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Content of this Lecture 

 
 
 

• Efficiency of Algorithms 
• Machine Model 
• Complexity 
• Examples 
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Efficiency of Algorithms 

• Algorithms have an input and solve a defined problem  
– Sort this list of names 
– Compute the running 3-month average over this table of 10 years 

of daily revenues 
– Find the shortest path between node X and node Y in this graph 

with n nodes and m edges 

• Research in algorithms focuses on efficiency 
– Efficiency: Use as few resources as possible for solving the task 
– Resources: CPU cycles, memory cells, (network traffic, disk IO, …) 

• How can we measure efficiency for different inputs? 
• How can we compare the efficiency of two algorithms 

solving the same problem? 
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Option 1: Use a Reference Machine 

• Empirical evaluation 
– Chose a concrete machine (CPU, RAM, BUS, …)  

• Or many different machines 

– Chose a set of different input data sets (workloads) 
• The more, the better 
• Real, synthetic, realistic, … 

– Run algorithm on all inputs and measure time (or space or …) 

• Pro: Gives real runtimes and practical guidance 
• Contra 

– Will all potential users have this machine?  
– Performance dependent on prog language and skill of engineer 
– Are the datasets used typical for what we expect in an application? 
– Can we extrapolate results beyond the given data sets?  
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Option 2: Computational Complexity 

• Derive an estimate of the maximal (worst-case) number of 
operations as a function of the input 
– “For an input of size n, the alg. will perform “~n3“ operations” 
– Abstraction: Define a (realistic) model of a machine 

• Advantages 
– Analyses the abstract algorithm, not its concrete implementation 
– Independent of concrete hardware; future-proof 

• Disadvantages 
– No real runtimes, no practical guidance 
– What is an operation? What do we count? 
– Requires assumptions on the cost of primitive operations 
– Assumes that all machines offer the same set of operations 
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Next steps 

 
 

• In this lecture, we focus on complexity 
– Note again: When it comes to practical problems, complexity is not 

everything 
– There can be extremely large runtime differences between 

algorithms having the same complexity 
– Difference between theoretical and practical computer science 

• We need to define what we count: Machine model 
• We need to define how we estimate: O-notation 
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Content of this Lecture 

 
 
 

• Efficiency of Algorithms 
• Machine Model 
• Complexity 
• Examples 
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Our Machine Model: RAM 

• Very simple model: Random Access Machines (RAM) 
• Work: What a traditional CPU can execute in 1 cycle 

– Addition, comparison, jumps, … 
– Forget multi-core, disks, ALUs, GPUs, FPGA, cache levels, 

pipelining, hyper-threading, … 
– Note: There are machine models for many of these variations 

• Space: Infinite amount of storage cells 
– Each cell holds one (possibly infinitely large) value (number) 

• Separate program storage – no interference with data 
• Cells are addressed by consecutive integers 
• Access to each cell in one CPU cycle 

– Special treatment of input and output 
– One special register (switch) storing results of a comparison 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017     9 

Operations 

 
• Load value into cell, move value from cell to cell 

• LOADv 3, 5: Load value “5” in cell 3 
• LOAD 3, 5: Copy value of cell 5 into cell 3 

• Add/subtract/multiply/divide value/cell to/from/by cell and store in cell 
– ADDv 3, 5, 6; Add “6” to value of cell 5 and store result in cell 3 
– ADD 3, 5, 6; Add value of cell 6 to value of cell 5 and store in cell 3 

• Compare values of two cells 
– If equal, set switch to TRUE, otherwise to FALSE 

• Jump to position if switch is TRUE 
• Jump to position 
• Stop 

– RET 6; Returns value of cell 6 as result and stop 
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Example: xy (for y>0) 

input 
  x,y: integer; 
t: integer; 
i: integer; 
t := x; 
for i := 1 … y-1 do 
  t := t * x; 
end for; 
return t; 

1. LOADv 1, x;   # provide input 
2. LOADv 2, y; 
3. LOAD 3, 1;    # t := x 
4. LOADv 4, 1;   # i := 1 
5. CMP 4, 2;     # check i = y  
6. IFTRUE 10; 
7. MULT 3, 1, 3; # t := t*x 
8. ADDv 4, 4, 1; # i := i+1 
9. GOTO 5; 
10.RET 3;    # return t 
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Cost Models 

• We count the number of operations (time) performed and 
the number of cells (space) required 

• This is called uniform cost model (UCM) 
– Every operation costs time 1, every value needs space 1 

• Not realistic 
• Data access has non-uniform cost (cache lines) 
• Comparing two real numbers requires more work than to integers 
• … 

• Alternative model: Machine cost (logarithmic cost) 
– Consider concrete machine representation of every data element 
– Cells hold 1 byte – how many bytes do I need? 
– More realistic, yet more complex 
– Derives identical complexity results for most sensible cases 
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Counting Operations in the RAM Model 

 
 

• If y>1 
– Startup (lines 1-4) costs 4 
– Loop (lines 5-9) costs 5 
– Loop is passed y times 
– Last loop costs 2, return costs 1 
– Total costs: 4+(y-1)*5+3 

• If y=1 
– Total costs: 7=4+(y-1)*5+3 

1. LOADv 1, x;   # input 
2. LOADv 2, y; 
3. LOAD 3, 1;    # t := x 
4. LOADv 4, 1;   # i := 1 
5. CMP 4, 2;     # check i=y  
6. IFTRUE 10; 
7. MULT 3, 1, 3; # t := t*x 
8. ADDv 4, 4, 1; # i := i+1 
9. GOTO 5; 
10.RET 3;   # return t 
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Selection Sort: Uniform versus Machine Cost 

• With UCM, we showed f(n)~4n2-3n 
– But: Every cell needs to hold a name = 

string of arbitrary length 
– We used a UCM including strings 

• Towards machine cost 
– Assume max length m for any S[i] 
– Then, line 5 costs m comps in WC 
– Lines 6-8; additional cost for loops for 

copying char-by-char 

• We did not consider super-long 
strings (i>264) or super-large 
alphabets (char comp in 1 cycle?) 

1. S: array_of_names; 
2. n := |S| 
3. for i = 1..n-1 do 
4.   for j = i+1..n do 
5.     if S[i]>S[j] then 
6.       tmp := S[i]; 
7.       S[i] := S[j]; 
8.       S[j] := tmp; 
9.     end if; 
10.  end for; 
11.end for; 
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Conclusions 

• We usually assume RAM with uniform cost, but will not 
give the RAM program itself 
– Translation from pseudo code is simple and adds only constant 

costs per operation – which we will ignore anyway 

• We assume UCM for primitive data types: numbers, strings 
– We sometimes look at strings in more detail 
– More complex data type (lists, sets etc.) will be analyzed in detail 

• When analyzing real programs, many more issues arise 
– Performance killer in Java: Garbage collection 
– Performance trick in Java: Object reuse 
– Performance killer in Java: new vector (1,1) 
– ...  
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Content of this Lecture 

 
 
 

• Efficiency of Algorithms 
• Machine Model 
• Complexity 
• Examples 
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Complexity 

 
• Counting the exact number of operations for an algorithm 

(wrt. input size) seems overly complicated  
– Linear scale-ups are often possible by using newer/more machines 
– Estimations need not be good for all cases - for small inputs, many 

algorithms are lightning-fast anyway 
– We don’t want long formulas – focus on the dominant factors 

• Intuitive goal: Analyzes the major cost drivers when the 
input gets “large” 

• Asymptotic complexity – behavior if input size goes to 
infinity 
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Examples 
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Small Values 
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Intuitive Observations 

 
• Everything except the term with the highest exponent 

doesn’t matter much, if n is large enough 
• This term can have a factor, but the effect of this factor 

usually can be outweighed by newer/more machines 
– Therefore, we do not consider it 

• Assume we have developed a polynomial f capturing the 
exact cost of an algorithm A 

• Intuitively, the complexity of A is the term in f with the 
highest exponent after stripping linear factors 
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Overview  

• Assume f(n) gives the number of operations performed by 
alg. A in worst case for an input of size n 

• We are interested in the essence of f, i.e., the dominating 
factors when n grows large 

• We do this by defining a hierarchy of classes of functions  
– For a function g, define O(g) as the class of functions that is 

asymptotically smaller or equal g 
• We want a simple g; simpler than f 

– If f∈O(g), then f will be asymptotically smaller or equal g 
• I.e.: for large inputs, the number of ops counted by f will be smaller 

than or equal to the one estimated through g 

– Asymptotically, g is an upper bound for f 
• Not necessarily the lowest 
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Formally: O-Notation 

 
• Definition 

Let g: N→R+. O(g) is the class of functions defined as 
O(g) = {f:N→R+| ∃c, n0: ∀n≥n0: f(n) ≤ c*g(n)} 

• Explanation 
– O(g) is the class of all functions which compute lower or equal 

values than g for any sufficiently large n, ignoring linear factors 
– O(g) is the class of functions that are asymptotically smaller than 

or equal g 

• If f∈O(g), we say that “f is in O(g)” or “f is O(g)” or  
“f has complexity O(g)” 
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Examples 

• Example: First f 
– Choose c=9 and n0=7 
– Assume n>7=n0:  

• Then, n2>6*n+7 
• Thus: 3n2+6n+7 ≤ 3n2 + n2 
• Finally: 3*n2+n2 ≤ 9*n2 

– Would also work for c=8,7, … 

• Concrete values of c and n0 
don’t matter 
– Especially: No need to search for 

smallest such values for proving 
complexity 

f(n)=3*n2+6*n+7 is O(n2) 

f(n)=n3+7000*n-300 is O(n3) 

f(n)=4*n2+200*n2-100 is O(n2) 

f(n)=log(n)+300 is O(log(n)) 

f(n)=log(n)+n is O(n) 

f(n)=n*log(n) is O(n*log(n)) 

f(n)=n2 is O(n3) 
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General Result 

 
• Lemma: All constant functions are in O(1) 

– Let f(n)=k for some k>0 
– Let g(n)=1 
– We need to show that f∈O(g) 

• Proof 
– Chose c=k and n0=0 
– Clearly: ∀n≥n0, we now have f(n) ≤ c * g(n) = k*1 = k 

• Any part of an algorithm whose extend of work is 
independent of n can be summarized as O(1) 
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Calculating with Complexities 

• Usually, we want to derive the 
complexity of a program without 
calculating its exact cost 
– Estimate a tight g without knowing f 

• Some observations 
– Having many ops with cost 1 yields 

the same complexity as having only 1 
• Lines 5-8 cost 4 times 1 ∈ O(1) 

– If we see a polynomial, we can forget 
terms except the largest 

• As we certainly need O(n) for the 
outer loop, we can forget the startup 
which is O(1) 

1. S: array_of_names; 
2. n := |S| 
3. for i = 1..n-1 do 
4.   for j = i+1..n do 
5.     if S[i]>S[j] then 
6.       tmp := S[i]; 
7.       S[i] := S[j]; 
8.       S[j] := tmp; 
9.     end if; 
10.  end for; 
11.end for; 
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Formally: O-Calculus 

• Such observations can be cast in a set of rules 
• Lemma 

Let k be a constant. The following equivalences are true 
– O(k+f) = O(f); 
– O(k*f) = O(f); 
– O(f) + O(g) = O( max(f,g)) 
– O(f) * O(g) = O(f*g) 

• Explanations 
– Rule 3 (4) actually implies rule 1 (2), as k∈O(1) 
– Rule 3 is used for sequentially executed parts of a program 
– Rule 4 is used for nested parts of a program (loops) 

with “slight misuse of 
notations” 
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Example 

• There is a typo in this slide: Somewhere, I typed “und” 
instead of “and”. Where? 

• Abstract problem: Given a  
string T (template) und a  
pattern P (pattern), find all  
occurrences of P in T 
– Exact substring search 

• The following algorithm  
solves this problem 
– There are better ones 

1. for i = 1..|T|-|P|+1 do 
2.   match := true; 
3.   j := 1; 
4.   while match 
5.     if T[i+j-1]=P[j] then 
6.       if j=|P| then 
7.         print i; 
8.         match := false; 
9.       end if; 
10.      j := j+1; 
11.    else 
12.      match := false, 
13.    end if; 
14.  end while; 
15.end for; 
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Complexity Analysis (n=|T|, m=|P|) 

1. for i = 1..|T|-|P|+1 do 
2.   match := true; 
3.   j := 1; 
4.   while match 
5.     if T[i+j-1]=P[j] then 
6.       if j=|P| then 
7.         print i; 
8.         match := false; 
9.       end if; 
10.      j := j+1; 
11.    else 
12.      match := false, 
13.    end if; 
14.  end while; 
15.end for; 

1. O(n-m) 
2.   O(1) 
3.   O(1) 
4.   O(m) 
5.     O(1) 
6.       O(1) 
7.         O(1) 
8.         O(1) 
9.       - 
10.      O(1) 
11.    - 
12.      O(1) 
13.    - 
14.  - 
15.- 

1. O(n-m) 
2.   O(1) 
3.   O(m) 
4.     O(1) 

1. O(n-m) 
2.   O(1) 
3.   O(m) 

1. O(n-m) 
2.   O(m) 

1. O((n-m)*m) 

O(1)+O(1)=O(1) 

O(1)*m)=O(m) 

O(1)+O(m)=O(m) 

O(n-m)*O(m)= 
              O((n-m)*m) 

Worst-Case 
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Deriving new Rules: Transitivity of O-Membership 

 
• Lemma: If f∈O(g) and g∈O(h), then f∈O(h) 
• Proof  

– We know: ∃c, n0: ∀n≥n0: f(n) ≤ c*g(n) 
– We know: ∃c’, n’0: ∀n≥n’0: g(n) ≤ c’*h(n) 
– We need to show: ∃c’’, n’’0: ∀n≥n’’0: f(n) ≤ c’’*h(n) 
– We chose: n’’0 = max(n0, n’0); c’’=c*c’ 
– This gives: 

∀n≥n’’0: f(n) ≤ c*g(n) ≤ c*c’*h(n) ≤ c’’*h(n) 
– qed. 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017     29 

Ω-Notation 

• O-Notation denotes an upper bound for the amount of 
computation necessary to run an algorithm for 
asymptotically large inputs 
– “f will always be faster than g” 

• Sometimes, we also want lower bounds 
– “f can never be faster than g” 

• Definition 
Let g: N→R+. Ω(g) is the class of functions defined as  
Ω(g) = {f:N→R+| c, n0: ∀n≥n0: g(n) ≤ c*f(n)} 

• Explanation 
– Ω(g) is the class of functions that are asymptotically larger than g 
– Again: Not necessarily the largest smaller one 
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Further Notation 
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Not Every Problem is Simple 

 
• Definition 

We call an algorithm A with cost function f 
– polynomial, if there exists a polynomial p with f∈O(p) 
– exponential, if ∃ε>0 with f∈ Ω(     ) 

• General assumption: If A is exponential, it cannot be 
executed in reasonable time for non-trivial input 
– But: If A is exponential, this does not imply that the problem solved 

by A cannot be solved in polynomial time 
– Of course: If A is bounded by a polynomial, then also the problem 

solved by A can be solved in polynomial time (by A) 
– Much research in finding good solutions for difficult problems 

εn2
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Content of this Lecture 

 
 

• Efficiency of Algorithms 
• Machine Model 
• Complexity 
• Examples 

– Exact substring search (average-case versus worst-case) 
– Knapsack problem (exponential problem) 
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Exact Substring Search: Average Case 

 
• We showed that the algorithm’s 

WC is O((n-m)*m)~O(n*m) 
– Since m<<n 

• How does a worst case look like? 

1. for i = 1..|T|-|P| do 
2.   match := true; 
3.   j := 1; 
4.   while match 
5.     if T[i+j-1]=P[j] then 
6.       if j=|P| then 
7.         print i; 
8.         match := false; 
9.       end if; 
10.      j := j+1; 
11.    else 
12.      match := false, 
13.    end if; 
14.  end while; 
15.end for; 
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Exact Substring Search: Beyond Worst Case 

 
• We showed that the algorithm’s 

WC is O((n-m)*m)~O(n*m) 
– Since m<<n 

• How does a worst case look like? 
– T=an; P=am 

• What about the average case? 
– The outer loop is always passed by n 

times, no matter how T / P look like  
– This already is in Ω(n-m) in all cases 

• Worst, best, average, … 

1. for i = 1..|T|-|P| do 
2.   match := true; 
3.   j := 1; 
4.   while match 
5.     if T[i+j-1]=P[j] then 
6.       if j=|P| then 
7.         print i; 
8.         match := false; 
9.       end if; 
10.      j := j+1; 
11.    else 
12.      match := false, 
13.    end if; 
14.  end while; 
15.end for; 
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Exact Substring Search: Average Case 

• How often do we pass by the  
inner loop? 

• Needs a model of “average strings” 
• Simplest model:  

T and P are randomly generated from the same alphabet ∑ 
– Every character appears with equal probability at every position 

• Gives a chance of p=1/|∑| for every test “T[i+j-1]=P[j]” 
• Derive the expected number of comparisons in line 3 

– 1(1-p)+2*p(1-p)+3*p2(1-p)+…+m*pm-1= 
1 – p   + 2p–2p2+ 3p2-3p3+ … m*pm-1=  
1    +   p     +   p2     +   p3   + … pm-1 =  

1. O(n) 
2.   while match 
3.     if T[i+j-1]=P[j] then 
4.       O(1) 
5.     else 
6.       O(1);   # end loop 
7.   - 

∑
=

1-m

0i

ip
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Differences On Real Data 

• Assume |T|=50.000 and |P|=8 and |∑|=28  
– German text, including Umlaute, excluding upper/lower case letters 
– Worst-case estimate: 400.000 comparisons 

• Note: Here, O(m*n) is quite tight, no linear factors ignored  

– Average-case estimate: ~51.851 comparisons  
• We expect a mismatch after every 1,03 comparisons 

• Assume |T|=50.000, |P|=8, |∑|=4 (e.g., DNA) 
– Worst-case: 400.000 comparisons  
– Average-case: 65.740 

• Best algorithms are O(m+n) ~ 50.008 comparisons  
• Much better WC result, but not much better AC result 
• But: Are German texts random strings? 
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• Given a set S of items with weights w[i] and value v[i] and 
a maximal weight m; find the subset T⊆S such that: 

 

                                         and  
                

Source: Wikipedia.de 

miw
Ti

≤∑
∈

][ max][ =∑
∈Ti

iv

Example 2: Knapsack Problem 
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Algorithm and its Complexity 

• Imagine an algorithm which enumerates all possible T 
• For each T, computing its value and its weight is in O(|S|) 

– Testing for maximum is O(1) 

• But how many different T exist? 
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Algorithm and its Complexity 

• Imagine an algorithm which enumerates all possible T 
• For each T, computing its value and its weight is in O(|S|) 

– Testing for maximum is O(1) 

• But how many different T exist? 
– Every item from S can be part of T or not 
– This gives 2*2*2* …. *2=2|S| different options 

• Together: This algorithm is in O(2|S|) 
 

• Actually, the knapsack problem is NP-hard 
• Thus, very likely no polynomial algorithm exists 
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Exemplary Questions for Examination 

 
 

• Given the following algorithm: … Analyze its worst case 
and average case complexity 

• Prove that O(f*g) = O(f)*O(g) 
• Order the following functions by their complexity class: n2, 

100n, n*log(n), n*2log(n), sqrt(n), n! 
• Let f∈Ω(g) and g∈Ω(h). Show that f∈Ω(h) 
• Find a function f such that: f∈Ω(n) and f∉O(n3*log(n)) 
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