
Algorithms and Data Structures

Ulf Leser

Data Types

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 2

Content of this Lecture

• Example
• Abstract Data Types
• Lists, Stacks, and Queues
• Realization in Java

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 3

Problem

• Suppose you are in the centre of Hamburg and are looking
for the next (i.e., closest) laptop repair shop

• Fortunately, your mobile knows your position and has a list
of laptop repair shops in Hamburg

• How does your mobile find the closest shop?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 4

Classical Post Box Problem

• Suppose a city with n boxes located at arbitrary positions
• You wake up in the middle of the city with a letter in your

hand; the letter should be thrown in the closest post box
• How do you find the closest post box?

– You have a list with locations of all post boxes

• Looking at a map is not
the answer

• Devise an algorithm

S: set_of_coordinates;
c: coordinate (x,y)
…

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 5

Simple Solution

Input
 S: set_of_coordinates;
 c: coordinate (x,y); # your loc
t: coordinate; # closest box
m: real := MAXREAL; # smal. dist
for each c‘∈S do
 if m > distance(c,c‘) then
 m := distance(c,c‘);
 t := c‘;
 end if;
end for;
return t;

• How much work?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 6

Simple Solution

• Clearly, we can save the
second call to “distance”

• Thus, we need to compute
|S| distances, make |S|
comparisons, and perform
at most 2*|S| assignments

• We perform O(|S|)
operations, which are O(1)
or distance computations

Input
 S: set_of_coordinates;
 c: coordinate (x,y); # your loc
t: coordinate; # closest box
m: real := MAXREAL; # smal. dist
for each c‘∈S do
 if m > distance(c,c‘) then
 m := distance(c,c‘);
 t := c‘;
 end if;
end for;
return t;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 7

Simple Solution

• How much work?
• Clearly, we can save the

second call to “distance”
• Thus, we need to compute

|S| distances, make |S|
comparisons, and perform
at most 2*|S| assignments

• Euclidian distance
– 6 arithmetic ops per distance

2
21

2
212211)()()),(),,((yyxxyxyxdist −+−=

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 8

Not the only Option

• How much work?
• Clearly, we can save the

second call to “distance”
• Thus, we need to compute

|S| distances, make |S|
comparisons, and perform
at most 2*|S| assignments

• Manhattan distance
– 5 operations, and different

ones

||||)),(),,((21212211 yyxxyxyxdist −+−=

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 9

Complexity

• How much work?
• Clearly, we can save the

second call to “distance”
• Thus, we need to compute

|S| distances, make |S|
comparisons, and perform
at most 2*|S| assignments

• Both cases: O(|S|*dim(S))
– dim(S): Number of

dimensions of every point in S

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 10

Data Structure Point of View

• Data structures
– We need a list of coordinates
– The algorithm must iterate over the

elements of this list
– A linked list would suffice

• Now assume we need to perform
such searches very often
– Can we represent S in another way (S’),

such that searching requires less work?
– Note: Time for computing S’ from S will

be ignored
• Performed before searching starts
• Assuming that S does not change

input
 S: set_of_coordinates;
 c: coordinate (x,y);
t: coordinate;
m: real := MAXREAL;
For each c‘∈S do
 if m > dist(c,c‘) then
 m := dist(c,c‘);
 t := c‘;
 end if;
end for;
return t;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 11

Voronoi Diagrams

• Pre-processing: Compute for every point s∈S its Voronoi area, i.e., the
area in which all points have s as nearest point from S

• Can be achieved in O(|S|*log(|S|)) time (no details here)
• Nearest-neighbor search using Voronoi diagrams is O(log(|S|))
• Conclusion: Finding a proper data structure does pay off

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 12

More Abstract

• We want a piece of software T that
– can store a list of coordinates
– can compute the nearest point to a given point c
– Piece of software: (1) algorithm and (2) data structure

• Thus, T must support (at least) two operations
– T.init (S: list_of_coordinates)
– T.nearestNeighbor(c: coordinate): coordinate
– T apparently uses another data structure: “coordinate”

• Such combinations of object sets and operations on these
sets are called a data type

• If only look at sets and operations: Abstract data type
– No details on algorithms / implementation

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 13

Content of this Lecture

• Example
• Abstract Data Types
• Lists, Stacks, and Queues
• Realization in Java

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 14

Abstract Data Types (ADT)

• An ADT defines a set of operations over a set of objects of
a certain (more basic) type
– Or over multiple sets of objects of different or same types

• The set of operations and types is called signature
• An ADT is independent of an implementation

– Different data structures to represent the objects
– Different algorithms to implement the operations
– An ADT is independent of any programming language

• Encapsulation: Objects are accessed only through the ops
• An implementation of a ADT is called a concrete (or

physical) data type

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 15

Example

• ADT that we could use for our app for searching shops
• We only need two operations

– A way to insert shops (with their coordinates)
– A way to get the nearest shop with respect to a given coordinate

• We assume basic data types to be given (string, int …)
• Not the only way …

type points
import
 coordinate;
operators
 add: points x coordinate → points;
 neighbor: points x coordinate → coordinate;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 16

Modeling More Details

• An ADT defines what is necessary
• Designing a ADT is a modeling process

• Shop owner? Laptop models being repaired? Opening hours?
• Depends on requirements, ease-of-use, extensibility, personal

preferences, existing ADTs, …

type shops
import
 shop;
operators
 add: shops x shop → shops;
 neighborC: shops x coordinate → coordinate;
 neighborN: shops x coordinate → string;
 neighborS: shops x coordinate → shop;

type shop
import
 coordinate;
 string;
operators
 getName: shop → string;
 getCoor: shop → coordinate;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 17

Reusing Existing ADTs

• For implementing points (or shops), it would be helpful to
import something that can hold a set of coordinates

• We need a list – an ADT in itself
– A parameterized ADT– a list of elements of an arbitrary ADT T
– For our ADT points, T will use objects of type coordinate

type list(T)
import
 integer, bool;
operators
 isEmpty: list → bool;
 add: list x T → list;
 delete: list x T → list;
 contains: list x T → bool;
 length: list → integer;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 18

Axioms: What we Know about an ADT

• We expect operations on lists to have a certain semantic
– Adding an element increases length by one

• If we assume bag semantics

– Deleting an element that doesn’t exist creates an error
– If a list is empty, its length is 0
– …

type list(T)
import
 integer, bool;
operators
 isEmpty: list → bool;
 add: list x T → list;
 contains: list x T → bool;
 delete: list x T → list;
 length: list → integer;
axioms: ∀ l: list, ∀ t: T
 length(add(l, t)) = length(l) + 1;
 length(l)=0  isEmpty(l);
 …

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 19

List versus Points

• points uses a list and adds further functionality
• What‘s wrong?

– What happens if multiple x have the same distance to c?

type points
import
 coordinate, bool, list(coordinate);
Operators
 contains: points x coordinate → bool;
 # Implement as list.contains
 add: points x coordinate → points;
 # Implement as list.add
 neighbor: points x coordinate → coordinate;
 # Not implemented in list!
axioms
 neighbor(p,c) = {x| contains(p,x)∧ ∀x’:contains(p, x’)=>
 distance(x,c) ≤ distance(x’,c)};

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 20

List versus Points

type points
import
 coordinate, bool, 2Dspace;
Operators
 contains: points x coordinate → bool;
 add: points x coordinate → points;
 neighbor: points x coordinate → points;
axioms
 neighbor(p,c) = {x| contains(p,x) ∧ ∀x’: contains(p,x’):
 distance(x,c) ≤ distance(x’,c)};

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 21

Content of this Lecture

• Data Structures Again
• Abstract Data Types
• Example: Lists, Stacks, and Queues

– Parameterized ADTs

• Realization in Java

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 22

Lists, Stacks, Queues

• We looked at a data type (points, shops) which essentially

is a list with one special operation: nearestNeighboor
– Canonical list operations: insert, search, delete, update, length

• There are many ways to implement the general ADT list
– Array, linked lists, double-linked lists, trees, …

• Two types of lists are of exceptional importance in
computer science: Stacks and Queues
– Both support mostly two operations
– These suffice for surprisingly many problems and applications
– Can be implemented very efficiently

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 23

Queues

IN OUT

• Operations: enqueue, dequeue
• Special semantic: First in, first out (FIFO)
• Breadth-first traversal, shortest paths, BucketSort, …

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 24

Stacks

• Operations: push, pop
• Special semantic: Last in, first out (LIFO)
• Call stacks, backtracking, “Kellerautomaten”, …

IN

O
U

T

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 25

As Abstract Data Types

type stack(T)
import
 bool;
operators
 isEmpty: stack → bool;
 push: stack x T → stack;
 pop: stack → stack;
 top: stack → T;

type queue(T)
import
 bool;
operators
 isEmpty: queue → bool;
 enqueue: queue x T → queue;
 dequeue: queue → queue;
 head: queue → T;

• Where‘s the difference?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 26

Signature does not Suffice

type a(T)
import
 bool;
operators
 isEmpty: a → bool;
 add: a x T → a;
 remove: a → a;
 give: a → T;

type a(T)
import
 bool;
operators
 isEmpty: a → bool;
 add: a x T → a;
 remove: a → a;
 give: a → T;

• Where‘s the difference?
• From the signature alone, there is no difference
• Yet – we expect a different behavior

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 27

Defining the Difference

type stack(T)
import
 bool;
operators
 isEmpty: stack → bool;
 push: stack x T → stack;
 pop: stack → stack;
 top: stack → T;
axioms ∀ q:stack, ∀ t:T
 top(push(s, t)) = t;
 pop(push(s, t)) = s;

type queue(T)
import
 bool;
operators
 isEmpty: queue → bool;
 enqueue: queue x T → queue;
 dequeue: queue → queue;
 head: queue → T;
axioms ∀ q:queue, ∀ t:T
 head(enqueue(q, t)) =
 if isEmpty(q): t
 else head(q);
 dequeue(enqueue(q, t)) =
 if isEmpty(q): q
 else enqueue(dequeue(q), t);

Long version:
 push(s,t) o top(s)=t’ => t=t’

 push(s,t) o pop(s)=s’ => s=s’

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 28

Example

d(e(<3,2>, 5)) = e(d(<3,2>), 5) =
 e(d(e(<3>, 2)), 5) =
 e(e(d(<3>), 2), 5) =
 e(e(d(e(<>), 3), 2), 5) =
 e(e(<>, 2), 5) =
 <2,5>

type queue(T)
...
 dequeue(enqueue(q, t)) =
 if isEmpty(q): q
 else enqueue(dequeue(q), t);

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 29

We Stop Here

• There are various ways to formally specify the behavior of

operations of an ADT
• For instance: Algebraic specifications

– Define an algebra over the object sets of the ADT
– Includes axioms defining the semantics of operations
– Axioms are essential to prove aspects of a system’s behavior

• Ideally, one only specifies and never programs

– See lecture on “Modellierung und Spezifikation”

• In this lecture, we only look at signatures
– No axioms
– Supported by most programming languages (e.g. Java interfaces)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 30

Content of this Lecture

• Data Structures Again
• Abstract Data Types
• Lists, Stacks, and Queues
• Realization in Java

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 31

ADTs in Java

• Recall

– An ADT summarizes the essential operations on a set of objects
– An ADT is independent of a realization/implementation
– Any implementation of a ADT is called a concrete data type

• Realization in Java?
• Interfaces

– Only exhibit the essential operations on a class of objects
– Can have different implementations
– Can be implemented by a concrete class

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 32

Remarks

• Java does not support axioms on interfaces

– Some other languages do, e.g. contracts in Eiffel

• Java adds important functionality for practical work which
we ignore in this lecture
– Inheritance, visibility (public, protected, …), overloading, …
– Critical: Encapsulation – you must not see anything of an object /

do anything with an object that is not represented in its interface
– See lectures on Software Engineering

• Historically, ADTs are a predecessor of classes in
programming languages

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 33

Summary

• ADT’s specify the possible operations on a data structure
• ADT’s are free of implementation details
• We often discuss pros/contras of different ways to

implement a given ADT
• We will often assume certain data types to be given

– Always: Strings, integers, reals, …
– We make implicit assumptions on cost of operations: UCM

• (Formal) ADTs can be used for much more
– Proving properties of a data type
– Proving that a concrete data type implements a ADT
– Proving that an implementation does not hurt axioms
– Program verification

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 34

Exemplary Questions

• What is an abstract data type, what is a physical data

type?
• What are typical operations of a list? Of a stack?
• Imagine a class storing rectangles in a plane. We want to

add and remove rectangles, test if there are any
rectangles, and find all rectangles intersection of given
one. Define the ADT. What could be possible axioms?

	Foliennummer 1
	Content of this Lecture
	Problem
	Classical Post Box Problem
	Simple Solution
	Simple Solution
	Simple Solution
	Not the only Option
	Complexity
	Data Structure Point of View
	Voronoi Diagrams
	More Abstract
	Content of this Lecture
	Abstract Data Types (ADT)
	Example
	Modeling More Details
	Reusing Existing ADTs
	Axioms: What we Know about an ADT
	List versus Points
	List versus Points
	Content of this Lecture
	Lists, Stacks, Queues
	Queues
	Stacks
	As Abstract Data Types
	Signature does not Suffice
	Defining the Difference
	Example
	We Stop Here
	Content of this Lecture
	ADTs in Java
	Remarks
	Summary
	Exemplary Questions

