

Algorithms and Data Structures

Asymptotic Complexity

Ulf Leser

Content of this Lecture

- Efficiency of Algorithms
- Machine Model
- Complexity
- Examples

Efficiency of Algorithms

- Algorithms have an input and solve a defined problem
 - Sort this list of names
 - Compute the running 3-month average over this table of 10 years of daily revenues
 - Find the shortest path between node X and node Y in this graph with n nodes and m edges
- Research in algorithms focuses on efficiency
 - Efficiency: Use as few resources as possible for solving the task
 - Resources: CPU cycles, memory cells, (network traffic, disk IO, ...)
- How can we measure efficiency for different inputs?
- How can we compare the efficiency of two algorithms solving the same problem?

Option 1: Use a Reference Machine

- Empirical evaluation
 - Chose a concrete machine (CPU, RAM, BUS, ...)
 - Or many different machines
 - Chose a set of different input data sets (workloads)
 - The more, the better
 - · Real, synthetic, realistic, ...
 - Run algorithm on all inputs and measure time (or space or ...)
- Pro: Gives real runtimes and practical guidance
- Contra
 - Will all potential users have this machine?
 - Performance dependent on prog language and skill of engineer
 - Are the datasets used typical for what we expect in an application?
 - Can we extrapolate results beyond the given data sets?

Option 2: Computational Complexity

- Derive an estimate of the maximal (worst-case) number of operations as a function of the input
 - "For an input of size n, the alg. will perform "∼n³" operations"
 - Abstraction: Define a (realistic) model of a machine

Advantages

- Analyses the abstract algorithm, not its concrete implementation
- Independent of concrete hardware; future-proof

Disadvantages

- No real runtimes, no practical guidance
- What is an operation? What do we count?
- Requires assumptions on the cost of primitive operations
- Assumes that all machines offer the same set of operations

Next steps

- In this lecture, we focus on complexity
 - Note again: When it comes to practical problems, complexity is not everything
 - There can be extremely large runtime differences between algorithms having the same complexity
 - Difference between theoretical and practical computer science
- We need to define what we count: Machine model
- We need to define how we estimate: O-notation

Content of this Lecture

- Efficiency of Algorithms
- Machine Model
- Complexity
- Examples

Our Machine Model: RAM

- Very simple model: Random Access Machines (RAM)
- Work: What a traditional CPU can execute in 1 cycle
 - Addition, comparison, jumps, ...
 - Forget multi-core, disks, ALUs, GPUs, FPGA, cache levels, pipelining, hyper-threading, ...
 - Note: There are machine models for many of these variations
- Space: Infinite amount of storage cells
 - Each cell holds one (possibly infinitely large) value (number)
 - Separate program storage no interference with data
 - Cells are addressed by consecutive integers
 - Access to each cell in one CPU cycle
 - Special treatment of input and output
 - One special register (switch) storing results of a comparison

Operations

- Load value into cell, move value from cell to cell
 - LOADv 3, 5: Load value "5" in cell 3
 - LOAD 3, 5: Copy value of cell 5 into cell 3
- Add/subtract/multiply/divide value/cell to/from/by cell and store in cell
 - ADDv 3, 5, 6; Add "6" to value of cell 5 and store result in cell 3
 - ADD 3, 5, 6; Add value of cell 6 to value of cell 5 and store in cell 3
- Compare values of two cells
 - If equal, set switch to TRUE, otherwise to FALSE
- Jump to position if switch is TRUE
- Jump to position
- Stop
 - RET 6; Returns value of cell 6 as result and stop

Example: x^y (for y>0)

```
input
  x,y: integer;
t: integer;
i: integer;
t:= x;
for i := 1 ... y-1 do
  t := t * x;
end for;
return t;
```

```
1. LOADv 1, x;  # provide input
2. LOADv 2, y;
3. LOAD 3, 1;  # t := x
4. LOADv 4, 1;  # i := 1
5. CMP 4, 2;  # check i = y
6. IFTRUE 10;
7. MULT 3, 1, 3;  # t := t*x
8. ADDv 4, 4, 1;  # i := i+1
9. GOTO 5;
10.RET 3;  # return t
```

Cost Models

- We count the number of operations (time) performed and the number of cells (space) required
- This is called uniform cost model (UCM)
 - Every operation costs time 1, every value needs space 1
 - Not realistic
 - Data access has non-uniform cost (cache lines)
 - Comparing two real numbers requires more work than to integers
 - ...
- Alternative model: Machine cost (logarithmic cost)
 - Consider concrete machine representation of every data element
 - Cells hold 1 byte how many bytes do I need?
 - More realistic, yet more complex
 - Derives identical complexity results for most sensible cases

Counting Operations in the RAM Model

```
1. LOADv 1, x; # input
2. LOADv 2, y;
3. LOAD 3, 1; # t := x
4. LOADv 4, 1; # i := 1
5. CMP 4, 2; # check i=y
6. IFTRUE 10;
7. MULT 3, 1, 3; # t := t*x
8. ADDv 4, 4, 1; # i := i+1
9. GOTO 5;
10.RET 3; # return t
```

```
If y>1
```

- Startup (lines 1-4) costs 4
- Loop (lines 5-9) costs 5
- Loop is passed y times
- Last loop costs 2, return costs 1
- Total costs: 4+(y-1)*5+3
- If y=1
 - Total costs: 7=4+(y-1)*5+3

Selection Sort: Uniform versus Machine Cost

```
1. S: array_of_names;
2. n := |S|
3. for i = 1..n-1 do
4. for j = i+1..n do
5.    if S[i]>S[j] then
6.    tmp := S[i];
7.    S[i] := S[j];
8.    S[j] := tmp;
9.    end if;
10. end for;
11.end for;
```

- With UCM, we showed $f(n) \sim 4n^2-3n$
 - But: Every cell needs to hold a name = string of arbitrary length
 - We used a UCM including strings
- Towards machine cost
 - Assume max length m for any S[i]
 - Then, line 5 costs m comps in WC
 - Lines 6-8; additional cost for loops for copying char-by-char
- We did not consider super-long strings (i>2⁶⁴) or super-large alphabets (char comp in 1 cycle?)

Conclusions

- We usually assume RAM with uniform cost, but will not give the RAM program itself
 - Translation from pseudo code is simple and adds only constant costs per operation – which we will ignore anyway
- We assume UCM for primitive data types: numbers, strings
 - We sometimes look at strings in more detail
 - More complex data type (lists, sets etc.) will be analyzed in detail
- When analyzing real programs, many more issues arise
 - Performance killer in Java: Garbage collection
 - Performance trick in Java: Object reuse
 - Performance killer in Java: new vector (1,1)

– ...

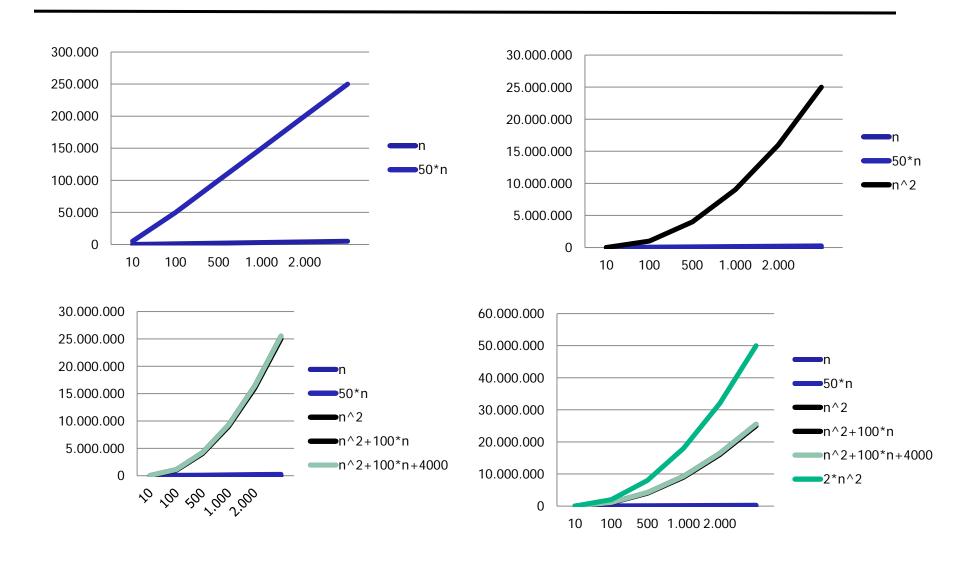
Content of this Lecture

- Efficiency of Algorithms
- Machine Model
- Complexity
- Examples

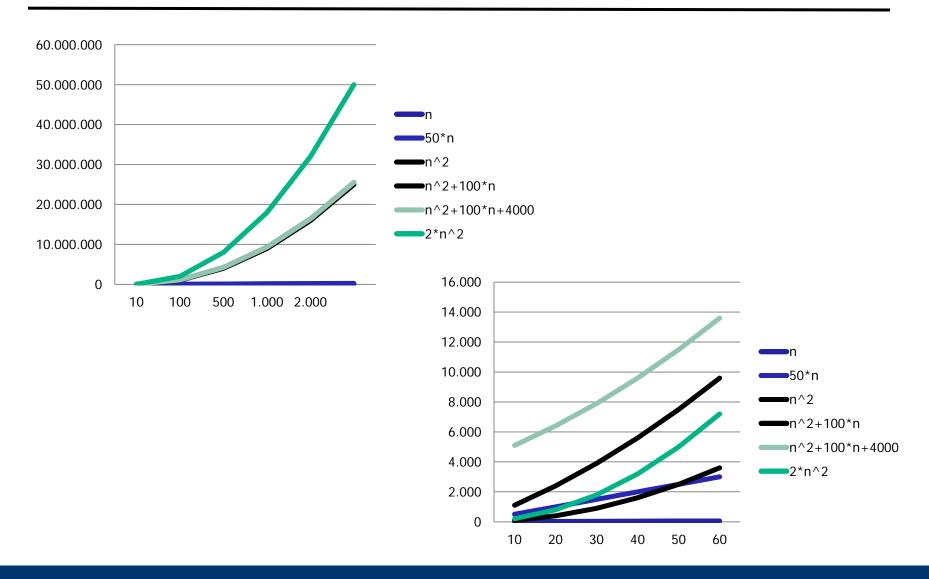
Complexity

- Counting the exact number of operations for an algorithm (wrt. input size) seems overly complicated
 - Linear scale-ups are often possible by using newer/more machines
 - Estimations need not be good for all cases for small inputs, many algorithms are lightning-fast anyway
 - We don't want long formulas focus on the dominant factors
- Intuitive goal: Analyzes the major cost drivers when the input gets "large"
- Asymptotic complexity behavior if input size goes to infinity

Examples



Small Values



Intuitive Observations

- Everything except the term with the highest exponent doesn't matter much, if n is large enough
- This term can have a factor, but the effect of this factor usually can be outweighed by newer/more machines
 - Therefore, we do not consider it
- Assume we have developed a polynomial f capturing the exact cost of an algorithm A
- Intuitively, the complexity of A is the term in f with the highest exponent after stripping linear factors

Overview

- Assume f(n) gives the number of operations performed by alg. A in worst case for an input of size n
- We are interested in the essence of f, i.e., the dominating factors when n grows large
- We do this by defining a hierarchy of classes of functions
 - For a function g, define O(g) as the class of functions that is asymptotically smaller or equal g
 - We want a simple g; simpler than f
 - If f∈O(g), then f will be asymptotically smaller or equal g
 - I.e.: for large inputs, the number of ops counted by f will be smaller than or equal to the one estimated through g
 - Asymptotically, g is an upper bound for f
 - Not necessarily the lowest

Formally: O-Notation

- Definition
 - Let $g: N \rightarrow R^+$. O(g) is the class of functions defined as $O(g) = \{f: N \rightarrow R^+ \mid \exists c, n_o: \forall n \geq n_o: f(n) \leq c*g(n)\}$
- Explanation
 - O(g) is the class of all functions which compute lower or equal values than g for any sufficiently large n, ignoring linear factors
 - O(g) is the class of functions that are asymptotically smaller than or equal g
- If f∈O(g), we say that "f is in O(g)" or "f is O(g)" or "f has complexity O(g)"

Examples

- Example: First f
 - Choose c=9 and n_0 =7
 - Assume $n>7=n_0$:
 - Then, $n^2 > 6*n+7$
 - Thus: $3n^2+6n+7 \le 3n^2 + n^2$
 - Finally: $3*n^2+n^2 \le 9*n^2$
 - Would also work for c=8,7, ...
- Concrete values of c and n₀ don't matter
 - Especially: No need to search for smallest such values for proving complexity

General Result

- Lemma: All constant functions are in O(1)
 - Let f(n)=k for some k>0
 - Let g(n)=1
 - We need to show that f∈O(g)
- Proof
 - Chose c=k and n_0 =0
 - Clearly: $\forall n \ge n_0$, we now have $f(n) \le c * g(n) = k*1 = k$
- Any part of an algorithm whose extend of work is independent of n can be summarized as O(1)

Calculating with Complexities

```
1. S: array_of_names;
2. n := |S|
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;
```

- Usually, we want to derive the complexity of a program without calculating its exact cost
 - Estimate a tight g without knowing f
- Some observations
 - Having many ops with cost 1 yields the same complexity as having only 1
 - Lines 5-8 cost 4 times 1 ∈ O(1)
 - If we see a polynomial, we can forget terms except the largest
 - As we certainly need O(n) for the outer loop, we can forget the startup which is O(1)

Formally: O-Calculus

- Such observations can be cast in a set of rules
- Lemma

Let k be a constant. The following equivalences are true

-
$$O(k+f) = O(f)$$
;
- $O(k*f) = O(f)$; with "slight misuse of notations"
- $O(f) + O(g) = O(max(f,g))$
- $O(f) * O(g) = O(f*g)$

- Explanations
 - Rule 3 (4) actually implies rule 1 (2), as k∈O(1)
 - Rule 3 is used for sequentially executed parts of a program
 - Rule 4 is used for nested parts of a program (loops)

Example

- There is a typo in this slide: Somewhere, I typed "und" instead of "and". Where?
- Abstract problem: Given a string T (template) und a pattern P (pattern), find all occurrences of P in T
 - Exact substring search
- The following algorithm solves this problem
 - There are better ones

```
1. for i = 1..|T|-|P|+1 do
2.
    match := true;
    j := 1;
   while match
       if T[i+j-1]=P[j] then
         if j=|P| then
6.
7.
           print i;
           match := false;
8.
9.
         end if;
         j := j+1;
10.
11.
    else
12.
         match := false,
13.
       end if;
     end while;
15.end for;
```

Complexity Analysis (n=|T|, m=|P|)

```
O(1)+O(1)=O(1)
  for i = 1..|T|-|P|+1 do
                                      O(n-m)
2.
     match := true;
                                   2.
                                         0(1)
                                                          1. O(n-m)
     i := 1;
                                   3.
                                         0(1)
                                                                0(1)
     while match
                                         O(m)
                                   4.
                                                                O(m)
       if T[i+j-1]=P[j] then
                                   5.
                                          0(1)
                                                                  0(1)
6.
          if j=|P| then
                                   6.
                                             0(1)
            print i;
7.
                                               0(1)
                                                                    O(1)*m)=O(m)
                                   7.
            match := false;
                                   8.
                                               0(1)
                                                             O(n-m)
9.
         end if;
                                   9.
                                                                0(1)
10.
         j := j+1;
                                             0(1)
                                   10.
                                                          3.
                                                                O(m)
11.
      else
                                   11.
                                   /12.
12.
         match := false,
                                             0(1)
                                                                    O(1) + O(m) = O(m)
13.
       end if;
                                   13.
     end while;
14.
                                   14.
                                                             O(n-m)
15. end for;
                                   15.-
                                                          2.
                                                                O(m)
                                                                    O(n-m)*O(m)=
                       Worst-Case
                                                                              O((n-m)*m)
```

1. O((n-m)*m)

Deriving new Rules: Transitivity of O-Membership

- Lemma: If f∈O(g) and g∈O(h), then f∈O(h)
- Proof
 - We know: $\exists c, n_0$: $\forall n \ge n_0$: $f(n) \le c*g(n)$
 - We know: ∃c', n'₀: ∀n≥n'₀: g(n) ≤ c'*h(n)
 - We need to show: $\exists c'', n''_0$: $\forall n \ge n''_0$: $f(n) \le c''*h(n)$
 - We chose: $n''_0 = \max(n_0, n'_0)$; c'' = c*c'
 - This gives:
 ∀n≥n"₀: f(n) ≤ c*g(n) ≤ c*c'*h(n) ≤ c"*h(n)
 - qed.

Ω -Notation

- O-Notation denotes an upper bound for the amount of computation necessary to run an algorithm for asymptotically large inputs
 - "f will always be faster than g"
- Sometimes, we also want lower bounds
 - "f can never be faster than g"
- Definition

Let
$$g: N \rightarrow R^+$$
. $\Omega(g)$ is the class of functions defined as $\Omega(g) = \{f: N \rightarrow R^+ \mid c, n_0: \forall n \geq n_0: g(n) \leq c^*f(n)\}$

- Explanation
 - $\Omega(g)$ is the class of functions that are asymptotically larger than g
 - Again: Not necessarily the largest smaller one

Further Notation

$$- O(g) = \begin{cases} f: \mathbb{R}_{0}^{+} \to \mathbb{R}_{0}^{+} & \exists c \in \mathbb{R}^{+} > 0 \quad \exists n_{0} \in \mathbb{R}_{0}^{+} > 0 \\ \forall n \geq n_{0}: f(n) \leq c \cdot g(n) \end{cases}$$

$$- \Omega(g) = \begin{cases} f: \mathbb{R}_{0}^{+} \to \mathbb{R}_{0}^{+} & \exists c \in \mathbb{R}^{+} > 0 \quad \exists n_{0} \in \mathbb{R}_{0}^{+} > 0 \\ \forall n \geq n_{0}: f(n) \geq c \cdot g(n) \end{cases}$$

$$- \Theta(g) = \begin{cases} f: \mathbb{R}_{0}^{+} \to \mathbb{R}_{0}^{+} & \exists c_{1}, c_{2} \in \mathbb{R}^{+} > 0 \quad \exists n_{0} \in \mathbb{R}_{0}^{+} > 0 \\ \forall n \geq n_{0}: c_{1} \cdot g(n) \leq f(n) \leq c_{2} \cdot g(n) \end{cases}$$

$$- O(g) = \begin{cases} f: \mathbb{R}_{0}^{+} \to \mathbb{R}_{0}^{+} & \forall c \in \mathbb{R}^{+} > 0 \quad \exists n_{0} \in \mathbb{R}_{0}^{+} > 0 \\ \forall n \geq n_{0}: f(n) < c \cdot g(n) \end{cases}$$

$$- \omega(g) = \begin{cases} f: \mathbb{R}_{0}^{+} \to \mathbb{R}_{0}^{+} & \forall c \in \mathbb{R}^{+} > 0 \quad \exists n_{0} \in \mathbb{R}_{0}^{+} > 0 \\ \forall n \geq n_{0}: f(n) < c \cdot g(n) \end{cases}$$

$$+ \omega(g) = \begin{cases} f: \mathbb{R}_{0}^{+} \to \mathbb{R}_{0}^{+} & \forall c \in \mathbb{R}^{+} > 0 \quad \exists n_{0} \in \mathbb{R}_{0}^{+} > 0 \\ \forall n \geq n_{0}: f(n) > c \cdot g(n) \end{cases}$$

Not Every Problem is Simple

- Definition
 We call an algorithm A with cost function f
 - polynomial, if there exists a polynomial p with $f \in O(p)$
 - exponential, if $\exists \varepsilon > 0$ with $f \in \Omega(2^{n^{\varepsilon}})$
- General assumption: If A is exponential, it cannot be executed in reasonable time for non-trivial input
 - But: If A is exponential, this does not imply that the problem solved by A cannot be solved in polynomial time
 - Of course: If A is bounded by a polynomial, then also the problem solved by A can be solved in polynomial time (by A)
 - Much research in finding good solutions for difficult problems

Content of this Lecture

- Efficiency of Algorithms
- Machine Model
- Complexity
- Examples
 - Exact substring search (average-case versus worst-case)
 - Knapsack problem (exponential problem)

Exact Substring Search: Average Case

```
1. for i = 1..|T|-|P| do
    match := true;
     j := 1;
    while match
       if T[i+j-1]=P[j] then
     if j=|P| then
       print i;
        match := false;
       end if;
         j := j+1;
10.
11.
    else
     match := false,
12.
13.
      end if;
14.
     end while;
15. end for;
```

- We showed that the algorithm's WC is O((n-m)*m)~O(n*m)
 - Since m<<n
- How does a worst case look like?

Exact Substring Search: Beyond Worst Case

```
1. for i = 1..|T|-|P| do
    match := true;
     j := 1;
    while match
      if T[i+j-1]=P[j] then
  if j=|P| then
6.
      print i;
        match := false;
      end if;
     j := j+1;
10.
11.
    else
    match := false,
12.
13.
      end if;
14.
    end while;
15. end for;
```

- We showed that the algorithm's WC is O((n-m)*m)~O(n*m)
 - Since m<<n
- How does a worst case look like?
 - $T=a^n$; $P=a^m$
- What about the average case?
 - The outer loop is always passed by n times, no matter how T / P look like
 - This already is in $\Omega(n-m)$ in all cases
 - Worst, best, average, ...

Exact Substring Search: Average Case

- How often do we pass by the inner loop?
- Needs a model of "average strings"

```
1. O(n)
    while match
3.
       if T[i+j-1]=P[j] then
        0(1)
      else
6.
        O(1); # end loop
```

- Simplest model:
 - T and P are randomly generated from the same alphabet Σ
 - Every character appears with equal probability at every position
- Gives a chance of $p=1/|\Sigma|$ for every test "T[i+j-1]=P[j]"
- Derive the expected number of comparisons in line 3

$$-1(1-p)+2*p(1-p)+3*p^{2}(1-p)+...+m*p^{m-1}=$$

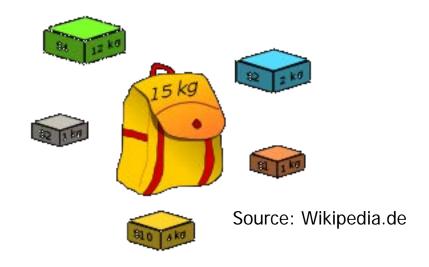
$$1-p+2p-2p^{2}+3p^{2}-3p^{3}+...m*p^{m-1}=$$

$$1+p+p^{2}+p^{3}+...p^{m-1}=\sum_{i=0}^{m-1}p^{i}$$

Differences On Real Data

- Assume |T| = 50.000 and |P| = 8 and $|\Sigma| = 28$
 - German text, including Umlaute, excluding upper/lower case letters
 - Worst-case estimate: 400.000 comparisons
 - Note: Here, O(m*n) is quite tight, no linear factors ignored
 - Average-case estimate: ~51.851 comparisons
 - We expect a mismatch after every 1,03 comparisons
- Assume |T|=50.000, |P|=8, $|\Sigma|=4$ (e.g., DNA)
 - Worst-case: 400.000 comparisons
 - Average-case: 65.740
- Best algorithms are O(m+n) ~ 50.008 comparisons
- Much better WC result, but not much better AC result
- But: Are German texts random strings?

Example 2: Knapsack Problem



 Given a set S of items with weights w[i] and value v[i] and a maximal weight m; find the subset T⊆S such that:

$$\sum_{i \in T} w[i] \le m \quad \text{and} \quad \sum_{i \in T} v[i] = \max$$

Algorithm and its Complexity

- Imagine an algorithm which enumerates all possible T
- For each T, computing its value and its weight is in O(|S|)
 - Testing for maximum is O(1)
- But how many different T exist?

Algorithm and its Complexity

- Imagine an algorithm which enumerates all possible T
- For each T, computing its value and its weight is in O(|S|)
 - Testing for maximum is O(1)
- But how many different T exist?
 - Every item from S can be part of T or not
 - This gives 2*2*2* *2=2|S| different options
- Together: This algorithm is in O(2|S|)
- Actually, the knapsack problem is NP-hard
- Thus, very likely no polynomial algorithm exists

Exemplary Questions for Examination

- Given the following algorithm: ... Analyze its worst case and average case complexity
- Prove that $O(f^*g) = O(f)^*O(g)$
- Order the following functions by their complexity class: n², 100n, n*log(n), n*2^{log(n)}, sqrt(n), n!
- Let $f \in \Omega(g)$ and $g \in \Omega(h)$. Show that $f \in \Omega(h)$
- Find a function f such that: $f \in \Omega(n)$ and $f \notin O(n^3 * \log(n))$