

Algorithms and Data Structures Open Hashing

Marc Bux, Ulf Leser

Recall: Hashing

Recall: Collision Handling

- hash table
 - data structure
 - average-case complexity O(1) for search, insert, delete
 - (assuming a uniform hash function & sufficient remaining space)
- last week: overflow hashing
 - collisions are stored outside A
 - we need additional storage
 - solves the problem of A having a fixed size
- today: open hashing
 - collisions are managed inside *A*
 - no additional storage
 - |A| is upper bound to the amount of data that can be stored

- 1. Open Hashing
 - a) Linear Probing
 - b) Double Hashing
 - c) Ordered Hashing

1. Open Hashing

- a) Linear Probing
- b) Double Hashing
- c) Ordered Hashing

- open hashing: store all values inside hash table A [OW93]
 - also known as: open addressing, closed hashing, ...
- inserting values
 - no collision: business as usual
 - collision: choose another index and probe again
 - as second index might be full as well, probing must be iterated
- many suggestions on how to select the next index to probe
- generally, we want a strategy (probe sequence) that
 - ... ultimately visits every index in A
 - ... rarely (if ever) visits the same index twice
 - ... differs from probe sequences for other values
 - ... is deterministic, such that we can find our inserted value later

- Definition: Let A with |A| = m be a hash table over universe U. Let $I \coloneqq \{0, ..., |A| - 1\}$ and let $h: U \rightarrow I$ be a hash function. A probe sequence is a deterministic, surjective function $s: U \times I \rightarrow I$.
- for a given value k, s(k,i) denotes what index to probe next after i unsuccessful probings (starting with i = 0)
- we typically use $s(k,i) = (h(k) s'(k,i)) \mod m$ for a properly chosen function s'
- example: s'(k,i) = i, hence $s(k,i) = (h(k) i) \mod m$
- s need not be injective a probe sequences may cross itself (but it is better if it doesn't)

Searching

```
1.
   int search(k) {
2.
     i := 0;
3.
   repeat
4.
       pos := (h(k) - s'(k, i) \mod m;
5.
       i := i + 1;
   until (A[pos] = k) or
6.
           (A[pos] = null) or
           (i = m);
     if (A[pos] = k) then
8.
9.
       return pos;
10.
     else
       return -1;
11.
12.
     end if;
13.
```

- let $s'(k,0) \coloneqq 0$
- we assume that s probes all indexes of A
 - in whatever order
- probe sequences longer than m – 1 usually make no sense, as they necessarily look into indexes twice
 - but beware of non-injective functions

Deleting

- deletions are a problem
 - assume $h(k) = k \mod 11$ and $s(k, i) = (h(k) + 3 * i) \mod m$

Remedies

- leave a mark (tombstone)
 - during search, jump over tombstones
 - during insert, tombstones may be replaced
 - disadvantage: likelihood of collisions increases beyond fill degree α
- re-organize table
 - keep pointer to index *i* where a key should be deleted
 - walk to end of probe sequence (first empty entry)
 - move last non-empty entry to index *i*
 - disadvantages:
 - requires to always probe until the end of the probe sequence
 - not compatible with strategies in which s'(k, i) depends on k
 - not compatible with strategies that keep probe sequences sorted (see later)

pro

- we do not need more space than reserved more predictable
- *A* typically is filled more homogeneously less wasted space
- contra
 - more complicated
 - generally, we get worse WC/AC complexities
 - tombstone collisions during search & deletion
 - necessity to walk to the end of probe sequences during deletion
 - A can get full; we cannot go beyond fill degree $\alpha = 1$

- we will look into three strategies
 - 1. linear probing: $s(k,i) \coloneqq (h(k) i) \mod m$
 - 2. double hashing: $s(k,i) \coloneqq (h(k) i \cdot h'(k)) \mod m$
 - 3. ordered hashing: any *s*; values in probe sequence are kept sorted
- many other strategies exist:
 - quadratic probing: $s(k,i) := \left(h(k) \left[\frac{i}{2}\right]^2 \cdot (-1)^i\right) \mod m$
 - s(k,0) = h(k), s(k,1) = h(k) + 1, s(k,2) = h(k) 1, s(k,2) = h(k) + 4
 - less vulnerable to local clustering than linear probing
 - uniform hashing: s is a random permutation of I dependent on k
 - high administration overhead, guarantees shortest probe sequences
 - coalesced hashing: *s* arbitrary; entries are linked by add. pointers
 - like overflow hashing, but overflow chains are in A
 - needs additional space for links

- 1. Open Hashing
 - a) Linear Probing
 - b) Double Hashing
 - c) Ordered Hashing

Linear Probing

- probe sequence function: $s(k, i) \coloneqq (h(k) i) \mod m$
 - assume $h(k) \coloneqq k \mod 11$

Analysis

- the longer a chain,
 - the more different values of h(k) it covers,
 - the higher the chances to produce more collisions, and,
 - thus, the faster it grows
- the faster it grows, the faster it merges with other chains
- assume an empty position p left of a chain of length n and an empty position q right of a chain
 - also assume h is uniform
 - probability to fill q with next insert: $\frac{1}{m}$
 - probability to fill p with the next insert: $\frac{n+1}{m}$
- linear probing tends to quickly produce long, completely filled stretches of *A* with high collision probabilities

In Numbers

- scenario:
 - some inserts, then many searches
 - expected number of probings per search are most important
- successful search: $C_n \approx \frac{1}{2} \left(1 + \frac{1}{1-\alpha} \right)$
- unsuccessful search: $C'_n \approx \frac{1}{2} \left(1 + \frac{1}{(1-\alpha)^2} \right)$
- (derivation of furmulae omitted)

α	C_n	C'_n
0.5	1.5	2.5
0.9	5.5	50.5
0.95	10.5	200.5
1	—	_

Source: [OW93]

- successful search:
- unsuccessful search:

$$C_n \approx 1 - \frac{\alpha}{2} + \ln\left(\frac{1}{1-\alpha}\right)$$
$$C'_n \approx \frac{1}{1-\alpha} - \alpha + \ln\left(\frac{1}{1-\alpha}\right)$$

α	C_n	C'_n	
0.5	1.44	2.19	-
0.9	2.85	11.4	
0.95	3.52	22.05	
1	_	_	Source: [OW93]

Marc Bux, Ulf Leser: Algorithms and Data Structures, Summer Term 2017

Discussion

- advantages of linear (and quadratic) hashing:
 - straightforward to implement
 - table can be re-organized after deletion (see slide 10)
- disadvantage of linear (and quadratic) hashing: problems with the original hash function h are preserved
 - s'(k, j) ignores k, i.e., probe sequence only depends on h(k), not on k
 - all synonyms k, k' with h(k) = h(k') will create the same probe sequence (two keys that form a collision are called synonyms)
 - if *h* tends to generate clusters (or inserted keys are non-uniformly distributed in *U*), *s* also tends to generate clusters

- 1. Open Hashing
 - a) Linear Probing
 - b) Double Hashing
 - c) Ordered Hashing

Double Hashing

- idea: use a second hash function h'
- probe sequence function:

- $s(k,i) \coloneqq (h(k) - i \cdot h'(k)) \mod m$ with $h'(k) \neq 0$

- also, we don't want that h'(k)|m (given if m is prime)
- *h*' should spread *h*-synonyms
 - if h(k) = h(k'), then hopefully $h'(k) \neq h'(k')$ (otherwise, we preserve problems with h)
 - optimal case: h' statistically independent of h, i.e.,

$$p\left(\left(h(k) = h(k')\right) \land (h'(k) = h'(k'))\right) = p\left(h(k) = h(k')\right) \cdot p(h'(k) = h'(k'))$$

- if both are uniform: $p(h(k) = h(k')) = p(h'(k) = h'(k')) = \frac{1}{m}$

• example: $h(k) = k \mod m$, $h'(k) = 1 + k \mod (m - 2)$

$$h(k) = k \mod 11, h'(k) = 1 + k \mod 9, s(k, i) \coloneqq (h(k) - i \cdot h'(k)) \mod 11$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$$

$$ins(1); ins(7); ins(13)$$

$$1 \quad 13 \quad 7 \quad 1$$

$$h(k) = 1; h'(k) = 6$$

$$ins(12)$$

$$h(k) = 1; h'(k) = 4$$

$$s(k, 1) = 8$$

$$ins(10)$$

$$1 \quad 13 \quad 23 \quad 7 \quad 12 \quad 10$$

$$ins(24)$$

$$h(k) = 2; h'(k) = 7$$

$$s(k, 1) = 6$$

$$s(k, 2) = 10$$

$$s(k, 3) = 3$$

Marc Bux, Ulf Leser: Algorithms and Data Structures, Summer Term 2017

- successful search:
- unsuccessful search:

$$C_n \le \frac{1}{1-\alpha}$$
$$C'_n \approx \frac{1}{\alpha} \cdot \ln\left(\frac{1}{1-\alpha}\right)$$

α	C_n	C'_n
0.5	1.39	2
0.9	2.56	10
0.95	3.15	20
1	_	_

Source: [OW93]

Marc Bux, Ulf Leser: Algorithms and Data Structures, Summer Term 2017

Observation

Marc Bux, Ulf Leser: Algorithms and Data Structures, Summer Term 2017

Observation

- the number of collisions depends on the order of insertions
 reason: h' spreads h-synonyms differently for different values of k
- we cannot change the order of inserts, but...
- ...observe that when we insert k' and there already was a k with h(k) = h(k'), we actually have two choices
 - so far, we always looked for a new place for k'
 - why not: set A[h(k')] = k' and find a new place for k?
 - if s(k', 1) is filled but s(k, 1) is free, then the second choice is better
 - insert is faster, searches will be faster on average

- Brent, R. P. (1973). "Reducing the Retrieval Time of Scatter Storage Techniques." CACM
- Brent's algorithm:
 - when inserting k, upon collision with k', propagate key for which the next index in probe sequence is free
 - if the next indexes for k and k' are both occupied, propagate k
- improves successful searches
 - for unsuccessful searches, we have to follow the chain to its end anyway
- the average case probe length for successful searches is now < 2.5 (even for relatively full tables)

- 1. Open Hashing
 - a) Linear Probing
 - b) Double Hashing
 - c) Ordered Hashing

Motivation

- can we do something to improve unsuccessful searches?
 - recall overflow hashing: if we keep the overflow list sorted, we can stop searching after $\frac{\alpha}{2}$ comparisons on average
- transferring this idea: keep keys sorted in probe sequence of open hashing
 - we have seen with Brent's algorithm that we have the choice which key to propagate whenever we have a collision
 - thus, we can also choose to always propagate the smaller of both keys
 - this generates a sorted probe sequence
- result: unsuccessful searches are as fast as successful searches

- in Brent's algorithm, we only replace a key k' if we can insert the replaced key k' directly into A
- now, we must replace keys even if the next slot in the probe sequence is occupied
 - we walk through probe sequence until we meet a key that is smaller
 - we insert the new key here
 - all subsequent keys must be replaced (moved in probe sequence)
- this doesn't make inserts slower than before
 - without replacement, we would have to search the first free slot
 - now we replace until the first free slot

Critical Issue

- problem
 - 1 is not a synonym of 3 two probe sequences cross each other
 - thus, we don't know where to move 1
- ordered hashing only works if we can compute the next position without knowing *i* (i.e., the number of probings that were necessary to get from *h*(1) to slot 8)
 - e.g., linear hashing (offset -1) or double hashing (offset -h'(k))

- open hashing can be a good alternative to overflow hashing even if the fill grade approaches 1
 - very little average case cost for searching using double hashing and Brent's algorithm or ordered hashing
 - average case complexity of search depends on its success
- open hashing suffers from having only static space, but guarantees to not request more space once *A* is allocated
 - less memory fragmentation

- Create a hash table of size 13 step by step using open hashing with double probing and hash functions h(k) = k mod 13 and h'(k) = 1 + k mod 11 when inserting keys 17, 12, 4, 1, 36, 25, 6.
- 2. Create the hash table as in 1. using Brent's algorithm for collision resolution.
- 3. Create the hash table as in 1. using ordered hashing.
- 4. What are the advantages / disadvantages of using open hashing over using overflow hashing?
- 5. For collision resolution in open hashing, what are the advantages / disadvantages of using double hashing over using quadratic hashing?