
Algorithms and Data Structures

Ulf Leser

All Pairs Shortest Paths

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 2

Content of this Lecture

• All-Pairs Shortest Paths
– Transitive closure: Warshall’s algorithm
– Shortest paths: Floyd’s algorithm

• Reachability in Trees

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 3

Shortest Path Problems

• Given a weighted digraph G

• Dijkstra finds the shortest path between a given start node

and all other nodes for the case that all edge weights are
positive

• All-pairs shortest paths: Given a digraph G with positive or
negative edge weights, find the distance between all pairs
of nodes

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 4

All-Pairs Shortest Paths: General Case

• Transitive closure with distances
• Result is O(|V|2) space, so don’t try this for large graphs

X

D

B

F E

A

G

C

Y

1

1

- 2
5

-3

2

1 4

3

2

6
3

3

→ A B C D E F G X Y

A na na na na na na na na na

B -3 na -2 na na na na na na

C na na na na na na na na na

D -2 1 …

E

F

G

X

Y

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 5

Why Negative Edge Weights?

• One application: Transportation company
– Every route incurs cost (for fuel, salary, etc.)
– Every route creates income (for carrying the freight)

• If cost>income, edge weights become negative
– But still important to find the best route
– Example: Best tour from X to C

X

B

F E

C 4

5 3

2 4

6 6

X

B

F E

C 1

5 6

1 8

1 3

-

X

B

F E

C 3

0 -3

1 -4

5 3

=

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 6

No Dijkstra

• Dijkstra’s algorithm does not work
– Recall that Dijkstra enumerates nodes by their shortest paths
– Now: Adding a subpath to a so-far shortest path may make it

“shorter” (by negative edge weights)

X

1

1

2

5

3

2

1 4

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0

K1 2

K2 2

K3 1

K4 4

K5

K6 5

K7 4

K8

-2

-6

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 7

No Dijkstra

• Dijkstra’s algorithm does not work
– Recall that Dijkstra enumerates nodes by their shortest paths
– Now: Adding a subpath to a so-far shortest path may make it

“shorter” (by negative edge weights)

X

1

1

2

5

3

2

1 4

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0

K1 0

K2 2

K3 0

K4 4

K5

K6 5

K7 4

K8

-2

-6

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 8

Negative Cycles

• Shortest path
between X and K5?
– X-K3-K4-K5: 5
– X-K3-K4-K5-X-K3-K4-K5: 4
– X-K3-K4-K5-X-K3-K4-K5-X-K3-K4-K5: 3
– …

• SP-Problem undefined if G contains a negative cycle

X

1

1

2

5

3

2

1 4

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

-2

-6

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 9

All-Pairs: First Approach

• We start with a simpler problem: Computing the transitive
closure of a digraph G without edge weights

• First idea
– Reachability is transitive: x→y ∧ y→z ⇒ x→z
– We use this idea to iteratively build longer and longer paths
– First extend edges with edges – path of length 2
– Extend paths of length 2 with edges – paths of length 3
– …
– No necessary path can be longer then |V|

• Or it would contain a cycle

• In each step, we store “reachable by a path of length ≤k”
in a matrix

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 10

Example – After z=1, 2, 3, 4

A B C D E

A 1 1 1

B 1 1

C 1 1

D 1 1

E 1 1 1

A

B

C D

E

A B C D E

A 1 1 1 1

B 1 1 1

C 1 1 1

D 1 1 1 1

E 1 1 1 1

A B C D E

A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

A B C D E

A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

A B C D E

A 1 1

B 1

C 1

D 1

E 1

Path length: ≤2 ≤3 ≤4 ≤5

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 11

Naïve Algorithm

• M is the adjacency matrix of G,
M’’ eventually the TC of G

• M’: Represents paths ≤z
• Loops i and j look at all pairs

reachable by a path of length
≤z+1

• Loop k extends path of length
≤z by all outgoing edges

• Obviously O(n4)

G = (V, E);
M := adjacency_matrix(G);
M’’ := M;
n := |V|;
for z := 1..n-1 do
 M’ := M’’;
 for i = 1..n do
 for j = 1..n do
 if M’[i,j]=1 then
 for k=1 to n do
 if M[j,k]=1 then
 M’’[i,k] := 1;
 end if;
 end for;
 end if;
 end for;
 end for;
end for;

z appears nowhere; it is
there to ensure that we
stop when the longest

possible shortest paths has
been found

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 12

Observation

• In the first step, we actually compute M*M, and then
replace each value ≥1 with 1
– We only state that there is a path; not how many and not how long

• Computing TC can be described as matrix operations

A B C D E

A 1 1 1

B 1 1

C 1 1

D 1 1

E 1 1 1

A B C D E

A 1 1

B 1

C 1

D 1

E 1

A B C D E

A 1 1

B 1

C 1

D 1

E 1

*

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 13

Paths in the Naïve Algorithm

• The naive algorithm always extends paths by one edge
– Computes M*M, M2*M, M3*M, … Mn-1*M

A B C D E

A 1 1 1

B 1 1

C 1 1

D 1 1

E 1 1 1

A B C D E

A 1 1 1 1

B 1 1 1

C 1 1 1

D 1 1 1 1

E 1 1 1 1

A B C D E

A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

A B C D E

A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

A B C D E

A 1 1

B 1

C 1

D 1

E 1

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 14

Idea for Improvement

• Why not extend paths by all paths found so-far?
– We compute

M2’=M*M: Path of length ≤2
M3’=M2’*M∪M2’*M2’: Path of length ≤2+1 and ≤2+2
M4’=M3’*M ∪M3’*M2’ ∪M3’*M3’, lengths ≤4+1, ≤4+2, ≤4+3/4
…
Mn’=… ∪ Mn-1’*Mn-1’

– [We will implement it differently]

• Trick: We can stop much earlier
– The longest shortest path can have length at most n
– Thus, it suffices to compute Mlog(n)’= … ∪ Mlog(n)’*Mlog(n)’

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 15

Algorithm Improved

• We use only one matrix M
• We “add” to M matrices M2’, M3’ …
• In the extension, we see if a path

of length ≤2z (stored in M) can be
extended by a path of length ≤2z
(stored in M)
– Computes all paths ≤2z+2z=2z+1

• Analysis: O(n3*log(n))
• But … we can be even faster

G = (V, E);
M := adjacency_matrix(G);
n := |V|;
for z := 0..ceil(log(n)) do
 for i = 1..n do
 for j = 1..n do
 if M[i,j]=1 then
 for k=1 to n do
 if M[j,k]=1 then
 M[i,k] := 1;
 end if;
 end for;
 end if;
 end for;
 end for;
end for;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 16

Example – After z=1, 2, 3

A B C D E

A 1 1 1

B 1 1

C 1 1

D 1 1

E 1 1 1

A

B

C D

E

A B C D E

A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

A B C D E

A 1 1

B 1

C 1

D 1

E 1

Path length: ≤2 ≤4 Done

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 17

Further Improvement

• Note: The path A→D is found twice: A→B→D / A→C→D
• Can we stop “searching” A→D once we found A→B→D?
• Can we enumerate paths such that redundant paths are

discovered less often (i.e., less paths are tested)?

A B C D E

A 1 1 1

B 1 1

C 1 1

D 1 1

E 1 1 1

A

B

C D

E

A B C D E

A 1 1

B 1

C 1

D 1

E 1

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 18

Warshall’s Algorithm

• Preparations
– Fix an arbitrary order on nodes and assign each node its rank as ID
– Let Pt be the set of all paths that contain only nodes with ID<t+1

• Idea: Compute Pt inductively
– We start with P1

– We compute Pt, t>1, based on the assumption that Pt-1 is known
– We are done once t=n

• Induction
– Suppose we know Pt-1

– If we increase t by one, we admit one additional node, i.e., t
– Now, every new path must have the form x→t→y

• Paths with all IDs <t are already known
• Node t is the only new player, must be in all new paths

Warshall, S. (1962). A theorem on Boolean
matrices. Journal of the ACM 9(1): 11-12.

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 19

Algorithm

• Enumerate paths by the
IDs of the nodes they are
allowed to contain

• t gives the highest allowed
node ID inside a path

• Thus, node t must be on
any new path

• We find all pairs i,k with
i→t and t→k

• For every such pair, we set
the path i→k to 1

1. G = (V, E);
2. M := adjacency_matrix(G);
3. n := |V|;
4. for t := 1..n do
5. for i = 1..n do
6. if M[i,t]=1 then
7. for k=1 to n do
8. if M[t,k]=1 then
9. M[i,k] := 1;
10. end if;
11. end for;
12. end if;
13. end for;
14.end for;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 20

Example – Warshall’s Algorithm

A B C D E

A 1 1

B 1

C 1

D 1

E 1

A B C D E

A 1 1

B 1

C 1

D 1

E 1 1 1

A allowed
Connect
E-A with
A-B, A-C

A

B

C D

E

maxID=A

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 21

Example – After t=A,B,C,D,E

A

B

C D

E

A B C D E

A 1 1

B 1

C 1

D 1

E 1 1 1

A B C D E

A 1 1 1

B 1

C 1

D 1

E 1 1 1 1

A B C D E

A 1 1 1

B 1

C 1

D 1

E 1 1 1 1

A B C D E

A 1 1 1 1

B 1 1

C 1 1

D 1

E 1 1 1 1 1

A B C D E

A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

B allowed
Connect
A-B/E-B
with B-D

C allowed
Connect
A-C/E-C
with C-D

No news

D allowed
Connect
A-D, B-D,
C-D,E-D
with D-E

E allowed
Connect
everything
with
everything

t=„A“ t=„B“ t=„C“

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 22

Little change – Notable Consequences

1. G = (V, E);
2. M := adjacency_matrix(G);
3. n := |V|;
4. for t := 1..n do
5. for i = 1..n do
6. if M[i,t]=1 then
7. for k=1 to n do
8. if M[t,k]=1 then
9. M[i,k] := 1;
10. end if;
11. end for;
12. end if;
13. end for;
14.end for;

G = (V, E);
M := adjacency_matrix(G);
n := |V|;
for z := 1..n do
 for i = 1..n do
 for j = 1..n do
 if M[i,j]=1 then
 for k=1 to n do
 if M[j,k]=1 then
 M[i,k] := 1;
 end if;
 end for;
 end if;
 end for;
 end for;
end for;

Drop z-
Loop

Swap i and
j loop

Rephrase j
into t

 O(n4) O(n3)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 23

Content of this Lecture

• All-Pairs Shortest Paths
– Transitive closure: Warshall’s algorithm
– Shortest paths: Floyd’s algorithm

• Reachability in Trees

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 24

Shortest Paths

• Shortest paths: We need to compute the distance between

all pairs of reachable nodes
• We use the same idea as Warshall: Enumerate paths using

only nodes smaller than t
– Invariant: Before step t, M[i,j] contains the length of the shortest

path that uses no node with ID higher than t
– When increasing t, we find new paths i→t→k and look at their

lengths
– Thus: M[i,k]:=min(M[i,k] ∪ { M[i,t]+M[t,k] | i→t ∧ t→k})

Floyd, R. W. (1963). Algorithm 97: Shortest
Path. Communications of the ACM 5(6): 345.

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 25

Example

F

1

1

2
5

3

2

1 4

6

B

D

A

E
G

C

3

-2

-1

A B C D E F G

A 1 3

B -2

C

D 3 2

E 4 1

F 1 2 5

G 6 -1

A B C D E F G

A 1 3

B -2 -1 1

C

D 3 2

E 4 1

F 1 2 5 2 4

G 6 -1

A B C D E F G

A 1 3

B -2 -1 1

C

D 1 3 2 2 4

E 4 1

F 0 2 5 1 3

G 6 -1

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 26

Summary (n=|V|, m=|E|)

• Warshall‘s algorithm computes the transitive closure of any
unweighted digraph G in O(n3)

• Floyd‘s algorithm computes the distances between any pair
of nodes in a digraph without negative cycles in O(n3)

• Johnson’s alg. solves the problem in O(n2*log(n)+n*m)
– Which is faster for sparce graphs

• Storing both information requires O(n2)
• Problem is easier for …

– Undirected graphs: Connected components
– Graphs with only positive edge weights: All-pairs Dijkstra
– Trees: Test for reachability in O(1) after O(n) preprocessing

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 27

Content of this Lecture

• All-Pairs Shortest Paths
– Transitive closure: Warshall’s algorithm
– Shortest paths: Floyd’s algorithm

• Reachability in Trees

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 28

Gene Ontology – Describing Gene Function

Gene Ontology

Biological Process Molecular Function

Cellular Process

Cell Communication

Signal Transduction

Physiological Process

Metabolism

Protein Metabolism

Protein Modification

Binding

Nucleotide Binding

Catalytic Activity

Transferase Activity

Kinase Activity

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 29

Database Annotation InterPro

• Used by many databases
• Allows cross-database search
• Provides fixed meaning of terms

• As informal textual description, not as formal definitions

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 30

A Large Ontology

• As of 10.6.2011
– 34253 terms
– 20831 biological process
– 2844 cellular component
– 9019 molecular function
– 1559 obsolete terms

• Depth: >30
• Today: More than 40000 terms

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 31

Problem

• To see whether a term X ISA term Y, we need to check
whether Y lies on the path from root to X

• Reachability problem

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 32

Reachability in Trees

• Let T be a directed tree. A node v is reachable from a node

w iff there is a path from w to v
• Testing reachability requires finding paths

– Which is simple in trees

• Path length is bound by the length of the longest path, i.e.,
the depth of the tree

• This means O(n) in worst-case
• Let’s see whether we can do this in constant time

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 33

Pre-/Postorder Numbers

• Assume a DFS-traversal
• Build an array assigning each

node two numbers
• Preorder numbers

– Keep a counter pre
– Whenever a node is entered the

first time, assign it the current
value of pre and increment pre

• Postorder numbers
– Keep a counter post
– Whenever a node is left the last

time, assign it the current value
of post and increment post

A

B D

H E F G

R [0

C

[1

[2

[3 [4 ,0] ,1]

,2] [5 ,3]
[6 ,6]

[7 ,4] [8 ,5]

,7]

,8]

Examples from S. Trissl, 2007

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 34

Ancestry and Pre-/Postorder Numbers

• Trick: A node v is reachable from a node w iff
pre(v)>pre(w) ∧ post(v)<post(w)

• Explanation
– v can only be reached from w, if w is “higher” in the tree, i.e.,

v was traversed after w and hence
has a higher preorder number

– v can only be reached from w,
if v is “lower” in the tree, i.e.,
v was left before w and hence
has a lower postorder number

• Analysis: Test is O(1)

A

B D

H E F G

R [0

C

[1

[2

[3 [4 ,0] ,1]

,2] [5 ,3]
[6 ,6]

[7 ,4] [8 ,5]

,7]

,8]

	Foliennummer 1
	Content of this Lecture
	Shortest Path Problems
	All-Pairs Shortest Paths: General Case
	Why Negative Edge Weights?
	No Dijkstra
	No Dijkstra
	Negative Cycles
	All-Pairs: First Approach
	Example – After z=1, 2, 3, 4
	Naïve Algorithm
	Observation
	Paths in the Naïve Algorithm
	Idea for Improvement
	Algorithm Improved
	Example – After z=1, 2, 3
	Further Improvement
	Warshall’s Algorithm
	Algorithm
	Example – Warshall’s Algorithm
	Example – After t=A,B,C,D,E
	Little change – Notable Consequences
	Content of this Lecture
	Shortest Paths
	Example
	Summary (n=|V|, m=|E|)
	Content of this Lecture
	Gene Ontology – Describing Gene Function
	Database Annotation InterPro
	A Large Ontology
	Problem
	Reachability in Trees
	Pre-/Postorder Numbers
	Ancestry and Pre-/Postorder Numbers

