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Efficiency of Algorithms

e Algorithms have an input and solve a defined problem

— Sort this list of names

— Compute the running 3-month average over this table of 10 years
of daily revenues

— Find the shortest path between node X and node Y in this graph
with n nodes and m edges

e Research in algorithms focuses on efficiency
— Efficiency: Use as few resources as possible for solving the task
— Resources: CPU cycles, memory cells, (network traffic, disk 10, ...)

e How can we measure efficiency for different inputs?

e How can we compare the efficiency of two algorithms
solving the same problem?
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Option 1: Use a Reference Machine

e Empirical evaluation

— Chose a concrete machine (CPU, RAM, BUS, ...)
e Or many different machines

— Chose a set of different input data sets (workloads)
e The more, the better
e Real, synthetic, realistic, ...

— Run algorithm on all inputs and measure time (or space or ...)
e Pro: Gives real runtimes and practical guidance

e Contra
— Will all potential users have this machine?
— Performance dependent on prog language and skill of engineer
— Are the datasets used typical for what we expect in an application?
— Can we extrapolate results beyond the given data sets?
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Option 2: Computational Complexity

e Derive an estimate of the maximal (worst-case) number of
operations as a function of the input
— “For an input of size n, the alg. will perform “~n3“ operations”
— Abstraction: Define a (realistic) model of a machine

e Advantages
— Analyses the abstract algorithm, not its concrete implementation
— Independent of concrete hardware; future-proof

e Disadvantages
— No real runtimes, no practical guidance
— What is an operation? What do we count?
— Requires assumptions on the cost of primitive operations
— Assumes that all machines offer the same set of operations
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Next steps

e In this lecture, we focus on complexity

— Note again: When it comes to practical problems, complexity is not
everything

— There can be extremely large runtime differences between
algorithms having the same complexity

— Difference between theoretical and practical computer science
e We need to define what we count: Machine model
e \We need to define how we estimate: O-notation
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Our Machine Model: RAM

e Very simple model: Random Access Machines (RAM)

 Work: What a traditional CPU can execute in 1 cycle
— Addition, comparison, jumps, ...

— Forget multi-core, disks, ALUs, GPUs, FPGA, cache levels,
pipelining, hyper-threading, ...

— Note: There are machine models for many of these variations

e Space: Infinite amount of storage cells

— Each cell holds one (possibly infinitely large) value (number)
e Separate program storage — no interference with data
e Cells are addressed by consecutive integers
e Access to each cell in one CPU cycle

— Special treatment of input and output

— One special register (switch) storing results of a comparison
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Operations

e Load value into cell, move value from cell to cell
e LOADv 3, 5: Load value “5” in cell 3
e LOAD 3, 5: Copy value of cell 5 into cell 3
e Add/subtract/multiply/divide value/cell to/from/by cell and store in cell
— ADDv 3, 5, 6; Add “6” to value of cell 5 and store result in cell 3
— ADD 3, 5, 6; Add value of cell 6 to value of cell 5 and store in cell 3
e Compare values of two cells
— If equal, set switch to TRUE, otherwise to FALSE
e Jump to position if switch is TRUE
e Jump to position
e Stop
— RET 6; Returns value of cell 6 as result and stop
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Example: XY (for y>0)

input
X,y: 1nteger;
t: iInteger;

1: iInteger;

t 1= X;
for 1 :=1 .. y-1 do
t ;= t * X; 1. LOADvV 1, x; # provide input
end for; 2. LOADv 2, y;
return t; » 3. LOAD 3, 1; #t = X
4. LOADv 4, 1; #1 =1
5. CMP 4, 2; # check i =y
6. IFTRUE 10;
7. MULT 3, 1, 3; # t = t*X
8.ADDv 4, 4, 1; # 1 = 1+l
9. GOTO 5;
10.RET 3; # return t
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Cost Models

e We count the number of operations (time) performed and
the number of cells (space) required

e This is called uniform cost model (UCM)

— Every operation costs time 1, every value needs space 1
e Not realistic
e Data access has non-uniform cost (cache lines)
e Comparing two real numbers requires more work than to integers

e Alternative model: Machine cost (logarithmic cost)
— Consider concrete machine representation of every data element
— Cells hold 1 byte — how many bytes do | need?
— More realistic, yet more complex
— Derives identical complexity results for most sensible cases
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Counting Operations in the RAM Model

P OO ~NOOUITA, WNEPE

. LOADv 1, Xx; # 1nput

- LOADv 2, vy;

. LOAD 3, 1; # t = X

. LOADv 4, 1; #1 =1

. CMP 4, 2; # check 1=y
. IFTRUE 10;

. MULT 3, 1, 3; # t = t*x

. ADDv 4, 4, 1; # 1 = 1+1

. GOTO 5;

O0.RET 3; # return t

e Ify>1
— Startup (lines 1-4) costs 4
— Loop (lines 5-9) costs 5
— Loop is passed y times
— Last loop costs 2, return costs 1
— Total costs: 4+(y-1)*5+3
e Ify=1
— Total costs: 7=4+(y-1)*5+3
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Selection Sort: Uniform versus Machine Cost

1. S: array of names;
2. n = |S]|

3. for 1 = 1..n-1 do

4 for j = 1+1l..n do
5. if S[i]>S[j] then
6 tmp = S[1];
7 SLil := Shl:
8 S[1] := tmp;
9. end i1fT;

10. end for;

11.end for;

e With UCM, we showed f(n)~4n2-3n

— But: Every cell needs to hold a name =
string of arbitrary length

— We used a UCM including strings

e Towards machine cost
— Assume max length m for any SJ[i]
— Then, line 5 costs m comps in WC
— Lines 6-8; additional cost for loops for

copying char-by-char

e \We did not consider super-long
strings (i>2%%) or super-large
alphabets (char comp in 1 cycle?)

UIf Leser: Algorithms and Data Structures, Summer Semester 2017



Conclusions

e We usually assume RAM with uniform cost, but will not
give the RAM program itself

— Translation from pseudo code is simple and adds only constant
costs per operation — which we will ignore anyway

 We assume UCM for primitive data types: numbers, strings
— We sometimes look at strings in more detalil
— More complex data type (lists, sets etc.) will be analyzed in detail

 \When analyzing real programs, many more issues arise
— Performance killer in Java: Garbage collection

— Performance trick in Java: Object reuse
— Performance killer in Java: new vector (1,1)
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Complexity

e Counting the exact number of operations for an algorithm
(wrt. input size) seems overly complicated
— Linear scale-ups are often possible by using newer/more machines

— Estimations need not be good for all cases - for small inputs, many
algorithms are lightning-fast anyway

— We don’t want long formulas — focus on the dominant factors

e [Intuitive goal: Analyzes the major cost drivers when the
Input gets “large”

e Asymptotic complexity — behavior Iif input size goes to
Infinity
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Intuitive Observations

e Everything except the term with the highest exponent
doesn’t matter much, if n is large enough

e This term can have a factor, but the effect of this factor
usually can be outweighed by newer/more machines
— Therefore, we do not consider it

e Assume we have developed a polynomial f capturing the
exact cost of an algorithm A

e [ntuitively, the complexity of A is the term in f with the
highest exponent after stripping linear factors
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Overview

e Assume f(n) gives the number of operations performed by
alg. A in worst case for an input of size n

e \We are interested In the essence of f, I.e., the dominating
factors when n grows large

e We do this by defining a hierarchy of classes of functions
— For a function g, define O(g) as the class of functions that is
asymptotically smaller or equal g
 We want a simple g; simpler than f
— If feO(qg), then f will be asymptotically smaller or equal g

e |.e.: for large inputs, the number of ops counted by f will be smaller
than or equal to the one estimated through g

— Asymptotically, g is an upper bound for f
e Not necessarily the lowest
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Formally: O-Notation

e Definition
Let g:- N>R*. O(g) Is the class of functions defined as
O(g) = {T-N—>R*| Fc, n,- vn=n,: f(n) < c*g(n)}

e Explanation

— 0O(g) is the class of all functions which compute lower or equal
values than g for any sufficiently large n, ignoring linear factors

— 0O(g) is the class of functions that are asymptotically smaller than
or equal g

e |If feO(g), we say that “f is in O(g)” or “f i1s O(g)” or
“f has complexity O(g)”
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Examples

e Example: First f
— Choose ¢=9 and n,=7

£(N)=3*n2+6*n+7 is 0(n?) — Assume n>7/=ny:
e 2
F(N)=n3+7000*n-300 is O(n?) Then, n°>6*n+7

] e Thus: 3n?+6n+7 < 3n? + n?
f(n)=4*n?+200*n>-100 is 0(n?) e Finally: 3*n2+n2 < 9*n2

f(n)=log(n)+300 1s O(log(n)) — Would also work for c=8,7, ...

Tf(n)=log(n)+n 1s 0(n) e Concrete values of ¢c and n,

f(n)=n*log(n) s O0(n*log(n)) don’t matter

f(n)=n2 is 0(nd) — Especially: No need to search for
smallest such values for proving
complexity
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General Result

e Lemma: A/l constant functions are in O(1)
— Let f(n)=k for some k>0
— Let g(n)=1
— We need to show that feO(g)
e Proof
— Chose c=k and n,=0
— Clearly: vn=n,, we now have f(n) < c * g(n) = k*1 =k
e Any part of an algorithm whose extend of work is
Independent of n can be summarized as O(1)

UIf Leser: Algorithms and Data Structures, Summer Semester 2017



Calculating with Complexities

1. S: array of names;
2. n = |S]|

3. for 1 = 1..n-1 do
4. for J = 1+1l..n do
5. 1T S[1]>S[jJ] then
6. tmp = S[i];
7. S[i] = S[11;
8. S[1] = tmp;
9. end i1f;

10. end for;

11.end for;

Usually, we want to derive the
complexity of a program without
calculating its exact cost

— Estimate a tight g without knowing f

Some observations

— Having many ops with cost 1 yields
the same complexity as having only 1

e Lines 5-8 cost 4 times 1 € O(1)
— If we see a polynomial, we can forget
terms except the largest

e As we certainly need O(n) for the
outer loop, we can forget the startup
which is O(1)
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Formally: O-Calculus

e Such observations can be cast in a set of rules

e Lemma
Let k be a constant. The following equivalences are true
— O(k+1) = O(1),
— O(k*1) = O(1),
- O(1) + O(g) =6 max(1,g))
- O(f) *O(g) = O(f*g)

e Explanations
— Rule 3 (4) actually implies rule 1 (2), as keO(1)

— Rule 3 is used for sequentially executed parts of a program
— Rule 4 is used for nested parts of a program (loops)

with “slight misuse of
notations”
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Example

e There is a typo In this slide: Somewhere, | typed “und”

Instead of “and”. Where?

e Abstract problem: Given a
string T (template) und a
pattern P (pattern), find all
occurrences of Pin T
— Exact substring search

e The following algorithm
solves this problem
— There are better ones

1. for 1 = 1._|T]-|P]+1 do
2. match := true;

3. J :=1;

4. while match

5. 1T T[i+j-1]=P[j] then
6. iIT J=|P|] then

7. print i;

8. match = false;
9. end i1f;

10. J = J+1;

11. else

12. match := false,
13. end i1f;

14. end while;

15.end for;
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Complexity Analysis (n=|T], m=|P])

1. for i = 1_._|T]-]P]+1 do 1
2. match = true; 2.
3. Jj = 1; 3.
4. while match 4.
5. iT TLi+j-1]=P[j] then 5.
6. it J=|P|] then 6.
7. print i; @ 7.
8. match := false; 8.
9. end 1f; 9.
10. J = j+1; 1
11. else

12. match := false, .
13. end 1f; 13.
14. end while; 14.
15.end for; 15.

- 0(n-m)
o)

p !

0(1)+0(1)=0(1)

1. O(n-m)
2. oD
3. o(m)
4. oD

J

0(1)*m)=0(m)

1. O(n-m)
2. o)
3. o(m)

J

O(1)+0(m)=0(m)

1. O(n-m)
2. o(m)

J

O(n-m)*O(m)=
O((n-m)*m)

1. o((n-m)*m)
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Deriving new Rules: Transitivity of O-Membership

e Lemma: If feO(g) and geO(h), then feO(h)

e Proof
— We know: 3c, ny: Vn=n,: f(n) < c*g(n)
— We know: 3c¢’, n'y: Vn=n',: g(n) < c*h(n)
— We need to show: 3c”, n”y: vn=n"y: f(n) < c"*h(n)
— We chose: n”; = max(ny, n’y); c’=c*C’
— This gives:
vn=n",: f(n) < c*g(n) < c*c*h(n) < c"*h(n)
— ged.

UIf Leser: Algorithms and Data Structures, Summer Semester 2017



Q)-Notation

e (O-Notation denotes an upper bound for the amount of
computation necessary to run an algorithm for
asymptotically large inputs

— “f will always be faster than g”
e Sometimes, we also want lower bounds
— “f can never be faster than g”

e Definition
Let g:- N>R*. Q(qg) Is the class of functions defined as
Q@) = {F-N—>R*[c, n,: Yn=2n,: g(n) < c*f(n)}

e Explanation

— Q(9g) is the class of functions that are asymptotically larger than g
— Again: Not necessarily the largest smaller one

UIf Leser: Algorithms and Data Structures, Summer Semester 2017



Further Notation

e

JceR* >0 3In, ERI >0)
- 0(9) ={/:R§ > R} S

vnz=ng f(n) <c-gn ;

3c € Rt >0 3Iny, € R > 0)
vnz=zng: f(n)=c-gn) |

- Q(g) =R - R}

( Jc,,¢c, ERT>0 In, €ER >0
o= {rmg g | T <m-o |
\ Vnzng ¢ -gn) < f(n) <c-gn)

VEERT >0 Inyg ERF >0
vn=n, f(n) <c-gn

- o(g) = {fr Ry — Ry

Vc € RT >0 anoemg:v-o}

- w(9)={fim_’m vnzne: f(n) >c-gn)
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Not Every Problem is Simple

e Definition
We call an algorithm A with cost function f
— polynomial, Iif there exists a polynomial p with fe O(p)
— exponential, if 3e>0 with fe Q(2" )
e General assumption: If A Is exponential, it cannot be
executed Iin reasonable time for non-trivial input

— But: If A is exponential, this does not imply that the problem solved
by A cannot be solved in polynomial time

— Of course: If A is bounded by a polynomial, then also the problem
solved by A can be solved in polynomial time (by A)

— Much research in finding good solutions for difficult problems
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Content of this Lecture

e Efficiency of Algorithms
e Machine Model

e Complexity

e Examples

— Exact substring search (average-case versus worst-case)
— Knapsack problem (exponential problem)
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Exact Substring Search: Average Case

1. for i = 1..|T|-|P| do  \We showed that the algorithm’s
g- ?afjhlf: true; WC is O((n-m)*m)~0(n*m)

4.  while match — Since m<<n

5. it T[i+j-1]=P[j] th :
o el T | e How does a worst case look like?
7. print i;

8. match :-= false;

9. end 1T;

10. J = J+1;

11. else

12. match :-= false,

13. end 1T;

14. end while;

15.end for;

UIf Leser: Algorithms and Data Structures, Summer Semester 2017



Exact Substring Search: Beyond Worst Case

1. for i = 1..|T|-|P| do  \We showed that the algorithm’s
g- ?afjhlf: true; WC is O((n-m)*m)~0(n*m)

4.  while match — Since m<<n

5. if T[i+j-1]1=P[j] th -

o el T« How does a worst case look like?
7. print i1; - Tzan; P=gm

8. match :-= false;

9. end if;  What about the average case?

10. 3= — The outer loop is always passed by n
1eoelee i how T / P look lik
o Tatch = false. times, no matter how ook like
13. end if; — This already is in Q(n-m) in all cases
14. end while;  Worst, best, average, ...

15.end for;
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Exact Substring Search: Average Case
- 0(n)

while match
if T[Li+3-1]=P[J] then
o(D)
else
o0(D); # end loop

 How often do we pass by the
Inner loop?

e Needs a model of “average strings”
e Simplest model:
T and P are randomly generated from the same alphabet >
— Every character appears with equal probability at every position
e Gives a chance of p=1/|2| for every test "T[i+j-1]=P[j]”
e Derive the expected number of comparisons in line 3

— 1(1-p)+2*p(1-p)+3*p*(1-p)+..+m*pmi=
1-p + 2p—2p2+ 3p%-3p3+ ... m*pMi=
1+p+p2+p3+pm1—2p

~N~NOo ok~ WDN P
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Differences On Real Data

e Assume |T|=50.000 and |P|=8 and |>|=28
— German text, including Umlaute, excluding upper/lower case letters

— Worst-case estimate: 400.000 comparisons
e Note: Here, O(m™*n) is quite tight, no linear factors ignored

— Average-case estimate: ~51.851 comparisons
e We expect a mismatch after every 1,03 comparisons

e Assume |T|=50.000, |P|=8, |2|=4 (e.g., DNA)
— Worst-case: 400.000 comparisons
— Average-case: 65.740

e Best algorithms are O(m+n) — 50.008 comparisons
e Much better WC result, but not much better AC result
e But: Are German texts random strings?
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Example 2: Knapsack Problem

é Source: Wikipedia.de

e Given a set S of items with weights wl[i] and value v[i] and
a maximal weight m; find the subset TS such that:

> wWil<m and > V[i]=max

ieT ieT
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Algorithm and its Complexity

e |Imagine an algorithm which enumerates all possible T

e For each T, computing its value and its weight is in O(|S])
— Testing for maximum is O(1)

e But how many different T exist?
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Algorithm and its Complexity

e |magine an algorithm which enumerates all possible T

e For each T, computing its value and its weight is in O(|S])
— Testing for maximum is O(1)

e But how many different T exist?
— Every item from S can be part of T or not
— This gives 2*2*2* ... *2=2I8I different options

» Together: This algorithm is in O(2151)

e Actually, the knapsack problem is NP-hard
e Thus, very likely no polynomial algorithm exists
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Exemplary Questions for Examination

e Given the following algorithm: ... Analyze its worst case
and average case complexity

e Prove that O(f*g) = O(f)*O(g)

e Order the following functions by their complexity class: n?,
100n, n*log(n), n*2/es(m  sgrt(n), n!

e Let feQ(g) and geQ(h). Show that feQ(h)

e Find a function f such that: feQ(n) and feO(n3**log(n))
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