

Algorithms and Data Structures

All Pairs Shortest Paths

Ulf Leser

Content of this Lecture

- All-Pairs Shortest Paths
- Transitive closure: Warshall's algorithm
- Shortest paths: Floyd's algorithm
- Reachability in Trees

Shortest Path Problems

- Given a weighted digraph G
- Dijkstra finds the shortest path between a given start node and all other nodes for the case that all edge weights are positive
- All-pairs shortest paths: Given a digraph G with positive or negative edge weights, find the distance between all pairs of nodes

All-Pairs Shortest Paths: General Case

- Transitive closure with distances
- Result is $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ space, so don't try this for large graphs

\rightarrow	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{X}	\mathbf{Y}
\mathbf{A}	na								
\mathbf{B}	-3	na	-2	na	na	na	na	na	na
\mathbf{C}	na								
\mathbf{D}	-2	1	\ldots						
\mathbf{E}									
F									
\mathbf{G}									
\mathbf{X}									
\mathbf{Y}									

Why Negative Edge Weights?

- One application: Transportation company
- Every route incurs cost (for fuel, salary, etc.)
- Every route creates income (for carrying the freight)
- If cost>income, edge weights become negative
- But still important to find the best route
- Example: Best tour from X to C

No Dijkstra

- Dijkstra's algorithm does not work
- Recall that Dijkstra enumerates nodes by their shortest paths
- Now: Adding a subpath to a so-far shortest path may make it "shorter" (by negative edge weights)

X	0
K1	2
K2	2
K3	1
K4	4
K5	
K6	5
K7	4
K8	

No Dijkstra

- Dijkstra's algorithm does not work
- Recall that Dijkstra enumerates nodes by their shortest paths
- Now: Adding a subpath to a so-far shortest path may make it "shorter" (by negative edge weights)

X	0
K1	0
K2	2
K3	0
K4	4
K5	
K6	5
K7	4
K8	

Negative Cycles

- Shortest path between X and K5?

- X-K3-K4-K5: 5
- X-KЗ-K4-K5-X-KЗ-K4-K5: 4
- Х-КЗ-К4-К5-Х-КЗ-К4-К5-Х-КЗ-K4-K5: 3
- ...
- SP-Problem undefined if G contains a negative cycle

All-Pairs: First Approach

- We start with a simpler problem: Computing the transitive closure of a digraph G without edge weights
- First idea
- Reachability is transitive: $x \rightarrow y \wedge y \rightarrow z \Rightarrow x \rightarrow z$
- We use this idea to iteratively build longer and longer paths
- First extend edges with edges - path of length 2
- Extend paths of length 2 with edges - paths of length 3
- No necessary path can be longer then |V|
- Or it would contain a cycle
- In each step, we store "reachable by a path of length $\leq \mathrm{k}$ " in a matrix

Example - After z=1, 2, 3, 4

	A	B	C	D	E
A		1	1		
B				1	
C				1	
D					1
E	1				

Path length:

	A	B	C	D	E
A		1	1	1	
B				1	1
C				1	1
D	1				1
E	1	1	1		

≤ 2

	A	B	C	D	E
A		1	1	1	1
B	1			1	1
C	1			1	1
D	1	1	1		1
E	1	1	1	1	

≤ 3

	A	B	C	D	E
A	1	1	1	1	1
B	1	1	1	1	1
C	1	1	1	1	1
D	1	1	1	1	1
E	1	1	1	1	1

≤ 4

	A	B	C	D	E
A	1	1	1	1	1
B	1	1	1	1	1
C	1	1	1	1	1
D	1	1	1	1	1
E	1	1	1	1	1

≤ 5

Naïve Algorithm

```
G = (V, E);
M := adjacency_matrix( G);
M'' := M;
n := |V|
for z := 1..n-1 do
    M' := M'';
    for i = 1..n do
        for j = 1..n do
            if M'[i,j]=1 then
                for k=1 to n do
                    if M[j,k]=1 then
                        M''[i,k] := 1;
                    end if;
            end for;
            end if;
        end for;
    end for;
end for;
```

z appears nowhere; it is there to ensure that we stop when the longest possible shortest paths has been found

- M is the adjacency matrix of G , M" eventually the TC of G
- M': Represents paths $\leq z$
- Loops i and j look at all pairs reachable by a path of length $\leq z+1$
- Loop k extends path of length $\leq z$ by all outgoing edges
- Obviously O(n ${ }^{4}$)

Observation

	A	B	C	D	E
A		1	1		
B				1	
C				1	
D					1
E	1				

$*$| | A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | | 1 | 1 | | |
| B | | | | 1 | |
| C | | | | 1 | |
| D | | | | | 1 |
| E | 1 | | | | |

	A	B	C	D	E
A		1	1	1	
B				1	1
C				1	1
D	1				1
E	1	1	1		

- In the first step, we actually compute $\mathrm{M} * \mathrm{M}$, and then replace each value ≥ 1 with 1
- We only state that there is a path; not how many and not how long
- Computing TC can be described as matrix operations

Paths in the Naïve Algorithm

- The naive algorithm always extends paths by one edge
- Computes $M^{*} M, M^{2} * M, M^{3} * M, \ldots M^{n-1 *} M$

Idea for Improvement

- Why not extend paths by all paths found so-far?
- We compute

$$
\mathrm{M}^{2^{\prime}}=\mathrm{M} * \mathrm{M} \text { : Path of length } \leq 2
$$

$$
\mathrm{M}^{3^{\prime}}=\mathrm{M}^{2} * M \cup \mathrm{M}^{2} * \mathrm{M}^{2}: \text { Path of length } \leq 2+1 \text { and } \leq 2+2
$$

$$
M^{4^{\prime}}=M^{3^{\prime} *} M \cup M^{3^{\prime} *} * M^{2^{\prime}} \cup M^{3^{\prime} *} M^{3^{\prime}} \text {, lengths } \leq 4+1, \leq 4+2, \leq 4+3 / 4
$$

$M^{n^{\prime}}=\ldots \cup M^{n-1^{\prime}} * M^{n-1} 1^{\prime}$

- [We will implement it differently]
- Trick: We can stop much earlier
- The longest shortest path can have length at most n
- Thus, it suffices to compute $\left.M^{\log (n)^{\prime}}=\ldots \cup M^{\log (n)}\right)^{\prime} * M^{\log (n)}{ }^{\prime}$

Algorithm Improved

```
G = (V, E);
M := adjacency_matrix( G);
n := |V|;
for z := 0..ceil(log(n)) do
    for i = 1..n do
        for j = 1..n do
            if M[i,j]=1 then
            for k=1 to n do
                if M[j,k]=1 then
                        M[i,k] := 1;
                end if;
            end for;
            end if;
        end for;
    end for;
end for;
```

- We use only one matrix M
- We "add" to M matrices M^{2}, M^{3} " ...
- In the extension, we see if a path of length $\leq 2^{2}$ (stored in M) can be extended by a path of length $\leq 2^{z}$ (stored in M)
- Computes all paths $\leq 2^{z}+2^{z}=2^{z+1}$
- Analysis: O(n $\left.{ }^{3 *} \log (n)\right)$
- But ... we can be even faster

Example - After z=1, 2, 3

	A	B	C	D	E
A		1	1		
B				1	
C				1	
D					1
E	1				

	A	B	C	D	E
A		1	1	1	
B				1	1
C				1	1
D	1				1
E	1	1	1		

≤ 2

	A	B	C	D	E
A	1	1	1	1	1
B	1	1	1	1	1
C	1	1	1	1	1
D	1	1	1	1	1
E	1	1	1	1	1
≤ 4					
\quad Done					

Further Improvement

	A	B	C	D	E		A		B	C	D	E
A		1	1			A			1	1	1	
B				1		B					1	1
C				1		C					1	1
D					1	D	1					1
E	1					E	1		1	1		

- Note: The path $A \rightarrow D$ is found twice: $A \rightarrow B \rightarrow D / A \rightarrow C \rightarrow D$
- Can we stop "searching" $A \rightarrow D$ once we found $A \rightarrow B \rightarrow D$?
- Can we enumerate paths such that redundant paths are discovered less often (i.e., less paths are tested)?

Warshall's Algorithm

- Preparations
- Fix an arbitrary order on nodes and assign each node its rank as ID
- Let P_{t} be the set of all paths that contain only nodes with ID<t+1
- Idea: Compute P_{t} inductively
- We start with P_{1}
- We compute $P_{t}, t>1$, based on the assumption that P_{t-1} is known
- We are done once $t=n$
- Induction
- Suppose we know P_{t-1}
- If we increase t by one, we admit one additional node, i.e., t
- Now, every new path must have the form $x \rightarrow t \rightarrow y$
- Paths with all IDs <t are already known
- Node t is the only new player, must be in all new paths

Algorithm

- Enumerate paths by the IDs of the nodes they are allowed to contain
- t gives the highest allowed node ID inside a path
- Thus, node t moon any new path
- We find all pairs i,k with $i \rightarrow t$ and $t \rightarrow k$
- For every such pair, we set the path $i \rightarrow k$ to 1

```
    1. G = (V, E);
    2. M := adjacency_matrix( G);
    3. n := |V|;
    4. for t := 1..n do
    5. for i = 1..n do
    6.\longrightarrow if M[i,t]=1 then
    7. for k=1 to n do
8. M if M[t,k]=1 then
9.
                                M[i,k] := 1;
10. end if;
11. end for;
12. end if;
13. end for;
14.end for;
```


Example - Warshall's Algorithm

A allowed
Connect
E-A with
A-B, A-C

Example - After t=A,B,C,D,E

Little change - Notable Consequences

```
G = (V, E);
M := adjacency_matrix( G);
n := |V|;
for z := 1..n do
    for i = 1..n do
        for j = 1..n do
            if M[i,j]=1 then
                for k=1 to n do
                    if M[j,k]=1 then
                    M[i,k] := 1;
                end if;
            end for;
                end if;
        end for;
    end for;
end for;
```

```
    1. \(G=(V, E)\);
    2. M := adjacency_matrix( G);
3. \(\mathrm{n}:=|\mathrm{V}|\);
4. for \(t:=1 . . n\) do
5. for \(i=1 . . n\) do
6. if M[i,t]=1 then
7. for \(k=1\) to \(n\) do
8. if \(M[t, k]=1\) then
                                    M[i,k] := 1;
10. end if;
11. end for;
12. end if;
13. end for;
14. end for;
```


Content of this Lecture

- All-Pairs Shortest Paths
- Transitive closure: Warshall's algorithm
- Shortest paths: Floyd's algorithm
- Reachability in Trees

Shortest Paths

- Shortest paths: We need to compute the distance between all pairs of reachable nodes
- We use the same idea as Warshall: Enumerate paths using only nodes smaller than t
- Invariant: Before step $\mathrm{t}, \mathrm{M}[\mathrm{i}, \mathrm{j}]$ contains the length of the shortest path that uses no node with ID higher than t
- When increasing t, we find new paths $i \rightarrow t \rightarrow k$ and look at their lengths
- Thus: $M[i, k]:=\min (M[i, k] \cup\{M[i, t]+M[t, k] \mid i \rightarrow t \wedge t \rightarrow k\})$

Example

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	
\mathbf{A}				1	3			
\mathbf{B}	-2							
\mathbf{C}								
\mathbf{D}		3	2					
\mathbf{E}						4	1	
\mathbf{F}	1	2	5					
\mathbf{G}			6			-1		
	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	
\mathbf{A}				1	3			
\mathbf{B}	-2			-1	1			
\mathbf{C}								
\mathbf{D}		3	2					
\mathbf{E}						4	1	
F	1	2	5	2	4			
\mathbf{G}			6			-1		

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}
\mathbf{A}				1	3		
\mathbf{B}	-2			-1	1		
\mathbf{C}							
\mathbf{D}	1	3	2	2	4		
\mathbf{E}						4	1
\mathbf{F}	0	2	5	1	3		
\mathbf{G}			6			-1	

Summary ($\mathrm{n}=|\mathrm{V}|, \mathrm{m}=|\mathrm{E}|$)

- Warshall's algorithm computes the transitive closure of any unweighted digraph G in $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Floyd's algorithm computes the distances between any pair of nodes in a digraph without negative cycles in $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Johnson's alg. solves the problem in $\mathrm{O}\left(\mathrm{n}^{2 *} \log (\mathrm{n})+\mathrm{n}^{*} \mathrm{~m}\right)$
- Which is faster for sparce graphs
- Storing both information requires $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Problem is easier for ...
- Undirected graphs: Connected components
- Graphs with only positive edge weights: All-pairs Dijkstra
- Trees: Test for reachability in $O(1)$ after $O(n)$ preprocessing

Content of this Lecture

- All-Pairs Shortest Paths
- Transitive closure: Warshall's algorithm
- Shortest paths: Floyd's algorithm
- Reachability in Trees

Gene Ontology - Describing Gene Function

Database Annotation InterPro

- Used by many databases
- Allows cross-database search
- Provides fixed meaning of terms
- As informal textual description, not as formal definitions

A Large Ontology

- As of 10.6.2011
- 34253 terms

- 20831 biological process
- 2844 cellular component
- 9019 molecular function
- 1559 obsolete terms
- Depth: >30
- Today: More than 40000 terms

Problem

- To see whether a term X ISA term Y, we need to check whether Y lies on the path from root to X
- Reachability problem

Reachability in Trees

- Let T be a directed tree. A node v is reachable from a node w iff there is a path from w to v
- Testing reachability requires finding paths
- Which is simple in trees
- Path length is bound by the length of the longest path, i.e., the depth of the tree
- This means $\mathrm{O}(\mathrm{n})$ in worst-case
- Let's see whether we can do this in constant time

Pre-/Postorder Numbers

- Assume a DFS-traversal
- Build an array assigning each node two numbers
- Preorder numbers
- Keep a counter pre
- Whenever a node is entered the first time, assign it the current value of pre and increment pre
- Postorder numbers
- Keep a counter post
- Whenever a node is left the last time, assign it the current value of post and increment post

Ancestry and Pre-/Postorder Numbers

- Trick: A node v is reachable from a node w iff

$$
\operatorname{pre}(\mathrm{v})>\operatorname{pre}(\mathrm{w}) \wedge \operatorname{post}(\mathrm{v})<\operatorname{post}(\mathrm{w})
$$

- Explanation
- v can only be reached from w, if w is "higher" in the tree, i.e., v was traversed after w and hence has a higher preorder number
- v can only be reached from w, if v is "lower" in the tree, i.e., v was left before w and hence has a lower postorder number
- Analysis: Test is $\mathrm{O}(1)$

