

Algorithms and Data Structures

Strongly Connected Components

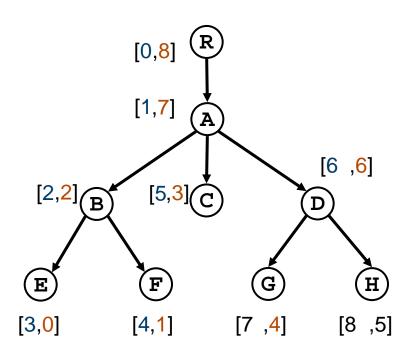
Ulf Leser

Content of this Lecture

- Graph Traversals
- Strongly Connected Components

Recall: Reachability in Trees

- Assume a DFS-traversal
- Build an array assigning each node two numbers
- Preorder numbers
 - Keep a counter pre
 - Whenever a node is entered the first time, assign it the current value of pre and increment pre
- Postorder numbers
 - Keep a counter post
 - Whenever a node is left the last time, assign it the current value of post and increment post



Examples from S. Trissl, 2007

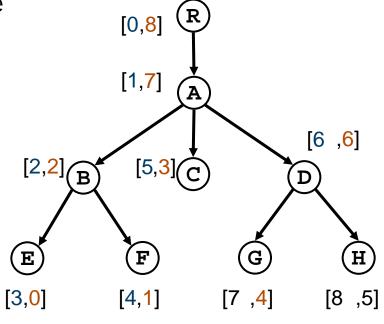
Ancestry and Pre-/Postorder Numbers

 Trick: A node v is reachable from a node w iff pre(v)>pre(w) ∧ post(v)<post(w)

- Explanation
 - v can only be reached from w, if w is "higher" in the tree, i.e.,

v was traversed after w and hence has a higher preorder number

- v can only be reached from w, if v is "lower" in the tree, i.e.,
 v was left before w and hence has a lower postorder number
- Analysis: Test is O(1)



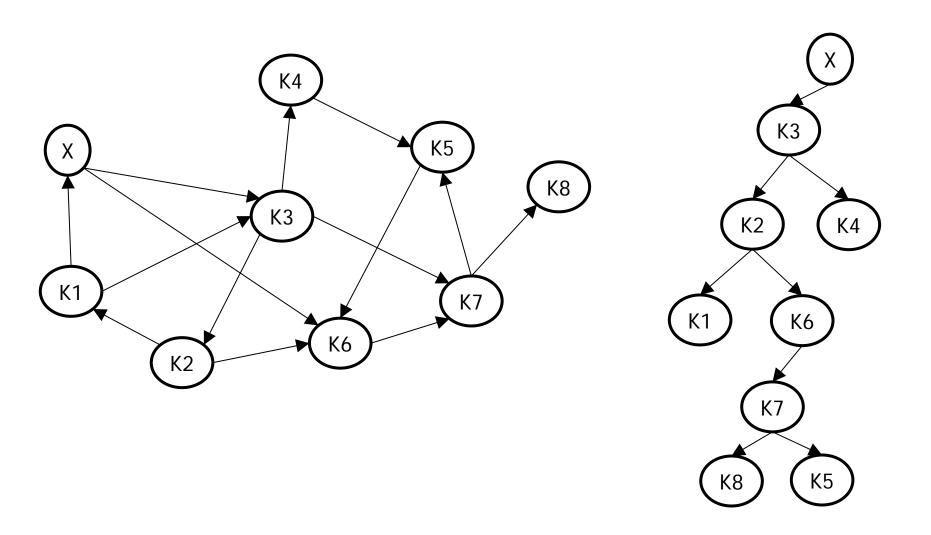
Pre-/Post-order Labeling for Graphs

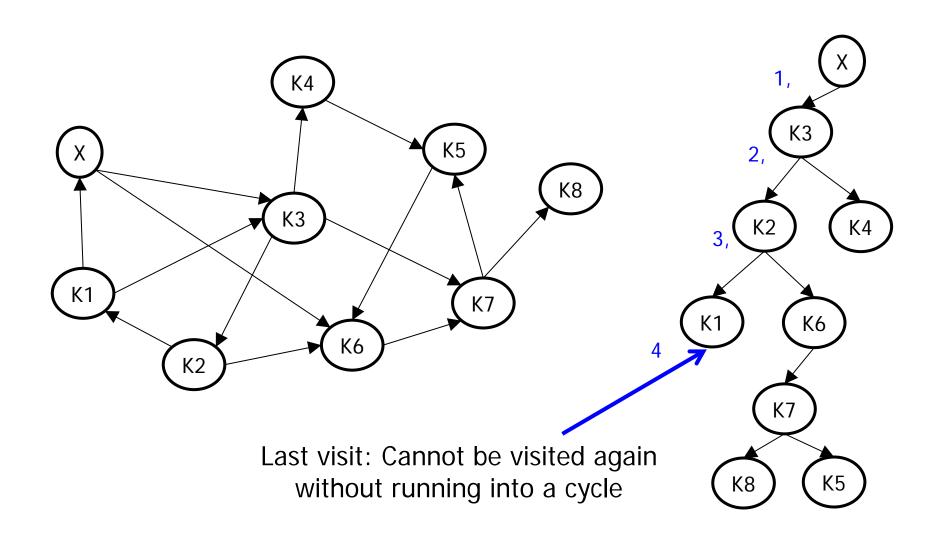
Method

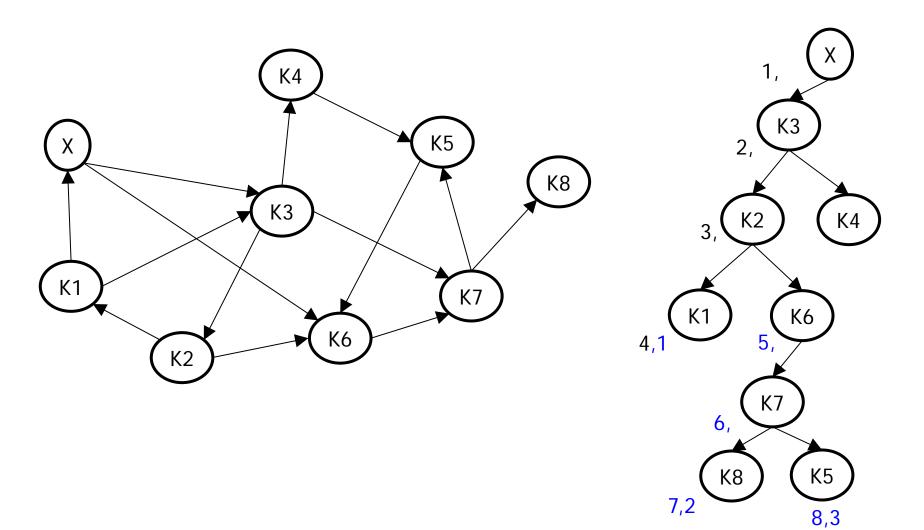
Let G=(V, E). We assign each $v \in V$ a pre-order and a post-order as follows. Set pre=post=1. Perform a depth-first traversal of G, starting at arbitrary nodes. When a node v is reached the first time, assign it the value of pre as pre-order value and increase pre. Whenever a node v is left the last time, assign it the value of post as post-order value and increase post.

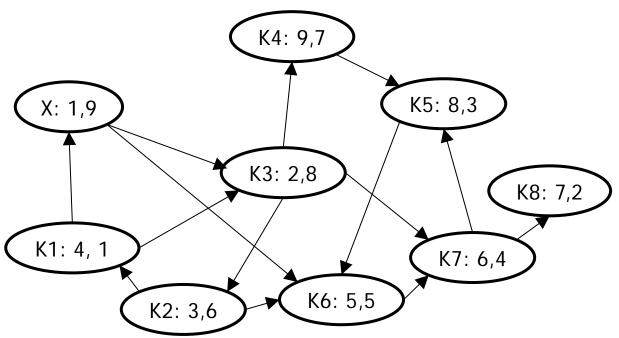
Notes

- Traversals are cycle-free by definition –avoid multiple visits
- Complexity: O(|V| + |E|)
- Labeling not unique; depends on chosen start nodes and order in which children are visited

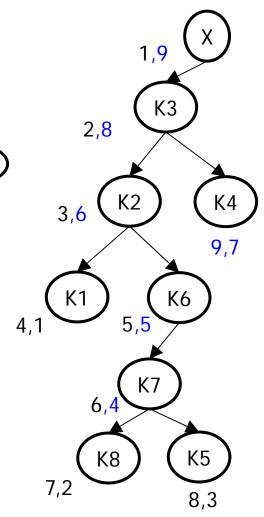




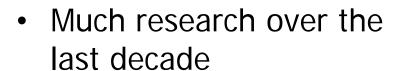




- Reachability trick does not work
- Example: K1-K4
 - Reachable in G
 - But pre(K4)>pre(K1)



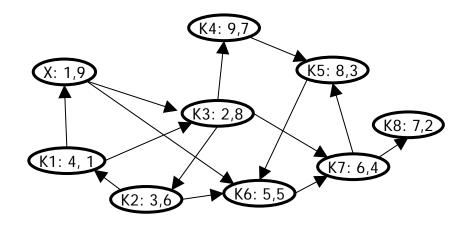
Tricks to Speed-Up Reachability in Graphs



PPO: Pre-/Post-Order Pair

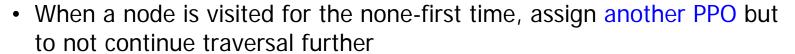
Ideas

- If the graph is "tree-like" and acyclic
- Follow all paths and assign multiple PPOs
- Requires exponential space in WC, depending on "tree-likeliness"



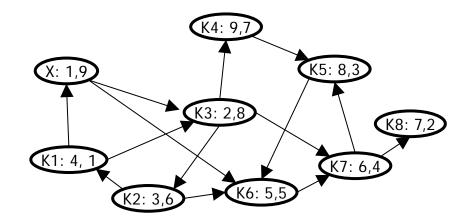
Tricks to Speed-Up Reachability in Graphs

- Ideas (GRIPP)
 - If the graph is acyclic
 - Perform a modified DFS



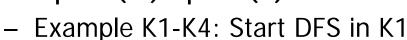
- For each node, store all PPOs
- During search, expand with nodes which have multiple PPOs
 - Expand: "Jump" to the first PPO and branch another search
- "Almost constant" runtime in many graphs

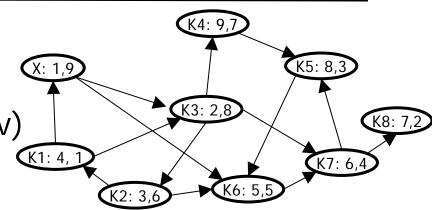
Trissl, S. and Leser, U. (2007). "Fast and Practical Indexing and Querying of Very Large Graphs". SIGMOD.



Tricks to Speed-Up Reachability in Graphs

 Observation: If v is reachable from w, then there exists a DFS of G in which pre(w) < pre(v) and post(w) > post(v)





Idea

- Perform a fixed number (k) of DFS and use as filter
- If v is reachable from w in any of the DFS: Done.
- Otherwise use another method (hopefully not often!)
- Very effective in dense graphs where most nodes are reachable
- Parameter k controls runtime and space

Yildirim, H., Chaoji, V. and Zaki, M. J. (2010). "GRAIL: Scalable Reachability Index for Large Graphs." *VLDB*

Graph Transformations

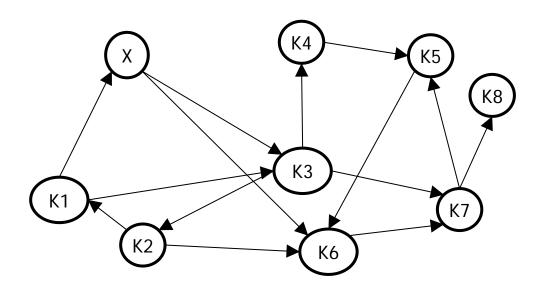
- Many other suggestions
- All require a preprocessing phase (e.g. PPO indexing) and a search phase
- Complexities of both phases depend fundamentally on |G|
 - If we could shrink G (without losing reachability-relevant information), all algorithms would be much faster
- Furthermore, some methods only work with acyclic graphs
 - We need a way to transform a cyclic graph G into an acyclic graph
 G' which encoded the same reachability information

Content of this Lecture

- Graph Traversals
- Strongly Connected Components (SCC)
 - Motivation: Graph Contraction
 - Kosaraju's algorithm

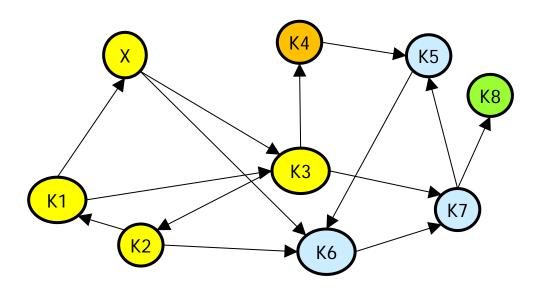
Recall

- Definition
 Let G=(V, E) be a directed graph.
 - An induced subgraph G'=(V', E') of G is called connected if G' contains a path between any pair $v,v'\in V'$
 - Any maximal connected subgraph of G is called a strongly connected component of G



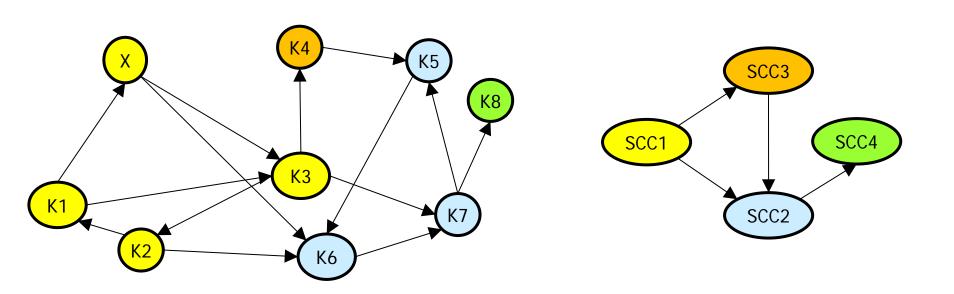
Recall

- Definition
 Let G=(V, E) be a directed graph.
 - An induced subgraph G'=(V', E') of G is called connected if G' contains a path between any pair $v,v'\in V'$
 - Any maximal connected subgraph of G is called a strongly connected component of G



Motivation: Contracting a Graph

- Consider finding the transitive closure (TC) of a digraph G
 - If we know all SCCs, parts of the TC can be computed immediately
 - Next, each SCC can be replaced by a single node, producing G'
 - G' must be acyclic and is (much) smaller than G



Reachability and Graph Contraction

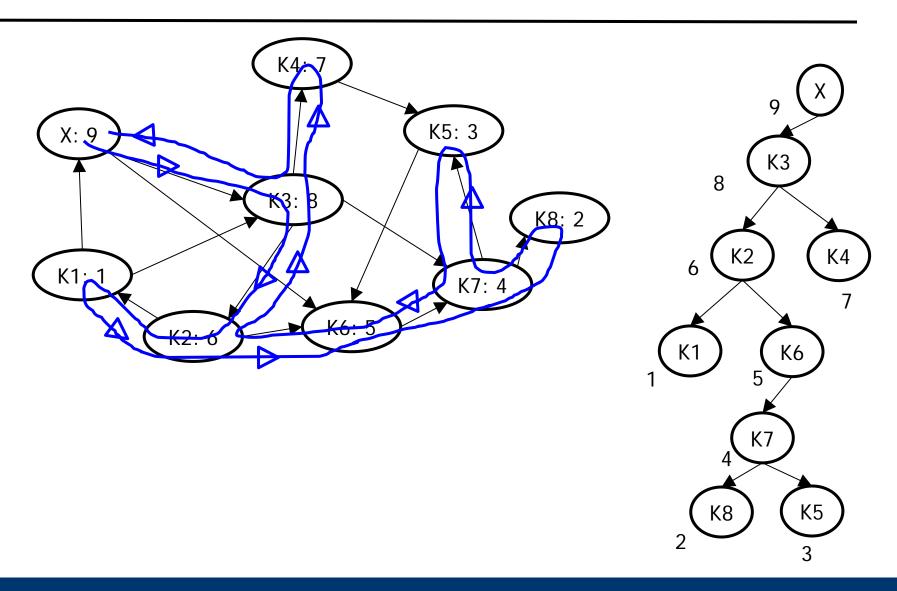
- Intuitively: TC(G) = TC(G')+SCC(G)
 - Representing SCC(G): Hash table h mapping each node ID to its SCC-ID
 - Testing reachability v→w: Test if h(v)=h(w)
 - Thus, we only have to consider G' further
- Computing SCC solves our problems in graph reachability
 - "If we could shrink G (without losing reachability-relevant information), all algorithms would be much faster"
 - Yes we can
 - "We need a way to transform a cyclic graph G into an acyclic graph
 G' which encoded the same reachability information"
 - Yes we can
- But how much work do we need to compute SCC(G)?

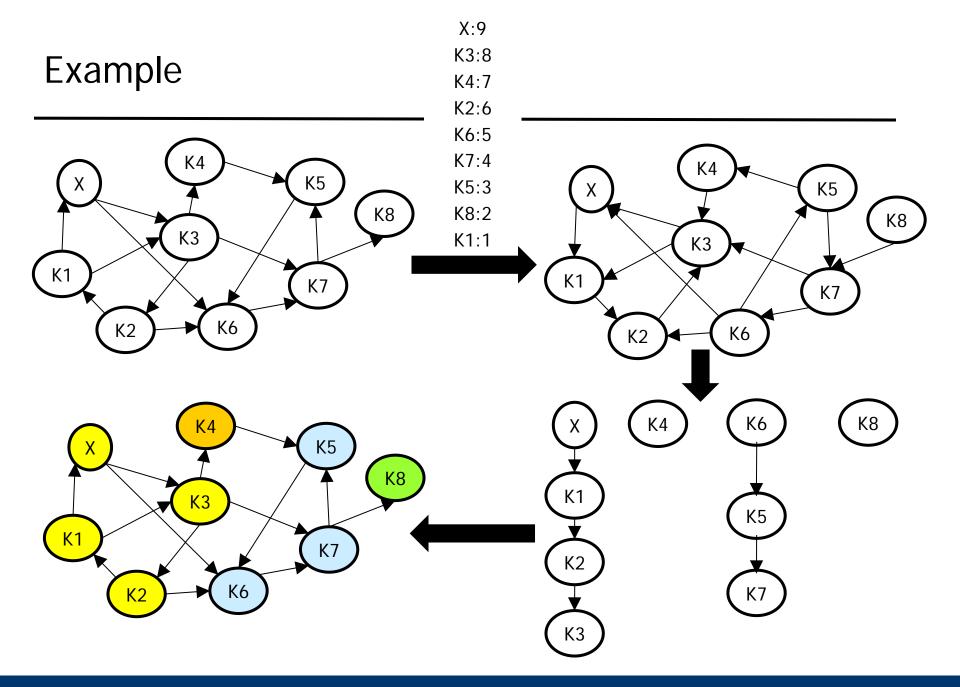
Content of this Lecture

- Graph Traversals
- Strongly Connected Components (SCC)
 - Motivation
 - Kosaraju's algorithm

Kosaraju's Algorithm

- Definition
 Let G=(V,E). The graph G^T=(V, E') with (v,w)∈E' iff (w,v)
 ∈E is called the transposed graph of G.
- Kosaraju's algorithm is very short (but not simple)
 - Compute post-order labels for all nodes from G using a first DFS
 - We don't need pre-order values
 - Compute G^T
 - Perform a second DFS on G^T always choosing as next node the one with the highest post-order label according to the first DFS
 - All trees that emerge from the second DFS are SCC of G (and G^T)
- Unpublished; Kosaraju, 1978



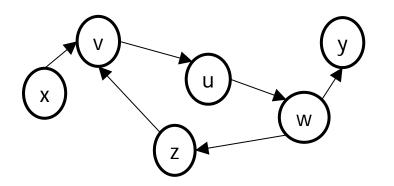


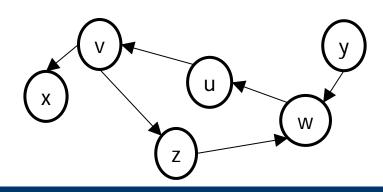
Correctness

Theorem
 Let G=(V,E). Any two nodes v, w are in the same tree of
 the second DFS iff v and w are in the same SCC in G.

Proof

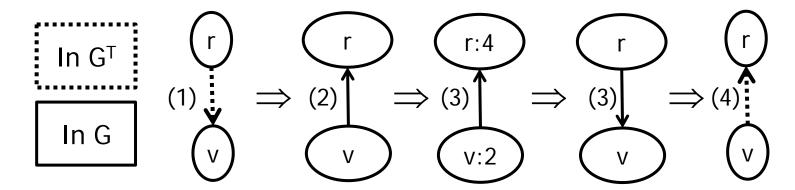
- ⇐: Suppose v→w and w→v in G. One of the two nodes (assume it is v) must be reached first during the second DFS. Since v can be reached by w in G, w can be reached by v in G^T. Thus, when we reach v during the traversal of G^T, we will also reach w further down the same tree, so they are in the same tree of G^T.



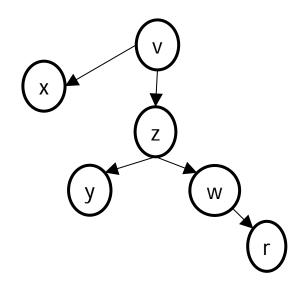


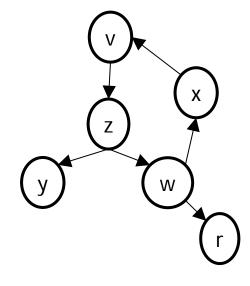
Correctness

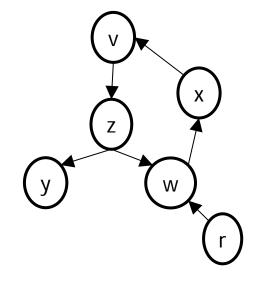
- \Rightarrow : Suppose v and w are in the same DFS-tree of G^T
 - Suppose r is the root of this tree
 - (1) Since $r \rightarrow v$ in G^T , it must hold that $v \rightarrow r$ in G
 - (2) Because of the order of the second DFS: post(r)>post(v) in G
 - (3) Thus, there must be a path $r \rightarrow v$ in G: Otherwise, r had been visited last after v in G and thus would have a smaller post-order
 - (4) Since $v \rightarrow r$ (1) and $r \rightarrow v$ (3) in G, the same is true for G^T
 - (5) The same argument shows that $w\rightarrow r$ and $r\rightarrow w$ in G
 - (6) By transitivity, it follows that $v\rightarrow w$ and $w\rightarrow v$ via r in G and in G^T



Examples (p(X) = post-order(X))







- V→W
- Thus, $w \rightarrow v$ in G^T
- Because w→v in G, p(v)>p(w)
- First tree in G^T starts in v; doesn't reach w
- v, w not in same tree

- v→w and w→v in G and in G^T
- Assume w is first in 1st DFS: p(w)>p(v)
- Thus 2nd DFS starts in w and reaches v
- v, w in same tree

- Let's start 1st DFS in r: p(r)>p(w)>p(v)
- 2nd DFS starts in r, but doesn't reach w
- Second tree in 2nd DFS starts in w and reaches v
- v, w in same tree

Complexity

- Both DFS are in O(|G|), computing G^T is in O(|E|)
- Instead of computing post-order values and sort them, we can simple push nodes on a stack when we leave them the last time in the first DFS – needs to be done O(|V|) times
- In the 2nd DFS, we pop nodes from the stack as new roots
 - Needs one more array to remove selected nodes during second
 DFS from stack in constant time
- Together: O(|V|+|E|)
 - Optimal: Since in WC we need to look at each edge and node at least once to find SCCs, the problem is in $\Omega(|V|+|E|)$
- There are faster algorithms that find SCCs in one traversal
 - Tarjan's algorithm, Gabow's algorithm