
Algorithms and Data Structures

Ulf Leser

Asymptotic Complexity

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 2

Content of this Lecture

• Efficiency of Algorithms
• Machine Model
• Complexity
• Examples

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 3

Efficiency of Algorithms

• Algorithms have an input and solve a defined problem
– Sort this list of names
– Compute the running 3-month average over this table of 10 years

of daily revenues
– Find the shortest path between node X and node Y in this graph

with n nodes and m edges

• Research in algorithms focuses on efficiency
– Efficiency: Use as few resources as possible for solving the task
– Resources: CPU cycles, memory cells, (network traffic, disk IO, …)

• How can we measure efficiency for different inputs?
• How can we compare the efficiency of two algorithms

solving the same problem?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 4

Option 1: Use a Reference Machine

• Empirical evaluation
– Chose a concrete machine (CPU, RAM, BUS, …)

• Or many different machines

– Chose a set of different input data sets (workloads)
• The more, the better
• Real, synthetic, realistic, …

– Run algorithm on all inputs and measure time (or space or …)

• Pro: Gives real runtimes and practical guidance
• Contra

– Will all potential users have this machine?
– Performance dependent on prog language and skill of engineer
– Are the datasets used typical for what we expect in an application?
– Can we extrapolate results beyond the given data sets?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 5

Option 2: Computational Complexity

• Derive an estimate of the maximal (worst-case) number of
operations as a function of the input
– “For an input of size n, the alg. will perform “~n3“ operations”
– Abstraction: Define a (realistic) model of a machine

• Advantages
– Analyses the abstract algorithm, not its concrete implementation
– Independent of concrete hardware; future-proof

• Disadvantages
– No real runtimes, no practical guidance
– What is an operation? What do we count?
– Requires assumptions on the cost of primitive operations
– Assumes that all machines offer the same set of operations

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 6

Next steps

• In this lecture, we focus on complexity
– Note again: When it comes to practical problems, complexity is not

everything
– There can be extremely large runtime differences between

algorithms having the same complexity
– Difference between theoretical and practical computer science

• We need to define what we count: Machine model
• We need to define how we estimate: O-notation

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 7

Content of this Lecture

• Efficiency of Algorithms
• Machine Model
• Complexity
• Examples

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 8

Our Machine Model: RAM

• Very simple model: Random Access Machines (RAM)
• Work: What a traditional CPU can execute in 1 cycle

– Addition, comparison, jumps, …
– Forget multi-core, disks, ALUs, GPUs, FPGA, cache levels,

pipelining, hyper-threading, …
– Note: There are machine models for many of these variations

• Space: Infinite amount of storage cells
– Each cell holds one (possibly infinitely large) value (number)

• Separate program storage – no interference with data
• Cells are addressed by consecutive integers
• Access to each cell in one CPU cycle

– Special treatment of input and output
– One special register (switch) storing results of a comparison

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 9

Operations

• Load value into cell, move value from cell to cell

• LOADv 3, 5: Load value “5” in cell 3
• LOAD 3, 5: Copy value of cell 5 into cell 3

• Add/subtract/multiply/divide value/cell to/from/by cell and store in cell
– ADDv 3, 5, 6; Add “6” to value of cell 5 and store result in cell 3
– ADD 3, 5, 6; Add value of cell 6 to value of cell 5 and store in cell 3

• Compare values of two cells
– If equal, set switch to TRUE, otherwise to FALSE

• Jump to position if switch is TRUE
• Jump to position
• Stop

– RET 6; Returns value of cell 6 as result and stop

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 10

Example: xy (for y>0)

input
 x,y: integer;
t: integer;
i: integer;
t := x;
for i := 1 … y-1 do
 t := t * x;
end for;
return t;

1. LOADv 1, x; # provide input
2. LOADv 2, y;
3. LOAD 3, 1; # t := x
4. LOADv 4, 1; # i := 1
5. CMP 4, 2; # check i = y
6. IFTRUE 10;
7. MULT 3, 1, 3; # t := t*x
8. ADDv 4, 4, 1; # i := i+1
9. GOTO 5;
10.RET 3; # return t

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 11

Cost Models

• We count the number of operations (time) performed and
the number of cells (space) required

• This is called uniform cost model (UCM)
– Every operation costs time 1, every value needs space 1

• Not realistic
• Data access has non-uniform cost (cache lines)
• Comparing two real numbers requires more work than to integers
• …

• Alternative model: Machine cost (logarithmic cost)
– Consider concrete machine representation of every data element
– Cells hold 1 byte – how many bytes do I need?
– More realistic, yet more complex
– Derives identical complexity results for most sensible cases

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 12

Counting Operations in the RAM Model

• If y>1
– Startup (lines 1-4) costs 4
– Loop (lines 5-9) costs 5
– Loop is passed y times
– Last loop costs 2, return costs 1
– Total costs: 4+(y-1)*5+3

• If y=1
– Total costs: 7=4+(y-1)*5+3

1. LOADv 1, x; # input
2. LOADv 2, y;
3. LOAD 3, 1; # t := x
4. LOADv 4, 1; # i := 1
5. CMP 4, 2; # check i=y
6. IFTRUE 10;
7. MULT 3, 1, 3; # t := t*x
8. ADDv 4, 4, 1; # i := i+1
9. GOTO 5;
10.RET 3; # return t

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 13

Selection Sort: Uniform versus Machine Cost

• With UCM, we showed f(n)~4n2-3n
– But: Every cell needs to hold a name =

string of arbitrary length
– We used a UCM including strings

• Towards machine cost
– Assume max length m for any S[i]
– Then, line 5 costs m comps in WC
– Lines 6-8; additional cost for loops for

copying char-by-char

• We did not consider super-long
strings (i>264) or super-large
alphabets (char comp in 1 cycle?)

1. S: array_of_names;
2. n := |S|
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 14

Conclusions

• We usually assume RAM with uniform cost, but will not
give the RAM program itself
– Translation from pseudo code is simple and adds only constant

costs per operation – which we will ignore anyway

• We assume UCM for primitive data types: numbers, strings
– We sometimes look at strings in more detail
– More complex data type (lists, sets etc.) will be analyzed in detail

• When analyzing real programs, many more issues arise
– Performance killer in Java: Garbage collection
– Performance trick in Java: Object reuse
– Performance killer in Java: new vector (1,1)
– ...

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 15

Content of this Lecture

• Efficiency of Algorithms
• Machine Model
• Complexity
• Examples

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 16

Complexity

• Counting the exact number of operations for an algorithm

(wrt. input size) seems overly complicated
– Linear scale-ups are often possible by using newer/more machines
– Estimations need not be good for all cases - for small inputs, many

algorithms are lightning-fast anyway
– We don’t want long formulas – focus on the dominant factors

• Intuitive goal: Analyzes the major cost drivers when the
input gets “large”

• Asymptotic complexity – behavior if input size goes to
infinity

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 17

Examples

0

50.000

100.000

150.000

200.000

250.000

300.000

10 100 500 1.000 2.000

n

50*n

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

30.000.000

10 100 500 1.000 2.000

n

50*n

n^2

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

30.000.000

n

50*n

n^2

n^2+100*n

n^2+100*n+4000

0

10.000.000

20.000.000

30.000.000

40.000.000

50.000.000

60.000.000

10 100 500 1.000 2.000

n

50*n

n^2

n^2+100*n

n^2+100*n+4000

2*n^2

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 18

Small Values

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

10 20 30 40 50 60

n

50*n

n^2

n^2+100*n

n^2+100*n+4000

2*n^2

0

10.000.000

20.000.000

30.000.000

40.000.000

50.000.000

60.000.000

10 100 500 1.000 2.000

n

50*n

n^2

n^2+100*n

n^2+100*n+4000

2*n^2

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 19

Intuitive Observations

• Everything except the term with the highest exponent

doesn’t matter much, if n is large enough
• This term can have a factor, but the effect of this factor

usually can be outweighed by newer/more machines
– Therefore, we do not consider it

• Assume we have developed a polynomial f capturing the
exact cost of an algorithm A

• Intuitively, the complexity of A is the term in f with the
highest exponent after stripping linear factors

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 20

Overview

• Assume f(n) gives the number of operations performed by
alg. A in worst case for an input of size n

• We are interested in the essence of f, i.e., the dominating
factors when n grows large

• We do this by defining a hierarchy of classes of functions
– For a function g, define O(g) as the class of functions that is

asymptotically smaller or equal g
• We want a simple g; simpler than f

– If f∈O(g), then f will be asymptotically smaller or equal g
• I.e.: for large inputs, the number of ops counted by f will be smaller

than or equal to the one estimated through g

– Asymptotically, g is an upper bound for f
• Not necessarily the lowest

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 21

Formally: O-Notation

• Definition

Let g: N→R+. O(g) is the class of functions defined as
O(g) = {f:N→R+| ∃c, n0: ∀n≥n0: f(n) ≤ c*g(n)}

• Explanation
– O(g) is the class of all functions which compute lower or equal

values than g for any sufficiently large n, ignoring linear factors
– O(g) is the class of functions that are asymptotically smaller than

or equal g

• If f∈O(g), we say that “f is in O(g)” or “f is O(g)” or
“f has complexity O(g)”

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 22

Examples

• Example: First f
– Choose c=9 and n0=7
– Assume n>7=n0:

• Then, n2>6*n+7
• Thus: 3n2+6n+7 ≤ 3n2 + n2
• Finally: 3*n2+n2 ≤ 9*n2

– Would also work for c=8,7, …

• Concrete values of c and n0
don’t matter
– Especially: No need to search for

smallest such values for proving
complexity

f(n)=3*n2+6*n+7 is O(n2)

f(n)=n3+7000*n-300 is O(n3)

f(n)=4*n2+200*n2-100 is O(n2)

f(n)=log(n)+300 is O(log(n))

f(n)=log(n)+n is O(n)

f(n)=n*log(n) is O(n*log(n))

f(n)=n2 is O(n3)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 23

General Result

• Lemma: All constant functions are in O(1)

– Let f(n)=k for some k>0
– Let g(n)=1
– We need to show that f∈O(g)

• Proof
– Chose c=k and n0=0
– Clearly: ∀n≥n0, we now have f(n) ≤ c * g(n) = k*1 = k

• Any part of an algorithm whose extend of work is
independent of n can be summarized as O(1)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 24

Calculating with Complexities

• Usually, we want to derive the
complexity of a program without
calculating its exact cost
– Estimate a tight g without knowing f

• Some observations
– Having many ops with cost 1 yields

the same complexity as having only 1
• Lines 5-8 cost 4 times 1 ∈ O(1)

– If we see a polynomial, we can forget
terms except the largest

• As we certainly need O(n) for the
outer loop, we can forget the startup
which is O(1)

1. S: array_of_names;
2. n := |S|
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 25

Formally: O-Calculus

• Such observations can be cast in a set of rules
• Lemma

Let k be a constant. The following equivalences are true
– O(k+f) = O(f);
– O(k*f) = O(f);
– O(f) + O(g) = O(max(f,g))
– O(f) * O(g) = O(f*g)

• Explanations
– Rule 3 (4) actually implies rule 1 (2), as k∈O(1)
– Rule 3 is used for sequentially executed parts of a program
– Rule 4 is used for nested parts of a program (loops)

with “slight misuse of
notations”

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 26

Example

• There is a typo in this slide: Somewhere, I typed “und”
instead of “and”. Where?

• Abstract problem: Given a
string T (template) und a
pattern P (pattern), find all
occurrences of P in T
– Exact substring search

• The following algorithm
solves this problem
– There are better ones

1. for i = 1..|T|-|P|+1 do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false,
13. end if;
14. end while;
15.end for;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 27

Complexity Analysis (n=|T|, m=|P|)

1. for i = 1..|T|-|P|+1 do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false,
13. end if;
14. end while;
15.end for;

1. O(n-m)
2. O(1)
3. O(1)
4. O(m)
5. O(1)
6. O(1)
7. O(1)
8. O(1)
9. -
10. O(1)
11. -
12. O(1)
13. -
14. -
15.-

1. O(n-m)
2. O(1)
3. O(m)
4. O(1)

1. O(n-m)
2. O(1)
3. O(m)

1. O(n-m)
2. O(m)

1. O((n-m)*m)

O(1)+O(1)=O(1)

O(1)*m)=O(m)

O(1)+O(m)=O(m)

O(n-m)*O(m)=
 O((n-m)*m)

Worst-Case

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 28

Deriving new Rules: Transitivity of O-Membership

• Lemma: If f∈O(g) and g∈O(h), then f∈O(h)
• Proof

– We know: ∃c, n0: ∀n≥n0: f(n) ≤ c*g(n)
– We know: ∃c’, n’0: ∀n≥n’0: g(n) ≤ c’*h(n)
– We need to show: ∃c’’, n’’0: ∀n≥n’’0: f(n) ≤ c’’*h(n)
– We chose: n’’0 = max(n0, n’0); c’’=c*c’
– This gives:

∀n≥n’’0: f(n) ≤ c*g(n) ≤ c*c’*h(n) ≤ c’’*h(n)
– qed.

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 29

Ω-Notation

• O-Notation denotes an upper bound for the amount of
computation necessary to run an algorithm for
asymptotically large inputs
– “f will always be faster than g”

• Sometimes, we also want lower bounds
– “f can never be faster than g”

• Definition
Let g: N→R+. Ω(g) is the class of functions defined as
Ω(g) = {f:N→R+| c, n0: ∀n≥n0: g(n) ≤ c*f(n)}

• Explanation
– Ω(g) is the class of functions that are asymptotically larger than g
– Again: Not necessarily the largest smaller one

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 30

Further Notation

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 31

Not Every Problem is Simple

• Definition

We call an algorithm A with cost function f
– polynomial, if there exists a polynomial p with f∈O(p)
– exponential, if ∃ε>0 with f∈ Ω()

• General assumption: If A is exponential, it cannot be
executed in reasonable time for non-trivial input
– But: If A is exponential, this does not imply that the problem solved

by A cannot be solved in polynomial time
– Of course: If A is bounded by a polynomial, then also the problem

solved by A can be solved in polynomial time (by A)
– Much research in finding good solutions for difficult problems

εn2

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 32

Content of this Lecture

• Efficiency of Algorithms
• Machine Model
• Complexity
• Examples

– Exact substring search (average-case versus worst-case)
– Knapsack problem (exponential problem)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 33

Exact Substring Search: Average Case

• We showed that the algorithm’s

WC is O((n-m)*m)~O(n*m)
– Since m<<n

• How does a worst case look like?

1. for i = 1..|T|-|P| do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false,
13. end if;
14. end while;
15.end for;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 34

Exact Substring Search: Beyond Worst Case

• We showed that the algorithm’s

WC is O((n-m)*m)~O(n*m)
– Since m<<n

• How does a worst case look like?
– T=an; P=am

• What about the average case?
– The outer loop is always passed by n

times, no matter how T / P look like
– This already is in Ω(n-m) in all cases

• Worst, best, average, …

1. for i = 1..|T|-|P| do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false,
13. end if;
14. end while;
15.end for;

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 35

Exact Substring Search: Average Case

• How often do we pass by the
inner loop?

• Needs a model of “average strings”
• Simplest model:

T and P are randomly generated from the same alphabet ∑
– Every character appears with equal probability at every position

• Gives a chance of p=1/|∑| for every test “T[i+j-1]=P[j]”
• Derive the expected number of comparisons in line 3

– 1(1-p)+2*p(1-p)+3*p2(1-p)+…+m*pm-1=
1 – p + 2p–2p2+ 3p2-3p3+ … m*pm-1=
1 + p + p2 + p3 + … pm-1 =

1. O(n)
2. while match
3. if T[i+j-1]=P[j] then
4. O(1)
5. else
6. O(1); # end loop
7. -

∑
=

1-m

0i

ip

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 36

Differences On Real Data

• Assume |T|=50.000 and |P|=8 and |∑|=28
– German text, including Umlaute, excluding upper/lower case letters
– Worst-case estimate: 400.000 comparisons

• Note: Here, O(m*n) is quite tight, no linear factors ignored

– Average-case estimate: ~51.851 comparisons
• We expect a mismatch after every 1,03 comparisons

• Assume |T|=50.000, |P|=8, |∑|=4 (e.g., DNA)
– Worst-case: 400.000 comparisons
– Average-case: 65.740

• Best algorithms are O(m+n) ~ 50.008 comparisons
• Much better WC result, but not much better AC result
• But: Are German texts random strings?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 37

• Given a set S of items with weights w[i] and value v[i] and
a maximal weight m; find the subset T⊆S such that:

 and

Source: Wikipedia.de

miw
Ti

≤∑
∈

][max][=∑
∈Ti

iv

Example 2: Knapsack Problem

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 38

Algorithm and its Complexity

• Imagine an algorithm which enumerates all possible T
• For each T, computing its value and its weight is in O(|S|)

– Testing for maximum is O(1)

• But how many different T exist?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 39

Algorithm and its Complexity

• Imagine an algorithm which enumerates all possible T
• For each T, computing its value and its weight is in O(|S|)

– Testing for maximum is O(1)

• But how many different T exist?
– Every item from S can be part of T or not
– This gives 2*2*2* …. *2=2|S| different options

• Together: This algorithm is in O(2|S|)

• Actually, the knapsack problem is NP-hard
• Thus, very likely no polynomial algorithm exists

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 40

Exemplary Questions for Examination

• Given the following algorithm: … Analyze its worst case
and average case complexity

• Prove that O(f*g) = O(f)*O(g)
• Order the following functions by their complexity class: n2,

100n, n*log(n), n*2log(n), sqrt(n), n!
• Let f∈Ω(g) and g∈Ω(h). Show that f∈Ω(h)
• Find a function f such that: f∈Ω(n) and f∉O(n3*log(n))

	Foliennummer 1
	Content of this Lecture
	Efficiency of Algorithms
	Option 1: Use a Reference Machine
	Option 2: Computational Complexity
	Next steps
	Content of this Lecture
	Our Machine Model: RAM
	Operations
	Example: xy (for y>0)
	Cost Models
	Counting Operations in the RAM Model
	Selection Sort: Uniform versus Machine Cost
	Conclusions
	Content of this Lecture
	Complexity
	Examples
	Small Values
	Intuitive Observations
	Overview
	Formally: O-Notation
	Examples
	General Result
	Calculating with Complexities
	Formally: O-Calculus
	Example
	Complexity Analysis (n=|T|, m=|P|)
	Deriving new Rules: Transitivity of O-Membership
	-Notation
	Further Notation
	Not Every Problem is Simple
	Content of this Lecture
	Exact Substring Search: Average Case
	Exact Substring Search: Beyond Worst Case
	Exact Substring Search: Average Case
	Differences On Real Data
	Example 2: Knapsack Problem
	Algorithm and its Complexity
	Algorithm and its Complexity
	Exemplary Questions for Examination

