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Content of this Lecture 

 
 
 

• All-Pairs Shortest Paths 
– Transitive closure: Warshall’s algorithm 
– Shortest paths: Floyd’s algorithm 

• Reachability in Trees 
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Shortest Path Problems 

 
• Given a weighted digraph G 

 
• Dijkstra finds the shortest path between a given start node 

and all other nodes for the case that all edge weights are 
positive 

• All-pairs shortest paths: Given a digraph G with positive or 
negative edge weights, find the distance between all pairs 
of nodes 
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All-Pairs Shortest Paths: General Case  

 
• Transitive closure with distances 
• Result is O(|V|2) space, so don’t try this for large graphs 
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Why Negative Edge Weights? 

• One application: Transportation company 
– Every route incurs cost (for fuel, salary, etc.) 
– Every route creates income (for carrying the freight) 

• If cost>income, edge weights become negative 
– But still important to find the best route 
– Example: Best tour from X to C 
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No Dijkstra 

• Dijkstra’s algorithm does not work 
– Recall that Dijkstra enumerates nodes by their shortest paths 
– Now: Adding a subpath to a so-far shortest path may make it 

“shorter” (by negative edge weights) 
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No Dijkstra 

• Dijkstra’s algorithm does not work 
– Recall that Dijkstra enumerates nodes by their shortest paths 
– Now: Adding a subpath to a so-far shortest path may make it 

“shorter” (by negative edge weights) 
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Negative Cycles 

• Shortest path  
between X and K5? 
– X-K3-K4-K5: 5 
– X-K3-K4-K5-X-K3-K4-K5: 4 
–  X-K3-K4-K5-X-K3-K4-K5-X-K3-K4-K5: 3 
– … 

• SP-Problem undefined if G contains a negative cycle 
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All-Pairs: First Approach 

• We start with a simpler problem: Computing the transitive 
closure of a digraph G without edge weights 

• First idea 
– Reachability is transitive: x→y ∧ y→z  ⇒  x→z 
– We use this idea to iteratively build longer and longer paths 
– First extend edges with edges – path of length 2 
– Extend paths of length 2 with edges – paths of length 3 
– … 
– No necessary path can be longer then |V|  

• Or it would contain a cycle 

• In each step, we store “reachable by a path of length ≤k” 
in a matrix 
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Example – After z=1, 2, 3, 4 
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Path length:   ≤2                   ≤3                 ≤4                   ≤5 
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Naïve Algorithm 

 
 

• M is the adjacency matrix of G, 
M’’ eventually the TC of G 

• M’: Represents paths ≤z 
• Loops i and j look at all pairs 

reachable by a path of length 
≤z+1 

• Loop k extends path of length 
≤z by all outgoing edges 

• Obviously O(n4) 

G = (V, E); 
M := adjacency_matrix( G); 
M’’ := M; 
n := |V|; 
for z := 1..n-1 do 
  M’ := M’’; 
  for i = 1..n do 
    for j = 1..n do 
      if M’[i,j]=1 then 
        for k=1 to n do 
          if M[j,k]=1 then 
            M’’[i,k] := 1; 
          end if; 
        end for; 
      end if; 
    end for; 
 end for; 
end for; 

z appears nowhere; it is 
there to ensure that we 
stop when the longest 

possible shortest paths has 
been found 
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Observation 

• In the first step, we actually compute M*M, and then 
replace each value ≥1 with 1  
– We only state that there is a path; not how many and not how long 

• Computing TC can be described as matrix operations 
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Paths in the Naïve Algorithm 

• The naive algorithm always extends paths by one edge 
– Computes M*M, M2*M, M3*M, … Mn-1*M 
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Idea for Improvement 

• Why not extend paths by all paths found so-far? 
– We compute  

M2’=M*M: Path of length ≤2 
M3’=M2’*M∪M2’*M2’: Path of length ≤2+1 and ≤2+2 
M4’=M3’*M ∪M3’*M2’ ∪M3’*M3’, lengths ≤4+1, ≤4+2, ≤4+3/4 
…  
Mn’=… ∪  Mn-1’*Mn-1’  

– [We will implement it differently] 

• Trick: We can stop much earlier 
– The longest shortest path can have length at most n 
– Thus, it suffices to compute Mlog(n)’= … ∪  Mlog(n)’*Mlog(n)’ 
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Algorithm Improved 

 
• We use only one matrix M 
• We “add” to M matrices M2’, M3’ …  
• In the extension, we see if a path 

of length ≤2z (stored in M) can be 
extended by a path of length ≤2z 
(stored in M) 
– Computes all paths ≤2z+2z=2z+1 

• Analysis: O(n3*log(n)) 
• But … we can be even faster  

G = (V, E); 
M := adjacency_matrix( G); 
n := |V|; 
for z := 0..ceil(log(n)) do 
  for i = 1..n do 
    for j = 1..n do 
      if M[i,j]=1 then 
        for k=1 to n do 
          if M[j,k]=1 then 
            M[i,k] := 1; 
          end if; 
        end for; 
      end if; 
    end for; 
 end for; 
end for; 
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Example – After z=1, 2, 3 

A B C D E 

A 1 1 1 

B 1 1 
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Path length:              ≤2                   ≤4                 Done 
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Further Improvement 

 
• Note: The path A→D is found twice: A→B→D / A→C→D 
• Can we stop “searching” A→D once we found A→B→D? 
• Can we enumerate paths such that redundant paths are 

discovered less often (i.e., less paths are tested)?  
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Warshall’s Algorithm 

• Preparations 
– Fix an arbitrary order on nodes and assign each node its rank as ID 
– Let Pt be the set of all paths that contain only nodes with ID<t+1 

• Idea: Compute Pt inductively 
– We start with P1 

– We compute Pt, t>1, based on the assumption that Pt-1 is known 
– We are done once t=n 

• Induction 
– Suppose we know Pt-1 

– If we increase t by one, we admit one additional node, i.e., t 
– Now, every new path must have the form x→t→y 

• Paths with all IDs <t are already known 
• Node t is the only new player, must be in all new paths 

Warshall, S. (1962). A theorem on Boolean 
matrices. Journal of the ACM 9(1): 11-12. 
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Algorithm 

• Enumerate paths by the 
IDs of the nodes they are 
allowed to contain 

• t gives the highest allowed 
node ID inside a path 

• Thus, node t must be on 
any new path 

• We find all pairs i,k with 
i→t and t→k 

• For every such pair, we set 
the path i→k to 1 

1. G = (V, E); 
2. M := adjacency_matrix( G); 
3. n := |V|; 
4. for t := 1..n do 
5.   for i = 1..n do 
6.     if M[i,t]=1 then 
7.       for k=1 to n do 
8.         if M[t,k]=1 then 
9.           M[i,k] := 1; 
10.        end if; 
11.      end for; 
12.    end if; 
13.  end for; 
14.end for; 
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Example – Warshall’s Algorithm 
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Example – After t=A,B,C,D,E 
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D allowed 
Connect 
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C-D,E-D 
with D-E 

E allowed 
Connect 
everything 
with 
everything 

t=„A“ t=„B“ t=„C“ 
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Little change – Notable Consequences  

1. G = (V, E); 
2. M := adjacency_matrix( G); 
3. n := |V|; 
4. for t := 1..n do 
5.   for i = 1..n do 
6.     if M[i,t]=1 then 
7.       for k=1 to n do 
8.         if M[t,k]=1 then 
9.           M[i,k] := 1; 
10.        end if; 
11.      end for; 
12.    end if; 
13.  end for; 
14.end for; 

G = (V, E); 
M := adjacency_matrix( G); 
n := |V|; 
for z := 1..n do 
  for i = 1..n do 
    for j = 1..n do 
      if M[i,j]=1 then 
        for k=1 to n do 
          if M[j,k]=1 then 
            M[i,k] := 1; 
          end if; 
        end for; 
      end if; 
    end for; 
  end for; 
end for; 

Drop z-
Loop 

Swap i and 
j loop 

Rephrase j 
into t 

        O(n4)            O(n3) 
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Content of this Lecture 

 
 
 

• All-Pairs Shortest Paths 
– Transitive closure: Warshall’s algorithm 
– Shortest paths: Floyd’s algorithm 

• Reachability in Trees 
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Shortest Paths 

 
• Shortest paths: We need to compute the distance between 

all pairs of reachable nodes 
• We use the same idea as Warshall: Enumerate paths using 

only nodes smaller than t 
– Invariant: Before step t, M[i,j] contains the length of the shortest 

path that uses no node with ID higher than t 
– When increasing t, we find new paths i→t→k and look at their 

lengths 
– Thus: M[i,k]:=min( M[i,k] ∪ { M[i,t]+M[t,k] | i→t ∧ t→k} ) 

 

Floyd, R. W. (1963). Algorithm 97: Shortest 
Path. Communications of the ACM 5(6): 345. 
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Example 
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Summary (n=|V|, m=|E|) 

• Warshall‘s algorithm computes the transitive closure of any 
unweighted digraph G in O(n3) 

• Floyd‘s algorithm computes the distances between any pair 
of nodes in a digraph without negative cycles in O(n3) 

• Johnson’s alg. solves the problem in O(n2*log(n)+n*m) 
– Which is faster for sparce graphs 

• Storing both information requires O(n2) 
• Problem is easier for … 

– Undirected graphs: Connected components 
– Graphs with only positive edge weights: All-pairs Dijkstra 
– Trees: Test for reachability in O(1) after O(n) preprocessing 
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Content of this Lecture 

 
 
 

• All-Pairs Shortest Paths 
– Transitive closure: Warshall’s algorithm 
– Shortest paths: Floyd’s algorithm 

• Reachability in Trees 
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Gene Ontology – Describing Gene Function 

Gene Ontology 

Biological Process Molecular Function 

Cellular Process 

Cell Communication 

Signal Transduction 

Physiological Process 

Metabolism 

Protein Metabolism 

Protein Modification 

Binding 

Nucleotide Binding 

Catalytic Activity 

Transferase Activity 

Kinase Activity 
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Database Annotation InterPro 

• Used by many databases 
• Allows cross-database search 
• Provides fixed meaning of terms 

• As informal textual description, not as formal definitions 
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A Large Ontology 

 
 
 

• As of 10.6.2011 
– 34253 terms 
– 20831 biological process 
– 2844 cellular component 
– 9019 molecular function 
– 1559 obsolete terms 

• Depth: >30 
• Today: More than 40000 terms 
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Problem 

• To see whether a term X ISA term Y, we need to check 
whether Y lies on the path from root to X 

• Reachability problem 
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Reachability in Trees 

 
• Let T be a directed tree. A node v is reachable from a node 

w iff there is a path from w to v 
• Testing reachability requires finding paths 

– Which is simple in trees 

• Path length is bound by the length of the longest path, i.e., 
the depth of the tree 

• This means O(n) in worst-case 
• Let’s see whether we can do this in constant time 
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Pre-/Postorder Numbers 

• Assume a DFS-traversal 
• Build an array assigning each 

node two numbers 
• Preorder numbers 

– Keep a counter pre 
– Whenever a node is entered the 

first time, assign it the current 
value of pre and increment pre  

• Postorder numbers 
– Keep a counter post 
– Whenever a node is left the last 

time, assign it the current value 
of post and increment post  
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R [0 
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[2 

[3 [4 ,0] ,1] 

,2] [5 ,3] 
[6 ,6] 

[7 ,4] [8 ,5] 

,7] 

,8] 

Examples from S. Trissl, 2007 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      34 

Ancestry and Pre-/Postorder Numbers 

• Trick: A node v is reachable from a node w iff  
pre(v)>pre(w) ∧ post(v)<post(w) 

• Explanation 
– v can only be reached from w, if w is “higher” in the tree, i.e.,  

v was traversed after w and hence  
has a higher preorder number 

– v can only be reached from w,  
if v is “lower” in the tree, i.e.,  
v was left before w and hence  
has a lower postorder number 

• Analysis: Test is O(1) 
 
 

A 

B D 

H E F G 

R [0 

C 

[1 

[2 

[3 [4 ,0] ,1] 

,2] [5 ,3] 
[6 ,6] 

[7 ,4] [8 ,5] 

,7] 

,8] 


	Foliennummer 1
	Content of this Lecture
	Shortest Path Problems
	All-Pairs Shortest Paths: General Case 
	Why Negative Edge Weights?
	No Dijkstra
	No Dijkstra
	Negative Cycles
	All-Pairs: First Approach
	Example – After z=1, 2, 3, 4
	Naïve Algorithm
	Observation
	Paths in the Naïve Algorithm
	Idea for Improvement
	Algorithm Improved
	Example – After z=1, 2, 3
	Further Improvement
	Warshall’s Algorithm
	Algorithm
	Example – Warshall’s Algorithm
	Example – After t=A,B,C,D,E
	Little change – Notable Consequences 
	Content of this Lecture
	Shortest Paths
	Example
	Summary (n=|V|, m=|E|)
	Content of this Lecture
	Gene Ontology – Describing Gene Function
	Database Annotation InterPro
	A Large Ontology
	Problem
	Reachability in Trees
	Pre-/Postorder Numbers
	Ancestry and Pre-/Postorder Numbers

