Übungsblatt 5

Aufgabe 18

Sei $\mathcal{C} = (C_n)_{n \in \mathbb{N}}$ eine Schaltkreisfamilie der Tiefe d und Größe s über der Basis \mathcal{B}_0 (\mathcal{B}_1 , bzw. $\mathcal{B}_1(p) := \mathcal{B}_1 \cup \{\text{MOD}_p\}$ für eine Primzahl p). Zeigen Sie, dass es eine äquivalente geschichtete Schaltkreisfamilie \mathcal{C}' der Größe $s^{\mathcal{O}(1)}$ und Tiefe $\mathcal{O}(d)$ über derselben Basis gibt.

Aufgabe 19

Sei $f: \{0,1\}^2 \to \mathbb{Z}_3$ definiert durch $f(x_1,x_2) = (x_1+1)^{(x_2+1)}$ mit Arithmetik über \mathbb{Z}_3 . Bestimmen Sie die Darstellung von f als multilineares Polynom $f(x_1,x_2) = a_0 + a_1x_1 + a_2x_2 + a_3x_1x_2$ mit Koeffizienten $a_i \in \mathbb{Z}_3$.

Aufgabe 20

Sei p prim, $k \ge 1$ und $x_i \in \{0,1\}$ für i = 1, ..., n. Zeigen Sie für die Arithmetik in \mathbb{Z}_p :

- a) $MOD_p(x_1, ..., x_n) = 1 (\sum_{i=1}^n x_i)^{p-1}$.
- b) Es gibt ein Polynom q vom Grad höchstens (p-1)k und eine Menge $D \subseteq \{0,1\}^n$ mit $||D|| \ge 2^n(1-p^{-k})$, so dass $q(x_1,\ldots,x_n) = \bigvee (x_1,\ldots,x_n)$ für alle $(x_1,\ldots,x_n) \in D$ ist.
- c) Es gibt ein Polynom q vom Grad höchstens (p-1)k und eine Menge $D \subseteq \{0,1\}^n$ mit $||D|| \ge 2^n(1-p^{-k})$, so dass $q(x_1,\ldots,x_n) = \bigwedge(x_1,\ldots,x_n)$ für alle $(x_1,\ldots,x_n) \in D$ ist.

Hinweis: Kleiner Satz von Fermat.

Aufgabe 21

Zeigen Sie, dass für $m \ge 2$ gilt: $\|\{u_1 \cdots u_n \in \{0, 1, \dots, m-1\}^n \mid \sum_{i=1}^n u_i \equiv_m 0\}\|/m^n = 1/m$ und $\|\{u_1 \cdots u_n \in \{0, 1\}^n \mid \sum_{i=1}^n u_i \equiv_m 0\}\|/2^n \le 1/2$.

Aufgabe 22

Für $m \ge 1$ und $i = 0, \dots, m-1$ sei

$$MOD_{m,i}^{n}(x_1, \dots, x_n) = \begin{cases} 1, & \sum_{j=1}^{n} x_j \equiv_m i \\ 0, & \text{sonst.} \end{cases}$$

- a) Zeigen Sie, dass $MOD_m \equiv_{cd} MOD_{m,i}$ für i = 0, ..., m-1 gilt.
- b) Zeigen Sie, dass $\text{MOD}_m \leq_{cd} \text{MOD}_s$ gilt, falls m ein Teiler von s ist.
- c) Zeigen Sie, dass $MOD_{p^k} \equiv_{cd} MOD_p$ gilt, falls p prim ist.