich oft vorkommt.

Ab jetzt setzen wir voraus, dass der Schlüssel unter Gleichverteilung gewählt wird, d.h.
es gilt p(k) = 1

‖K‖ für alle k ∈ K.

Definition 20. Ein MAC (X, Y,K,H) heißt 2-universal, falls für alle x, x′ ∈M mit
x 6= x′ und alle y, y′ ∈ Y gilt:

‖K(x, y, x′, y′)‖ = ‖K‖
m2 .

Bemerkung 21. Bei der Konstruktion von 2-universalen Hashfamilien spielt der Pa-
rameter λ = ‖K‖

m2 eine wichtige Rolle. Da λ notwendigerweise positiv und ganzzahlig ist,
muss insbesondere ‖K‖ ≥ m2 gelten.

Im folgenden nennen wir eine 2-universale (n,m, l)-Hashfamilie mit λ = l/m2 kurz einen
(n,m, l, λ)-MAC.

22 1 Kryptografische Hashverfahren

Beispiel 22. Betrachten wir den MAC (X, Y,K,H) mit X = {0, 1, 2, 3}, Y = {0, 1, 2},
K = {0, 1, . . . , 8}, wobei H durch folgende Authentikationsmatrix beschrieben wird.

0 1 2 3
0 0 0 0 0
1 1 1 1 0
2 2 2 2 0
3 0 1 2 1
4 1 2 0 1
5 2 0 1 1
6 0 2 1 2
7 1 0 2 2
8 2 1 0 2

Da in je zwei Spalten jedes Hashwertpaar genau einmal vorkommt, ist (X, Y,K,H) ein
(4, 3, 9, 1)-MAC.

Auf Grund von Bemerkung 19 ist klar, dass ein MAC bei gleichverteilten Schlüsseln genau
dann die Bedingung β = 1

m
erfüllt, wenn er 2-universal ist. Auf Grund von Bemerkung 14

nimmt in diesem Fall auch α den optimalen Wert 1
m

an.
Der nächste Satz zeigt für primes p eine Konstruktionsmöglichkeit von 2-universalen
MACs mit dem Parameterwert λ = 1.

Satz 23. Sei p prim und für a, b, x ∈ Zp sei

ha,b(x) = ax+ b mod p.

Dann ist (X, Y,K,H) mit X = Y = Zp und K = Zp × Zp ein (p, p, p2, 1)-MAC.

Beweis. Wir müssen zeigen, dass die Größe von K(x, y, x′, y′) für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ konstant ist. Ein Schlüssel (a, b) gehört genau dann zu dieser
Menge, wenn er die beiden Kongruenzen

ax+ b ≡p y,

ax′ + b ≡p y′

erfüllt. Da dies jedoch nur auf den Schlüssel (a, b) mit

a = (y′ − y)(x′ − x)−1 mod p,
b = y − x(y′ − y)(x′ − x)−1 mod p

zutrifft, folgt ‖K(x′, y′, x, y)‖ = 1. �

Die Hashfunktionen des vorigen Satzes erfüllen wegen n = m = p nicht die Kompressi-
onseigenschaft. Zwar lässt sich n noch geringfügig von p auf p+ 1 vergrößern, ohne K
und Y (und damit λ) zu verändern (siehe Übungen), aber eine stärkere Kompression ist
mit dem Parameterwert λ = 1 nicht realisierbar.

Satz 24. Für einen (n,m, l, 1)-MAC gilt

n ≤ m+ 1

und somit l = m2 ≥ (n− 1)2.

1.3 Nachrichten-Authentikationscodes (MACs) 23

Beweis. O.B.d.A. sei ‖K‖ = {1, . . . , l} und Y = {1, . . . ,m}. Es ist leicht zu sehen, dass
eine (bijektive) Umbenennung π : Y → Y der Hashwerte in einer einzelnen Spalte der
Authentikationsmatrix A wieder auf einen 2-universalen MAC führt. Also können wir
weiterhin annehmen, dass die erste Zeile der Authentikationsmatrix A nur Einsen enthält.
Da A 2-universal ist, gilt:
• In jeder Zeile i = 2, . . . ,m2 kommt höchstens eine Eins vor.
• Jede Spalte j enthält eine Eins in Zeile 1 und m− 1 Einsen in den übrigen Zeilen.

Da in den Zeilen i = 2, . . . ,m2 insgesamt genau n(m− 1) Einsen vorkommen, folgt

Anzahl der Zeilen︸ ︷︷ ︸
m2

≥ Anzahl der Zeilen mit einer Eins︸ ︷︷ ︸
1+n(m−1)

,

was m2 − 1 ≥ n(m− 1) bzw. n ≤ m+ 1 impliziert. �

Der nächste Satz liefert 2-universale MACs mit beliebig großem Kompressionsfaktor. Für
den Beweis benötigen wir das folgende Lemma.

Lemma 25. Sei A eine k × `-Matrix über einem endlichen Körper F, deren k Zeilen
linear unabhängig sind. Dann besitzt das lineare Gleichungssystem

Ax = y

für jedes y ∈ Fk genau ‖F‖`−k Lösungen x ∈ F`.

Beweis. Siehe Übungen. �

Satz 26. Sei p prim und für x = (x1, . . . , x`) ∈ {0, 1}` und k = (k1, . . . , k`) ∈ Z`p sei

hk(x) = kx =
∑̀
i=1

kixi mod p.

Dann ist (X, Y,K,H) mit X = {0, 1}`−{0`}, Y = Zp und K = Z`p ein (2`−1, p, p`, p`−2)-
MAC.

Beweis. Wir müssen zeigen, dass die Größe von K(x, y, x′, y′) für alle Doppelpaare
(x, y, x′, y′) mit x 6= x′ konstant ist. Es gilt

k ∈ K(x, y, x′, y′) ⇔ hk(x) = y ∧ hk(x′) = y′

⇔ k · x = y ∧ k · x′ = y′.

Fassen wir x = x1 · · ·x` und x′ = x′1 · · ·x′` zu einer Matrix A zusammen, so ist dies
äquivalent zu (

x1 · · · x`
x′1 · · · x′`

)
·


k1...
k`

 =
(
y

y′

)
.

Da die beiden Zeilen von A verschieden und damit linear unabhängig sind, folgt mit
obigem Lemma, dass genau ‖K(x, y, x′, y′)‖ = p`−2 Schlüssel k = (k1, . . . , k`) mit dieser
Eigenschaft existieren. �

24 1 Kryptografische Hashverfahren

Bemerkung 27. Obige Konstruktion liefert einen λ-Wert von ‖K‖
m2 = p`−2. Durch Er-

weiterung von X auf eine geeignete Teilmenge X ′ ⊆ Z`p lässt sich der Textraum von
2` − 1 auf p`−1

p−1 vergrößern (siehe Übungen). Dies führt auf einen beliebig groß wählbaren
Kompressionsfaktor von p`−1

p(p−1) bei einem λ-Wert von λ = p`−2. Wie der nächste Satz
zeigt, lässt sich dies nicht mit einem kleineren λ-Wert erreichen.

Im Beweis des nächsten Satzes benötigen wir folgendes Lemma.

Lemma 28. Für beliebige reelle Zahlen b1, . . . , bm ∈ R gilt
(∑m

i=1 bi
)2
≤ m

∑m
i=1 b

2
i .

Beweis. Siehe Übungen. �

Satz 29. Für einen (n,m, l, λ)-MAC gilt

λ ≥ n(m− 1) + 1
m2

und somit l ≥ n(m− 1) + 1.

Beweis. O.B.d.A. können wir wieder ‖K‖ = {1, . . . , l} und Y = {1, . . . ,m} annehmen,
und dass die 1. Zeile der Authentikationsmatrix A nur aus Einsen besteht. Für jede Zeile
i = 1, . . . , l bezeichne xi die Anzahl der Einsen in dieser Zeile (also x1 = n). Da in jeder
Spalte jeder Hashwert genau λm-mal vorkommt, gilt

l∑
i=1

xi = λnm und
l∑

i=2
xi = λnm− n = n(λm− 1).

Nun ist die Anzahl z der Vorkommen von Indexpaaren (j, j′) mit A[i, j] = A[i, j′] = 1 in
den Zeilen i = 2, . . . , l gleich

z =
l∑

i=2
xi(xi − 1) =

l∑
i=2

x2
i −

l∑
i=2

xi =
l∑

i=2
x2
i − n(λm− 1).

Mit obigem Lemma ergibt sich
l∑

i=2
x2
i ≥

(∑l
i=2 xi

)2

l − 1 = (n(λm− 1))2

l − 1 .

Da andererseits in jedem Spaltenpaar das Hashwert-Paar (1, 1) in genau λ Zeilen vor-
kommt (genauer: einmal in Zeile 1 und (λ− 1)-mal in den Zeilen i = 2, . . . , l), und da
n(n−1) solche Spaltenpaare existieren, ist die Anzahl z der Vorkommen von Indexpaaren
(j, j′) mit A[i, j] = A[i, j′] = 1 in den Zeilen i = 2, . . . , l gleich

z = (λ− 1)n(n− 1).
Somit ergibt sich

(λ− 1)n(n− 1) =
l∑

i=2
x2
i − n(λm− 1) ≥ (n(λm− 1))2

l − 1 − n(λm− 1)

⇒ ((λ− 1)n(n− 1) + n(λm− 1))(λm2 − 1) ≥ (n(λm− 1))2

⇒ (λn− n− λ+ λm)(λm2 − 1) ≥ n(λm− 1)2

⇒ −λ2m2 + λ2m3 ≥ λnm2 + λn− λ+ λm− 2λnm
⇒ λ2(m3 −m2) ≥ λ(n(m− 1)2 +m− 1)
⇒ λm2 ≥ n(m− 1) + 1
⇒ l ≥ n(m− 1) + 1

�

1.3 Nachrichten-Authentikationscodes (MACs) 25

Für den Beweis des nächsten Satzes benötigen wir folgendes Lemma (Beweis siehe
Übungen).

Lemma 30. Sei X eine Zufallsvariable mit endlichem Wertebereich W (X) ⊇ R+. Dann
gilt logE(X) ≥ E(logX).

Satz 31. Für jeden MAC (X, Y,K,H) gilt:

α ≥ 1
2H(K)−H(K|X ,Y) .

Hierbei sind X ,Y ,K Zufallsvariablen, die die Verteilungen der Nachrichten, der Has-
hwerte und der Schlüssel beschreiben.

Beweis. Wir zeigen: logα ≥ H(K | X ,Y)−H(K). Es gilt: α = maxx,y p(x 7→ y), wobei

p(x 7→ y) = Probk[hk(x) = y]
= Prob[Y = y | X = x]
=: py|x

⇒ α ≥
∑
x,y

Prob[X = x,Y = y] · p(x 7→ y)

= E(α(X ,Y))
⇒ logα ≥ logE(α(X ,Y))

≥ E(logα(X ,Y))(∗)
=

∑
x,y

px,y · log py|x

=
∑
x,y

px · py|x · log py|x

= −H(Y | X)
≥ H(K | X ,Y)−H(K)(∗∗)

Hierbei gilt (*) wegen obigem Lemma und (**) ergibt sich aus

H(K,Y ,X) = H(X) +H(Y | X) +H(K | X ,Y)
= H(K,X)︸ ︷︷ ︸

=H(K)+H(X)

+H(Y | K,X)︸ ︷︷ ︸
=0

.

�

1.3.3 Weitere Konstruktionsmöglichkeiten für MACs

Aus einer schlüssellosen Hashfunktion

Sei h : {0, 1}m+t → {0, 1}m die Kompressionsfunktion einer schlüssellosen Hashfunktion
ĥ (etwa MD5). Dann können wir mithilfe von h einen MAC konstruieren, indem wir als
Initialisierungsvektor IV den symmetrischen Schlüssel k ∈ K benutzen. Wir betrachten
zunächst den Fall, dass auf das Preprocessing verzichtet wird.
Sei H = (X, Y,K) die Hashfamilie mit X = ∪n≥1{0, 1}n·t, Y = {0, 1}m = K und
H = {hk | k ∈ K}, wobei hk(x) wie folgt berechnet wird:

26 1 Kryptografische Hashverfahren

1 Sei x = x1, . . . , xn, |xi| = t für i = 1, . . . , n
2 z0 := k
3 for i := 1 to n do
4 zi := h(zi−1xi)
5 output zn

Bei diesem MAC führt beispielsweise folgender Substitutionsangriff zum Erfolg.
Sei (x, z) ein Paar mit hk(x) = z, wobei k der dem Gegner unbekannte Schlüssel ist.
Dann lässt sich für einen beliebigen String u ∈ {0, 1}t leicht der MAC-Wert des Textes
x′ = xu mittels hk(x′) = h(zu) berechnen.
Ein ähnlicher Angriff ist auch bei Verwendung einer Preprocessing-Funktion möglich.
Hat diese beispielsweise die Form y(x) = xpad(x), so lässt sich obiger Angriff wie folgt
modifizieren.
Sei (x, z) gegeben mit hk(y(x)) = z und sei y(x) = xpad(x) = y1 . . . yn. Dann können
wir für einen beliebigen String u ∈ {0, 1}∗ den MAC-Wert hk(y(x′)) für den Text
x′ = xpad(x)u wie folgt berechnen. Wegen

y(x′) = x′pad(x′) = xpad(x)upad(x′) = y1 . . . ynupad(x′)

lässt sich das Suffix upad(x′) in eine Folge u1 . . . um von Blöcken ui der Länge |ui| = t
zerlegen. Setzen wir nun zn = z und

zn+i := h(zn+i−1un+i)

für i = 1, . . . ,m, so erhalten wir den gewünschten MAC-Wert hk(y(x′)) = zn+m.

CBC-MACs

Als Basis für die Konstruktion eines MAC kann auch ein symmetrisches Kryptosystem
dienen.
Sei (M,C,K,E,D) ein endomorphes Kryptosystem (d.h. M = C) mit M = {0, 1}t. Sei
IV := 0t und sei k ∈ K ein geheimer Schlüssel. Sei y eine Funktion für den Preprocessing-
Schritt.
Berechnung von hk(x):
1 y := y(x) = y1 . . . yn, n ≥ 1, |yi| = t
2 z0 := IV
3 for i = 1 to n do
4 zi := E(k, zi−1 ⊕ yi)
5 output hk(x) = zn

Wird auf den Preprocessing-Schritt verzichtet, so lässt sich leicht ein Angriff mit 2
adaptiven Fragen ausführen. Kennt der Gegner die MAC-Werte z = hk(x) und z′ = hk(x′)
für die Texte x = x1 · · ·xn und x′ = (xn+1 ⊕ IV ⊕ z)xn+2 · · ·xn+m, wobei |xi| = t für
i = 1, . . . , n+m ist, so muss auch der Text x′′ = x1 · · · xn+m den MAC-Wert hk(x′′) = z′

haben.
Diesen Angriff kann man zwar ausschließen, indem man eine feste Länge für die Texte
x vorschreibt. Dies schränkt jedoch die Anwendbarkeit des CBC-MACS erheblich ein.
Zudem ist dann immer noch folgender Geburtstagsangriff auf den CBC-MAC möglich.

1.3 Nachrichten-Authentikationscodes (MACs) 27

Geburtstagsangriff auf einen CBC-MAC

Der Gegner wählt zunächst n− 2 beliebige Blöcke x3, . . . , xn ∈ {0, 1}t und q ≈ 1, 17 · 2 t
2

paarweise verschiedene Blöcke x1
1, . . . , x

q
1 ∈ {0, 1}t. Anschließend wählt er zufällig q

weitere Blöcke x1
2, . . . , x

q
2 ∈ {0, 1}t und erfragt die MAC-Werte zi = hk(xi) für die Texte

xi = xi1x
i
2x3 · · ·xn, i = 1, . . . , q.

Wegen xi1 6= xj1 für i 6= j sind auch die Texte x1, . . . , xq paarweise verschieden. Seien
z1

1 , . . . , z
q
1 die nach der ersten Iteration des CBC-MACs berechneten Kryptotexte zi1 =

Ek(IV ⊕ xi1). Da die Blöcke xi2 zufällig gewählt werden, sind auch die Eingangsblöcke
zi1 ⊕ xi2 für die 2. Iteration zufällig, d.h. es gilt

Pr[∃i 6= j : zi1 ⊕ xi2 = zj1 ⊕ x
j
2] = Pr[∃i 6= j : xi2 = xj2] ≈

1
2 .

Da die Gleichheit der Eingangsblöcke für die 2. Iteration mit der Gleichheit der Ausgangs-
blöcke für die n-te Iteration und damit mit der Gleichheit der zugehörigen MAC-Werte
zi und zj äquivalent ist, kann der Gegner das Indexpaar (i, j) auch finden, sofern es
existiert.
Befindet sich unter den erfragten Texten ein Kollisionspaar (xi, xj) mit zi = zj, so
erfragt der Gegner für einen beliebigen Bitblock u ∈ {0, 1}t − {0t} den MAC-Wert
z′i = hk(x′i) für den Text x′i = xi1(xi2⊕u)x3 · · · xn, welcher zugleich MAC-Wert des Textes
x′j = xj1(xj2 ⊕ u)x3 · · ·xn ist, den er zuvor nicht erfragt hat.

	1 Kryptografische Hashverfahren
	1.1 Einführung
	1.2 Schlüssellose Hashfunktionen (MDCs)
	1.2.1 Das Zufallsorakelmodell (ZOM)
	1.2.2 Vergleich von Sicherheitsanforderungen
	1.2.3 Iterierte Hashfunktionen
	1.2.4 Die Merkle-Damgard-Konstruktion
	1.2.5 Die MD4-Hashfunktion
	1.2.6 Die MD5-Hashfunktion
	1.2.7 Die SHA-1-Hashfunktion
	1.2.8 Die SHA-2-Familie
	1.2.9 Kryptoanalyse von Hashfunktionen

	1.3 Nachrichten-Authentikationscodes (MACs)
	1.3.1 Angriffe gegen symmetrische Hashfunktionen
	1.3.2 Informationstheoretische Sicherheit von MACs
	1.3.3 Weitere Konstruktionsmöglichkeiten für MACs

