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This Course 

• Introduction    2 
• Abstract Data Types   1 
• Complexity analysis   1 
• Styles of algorithms   1 
• Lists, stacks, queues   1 
• Sorting (lists)    3 
• Searching (in (sorted) lists)  4 
• Hashing (to manage lists)  2 
• Trees (to manage lists)   4 
• Graphs (no lists!)    5 
• Sum     6/24 
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Large-Scale Sorting 

 
• Imagine you are the IT head of a telco-company 
• You have 30.000.000 customers each performing ~100 

telephone calls per months, each call creating 200 bytes 
– That’s 30M*100*12*200=7.200.000.000.000 bytes per year 
– Somewhere in the 200 bytes is information on revenue per call 
– Imagine the data is in one file, one line per call  

• At the end of the year, management wants a list of all 
customers with aggregated revenue per day (for one year) 
– That’s ~30M*12*30 ~ 10.000.000.000 real numbers 

• Problem: How can we compute these 10E9 numbers? 
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Approach 0a: Load into Memory and Scan 

 
 
 
 

• This won‘t work 
• Data is too big to be loaded into main memory 
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Approach 0b: Load into a DBMS and use SQL 

 
 
 

• This will work 
• Not topic of our lecture 

 
• [Will be slow – inserting is costly] 
• [DBMS will use the same trick we present right now] 
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Approach 1: Scan and Keep Intermediate Results 

 
 

• Eventually, we need 10E9 real numbers 
• Scan the file from start to end 

– Build a table (how?) on every combination of customer and day 
– When reading a record, look-up combination in table and update 

• That‘s fast (if the table-look-up is fast) 
• But we need ~64GB 
• What if want the sum for each day over 10 years? 
• This won‘t scale 
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Approach 2: Partition Data, Multiple Reads 

• Assume we can keep 30M*30 ~ 1E9 numbers in memory 
– Solve the problem month-by-month 
– Read the call-file 12 times, each time computing aggregates for all 

customers and the days of one month 
– This will be slow 

Meier, 10.1.2010 
Müller, 18.4.2010 
Meier, 1.2.2010 
Meier, 18.1.2010 
Schmidt, 14.1.2010 
Schmidt, 6.4.2010 
Müller, 27.2.2010 
Müller, 9.4.2010 
Schmidt, 1.3.2010 
Schmitt, 9.2.2010 
Schmitt, 30.3.2010 
Schmitt, 3.1.2010 
… 

Meier, 10.1.2010 
Müller, 18.4.2010 
Meier, 1.2.2010 
Meier, 18.1.2010 
Schmidt, 14.1.2010 
Schmidt, 6.4.2010 
Müller, 27.2.2010 
Müller, 9.4.2010 
Schmidt, 1.3.2010 
Schmitt, 9.2.2010 
Schmitt, 30.3.2010 
Schmitt, 3.1.2010 
… 

Meier, 10.1.2010 
Müller, 18.4.2010 
Meier, 1.2.2010 
Meier, 18.1.2010 
Schmidt, 14.1.2010 
Schmidt, 6.4.2010 
Müller, 27.2.2010 
Müller, 9.4.2010 
Schmidt, 1.3.2010 
Schmitt, 9.2.2010 
Schmitt, 30.3.2010 
Schmitt, 3.1.2010 
… 

Meier, 10.1.2010 
Müller, 18.4.2010 
Meier, 1.2.2010 
Meier, 18.1.2010 
Schmidt, 14.1.2010 
Schmidt, 6.4.2010 
Müller, 27.2.2010 
Müller, 9.4.2010 
Schmidt, 1.3.2010 
Schmitt, 9.2.2010 
Schmitt, 30.3.2010 
Schmitt, 3.1.2010 
… 

1st read 2nd read 3rd read … 
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Approach 3: Sorting 

• Alternative? 
– Sort the file by customer and day 
– Read sorted file once and compute 

aggregates on the fly 
– Whenever a pair (day, customer) is 

finished (i.e., new values appear), 
sum can be written out and next 
day/customer starts 

– This will be very fast 
– Needs virtually no memory during 

counting 

• But: Can we sort ~3 billion 
records using less than 12 reads? 

Meier, 10.1.2010 
Meier, 10.1.2010 
Meier, 1.2.2010 
Müller, 27.2.2010 
Müller, 9.4.2010 
Müller, 9.4.2010 
Schmidt, 14.1.2010 
Schmidt, 1.3.2010 
Schmidt, 6.4.2010 
Schmitt, 3.1.2010 
Schmitt, 3.1.2010 
Schmitt, 30.3.2010 
… 

Sum 
Sum 
Sum 

Sum 
… 
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Content of this Lecture 

 
 
 

• Sorting 
• Simple Methods 
• Lower Bound 
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Sorting 

 
• Assumptions 

– We have n values (integer, called keys) that should be sorted 
– Values are stored in an array S (i.e., O(1) access to i‘th element) 
– Comparing two values costs O(1) 
– We usually count # of comparisons; sometimes also # of swaps 
– Values are not interpreted 

• We do not know what a “big” value is or how many percent of all 
values are smaller than a given value or … 

– All we can do is compare two values 

• We seek a permutation π of the indexes of S such that 
∀i,j≤n with π(i)<π(j) : S[π(i)] ≤ S[π(j)] 
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Variations 

 
• External versus internal sorting 

– Internal sorting: S fits into main memory 
– External sorting: There are too many records to fit in memory 
– We only look at internal sorting (see DB lecture) 

• In-place or with additional memory  
– In-place sorting only requires a constant (independent of n) 

amount of additional memory (on top of S) 
– We will look at both 

• Pre-Sorting 
– Some algorithms can take advantage of an existing (incomplete, 

erroneous) order in the data, some not 
– We will not exploit pre-sorting 
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Applications 

 
 

• Sorting is a ubiquitous task in computer science 
– [OW93] claims that 25% of all computing time is spent in sorting 

• Second example: Information Retrieval 
– Imagine you want to build g*****++ 
– Fundamental operation: In a very large set of documents, find 

those that contain a given set of keywords 
• [Note: That’s not what a search engine does!] 

– Popular way of doing this: Build an inverted index 
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Inverted Index 

Source: http://docs.lucidworks.com 
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Answering a IR-style Query 

 
• A query is a set of keywords 
• Finding the answer 

– For each keyword ki of the query, load list di of docs containing ki 
from inverted index 

– Build intersection of all di 

– Docs in this list are your answer 

• Imagine the query “the man eats a bread” on the Web 
– Doc-list for “the” and “a” will contain >10 billion documents 

• How do we compute the intersection of two sets of 10 
billion IDs? 
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Intersection of Two Sets 

With non-sorted sets: 
O(m*n) 

With sorted sets: 
O(n+m) 

8 

4 

12 

7 

1 

… 

11 

3 

8 

2 

9 

… 

1 

4 

7 

8 

12 

… 

2 

3 

8 

9 

11 

… 
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Content of this Lecture 

 
 

• Sorting 
• Simple Methods 

– Selection sort 
– Insertion sort 
– Bubble sort 

• Lower Bound 
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Recall: Selection Sort 

 
• Analysis showed that 

selection sort is in O(n2) 
• It is easy to see that 

selection sort also is in 
Ω(n2) 

• How often do we swap 
values? 
– That depends a lot on the 

pre-sorted’ness of the array 
– But actually we can do a bit 

better 

S: array_of_names; 
n := |S| 
for i = 1..n-1 do 
  for j = i+1..n do 
    if S[i]>S[j] then 
      tmp := S[j]; 
      S[j] := S[i]; 
      S[i] := tmp; 
    end if; 
  end for; 
end for; 
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Selection Sort Improved 

 
 
 

• How often do we swap 
values? 
– Once for every position 
– Thus: O(n) swaps 
– But more (cheaper) 

assignments 

S: array_of_names; 
n := |S| 
for i = 1..n-1 do 
  min_pos := i; 
  for j = i+1..n do 
    if S[min_pos]>S[j] then 
      min_pos := j; 
    end if; 
  end for; 
  if min_pos != i then 
    tmp := S[i]; 
    S[i] := S[min_pos]; 
    S[min_pos] := tmp; 
  end if; 
end for; 
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Analogy 

• Let‘s assume you keep your 
cards sorted  

• How to get this order? 
– Selection sort: Take up all cards at 

once and build sorted prefixes of 
increasing length 

– Insertion sort: Take up cards one 
by one and sort every new card 
into the sorted subset in your hand 

– Bubble sort: Take up all cards at 
once and swap neighbors until 
everything is fine 
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Insertion Sort 

• After each loop of i, the 
prefix S[1..i] of S is sorted 

• While-loop runs backwards 
from current position (to be 
inserted) until values get too 
small (smaller than S[j]) 

• Example: 5 4 8 1 6 
• One problem is the required 

movement of many values 
until correct place is found 
– Could be implemented much 

better with a double-linked list 

S: array_of_names; 
n := |S| 
for i = 2..n do 
  j := i; 
  key := S[j]; 
  while (S[j-1]>key) and (j>1) do 
    S[j] := S[j-1]; 
    j := j-1; 
  end while; 
  S[j] := key; 
end for; 
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Complexity (Worst Case) 

 

• Comparisons 
– Outer loop: n times 
– Inner-loop: i times 
– Thus, O(n2) 

• How many swaps? 
– (We move and don’t swap, but 

both are in O(1)) 
– In worst-case, every 

comparison incurs a swap 
– Thus: O(n2) 

• We got worse? 
 

S: array_of_names; 
n := |S| 
for i = 2..n do 
  j := i; 
  key := S[j]; 
  while (S[j-1]>key) and (j>1) do 
    S[j] := S[j-1]; 
    j := j-1; 
  end while; 
  S[j] := key; 
end for; 
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Complexity (Best Case) 

 
• Assume the best case: S is 

already sorted 
• Comparisons 

– Outer loop: n times 
– Inner-loop: 1 time 
– Thus, O(n) 

• Swaps 
– None 

• We might be better! 
 

S: array_of_names; 
n := |S| 
for i = 2..n do 
  j := i; 
  key := S[j]; 
  while (S[j-1]>tkey) and (j>1) do 
    S[j] := S[j-1]; 
    j := j-1; 
  end while; 
  S[j] := key; 
end for; 
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Bubble Sort 

• Go through array again and again 
• Compare all direct neighbors 
• Swap if in wrong order 
• Repeat until a loop finishes 

without a single swaps 
• Analysis: About as good/bad as 

the others (so far) 
– Worst case O(n2) comparisons and 

O(n2) swaps 
– Best case O(n) comparisons and 0 

moves / swaps 
Source: HKI, Köln 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      24  

Summary 

Comparisons 
worst case 

Comparisons 
best case 

Additional 
space  

Moves 
worst/best 

Selection Sort O(n2) O(n2) O(1) O(n)* 

Insertion Sort O(n2) O(n) O(1) O(n2) / O(n) 

Bubble Sort O(n2) O(n) O(1) O(n2) / O(1) 

*: Key assignments  
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Summary 

Comparisons 
worst case 

Comparisons 
best case 

Additional 
space  

Moves 
worst/best 

Selection Sort O(n2) O(n2) O(1) O(n)* 

Insertion Sort O(n2) O(n) O(1) O(n2) / O(n) 

Bubble Sort O(n2) O(n) O(1) O(n2) / O(1) 

Merge Sort O(n*log(n)) O(n*log(n)) O(n) O(n*log(n)) 
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Summary 

Comparisons 
worst case 

Comparisons 
best case 

Additional 
space  

Moves 
worst/best 

Selection Sort O(n2) O(n2) O(1) O(n)* 

Insertion Sort O(n2) O(n) O(1) O(n2) / O(n) 

Bubble Sort O(n2) O(n) O(1) O(n2) / O(1) 

Merge Sort O(n*log(n)) O(n*log(n)) O(n) O(n*log(n)) 

Magic Sort (?) O(n) O(n) 
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Content of this Lecture 

 
 
 

• Sorting 
• Simple Methods 
• Lower Bound 
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Lower Bound 

 
 

• We found three algorithms with WC-complexity O(n2)  
• Maybe there is no better algorithm? 
• There are some in O(n*log(n)) 
• Maybe there are even better algorithms? 

 
• Is there a lower bound on the number of comparisons? 
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Lemma 

 
• Lemma 

To sort a list of n distinct keys using only key comparisons,  
every algorithm needs Ω(n*log(n)) comp’s in worst case 
 

• Implications 
– We cannot sort with less than O(n*log(n)) comparisons 
– Still, different algorithms with O(n*log(n)) may exhibit different 

real runtimes 
– We can be better, when other operations than comparisons are 

allowed – see radix sort 
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Proof Structure 

• We find the best way to find the right permutation π 
• There are n! different permutations 
• Each could be the right one  

– And there is only one “right one” 

• To find the right one, we may only compare two keys 
• Every comparison we do splits the group of all 

permutations into two disjoint partitions 
– One with all permutations where the result of the test is TRUE 
– One with all permutations where the result of the test is FALSE 

• How often do we need to compare at least such that every 
partition eventually has size 1 
– At least: In the best of all worlds 
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Decision Tree 

1 8 6 3 5 9 3 1 7 
5 3 7 1 8 3 6 7 1 
9 6 1 5 3 2 4 8 6 
4 4 3 6 1 6 8 3 2 
7 2 5 8 4 5 9 2 5 
2 7 4 9 9 8 2 9 9 
3 1 8 4 7 7 1 5 4 
6 5 9 1 1 4 7 4 5 
8 9 5 2 6 1 5 3 3 

Some exemplary permutations 
(columns) of an arbitrary list S 

with |S|=9 
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General Case 

S[5]<S[7]? 

1 8 6 3 
5 3 7 1 
9 6 1 5 
 4 4 3 6  
3 1 5 4 
2 7 4 9 
7 2 8 8 
6 5 9 1 
8 9 5 2 

5 9 3 1 7 
8 3 6 7 1 
3 2 4 8 6 
1 6 8 3 2 
7 7 9 5 5 
9 8 2 9 9 
4 5 1 2 4 
1 4 7 4 5 
6 1 5 3 3 
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Decision Tree 

S[i1]<S[j1]? 

1 8 6 3 
5 3 7 1 
9 6 1 5 
4 4 3 6 
7 2 5 8 
2 7 4 9 
3 1 8 4 
6 5 9 1 
8 9 5 2 

5 9 3 1 7 
8 3 6 7 1 
3 2 4 8 6 
1 6 8 3 2 
4 5 9 2 5 
9 8 2 9 9 
7 7 1 5 4 
1 4 7 4 5 
6 1 5 3 3 

All permutations of S where 
the value at position i1 is 

before the value at position j1 

All permutations of S where 
the value at position i1 is after 

the value at position j1 
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Decision Tree 

S[i1]<S[j1]? 

1 8 6 3 
5 3 7 1 
9 6 1 5 
4 4 3 6 
7 2 5 8 
2 7 4 9 
3 1 8 4 
6 5 9 1 
8 9 5 2 

5 9 3 1 7 
8 3 6 7 1 
3 2 4 8 6 
1 6 8 3 2 
4 5 9 2 5 
9 8 2 9 9 
7 7 1 5 4 
1 4 7 4 5 
6 1 5 3 3 

S[i2]<S[j2]? S[i6]<S[j6]? 
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Decision Tree 

S[i1]<S[j1]? 

S[i2]<S[j2]? S[i6]<S[j6]? 

1 8 6 
5 3 7 
9 6 1 
4 4 3 
7 2 5 
2 7 4 
3 1 8 
6 5 9 
8 9 5 

3 
1 
5 
6 
8 
9 
4 
1 
2 

1 7 
7 1 
8 6 
3 2 
2 5 
9 9 
5 4 
4 5 
3 3 

5 9 3 
8 3 6 
3 2 4 
1 6 8 
4 5 9 
9 8 2 
7 7 1 
1 4 7 
6 1 5 

Non-optimal choice of i1, j1 
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Full Decision Tree 

6 
7 
1 
3 
5 
4 
8 
9 
5 

3 
1 
5 
6 
8 
9 
4 
1 
2 

7 
1 
6 
2 
5 
9 
4 
5 
3 

9 
3 
2 
6 
5 
8 
7 
4 
1 

1 
5 
9 
4 
7 
2 
3 
6 
8 

8 
3 
6 
4 
2 
7 
1 
5 
9 

… … 

… … 

… … 

1 
7 
8 
3 
2 
9 
5 
4 
3 

5 
8 
3 
1 
4 
9 
7 
1 
6 

3 
6 
4 
8 
9 
2 
1 
7 
5 

… … 

… … 

S[i1]<S[j1]? 

S[i2]<S[j2]? S[i6]<S[j6]? 

… … … 
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Optimal Sequence of Comparisons 

• We have no clue about which concrete series of 
comparisons is optimal for a given list 

• But: Here we are looking for a lower bound: We may 
always assume to take the best choice 

• Best choice: Creating all 1-partitions with as few 
comparisons as possible 

• Thus, we want to know the length of the longest path 
through the optimal (lowest) decision tree 
– Even in the best of all worlds we may need to make this number of 

comparisons to find the correct permutation 

• The optimal tree is the one with the shortest longest path 
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Intuition 

Good 
(not optimal) 

Bad 

… 
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Shortest Longest Path 

• Definition 
The height of a binary tree is the length of its longest path. 

• Lemma 
A binary tree with k leaves has at least height log(k). 

• Proof 
– Every inner node has at most two children 
– To cover as many leaves as possible in the level above the leaves, 

we need ceil(k/2) nodes 
– In the second-last level, we need ceil(k/2/2) nodes 
– Etc. 
– After log(k) levels, only one node remains (root) 
– qed. 
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Putting it all together 

• Our decision tree has n! leaves 
• The height of a binary tree with n! leaves is at least log(n!) 
• Thus, the longest path in the optimal tree has at least 

log(n!) comparisons 
• Since n!≥(n/2)n/2: log(n!) ≥ log((n/2)n/2) = n/2*log(n/2) 
• This gives the overall lower bound Ω(n*log(n)) 
• qed. 

n! leaves 

log(n!) in 
O(n*log(n)) 
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Stop: Why not test in O(n)? 

S[n-1]<S[n]? 

S[n-2]<S[n-1]? 

… 
n 

comps • This is the best case – not the best 
worst case 

• In general, the solution will not be in 
this partition 

• We need a strategy that is always fast, 
not “faster” in some cases 
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Exemplary Exam Questions 

 
• Give best case and worst case instances for the following 

algorithms: insertion sort, bubble sort. Explain your 
examples 

• Proof that bubble sort is in O(n2) and Ω(n2) worst case 
(comparisons) 

• Image a list S consisting of k sorted subarrays of arbitrary 
size (example for k=4: <1,6,7,8,2,5,1,5,7,9,3,5>). Find an 
algorithm for sorting S which runs in O(n*k) 
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