
Ulf Leser

Datenbanksysteme II:
B / B+ / Prefix Trees



Ulf Leser: Implementation of Database Systems 2

Content of this Lecture

• B Trees
• B+ Trees
• Index Structures for Strings



Ulf Leser: Implementation of Database Systems 3

Sorted File

20
10

40
30

60
50

80
70

100
90

Sparse 2nd level

10
30
50
70
90
110
130
150

170
190
210
230

10
90
170
250

330
410
490
570

Sparse 1st level

Recall: Multi-Level Index Files



Ulf Leser: Implementation of Database Systems 4

B-Trees (≠ binary tree)

• B-Tree is a multi-level index with variable number of levels
– Many variations: B/B+/B*/B++/BB…

• Height adapts to table size
• Designed for block-wise access
• >50% space usage guaranteed
• Always balanced
R. Bayer, E. McCreight: Organization and 
Maintenance of Large Ordered 
Indexes. Acta
Informatica. 1972

Root node

Internal 
nodes

15 30

50 75

76 85 88 91 -

51 55 58 - -32 38 39 45 49

16 23

Leaves… … …



Ulf Leser: Implementation of Database Systems 5

Formally

• Assume index on primary key (no duplicates)
• Internal nodes contain pairs (key, TID) and pointers
• Leaf nodes only contain (key, TID)
• Block can hold 2k triples (pointer, key, TID) plus 1 ptr
• Each internal node contains between k and 2k (key, TID)

– And between k+1 and 2k+1 pointers to subtrees
• Subtree left of pair (v,TID) contains only and all keys y<v
• Subtree right of pair (v,TID) contains only and all keys y>v
• Pairs are sorted: vi <  vi+1

– Exception: Root node

• Thus, B-trees use always at least 50% of allocated space
p0 (v0,t0) p1 (v1,t1) p2 (v2,t2) p3 … (v2k-1,t2k-1) p2k



Ulf Leser: Implementation of Database Systems 6

Searching B-Trees

Find 9
1. Start with root node
2. Follow p0
3. Follow p1
4. Scan block - found

Find 60
1. Start with root node
2. Follow p2
3. Follow p1
4. Scan block - not found

15 30

50 75

76 85 88 91 -

51 55 58 - -

32 38 39 45 49

7 -

1 2 3 4 - 9 10 11 13 -

…



Ulf Leser: Implementation of Database Systems 7

Complexity

• B-trees are always balanced (how? Wait)
– All paths from root to a leaves are of equal length

• Assume n keys; let r=|key|+|TID|+|pointer|
• Best case: All nodes are full (2k keys)

– We have b~n/2k blocks
• Actually a little less, since leaves contain no pointers

– Height of the tree h~log2k(b)
– Search requires between 1 and log2k(b) IO

• Worst case: All nodes contain only k keys
– We need b~n/k blocks
– Height of the tree h~logk(b)
– Search requires between 1 and logk(b) IO



Ulf Leser: Implementation of Database Systems 8

Example

• Assume |key|=20, |TID|=16, |pointer|=8, block size=4096 
=> r=44

• Assume n=1.000.000.000 (1E9) records

• Gives between 46 and 92 index records per block
• Hence, we need 5 or 6 IO

– Essentially all data is in the leaves
– Very small changes to find key earlier

• Caching the first two levels (between 1+46 and 1+92 
blocks), this reduces to 3 or 4 IO



Ulf Leser: Implementation of Database Systems 9

Inserting into B-Trees

• In B-Trees, we always insert into a leaf
• We insert 5 (assume: 2*k=2)

– For ease of exposition, we assume 2-5 keys in leaves and 1-2 keys 
in inner nodes

15 30

50 75

76 85 88 91 -

51 55 58 - -

32 38 39 45 49

7 -

1 2 3 4 - 9 10 11 13 -

…



Ulf Leser: Implementation of Database Systems 10

Inserting into B-Trees

• We insert 6
• Block is full – we need to split

15 30

50 75

76 85 88 91 -

51 55 58 - -

32 38 39 45 49

7 -

1 2 3 4 5 9 10 11 13 -

…



Ulf Leser: Implementation of Database Systems 11

Inserting into B-Trees

• Split overflow block and propagate median upwards
– All values from old node plus new value minus median are evenly 

split between two new nodes
– Thus, each has ~k keys
– Median is pushed up to parent node and inserted there 

15 30

4 7

1 2 3 - - 9 10 11 13 -

5 6 - - -

……

7 -

1 2 3 4 5



Ulf Leser: Implementation of Database Systems 12

Inserting into B-Trees

• We insert 40
• Block is full – split and propagate 40, the median
• Propagating upwards leads to overflow in parent(s) 
• Finally, the root note overflows

– B-trees grow upwards

10 30

50 75

76 85 88 91 -

51 55 58 - -

32 38 39 45 49

4 7

1 2 3 - - 5 6 - - -

…

…



Ulf Leser: Implementation of Database Systems 13

Intermediate 1

10 30

50 75

76 85 88 91 -

51 55 58 - -
32 38 39 - -

…

…

45 49 - - -

40?



Ulf Leser: Implementation of Database Systems 14

Intermediate 2

10 30

40 -

76 85 88 91 -

51 55 58 -
32 38 39 - -

…

…

45 49 - - -

50?
75 -



Ulf Leser: Implementation of Database Systems 15

Final Tree

50 -

40 -

76 85 88 91 -

51 55 58 - -
32 38 39 - -

…

…

45 49 - - -

75 -

10 -

30



Ulf Leser: Implementation of Database Systems 16

Longer Sequence of Insertions



Ulf Leser: Implementation of Database Systems 17

Complexity Insertion

• Let h be height of B-tree
• Cost for searching leaf node: h IO
• If no split necessary: Total IO cost = h+1 (writing)
• If split is necessary

– Worst case – up to the root
– We assume we cached ancestor blocks during traversal
– We thus need to read them once and write them once
– Total cost: (h+2)+2(h-1)+1 = 3h+1

• Split on all levels and create new root node



Ulf Leser: Implementation of Database Systems 18

Deleting Keys

• If found in internal node
– Choose smallest value from right subtree and replace deleted value

• This value must be in a leaf
• Recall search trees: symmetric predecessor (or successor)

– Delete value in leaf and progress
• If found in leaf 

– Delete value 
– If blocks underflows (<k keys), choose one of neighboring blocks

• Must have the same parent node
– If both blocks together have more than 2k records: Distribute 

values evenly; adapt between-key in parent node
– Otherwise – merge blocks

• One block with all leaf-records plus the median in parent
• Remove middle value in parent block – which now might underflow

– Might work recursively up the tree



Ulf Leser: Implementation of Database Systems 19

Delete with Underflow

50 -

40 -

76 85 88 91 -

51 55 58 - -
32 38 39 - -

…

…

45 49 - - -

75 -

10 -

30• Delete 40



Ulf Leser: Implementation of Database Systems 20

Delete with Underflow

50 -

45 -

76 85 88 91 -

51 55 58 - -
32 38 39 - -

…

…

49 - - - -

75 -

10 -

30• Move symmetric 
successor

• Underflow
in leaf



Ulf Leser: Implementation of Database Systems 21

Delete with Underflow

50 -

39 -

76 85 88 91 -

51 55 58 - -
32 38 - - -

…

…

45 49 - - -

75 -

10 -

30• Merge with left
neighbor



Ulf Leser: Implementation of Database Systems 22

Delete with Underflow

50 -

39 -

76 85 88 91 -

51 55 58 - -
32 38 - - -

…

…

49 - - - -

75 -

10 -

30• Delete 45
• Underflow
• No local

repair



Ulf Leser: Implementation of Database Systems 23

Delete with Underflow

50 -

- -

76 85 88 91 -

51 55 58 - -
32 38 39 49 -

…

…

75 -

10 -

30• Merge blocks
• Parent 

underflows



Ulf Leser: Implementation of Database Systems 24

Delete with Underflow

50 75

76 85 88 91 -

51 55 58 - -
32 38 39 49 -

…

…

10 -

30• Up the tree



Ulf Leser: Implementation of Database Systems 25

Complexity of Deleting Keys

• Going down costs h IO 
– If key found in leaf, it costs h to read and 1 to write
– If found in internal node, we still have to read h blocks to choose 

replacement value from leaf
• If no underflow, total cost is h+1
• If local underflow (with merge), total cost is ~h+4

– Checking left and right neighbor, writing block and chosen 
neighbor, writing parent

• If blocks underflow bottom-up, total cost is at most 4h-2
– If left and right neighbors have to be checked at each level



Ulf Leser: Implementation of Database Systems 26

B-trees on Non-Unique Attributes

• If duplicates exist

• Option 1: Compact representation
– Store (value, TID1, TID2, ... TIDn)
– Difficult– internal nodes don’t have fixed number of pairs any more
– Requires internal overflow blocks

• Option 2: Verbose representation
– Treat duplicates as different values
– Constraints on keys change from “<“ to “≤”
– Extreme case: Generates a tree although a list would suffice

• Better: B+ trees



Ulf Leser: Implementation of Database Systems 27

Content of this Lecture

• B Trees
• B+ Trees
• Index Structures for Strings



Ulf Leser: Implementation of Database Systems 28

B+ Trees

• Dense index on heap-structured data file
• Internal nodes contain only values and pointers

– Values demark borders between subtrees
– Concrete values need not exist as keys - only signposts

• Leaves are chained for faster range queries

B+ Tree as dense index

Data file organized
as heap file



Ulf Leser: Implementation of Database Systems 29

Operations

• Searching
– Essentially the same as for B trees
– But will always go down to leaf – marginally worse IO complexity

• Insertion
– Essentially the same as for B trees
– When block is split, no value moves upwards

• Parent block still changes – new signpost
• Typical choice: avg(vmedian-1, vmedian+1)

• Deletion 
– Deletion in internal node cannot occur
– When blocks are merged, no values are moved up

• But signposts in parent node are deleted as well



Ulf Leser: Implementation of Database Systems 30

Advantages

• Simpler operations
• Higher fan-out, lower IO complexity

– No TIDs in internal nodes - more pointers in internal nodes
– Much reduced height (base of log() changes)

• Smoother balancing: Chose signposts carefully
– Choose such that future inserts are evenly distributed

• Linked leaves
– Faster range queries – traversal need not go up/down the tree
– Optimally, leaves are in sequential order on disk



Ulf Leser: Implementation of Database Systems 31

B* tree: Improving Space Usage

• Can we increase space usage guarantee beyond 50%?
• Don‘t split upon overflow: Move values to neighbor blocks 

as long as possible
– More complex operations, need to look into neighbors
– We only split when all neighbors and the current block is full

• When splitting, make three out of two
– We only split when all neighbors are full – choose one
– Generate three new blocks from the two full old ones
– Each new block has 4/3k keys: Guaranteed 66% space usage

• Knuth, D. E.: The Art of Computer Programming, Volume III: Sorting and Searching 
Addison-Wesley, 1973



Ulf Leser: Implementation of Database Systems 32

B+ Trees and Hashing

• Hashing faster for some applications
– Can lead to O(1) IO
– Assumes good hash function 
– Requires domain knowledge

• B+ trees
– Very few IO if upper levels are cached
– Adapts to skewed (non-uniformly distributed) data
– Domain-independent
– Also supports range queries



Ulf Leser: Implementation of Database Systems 33

Loading a B+ Tree

• What happens in case of
create index myidx on LARGETABLE( id);



Ulf Leser: Implementation of Database Systems 34

Loading a B+ Tree

• What happens in case of
create index myidx on LARGETABLE( id);

• Naïve: Record-by-record insertion
– Each insertion has 3h+1 = O(logk(b)) block IO
– Altogether: O(n*logk(b))

• Blocks are read and written in arbitrary order
– Very likely: bad cache-hit ratio 

• Space usage will be anywhere between 50 and 100%
• Can’t we do better?



Ulf Leser: Implementation of Database Systems 35

Bulk-Loading a B+ Tree

• First sort records
– O(n*logm(n)), where m is number of records fitting into memory
– Clearly, m>>k

• Insert in sorted order using normal insertion
– Tree builds from lower left to upper right
– Caching will work very well
– But space usage will be only around 50%

• Alternative
– Compute structure in advance

• Every 2k’th record we need a separating key
• Every 2k’th separating key we need a next-level separating key
• …

– Can be generated and written in linear time



Ulf Leser: Implementation of Database Systems 36

Content of this Lecture

• B Trees
• B+ Trees
• Index Structures for Strings

– Prefix B+ Tree
– Prefix Tree
– PETER
– PEARL



Ulf Leser: Implementation of Database Systems 37

Prefix B+ Trees

• Consider string values as keys 
• Keys for int. nodes: Smallest key from right-hand subtree

– Leads to internal signposts as large as keys
• Prefix B+ trees – Shortest string separating largest key in 

left-hand subtree from smallest key in right-hand subtree
Un

te
rw

el
t

Ze
nt

ru
m

Un
te

rb
au

Un
te

rw
as

se
r

C
Un

te
rw

a
…

Ab
le

itu
ng

Be
ar

be
ite

r

Advantages:  Reduced space, 
higher fan-out

Disadvantages: Overhead for computing 
signpost



Ulf Leser: Implementation of Database Systems 38

Prefix Tree / Patricia tree / Trie

• If we index many strings with many common prefixes
– … as in Information Retrieval …
– Why store common prefixes multiple times? 

• Prefix trees
– Store common prefix / substring in internal nodes
– Searching a key k requires at most |k| character comparisons



Ulf Leser: Implementation of Database Systems 39

Indexing Strings 

• Prefix trees traditionally are main memory structures
– How to optimally layout internal nodes on blocks?
– Not balanced – no guaranteed worst-case IO

• More index structures for strings
– Keyword trees – searching for many patterns simultaneously

• Necessary for joins on strings
• Persistent keyword trees – challenge

– Suffix trees – indexing all substrings of a string
• Necessary e.g. to search genomic sequences
• Persistent suffix trees – challenge in advancement



Ulf Leser: Implementation of Database Systems 40

PETER

• Computes joins / search on large collections of long strings 
much faster than traditional DB technology

• Also handles similarity search / similarity joins
• Open source

– Rheinländer, A., Knobloch, M., Hochmuth, N. and Leser, U. (2010). 
"Prefix Tree Indexing for Similarity Search and Similarity Join on 
Genomic Data". SSDBM 2010

• There are many similar index structures
– PRETTY, PRETTY+, MASSJoin, …



Ulf Leser: Implementation of Database Systems 41

Prefix-Trees

cattga, gatt, agtactc, ga, agaatc

c g
a

t

a

1 c

g

t

a

g

a

t
t

a

t

t

a

a

t

3

5

4

2

c

c

• Given a set S of strings
• Build a tree with

– Labeled nodes
– Outgoing edges have 

different label
– Every s∈S is spelled on

exactly one path from 
root

– Mark all nodes where a 
string ends

• Common prefixes are
represented only once



Ulf Leser: Implementation of Database Systems 42

Searching Prefix-Trees

Search t=“agtcc”
• Search t in S
• Recursively match t with a 

path starting from root
– If no further match: t∉S
– If matched completely: t∈S

• Search complexity 
– Only depends on depth of S
– Independent from |S|

c g
a

t

a

1 c

g

t

a

g

a

t
t

a

t

t

a

a

t

3

5

4

2

c

c



Ulf Leser: Implementation of Database Systems 43

Compressed Prefix Trees

ga
cattga

1

ag
gatt

3

5

4

2

tactc

aatc

c g
a

t

a

1 c

g

t

a

g

a

t
t

a

t

t

a

a

t

3

5

4

2

c

c

• More complex implementation
• Different kinds of edges/nodes



Ulf Leser: Implementation of Database Systems 44

Large Prefix Trees

• Unique suffixes are stored (sorted) on disk
• Tree of common prefixes is kept in main memory

– Most failing searches never access disc
– At most one disc IO per search
– [If tree fits in main memory]



Ulf Leser: Implementation of Database Systems 45

Similarity Search on Prefix-Trees

• In similarity search, a mismatch doesn’t mean that t∉S
• Several mismatches might be allowed

– Depending on error threshold
– Depending on similarity function

• Idea
– Depth-first search on the tree as usual
– Keep a counter for the n# of errors occurring in the prefix so far
– If counter exceeds threshold – stop search in this branch
– Pruning: Try to stop earlier by clever “guessing”



Ulf Leser: Implementation of Database Systems 46

Example: Search

Hamming distance search for t = CTGAAATTGGT, k=1 

d(C,A)=1



Ulf Leser: Implementation of Database Systems 47

Example: Search

d(CT..,AA..) > 1 d(CT..,AC..) > 1

Hamming distance search for t = CTGAAATTGGT, k=1 



Ulf Leser: Implementation of Database Systems 48

Example: Search

d(CTGA,CTGA)=0

Hamming distance search for t = CTGAAATTGGT, k=1 



Ulf Leser: Implementation of Database Systems 49

Example: Search

d(CTGAAATTG...,
CTGAATTT...) > 1

Hamming distance search for t = CTGAAATTGGT, k=1 



Ulf Leser: Implementation of Database Systems 50

Example: Search

d(CTGAAATTGGT,

CTGAGATTGGT)= 1

Hamming distance search for t = CTGAAATTGGT, k=1 



Ulf Leser: Implementation of Database Systems 51

Example: Search

Hamming distance search for t = CTGAAATTGGT, k=1 



Ulf Leser: Implementation of Database Systems 52

(Similarity) Joins on Prefix Trees

• We compare growing prefixes with growing prefixes
• Exact and similarity join
• Essentially: Compute intersection of two trees

– Only labeled nodes are interesting
• Traverse both trees in parallel

– Upon (sufficiently many) mismatches, entire subtrees are pruned



Ulf Leser: Implementation of Database Systems 53

Evaluation

• Data: Several EST data sets  from dbEST
– Search: All strings of one data set in another data set
– Join: One data set against another data set
– Varying similarity thresholds

• (Linear) Index creation not included in measurements



Ulf Leser: Implementation of Database Systems 54

Search: Comparing to Flamingo (2011)

• Flamingo: Library for approximate string matching 
– http://flamingo.ics.uci.edu/ 
– Based on an inverted index on q-grams
– Uses length and charsum filter



Ulf Leser: Implementation of Database Systems 55

PETER inside a RDBMS

• We integrated PETER into a commercial RDBMS using its 
extensible indexing interface
– Joins: table functions
– Tree stored in separate file, suffixes stored in table

• Hope
– As search complexity is independent of |S|, …

• we might beat B+ trees for exact search on very large |S|
• we might beat hash/merge for exact join of very large data sets

• First hope not fulfilled
– API does not allow caching of tree – index reload for every search
– Large penalty for context switch through API

• Especially for JAVA!



Ulf Leser: Implementation of Database Systems 56

String Similarity Search in a RDBMS

• Peter (behind extensible indexing interface) versus UDF 
implementing hamming / edit distance calculations

• Difference: 2-3 orders of magnitude, independent of data 
set, threshold, or search pattern length



Ulf Leser: Implementation of Database Systems 57

(Similarity) Join inside RDBMS

• PETER (behind extensible indexing interface) versus build-
in join (exact join, hash and merge) or UDF

• Similarity join
– Join T3 with T2e, k=2, inside RDBMS: Stopped after 24 h
– Same join with PETER: 1 minute

• Exact join
– For long strings, PETER

is significantly faster 
than commercial join 
implementations



Ulf Leser: Implementation of Database Systems 58

PEARL: Multi-Threaded PETER

Rheinländer, A. and Leser, U. (2011), “Scalable 
Sequence Similarity Search and Join in Main 
Memory on Multi-Cores”, HiBB, Bordeaux, France.



Ulf Leser: Implementation of Database Systems 59

Room for Improvement



Ulf Leser: Implementation of Database Systems 60

Why?


	Foliennummer 1
	Content of this Lecture
	Recall: Multi-Level Index Files
	B-Trees (≠ binary tree)
	Formally
	Searching B-Trees
	Complexity
	Example
	Inserting into B-Trees
	Inserting into B-Trees
	Inserting into B-Trees
	Inserting into B-Trees
	Intermediate 1
	Intermediate 2
	Final Tree
	Longer Sequence of Insertions
	Complexity Insertion
	Deleting Keys
	Delete with Underflow
	Delete with Underflow
	Delete with Underflow
	Delete with Underflow
	Delete with Underflow
	Delete with Underflow
	Complexity of Deleting Keys
	B-trees on Non-Unique Attributes
	Content of this Lecture
	B+ Trees
	Operations
	Advantages
	B* tree: Improving Space Usage
	B+ Trees and Hashing
	Loading a B+ Tree
	Loading a B+ Tree
	Bulk-Loading a B+ Tree
	Content of this Lecture
	Prefix B+ Trees
	Prefix Tree / Patricia tree / Trie
	Indexing Strings 
	PETER
	Prefix-Trees
	Searching Prefix-Trees
	Compressed Prefix Trees
	Large Prefix Trees
	Similarity Search on Prefix-Trees
	Example: Search
	Example: Search
	Example: Search
	Example: Search
	Example: Search
	Example: Search
	(Similarity) Joins on Prefix Trees
	Evaluation
	Search: Comparing to Flamingo (2011)
	PETER inside a RDBMS
	String Similarity Search in a RDBMS
	(Similarity) Join inside RDBMS
	PEARL: Multi-Threaded PETER
	Room for Improvement
	Why?

