
Algorithms and Data Structures

Ulf Leser

Sorting:
Simple Methods and a Lower Bound

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 2

This Course

• Introduction 2
• Abstract Data Types 1
• Complexity analysis 1
• Styles of algorithms 1
• Lists, stacks, queues 1
• Sorting (lists) 3
• Searching (in (sorted) lists) 4
• Hashing (to manage lists) 2
• Trees (to manage lists) 4
• Graphs (no lists!) 5
• Sum 6/24

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 3

Large-Scale Sorting

• Imagine you are the IT head of a telco-company
• You have 30.000.000 customers each performing ~100

telephone calls per months, each call creating 200 bytes
– That’s 30M*100*12*200=7.200.000.000.000 bytes per year
– Somewhere in the 200 bytes is information on revenue per call
– Imagine the data is in one file, one line per call

• At the end of the year, management wants a list of all
customers with aggregated revenue per day (for one year)
– That’s ~30M*12*30 ~ 10.000.000.000 real numbers

• Problem: How can we compute these 10E9 numbers?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 4

Approach 0a: Load into Memory and Scan

• This won‘t work
• Data is too big to be loaded into main memory

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 5

Approach 0b: Load into a DBMS and use SQL

• This will work
• Not topic of our lecture

• [Will be slow – inserting is costly]
• [DBMS will use the same trick we present right now]

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 6

Approach 1: Scan and Keep Intermediate Results

• Eventually, we need 10E9 real numbers
• Scan the file from start to end

– Build a table (how?) on every combination of customer and day
– When reading a record, look-up combination in table and update

• That‘s fast (if the table-look-up is fast)
• But we need ~64GB
• What if want the sum for each day over 10 years?
• This won‘t scale

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 7

Approach 2: Partition Data, Multiple Reads

• Assume we can keep 30M*30 ~ 1E9 numbers in memory
– Solve the problem month-by-month
– Read the call-file 12 times, each time computing aggregates for all

customers and the days of one month
– This will be slow

Meier, 10.1.2010
Müller, 18.4.2010
Meier, 1.2.2010
Meier, 18.1.2010
Schmidt, 14.1.2010
Schmidt, 6.4.2010
Müller, 27.2.2010
Müller, 9.4.2010
Schmidt, 1.3.2010
Schmitt, 9.2.2010
Schmitt, 30.3.2010
Schmitt, 3.1.2010
…

Meier, 10.1.2010
Müller, 18.4.2010
Meier, 1.2.2010
Meier, 18.1.2010
Schmidt, 14.1.2010
Schmidt, 6.4.2010
Müller, 27.2.2010
Müller, 9.4.2010
Schmidt, 1.3.2010
Schmitt, 9.2.2010
Schmitt, 30.3.2010
Schmitt, 3.1.2010
…

Meier, 10.1.2010
Müller, 18.4.2010
Meier, 1.2.2010
Meier, 18.1.2010
Schmidt, 14.1.2010
Schmidt, 6.4.2010
Müller, 27.2.2010
Müller, 9.4.2010
Schmidt, 1.3.2010
Schmitt, 9.2.2010
Schmitt, 30.3.2010
Schmitt, 3.1.2010
…

Meier, 10.1.2010
Müller, 18.4.2010
Meier, 1.2.2010
Meier, 18.1.2010
Schmidt, 14.1.2010
Schmidt, 6.4.2010
Müller, 27.2.2010
Müller, 9.4.2010
Schmidt, 1.3.2010
Schmitt, 9.2.2010
Schmitt, 30.3.2010
Schmitt, 3.1.2010
…

1st read 2nd read 3rd read …

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 8

Approach 3: Sorting

• Alternative?
– Sort the file by customer and day
– Read sorted file once and compute

aggregates on the fly
– Whenever a pair (day, customer) is

finished (i.e., new values appear),
sum can be written out and next
day/customer starts

– This will be very fast
– Needs virtually no memory during

counting

• But: Can we sort ~3 billion
records using less than 12 reads?

Meier, 10.1.2010
Meier, 10.1.2010
Meier, 1.2.2010
Müller, 27.2.2010
Müller, 9.4.2010
Müller, 9.4.2010
Schmidt, 14.1.2010
Schmidt, 1.3.2010
Schmidt, 6.4.2010
Schmitt, 3.1.2010
Schmitt, 3.1.2010
Schmitt, 30.3.2010
…

Sum
Sum
Sum

Sum
…

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 9

Content of this Lecture

• Sorting
• Simple Methods
• Lower Bound

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 10

Sorting

• Assumptions

– We have n values (integer, called keys) that should be sorted
– Values are stored in an array S (i.e., O(1) access to i‘th element)
– Comparing two values costs O(1)
– We usually count # of comparisons; sometimes also # of swaps
– Values are not interpreted

• We do not know what a “big” value is or how many percent of all
values are smaller than a given value or …

– All we can do is compare two values

• We seek a permutation π of the indexes of S such that
∀i,j≤n with π(i)<π(j) : S[π(i)] ≤ S[π(j)]

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 11

Variations

• External versus internal sorting

– Internal sorting: S fits into main memory
– External sorting: There are too many records to fit in memory
– We only look at internal sorting (see DB lecture)

• In-place or with additional memory
– In-place sorting only requires a constant (independent of n)

amount of additional memory (on top of S)
– We will look at both

• Pre-Sorting
– Some algorithms can take advantage of an existing (incomplete,

erroneous) order in the data, some not
– We will not exploit pre-sorting

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 12

Applications

• Sorting is a ubiquitous task in computer science
– [OW93] claims that 25% of all computing time is spent in sorting

• Second example: Information Retrieval
– Imagine you want to build g*****++
– Fundamental operation: In a very large set of documents, find

those that contain a given set of keywords
• [Note: That’s not what a search engine does!]

– Popular way of doing this: Build an inverted index

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 13

Inverted Index

Source: http://docs.lucidworks.com

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 14

Answering a IR-style Query

• A query is a set of keywords
• Finding the answer

– For each keyword ki of the query, load list di of docs containing ki
from inverted index

– Build intersection of all di

– Docs in this list are your answer

• Imagine the query “the man eats a bread” on the Web
– Doc-list for “the” and “a” will contain >10 billion documents

• How do we compute the intersection of two sets of 10
billion IDs?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 15

Intersection of Two Sets

With non-sorted sets:
O(m*n)

With sorted sets:
O(n+m)

8

4

12

7

1

…

11

3

8

2

9

…

1

4

7

8

12

…

2

3

8

9

11

…

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 16

Content of this Lecture

• Sorting
• Simple Methods

– Selection sort
– Insertion sort
– Bubble sort

• Lower Bound

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 17

Recall: Selection Sort

• Analysis showed that

selection sort is in O(n2)
• It is easy to see that

selection sort also is in
Ω(n2)

• How often do we swap
values?
– That depends a lot on the

pre-sorted’ness of the array
– But actually we can do a bit

better

S: array_of_names;
n := |S|
for i = 1..n-1 do
 for j = i+1..n do
 if S[i]>S[j] then
 tmp := S[j];
 S[j] := S[i];
 S[i] := tmp;
 end if;
 end for;
end for;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 18

Selection Sort Improved

• How often do we swap
values?
– Once for every position
– Thus: O(n) swaps
– But more (cheaper)

assignments

S: array_of_names;
n := |S|
for i = 1..n-1 do
 min_pos := i;
 for j = i+1..n do
 if S[min_pos]>S[j] then
 min_pos := j;
 end if;
 end for;
 if min_pos != i then
 tmp := S[i];
 S[i] := S[min_pos];
 S[min_pos] := tmp;
 end if;
end for;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 19

Analogy

• Let‘s assume you keep your
cards sorted

• How to get this order?
– Selection sort: Take up all cards at

once and build sorted prefixes of
increasing length

– Insertion sort: Take up cards one
by one and sort every new card
into the sorted subset in your hand

– Bubble sort: Take up all cards at
once and swap neighbors until
everything is fine

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 20

Insertion Sort

• After each loop of i, the
prefix S[1..i] of S is sorted

• While-loop runs backwards
from current position (to be
inserted) until values get too
small (smaller than S[j])

• Example: 5 4 8 1 6
• One problem is the required

movement of many values
until correct place is found
– Could be implemented much

better with a double-linked list

S: array_of_names;
n := |S|
for i = 2..n do
 j := i;
 key := S[j];
 while (S[j-1]>key) and (j>1) do
 S[j] := S[j-1];
 j := j-1;
 end while;
 S[j] := key;
end for;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 21

Complexity (Worst Case)

• Comparisons
– Outer loop: n times
– Inner-loop: i times
– Thus, O(n2)

• How many swaps?
– (We move and don’t swap, but

both are in O(1))
– In worst-case, every

comparison incurs a swap
– Thus: O(n2)

• We got worse?

S: array_of_names;
n := |S|
for i = 2..n do
 j := i;
 key := S[j];
 while (S[j-1]>key) and (j>1) do
 S[j] := S[j-1];
 j := j-1;
 end while;
 S[j] := key;
end for;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 22

Complexity (Best Case)

• Assume the best case: S is

already sorted
• Comparisons

– Outer loop: n times
– Inner-loop: 1 time
– Thus, O(n)

• Swaps
– None

• We might be better!

S: array_of_names;
n := |S|
for i = 2..n do
 j := i;
 key := S[j];
 while (S[j-1]>tkey) and (j>1) do
 S[j] := S[j-1];
 j := j-1;
 end while;
 S[j] := key;
end for;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 23

Bubble Sort

• Go through array again and again
• Compare all direct neighbors
• Swap if in wrong order
• Repeat until a loop finishes

without a single swaps
• Analysis: About as good/bad as

the others (so far)
– Worst case O(n2) comparisons and

O(n2) swaps
– Best case O(n) comparisons and 0

moves / swaps
Source: HKI, Köln

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 24

Summary

Comparisons
worst case

Comparisons
best case

Additional
space

Moves
worst/best

Selection Sort O(n2) O(n2) O(1) O(n)*

Insertion Sort O(n2) O(n) O(1) O(n2) / O(n)

Bubble Sort O(n2) O(n) O(1) O(n2) / O(1)

*: Key assignments

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 25

Summary

Comparisons
worst case

Comparisons
best case

Additional
space

Moves
worst/best

Selection Sort O(n2) O(n2) O(1) O(n)*

Insertion Sort O(n2) O(n) O(1) O(n2) / O(n)

Bubble Sort O(n2) O(n) O(1) O(n2) / O(1)

Merge Sort O(n*log(n)) O(n*log(n)) O(n) O(n*log(n))

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 26

Summary

Comparisons
worst case

Comparisons
best case

Additional
space

Moves
worst/best

Selection Sort O(n2) O(n2) O(1) O(n)*

Insertion Sort O(n2) O(n) O(1) O(n2) / O(n)

Bubble Sort O(n2) O(n) O(1) O(n2) / O(1)

Merge Sort O(n*log(n)) O(n*log(n)) O(n) O(n*log(n))

Magic Sort (?) O(n) O(n)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 27

Content of this Lecture

• Sorting
• Simple Methods
• Lower Bound

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 28

Lower Bound

• We found three algorithms with WC-complexity O(n2)
• Maybe there is no better algorithm?
• There are some in O(n*log(n))
• Maybe there are even better algorithms?

• Is there a lower bound on the number of comparisons?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 29

Lemma

• Lemma

To sort a list of n distinct keys using only key comparisons,
every algorithm needs Ω(n*log(n)) comp’s in worst case

• Implications
– We cannot sort with less than O(n*log(n)) comparisons
– Still, different algorithms with O(n*log(n)) may exhibit different

real runtimes
– We can be better, when other operations than comparisons are

allowed – see radix sort

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 30

Proof Structure

• We find the best way to find the right permutation π
• There are n! different permutations
• Each could be the right one

– And there is only one “right one”

• To find the right one, we may only compare two keys
• Every comparison we do splits the group of all

permutations into two disjoint partitions
– One with all permutations where the result of the test is TRUE
– One with all permutations where the result of the test is FALSE

• How often do we need to compare at least such that every
partition eventually has size 1
– At least: In the best of all worlds

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 31

Decision Tree

1 8 6 3 5 9 3 1 7
5 3 7 1 8 3 6 7 1
9 6 1 5 3 2 4 8 6
4 4 3 6 1 6 8 3 2
7 2 5 8 4 5 9 2 5
2 7 4 9 9 8 2 9 9
3 1 8 4 7 7 1 5 4
6 5 9 1 1 4 7 4 5
8 9 5 2 6 1 5 3 3

Some exemplary permutations
(columns) of an arbitrary list S

with |S|=9

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 32

General Case

S[5]<S[7]?

1 8 6 3
5 3 7 1
9 6 1 5
 4 4 3 6
3 1 5 4
2 7 4 9
7 2 8 8
6 5 9 1
8 9 5 2

5 9 3 1 7
8 3 6 7 1
3 2 4 8 6
1 6 8 3 2
7 7 9 5 5
9 8 2 9 9
4 5 1 2 4
1 4 7 4 5
6 1 5 3 3

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 33

Decision Tree

S[i1]<S[j1]?

1 8 6 3
5 3 7 1
9 6 1 5
4 4 3 6
7 2 5 8
2 7 4 9
3 1 8 4
6 5 9 1
8 9 5 2

5 9 3 1 7
8 3 6 7 1
3 2 4 8 6
1 6 8 3 2
4 5 9 2 5
9 8 2 9 9
7 7 1 5 4
1 4 7 4 5
6 1 5 3 3

All permutations of S where
the value at position i1 is

before the value at position j1

All permutations of S where
the value at position i1 is after

the value at position j1

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 34

Decision Tree

S[i1]<S[j1]?

1 8 6 3
5 3 7 1
9 6 1 5
4 4 3 6
7 2 5 8
2 7 4 9
3 1 8 4
6 5 9 1
8 9 5 2

5 9 3 1 7
8 3 6 7 1
3 2 4 8 6
1 6 8 3 2
4 5 9 2 5
9 8 2 9 9
7 7 1 5 4
1 4 7 4 5
6 1 5 3 3

S[i2]<S[j2]? S[i6]<S[j6]?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 35

Decision Tree

S[i1]<S[j1]?

S[i2]<S[j2]? S[i6]<S[j6]?

1 8 6
5 3 7
9 6 1
4 4 3
7 2 5
2 7 4
3 1 8
6 5 9
8 9 5

3
1
5
6
8
9
4
1
2

1 7
7 1
8 6
3 2
2 5
9 9
5 4
4 5
3 3

5 9 3
8 3 6
3 2 4
1 6 8
4 5 9
9 8 2
7 7 1
1 4 7
6 1 5

Non-optimal choice of i1, j1

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 36

Full Decision Tree

6
7
1
3
5
4
8
9
5

3
1
5
6
8
9
4
1
2

7
1
6
2
5
9
4
5
3

9
3
2
6
5
8
7
4
1

1
5
9
4
7
2
3
6
8

8
3
6
4
2
7
1
5
9

… …

… …

… …

1
7
8
3
2
9
5
4
3

5
8
3
1
4
9
7
1
6

3
6
4
8
9
2
1
7
5

… …

… …

S[i1]<S[j1]?

S[i2]<S[j2]? S[i6]<S[j6]?

… … …

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 37

Optimal Sequence of Comparisons

• We have no clue about which concrete series of
comparisons is optimal for a given list

• But: Here we are looking for a lower bound: We may
always assume to take the best choice

• Best choice: Creating all 1-partitions with as few
comparisons as possible

• Thus, we want to know the length of the longest path
through the optimal (lowest) decision tree
– Even in the best of all worlds we may need to make this number of

comparisons to find the correct permutation

• The optimal tree is the one with the shortest longest path

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 38

Intuition

Good
(not optimal)

Bad

…

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 39

Shortest Longest Path

• Definition
The height of a binary tree is the length of its longest path.

• Lemma
A binary tree with k leaves has at least height log(k).

• Proof
– Every inner node has at most two children
– To cover as many leaves as possible in the level above the leaves,

we need ceil(k/2) nodes
– In the second-last level, we need ceil(k/2/2) nodes
– Etc.
– After log(k) levels, only one node remains (root)
– qed.

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 40

Putting it all together

• Our decision tree has n! leaves
• The height of a binary tree with n! leaves is at least log(n!)
• Thus, the longest path in the optimal tree has at least

log(n!) comparisons
• Since n!≥(n/2)n/2: log(n!) ≥ log((n/2)n/2) = n/2*log(n/2)
• This gives the overall lower bound Ω(n*log(n))
• qed.

n! leaves

log(n!) in
O(n*log(n))

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 41

Stop: Why not test in O(n)?

S[n-1]<S[n]?

S[n-2]<S[n-1]?

…
n

comps • This is the best case – not the best
worst case

• In general, the solution will not be in
this partition

• We need a strategy that is always fast,
not “faster” in some cases

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 42

Exemplary Exam Questions

• Give best case and worst case instances for the following

algorithms: insertion sort, bubble sort. Explain your
examples

• Proof that bubble sort is in O(n2) and Ω(n2) worst case
(comparisons)

• Image a list S consisting of k sorted subarrays of arbitrary
size (example for k=4: <1,6,7,8,2,5,1,5,7,9,3,5>). Find an
algorithm for sorting S which runs in O(n*k)

	Foliennummer 1
	This Course
	Large-Scale Sorting
	Approach 0a: Load into Memory and Scan
	Approach 0b: Load into a DBMS and use SQL
	Approach 1: Scan and Keep Intermediate Results
	Approach 2: Partition Data, Multiple Reads
	Approach 3: Sorting
	Content of this Lecture
	Sorting
	Variations
	Applications
	Inverted Index
	Answering a IR-style Query
	Intersection of Two Sets
	Content of this Lecture
	Recall: Selection Sort
	Selection Sort Improved
	Analogy
	Insertion Sort
	Complexity (Worst Case)
	Complexity (Best Case)
	Bubble Sort
	Summary
	Summary
	Summary
	Content of this Lecture
	Lower Bound
	Lemma
	Proof Structure
	Decision Tree
	General Case
	Decision Tree
	Decision Tree
	Decision Tree
	Full Decision Tree
	Optimal Sequence of Comparisons
	Intuition
	Shortest Longest Path
	Putting it all together
	Stop: Why not test in O(n)?
	Exemplary Exam Questions

