

Algorithms and Data Structures

Graphs: Introduction and First Algorithms

This Course

Graphs (no lists!)	4 5
Hashing (to manage lists)	2
Searching (in lists, PQs, SOL)	5
Sorting (lists)	3
Lists, stacks, queues	2
Styles of algorithms	1
Complexity analysis	1
Abstract Data Types	1
Introduction	2
	Introduction Abstract Data Types Complexity analysis Styles of algorithms Lists, stacks, queues Sorting (lists) Searching (in lists, PQs, SOL) Hashing (to manage lists) Trees (to manage lists) Graphs (no lists!)

- Graphs
- Definitions
- Representing Graphs
- Traversing Graphs
- Connected Components
- Shortest Paths

Graphs

- There are objects and there are relations between objects
- Directed trees can represent hierarchical relations
 - Relations that are asymmetric, cycle-free, binary
 - Examples: parent_of, subclass_of, smaller_than, ...
- Undirected trees can represent cycle-free, binary relations
- This excludes many (cyclic) real-life relations
 - friend_of, similar_to, reachable_by, html_linked_to, …
- (Classical) Graphs can represent all binary relationships
- N-ary relationships: Hypergraphs
 - exam(student, professor, subject), borrow(student, book, library)

- Most graphs you will see are binary
- Most graphs you will see are simple
 - Simple graphs: At most one edge between any two nodes
 - Contrary: multigraphs
- Some graphs you will see are undirected, some directed
- This lecture: Only binary, simple, finite graphs

Exemplary Graphs

- Classical theoretical model: Random Graphs
 - Create every possible edge with a fixed probability p

 In a random graph, the degree of every node has expected value p*n, and the degree distribution follows a Poisson distribution

Web Graph

Note the strong local clustering This is not a random

graph

Graph layout is difficult

[http://img.webme.com/pic/c/chegga-hp/opte_org.jpg]

Universities Linking to Universities

Small-World Property

[http://internetlab.cindoc.csic.es/cv/11/world_map/map.html]

Human Protein-Protein-Interaction Network

- Still terribly incomplete
- Proteins that are close in the graph likely share function [http://www.estradalab.org/research/index.html]

Word Co-Occurrence

- · Words that are close have similar meaning
 - Close: Appear in the same contexts
- Words cluster into topics

[http://www.michaelbommarito.com/blog/]

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017

Social Networks

Six degrees of separation

[http://tugll.tugraz.at/94426/files/-1/2461/2007.01.nt.social.network.png]

Road Network

• Specific property: Planar graphs

[Sanders, P. &Schultes, D. (2005). Highway Hierarchies Hasten Exact Shortest Path Queries. In *13th European Symposium on Algorithms (ESA), 568-579.*]

• Graphs are also a wonderful abstraction

 How many colors do one need to color a map such that never two colors meet at a border?

- Chromatic number: Number of colors sufficient to color a graph such that no adjacent nodes have the same color
- Every planar graph has chromatic number of at most 4

- This is not simple to proof
- It is easy to see that one sometimes needs at least four colors
- It is easy to show that one may need arbitrary many colors for general graphs
- First conjecture which until today was proven only by computers
 - Falls into many, many subcases try all of them with a program

- Given a city with rivers and bridges: Is there a cycle-free path crossing every bridge exactly once?
 - Euler-Path

Source: Wikipedia.de

- Given a city with rivers and bridges: Is there a cycle-free path crossing every bridge exactly once?
 - A graph has an Euler-Path iff at contains 0 or 2 edges with odd degree
- Hamiltonian path
 - ... visits each vertex exactly once
 - NP complete

Recall?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017

- Graphs
- Definitions
- Representing Graphs
- Traversing Graphs
- Connected Components
- Shortest Paths

A graph G=(V, E) consists of a set of vertices (nodes) V and a set of edges ($E \subseteq VxV$).

- A sequence of edges $e_1, e_2, ..., e_n$ is called a path iff $\forall 1 \le i < n$: $e_i = (v', v)$ and $e_{i+1} = (v, v^{\hat{}})$; the length of this path is n
- A path (v_1, v_2) , (v_2, v_3) , ..., (v_{n-1}, v_n) is acyclic iff all v_i are different
- G is acyclic, if no path in G contains a cycle; otherwise it is cyclic
- A graph is connected if every pair of vertices is connected by at least one path
- Definition

A graph (tree) is called undirected, if $\forall (v,v') \in E \Rightarrow (v',v) \in E$. Otherwise it is called directed.

- Definition
 Let G=(V, E) be a directed graph. Let v∈V
 - The outdegree out(v) is the number of edges with v as start point
 - The indegree in(v) is the number of edges with v as end point
 - G is edge-labeled, if there is a function w:E→L that assigns an element of a set of labels L to every edge
 - A labeled graph with $L = \mathbb{N}$ is called weighted
- Remarks
 - Weights can as well be reals; often we only allow positive weights
 - Labels / weights max be assigned to edges or nodes (or both)
 - Indegree and outdegree are identical for undirected graphs

Some More Definitions

- Definition. Let G=(V, E) be a directed graph.
 - Any G'=(V', E') is called a subgraph of G, if $V' \subseteq V$ and $E' \subseteq E$ and for all $(v_1, v_2) \in E'$: $v_1, v_2 \in V'$
 - For any $V' \subseteq V$, the graph $(V', E \cap (V' \times V'))$ is called the induced subgraph of G (induced by V')

Some More Definitions

- Definition. Let G=(V, E) be a directed graph.
 - Any G'=(V', E') is called a subgraph of G, if $V' \subseteq V$ and $E' \subseteq E$ and for all $(v_1, v_2) \in E'$: $v_1, v_2 \in V'$
 - For any $V' \subseteq V$, the graph $(V', E \cap (V' \times V'))$ is called the induced subgraph of G (induced by V')

Some More Definitions

- Definition. Let G=(V, E) be a directed graph.
 - Any G'=(V', E') is called a subgraph of G, if $V' \subseteq V$ and $E' \subseteq E$ and for all $(v_1, v_2) \in E'$: $v_1, v_2 \in V'$
 - For any $V' \subseteq V$, the graph $(V', E \cap (V' \times V'))$ is called the induced subgraph of G (induced by V')

Famous Problem

• Subgraph isomorphism problem: Given a graph $G_1 = (V_1, E_1)$ and a graph $G_2 = (V_2, E_2)$: Is there an isomorphism $f: V_1 \rightarrow V_2$ such that $f(G_1)$ is a subgraph of G_2 ?

- Graphs
- Definitions
- Representing Graphs
- Traversing Graphs
- Connected Components
- Shortest Paths

- From an abstract point of view, a graph is a list of nodes and a list of (weighted, directed) edges
- Two fundamental implementations
 - Adjacency matrix
 - Adjacency lists
- As usual, the representation determines which primitive operations take how long
- Suitability depends on the specific problem under study and the nature of the graphs
 - Shortest paths, transitive hull, cliques, spanning trees, ...
 - Random, sparse/dense, scale-free, planar, ...

Example [OW93]

Graph

Adjacency Matrix

Let G=(V, E) be a simple graph. The adjacency matrix M_G for G is a two-dimensional matrix of size $|V|^*/V|$, where M[i,j]=1 iff $(v_i, v_j) \in E$

- Remarks
 - Allows to test existence of a given edge in O(1)
 - Requires O(|V|) to obtain all incoming (outgoing) edges of a node
 - For large graphs, M is too large to be of practical use
 - If G is sparse (much less edges than $|V|^2$), M wastes a lot of space
 - If G is dense, M is a very compact representation (1 bit / edge)
 - In weighted graphs, M[i,j] contains the weight
 - Since M must be initialized with zero's, without further tricks all algorithms working on adjacency matrices are in $\Omega(|V|^2)$

Let G=(V, E). The adjacency list L_G for G is a list of all nodes v_i of G. The entry representing $v_i \in V$ is a list of all edges outgoing (or incoming or both) from v_i .

- Remarks (assume a fixed node v)
 - Let k be the maximal outdegree of G. Then, accessing an edge outgoing from v is O(log(k)) (if list is sorted; or use hashing)
 - Obtaining a list of all outgoing edges from v is in O(k)
 - If only outgoing edges are stored, obtaining a list of all incoming edges is O(|V|*log(|E|)) – we need to search all lists
 - Therefore, usually outgoing and incoming edges are stored, which doubles space consumption
 - If G is sparse, L is a compact representation
 - If G is dense, L is wasteful (many pointers, many IDs)

	Matrix	Lists
Test if a given edge exists	O(1)	O(log(k))
Find all outgoing edges of a given v	O(n)	O(k)
Space of G	O(n ²)	O(n+m)

- With n = |V|, m = |E|
- We assume a node-indexed array
 - L is an array and nodes are unique numbered
 - We find the list for node v in O(1)
 - Otherwise, L has additional costs for finding v

Let G = (V, E) be a digraph and $v_i, v_j \in V$. The transitive closure of G is a graph G' = (V, E') where $(v_i, v_j) \in E'$ iff G contains a path from v_i to v_j .

- TC usually is dense and represented as adjacency matrix
- Compact encoding of reachability information

- Graphs
- Definitions
- Representing Graphs
- Traversing Graphs
- Connected Components
- Shortest Paths

- One thing we often do with graphs is traversal
- "Traversal" means: Visit every node exactly once in a sequence determined by the graph's topology
 - Not necessarily on one consecutive path (Hamiltonian path)
- Two popular orders
 - Depth-first: Using a stack
 - Breadth-first: Using a queue
 - The scheme is identical to that in tree traversal
- Difference
 - We have to take care of cycles
 - No root where should we start?

- Any naïve traversal will visit nodes more than once
 - If there is at least one node with more than one incoming edge
- Any naïve traversal will run into infinite loops
 - If the graphs contains at least one cycle (is cyclic)
- Breaking cycles / avoiding multiple visits
 - Assume we started the traversal at a node r
 - During traversal, we keep a list S of already visited nodes
 - Assume we are in v and aim to proceed to v' using $e=(v, v')\in E$
 - If v'∈S, v' was visited before and we are about to run into a cycle or visit v' twice
 - In this case, e is ignored

Example

- Started at r and went S={r, y, z, v}
- Testing (v,y): y∈S, drop
- Testing (v, r): r∈S, drop
- Testing (v, x): x∉S, proceed

Where do we Start?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017

Let G = (V, E). Let $V' \subseteq V$ and G' be the subgraph of G induced by V'

- G' is called connected if it contains a path between any pair $v, v' \in V'$
- G' is called maximally connected, if no subgraph induced by a superset of V' is connected
- If G is undirected, any maximal connected subgraph of G is called a connected component of G
- If G is directed, any maximal connected subgraph of G is called a strongly connected component of G

Example

- If a undirected graph falls into several connected components, we cannot reach all nodes by a single traversal, no matter which node we use as start point
- If a digraph falls into several strongly connected components, we might not reach all nodes by a single traversal
- Remedy: If the traversal gets stuck, we restart at unseen nodes until all nodes have been traversed

Depth-First Traversal on Directed Graphs

Analysis

- We put every node exactly once on the stack
 - Once visited, never visited again
- We look at every edge exactly once
 - Outgoing edges of a visited node are never considered again
- S and U can be implemented as bit-array of size |V|, allowing O(1) operations
 - Setting, removing, testing nodes
- Altogether: O(n+m)

```
func void traverse (v node,
                      S,U list) {
  t := new Stack();
  t.put( v);
 while not t.isEmpty() do
    n := t.getNext();
    print n;
    U := U \setminus \{n\};
    S := S \cup \{n\};
    c := n.outgoingNodes();
    foreach x in c do
      if xEU then
        t.put(x);
      end if;
    end for:
  end while;
```

- Graphs
- Definitions
- Representing Graphs
- Traversing Graphs
- Connected Components
- Shortest Paths

- In an undirected graph, whenever there is a path from r to v and from v to v', then there is also a path from v' to r
 - Simply go the path $r \rightarrow v \rightarrow v'$ backwards
- Thus, DFS (and BFS) traversal can be used to find all connected components of a undirected graph G
 - Whenever you call traverse(v), create a new component
 - All nodes visited during traverse(v) are added to this component
- Obviously in O(n+m)

- The problem is considerably more complicated for digraphs
 Previous conjecture does not hold
- Still: Tarjan's or Kosaraju's algorithm find all strongly connected components in O(n + m)
 - See next lecture

- Graphs
- Definitions
- Representing Graphs
- Traversing Graphs
- Connected Components
- Shortest Paths
 - Single-Source-Shortest-Paths: Dijkstra's Algorithm
 - Shortest Path between two given nodes
 - Other

Let G=(V, E) be a graph. The distance d(u,v) between any two nodes $u, v \in V$ for $u \neq v$ is defined as

- G un-weighted: The length of the shortest path from u to v, or ∞ if no path from u to v exists
- G weighted: The minimal aggregated edge weight of all non-cyclic paths from u to v, or ∞ if no path from u to v exists
- If U = V, d(U, V) = 0
- Remark
 - Distance in un-weighted graphs is the same as distance in weighted graphs with unit costs
 - Beware of negative cycles in directed graphs

Single-Source Shortest Paths in a Graph

- Task: Find the distance between X and all other nodes
- Only positive edge weights allowed
 - Bellman-Ford algorithm solves the general case

- Enumerate paths by iteratively extending already found shortest paths by all possible extensions
 - All edges outgoing from the end node of a short path
- These extensions
 - ... either lead to a node which we didn't reach before then we found a path, but cannot yet be sure it is the shortest
 - ... or lead to a node which we already reached but we are not yet sure of we found the shortest path to it – update current best distance
 - ... or lead to a node which we already reached and for which we also surely found a shortest path already – these can be ignored
- Eventually, we enumerate nodes by their distance

Algorithm

```
1. G = (V, E);
2. x : start node;
                       # x∈V
3. A : array_of_distances_from_x;
4. \forall i: A[i] := \infty;
5. L := V; # organized as PQ
6. A[x] := 0;
7. while L \neq \emptyset
  k := L.get_closest_node();
8.
9. L := L \setminus k;
10. forall (k, f, w) \in E do
11.
     if f∈L then
12.
         new dist := A[k]+w;
13.
         if new_dist < A[f] then
14.
           A[f] := new dist;
15.
    update( L);
16.
    end if;
    end if;
17.
18.
     end for;
19.end while;
```

- We enumerate nodes by length of their shortest paths
 - In the first loop, we pick x and update distances (A) to all adjacent nodes
 - When we pick a node k, we already have computed its distance to x in A
 - We adapt the current best distances to all neighbors of k we haven't picked yet
- Once we picked all nodes, we are done

```
1. G = (V, E);
2. x : start node;
                       # x∈v
3. A : array_of_distances_from_x;
4. \forall i: A[i] := \infty;
5. L := V; # organized as PQ
6. A[x] := 0;
7. while L \neq \emptyset
8. k := L.get_closest_node();
9. L := L \setminus k;
10. forall (k, f, w) \in E do
11. if f \in L then
12.
         new_dist := A[k]+w;
13. if new_dist < A[f] then
14.
           A[f] := new dist;
15.
           update( L);
16.
    end if;
    end if;
17.
18.
   end for;
19.end while;
```

- Assume a heap-based PQ L
 - L holds at most all nodes (n)
 - L4: O(n)
 - L5: O(n) (build PQ)
 - L8: O(1) (getMin)
 - L9: O(log(n)) (deleteMin)
 - L10: O(m) (with adjacency list)
 - L11: O(1)
 - Requires additional array LA of size |V| storing membership of nodes in L
 - L15: O(log(n)) (updatePQ)
 - Store in LA pointers to nodes in L; then remove/insert node

```
1. G = (V, E);
2. x : start node;
                       # x∈V
3. A : array of distances;
4. \forall i: A[i] := \infty;
5. L := V; # organized as PQ
6. A[x] := 0;
7. while L \neq \emptyset
  k := L.get closest node();
8.
9. L := L \setminus k;
10. forall (k, f, w) \in E do
   if fEL then
11.
12.
         new dist := A[k]+w;
13.
   if new dist < A[f] then
14.
           A[f] := new dist;
15.
           update( L);
16.
    end if;
17.
    end if;
18.
     end for;
19. end while;
```

- Central costs
 - L9: O(log(n)) (deleteMin)
 - L15: O(log(n)) (del+ins)
- Loops
 - Lines 7-18: O(n)
 - Line 10-17: All edges exactly once
 - Together: O(m+n)
- Altogether: O((n+m)*log(n))
 - With Fibonacci heaps: Amortized costs are O(n*log(n)+m))
 - Also possible in O(n²); this is better in dense graphs (m~n²)

Single-Source, Single-Target

- Task: Find the distance between X and only Y
 - There is no way to be WC-faster than Dijkstra in general graphs
 - We can stop as soon as Y appears at the min position of the PQ
 - We can visit edges in order of increasing weight (might help)
 - Worst-case complexity unchanged
- Things are different in planar graphs (navigators!)

Faster SS-ST Algorithms

- Trick 1: Pre-compute all distances
 - Transitive closure with distances
 - Requires O(|V|²) space: Prohibitive for large graphs
 - How? See next lecture

\rightarrow	Α	В	С	D	Ε	F	G	Х	Υ
Α	0	-	-	-	-	-	-	-	-
В	3	0	2	-	-	-	-	-	-
С	-	-	0	-	-	I	-	I	-
D	4	1	3	0	3	4	6	7	3
Ε	6	6	7	5	0	1	11	4	8
F	-	-	6	-	-	0	-	I	-
G	-	-	-	-	-	-	0	-	-
Χ	2	2	4	1	4	5	7	0	4
Υ	-	-	2	-	-	-	3	-	0

Faster SS-ST Algorithms

- Trick 2: Two-hop cover with distances
 - Find a (hopefully small) set S of nodes such that
 - For every pair of nodes v₁,v₂, at least one shortest path from v₁ to v₂ goes through a node s∈S
 - Thus, the distance between v_1, v_2 is min{ $d(v_1, s) + d(s, v_2) | s \in S$)
 - S is called a 2-hop cover
 - Problem: Finding a minimal S is NP-complete
 - And S need not be small

- Graphs with negative edge weights
 - Shortest paths (in terms of weights) may be very long (edges)
 - Bellman-Ford algorithm is in O(n²*m)
- All-pairs shortest paths
 - Only positive edge weights: Use Dijkstra n times
 - With negative edge weights: Floyd-Warshall in O(n³)
 - See next lecture
- Reachability
 - Simple in undirected graphs: Compute all connected components
 - In digraphs: Use graph traversal or a special graph indexing method

- Let G be an undirected graph and S,T be two connected components of G. Proof that S and T must be disjoined, i.e., cannot share a node.
- Let G be an undirected graph with n vertices and m edges, m<=n². What is the minimal and what is the maximal number of connected components G can have?
- Let G be a positively edge-weighted digraph G. Design an algorithm which finds the longest acyclic path in G. Analyze the complexity of your algorithm.
- An Euler path through an undirected graph G is a cyclefree path from any start to any end node that hits every node of G (exactly once). Give an algorithm which tests for an input graph G whether it contains an Euler path.