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Content of this Lecture 

 
 
 

• Example 
• Abstract Data Types 
• Lists, Stacks, and Queues 
• Realization in Java 
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Problem 

 
 

• Suppose you are in the centre of Hamburg and are looking 
for the next (i.e., closest) laptop repair shop 

• Fortunately, your mobile knows your position and has a list 
of laptop repair shops in Hamburg 

• How does your mobile find the closest shop? 
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Classical Post Box Problem 

• Suppose a city with n boxes located at arbitrary positions 
• You wake up in the middle of the city with a letter in your 

hand; the letter should be thrown in the closest post box 
• How do you find the closest post box? 

– You have a list with locations of all post boxes 

• Looking at a map is not  
the answer 

• Devise an algorithm 

S: set_of_coordinates; 
c: coordinate (x,y)  
… 
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Simple Solution 

Input 
  S: set_of_coordinates; 
  c: coordinate (x,y);    # your loc 
t: coordinate;   # closest box 
m: real := MAXREAL;  # smal. dist 
for each c‘∈S do 
  if m > distance(c,c‘) then 
    m := distance(c,c‘); 
    t := c‘; 
  end if; 
end for; 
return t; 

• How much work? 
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Simple Solution 

• Clearly, we can save the 
second call to “distance” 

• Thus, we need to compute 
|S| distances, make |S| 
comparisons, and perform 
at most 2*|S| assignments 

• We perform O(|S|) 
operations, which are O(1) 
or distance computations 
 

Input 
  S: set_of_coordinates; 
  c: coordinate (x,y);    # your loc 
t: coordinate;   # closest box 
m: real := MAXREAL;  # smal. dist 
for each c‘∈S do 
  if m > distance(c,c‘) then 
    m := distance(c,c‘); 
    t := c‘; 
  end if; 
end for; 
return t; 
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Simple Solution 

• How much work? 
• Clearly, we can save the 

second call to “distance” 
• Thus, we need to compute 

|S| distances, make |S| 
comparisons, and perform 
at most 2*|S| assignments 

• Euclidian distance 
– 6 arithmetic ops per distance 
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Not the only Option 

• How much work? 
• Clearly, we can save the 

second call to “distance” 
• Thus, we need to compute 

|S| distances, make |S| 
comparisons, and perform 
at most 2*|S| assignments 

• Manhattan distance 
– 5 operations, and different 

ones 
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Complexity 

• How much work? 
• Clearly, we can save the 

second call to “distance” 
• Thus, we need to compute 

|S| distances, make |S| 
comparisons, and perform 
at most 2*|S| assignments 

• Both cases: O(|S|*dim(S)) 
– dim(S): Number of 

dimensions of every point in S 
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Data Structure Point of View 

• Data structures 
– We need a list of coordinates 
– The algorithm must iterate over the 

elements of this list 
– A linked list would suffice 

• Now assume we need to perform 
such searches very often 
– Can we represent S in another way (S’), 

such that searching requires less work? 
– Note: Time for computing S’ from S will 

be ignored  
• Performed before searching starts 
• Assuming that S does not change 

 

input 
  S: set_of_coordinates; 
  c: coordinate (x,y); 
t: coordinate; 
m: real := MAXREAL; 
For each c‘∈S do 
  if m > dist(c,c‘) then 
    m := dist(c,c‘); 
    t := c‘; 
  end if; 
end for; 
return t; 
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Voronoi Diagrams 

• Pre-processing: Compute for every point s∈S its Voronoi area, i.e., the 
area in which all points have s as nearest point from S 

• Can be achieved in O(|S|*log(|S|)) time (no details here) 
• Nearest-neighbor search using Voronoi diagrams is O(log(|S|)) 
• Conclusion: Finding a proper data structure does pay off 
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More Abstract 

• We want a piece of software T that 
– can store a list of coordinates 
– can compute the nearest point to a given point c 
– Piece of software: (1) algorithm and (2) data structure 

• Thus, T must support (at least) two operations 
– T.init (S: list_of_coordinates) 
– T.nearestNeighbor(c: coordinate): coordinate 
– T apparently uses another data structure: “coordinate” 

• Such combinations of object sets and operations on these 
sets are called a data type 

• If only look at sets and operations: Abstract data type 
– No details on algorithms / implementation 
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Content of this Lecture 

 
 
 

• Example 
• Abstract Data Types 
• Lists, Stacks, and Queues 
• Realization in Java 
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Abstract Data Types (ADT) 

• An ADT defines a set of operations over a set of objects of 
a certain (more basic) type 
– Or over multiple sets of objects of different or same types 

• The set of operations and types is called signature 
• An ADT is independent of an implementation 

– Different data structures to represent the objects 
– Different algorithms to implement the operations 
– An ADT is independent of any programming language 

• Encapsulation: Objects are accessed only through the ops 
• An implementation of a ADT is called a concrete (or 

physical) data type 
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Example 

 
• ADT that we could use for our app for searching shops 
• We only need two operations 

– A way to insert shops (with their coordinates) 
– A way to get the nearest shop with respect to a given coordinate 

• We assume basic data types to be given (string, int …) 
• Not the only way … 

type points 
import 
  coordinate; 
operators 
  add:      points x coordinate → points; 
  neighbor: points x coordinate → coordinate; 
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Modeling More Details 

• An ADT defines what is necessary 
• Designing a ADT is a modeling process 

• Shop owner? Laptop models being repaired? Opening hours? 
• Depends on requirements, ease-of-use, extensibility, personal 

preferences, existing ADTs, … 

type shops 
import 
  shop; 
operators 
  add:       shops x shop → shops; 
  neighborC: shops x coordinate → coordinate; 
  neighborN: shops x coordinate → string; 
  neighborS: shops x coordinate → shop; 

type shop 
import 
  coordinate; 
  string; 
operators 
  getName: shop → string; 
  getCoor: shop → coordinate; 
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Reusing Existing ADTs 

• For implementing points (or shops), it would be helpful to 
import something that can hold a set of coordinates 

• We need a list – an ADT in itself 
– A parameterized ADT– a list of elements of an arbitrary ADT T 
– For our ADT points, T will use objects of type coordinate 

type list( T) 
import 
  integer, bool; 
operators 
  isEmpty:  list → bool; 
  add:      list x T → list; 
  delete:   list x T → list; 
  contains: list x T → bool; 
  length:   list → integer; 
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Axioms: What we Know about an ADT 

• We expect operations on lists to have a certain semantic 
– Adding an element increases length by one 

• If we assume bag semantics 

– Deleting an element that doesn’t exist creates an error 
– If a list is empty, its length is 0 
– … 

type list( T) 
import 
  integer, bool; 
operators 
  isEmpty:  list → bool; 
  add:      list x T → list; 
  contains: list x T → bool;  
  delete:   list x T → list; 
  length:   list → integer; 
axioms: ∀ l: list, ∀ t: T 
  length( add(l, t)) = length( l) + 1; 
  length( l)=0  isEmpty(l); 
  …   
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List versus Points 

• points uses a list and adds further functionality 
• What‘s wrong? 

– What happens if multiple x have the same distance to c? 

type points 
import 
  coordinate, bool, list( coordinate); 
Operators 
  contains: points x coordinate → bool; 
     # Implement as list.contains 
  add:      points x coordinate → points; 
     # Implement as list.add 
  neighbor: points x coordinate → coordinate; 
     # Not implemented in list! 
axioms 
  neighbor(p,c) = {x| contains(p,x)∧ ∀x’:contains(p, x’)=> 
                                     distance(x,c) ≤ distance(x’,c)}; 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      20 

List versus Points 

type points 
import 
  coordinate, bool, 2Dspace; 
Operators 
  contains: points x coordinate → bool; 
  add:      points x coordinate → points; 
  neighbor: points x coordinate → points; 
axioms 
  neighbor(p,c) = {x| contains(p,x) ∧ ∀x’: contains(p,x’):  
                                       distance(x,c) ≤ distance(x’,c)}; 
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Content of this Lecture 

 
 
 

• Data Structures Again 
• Abstract Data Types 
• Example: Lists, Stacks, and Queues 

– Parameterized ADTs  

• Realization in Java 
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Lists, Stacks, Queues 

 
• We looked at a data type (points, shops) which essentially 

is a list with one special operation: nearestNeighboor 
– Canonical list operations: insert, search, delete, update, length 

• There are many ways to implement the general ADT list 
– Array, linked lists, double-linked lists, trees, … 

• Two types of lists are of exceptional importance in 
computer science: Stacks and Queues 
– Both support mostly two operations 
– These suffice for surprisingly many problems and applications 
– Can be implemented very efficiently 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      23 

Queues 

IN OUT 

• Operations: enqueue, dequeue 
• Special semantic: First in, first out (FIFO) 
• Breadth-first traversal, shortest paths, BucketSort, … 
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Stacks 

• Operations: push, pop 
• Special semantic: Last in, first out (LIFO) 
• Call stacks, backtracking, “Kellerautomaten”, … 

IN
 

O
U

T 
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As Abstract Data Types 

type stack( T) 
import 
  bool; 
operators 
  isEmpty: stack → bool; 
  push:    stack x T → stack; 
  pop:     stack → stack; 
  top:     stack → T; 

type queue( T) 
import 
  bool; 
operators 
  isEmpty: queue → bool; 
  enqueue: queue x T → queue; 
  dequeue: queue → queue; 
  head:    queue → T; 

• Where‘s the difference? 
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Signature does not Suffice 

type a( T) 
import 
  bool; 
operators 
  isEmpty: a → bool; 
  add:     a x T → a; 
  remove:  a → a; 
  give:    a → T; 

type a( T) 
import 
  bool; 
operators 
  isEmpty: a → bool; 
  add:     a x T → a; 
  remove:  a → a; 
  give:    a → T; 

• Where‘s the difference? 
• From the signature alone, there is no difference 
• Yet – we expect a different behavior 
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Defining the Difference 

type stack( T) 
import 
  bool; 
operators 
  isEmpty: stack → bool; 
  push:    stack x T → stack; 
  pop:     stack → stack; 
  top:     stack → T; 
axioms ∀ q:stack, ∀ t:T 
  top( push( s, t)) = t; 
  pop( push( s, t)) = s; 
 

type queue( T) 
import 
  bool; 
operators 
  isEmpty: queue → bool; 
  enqueue: queue x T → queue; 
  dequeue: queue → queue; 
  head:    queue → T; 
axioms ∀ q:queue, ∀ t:T 
  head( enqueue(q, t)) =  
    if isEmpty( q): t 
    else head( q); 
  dequeue( enqueue( q, t)) = 
    if isEmpty( q): q 
    else enqueue( dequeue(q), t); 

Long version: 
  push(s,t) o top(s)=t’ => t=t’ 

  push(s,t) o pop(s)=s’ => s=s’   
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Example 

d( e( <3,2>, 5)) = e( d( <3,2>), 5) = 
                   e( d( e( <3>, 2)), 5) = 
                   e( e( d( <3>), 2), 5) = 
                   e( e( d( e(<>), 3), 2), 5) = 
                   e( e( <>, 2), 5) = 
                   <2,5> 
 

type queue( T) 
... 
  dequeue( enqueue( q, t)) = 
    if isEmpty( q): q 
    else enqueue( dequeue(q), t); 
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We Stop Here 

 
• There are various ways to formally specify the behavior of 

operations of an ADT 
• For instance: Algebraic specifications 

– Define an algebra over the object sets of the ADT 
– Includes axioms defining the semantics of operations 
– Axioms are essential to prove aspects of a system’s behavior 

• Ideally, one only specifies and never programs 

– See lecture on “Modellierung und Spezifikation” 

• In this lecture, we only look at signatures 
– No axioms 
– Supported by most programming languages (e.g. Java interfaces) 
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Content of this Lecture 

 
 
 

• Data Structures Again 
• Abstract Data Types 
• Lists, Stacks, and Queues 
• Realization in Java 
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ADTs in Java 

 
• Recall 

– An ADT summarizes the essential operations on a set of objects 
– An ADT is independent of a realization/implementation 
– Any implementation of a ADT is called a concrete data type 

• Realization in Java? 
• Interfaces 

– Only exhibit the essential operations on a class of objects 
– Can have different implementations 
– Can be implemented by a concrete class 
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Remarks 

 
• Java does not support axioms on interfaces 

– Some other languages do, e.g. contracts in Eiffel 

• Java adds important functionality for practical work which 
we ignore in this lecture 
– Inheritance, visibility (public, protected, …), overloading, … 
– Critical: Encapsulation – you must not see anything of an object / 

do anything with an object that is not represented in its interface 
– See lectures on Software Engineering 

• Historically, ADTs are a predecessor of classes in 
programming languages 
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Summary 

• ADT’s specify the possible operations on a data structure 
• ADT’s are free of implementation details 
• We often discuss pros/contras of different ways to 

implement a given ADT 
• We will often assume certain data types to be given 

– Always: Strings, integers, reals, … 
– We make implicit assumptions on cost of operations: UCM 

• (Formal) ADTs can be used for much more 
– Proving properties of a data type 
– Proving that a concrete data type implements a ADT 
– Proving that an implementation does not hurt axioms 
– Program verification 
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Exemplary Questions 

 
• What is an abstract data type, what is a physical data 

type? 
• What are typical operations of a list? Of a stack? 
• Imagine a class storing rectangles in a plane. We want to 

add and remove rectangles, test if there are any 
rectangles, and find all rectangles intersection of given 
one. Define the ADT. What could be possible axioms? 
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