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Content of this Lecture 

 
 
 

• Optimal Search Trees 
– Definition 
– Construction 
– Analysis 

• Searching Strings: Tries 
 
 
 
 
 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      3 

Static Key Sets, Varying Access Frequencies 

• Sometimes, the set of keys is “fixed” 
– Streets of a city, cities in a country, keywords of a prog. lang., … 

• Often, searches are much more frequent than updates 
– We may spent more effort for reorganizing the tree after updates 

• Example: Large-scale web search engines 
– Recall: A search engine creates a dictionary; every word has a link 

to the set of documents containing it 
– The dictionary must be accessed very fast, changes are rare 
– Often, engines build complex structures to optimally support 

searching over the current set of documents considered as static 
• Defer updates: Changes are buffered and bulk-inserted periodically 
• Search either searches two data structures, or misses are accepted 
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Scenario 

• Assume a set K of keys and a bag R of requests (workload) 
– Every request searches a k∈K; k’s may appear multiple times in R 
– In contrast to SOL, we now don’t care about the order of requests  
– Like SOL with fixed access frequencies – but now we consider trees 

• Naïve approach 
– Build an AVL tree over K 
– Every r∈R costs O(log(|K|)), i.e., we need O(|R|*log(|K|)) 
– This is optimal, if every k∈K appears with the same frequency in R 

• What if R is highly skewed? 
– Skewed: k’s are not equally distributed in R 
– Rather the norm than the exception in real life (Zipf, …) 
– In contrast to SOL, finding an optimal search tree for R is not trivial 
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Example 

• K={1,2,3,5,7,8,9,12,14} 
• We build an AVL tree 

 
• R1={2,5,8,7,3,12,1,8,8}  

– 2+1+3+4+3+2+3+3+3=31 comparisons 

• R2={9,9,1,9,2,9,5,3,9,1} 
– 4+4+3+4+2+4+1+3+4+3=32 comparisons 
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Example 

• Let’s optimize the tree for R2 
– Not a AVL tree any more 

• R2={9,9,1,9,2,9,5,3,9,1} 
    ={9,9,9,9,9,1,1,2,5,3} 
– 9 and 1 should be high in the tree 
– 1+1+1+1+1+2+2+4+3+5=21 

• Versus 32 

• Not good for R1 
– R1={2,5,8,7,3,12,1,8,8}  
– 4+3+5+4+5+2+2+5+5=35 

• Versus 31 

• Is this truly the optimal search tree for R2? 
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Request Model 

• Assume an (ordered) set K of keys, K={k1, k2, …, kn} 
• Every k is searched with frequency a1, a2, …, an 

• No-key intervals ]-∞,k1[ , ]k1,k2[, …, ]kn-1,kn[, ]kn,+∞[  
are searched with frequencies b0, b1, …, bn 
– We need to consider costs of searches that fail  

• Together: R={a1, a2, …, an, b0, b1, …, bn} 
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Request Model 

a4 

a5 

a2 

a7 

a6 

a1 a3 

b0 b1 b2 b3 b4 b5 b7 b6 

• Assume an (ordered) set K of keys, K={k1, k2, …, kn} 
• Every k is searched with frequency a1, a2, …, an 

• No-key intervals ]-∞,k1[ , ]k1,k2[, …, ]kn-1,kn[, ]kn,+∞[  
are searched with frequencies b0, b1, …, bn 
– We need to consider costs of searches that fail  

• Together: R={a1, a2, …, an, b0, b1, …, bn} 
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Optimal Search Trees 

• Definition 
Let T be a search tree for K and R a workload. The cost 
P(T) of T for R is defined as 
 

 

 
• Definition 

Let K be a set of keys and R a workload. A search tree T 
over K is optimal for R iff 
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One More Definition 

 
• Definition 

Let T be a search tree over K and R a workload. The 
weight W(T) of T for R is: 
 
 
 

• Thus, the weight of T is simply |R| 
• We will need this definition for subtrees  
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Content of this Lecture 

 
 
 

• Optimal Search Trees 
– Definition 
– Construction 
– Analysis 

• Searching Strings: Tries 
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Finding the Optimal Search Tree 

 
• Bad news: There are exponentially many search trees 

– We cannot enumerate all search trees, compute their cost, and 
then choose the cheapest 

– Proof omitted 

• Good news: We don’t need to look at all possible search 
trees 
– We can use a divide & conquer approach 
– Dynamic programming: Build large solutions from smaller ones 

• Recall max_subarray etc. 
• Here: Build larger optimal search trees from smaller optimal STs 
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General Idea 

• Observation: We can define P(T) recursively 
– Let kr be root of T and Tlr=leftChild( kr), Trr=rightChild( kr) 

• “lr: Left-of-r”; “rr: Right-of-r” 

– Clearly: P(T) = P(Tlr) + P(Trr) + ar + W(Tl) + W(Trr) 
                   = P(Tlr) + P(Trr) + W(T)  

– Since W(T) is the same for every possible search tree, the cost of a 
tree only depends on the cost of its subtrees 

• Problem: We do not know kr, but we need to find it 
– kr divides T into a left part (Tlr) and a right part (Trr) 
– Both Tlr and Trr are smaller than T 
– Assume we knew P(Tlr) and P(Trr) for every possible kr 

• Both are smaller, so we can compute Tl/Tr values bottom-up 

– We can test all n different kr’s and find the one maximizing the 
term P(Tlr) + P(Trr) + W(T)  
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Example 

a3 a2 a1 b0 b1 b2 b3 a4 b4 

• We want to compute the optimal search tree T for the keys 
a1-a4 and no-key ranges b0-b5 

• One of the keys a1, a2, a3, a4, must be the root 
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Example Continued 

a1 

b0 b1 b2 b3 b4 

Optimal substructure 
irrelevant here, but known by 

construction 

• If a1 would be the “optimal root”, the cost of P(T) would 
be P(b2)+P(b1…b4)+W(T) 

a2, a3, a4 
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Example Continued 

a2 

a1 

b0 b1 b2 b3 b4 

a3, a4 

• If a2 would be the “optimal root”, the cost of P(T) would 
be P(b0..b1)+P(b2..b4)+W(T) 
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Formal: A Divide & Conquer Approach 

• Consider a range R(i,j) of keys and intervals 
– R(i,j) = { ]ki,ki+1[, ki+1, ]ki+1,ki+2[, ki+2, … kj, ]kj,kj+1[ } 

• Assume that R(i,j) is represented as subtree T(i,j) of T(1,n) 
– That’s not the case in all topologies for T; the “left” part of R could 

lie in a different subtree than the “right” part 

• One of the kr∈R(i,j) must be the root of this subtree 
• Thus, kr divides R(i,j) in two halves R(i,r-1), R(r,j) 
• Assume we know the optimal trees for all sub-ranges 

R(i,i+1), R(i,i+2), …, R(i,j-1), R(i+1,j), …, R(j-1, j) 
• Then, we find the r creating the optimal tree T(i,j) using 
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Bottom-Up Computation 

 
• We systematically enumerate smaller R(i,j) and puzzle 

them together to larger ones 
• Let P(i,j) be the cost of the optimal search tree for R(i,j) 
• To compute P(i,j), we (1) need the P and W-values of all 

possible enclosed subtrees and we (2) need to find the 
optimal value of r 

• We perform induction over the breadth b of intervals: All 
intervals of breadth 0, 2 … n (and we are done) 
– Breadth of an interval: Number of keys contained 
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Illustration 

a3 a2 a1 b0 b1 b2 b3 a4 b4 

b=1 

b=2 

b=3 

b=4=n 
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Induction Start 

 
• b=0; all subintervals (i,i) 

– This is a leaf (an interval without keys), no root selection required 
– ∀0≤i<n+1: W(i,i) = bi 

                  P(i,i) = W(i,i) 

• b=1; all subintervals (i,i+1) 
– The root is always ki+1  

• The only key in this interval; l=i+1 
– ∀0≤i<n:  W(i,i+1) = bi + ai+1 + bi+1 

                 P(i,i+1) = P(i,i) + W(i,i+1) + P(i+1,i+1) 
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Induction  

• General case: b>1, subintervals (i,j) with j-i=b>1 
– Induction hypothesis: We know W, P for all intervals of breadth<b 
– Find the index r for the optimal root of the subtrees 
– Then compute: W(i,j) = W(i,r-1) + al + W(r,j) 

 P(i,j) = P(i,r-1) + W(i,j) + P(r,j) 
 

kr 

P(r,j) P(i,r-1) 

W(i,j) 
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Content of this Lecture 

 
 
 

• Optimal Search Trees 
– Definition 
– Construction 
– Analysis 

• Searching Strings: Tries 
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Implementation 

• There are only (n+1)*(n+1) different pairs i,j 
• We essentially fill a quadratic matrix of size (n+1)*(n+1) 

for W and one for P 
– Since j≥i, we actually only need half of each matrix 

• Both matrixes are iteratively filled from the main diagonal 
to the upper-right corner 

… 

b=0 

b=1 

… 
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Analysis 

• Space 
– We need 2 arrays of size O(n*n) 
– Space complexity: O(n2) 

• Time 
– Cases b=0 and b=1 are O(n) 
– We enumerate breadths from 2 to n 
– For each b, we consider all possible 

start positions: O(n-b) many 
– In each range, we need to find the 

optimal l – this is O(b) 
– A range has max size n-1 
– Together: O(n3) 

1. initialize W(i,i);  
2. initialize P(i,i); 
3. initialize W(i,i+1);  
4. initialize P(i,i+1); 
5. for b = 2 to n do 
6.   for i = 0 to (n-b) do 
7.     j := i+b; 
8.     find optimal l in [i,j]; 
9.     W(i,j) := … 
10.    P(i,j) := … 
11.  end for; 
12.end for; 
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Constructing the tree 

 
 

• We only showed how to compute the cost of the optimal 
tree, but not how to build the tree itself 

• But this is simple since we never revise decisions 
• We can “grow” the tree whenever we have computed a 

new optimal root l 
• For instance, we can define a r(i,j):=l in every step; the 

sequence of computed l-values fully determine the tree 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      26 

Relevance 

 
 
 

• Nice and instructive 
• Runtime can actually be reduced to O(n2) 
• But: O(n2) is still quite expensive for large n 
• Fortunately, one can compute „almost“ optimal search 

trees in linear time 
– Not this lecture 
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Content of this Lecture 

 
 
 
 

• Optimal Search Trees 
• Searching Strings: Tries 

 
 
 
 
 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      28 

Keys that are Strings 

• Assume K is a set of strings of maximal length m 
• We can build an AVL tree over K 
• Searching requires O(log(n)) key comparisons 
• But: Each string-comp requires m char-comps in WC 

– Very pessimistic, but we do WC analysis 

• Together: We need O(|k|*log(n)) character comparisons 
for searching a key k 

• Observation  
– “Similar” strings will be close neighbors in the tree 
– These will share prefixes (the longer, the more similar) 
– These prefixes are compared again and again 
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Example 

verlaufen 

verdauen 

verbauen … 

k=„verhalten“ 

verkaufen 
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Tries 

 
 

• Tries are edge-labeled trees of order |∑| 
– Developed for Information Retrieval 

• Edges are labeled with chars from ∑  
• Idea: Common prefixes of keys are 

represented only once 
• Problem: If “verl” is a key? 

– Trick: Add a “$” (not in ∑) to every string 
– Then every and only leaves represent keys 
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Analysis 

• Construction of a trie over K? 
– Let len(K) be the sum of all key lengths in K 
– We start with an empty tree and iteratively add all k∈K 
– To add a key k, we char-match k in the tree as long as possible 
– As soon as no continuation is found, we build a new branch 
– This requires O(|k|) operations (char-comps or node creations) 
– It follows: Construction is in O(len(K)) 

• Searching a key k (which maybe in K or not in K) 
– We match k from root down the tree 
– When k is exhausted and we are in a leaf: k∈K 
– If no continuation is found or we end in an inner node: k∉K 
– It follows: Searching is in O(|k|) 
– But … 
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Space Complexity 

• We have at most len(K) edges and len(K)+1 nodes 
– Shared prefixes make the actual number smaller 

• But we also need pointer to children 
• To achieve our search complexity, choosing the right 

pointer must be in O(1) 
• This adds O(len(K)*|∑|) pointers 
• Too much for any non-trivial alphabet 

– Digital tries are a popular data structure in coding theory 
– There, |∑|=2, so the pointers don’t matter much 
– But beware – the  trees get very deep 

• Furthermore, most of the pointers will be null 
– Depending on |∑|, |K|, and lengths of shared prefixes 
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Alternatives 

b d k l 

Any list data structure 

• Full array for children ptr 
• Advantage: O(|k|) search 
• Disadvantage: Excessive 

space consumption 

• Dense array for children ptr 
• Advantage: O(len(K)) space 
• Disadvantage: Search is 

O(|k|*log(|∑|)) 
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Compressed Tries = Patricia Trees 

• We can save further space 
• A patricia tree (or radix tree) is a trie 

where edges are labeled with (sub-
)strings, not with characters 

• All sequences S=<node, edge> 
which do not branch are compressed 
into a single edge labeled with the 
concatenation of the labels in S 

• More compact, less pointer 
• Slightly more complicated 

implementation 
– E.g. insert requires splitting of labels 
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Exemplary Questions 

 
• Recall the definition of a trie. Give in implementation (in 

pseudo code) for (a) searching a key k and (b) building a 
trie for a string set K. You may presuppose a data 
structure „list“ with operations add(c, p) for adding a pair 
of character and pointer and retrieve(c), which returns the 
pointer associated to c or nil. 

• Build an optimal search tree for K={5,12,15,20} and 
R={6,2,3,8,11,5,2,1,4}. Show the complete tables for W 
and P 

• Prove that all tries for any permutation of a set of strings 
are identical 
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