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Assumptions for Searching 

 
 

• Until now, we implicitly assumed that every element of our 
list is searched with the same probability, i.e., with the 
same frequency 

• Accordingly, we treated all elements equal and tried to 
reduce the worst-case runtime for any element 

• We may sort the list by properties of its elements, but we 
never considered properties of its usage 

• This setting sometimes is inadequate 
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Searches on the Web [Germany, 2010, Google Zeitgeist] 
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Germany 2014 [Google trends] 
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2016 [Google Zeitgeist] 
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Changing Frequencies [Google Zeitgeist] 
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Changing Word Usage [Google n‘gram viewer] 
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Zipf-Distribution 

• Many events are not equally but Zipf-distributed 
– Let f be the frequency of an event and r its rank in the list of all 

events sorted by frequency 
– Zipf’s law: f ~ k/r for some constant k 

• Examples 
– Search terms on the web 
– Purchased goods 
– Words in a text 
– Sizes of cities 
– Opened files in a OS 
– … 

Source: http://searchengineland.com/the-long-tail-of-search-12198 
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Changing the Scenario 

 
• Assume we have a list L of values 
• L is searched very often 
• But: Elements in L are searched with different frequencies 
• How can we organize L such that a series of searches 

following this frequency distribution is as fast as possible? 
• Can we organize L such that searches are fast even when 

the frequencies of searches change arbitrarily? 
• Let L organize itself depending on its usage 
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Content of this Lecture 

 
 
 

• Self-Organizing Lists 
– Fixed frequencies 
– Dynamic frequencies 

• Organization Strategies 
• Analysis 
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Simple Case: Fixed Frequencies 

 
 

• For simplicity, we assume L has n=|L| different elements 
• Let pi be the relative (and fixed) frequency at which the i’th 

element is searched (1≤i≤n) 
• Example: Assume pi is distributed with pi=1/(1+i)2*c  

– Assume n=25 
– c: normalization factor to ensure ∑pi=1 
– Yields something like 41%, 18%, 10%, 6%, 4%, 3%, 2%, 1%, … 
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Analysis 

 
• What are the expected costs for a series of searches 

following the frequency distribution? 
• Option 1: Assume L is sorted by a key and we search L 

with log(n) comparisons upon each search 
– Independent of pi’s; that’s how we did it so far 
– Expected cost for 100 searches: 100*log(n) ~ 500 

• Option 2: Assume L is sorted by pi and we search L linearly 
upon each search 
– In 41% of cases: 1 access; in 18% 2 accesses; in 10% 3; … 
– For 100 searches: 1*41+2*18+3*10+4*6+5*4+6*3+ … ~ 380 
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Other Distributions 

 
• If pi=1/(1+i)3*c, we need only ~200 accesses for the 

frequency-sorted list, but still ~500 for the value-sorted list 
– Access frequencies:  62, 18, 7, 4, … 

• If pi=1/n, we have 1336 versus ~500 accesses 
– Equal distribution, access frequencies: 4, 4, 4, 4, … 

• Summary 
– Sorting the list by „popularity“ may make sense 
– Gain (or loss) in efficiency can be computed in advance if 

frequency of accesses are known (and do not change) 
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Content of this Lecture 

 
 
 

• Self-Organizing Lists 
– Fixed frequencies 
– Dynamic frequencies 

• Organization Strategies 
• Analysis 

 
 
 



Ulf Leser: Algorithmen und Datenstrukturen, Summer Semester 2017     15 

Self-Organizing Lists 

 
• More interesting scenario 

– Access frequencies are not known in advance 
– Access frequencies change over time 

• Implication: It is not generally optimal to log searches for some time, 
then compute popularity, then re-sort list  

• Our model of self-organization 
– After each access, we may change the order in the list 
– Searching the (currently) i’th element of the list costs i operations 

• I.e., L is implemented as linked list 
• Using arrays doesn’t help – we don’t know where the searched value is 

• This scenario is called a self-organizing linear list (SOL) 
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Application: Caching 

 
• Often, applications need to read more data from disk than 

there is main memory  
– Especially if there are more than one app running 

• Reading from disk is ~10000 times slower than memory 
• Caching: OS keeps those data blocks in memory for which 

it expects that they will be reused (in the near future) 
• There is not enough space to keep all ever used blocks 
• Thus, when loading new blocks, the OS has to evict blocks 

from the cache – which ones?  
– Those that probably will not be reused in the near feature 
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Caching and SOLs 

• The OS must keep a SOL S with all block IDs sorted by 
their popularity (= past/expected times they were read) 

• The top-k blocks of the list are cached  
• When loading a new block b, the OS … 

– evicts the k’th block in S from memory 
– loads b into the free space 
– re-organizes S to reflect the change in popularity of b 

• Prominent strategies in caching 
– Most recently used: Popularity is the time stamp of the last usage 
– Most frequently used: Popularity is the number of access until now 

• See course on Operating Systems (or/and Databases) 
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Content of this Lecture 

 
 
 

• Self-Organizing Linear Lists 
• Organization Strategies 
• Analysis 
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Organization Strategies 

• Many proposals in the literature 
• Many are very application specific 
• Three general strategies are popular 

– MF, move-to-front:  
After searching an element e, move e to the front of L 

• This is “most recently used” in OS terms 

– T, transpose:  
After searching an element e, swap e with its predecessor in L 

– FC, frequency count:  
Keep an access frequency counter for every element in L and keep 
L sorted by this counter. After searching e, increase counter of e 
and move “up” to keep sorted’ness 

• This is “most frequently used” in OS terms 
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Visual 
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Properties 

• Move-to-Front, MF 
– If a rare element is accessed, it “jams” the list head for some time 
– Bursts of frequent same-element accesses are well supported 
– No problem with changes in popularity over time (trends) 

• Transpose, T 
– Problems with fast changing trends – slow adaptation 
– Frequently accessing same-elements well supported  

• After some swing-in time 

• Frequency Count, FC 
– Requires O(n) additional space 
– Re-sorting requires WC O(log(n)) time (binsearch in L[1…e]) 

• Rather O(1) in practice – local moves 

– Slow adaptation to changing trends – old counts dominate list head 
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Examples 

• For each strategy, we can find sequences of accesses that 
are very well supported and others that are not 

• Example: L={1,2,…7}, n=7; assume two workloads 
– S1: {1,2,…7,  1,2,…7,  1,2,… … …7} (ten times) 
– S2: {1,1,1,1,1,1,1,1,1,1,  2,2,2,… … 6,  7,7,7,7,7,7,7,7,7,7} 
– Each workload performs 70 searches, each element is accessed 10 

times with the same relative frequency 1/7 

• Assume an arbitrary static order of L 
– There are seven different costs 1, … 7  
– Each cost is incurrent 10 times 
– Average cost per search for S1 and for S2: 4*10*

*10
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MF: Average Cost 

• MF / S1  
– In the first subsequence, we require i ops for the i’th access  
– L then looks like 7,6,5,4,3,2,1 
– We need 7 ops per element for all following subsequence 
– Together 

 

• MF / S2 
– First subsequence requires 10=1+9 ops  
– Second requires 2+9 
– Third requires 3+9 
– Together 
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Almost worst case 

Almost best case 

S1: {1,2,…7,  1…7,  1,… …7} 
S2: {1,…,  2,… … 6, 7, …} 
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FC: Average Cost 

• FC / S1 (all counters are initialized with 0) 
–  First subsequence costs ∑i and doesn’t change order 

• Assuming stable sorting; now all counters are 1 

– Same for all other subsequences 
– Together 

• [Ignoring the constant re-sorting costs] 

• FC / S2 
– First subsequence costs 10 and no change in order 
– Second subsequence costs 20 and no change in order 
– Same for all other subsequences 
– Together 

• [Ignoring the constant re-sorting costs] 
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T: Average Cost 

• T/ S1 
– First subsequence costs ∑i = 28 
– Order now is 2,3,4,5,6,7,1 – next subseq costs 7+1+2+…5+7 = 29 
– Order now is 3,4,5,6,2,7,1 – next subseq costs 7+… = 30 
– … 

 Access 3 4 5 6 2 7 1 Costs 

1 3 4 5 6 2 1 7 7 

2 3 4 5 2 6 1 7 5 

3 3 4 5 2 6 1 7 1 

4 4 3 5 2 6 1 7 2 

5 4 5 3 2 6 1 7 3 

6 4 5 3 6 2 1 7 5 

7 4 5 3 6 2 7 1 7 
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Worst Case Complexity 

 
• Lemma 

The worst case complexity of MF and T for searching a 
workload W in a SOL L is O(|W|*|L|) 

• Proof 
– A workload W consists of |W| requests 
– A request consists of a search and a move 
– Since a search may access any element, it is in O(|L|) in worst case 
– Moves in Mf and in T are in O(1) 
– qed. 

• Note: FC is even slightly worse (re-sorting) 
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Optimal Strategies 

 
• “Optimality” of a strategy depends on the sequence of 

accesses 
• Conventional analysis assumes worst-case for every single 

access, which is O(n) for every search in every strategy 
• Overly pessimistic: Accesses (by self-organization) 

influence (decrease!) the cost of subsequent accesses 
• Using a clever trick, we can derive estimates about the 

relative costs for different strategies over any sequence 
• This trick is called amortized analysis 
• This will take some time (next lecture) 
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Exemplary Questions 

 
• Consider a list L{1,2,3,4,5} and the following workload 

S={1,3,33,5,5,5,5,5}. Analyze the cost of answering S 
using the MF, the T, and the FC strategy 

• Consider a list L, |L|=n, of n different elements and a 
workload S which accesses element i with relative 
frequency pi=1/(1+i)2*c. Which of our three strategies is 
optimal for S? 

• OS often use the least-recently used strategy for managing 
a cache. Is LRU equivalent to our MF, T, or FC strategy? 
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