
Algorithms and Data Structures

Ulf Leser

Self-Organizing Lists

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 2

Assumptions for Searching

• Until now, we implicitly assumed that every element of our
list is searched with the same probability, i.e., with the
same frequency

• Accordingly, we treated all elements equal and tried to
reduce the worst-case runtime for any element

• We may sort the list by properties of its elements, but we
never considered properties of its usage

• This setting sometimes is inadequate

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 3

Searches on the Web [Germany, 2010, Google Zeitgeist]

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 4

Germany 2014 [Google trends]

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 5

2016 [Google Zeitgeist]

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 6

Changing Frequencies [Google Zeitgeist]

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 7

Changing Word Usage [Google n‘gram viewer]

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 8

Zipf-Distribution

• Many events are not equally but Zipf-distributed
– Let f be the frequency of an event and r its rank in the list of all

events sorted by frequency
– Zipf’s law: f ~ k/r for some constant k

• Examples
– Search terms on the web
– Purchased goods
– Words in a text
– Sizes of cities
– Opened files in a OS
– …

Source: http://searchengineland.com/the-long-tail-of-search-12198

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 9

Changing the Scenario

• Assume we have a list L of values
• L is searched very often
• But: Elements in L are searched with different frequencies
• How can we organize L such that a series of searches

following this frequency distribution is as fast as possible?
• Can we organize L such that searches are fast even when

the frequencies of searches change arbitrarily?
• Let L organize itself depending on its usage

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 10

Content of this Lecture

• Self-Organizing Lists
– Fixed frequencies
– Dynamic frequencies

• Organization Strategies
• Analysis

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 11

Simple Case: Fixed Frequencies

• For simplicity, we assume L has n=|L| different elements
• Let pi be the relative (and fixed) frequency at which the i’th

element is searched (1≤i≤n)
• Example: Assume pi is distributed with pi=1/(1+i)2*c

– Assume n=25
– c: normalization factor to ensure ∑pi=1
– Yields something like 41%, 18%, 10%, 6%, 4%, 3%, 2%, 1%, …

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 12

Analysis

• What are the expected costs for a series of searches

following the frequency distribution?
• Option 1: Assume L is sorted by a key and we search L

with log(n) comparisons upon each search
– Independent of pi’s; that’s how we did it so far
– Expected cost for 100 searches: 100*log(n) ~ 500

• Option 2: Assume L is sorted by pi and we search L linearly
upon each search
– In 41% of cases: 1 access; in 18% 2 accesses; in 10% 3; …
– For 100 searches: 1*41+2*18+3*10+4*6+5*4+6*3+ … ~ 380

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 13

Other Distributions

• If pi=1/(1+i)3*c, we need only ~200 accesses for the

frequency-sorted list, but still ~500 for the value-sorted list
– Access frequencies: 62, 18, 7, 4, …

• If pi=1/n, we have 1336 versus ~500 accesses
– Equal distribution, access frequencies: 4, 4, 4, 4, …

• Summary
– Sorting the list by „popularity“ may make sense
– Gain (or loss) in efficiency can be computed in advance if

frequency of accesses are known (and do not change)

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 14

Content of this Lecture

• Self-Organizing Lists
– Fixed frequencies
– Dynamic frequencies

• Organization Strategies
• Analysis

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 15

Self-Organizing Lists

• More interesting scenario

– Access frequencies are not known in advance
– Access frequencies change over time

• Implication: It is not generally optimal to log searches for some time,
then compute popularity, then re-sort list

• Our model of self-organization
– After each access, we may change the order in the list
– Searching the (currently) i’th element of the list costs i operations

• I.e., L is implemented as linked list
• Using arrays doesn’t help – we don’t know where the searched value is

• This scenario is called a self-organizing linear list (SOL)

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 16

Application: Caching

• Often, applications need to read more data from disk than

there is main memory
– Especially if there are more than one app running

• Reading from disk is ~10000 times slower than memory
• Caching: OS keeps those data blocks in memory for which

it expects that they will be reused (in the near future)
• There is not enough space to keep all ever used blocks
• Thus, when loading new blocks, the OS has to evict blocks

from the cache – which ones?
– Those that probably will not be reused in the near feature

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 17

Caching and SOLs

• The OS must keep a SOL S with all block IDs sorted by
their popularity (= past/expected times they were read)

• The top-k blocks of the list are cached
• When loading a new block b, the OS …

– evicts the k’th block in S from memory
– loads b into the free space
– re-organizes S to reflect the change in popularity of b

• Prominent strategies in caching
– Most recently used: Popularity is the time stamp of the last usage
– Most frequently used: Popularity is the number of access until now

• See course on Operating Systems (or/and Databases)

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 18

Content of this Lecture

• Self-Organizing Linear Lists
• Organization Strategies
• Analysis

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 19

Organization Strategies

• Many proposals in the literature
• Many are very application specific
• Three general strategies are popular

– MF, move-to-front:
After searching an element e, move e to the front of L

• This is “most recently used” in OS terms

– T, transpose:
After searching an element e, swap e with its predecessor in L

– FC, frequency count:
Keep an access frequency counter for every element in L and keep
L sorted by this counter. After searching e, increase counter of e
and move “up” to keep sorted’ness

• This is “most frequently used” in OS terms

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 20

Visual

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 21

Properties

• Move-to-Front, MF
– If a rare element is accessed, it “jams” the list head for some time
– Bursts of frequent same-element accesses are well supported
– No problem with changes in popularity over time (trends)

• Transpose, T
– Problems with fast changing trends – slow adaptation
– Frequently accessing same-elements well supported

• After some swing-in time

• Frequency Count, FC
– Requires O(n) additional space
– Re-sorting requires WC O(log(n)) time (binsearch in L[1…e])

• Rather O(1) in practice – local moves

– Slow adaptation to changing trends – old counts dominate list head

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 22

Examples

• For each strategy, we can find sequences of accesses that
are very well supported and others that are not

• Example: L={1,2,…7}, n=7; assume two workloads
– S1: {1,2,…7, 1,2,…7, 1,2,… … …7} (ten times)
– S2: {1,1,1,1,1,1,1,1,1,1, 2,2,2,… … 6, 7,7,7,7,7,7,7,7,7,7}
– Each workload performs 70 searches, each element is accessed 10

times with the same relative frequency 1/7

• Assume an arbitrary static order of L
– There are seven different costs 1, … 7
– Each cost is incurrent 10 times
– Average cost per search for S1 and for S2: 4*10*

*10
1

1
=

∑
=

n

i
i

n

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 23

MF: Average Cost

• MF / S1
– In the first subsequence, we require i ops for the i’th access
– L then looks like 7,6,5,4,3,2,1
– We need 7 ops per element for all following subsequence
– Together

• MF / S2
– First subsequence requires 10=1+9 ops
– Second requires 2+9
– Third requires 3+9
– Together

7.6*9*7
*10
1

1
=

+∑

=

ni
n

n

i

3.11**9
*10
1

1
=

+∑

=

ni
n

n

i

Almost worst case

Almost best case

S1: {1,2,…7, 1…7, 1,… …7}
S2: {1,…, 2,… … 6, 7, …}

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 24

FC: Average Cost

• FC / S1 (all counters are initialized with 0)
– First subsequence costs ∑i and doesn’t change order

• Assuming stable sorting; now all counters are 1

– Same for all other subsequences
– Together

• [Ignoring the constant re-sorting costs]

• FC / S2
– First subsequence costs 10 and no change in order
– Second subsequence costs 20 and no change in order
– Same for all other subsequences
– Together

• [Ignoring the constant re-sorting costs]

4*10*
*10
1

1
=

∑
=

n

i
i

n

4*10*
*10
1

1
=

∑
=

n

i
i

n

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 25

T: Average Cost

• T/ S1
– First subsequence costs ∑i = 28
– Order now is 2,3,4,5,6,7,1 – next subseq costs 7+1+2+…5+7 = 29
– Order now is 3,4,5,6,2,7,1 – next subseq costs 7+… = 30
– …

 Access 3 4 5 6 2 7 1 Costs

1 3 4 5 6 2 1 7 7

2 3 4 5 2 6 1 7 5

3 3 4 5 2 6 1 7 1

4 4 3 5 2 6 1 7 2

5 4 5 3 2 6 1 7 3

6 4 5 3 6 2 1 7 5

7 4 5 3 6 2 7 1 7

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 26

Worst Case Complexity

• Lemma

The worst case complexity of MF and T for searching a
workload W in a SOL L is O(|W|*|L|)

• Proof
– A workload W consists of |W| requests
– A request consists of a search and a move
– Since a search may access any element, it is in O(|L|) in worst case
– Moves in Mf and in T are in O(1)
– qed.

• Note: FC is even slightly worse (re-sorting)

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 27

Optimal Strategies

• “Optimality” of a strategy depends on the sequence of

accesses
• Conventional analysis assumes worst-case for every single

access, which is O(n) for every search in every strategy
• Overly pessimistic: Accesses (by self-organization)

influence (decrease!) the cost of subsequent accesses
• Using a clever trick, we can derive estimates about the

relative costs for different strategies over any sequence
• This trick is called amortized analysis
• This will take some time (next lecture)

Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017 28

Exemplary Questions

• Consider a list L{1,2,3,4,5} and the following workload

S={1,3,33,5,5,5,5,5}. Analyze the cost of answering S
using the MF, the T, and the FC strategy

• Consider a list L, |L|=n, of n different elements and a
workload S which accesses element i with relative
frequency pi=1/(1+i)2*c. Which of our three strategies is
optimal for S?

• OS often use the least-recently used strategy for managing
a cache. Is LRU equivalent to our MF, T, or FC strategy?

	Foliennummer 1
	Assumptions for Searching
	Searches on the Web [Germany, 2010, Google Zeitgeist]
	Germany 2014 [Google trends]
	2016 [Google Zeitgeist]
	Changing Frequencies [Google Zeitgeist]
	Changing Word Usage [Google n‘gram viewer]
	Zipf-Distribution
	Changing the Scenario
	Content of this Lecture
	Simple Case: Fixed Frequencies
	Analysis
	Other Distributions
	Content of this Lecture
	Self-Organizing Lists
	Application: Caching
	Caching and SOLs
	Content of this Lecture
	Organization Strategies
	Visual
	Properties
	Examples
	MF: Average Cost
	FC: Average Cost
	T: Average Cost
	Worst Case Complexity
	Optimal Strategies
	Exemplary Questions

