
Algorithms and Data Structures 

Ulf Leser 

Amortized Analysis 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      2 

 
 
 

• Two Examples 
• Two Analysis Methods 
• Dynamic Tables 
• SOL - Analysis 

 
• This lecture is not covered in [OW93] but, for instance, in 

[Cor03] 
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Setting 

• SOL: Sequences of operations influencing each other 
– We have a sequence Q of operations on a data structure 

• Searching SOL and rearranging a SOL 

– Operations are not independent – by changing the data structure, 
costs of subsequent operations are influenced 

• Conventional WC-analysis produces misleading results 
– Assumes all operations to be independent 
– Changing search order in a workload does not influence WC result 

• Amortized analysis analyzes the complexity of any 
sequence of dependent operations 
– In other terms: We seek the worst average cost of each operation 

in any sequence 
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„Amortizing“ 

• Economics: How long does it take until a (high) initial 
investment pays off because it leads to continuous 
business improvements (less costs, more revenue)? 

• Example:  
– Investment of 6000€ leads to daily rev. increase from 500 to 560€ 
– Investment is amortized after 100 days  

• WC: Look at all days  
independently 
– Look at ratio cost / revenue 
– Compare 560-6000 to 500-0 
– Don’t invest! 
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Algorithmic Example 1: Multi-Pop 

• Assume a stack S with a special operation: mpop(k) 
– mpop(k) pops min(k, |S|) elements from S 
– Implementation: mpop calls pop k times 

• Assume any sequence Q of operations push, pop, mpop 
– E.g. Q={push,push,mpop(k),push,pop,push,mpop(k),…} 

• Assume costs c(push)=1, c(pop)=1, c(mpop(k))=k 
• With |Q|=n: What cost do we expect for a given Q? 

– Every op in Q costs 1 (push) or 1 (pop) or k (mpop) 
– In the worst case, k can be ~n (n times push, then one mpop(n)) 
– Worst case of a single operation is O(n) 
– Total worst-case cost: O(n2) 

Note: Costs only ~2*n 
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Problem 

 
• Clearly, the cost of Q is in O(n2), but this is not tight 
• A simple thought shows: The cost of Q is in O(n) 

– Every element can be popped only once 
• No matter if this happens through a pop or a mpop 

– Pushing an element costs 1, popping it costs 1 
– Q can at most push n elements and, hence, only pop n elements 
– Thus, the total cost is in O(n) 

• It is maximally 2*(n-1) 

• We want to derive such a result in a systematic manner 
(analyzing SOLs is not that easy) 
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Example 2: Bit-Counter 

 

• We want to generate bitstrings by iteratively adding 1  
– Starting from 0 
– Assume bitstrings of length k 
– Roll-over counter if we exceed 2k-1 

• Q is a sequence of „+1“ 
• We count as cost of an operation 

the number of bits we have to flip 
• Classical WC analysis 

– A single operation can flip up to k bits 
• “1111111” +1 

– Worst case cost for Q: O(k*n) 

00000000 

00000001 1 1 

00000010 2 3 

00000011 1 4 

00000100 3 7 

00000101 1 8 

00000110 2 10 

00000111 1 11 

00001000 4 15 

00001001 1 16 

00001010 2 18 

… 
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Problem 

 
• Again, this complexity is overly pessimistic / not tight 
• Cost actually is in O(n) 

– The right-most bit is flipped in every operation: cost=n 
– The second-rightmost bit is flipped every second time: n/2 
– The third …: n/4 
– … 
– Together 
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• Two Examples 
• Two Analysis Methods  

– Accounting Method 
– Potential Method 

• Dynamic Tables 
• SOL - Analysis 
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Accounting Analysis 

• Idea: We create an account for Q 
• Operations put / withdraw  some amounts of “money” 
• We choose these amounts such that the current state of 

the account is always (throughout Q) an upper bound of 
the actual cost incurred by Q 
– Let ci be the true cost of operation i, di its effect on the account 
– We require 

 
– Especially, the account must never become negative 
– “≤” gives us more freedom in analysis than “=“ 

• It follows: An upper bound for the account (d) after Q is 
also an upper bound for the true cost (c) of Q 
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Application to mpop 

• Assume dpush=2, dpop=0, dmpop=0 
• Upper bounds? 

– Clearly, dpush is an upper bound on cpush (which is 1) 
– But neither dpop nor dmpop are upper bounds for cpop / cmpop 

• Let’s try: dpush=2, dpop=1, dmpop=n 
– Now all individual d’s are upper bounds for their c’s 
– But this doesn’t help (worst-case analysis) 

 
 
 

• But: We only have to show that the sum of d’s for any 
prefix of Q is higher than the sum of c’s 
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Application to mpop 

• Assume dpush=2, dpop=0, dmpop=0 
• Summing these up yields an upper bound on the real cost 

– Idea: Whenever we push an element, we pay 1 for the push and 1 
for the operation that will (at same later time) pop exactly this 
element 

• It doesn’t matter whether this will be through a pop or a mpop 
• Note: For every pop, there must have been a corresponding push before 

– Thus, when it comes to a pop or mpop, there is always enough 
money on the account  

• Deposited by previous push’s 
• “enough”: Enough such that the sum remains an upper bound 

• This proves: 
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Choose d‘s carefully 

 
• Assume dpush=1, dpop=1, dmpop=1 

– Assume Q={push,push,push,mpop(3)} 
– ∑c=6 > ∑d = 4 

• Assume dpush=1, dpop=0, dmpop=0 
– Assume Q={push,push,mpop(2)} 
– ∑c=4 > ∑d = 2 

• Assume dpush=3, dpop=0, dmpop=0 
– Fine as well, but not as tight (but also leads to O(n)) 

 
 
 

 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      14 

Application to Bit-Counter 

• Look at the sequence Q‘ of flips generated by a sequence Q 
– Every +1 creates a sequence of [0,k] flip-to-0 and [0,1] flip-to-1 

• There is no „flip to 1“ if we roll-over 

– Since only flips cost, the cost of Q’ is the same as the cost of Q 

• Let’s try dflip-to-1=2 and dflip-to-0=0 
– Clearly, dflip-to-1 is an upper bound to cflip-to-1 
– Note: We start with only 0 and can flip-to-0 any 1 only once  

• Before we flip-to-1 again, again enabling one flip-to-0 etc. 

– Idea: When we flip-to-1, we pay 1 for flipping and 1 for the back-
flip-to-0 that might happen at some later time in Q’ 

• There can be only one flip-to-0 per flip-to-1 

– Thus, the account is always an upper bound on the actual cost 
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Application to Bit-Counter -2-  

 
• We know that the account is always an upper bound on the 

actual cost for any prefix of Q 
• Every step of Q creates a sequence of flip-to-1  (at most 

one) and flip-to-0 in Q’ 
• This sequence costs at most 2  

– There can be only on flip-to-1, and all fli-to-0 are free 

• Every step in Q costs at most 2 
• Thus, Q is bound by O(n) 
• qed. 
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• Two Examples 
• Two Analysis Methods  

– Accounting Method 
– Potential Method 

• Dynamic Tables 
• SOL - Analysis 
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Potential Method: Idea 

• In the accounting method, we assign a cost to every 
operation and compare aggregated accounting costs of ops 
with aggregated real costs of ops 

• In the potential method, we assign a potential Φ(D) to the 
data structure D manipulated by Q 

• As ops from Q that change D, also change D’s potential 
• The trick is to design Φ such that we can (again) use it to 

derive an upper bound on the real cost of Q 
 

• “Accounting” and “potential” methods are quite similar – 
use whatever is easier to apply for a given problem 
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Potential Function 

• Let D0, D1, … Dn be the states of D when applying Q 
• We define the amortized cost di of the i‘th operation as 

di = ci + Φ(Di) – Φ(Di-1) 
• We derive the amortized cost of Q as 

 
 
 

• Rough idea: If we find a Φ such that (a) we can obtain 
formulas for the amortized costs for all individual di and (b) 
Φ(Dn)≥Φ(D0), we have an upper bound for the real costs 
– Because then: 
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Details: Always Pay in Advance 

 
• Operations raise or lower the potential (~future cost) of D 
• We need to find a function Φ such that 

– Req. 1: Φ(Di) depends on a property of Di 
– Req. 2: Φ(Dn)≥Φ(D0) [and we will always have Φ(D0)=0] 
– Req. 3: We can compute di = ci + Φ(Di) – Φ(Di-1) 

• As within a sequence we do not know its future, we also 
have to require that Φ(Di) never is negative 
– Otherwise, the amortized cost of the prefix Q[1-i] would not be an 

upper bound of the real costs at step i 

• Idea: Always pay in advance 
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Example: mpop 

 
• We use the number of objects on the stack as its potential 
• Then 

– Req. 1: Φ(Di) depends on a property of Di 
– Req. 2: Φ(Dn)≥Φ(D0) and Φ(D0)=0 
– Req. 3: Compute di = ci + Φ(Di) – Φ(Di-1) for all ops: 

• If op is push: di = ci + (x – (x-1)) = 1 + 1 = 2 
• If op is pop: di = ci + (x – (x+1)) = 1 – 1 = 0 
• If op is mpop(k): di = ci + (x – (x+k)) = k – k = 0 

• Thus, 2*n ≥ Σdi ≥ Σci and Q is in O(n) 
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Example: Bit-Counter 

• We use the number of „1“ in the bitstring as its potential 
• Then  

– Req. 1: Φ(Di) depends on a property of Di 
– Req. 2: Φ(Dn)≥Φ(D0) and Φ(D0)=0 
– Req. 3: We compute di = ci + Φ(Di) – Φ(Di-1) for all ops 

• Let the i’th operation incur ti flip-to-0 and 0 or 1 flip-to-1 
• Thus, ci ≤ ti + 1 
• If Φ(Di)=0, then operation i has flipped all positions to 0; this implies 

that previously they were all 1, which means that Φ(Di-1)=k 
• If Φ(Di)>0, then Φ(Di)=Φ(Di-1)-ti+1 
• In both cases, we have Φ(Di) ≤ Φ(Di-1)-ti+1 
• Thus, di = ci + Φ(Di) – Φ(Di-1) ≤ (ti+1) + (Φ(Di-1)-ti+1) - Φ(Di-1) ≤ 2 

• Thus, 2*n ≥ Σdi ≥ Σci and Q is in O(n) 
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• Two Examples 
• Two Analysis Methods  
• Dynamic Tables 

– SOL are complicated … we still try to get familiar with the analysis 
method using simpler problems … 

• SOL - Analysis 
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Dynamic Tables 

 
• We use amortized analysis for something more useful: 

Complexity of operations on a dynamic table 
• Assume an array T and a sequence Q of insert/delete ops 
• Dynamic Tables: Keep the array small, yet avoid overflows 

– Start with a table T of size 1 
– When inserting and T is full, we double |T|; upon deleting and T is 

only half-full, we reduce |T| by 50% 
– “Doubling”, “reducing” means: Copying data to a new array 
– Copying an element of an array costs 1 

• Thus, any operation (ins or del) costs either 1 or i  
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Example 

1 

1 2 

1 2 3 

1 2 3 4 

1 2 3 4 5 6 7 

1 2 3 4 

1 2 3 

insert(1) 

insert(3) 

insert(2) 

insert(4) 

insert(5); insert(6); insert(7) 

delete(5); delete(6); delete(7) 

delete(4) 

• Conventional WC 
analysis 

• As i can be up to n, the 
complexity of any 
operation is O(n) 

• Complexity of any Q is 
O(n2) 
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With Potential Method 

 
• Let num(T) be the current number of elements in T 
• We use potential Φ(T) = 2*num(T) - |T| 

– Intuitively a “potential” 
• Immediately before an expansion, num(T)=|T| and Φ(T)=|T|, so there 

is much potential in T (we saved for the expansion to come) 
• Immediately after an expansion, num(T)=|T|/2 and Φ(T)=0; all 

potential has been used, we need to save again for the next expansion 

– Formally 
• Requirement 1: Of course 
• Requirement 2: As T is always at least half-full, Φ(T) is always ≥0;  

   we start with |T|=0, and thus Φ(Tn)-Φ(T0)≥0 

 
 

1: Φ(Di) depends on a property of Di 
2: Φ(Dn)≥Φ(D0) 
3: di = ci + Φ(Di) – Φ(Di-1)  
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Continuation 

• Req. 3: Let’s look at di = ci + Φ(Ti) – Φ(Ti-1) for insertions 
• Without expansion 

 di   = 1 + (2*num(Ti)-|Ti|) - (2*num(Ti-1)-|Ti-1|)  
        = 1 + 2*num(Ti)-2*num(Ti-1) - |Ti| + |Ti-1| 
        = 1 + 2 + 0  
   = 3 

• With expansion 
 di  = num(Ti) +        (2*num(Ti)-|Ti|)        -        (2*num(Ti-1)-|Ti-1|)  
      = num(Ti) +       2*num(Ti) -  |Ti|        -       2*num(Ti-1)  +  |Ti-1|  
      = num(Ti) + 2*num(Ti) - 2*(num(Ti)-1) - 2*(num(Ti)-1) +num(Ti)-1  
       = 3*num(Ti) - 2*num(Ti) + 2 - 2*num(Ti) + 2 + num(Ti) – 1 
        = 3 

• Thus, 3*n ≥ Σdi ≥ Σci and Q is in O(n) (for only insertions) 
 

1: Φ(Di) depends on a property of Di 
2: Φ(Dn)≥Φ(D0) 
3: di = ci + Φ(Di) – Φ(Di-1) f 
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Intuition 

• Think accounting method 
• For insert’, we deposit 3 because 

– 1 for the insertion (the real cost) 
– 1 for the time when we need to copy 

this new element at the next 
expansion 

• These 1’s fill the account with |Ti|/2 
before the next expansion 

– 1 for one of the |Ti|/2 elements 
already in A after the last expansion 

• These fill the account with |Ti|/2 
before the next expansion 

• Thus, we have enough credit at 
the next expansion 

1 2 3 4 5 6 

1 2 3 4 5 6 7 8 9 0 1 2 3 

1 2 3 4 5 6 7 8 9 0 1 2 3 

1 2 3 4 5 6 7 8 9 0 1 2 3 
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Problem: Deletions 

 
 

• Our strategy for deletions so far is not very clever 
– Assume a table with num(T)=|T| 
– Assume a sequence Q = {I,D,I,D,I,D,I …} 
– This sequence will perform |T|+|T|/2+|T|+|T|/2+ … real ops 
– As |T| is O(n), Q is in O(n2) and not in O(n) 

• Simple trick: Do only contract when num(T)=|T|/4 
– Leads to amortized cost of O(n) for any sequence of operations 
– We omit the proof (see [Cor03]) 
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• Two Examples 
• Two Analysis Methods  
• Dynamic Tables 
• SOL – Analysis 

– Goal and idea 
– Preliminaries 
– A short proof 
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Re-Organization Strategies 

• Recall self-organizing lists (SOL) 
– As usual: Accessing the i’th element costs i 
– When searching an element, we change the list L 

• Three popular strategies 
 

– MF, move-to-front:  
 
 

– T, transpose:  
 
 

 

– FC, frequency count: 
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Notation 

• Assume we have a strategy A and a workload S on list L 
• After accessing element i, A may move i by swapping 

– Swap with predecessor (to-front) or successor (to-back) 
– Let FA(l) be the number of front-swaps and XA(l) the number of 

back-swaps of step l when using strategy A 
• This means: FMF/XMF for strategy MF, FT/XT … FFC/XFC 

• We never back-swap: ∀l: XMF(l)=XT(l)=XFC(l)=0 

• Let CA(S) be the total access cost of A incurred by S 
– Again: CMF for strategy MF, CT for T, CFC for FC 

• With conventional worst-case analysis, we can only derive 
that CA(S) is in O(|S|*|L|) – for any A 
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Theorem 

• Theorem (Amortized costs) 
Let A be any self-organizing strategy for a SOL L, MF be 
the move-to-front strategy, and S be a sequence of 
accesses to L. Then 

CMF(S) ≤ 2*CA(S) + XA(S) – FA(S) - |S| 
 

• What does this mean? 
– We don‘t learn more about the absolute complexity of SOLs 
– But we learn that MF is quite good 
– Any strategy following the same constraints (only series of swaps) 

will at best be roughly twice as good as MF 
• Assuming CA(S)>>|S| and for |S|→∞: X(S)~F(S) for any strategy 

– Despite its simplicity, MF is a fairly safe bet for all workloads 
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Idea of the Proof  

• We will compare access costs in L between MF and any A 
• Think of both strategies (MF, A) running S on two copies of 

the same initial list L 
– After each step, A and MF perform different swaps, so all list states 

except the first very likely are different 

• We will compare list states by looking at the number of 
inversions (“Fehlstellungen”) 
– Actually, we only analyze how the number of inversions changes 

• We will show that the number of inversions defines a 
potential of a pair of lists that helps to derive an upper 
bound on the differences in real costs 
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Content of this Lecture 

 
 

• Two Examples 
• Two Analysis Methods  
• Dynamic Tables 
• SOL - Analysis 

– Goal and idea 
– Preliminaries 
– A short proof 
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Inversions 

• Let L and L‘ be permutation of the set {1, 2, …, n}  
• Definition  

– A pair (i,j) is called an inversion of L and L‘ iff i and j are in different 
order in L than in L‘ (for 1 ≤ i,j ≤ n and i≠j) 

– The number of inversions between L and L‘ is denoted by inv(L, L‘) 

• Remarks 
– Different order: Once i before j, once i after j 
– Obviously, inv(L, L’) = inv( L’, L) 
– Example: inv( {4,3,1,5,7,2,6}, {3,6,2,5,1,4,7} ) = 12 

• Without loss of generality, we assume that L={1,…,n} 
– Because we only look at changes in number of inversions and not at 

the actual set of inversions 
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Sequences of Changes 

• Assume we applied l-1 steps of S on L, creating LMF using 
MF and LA using A 

• Let us consider the next step l, creating LMF’ and LA’ 

A B C . . . . . . . . . . . 

LA LMF 

A B C . . . . . . . . . . . 

B . . . A . . . C . . . . . . B . . . C . . . A . . . . 

LA’ LMF’ B . A . . . . . C . . . . . A . B . . . C . . . . . . . 

l-1 

1 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      37 

Inversion Changes 

• How does l change the number of inv’s between LMF / LA?  
• Can we compute inv(LMF’, LA’) from inv(LMF, LA)? 

– Assume step l accesses element i from LA  
– We may assume it is at position i 
– Let this element i be at position k in LMF 

– Access in LA costs i, access in LMF costs k 
– After step l, A performs an unknown number of swaps; MF 

performs exactly k-1 front-swaps 

 
 

1 2 3 . . . . . i . . . . . a . . . b i . . . . . . . . LA LMF 

position k position i 

i a . . . b . . . . . . . . LMF’ ? LA’ 

k-1 front-swaps ? front-swaps 

? ? ? . . . . . ? . . . . . 
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Counting Inversion Changes 1 

• Let Xl be the set of values 
that are before position k in  
LMF and after position i in LA 

• Le Yl be the values before position k in LMF and before i in LA 
– Clearly, |Xl| + |Yl| = k-1 

• All pairs (i,c) with c∈Xl are inversions between LA and LMF 
– There may be more; but only those with i are affected in this step 

• After step l, MF moves element i to the front  
– Assume first that A does simply nothing 
– All inversions (i,c) with c∈Xl disappear (there are |Xl| many) 
– But |Yl|=k-1-|Xl| new inversions appear 
– Thus: inv(LMF’,LA’) = inv(LMF,LA) - |Xl| + k-1-|Xl| 
– But A does something 

1 2 3 . . . . . i . . . . . 

. . . . . i . . . . . . . . 

LA 

LMF 

Xl Yl 

k-1 
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Counting Inversion Changes 2 

• In step l, let A perform FA(l) 
front-swaps and XA(l)  
back-swaps 

• Every front-swap (swapping i before any j) in LA decreases 
inv(LMF’,LA’) by 1 
– Before step l, j must be before i in LA (it is a front-swap), but after i 

in LMF’ (because i now is the first element in LMF’) 
– After step l, i is before j in both LA’ and LMF’ – inversion removed 

• Equally, every back-swap increases inv(LMF’,LA’) by 1 
• Together: After step l, we have 

inv(LMF’,LA’) = inv(LMF,LA) - |Xl| + k-1-|Xl| - FA(l) + XA(l) 
 

 

1 2 3 . . . j . i . . . . . 

i . . . . . . . . . . . . . 

LA 

LMF‘ 

Before step l through MF through A 
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Amortized Costs 

• Let tMF(l) be the real cost of strategy MF for step l 
• We use the number of inversions as potential function 

Φ(LA,LMF)=inv(La, LMF) on the pair LA, LMF 
• Definition 

– The amortized costs of step l, called al, are 
al = tMF(l) + inv(LA(l), LMF(l)) – inv(LA(l-1), LMF(l-1)) 

– Accordingly, the amortized costs of sequence S, |S|=m, are 
∑al = ∑tMF(l) + inv(LA(m), LMF(m)) – inv(LA(0), LMF(0)) 

• This is a proper potential function 
– 1: Φ depends on a property of the pair LA, LMF 

– 2: inv() can never be negative, so ∀l: Φ(LA(l), LMF(l)) ≥ Φ(L,L)=0 

• Let’s look at how operations change the potential 
 
 

Was cl … was dl … we switch to Cor notation 
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Content of this Lecture 

 
 

• Two Examples 
• Two Analysis Methods  
• Dynamic Tables 
• SOL - Analysis 

– Goal and idea 
– Preliminaries 
– A short proof (after much preparatory work) 
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Putting it Together 

• We know for every step l from workload S accessing i: 
inv(LMF’,LA’) = inv(LMF,LA) - |Xl| + k-1-|Xl| - FA(l) + XA(l) 
and thus 
inv(LMF’,LA’) - inv(LMF,LA) = -|Xl|+k-1-|Xl| - FA(l) + XA(l) 

• Since tMF(l)=k, we get amortized costs of 
     al  = tMF(l) + inv(LA’, LMF’) – inv(LA, LMF) 

al      = k - |Xl|+k-1-|Xl| - FA(l) + XA(l) 
     = 2(k-|Xl|) - 1 - FA(l) + XA(l) 

• Recall that Yl (|Yl|=k-1-|Xl|) are those elements before i in 
both lists. This implies that k-1-|Xl| ≤ i-1 or k-|Xl|≤i 
– There can be at most i-1 elements before position i in LA 

• Therefore: al ≤ 2i - 1 - FA(l) + XA(l) 
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Putting it Together 

• This is the central trick! 
• Because we only looked at inversions (and hence the 

sequence of values), we can draw a connection between 
the value that is accessed and the number of inversions 
that are affected 

 

 
• Recall that Yl (|Yl|=k-1-|Xl|) are those elements before i in 

both lists. This implies that k-1-|Xl| ≤ i-1 or k-|Xl|≤i 
– There can be at most i-1 elements before position i in LA 

• Therefore: al ≤ 2i - 1 - FA(l) + XA(l) 
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Aggregating 

• We also know the cost of accessing i using A: that’s i 
• Together: al ≤ 2CA(l) - 1 - FA(l) + XA(l) 
• Aggregating this inequality over all al in S, we get 

∑al ≤ 2*CA(S) – |S| – FA(S) + XA(S) 
• By definition, we also have 

∑al = ∑tMF(l) + inv(LA
m, LMF

m) – inv(LA
0, LMF

0) 
• Since ∑tMF(l) = CMF(S) and inv(LA

0, LMF
0)=0, we get 

CMF(S) + inv(LA
m, LMF

m) ≤ 2*CA(S) – |S| – FA(S) + XA(S) 
• It finally follows (inv()≥0) 

CMF(S) ≤ 2*CA(S) – |S| – FA(S) + XA(S) 
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Summary 

• Self-organization creates a type of problem we were not 
confronted with before 
– Things change during program execution 
– But not at random – we follow a strategy 

• Analysis is none-trivial, but 
– Helped to find a elegant and surprising conjecture 
– Very interesting in itself: We showed relationships between 

measures we never counted (and could not count easily) 
– But beware the assumptions (e.g., only single swaps) 
– Original work: Sleator, D. D. and Tarjan, R. E. (1985). "Amortized 

efficiency of list update and paging rules." Communications of the 
ACM 28(2): 202-208. 
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