
Algorithms and Data Structures

Ulf Leser

Searching in Lists

Ulf Leser: Algorithms and Data Structures 2

This Course

• Introduction 2
• Abstract Data Types 1
• Complexity analysis 1
• Styles of algorithms 1
• List implementations 1
• Sorting (lists) 3
• Searching (in (sorted) lists) 4
• Hashing (to manage lists) 2
• Trees (to manage lists) 4
• Graphs (no lists!) 5
• Sum ~9/25

Ulf Leser: Algorithms and Data Structures 3

Topics of Next Lessons

• Search: Given a (sorted or unsorted) list A with |A|=n
elements (integers). Check whether a given value c is
contained in A or not
– Search returns true or false
– If A is sorted, we can exploit transitivity of “≤” relation
– Fundamental problem with a zillion applications

• Select: Given an unsorted list A with |A|=n elements
(integers). Return the i‘th largest element of A.
– Returns an element of A
– The sorted case is trivial – return A[i]
– Interesting problem (especially for median) with some applications
– [Interesting proof]

Ulf Leser: Algorithms and Data Structures 4

Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists
• Selecting in Unsorted Lists

Ulf Leser: Algorithms and Data Structures 5

Searching in an Unsorted List

• No magic
• Compare c to every element of A
• Worst case (c∉A): O(n)
• Average case (c∈A)

– If c is at position i, we
require i tests

– All positions are equally
likely: probability 1/n

– This gives

• Sequential access: Same for array, linked lists, …

1. A: unsorted_int_array;
2. c: int;
3. for i := 1.. |A| do
4. if A[i]=c then
5. return true;
6. end if;
7. end for;
8. return false;

()nOnnn
n

i
n

n

i
=

+
=

+
=∑

= 2
1

2
*11 2

1

Ulf Leser: Algorithms and Data Structures 6

Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists

– Binary Search
– Fibonacci Search
– Interpolation Search

• Selecting in Unsorted Lists

Ulf Leser: Algorithms and Data Structures 7

Binary Search (binsearch)

• If A is sorted, we can be much faster
• Binary Search: Exploit transitivity

So
ur

ce
: h

ttp
:/

/h
ki

.u
ni

-k
oe

ln
.d

e

Ulf Leser: Algorithms and Data Structures 8

Recursive versus Iterative Binsearch

• Recursive binsearch uses only end-recursion
• Equivalent iterative program is more space-efficient

– We don’t need old values for l,r – no call stack
– O(1) additional space

1. A: sorted_int_array;
2. c: int;
3. f := 1;
4. r := |A|;
5. while f≤r do
6. m := f+(r-f) div 2;
7. if c<A[m] then
8. r := m-1;
9. else if c>A[m] then
10. f := m+1;
11. else
12. return true;
13.end while,
14.return false;

1. func bool binsearch(A: sorted_array;
c,f,r : int) {

2. If f>r then
3. return false;
4. end if;
5. m := f+((r-f) div 2);
6. If c<A[m] then
7. return binsearch(A, c, f, m-1);
8. else if c>A[m] then
9. return binsearch(A, c, m+1, r);
10. else
11. return true;
12. end if;
13.}

Ulf Leser: Algorithms and Data Structures 9

Complexity of Binsearch

• In every call to binsearch (or every while-loop), we only do
constant work
– Independent of n

• With every call, we reduce the size of sub-array by 50%
– We call binsearch once with n, with n/2, with n/4, …

• Binsearch has worst-case complexity O(log(n))
• Average case only marginally better

– We only stop if we find c before the
interval has size 1

– Chances to “hit” target in the middle
of the search is low for (many) first steps

– Chances increase for (few) last steps
– See Ottmann/Widmayer Source: railspikes.com

Ulf Leser: Algorithms and Data Structures 10

Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists

– Binary Search
– Fibonacci Search
– Interpolation Search

• Selecting in Unsorted Lists

Ulf Leser: Algorithms and Data Structures 11

Searching without Divisions

• Can we search in O(log(n)) without complex arithmetic?
– Simple arithmetic operations are faster on real hardware
– But: Binsearch usually uses bit shift (div 2) – very fast

• Fibonacci search: O(log(n)) without division/multiplication
– Also interesting: O(log(n)) without the “always 50%” pattern

• Recall Fibonacci numbers
– fib(1)=fib(2)=1; fib(i)=fib(i-1)+fib(i-2)
– 1, 1, 2, 3, 5, 8, 13, 21, 34, …
– Observation: fib(i-2) is roughly 1/3, fib(i-1) roughly 2/3 of fib(i)

Ulf Leser: Algorithms and Data Structures 12

Fibonacci Search: Idea

fib(i)

fib(i-2) fib(i-1)

• Let fib(i) be the
smallest fib-number
with fib(i)≥|A|

• If A[fib(i-2)]=c: stop
• Otherwise, search in

[1 … fib(i-2)] or
[fib(i-2)+1 … n]

• Beware out-of-range
part A[n+1…fib(i)]

• No divisions

fib(i-1)

Ulf Leser: Algorithms and Data Structures 13

Algorithm (assume |A|=fib(i)-1)

• 3-6: Search at A[fib(i-2)]
– With fib2, fib3 we can compute

all other fib’s
– fib(i)=fib(i-1)+fib(i-2)
– fib(i-1)=fib(i-2)+fib(i-3)
– …

• 7-24: Partition A at
descending Fibonacci
numbers

• After each comparison,
update fib3 and fib2

1. A: sorted_int_array;
2. c: int;
3. compute i; #smallest fib(i)>|A|
4. fib3 := fib(i-3); # Precomputed
5. fib2 := fib(i-2); # Precomputed
6. m := fib2;
7. repeat
8. if c>A[m] then
9. if fib3=0 then return false
10. else
11. m := m+fib3;
12. tmp := fib3;
13. fib3 := fib2-fib3;
14. fib2 := tmp;
15. end if;
16. else if c<A[m]
17. if fib2=1 then return false
18. else
19. m := m-fib3;
20. fib2 := fib2 – fib3;
21. fib3 := fib3 – fib2;
22. end if;
23. else return true;
24.until true;

Ulf Leser: Algorithms and Data Structures 14

Example (recall: 1,1,2,3,5,…)

fib2 fib3 m
2 1 2
1 1 3

Search 3 in
{1,2,3};
i=5

fib2 fib3 m
2 1 2
1 1 3
1 0 4

Search 6 in
{1,2,3,4};
i=5

true

false

Search 100 in
{1…10000}

fib2 fib3 m
4181 2584 4181
1597 987 1597

… … …

1. A: sorted_int_array;
2. c: int;
3. compute i; #smallest fib(i)>|A|
4. fib3 := fib(i-3);
5. fib2 := fib(i-2);
6. m := fib2;
7. repeat
8. if c>A[m] then
9. if fib3=0 then return false
10. else
11. m := m+fib3;
12. tmp := fib3;
13. fib3 := fib2-fib3;
14. fib2 := tmp;
15. end if;
16. else if c<A[m]
17. if fib2=1 then return false
18. else
19. m := m-fib3;
20. fib2 := fib2 – fib3;
21. fib3 := fib3 – fib2;
22. end if;
23. else return true;
24.until true;

Ulf Leser: Algorithms and Data Structures 15

Complexity

• Worst-case: c is always in the larger fraction of A
– We roughly call once for n, once for 2n/3, once for 4n/9, …

• Formula of Moivre-Binet: For large i …

• We find i such that fib(i-1)≤n≤fib(i)~k*1,62i

• In worst-case, we make ~i comparisons
– We break the array i times

• Since i=log1,62(n/k), we are in O(log(n))

i

i

kifib 62.1*~
2

51
5

1~)(


















 +

Ulf Leser: Algorithms and Data Structures 16

Main message

• If you break an array always in the middle, you can do this
at most O(log(n)) times

• If you break an array always at 1/3 and 2/3, you also can
do this at most O(log(n)) times

• What if we break an array always at 1/10 – 9/10?
– Wait a minute

Ulf Leser: Algorithms and Data Structures 17

Searching without Math (sketch – details later)

• We actually can solve the search problem in O(log(n))
using only comparisons (no additions etc.)

• Transform A into a balanced binary search tree
– At every node, the depth of the two subtrees differ by at most 1
– At every node n, all values in the left (right) subtree are smaller

(larger) than n
• Search

– Recursively compare c to node
labels and descend left/right

– Balanced bin-tree has
depth O(log(n))

– We need at most log(n)
comparisons – and nothing else

Ulf Leser: Algorithms and Data Structures 18

Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists

– Binary Search
– Fibonacci Search
– Interpolation Search

• Selecting in Unsorted Lists

Ulf Leser: Algorithms and Data Structures 19

Interpolation Search

• Imagine you have a telephone book and search for
„Zacharias“

• Will you open the book in the middle?
• We can exploit additional knowledge about the keys
• Interpolation Search: Estimate where c lies in A based on

the distribution of values in A
– Simple: Use max and min values in A and assume equal distribution
– Complex: Approximation of real distribution (histograms, …)

Ulf Leser: Algorithms and Data Structures 20

Simple Interpolation Search

• Assume equal distribution – values within A are equally
distributed in range [A[1], A[n]]

• Best guess for the rank (position in A) of c

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐 = 𝑓𝑓 + 𝑟𝑟 − 𝑓𝑓 ∗
𝑐𝑐 − 𝐴𝐴[𝑓𝑓]

𝑎𝑎 𝑟𝑟 − 𝐴𝐴[𝑓𝑓]

• Idea: Use m=rank(c) and proceed recursively
• Example: “Xylophon”

Ulf Leser: Algorithms and Data Structures 21

Analysis

• On average, Interpolation Search on equally distributed
data requires O(log(log(n)) comparison
– Proof: See [OW94]

• But: Worst-case is O(n)
– If concrete distribution deviates heavily from expected distribution
– E.g., A contains “aaa” and all other names>” Xylophon”

• Further disadvantage: In each phase, we perform ~4
adds/subs and 2*mults/divs
– Assume this takes 12 cycles (1 mult/div = 4 cycles)
– Binsearch requires 2*adds/subs + 1*shift ~3 cycles
– Even for n=232~4E9, this yields 12*log(log(4E9))~72 ops versus

3*log(4E9)~90 ops – not that much difference

Ulf Leser: Algorithms and Data Structures 22

Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists
• Selecting in Unsorted Lists

– Naïve or clever

Ulf Leser: Algorithms and Data Structures 23

Quantiles

• Recall: The median of a list is its middle value
– Sort all values and take the one in the middle

• Generalization: x%-quantiles
– Sort all values and take the value at x% of all values
– Typical: 25, 75, 90, -quantiles

• How long do 90% of all students need to obtain their degree?
– The 25%, 50%, 75% are called quartiles
– Median = 50%-quantile

Ulf Leser: Algorithms and Data Structures 24

Selection Problem

• Definition
The selection problem is to find the x%-quantile of a set A
of unsorted values

• Solutions
– We can sort A and then access the quantile directly
– Thus, O(n*log(n)) is easy
– It is easy to see that we have to look at least at each value once;

thus, the problem is in Ω(n)
– Can we solve this problem in linear time?

Ulf Leser: Algorithms and Data Structures 25

Observation and Example: Top-k Problem

• Top-k: Find the k largest values in A
• For constant k, a naïve solution is linear (and optimal)

– repeat k times
– go through A and find largest value v;
– remove v from A;
– return v
– Requires k*|A|=O(|A|) comparisons

• But if k=c*|A|, we are in O(c*|A|*|A|)=O(|A|2)
– For any constant factor c
– We measure complexity in size of the input
– It is decisive whether c is part of the input or not

Ulf Leser: Algorithms and Data Structures 26

Selection Problem in Linear Time

• We sketch an algorithm which solves the selection problem
in linear time
– Actually, we solve the equivalent problem of returning the k’th

value in the sorted A (without sorting A)
• Interesting from a theoretical point-of-view
• Practically, the algorithm is of no importance because the

linear factor gets enormously large
• It is instructive to see why (and where)

Ulf Leser: Algorithms and Data Structures 27

Algorithm

• Recall QuickSort: Chose
pivot element p, divide
array wrt p, recursively
sort both partitions
using the same trick

• We reuse the idea:
Chose pivot element p,
divide array wrt p,
recursively select in the
one partition that must
contain the k’th element

1. func integer divide(A array;
2. f,r integer) {
3. …
4. while true
5. repeat
6. i := i+1;
7. until A[i]>=val;
8. repeat
9. j := j-1;
10. until A[j]<=val or j<i;
11. if i>j then
12. break while;
13. end if;
14. swap(A[i], A[j]);
15. end while;
16. swap(A[i], A[r]);
17. return i;
18.}

1. func int quantile(A array;
2. k, f, r int) {
3. if r≤f then
4. return A[f];
5. end if;
6. pos := divide(A, f, r);
7. if (k ≤ pos-l) then
8. return quantile(A, k, f, pos-1);
9. else
10. return quantile(A, k-pos+l, pos, r);
11. end if;
12.}

Ulf Leser: Algorithms and Data Structures 28

Analysis

• Worst-case: Assume
arbitrarily badly
chosen pivot elements

• pos always is r-1 (or f+1)
• Gives O(n2)
• Need to chose the pivot element p more carefully

1. func int quantile(A array;
2. k, f, r int) {
3. if r≤f then
4. return A[f];
5. end if;
6. pos := divide(A, f, r);
7. if (k ≤ pos-l) then
8. return quantile(A, k, f, pos-1);
9. else
10. return quantile(A, k-pos+l, pos, r);
11. end if;
12.}

Ulf Leser: Algorithms and Data Structures 29

Choosing p

• Assume we can chose p such that we always continue
with at most q% of A (with 0<q<1)
– I.e., (1-q)% of elements are discarded

• We perform at most T(n) = T(q*n) +c*n comparisons
– T(q*n) – recursive descent, with T(0)=0
– c*n – function “divide”

• T(n) = T(q*n)+c*n = T(q2*n)+q*c*n+c*n =
T(q2n)+(q+1)*c*n = T(q3n)+(q2+q+1)*c*n = …

)(
1

1******)(
00

nO
q

ncqncqncnT
i

i
n

i

i

n
=

−
=≤= ∑∑

∞

==∞→

Ulf Leser: Algorithms and Data Structures 30

Discussion

• Our algorithm has worst-case complexity O(n) when we
manage to always reduce the array by a fraction of its size,
no matter how large the fraction
– This is not an average-case. We must always (not on average) cut

some fraction of A
• Eh – magic?
• No – follows from the way we defined complexity and what

we consider as input
• Many operations become “hidden” in the linear factor

– q=0.9: c*10*n
– q=0.99: c*100*n
– q=0.999: c*1000*n

Ulf Leser: Algorithms and Data Structures 31

Median-of-Median

• How can we guarantee to always cut a fraction of A?
• Median-of-median algorithm

– Partition A in disjoint partitions of length 5
– Compute the median vi for each partition (with i<floor(n/5))
– Find the median v of all vi by repeating this process

• Hint: v will not be the exact median of A – but not too far away
– Use v as pivot element for the quantile computation

v1 v2 v3 v4 v5 v6

v11

v

v12…

…
…

…

Ulf Leser: Algorithms and Data Structures 32

Complexity

• O(n): Run through A in partitions of length 5
• O(1): Find each median

– Runtime of sorting a list of length 5 does not depend on n
• The next iteration will work on only 20% of the input
• Since we always reduce the number of values to look at by

80%, this requires O(n) time in total
– See previous result

Ulf Leser: Algorithms and Data Structures 33

What Happens? (source: Wikipedia)

• Median-of-median of a randomly permuted list 0..99
• For clarity, each 5-tuple is sorted (top-down) and all 5-

tuples are sorted by median (left-right)
• Gray/white: Values with actually smaller/greater than med-

of-med 47
• Blue: Range with certainly smaller / larger values

Ulf Leser: Algorithms and Data Structures 34

Why Does this Help?

• We have ~n/5 first-level-medians vi
• v (as median of medians) is smaller than halve of the vi

and greater than the other half
– The smaller and the larger set of medians both have ~n/10 values

• Each vi itself is smaller than (and greater than) 2 values
• Since for the smaller (greater) medians this median itself is

also smaller (greater) than v, v is larger (smaller) than at
least 3*n/10 elements
– Border holds in both directions: v is in the range [3n/10…7n/10]

	Foliennummer 1
	This Course
	Topics of Next Lessons
	Content of this Lecture
	Searching in an Unsorted List
	Content of this Lecture
	Binary Search (binsearch)
	Recursive versus Iterative Binsearch
	Complexity of Binsearch
	Content of this Lecture
	Searching without Divisions
	Fibonacci Search: Idea
	Algorithm (assume |A|=fib(i)-1)
	Example (recall: 1,1,2,3,5,…)
	Complexity
	Main message
	Searching without Math (sketch – details later)
	Content of this Lecture
	Interpolation Search
	Simple Interpolation Search
	Analysis
	Content of this Lecture
	Quantiles
	Selection Problem
	Observation and Example: Top-k Problem
	Selection Problem in Linear Time
	Algorithm
	Analysis
	Choosing p
	Discussion
	Median-of-Median
	Complexity
	What Happens? (source: Wikipedia)
	Why Does this Help?

