

Algorithms and Data Structures

Priority Queues

Ulf Leser

Specialized Queues: Priority Queues

- Up to now, we assumed that all elements are equally important and that any of them could be searched next
- What if some elements are more important than others?
- In many applications, elements have a priority
- Requests to data on disks in multi-core hardware
- Request of memory blocks in multi-core hardware
- Bandwidth in LANs (VolP, streaming, ...)
- Next best move in board games
- ...
- Next access always retrieves the currently most important element
- Such data structures are called Priority Queues

Differences

- Counter examples
- Stock exchange orders
- Bandwidth on the internet (?)
- Very delicate topic: Fairness versus priority
- Difference to Self-Organizing Lists
- Most important element is always retrieved next - should be O(1)
- List should be kept ordered by priority
- We next look at a scenario where new elements are inserted all the time, elements may change their priority, and the most important element is removed regularly

Shortest Paths in a Graph

- Task: Find the distance between X and all other nodes
- Classical problem: Single-Source-Shortest-Paths
- Famous solution: Dijkstra’s algorithm

- E. Dijsktra: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1 (1959), S. 269-271

Assumptions

- We assume that every node is reachable from X
- Distance is the length (=sum of edge weights) of the shortest path
- There might be many shortest paths, but distance is unique
- We only want the distances and need no "witness paths"
- We assume strictly positive edge weights
- Whenever we extend a path with an edge, its length increases
- Thus, no shortest path may contain a cycle

Exhaustive Solution

- First approach: Enumerate all paths
- Need to break cycles (e.g. X - K3 - K4 - X - K3 - ...)
- Using DFS: X - K3 - K4 - X [BT-K4] - K5 - K6 [BT-K5] [BT-K4] [BT-K3] - K7 - K8 [BT-K7] - K6 [BT-K7] [BT-K3] - K2 - K6 [BT-K2]
- K1 [BT-K2] [BT-K3] [BT-X] K6 - ...

Redundant work

- First approach: Enumerate all paths
- Need to break cycles (e.g. X - K3 - K4 - X - K3 - ...)
- Using DFS: X - K3 - K4 - X [BT-K4] - K5 - K6 [BT-K5] [BT-K4] [BT-K3] - K7 - K8 [BT-K7] - K6 [BT-K7] [BT-K3] - K2 - K6 [BT-K2] - K1 [BT-K2] [BT-K3] [BT-X] K6 - ...

Dijkstra's Idea

- Enumerate paths from X by their length
- Neither DFS nor BFS
- Assume we reach a node Y by a path p of length I and we have already explored all paths from X with length $\mathrm{I}^{\prime} \leq \mathrm{I}$ and that Y was not reached yet
- Then p must be a shortest path between X and Y
- Because any p' between X and Y would have a prefix of length at least I and (a) a continuation with length>0 or (b) would not need a continuation (then p is as short as p^{\prime})

Example for Idea

Algorithmic Idea

- Enumerate paths by iteratively extending already found short paths by all possible extensions
- All edges outgoing from the end node of a short path
- These extensions
- ... either lead to a node which we didn't reach before - then we found a path, but cannot yet be sure it is the shortest
- ... or lead to a node which we already reached but we are not yet sure of we found the shortest path to it - update current best distance
- ... or lead to a node which we already reached and for which we also surely found a shortest path already - these can be ignored
- Eventually, we enumerate nodes by their distance

Algorithm

1. $G=(V, E)$;
2. x : start_node; \# xEV
3. A : array_of_distances;
4. $\forall i: A[i]:=\infty$;
5. L : = V;
6. $A[x]:=0$;
7. while $L \neq \emptyset$
8. k := L.get_closest_node();
9. L : = L
10. forall $(k, f, w) \in E$ do
11. if $f \in L$ then
12. $n e w _d i s t:=A[k]+w$;
13. if new_dist $<A[f]$ then
14. $A[f]:=$ new_dist; end if;
15. end if;
16. end for;
17. end while;

- Assumptions
- Nodes have IDs between 1 ... |V|
- Edges are (from, to, weight)
- We enumerate nodes by length of their shortest paths
- In the first loop, we pick x and update distances (A) to all adjacent nodes
- When we pick a node k, we already have computed its distance to x in A
- We adapt the current best distances to all neighbors of k we haven't picked yet
- Once we picked all nodes, we are done

Example for Algorithm

A Closer Look

```
1. G = (V, E);
2. x : start_node; # x\inV
3. A : array_of_distances;
4. \foralli: A[i]:= \infty;
5. L := V;
6. A[x] := 0;
7. while L\not=\emptyset
8. k := L.get_closest_node();
9. L := L \ k;
10. forall (k,f,w)\inE do
11. if f\inL then
12. new_dist := A[k]+w;
13. if new_dist < A[f] then
14. A[f] := new_dist;
15. end if;
16. end if;
17. end for;
18. end while;
```

- Algorithm seems to work
- Proof and analysis will follow later
- Central: get_closest_node()
- Needs to find the node k in L for which $A[k]$ is the smallest
- A[k] may change all the time
- Searching A? Resorting A?
- Better: Organize L as priority queue
- List of tuples (o, v) (object, value)
- All additions and updates of v
- Make get_closest_node as fast as possible

Content of this Lecture

- Priority Queues
- Using Heaps
- Using Fibonacci Heaps

Priority Queues

- A priority queue (PQ) is an ADT with 3 essential operations
- add (o, v): Add element o with value (priority) v
- getMin(): Retrieve element with highest priority
- removeMin(): Remove element with highest priority
- Typical additional operations
- merge(p1, p2): Merge two PQs into one
- create(L): Convert a list in a priority queue
- delete(o): Delete ofrom PQ
- changeValue(o, v): Change value of o to v

Other Applications

- Games (e.g. chess)
- The machine explores next movements but cannot look at all of them; give each move an assumed benefit and explore moves with probably highest benefit first (see also A* algorithm)
- Multi-modal route planning
- Find fastest route through a map (network) with multiple ways of transportation (feet, bus, train, ...) between edges where edge weights change dynamically (delay, congestion, ...)
- And departure times may depend on arrival: Timetable-based routing
- Quality of Service in a network
- When bandwidth is limited, sort all transmission requests in a PQ and transmit by highest priority

Naive Implementations (with |Q|=n)

- Using a linked list
- add requires O(1) (at the end or start or anywhere)
- getMin requires O(n) (bad)
- deleteMin requires O(1) (if we keep the pointer after a getMin())
- update requires O(n) (first search object)
- merge requires $O(1)$
- Using a sorted linked list (by value/priority)
- add requires O(n) (bad)
- getMin requires $O(1)$ (always first element)
- deleteMin requires O(1)
- update requires $O(n)$ (search object, move to new position)
- merge requires $O(n+m)$

Maybe Arrays?

- Using a sorted array
- add requires $O(n)$ (bad - we find the position in $\log (n)$, but then have to free a cell by moving all elements after this cell)
- getMin requires O(1)
- deleteMin requires O(n) (bad)
- PQs are typically used in applications where elements are inserted and removed (and updated) all the time
- We need a DS that can change its size dynamically at very low cost while keeping a certain order (min element)
- We want constant or at most log-time for all operations

Content of this Lecture

- Priority Queues
- Using Heaps
- Heaps
- Operations on Heaps
- Heap Sort
- Using Fibonacci Heaps

Heap-based PQ

- Unsorted lists require $O(n)$ for getMin
- We don't know where the smallest element is
- Sorted lists require $O(n)$ for add
- We don't know where to put the new element
- Can we find a way to keep the list "a little sorted"?
- Actually, we only need the smallest element at a fixed position
- All other elements can be at arbitrary places
- Maybe add/deleteMin could be faster than O(n), if they don't need to keep the entire list sorted
- One such structure is called a heap

Heaps

- Definition

A heap is a labeled binary tree of depth d for which the following holds

- Nodes are labeled with integers (the priorities)
- Form-constraint (FC): The tree is complete except the last level
- I.e.: Every node at level I<d-1 has exactly two children
- Heap-constraint (HC): The label of node is smaller than that of all its children

Properties

- Order
- A heap is "a little" sorted: We know the smallest element (root)
- We know the order for some pairs of elements (parent-successors), but for many pairs we don't know which is bigger
- E.g. nodes in the same level
- Size
- A complete binary tree with d levels has $2^{\text {d}}$-1 nodes
- A heap with m levels thus has between $2^{\mathrm{d}-1}-1$ and $2^{\mathrm{d}}-1$ nodes
- A heap with n nodes has ceil($\log (n+1))$ levels

Operations

- Assume we store our PQ as a heap
- Clearly, getMin() is possible in O(1)
- Keep a pointer to the root
- But...
- How can we cheaply perform deleteMin() - such that the new structure again is a heap?
- How can we cheaply add an element to a heap - such that the new structure again is a heap?
- How can we cheaply create a list - by turning a given list into a heap?

DeleteMin()

- We first remove the root
- Creates two heaps
- We must connect them again
- We take the „last" node, place it in root, and "sift" it down the tree
- Last node: right-most in the last level (actually, we can take any from the last level)
- Sifting down: Exchange with smaller of both children as long as at least one child is smaller than the node itself

Analysis - Correctness

- We need to show that FC and HC still hold
- HC: Look at the tree after we sifted a node k. k may
- ... be smaller than its children. Then HC holds and we are done
- ... be larger than at least one child k2. Assume that k2 is the smaller of the two children (k1, k2) of k. We next swap k and k2. The new parent ($k 2$) now is smaller than its children ($k 1, k$), so the HC holds
- After the last swap, k has no children - HC holds and we are done
- FC: We remove one node, then we sift down
- Removing last node doesn't affect FC as we remove in the last level
- Sifting does not change the topology of the tree (we only swap)

Analysis - Complexity

- Recall that a heap with n nodes has ceil($\log (n+1))$ levels
- During sifting, we perform at most one comparison and one swap in every level
- Thus: $\mathrm{O}($ ceil $(\log (\mathrm{n}+1)))=\mathrm{O}(\log (\mathrm{n}))$

Add() on a Heap

- Cannot simply add on top
- Idea: We add new element somewhere in last level and sift up

Analysis

- Correctness
- HC
- If parent has only one child, HC holds after each swap
- Assume a parent k has children k 1 and $\mathrm{k} 2, \mathrm{k} 2$ was swapped there in the last move, and $\mathrm{k} 2<\mathrm{k}$. Since HC held before, $\mathrm{k}<\mathrm{k} 1$, thus $\mathrm{k} 2<\mathrm{k}<\mathrm{k} 1$. We swap $k 2$ and k, and thus the new parent is smaller than its children. On the other hand, if k2 \geq k, HC holds immediately (and we don't swap).
- FC: See deleteMin()
- Complexity: O(log(n))
- See deleteMin()

How to Find the Next Free / Last Occupied Node

- What do we need to find?
- For deleteMin, we use the right-most leaf on the last level
- For add, we add the leaf right from the last leaf
- We actually need the parent k
- From $|\mathrm{Q}|=\mathrm{n}$, we can compute in $\mathrm{O}(1)$ the index p of the last leaf in the last level: $p=n-2^{\wedge}(f l o o r(\log (n)))$
- Or $\log (\mathrm{n}+1)$ for add
- The parent k of the node at p has index floor($p / 2$)'th in level $d-1$
- The parent k ' of k has index floor($p / 4$)'th in level $d-2$
- Now, in each node, we can decide whether to go left or right
- Fast trick: Use the binary representation of p

Illustration

- For deleteMin, we need x (or x^{\prime}); for add, we need y (or y^{\prime})
- $p(x)=0, p(y)=1, p\left(x^{\prime}\right)=4, p\left(y^{\prime}\right)=5$
- Binary: 000, 001, 100, 101
- Go through bitstring from left-
 to-right
- Next bit=0: Go left
- Next bit=1: Go right
- Allows finding k in $\mathrm{O}(\log (\mathrm{n})$)

Summary

Linked list Sorted linked list Heap getMin() $\mathrm{O}(\mathrm{n})$ $\mathrm{O}(1)$ $\mathrm{O}(1)$ deleteMin() $\mathrm{O}(1)$ $\mathrm{O}(1)$ $\mathrm{O}(\log (\mathrm{n}))$ add() $\mathrm{O}(1)$ $\mathrm{O}(\mathrm{n})$ $\mathrm{O}(\log (\mathrm{n}))$ merge() $\mathrm{O}(1)$ $\mathrm{O}(\mathrm{n} 1+\mathrm{n} 2)$ $\mathrm{O}\left(\log (\mathrm{n} 1)^{*} \log (\mathrm{n} 2)\right)$ Space n add. pointer n add. pointer n add. pointer
\qquadHeaps can be kept efficiently in an array - no extra space, but limit to heap size

Creating a Heap

- We start with an unsorted list with n elements
- Naïve algorithm: Start with empty heap and perform n additions
- Obviously requires O(n* $\log (n)$)
- Better: Bottom-Up-Sift-Down
- Build a tree from the n elements fulfilling the FC (but not HC)
- Simple fill a tree level-by-level - this is in O(n)
- Sift-down all nodes on the second-last level
- Sift-down all nodes on the third-last level
- Sift down root

Analysis

- Correctness
- After finishing one level, all subtrees starting in this level are heaps because sifting-down ensures FC and HC (see deleteMin())
- Thus, when we are done with the first level (root), we have a heap
- Analysis
- We look at the cost per level h (1 ... log(n)=d)
- For every node at level h, we need at most d-h operations
- At level $h \neq d$, there are 2^{h-1} nodes
- For nodes at level d, we don't do anything
- Over all levels, this yields

$$
T(n)=\sum_{h=1}^{d-1} 2^{h-1} *(d-h)=\sum_{h=1}^{d-1} h^{*} 2^{d-h-1}=2^{d-1} \sum_{h=1}^{d-1} \frac{h}{2^{h}} \leq n * \sum_{h=1}^{\infty} \frac{h}{2^{h}}=n * 2=O(n)
$$

Side Note: Heap Sort

- Heaps also are a suitable data structure for sorting
- Heap-Sort (a classical sorting algorithm)
- Given an unsorted list, first create a heap in O(n)
- Repeat
- Take the smallest element and store in array in O(1)
- Re-build heap in O(log(n))
- Call deleteMin(root)
- Until heap is empty - after n iterations
- Thus: O(n*log(n))
- Average-case only slightly better
- Can be implemented in-place when heap is stored in array
- See [OW93] for details

Content of this Lecture

- Priority Queues
- Using Heaps
- Using Fibonacci Heaps

Fibonacci-Heaps (very rough sketch)

- A Fibonacci Heap (FH) is a forest of (non-binary) heaps with disjoint values
- All roots are maintained in a double-linked list
- Special pointer (min) to the smallest root
- Accessing this value (getMin()) obviously is O(1)

Maintainance of a FH

- FHs are maintained in a lazy fashion
- add(v): We create a new heap with a single element node with value v. Add this heap to the list of heaps; adapt min-pointer, if v is smaller than previous min
- Clearly O(1)
- merge(): Simple link the two root-lists and determine new min (as min of two mins)
- Clearly O(1)
- Deleting an element (deleteMin()) needs more work
- Until now, we just added single-element heaps
- Thus, our structure after n add() is an unsorted list of n elements
- Finding the next min element after deleteMin() in a naïve manner would require $O(n)$

deleteMin() on FH

- Method is not complicated
- We first remove the min element
- We then go through the root-list and merge heaps with the same rank (=\# of children) until all heaps in the list have different ranks
- Merging two heaps in O (1): (1) Find the heap with the smaller root value; (2) Add it as child to the root of the other heap
- But analysis is fairly complicated
- The above method is $\mathrm{O}(\mathrm{n})$ in worst case
- But after every clean-up, the root-list is much smaller than before
- Subsequent clean-ups need much less time
- Amortized analysis shows: Average-case complexity is O(log(n))
- Analysis depends on the growth of the trees during merge - these grow as the Fibonacci numbers

Disadvantage

- Though faster on average, Fibonacci Heaps have unpredictable delays
- No log(n) upper bound for every operation
- Not suitable for real-time applications etc.

Summary

	Linked list	Sorted linked list	Heap	Fibonacci Heap
getMin()	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(1)$
deleteMin()	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\log (\mathrm{n}))$	$\mathrm{O}(\log (\mathrm{n}))^{*}$
$\operatorname{add}()$	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\log (\mathrm{n}))$	$\mathrm{O}(1)$
merge()	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{n} 1+\mathrm{n} 2)$	$\mathrm{O}(\log (\mathrm{n}))$	$\mathrm{O}(1)$

*: Amortized analysis

