
Algorithms and Data Structures

Ulf Leser

Minimal Spanning Trees

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 2

Die Energiewende

• Electricity is created in

many more places than
before

• Electricity is consumed in
many places

• Places of production are
not evenly distributed
across the country

• We need to build new
electricity highways

Source: http://www.deutsche-mittelgebirge.de/

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 3

Die Energiewende

• How can we do this as

cheap as possible?
• Not all connections are

possible
– Mountains, rivers, …

• Different connections have
different costs

City
E-Plant

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 4

Die Energiewende

• Requirement for a solution:
Every city and every plant
must be connected to the
network
• We treat them uniformly
• We don’t care about the

length of a connection

• One solution

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 5

Die Energiewende

• Another solution
• Of course, in real life we

may build crossroads
outside cities

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 6

Die Energiewende

• This is the Steinerbaum-
Problem
– Some nodes must be

connected, other nodes
maybe connected

• Optimal solution is much
harder to find

• Not considered here

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 7

Abstraction

• Given an undirected,

positively weighted,
connected graph G=(V,E)

• Find a subset E’⊆E such that
cost(E’) is minimal and
G’=(V, E’) is connected
– cost(E’): Sum of the edge

weights

• Every such E’ (or G’) is
called a minimum spanning
tree (MST) for G

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 8

Example 1

• Cost = 62
10

6

5

1

2

4
16

4

14

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 9

Example 2

• Cost = 61

7

10

4

1

3

2

16

4

14

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 10

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14

First Algorithm

• Let’s try greedy
– Sort edges by weight
– Add the next cheapest edge to

E’ whenever it connects a new
node to something already
known

• Hmm

4

6

5

1

2

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 11

Second Algorithm

• Let‘s try greedy – another way
– Sort edges by weight
– Add cheapest edge to E’
– Add all edges to E’ in ascending

order such that every new edge
adds a new node to the graph
induced by E’

– Repeat until E’ is complete

• Cost = 42
– Is this optimal?
– Does this always work?
– How can we implement this

algorithm efficiently?

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 12

Overview

• First algorithms for computing MST date back to the 1920s
• Algorithms are not difficult; much research went into

efficient implementations
• Actually, MSTs can be computed in a greedy manner
• Algorithms need not grow only one component; in general,

we may have “connected islands” that all get connected to
one component in the end

• In each step, one needs to decide which edge to add next
to which island (or which edges not to add)

• What are criteria for adding / not adding edges?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 13

Content of this Lecture

• Minimal Spanning Trees
• Basic Properties

– Tree
– Cuts
– Cycles

• Algorithms
• Implementation

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 14

Minimal Spanning Trees

• Lemma
Let G=(V, E) and E’⊆E be the subset of E’ with minimal
cost such that G’, the graph induced by E’, is connected.
Then G’ is a tree.

• Proof
– Recall: A (undirected) tree is a undirected, connected acyclic graph
– By definition, G’ is connected and undirected
– Imagine G’ had a cycle. Then G’ cannot have minimal cost, because

removing any of the edges on the cycle from E’ would create a
subset E’’ that has less cost, and the induced subgraph would still
be connected

• We assumed all edge weights to be positive

• Note: If all edge weights are distinct, the MST is unique

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 15

Cuts

• Definition
Let G=(V, E). A cut is a binary partitioning of V into two
sets V1, V2 such that V1∩V2=∅ and V1∪V2=V.

• Lemma
Let G=(V, E) and V1, V2 be a cut of V. Let F be the set of
all edges going from any node in V1 to any node in V2. Let
F’ be those edges of F with minimal weight. Then any MST
G’ of G must contains one edge of F’, and every edge of F’
is contained in at least one MST of G

• Remarks
– This holds for arbitrary cuts – a very powerful statement
– Edges in F are called crossing edges

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 16

Example

7

10

6

18

4

11
6

5

1

3

2

4

2

16

4

14

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 17

Example

10

6

2

4

2
4

• F:
All crossing edges

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 18

Example

2

2

• F’:
The cheapest
crossing edges

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 19

Proof

• Every MST G’ contains one f∈F’
– Imagine a G’ that has no such f. Still, G’ must be connected, so it

must contain at least one of the crossing edges from F. Assume it
contains only one such edge, h. h must have a higher weight than f
because h∉F’. Further, V1 and V2 must be connected in themselves.
Then G’ cannot be minimal, because removing h and adding some
f∈F would create a cheaper MST – contradiction.

– Same argument holds if G’ contains more than one crossing edge,
all of which are not minimal

• Every f∈F’ is contained in at least one MST
– Imagine f is not contained in any MST. Let G’ be a MST and h be

the edge in G’ connecting V1 and V2. h must be in F’, or G’ is not
minimal. Thus, the MST formed by removing h and adding f also is
a MST – contradiction.

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 20

Beware

• For a given cut V1, V2, a MST G‘ may contain more than

one crossing edge (and at least one must have minimal
weight)

3

6

2
7

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 21

Consequences

• The cut property is a powerful tool for computing MSTs
• Lemma (cut property)

Let G=(V, E) and G‘=(V, E‘) be a MST of G. Then every
e∈E‘ has minimal cost among all crossing edges of the cut
V1, V2 formed by removing e from G‘.

• Proof
– Since G’ is a tree, every edge from

E‘ “cuts” G
– Rest follows from previous lemma

• Can be used to check whether
a given E’ is a MST

3

6

2

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 22

Consequences

• The cut property is a strong help for computing MSTs
• Lemma (cut property)

Let G=(V, E) and G‘=(V, E‘) be a MST of G. Then every
e∈E‘ has minimal cost among all crossing edges of the cut
V1, V2 formed by removing e from G‘.

• Proof
– Since G’ is a tree, every edge from

E‘ “cuts” G
– Rest follows from previous lemma

• Can be used to check whether
a given E’ is a MST

3

6

2

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 23

Content of this Lecture

• Minimal Spanning Trees
• Basic Properties

– Tree
– Cuts
– Cycles

• Algorithms
• Implementation

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 24

Cycles

• Lemma (cycle property)
Let G=(V, E) and G’=(V, E’) with E’=E\e for some edge e
such that G’ still is connected. Let T’ be a MST for G’.
When we add e to T’ and remove the edge with the
highest weight on the then introduced cycle in T’, forming
T, then T is a MST for G.

• Proof idea
– Adding e to T’ must build a cycle because T’ is a MST over V
– Removing any of the edges on the cycle still leaves a connected

tree
– Removing the most expensive one leaves the minimal tree

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 25

Example

7

6

5

1

3

2

4

5

16

4

7

6

5

1

2

4

5

16

4

Add e

6

5

2

4

4

1

6

5

2

4

4 3

1 Remove highest
weight on cycle

6

5

2

4 3

1

e

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 26

Implications

• T’ is a MST for G without e
• Imagine we would enumerate edges in some order
• Taking into account a new edge e may allow us to replace

an edge in T’ with a cheaper one, creating a “better” MST
for G
– If e is not the edge with the highest weight on the cycle

• This means that an edge with maximal weight on a cycle in
G cannot be part of any MST of G

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 27

Content of this Lecture

• Minimal Spanning Trees
• Basic Properties
• Algorithms

– R.C. Prim: Shortest connection networks and some generalizations.
Bell System Technical Journal, 1957

• Also Jarnik, Prim, Dijkstra: Jarník, 1930 – Prim, 1957 – Dijkstra , 1959

– J. Kruskal: On the shortest spanning subtree and the traveling
salesman problem. Proc. of the American Mathematical Soc., 1956

– Otakar Borůvka: O jistém problému minimálním (Über ein gewisses
Minimierungsproblem), 1926

– [Wikipedia, OW93]

• Implementation

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 28

Prim‘s Algorithm

• Recall cut property: Every edge e in a MST is a minimal
edge among the two partitions created by removing e

• Prim’s Algorithm
Start with an empty tree T. Continue adding the edge e
with the lowest cost to T such that e connects T with a
new node until all nodes of G are in T. Then T is a MST.

• Proof
– Consider, at each stage, nodes in T as one partition V1 and all other

nodes as the other partition V2

– By cut property, the cheapest crossing-edge between V1 and V2
must be in the MST

– Since we only add those edges, T finally must be a MST

Greedy; we never
make mistakes

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 29

Example

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 30

Kruskal’s Algorithm

• Kruskal‘s Algorithm
Start with an empty forest F. Continue “adding” edges e to
F in order of increasing cost until F becomes a tree. Adding
an edge e=(v, w) to F proceeds as follows:
– If F already contains a tree containing both v and w, then e is

dropped
– If no tree in F contains either v or w, then a new tree formed by e

is added to F
– If F contains a tree T containing either v or w and neither T nor

any other tree in F contains the other node, then e is added to T
– If F contains a tree T containing either v or w and a tree T’

containing the other node, then T, T’ and e are merged into one
tree

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 31

Example

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 32

Proof

• By induction (only central idea)
– We show that all trees in F are a MST of a subgraph of G
– Claim is true at the beginning (F empty)
– Assume claim holds when we consider the next edge e=(v, w)
– Case 1: Claim holds, because e would introduce a cycle, and e has

the highest cost on this cycle (all cheaper edges were considered
before). Thus, e cannot be in an MST for G

– Case 2: Claim holds because e is the cheapest edge connecting v
and w, and thus the new tree is a MST (for v and w)

– Case 3: Claim holds because e is the cheapest edge connecting v
(or w) and T, and thus the new tree is a MST

– Case 4: Claim holds because e is the cheapest edge connecting T
and T’, and thus the new tree is a MST

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 33

Boruvka‘s Algorithm

• Boruvka‘s Algorithm
Start with an empty forest F. Add all edges (at once) that
connect a node with its “cheapest” neighbor (edge with
least cost) – taking care of not introducing cycles. Then
consider each pair of trees in F in order of the cost of
connection and add cheapest crossing-edge until F
becomes a unique tree.

• Proof (and details) omitted; see [Sed04]

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 34

Example

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 35

Communalities

• All three algorithms iteratively choose an edge by the cut
property or reject an edge by the cycle property
– Prim: Growing T is one partition, all other nodes the other (isolated

nodes)
– Kruskal: Each T that grows is one partition, all other nodes the

other (islands of mini-MSTs)
– Boruvka: Each T that grows is one partition, all other nodes the

other (islands of mini-MSTs)

• Differences
– The order in which edges are chosen – there are always many

candidates
– The data structures that these algorithms need to maintain

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 36

Content of this Lecture

• Minimal Spanning Trees
• Basic Properties
• Algorithms
• Implementation

– Prim’s, Kruskal’s

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 37

Implementing Prim‘s Algorithm

• ChooseCheapest: Choose
cheapest edge from R connecting
a node in T to a node not yet in T

• Brute force: Search all such
edges in every step

• Better
– Maintain a PQ of nodes reachable by

one edge from T sorted by cost
– When adding a new node to T, look

at its neighbors and add them to the
PQ (if not reachable before) or
update costs (if now there is a
cheaper edge reaching them)

G := (V, E);
T := ∅; # Growing T
R := E; # Remaining edges
for i = 1 to |V|-1 do
 e := chooseCheapest(T, R);
 T := T ∪ e;
 R := R \ e;
end for;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 38

Example

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14

• T = {A, F, E, B, G}
• PQ = {(D,6), (I, 6), (C, 7)}

• Choose (A-D, 6)

A
B
C
D
E
F

G
H

I,J

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 39

Example

7

10

6

18

4

11
6

5

1

3

2

4

5

16

4

14

• T = {A, F, E, B, G}
• PQ = {(D,6), (I, 6), (C, 7)}

• Choose (A-D, 6)
• New T: {A, F, E, B, G, D}
• PQ = {(C,4), (I, 6), (H, 18)}

A
B
C
D
E
F

G
H

I,J

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 40

Complexity

• n=|V|, m=|E|

• Prim’ algorithm runs in O((n+m)*log(n))

– n times through the loop, performing altogether at most m PQ-
operations in log(n)

• In dense graphs (m~n^2), this means O(m*log(n))

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 41

Implementing Kruskal‘s Algorithm

• ChooseCheapest: Simply choose
cheapest edge in E
– I.e., sort E at the beginning

• This is called a UNION-FIND
data structure
– Maintains a set of sets (all trees T)
– Needs a method for quickly

finding the set containing a given
element (find)

– Needs a method for quickly
merging two sets (union)

• Can be implemented in O(m*log(n))

G := (V, E);
F := ∅;
repeat
 (v,w) := chooseCheapest(E);
 E := E \ (v,w);
 T := find(v);
 T’ := find (w);
 if T=T’=∅ then
 F.add({(v,w)});
 else if T’=∅ then
 T.add ({v,w});
 else if T=∅ then
 T’.add ({v,w});
 else if T≠T’ then
 T := T ∪ T’;
 end if;
until |T|=|V|;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 42

Exemplary Examination Questions

• Correctly formulate and prove the Cut-property, a tool for
computing MSTs

• Compute a MST for the following graph … using Prim’s
algorithm. After each step, show the sets T, R, and the
sate of the priority queue Q

• Prove or falsify: If all edge weights of a graph G are
pairwise distinct, then G has only one MST

• Prove or falsify the correctness of the following algorithm
for computing an MST for a graph G:
– (1) Set G’=G;
– (2) If G’ contains no cycle, return G’ as MST;
– (3) Otherwise, chose an arbitrary cycle in G’ and remove the edge

with the highest weight on this cycle; then goto 2

	Foliennummer 1
	Die Energiewende
	Die Energiewende
	Die Energiewende
	Die Energiewende
	Die Energiewende
	Abstraction
	Example 1
	Example 2
	First Algorithm
	Second Algorithm
	Overview
	Content of this Lecture
	Minimal Spanning Trees
	Cuts
	Example
	Example
	Example
	Proof
	Beware
	Consequences
	Consequences
	Content of this Lecture
	Cycles
	Example
	Implications
	Content of this Lecture
	Prim‘s Algorithm
	Example
	Kruskal’s Algorithm
	Example
	Proof
	Boruvka‘s Algorithm
	Example
	Communalities
	Content of this Lecture
	Implementing Prim‘s Algorithm
	Example
	Example
	Complexity
	Implementing Kruskal‘s Algorithm
	Exemplary Examination Questions

