
Algorithms and Data Structures

Ulf Leser

Optimal Search Trees; Tries

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 2

Content of this Lecture

• Optimal Search Trees
– Definition
– Construction
– Analysis

• Searching Strings: Tries

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 3

Static Key Sets, Varying Access Frequencies

• Sometimes, the set of keys is “fixed”
– Streets of a city, cities in a country, keywords of a prog. lang., …

• Often, searches are much more frequent than updates
– We may spent more effort for reorganizing the tree after updates

• Example: Large-scale web search engines
– Recall: A search engine creates a dictionary; every word has a link

to the set of documents containing it
– The dictionary must be accessed very fast, changes are rare
– Often, engines build complex structures to optimally support

searching over the current set of documents considered as static
• Defer updates: Changes are buffered and bulk-inserted periodically
• Search either searches two data structures, or misses are accepted

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 4

Scenario

• Assume a set K of keys and a bag R of requests (workload)
– Every request searches a k∈K; k’s may appear multiple times in R
– In contrast to SOL, we now don’t care about the order of requests
– Like SOL with fixed access frequencies – but now we consider trees

• Naïve approach
– Build an AVL tree over K
– Every r∈R costs O(log(|K|)), i.e., we need O(|R|*log(|K|))
– This is optimal, if every k∈K appears with the same frequency in R

• What if R is highly skewed?
– Skewed: k’s are not equally distributed in R
– Rather the norm than the exception in real life (Zipf, …)
– In contrast to SOL, finding an optimal search tree for R is not trivial

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 5

Example

• K={1,2,3,5,7,8,9,12,14}
• We build an AVL tree

• R1={2,5,8,7,3,12,1,8,8}

– 2+1+3+4+3+2+3+3+3=31 comparisons

• R2={9,9,1,9,2,9,5,3,9,1}
– 4+4+3+4+2+4+1+3+4+3=32 comparisons

5

8

2

14

12

1 3

7 9

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 6

Example

• Let’s optimize the tree for R2
– Not a AVL tree any more

• R2={9,9,1,9,2,9,5,3,9,1}
 ={9,9,9,9,9,1,1,2,5,3}
– 9 and 1 should be high in the tree
– 1+1+1+1+1+2+2+4+3+5=21

• Versus 32

• Not good for R1
– R1={2,5,8,7,3,12,1,8,8}
– 4+3+5+4+5+2+2+5+5=35

• Versus 31

• Is this truly the optimal search tree for R2?

5

8

2

14

12 1

3

7

9

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 7

Request Model

• Assume an (ordered) set K of keys, K={k1, k2, …, kn}
• Every k is searched with frequency a1, a2, …, an

• No-key intervals]-∞,k1[,]k1,k2[, …,]kn-1,kn[,]kn,+∞[
are searched with frequencies b0, b1, …, bn
– We need to consider costs of searches that fail

• Together: R={a1, a2, …, an, b0, b1, …, bn}

14

15

10

22

18

4 11

-∞,4 4,10 10,11 11,14 14,15 15,18 22,∞ 18,22

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 8

Request Model

a4

a5

a2

a7

a6

a1 a3

b0 b1 b2 b3 b4 b5 b7 b6

• Assume an (ordered) set K of keys, K={k1, k2, …, kn}
• Every k is searched with frequency a1, a2, …, an

• No-key intervals]-∞,k1[,]k1,k2[, …,]kn-1,kn[,]kn,+∞[
are searched with frequencies b0, b1, …, bn
– We need to consider costs of searches that fail

• Together: R={a1, a2, …, an, b0, b1, …, bn}

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 9

Optimal Search Trees

• Definition
Let T be a search tree for K and R a workload. The cost
P(T) of T for R is defined as

• Definition

Let K be a set of keys and R a workload. A search tree T
over K is optimal for R iff

() ()∑∑
=

+
=

+++=
n

j
jjj

n

i
ii bkkdepthakdepthTP

0
1

1
*1)[,](*1)()(

{ }KfortreesearchisTTPTP '|)'(min)(=

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 10

One More Definition

• Definition

Let T be a search tree over K and R a workload. The
weight W(T) of T for R is:

• Thus, the weight of T is simply |R|
• We will need this definition for subtrees

∑∑
==

+=
n

j
j

n

i
i baTW

01
)(

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 11

Content of this Lecture

• Optimal Search Trees
– Definition
– Construction
– Analysis

• Searching Strings: Tries

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 12

Finding the Optimal Search Tree

• Bad news: There are exponentially many search trees

– We cannot enumerate all search trees, compute their cost, and
then choose the cheapest

– Proof omitted

• Good news: We don’t need to look at all possible search
trees
– We can use a divide & conquer approach
– Dynamic programming: Build large solutions from smaller ones

• Recall max_subarray etc.
• Here: Build larger optimal search trees from smaller optimal STs

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 13

General Idea

• Observation: We can define P(T) recursively
– Let kr be root of T and Tlr=leftChild(kr), Trr=rightChild(kr)

• “lr: Left-of-r”; “rr: Right-of-r”

– Clearly: P(T) = P(Tlr) + P(Trr) + ar + W(Tl) + W(Trr)
 = P(Tlr) + P(Trr) + W(T)

– Since W(T) is the same for every possible search tree, the cost of a
tree only depends on the cost of its subtrees

• Problem: We do not know kr, but we need to find it
– kr divides T into a left part (Tlr) and a right part (Trr)
– Both Tlr and Trr are smaller than T
– Assume we knew P(Tlr) and P(Trr) for every possible kr

• Both are smaller, so we can compute Tl/Tr values bottom-up

– We can test all n different kr’s and find the one maximizing the
term P(Tlr) + P(Trr) + W(T)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 14

Example

a3 a2 a1 b0 b1 b2 b3 a4 b4

• We want to compute the optimal search tree T for the keys
a1-a4 and no-key ranges b0-b5

• One of the keys a1, a2, a3, a4, must be the root

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 15

Example Continued

a1

b0 b1 b2 b3 b4

Optimal substructure
irrelevant here, but known by

construction

• If a1 would be the “optimal root”, the cost of P(T) would
be P(b2)+P(b1…b4)+W(T)

a2, a3, a4

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 16

Example Continued

a2

a1

b0 b1 b2 b3 b4

a3, a4

• If a2 would be the “optimal root”, the cost of P(T) would
be P(b0..b1)+P(b2..b4)+W(T)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 17

Formal: A Divide & Conquer Approach

• Consider a range R(i,j) of keys and intervals
– R(i,j) = {]ki,ki+1[, ki+1,]ki+1,ki+2[, ki+2, … kj,]kj,kj+1[}

• Assume that R(i,j) is represented as subtree T(i,j) of T(1,n)
– That’s not the case in all topologies for T; the “left” part of R could

lie in a different subtree than the “right” part

• One of the kr∈R(i,j) must be the root of this subtree
• Thus, kr divides R(i,j) in two halves R(i,r-1), R(r,j)
• Assume we know the optimal trees for all sub-ranges

R(i,i+1), R(i,i+2), …, R(i,j-1), R(i+1,j), …, R(j-1, j)
• Then, we find the r creating the optimal tree T(i,j) using

() ()()),()1,(min)),(()),((
..1

jrTPriTPjiTWjiTP
jir

+−+=
+=

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 18

Bottom-Up Computation

• We systematically enumerate smaller R(i,j) and puzzle

them together to larger ones
• Let P(i,j) be the cost of the optimal search tree for R(i,j)
• To compute P(i,j), we (1) need the P and W-values of all

possible enclosed subtrees and we (2) need to find the
optimal value of r

• We perform induction over the breadth b of intervals: All
intervals of breadth 0, 2 … n (and we are done)
– Breadth of an interval: Number of keys contained

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 19

Illustration

a3 a2 a1 b0 b1 b2 b3 a4 b4

b=1

b=2

b=3

b=4=n

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 20

Induction Start

• b=0; all subintervals (i,i)

– This is a leaf (an interval without keys), no root selection required
– ∀0≤i<n+1: W(i,i) = bi

 P(i,i) = W(i,i)

• b=1; all subintervals (i,i+1)
– The root is always ki+1

• The only key in this interval; l=i+1
– ∀0≤i<n: W(i,i+1) = bi + ai+1 + bi+1

 P(i,i+1) = P(i,i) + W(i,i+1) + P(i+1,i+1)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 21

Induction

• General case: b>1, subintervals (i,j) with j-i=b>1
– Induction hypothesis: We know W, P for all intervals of breadth<b
– Find the index r for the optimal root of the subtrees
– Then compute: W(i,j) = W(i,r-1) + al + W(r,j)

 P(i,j) = P(i,r-1) + W(i,j) + P(r,j)

kr

P(r,j) P(i,r-1)

W(i,j)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 22

Content of this Lecture

• Optimal Search Trees
– Definition
– Construction
– Analysis

• Searching Strings: Tries

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 23

Implementation

• There are only (n+1)*(n+1) different pairs i,j
• We essentially fill a quadratic matrix of size (n+1)*(n+1)

for W and one for P
– Since j≥i, we actually only need half of each matrix

• Both matrixes are iteratively filled from the main diagonal
to the upper-right corner

…

b=0

b=1

…

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 24

Analysis

• Space
– We need 2 arrays of size O(n*n)
– Space complexity: O(n2)

• Time
– Cases b=0 and b=1 are O(n)
– We enumerate breadths from 2 to n
– For each b, we consider all possible

start positions: O(n-b) many
– In each range, we need to find the

optimal l – this is O(b)
– A range has max size n-1
– Together: O(n3)

1. initialize W(i,i);
2. initialize P(i,i);
3. initialize W(i,i+1);
4. initialize P(i,i+1);
5. for b = 2 to n do
6. for i = 0 to (n-b) do
7. j := i+b;
8. find optimal l in [i,j];
9. W(i,j) := …
10. P(i,j) := …
11. end for;
12.end for;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 25

Constructing the tree

• We only showed how to compute the cost of the optimal
tree, but not how to build the tree itself

• But this is simple since we never revise decisions
• We can “grow” the tree whenever we have computed a

new optimal root l
• For instance, we can define a r(i,j):=l in every step; the

sequence of computed l-values fully determine the tree

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 26

Relevance

• Nice and instructive
• Runtime can actually be reduced to O(n2)
• But: O(n2) is still quite expensive for large n
• Fortunately, one can compute „almost“ optimal search

trees in linear time
– Not this lecture

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 27

Content of this Lecture

• Optimal Search Trees
• Searching Strings: Tries

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 28

Keys that are Strings

• Assume K is a set of strings of maximal length m
• We can build an AVL tree over K
• Searching requires O(log(n)) key comparisons
• But: Each string-comp requires m char-comps in WC

– Very pessimistic, but we do WC analysis

• Together: We need O(|k|*log(n)) character comparisons
for searching a key k

• Observation
– “Similar” strings will be close neighbors in the tree
– These will share prefixes (the longer, the more similar)
– These prefixes are compared again and again

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 29

Example

verlaufen

verdauen

verbauen …

k=„verhalten“

verkaufen

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 30

Tries

• Tries are edge-labeled trees of order |∑|
– Developed for Information Retrieval

• Edges are labeled with chars from ∑
• Idea: Common prefixes of keys are

represented only once
• Problem: If “verl” is a key?

– Trick: Add a “$” (not in ∑) to every string
– Then every and only leaves represent keys

v

e

r

b
d

l
k

a
u
e
n

a
u
f
e
n

a
u
e
n

a
u
f
e
n

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 31

Analysis

• Construction of a trie over K?
– Let len(K) be the sum of all key lengths in K
– We start with an empty tree and iteratively add all k∈K
– To add a key k, we char-match k in the tree as long as possible
– As soon as no continuation is found, we build a new branch
– This requires O(|k|) operations (char-comps or node creations)
– It follows: Construction is in O(len(K))

• Searching a key k (which maybe in K or not in K)
– We match k from root down the tree
– When k is exhausted and we are in a leaf: k∈K
– If no continuation is found or we end in an inner node: k∉K
– It follows: Searching is in O(|k|)
– But …

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 32

Space Complexity

• We have at most len(K) edges and len(K)+1 nodes
– Shared prefixes make the actual number smaller

• But we also need pointer to children
• To achieve our search complexity, choosing the right

pointer must be in O(1)
• This adds O(len(K)*|∑|) pointers
• Too much for any non-trivial alphabet

– Digital tries are a popular data structure in coding theory
– There, |∑|=2, so the pointers don’t matter much
– But beware – the trees get very deep

• Furthermore, most of the pointers will be null
– Depending on |∑|, |K|, and lengths of shared prefixes

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 33

Alternatives

b d k l

Any list data structure

• Full array for children ptr
• Advantage: O(|k|) search
• Disadvantage: Excessive

space consumption

• Dense array for children ptr
• Advantage: O(len(K)) space
• Disadvantage: Search is

O(|k|*log(|∑|))

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 34

Compressed Tries = Patricia Trees

• We can save further space
• A patricia tree (or radix tree) is a trie

where edges are labeled with (sub-
)strings, not with characters

• All sequences S=<node, edge>
which do not branch are compressed
into a single edge labeled with the
concatenation of the labels in S

• More compact, less pointer
• Slightly more complicated

implementation
– E.g. insert requires splitting of labels

v
e
r

b
d

l
k

a
u
e
n

a
u
f
e
n

a
u
e
n

a
u
f
e
n

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 35

Exemplary Questions

• Recall the definition of a trie. Give in implementation (in

pseudo code) for (a) searching a key k and (b) building a
trie for a string set K. You may presuppose a data
structure „list“ with operations add(c, p) for adding a pair
of character and pointer and retrieve(c), which returns the
pointer associated to c or nil.

• Build an optimal search tree for K={5,12,15,20} and
R={6,2,3,8,11,5,2,1,4}. Show the complete tables for W
and P

• Prove that all tries for any permutation of a set of strings
are identical

	Foliennummer 1
	Content of this Lecture
	Static Key Sets, Varying Access Frequencies
	Scenario
	Example
	Example
	Request Model
	Request Model
	Optimal Search Trees
	One More Definition
	Content of this Lecture
	Finding the Optimal Search Tree
	General Idea
	Example
	Example Continued
	Example Continued
	Formal: A Divide & Conquer Approach
	Bottom-Up Computation
	Illustration
	Induction Start
	Induction
	Content of this Lecture
	Implementation
	Analysis
	Constructing the tree
	Relevance
	Content of this Lecture
	Keys that are Strings
	Example
	Tries
	Analysis
	Space Complexity
	Alternatives
	Compressed Tries = Patricia Trees
	Exemplary Questions

