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This Course

• Introduction 2
• Abstract Data Types 1
• Complexity analysis 1
• Styles of algorithms 1
• List implementations 1
• Sorting (lists) 3
• Searching (in (sorted) lists) 4
• Hashing (to manage lists) 2
• Trees (to manage lists) 4
• Graphs (no lists!) 5
• Sum ~9/25
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Topics of Next Lessons

• Search: Given a (sorted or unsorted) list A with |A|=n 
elements (integers). Check whether a given value c is 
contained in A or not
– Search returns true or false
– If A is sorted, we can exploit transitivity of “≤” relation
– Fundamental problem with a zillion applications

• Select: Given an unsorted list A with |A|=n elements 
(integers). Return the i‘th largest element of A.
– Returns an element of A
– The sorted case is trivial – return A[i]
– Interesting problem (especially for median) with some applications
– [Interesting proof]
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Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists
• Selecting in Unsorted Lists



Ulf Leser: Algorithms and Data Structures 5

Searching in an Unsorted List

• No magic
• Compare c to every element of A
• Worst case (c∉A): O(n)
• Average case (c∈A)

– If c is at position i, we 
require i tests

– All positions are equally 
likely: probability 1/n

– This gives

• Sequential access: Same for array, linked lists, …

1. A: unsorted_int_array;
2. c: int;
3. for i := 1.. |A| do
4. if A[i]=c then
5. return true;
6. end if;
7. end for;
8. return false;
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Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists

– Binary Search
– Fibonacci Search
– Interpolation Search

• Selecting in Unsorted Lists



Ulf Leser: Algorithms and Data Structures 7

Binary Search (binsearch)

• If A is sorted, we can be much faster
• Binary Search: Exploit transitivity
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Recursive versus Iterative Binsearch

• Recursive binsearch uses only end-recursion
• Equivalent iterative program is more space-efficient

– We don’t need old values for l,r – no call stack
– O(1) additional space

1. A: sorted_int_array;
2. c: int;
3. f := 1;
4. r := |A|;
5. while f≤r do
6. m := f+(r-f) div 2;
7. if c<A[m] then
8. r := m-1;
9. else if c>A[m] then
10. f := m+1;
11. else
12. return true;
13.end while,
14.return false;

1. func bool binsearch(A: sorted_array;
c,f,r : int) {

2. If f>r then
3. return false;
4. end if;
5. m := f+((r-f) div 2);
6. If c<A[m] then
7. return binsearch(A, c, f, m-1);
8. else if c>A[m] then
9. return binsearch(A, c, m+1, r);
10. else
11. return true;
12. end if;
13.}
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Complexity of Binsearch

• In every call to binsearch (or every while-loop), we only do 
constant work 
– Independent of n

• With every call, we reduce the size of sub-array by 50%
– We call binsearch once with n, with n/2, with n/4, …

• Binsearch has worst-case complexity O(log(n))
• Average case only marginally better

– We only stop if we find c before the 
interval has size 1

– Chances to “hit” target in the middle
of the search is low for (many) first steps

– Chances increase for (few) last steps 
– See Ottmann/Widmayer Source: railspikes.com
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Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists

– Binary Search
– Fibonacci Search
– Interpolation Search

• Selecting in Unsorted Lists
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Searching without Divisions

• Can we search in O(log(n)) without complex arithmetic?
– Simple arithmetic operations are faster on real hardware
– But: Binsearch usually uses bit shift (div 2) – very fast

• Fibonacci search:  O(log(n)) without division/multiplication
– Also interesting: O(log(n)) without the “always 50%” pattern

• Recall Fibonacci numbers
– fib(1)=fib(2)=1; fib(i)=fib(i-1)+fib(i-2)
– 1, 1, 2, 3, 5, 8, 13, 21, 34, …
– Observation: fib(i-2) is roughly 1/3, fib(i-1) roughly 2/3 of fib(i)
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Fibonacci Search: Idea

fib(i)

fib(i-2) fib(i-1)

• Let fib(i) be the 
smallest fib-number 
with fib(i)≥|A|

• If A[fib(i-2)]=c: stop
• Otherwise, search in 

[1 … fib(i-2)] or 
[fib(i-2)+1 … n]

• Beware out-of-range 
part A[n+1…fib(i)]

• No divisions

fib(i-1)
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Algorithm (assume |A|=fib(i)-1)

• 3-6: Search at A[fib(i-2)]
– With fib2, fib3 we can compute 

all other fib’s
– fib(i)=fib(i-1)+fib(i-2)
– fib(i-1)=fib(i-2)+fib(i-3)
– …

• 7-24: Partition A at 
descending Fibonacci 
numbers

• After each comparison, 
update fib3 and fib2

1. A: sorted_int_array;
2. c: int;
3. compute i;  #smallest fib(i)>|A|
4. fib3 := fib(i-3); # Precomputed
5. fib2 := fib(i-2); # Precomputed
6. m := fib2;
7. repeat
8. if c>A[m] then
9. if fib3=0 then return false
10. else 
11. m := m+fib3;
12. tmp := fib3;
13. fib3 := fib2-fib3;
14. fib2 := tmp;
15. end if;
16. else if c<A[m]
17. if fib2=1 then return false
18. else
19. m := m-fib3;
20. fib2 := fib2 – fib3;
21. fib3 := fib3 – fib2;
22. end if;
23. else return true;
24.until true;
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Example (recall: 1,1,2,3,5,…)

fib2 fib3 m
2 1 2
1 1 3

Search 3 in 
{1,2,3};
i=5 

fib2 fib3 m
2 1 2
1 1 3
1 0 4

Search 6 in 
{1,2,3,4};
i=5

true

false

Search 100 in 
{1…10000}

fib2 fib3 m
4181 2584 4181
1597 987 1597

… … …

1. A: sorted_int_array;
2. c: int;
3. compute i;  #smallest fib(i)>|A|
4. fib3 := fib(i-3);
5. fib2 := fib(i-2);
6. m := fib2;
7. repeat
8. if c>A[m] then
9. if fib3=0 then return false
10. else 
11. m := m+fib3;
12. tmp := fib3;
13. fib3 := fib2-fib3;
14. fib2 := tmp;
15. end if;
16. else if c<A[m]
17. if fib2=1 then return false
18. else
19. m := m-fib3;
20. fib2 := fib2 – fib3;
21. fib3 := fib3 – fib2;
22. end if;
23. else return true;
24.until true;
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Complexity 

• Worst-case: c is always in the larger fraction of A
– We roughly call once for n, once for 2n/3, once for 4n/9, …

• Formula of Moivre-Binet: For large i …

• We find i such that fib(i-1)≤n≤fib(i)~k*1,62i

• In worst-case, we make ~i comparisons 
– We break the array i times

• Since i=log1,62(n/k), we are in O(log(n))
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Main message

• If you break an array always in the middle, you can do this 
at most O(log(n)) times

• If you break an array always at 1/3 and 2/3, you also can 
do this at most O(log(n)) times

• What if we break an array always at 1/10 – 9/10?
– Wait a minute
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Searching without Math (sketch – details later)

• We actually can solve the search problem in O(log(n)) 
using only comparisons (no additions etc.)

• Transform A into a balanced binary search tree
– At every node, the depth of the two subtrees differ by at most 1 
– At every node n, all values in the left (right) subtree are smaller 

(larger) than n
• Search

– Recursively compare c to node 
labels and descend left/right

– Balanced bin-tree has 
depth O(log(n))

– We need at most log(n) 
comparisons – and nothing else
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Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists

– Binary Search
– Fibonacci Search
– Interpolation Search

• Selecting in Unsorted Lists
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Interpolation Search

• Imagine you have a telephone book and search for 
„Zacharias“

• Will you open the book in the middle?
• We can exploit additional knowledge about the keys
• Interpolation Search: Estimate where c lies in A based on 

the distribution of values in A
– Simple: Use max and min values in A and assume equal distribution
– Complex: Approximation of real distribution (histograms, …)
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Simple Interpolation Search

• Assume equal distribution – values within A are equally 
distributed in range [ A[1], A[n] ]

• Best guess for the rank (position in A) of c

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐 = 𝑓𝑓 + 𝑟𝑟 − 𝑓𝑓 ∗
𝑐𝑐 − 𝐴𝐴[𝑓𝑓]

𝑎𝑎 𝑟𝑟 − 𝐴𝐴[𝑓𝑓]

• Idea: Use m=rank(c) and proceed recursively
• Example: “Xylophon”
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Analysis

• On average, Interpolation Search on equally distributed 
data requires O(log(log(n)) comparison
– Proof: See [OW94]

• But: Worst-case is O(n)
– If concrete distribution deviates heavily from expected distribution
– E.g., A contains “aaa” and all other names>” Xylophon”

• Further disadvantage: In each phase, we perform ~4 
adds/subs and 2*mults/divs
– Assume this takes 12 cycles (1 mult/div = 4 cycles)
– Binsearch requires 2*adds/subs + 1*shift ~3 cycles
– Even for n=232~4E9, this yields 12*log(log(4E9))~72 ops versus 

3*log(4E9)~90 ops – not that much difference
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Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists
• Selecting in Unsorted Lists

– Naïve or clever
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Quantiles

• Recall: The median of a list is its middle value
– Sort all values and take the one in the middle

• Generalization: x%-quantiles
– Sort all values and take the value at x% of all values
– Typical: 25, 75, 90, -quantiles

• How long do 90% of all students need to obtain their degree? 
– The 25%, 50%, 75% are called quartiles
– Median = 50%-quantile
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Selection Problem

• Definition
The selection problem is to find the x%-quantile of a set A 
of unsorted values

• Solutions
– We can sort A and then access the quantile directly
– Thus, O(n*log(n)) is easy 
– It is easy to see that we have to look at least at each value once; 

thus, the problem is in Ω(n)
– Can we solve this problem in linear time?
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Observation and Example: Top-k Problem

• Top-k: Find the k largest values in A
• For constant k, a naïve solution is linear (and optimal)

– repeat k times
– go through A and find largest value v;
– remove v from A; 
– return v
– Requires k*|A|=O(|A|) comparisons

• But if k=c*|A|, we are in O(c*|A|*|A|)=O(|A|2)
– For any constant factor c
– We measure complexity in size of the input
– It is decisive whether c is part of the input or not
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Selection Problem in Linear Time

• We sketch an algorithm which solves the selection problem 
in linear time
– Actually, we solve the equivalent problem of returning the k’th

value in the sorted A (without sorting A)
• Interesting from a theoretical point-of-view
• Practically, the algorithm is of no importance because the 

linear factor gets enormously large
• It is instructive to see why (and where)
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Algorithm

• Recall QuickSort: Chose 
pivot element p, divide 
array wrt p, recursively 
sort both partitions 
using the same trick

• We reuse the idea: 
Chose pivot element p, 
divide array wrt p, 
recursively select in the 
one partition that must 
contain the k’th element

1. func integer divide(A array;
2. f,r integer) {
3. …
4. while true
5. repeat
6. i := i+1;
7. until A[i]>=val;
8. repeat 
9. j := j-1;
10. until A[j]<=val or j<i;
11. if i>j then
12. break while;
13. end if;
14. swap( A[i], A[j]);
15. end while;
16. swap( A[i], A[r]);
17. return i;
18.}

1. func int quantile(A array;
2. k, f, r int) {
3. if r≤f then
4. return A[f];  
5. end if;
6. pos := divide( A, f, r);
7. if (k ≤ pos-l) then
8. return quantile(A, k, f, pos-1);
9. else
10. return quantile(A, k-pos+l, pos, r);
11. end if;
12.}
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Analysis

• Worst-case: Assume 
arbitrarily badly 
chosen pivot elements

• pos always is r-1 (or f+1) 
• Gives O(n2)
• Need to chose the pivot element p more carefully

1. func int quantile(A array;
2. k, f, r int) {
3. if r≤f then
4. return A[f];  
5. end if;
6. pos := divide( A, f, r);
7. if (k ≤ pos-l) then
8. return quantile(A, k, f, pos-1);
9. else
10. return quantile(A, k-pos+l, pos, r);
11. end if;
12.}
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Choosing p

• Assume we can chose p such that we always continue 
with at most q% of A (with 0<q<1)
– I.e., (1-q)% of elements are discarded

• We perform at most T(n) = T(q*n) +c*n comparisons
– T(q*n) – recursive descent, with T(0)=0
– c*n – function “divide”

• T(n) = T(q*n)+c*n = T(q2*n)+q*c*n+c*n = 
T(q2n)+(q+1)*c*n = T(q3n)+(q2+q+1)*c*n = …
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Discussion

• Our algorithm has worst-case complexity O(n) when we 
manage to always reduce the array by a fraction of its size,
no matter how large the fraction
– This is not an average-case. We must always (not on average) cut 

some fraction of A
• Eh – magic?
• No – follows from the way we defined complexity and what 

we consider as input
• Many operations become “hidden” in the linear factor

– q=0.9: c*10*n
– q=0.99: c*100*n
– q=0.999: c*1000*n
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Median-of-Median

• How can we guarantee to always cut a fraction of A?
• Median-of-median algorithm

– Partition A in disjoint partitions of length 5
– Compute the median vi for each partition (with i<floor(n/5))
– Find the median v of all vi by repeating this process

• Hint: v will not be the exact median of A – but not too far away
– Use v as pivot element for the quantile computation

v1 v2 v3 v4 v5 v6

v11

v

v12…

…
…

…
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Complexity

• O(n): Run through A in partitions of length 5
• O(1): Find each median

– Runtime of sorting a list of length 5 does not depend on n
• The next iteration will work on only 20% of the input
• Since we always reduce the number of values to look at by 

80%, this requires O(n) time in total
– See previous result
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What Happens? (source: Wikipedia)

• Median-of-median of a randomly permuted list 0..99
• For clarity, each 5-tuple is sorted (top-down) and all 5-

tuples are sorted by median (left-right)
• Gray/white: Values with actually smaller/greater than med-

of-med 47
• Blue: Range with certainly smaller / larger values
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Why Does this Help?

• We have ~n/5 first-level-medians vi
• v (as median of medians) is smaller than halve of the vi

and greater than the other half 
– The smaller and the larger set of medians both have ~n/10 values

• Each vi itself is smaller than (and greater than) 2 values
• Since for the smaller (greater) medians this median itself is 

also smaller (greater) than v, v is larger (smaller) than at 
least 3*n/10 elements
– Border holds in both directions: v is in the range [3n/10…7n/10]
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