Institut für Informatik Komplexität und Kryptografie Prof. Dr. Johannes Köbler

Übungen zur Kryptologie 2

$6. \ Aufgaben blatt$

Aufgabe 1

Betrachten Sie die mittels

$$y^2 = x^3 - 3x - 2$$

über den reellen Zahlen definierte elliptische Kurve E.

- a) Skizieren Sie zeichnerisch den Verlauf von E.
- b) Berechnen Sie die Summe P + Q für P = (3, 4) und Q = (2, 0).
- c) Berechnen Sie die Punkte 2P = P + P und 2Q = Q + Q.

Aufgabe 2

Die Punkte der projektiven Ebene werden durch die Ursprungsgeraden

$$g(X, Y, Z) = \{(\lambda X, \lambda Y, \lambda Z) \mid \lambda \in \mathbb{R}\}, (X, Y, Z) \in \mathbb{R}^3 - \{(0, 0, 0)\}$$

gebildet. Es gilt also g(X,Y,Z)=g(X',Y',Z'), falls ein $\lambda \in \mathbb{R}-\{0\}$ existiert mit $X'=\lambda X, Y'=\lambda Y$ und $Z'=\lambda Z$.

- a) Überlegen Sie, wie sich die affine Ebene \mathbb{R}^2 in die projektive Ebene einbetten lässt. *Hinweis:* Verwenden Sie nur projektive Punkte der Form g(X, Y, 1).
- b) Zeigen Sie, dass von dieser Einbettung genau die projektiven Punkte der Form g(X, Y, 0) nicht erfasst werden. Welche Punkte müsste man zum \mathbb{R}^2 hinzunehmen, damit diese Einbettung zu einem Isomorphismus wird? Geben Sie eine geometrische Interpretation dieser Punkte.
- c) Im \mathbb{R}^2 sei eine Kurve durch eine Gleichung der Form $F(x,y) = y^2 x^3 ax b = 0$ definiert. Wie lässt sich hieraus eine Kurvengleichung $\tilde{F}(X,Y,Z) = 0$ für die Einbettung $\{g(x,y,1) \mid F(x,y) = 0\}$ dieser Kurve in die projektive Ebene gewinnen?
- d) Welche projektiven Punkte der Form g(X, Y, 0) erfüllen ebenfalls die Gleichung $\tilde{F}(X, Y, Z) = 0$?

Aufgabe 3

Geben Sie eine geometrische Bedingung dafür an, dass ein Punkt P auf einer elliptischen Kurve über \mathbb{R} die Ordnung 2, 3 oder 4 hat.

Aufgabe 4

Sei E eine durch die Gleichung F(x,y) = 0 im \mathbb{R}^2 definierte Kurve, wobei F die Form $F(x,y) = y^2 - x^3 - ax - b$ hat. Zeigen Sie, dass folgende Bedingungen äquivalent sind.

- a) Das Polynom $p(x) = x^3 + ax + b$ hat eine mehrfache Nullstelle,
- b) $4a^3 = -27b^2$,
- c) Es ex. ein Punkt $(x_0, y_0) \in E$, für den die partiellen Ableitungen $\frac{\delta F}{\delta x}(x_0, y_0)$ und $\frac{\delta F}{\delta y}(x_0, y_0)$ beide 0 sind. (Ein solcher Punkt heißt $singul\ddot{a}r$.)

Aufgabe 5

Zeigen Sie, dass eine über

$$y^2 = x^3 + ax + b$$

definierte elliptische Kurve nicht zyklisch ist, wenn das Polynom $x^3 + ax + b$ drei verschiedene Nullstellen in \mathbb{Z}_p hat.

Aufgabe 6

Bestimmen Sie die Anzahl der Punkte der durch

$$y^2 = x^3 - 1$$

definierten elliptischen Kurve über \mathbb{F}_q , falls $q \equiv_6 5$ ist.

Aufgabe 7 (10 Punkte)

Sei E die über \mathbb{Z}_{71} durch

$$y^2 = x^3 - x$$

definierte elliptische Kurve E.

- a) Bestimmen Sie die Anzahl der Punkte von E.
- b) Zeigen Sie, dass E nicht zyklisch ist.
- c) Bestimmen Sie alle Punkte der Ordnung 1, 2, 3 und 4, sowie einen Punkt maximaler Ordnung in E.