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Content of this Lecture

• B Trees
• B+ Trees
• Index Structures for Strings
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B-Trees (≠ binary tree)

• B-Tree is a multi-level index with variable number of levels
– Many variations: B/B+/B*/B++/BB…

• Height adapts to table size
• Designed for block-wise access
• >50% space usage guaranteed
• Always balanced
R. Bayer, E. McCreight: Organization and 
Maintenance of Large Ordered 
Indexes. Acta
Informatica. 1972
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Formally

• Assume index on primary key (no duplicates)
• Internal nodes contain pairs (key, TID) and pointers
• Leaf nodes only contain (key, TID)
• Block can hold 2k triples (pointer, key, TID) plus 1 ptr
• Each internal node contains between k and 2k (key, TID)

– And between k+1 and 2k+1 pointers to subtrees
• Subtree left of pair (v,TID) contains only and all keys y<v
• Subtree right of pair (v,TID) contains only and all keys y>v
• Pairs are sorted: vi <  vi+1

– Exception: Root node

• Thus, B-trees use always at least 50% of allocated space
p0 (v0,t0) p1 (v1,t1) p2 (v2,t2) p3 … (v2k-1,t2k-1) p2k
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Searching B-Trees

Find 9
1. Start with root node
2. Follow p0
3. Follow p1
4. Scan block - found

Find 60
1. Start with root node
2. Follow p2
3. Follow p1
4. Scan block - not found

15 30

50 75

76 85 88 91 -

51 55 58 - -

32 38 39 45 49

7 -

1 2 3 4 - 9 10 11 13 -

…
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Complexity

• B-trees are always balanced (how? Wait)
– All paths from root to a leaves are of equal length

• Assume n keys; let r=|key|+|TID|+|pointer|
• Best case: All nodes are full (2k keys)

– We have b~n/2k blocks
• Actually a little less, since leaves contain no pointers

– Height of the tree h~log2k(b)
– Search requires between 1 and log2k(b) IO

• Worst case: All nodes contain only k keys
– We need b~n/k blocks
– Height of the tree h~logk(b)
– Search requires between 1 and logk(b) IO
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Example

• Assume |key|=20, |TID|=16, |pointer|=8, block size=4096 
=> r=44

• Assume n=1.000.000.000 (1E9) records

• Gives between 46 and 92 index records per block
• Hence, we need 5 or 6 IO

– Essentially all data is in the leaves
– Very small changes to find key earlier

• Caching the first two levels (between 1+46 and 1+92 
blocks), this reduces to 3 or 4 IO
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Inserting into B-Trees

• In B-Trees, we always insert into a leaf
• We insert 5 (assume: 2*k=2)

– For ease of exposition, we assume 2-5 keys in leaves and 1-2 keys 
in inner nodes

15 30

50 75

76 85 88 91 -

51 55 58 - -

32 38 39 45 49

7 -

1 2 3 4 - 9 10 11 13 -

…
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Inserting into B-Trees

• We insert 6
• Block is full – we need to split

15 30

50 75

76 85 88 91 -

51 55 58 - -

32 38 39 45 49

7 -

1 2 3 4 5 9 10 11 13 -

…
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Inserting into B-Trees

• Split overflow block and propagate median upwards
– All values from old node plus new value minus median are evenly 

split between two new nodes
– Thus, each has ~k keys
– Median is pushed up to parent node and inserted there 

15 30

4 7

1 2 3 - - 9 10 11 13 -

5 6 - - -

……

7 -

1 2 3 4 5
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Inserting into B-Trees

• We insert 40
• Block is full – split and propagate 40, the median
• Propagating upwards leads to overflow in parent(s) 
• Finally, the root note overflows

– B-trees grow upwards

10 30

50 75

76 85 88 91 -

51 55 58 - -

32 38 39 45 49

4 7

1 2 3 - - 5 6 - - -

…

…
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Intermediate 1

10 30

50 75

76 85 88 91 -

51 55 58 - -
32 38 39 - -

…

…

45 49 - - -

40?
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Intermediate 2

10 30

40 -

76 85 88 91 -

51 55 58 -
32 38 39 - -

…

…

45 49 - - -

50?
75 -
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Final Tree

50 -

40 -

76 85 88 91 -

51 55 58 - -
32 38 39 - -

…

…

45 49 - - -

75 -

10 -

30
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Longer Sequence of Insertions
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Complexity Insertion

• Let h be height of B-tree
• Cost for searching leaf node: h IO
• If no split necessary: Total IO cost = h+1 (writing)
• If split is necessary

– Worst case – up to the root
– We assume we cached ancestor blocks during traversal
– We thus need to read them once and write them once
– Total cost: (h+2)+2(h-1)+1 = 3h+1

• Split on all levels and create new root node
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Deleting Keys

• If found in internal node
– Choose smallest value from right subtree and replace deleted value

• This value must be in a leaf
• Recall search trees: symmetric predecessor (or successor)

– Delete value in leaf and progress
• If found in leaf 

– Delete value 
– If blocks underflows (<k keys), choose one of neighboring blocks

• Must have the same parent node
– If both blocks together have more than 2k records: Distribute 

values evenly; adapt between-key in parent node
– Otherwise – merge blocks

• One block with all leaf-records plus the median in parent
• Remove middle value in parent block – which now might underflow

– Might work recursively up the tree
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Delete with Underflow

50 -

40 -

76 85 88 91 -

51 55 58 - -
32 38 39 - -

…

…

45 49 - - -

75 -

10 -

30• Delete 40



Ulf Leser: Implementation of Database Systems 20

Delete with Underflow

50 -

45 -

76 85 88 91 -

51 55 58 - -
32 38 39 - -

…

…

49 - - - -

75 -

10 -

30• Move symmetric 
successor

• Underflow
in leaf
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Delete with Underflow

50 -

39 -

76 85 88 91 -

51 55 58 - -
32 38 - - -

…

…

45 49 - - -

75 -

10 -

30• Merge with left
neighbor
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Delete with Underflow

50 -

39 -

76 85 88 91 -

51 55 58 - -
32 38 - - -

…

…

49 - - - -

75 -

10 -

30• Delete 45
• Underflow
• No local

repair
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Delete with Underflow

50 -

- -

76 85 88 91 -

51 55 58 - -
32 38 39 49 -

…

…

75 -

10 -

30• Merge blocks
• Parent 

underflows
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Delete with Underflow

50 75

76 85 88 91 -

51 55 58 - -
32 38 39 49 -

…

…

10 -

30• Up the tree
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Complexity of Deleting Keys

• Going down costs h IO 
– If key found in leaf, it costs h to read and 1 to write
– If found in internal node, we still have to read h blocks to choose 

replacement value from leaf
• If no underflow, total cost is h+1
• If local underflow (with merge), total cost is ~h+4

– Checking left and right neighbor, writing block and chosen 
neighbor, writing parent

• If blocks underflow bottom-up, total cost is at most 4h-2
– If left and right neighbors have to be checked at each level
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B-trees on Non-Unique Attributes

• If duplicates exist

• Option 1: Compact representation
– Store (value, TID1, TID2, ... TIDn)
– Difficult– internal nodes don’t have fixed number of pairs any more
– Requires internal overflow blocks

• Option 2: Verbose representation
– Treat duplicates as different values
– Constraints on keys change from “<“ to “≤”
– Extreme case: Generates a tree although a list would suffice

• Better: B+ trees
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Content of this Lecture

• B Trees
• B+ Trees
• Index Structures for Strings
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B+ Trees

• Dense index on heap-structured data file
• Internal nodes contain only values and pointers

– Values demark borders between subtrees
– Concrete values need not exist as keys - only signposts

• Leaves are chained for faster range queries

B+ Tree as dense index

Data file organized
as heap file
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Operations

• Searching
– Essentially the same as for B trees
– But will always go down to leaf – marginally worse IO complexity

• Insertion
– Essentially the same as for B trees
– When block is split, no value moves upwards

• Parent block still changes – new signpost
• Typical choice: avg(vmedian-1, vmedian+1)

• Deletion 
– Deletion in internal node cannot occur
– When blocks are merged, no values are moved up

• But signposts in parent node are deleted as well
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Advantages

• Simpler operations
• Higher fan-out, lower IO complexity

– No TIDs in internal nodes - more pointers in internal nodes
– Much reduced height (base of log() changes)

• Smoother balancing: Chose signposts carefully
– Choose such that future inserts are evenly distributed

• Linked leaves
– Faster range queries – traversal need not go up/down the tree
– Optimally, leaves are in sequential order on disk
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B* tree: Improving Space Usage

• Can we increase space usage guarantee beyond 50%?
• Don‘t split upon overflow: Move values to neighbor blocks 

as long as possible
– More complex operations, need to look into neighbors
– We only split when all neighbors and the current block is full

• When splitting, make three out of two
– We only split when all neighbors are full – choose one
– Generate three new blocks from the two full old ones
– Each new block has 4/3k keys: Guaranteed 66% space usage

• Knuth, D. E.: The Art of Computer Programming, Volume III: Sorting and Searching 
Addison-Wesley, 1973
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B+ Trees and Hashing

• Hashing faster for some applications
– Can lead to O(1) IO
– Assumes good hash function 
– Requires domain knowledge

• B+ trees
– Very few IO if upper levels are cached
– Adapts to skewed (non-uniformly distributed) data
– Domain-independent
– Also supports range queries
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Loading a B+ Tree

• What happens in case of
create index myidx on LARGETABLE( id);
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Loading a B+ Tree

• What happens in case of
create index myidx on LARGETABLE( id);

• Naïve: Record-by-record insertion
– Each insertion has 3h+1 = O(logk(b)) block IO
– Altogether: O(n*logk(b))

• Blocks are read and written in arbitrary order
– Very likely: bad cache-hit ratio 

• Space usage will be anywhere between 50 and 100%
• Can’t we do better?
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Bulk-Loading a B+ Tree

• First sort records
– O(n*logm(n)), where m is number of records fitting into memory
– Clearly, m>>k

• Insert in sorted order using normal insertion
– Tree builds from lower left to upper right
– Caching will work very well
– But space usage will be only around 50%

• Alternative
– Compute structure in advance

• Every 2k’th record we need a separating key
• Every 2k’th separating key we need a next-level separating key
• …

– Can be generated and written in linear time
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Content of this Lecture

• B Trees
• B+ Trees
• Index Structures for Strings

– Prefix B+ Tree
– Prefix Tree
– PETER
– PEARL
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Prefix B+ Trees

• Consider string values as keys 
• Keys for int. nodes: Smallest key from right-hand subtree

– Leads to internal signposts as large as keys
• Prefix B+ trees – Shortest string separating largest key in 

left-hand subtree from smallest key in right-hand subtree
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Advantages:  Reduced space, 
higher fan-out

Disadvantages: Overhead for computing 
signpost
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Prefix Tree / Patricia tree / Trie

• If we index many strings with many common prefixes
– … as in Information Retrieval …
– Why store common prefixes multiple times? 

• Prefix trees
– Store common prefix / substring in internal nodes
– Searching a key k requires at most |k| character comparisons



Ulf Leser: Implementation of Database Systems 39

Indexing Strings 

• Prefix trees traditionally are main memory structures
– How to optimally layout internal nodes on blocks?
– Not balanced – no guaranteed worst-case IO

• More index structures for strings
– Keyword trees – searching for many patterns simultaneously

• Necessary for joins on strings
• Persistent keyword trees – challenge

– Suffix trees – indexing all substrings of a string
• Necessary e.g. to search genomic sequences
• Persistent suffix trees – challenge in advancement



Ulf Leser: Implementation of Database Systems 40

PETER

• Computes joins / search on large collections of long strings 
much faster than traditional DB technology

• Also handles similarity search / similarity joins
• Open source

– Rheinländer, A., Knobloch, M., Hochmuth, N. and Leser, U. (2010). 
"Prefix Tree Indexing for Similarity Search and Similarity Join on 
Genomic Data". SSDBM 2010

• There are many similar index structures
– PRETTY, PRETTY+, MASSJoin, …
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Prefix-Trees

cattga, gatt, agtactc, ga, agaatc
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• Given a set S of strings
• Build a tree with

– Labeled nodes
– Outgoing edges have 

different label
– Every s∈S is spelled on

exactly one path from 
root

– Mark all nodes where a 
string ends

• Common prefixes are
represented only once
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Searching Prefix-Trees

Search t=“agtcc”
• Search t in S
• Recursively match t with a 

path starting from root
– If no further match: t∉S
– If matched completely: t∈S

• Search complexity 
– Only depends on depth of S
– Independent from |S|
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Compressed Prefix Trees
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• More complex implementation
• Different kinds of edges/nodes
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Large Prefix Trees

• Unique suffixes are stored (sorted) on disk
• Tree of common prefixes is kept in main memory

– Most failing searches never access disc
– At most one disc IO per search
– [If tree fits in main memory]
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Similarity Search on Prefix-Trees

• In similarity search, a mismatch doesn’t mean that t∉S
• Several mismatches might be allowed

– Depending on error threshold
– Depending on similarity function

• Idea
– Depth-first search on the tree as usual
– Keep a counter for the n# of errors occurring in the prefix so far
– If counter exceeds threshold – stop search in this branch
– Pruning: Try to stop earlier by clever “guessing”
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Example: Search

Hamming distance search for t = CTGAAATTGGT, k=1 

d(C,A)=1
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Example: Search

d(CT..,AA..) > 1 d(CT..,AC..) > 1

Hamming distance search for t = CTGAAATTGGT, k=1 
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Example: Search

d(CTGA,CTGA)=0

Hamming distance search for t = CTGAAATTGGT, k=1 
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Example: Search

d(CTGAAATTG...,
CTGAATTT...) > 1

Hamming distance search for t = CTGAAATTGGT, k=1 



Ulf Leser: Implementation of Database Systems 50

Example: Search

d(CTGAAATTGGT,

CTGAGATTGGT)= 1

Hamming distance search for t = CTGAAATTGGT, k=1 
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Example: Search

Hamming distance search for t = CTGAAATTGGT, k=1 
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(Similarity) Joins on Prefix Trees

• We compare growing prefixes with growing prefixes
• Exact and similarity join
• Essentially: Compute intersection of two trees

– Only labeled nodes are interesting
• Traverse both trees in parallel

– Upon (sufficiently many) mismatches, entire subtrees are pruned
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Evaluation

• Data: Several EST data sets  from dbEST
– Search: All strings of one data set in another data set
– Join: One data set against another data set
– Varying similarity thresholds

• (Linear) Index creation not included in measurements
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Search: Comparing to Flamingo (2011)

• Flamingo: Library for approximate string matching 
– http://flamingo.ics.uci.edu/ 
– Based on an inverted index on q-grams
– Uses length and charsum filter
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PETER inside a RDBMS

• We integrated PETER into a commercial RDBMS using its 
extensible indexing interface
– Joins: table functions
– Tree stored in separate file, suffixes stored in table

• Hope
– As search complexity is independent of |S|, …

• we might beat B+ trees for exact search on very large |S|
• we might beat hash/merge for exact join of very large data sets

• First hope not fulfilled
– API does not allow caching of tree – index reload for every search
– Large penalty for context switch through API

• Especially for JAVA!
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String Similarity Search in a RDBMS

• Peter (behind extensible indexing interface) versus UDF 
implementing hamming / edit distance calculations

• Difference: 2-3 orders of magnitude, independent of data 
set, threshold, or search pattern length
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(Similarity) Join inside RDBMS

• PETER (behind extensible indexing interface) versus build-
in join (exact join, hash and merge) or UDF

• Similarity join
– Join T3 with T2e, k=2, inside RDBMS: Stopped after 24 h
– Same join with PETER: 1 minute

• Exact join
– For long strings, PETER

is significantly faster 
than commercial join 
implementations
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PEARL: Multi-Threaded PETER

Rheinländer, A. and Leser, U. (2011), “Scalable 
Sequence Similarity Search and Join in Main 
Memory on Multi-Cores”, HiBB, Bordeaux, France.
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Room for Improvement
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Why?
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