
Algorithms and Data Structures

Ulf Leser

Priority Queues

Ulf Leser: Algorithms and Data Structures 2

Specialized Queues: Priority Queues

• Up to now, we assumed that all elements are equally
important and that any of them could be searched next

• What if some elements are more important than others?
– In many applications, elements have a priority
– Next access always retrieves the currently most important element
– Accessed elements are “finished” – remove from list

• Data structures supporting such requirements are called
Priority Queues
– Special SOL: We know by which we should sort: The priority;

elements appear and are removed

Ulf Leser: Algorithms and Data Structures 3

Simple Example

• Scheduler: Part of an OS which assigns computational
resources (cores) to jobs (programs)
– Assume a machine with one core / thread
– 10 jobs should run concurrently
– Time slicing: Give every job the core for some time, then next …
– Fair: Every job gets 10% of the time
– What about OS jobs, e.g., the scheduler itself?

• Often, assignments are not fair, but obey priorities
– OS jobs get high priority
– Users may assign priorities to their jobs (unix nice)
– Users may pay for high priorities
– Student’s jobs get lower priorities than staff’s jobs
– Etc.

Ulf Leser: Algorithms and Data Structures 4

Scheduler and Priority Queue

• Scheduler may use a priority queue (PQ)
• Main operations: getNextJob(), putJob(Job, priority)
• Semantics

– putJob inserts new job
– getNextJob returns the job with currently highest priority

• Desirable: Both operations should be fast
– Sorted array: O(1) for getNextJob, but O(n) for putJob
– Unsorted array: O(1) for putJob, but O(n) for getNextJob
– We’ll get O(1) for getNextJob and O(log(n)) for putJob

• Note: This doesn’t suffice for a scheduler
– Using only a PQ would be extremely unfair – most jobs would

never start because high-priority OS jobs never terminate

Ulf Leser: Algorithms and Data Structures 5

Second Example: Compression

• Less data is usually better than more data
– Less storage, faster to load, cheaper to transmit, …

• Compression: Represent much data D with few bits C
– D: Message to be compressed, C: Compressed representation
– Lossless: D can be reconstructed completely from C
– Not lossless (lossy): jpeg, mpeg, …

• Example
– D= “I will will that my will will will” (34 chars)
– C= <1: will>; “I 1 1 that my 1 1 1” (19 chars + codebook)

• Careful: Recognize “1” as codebook entry

• Popular idea: Use few bits for frequent substrings, and
more bits for rare substrings
– For instance used in ZIP and its variants

Ulf Leser: Algorithms and Data Structures 6

Huffman Codes

• Huffman coding: Optimal and efficient de-/compression
– David A. Huffman, 1951 – as seminar thesis (!)
– Primarily compresses representation of characters, not substrings
– Optimality: Least-space requiring code (under certain assumptions)

• Framework
– Input message D
– Compute optimal codebook B for all characters of D

• Fewer bits for more frequent characters
– Compress D into C using B
– Transmit C and B

• Can easily be extended to compress n-grams

Ulf Leser: Algorithms and Data Structures 7

Approach

• We create a binary tree
– Root is unlabeled
– Every left child is labeled with 0, every right child with 1
– Leaves are labeled with 0/1 and a character
– All characters are represented as leaves

0/a 0/c1/b

0

1/d

1
0/a

0/c

0/b

1

1/d

1

Ulf Leser: Algorithms and Data Structures 8

Compression

• D=aaaabaacaddaac;
C=00001000110011111100110
– Decompression is unique: Following the path from root to leave

defines next character in D
– Huffman codes are prefix-free: No code B(c) of a char c is prefix of

the code B(c’) of a char c’ with c≠c’
• Not prefix-free: B(a)=01, B(b)=011

• Compression?
– |D| = 2*14=28 bits (assume equal length per char = 2 bit)
– |C| = 23

0/a

0/c

0/b

1

1/d

1

Ulf Leser: Algorithms and Data Structures 9

Compression?

• D=addccdaadccbbd; C=011111111011011100111110…
• We only compress if frequent characters are represented

with few bits
• Huffman coding: Which characters? How many bits? How

frequent?

0/a

0/c

0/b

1

1/d

1

Ulf Leser: Algorithms and Data Structures 10

Algorithm

• Pre-processing: Count (relative) frequencies of all chars
• We build the tree bottom-up, first ignoring 0/1 labels
• Start with leaves, annotated with frequencies
• Loop

– Chose two least frequent nodes n, n’
• If tie: Chose node with lowest subtree

– Connect by new parent node p; freq(p) = freq(n)+freq(n’)
– Remove n, n’ from further consideration (but leave in tree!)

• Until only two nodes remain
• Add root
• Label all left children with 0, all right children with 1

Ulf Leser: Algorithms and Data Structures 11

Example: D=aaaabaaccddaac

freq(a) = 8
freq(b) = 1
freq(c) = 3
freq(d) = 2

a/8 c/3b/1 d/2

freq(a) = 8
freq(c) = 3
freq(p) = 3 a/8 c/3 b/1 d/2

./3

freq(a) = 8
freq(q) = 6

a/8 c/3 b/1 d/2

./3

./6

a/8 c/3 b/1 d/2

./3

./6

Ulf Leser: Algorithms and Data Structures 12

Example

• Code book B
– B(a) = 0
– B(c) = 10
– B(b) = 110
– B(d) = 111

a/8 c/3 b/1 d/2

./3

./6

0/a 0/c 0/b 1/d

1

1

Ulf Leser: Algorithms and Data Structures 13

Huffman and Priority Queues

• Complexity of computing the codebook
– Let m=|Σ| and n=|D|
– Preprocessing (freq counting): O(n)
– Recall: A binary tree with m leaves has O(m) inner nodes
– Every loop creates an inner node: O(m) iterations

• Core: We need to find two nodes with smallest frequency
• If nodes kept in sorted array: O(1), but inserting p will cost O(m)
• If kept in unsorted linked list: O(m), but inserting p will cost O(1)

– Anyway: O(n+m2)
• Better: Use a priority queue for managing nodes

– Yields O(1) for getInfrequentNodes, and O(log(m)) for putNode
– Together: O(n+m*log(m))

• One can actually get O(n+m)

Ulf Leser: Algorithms and Data Structures 14

Content of this Lecture

• Priority Queues
• Using Heaps
• Using Fibonacci Heaps

Ulf Leser: Algorithms and Data Structures 15

Priority Queues

• A priority queue (PQ) is an ADT with 3 essential operations
– add(o,v): Add element o with priority (value) v
– getMin(): Retrieve element with highest priority
– removeMin(): Remove element with highest priority

• Typical additional operations
– merge(p1,p2): Merge two PQs into one
– create(L): Convert a list in a priority queue
– delete(o): Delete element o from PQ
– update(o,v): Change priority of element o to v

Ulf Leser: Algorithms and Data Structures 16

Maybe Arrays?

• Using a sorted array
– add requires O(n) (bad - we find the position in log(n), but then

have to free a cell by moving all elements after this cell)
– getMin requires O(1)
– deleteMin requires O(n) (bad)

• PQs are typically used in applications where elements are
inserted and removed (and updated) all the time

• We need a DS that can change its size dynamically at very
low cost while keeping a certain order (min element)

• We want constant or at most log-time for all operations

Ulf Leser: Algorithms and Data Structures 17

Content of this Lecture

• Priority Queues
• Using Heaps

– Heaps
– Operations on Heaps
– Heap Sort

• Using Fibonacci Heaps

Ulf Leser: Algorithms and Data Structures 18

Heap-based PQ

• Unsorted lists require O(n) for getMin
– We don‘t know where the smallest element is

• Sorted lists require O(n) for add
– We don‘t know where to put the new element

• Can we find a way to keep the list “a little sorted”?
– We only need the smallest element at a fixed position
– All other elements can be at arbitrary places
– But add/deleteMin should be faster than O(n)

• One such structure is called a heap

Ulf Leser: Algorithms and Data Structures 19

Heaps

• Definition
A heap is a labeled binary tree of depth d for which the
following constraints holds
– Nodes are labeled with integers (the priorities)
– Form-constraint (FC): The tree is complete except the pre-last level

• I.e.: Every node at level l<d-1 has exactly two children
– Heap-constraint (HC): The label of every node is smaller than that

of all its children 3

5 8

10 9 12 15

11 18

Level 1

Level 2

Level 3

Level 4 (depth d)

Ulf Leser: Algorithms and Data Structures 20

Properties

• Order
– A heap is “a little” sorted: We know the smallest element (root)
– We know the order for some pairs of elements (parent-successors),

but for many pairs we don’t know which is bigger
• E.g. nodes at the same level

• Size
– A complete binary tree with d levels has

2d-1 nodes
– A heap with d levels thus has

between 2d-1-1 and 2d-1 nodes
– A heap with n nodes

has ceil(log(n+1)) levels

3

5 8

10 9 12 15

11 18

Ulf Leser: Algorithms and Data Structures 21

Operations

• Assume we store our PQ as a heap
• Clearly, getMin() is possible in O(1)

– Keep a pointer to the root
• But …

– How can we cheaply perform deleteMin() – such that the new
structure again is a heap?

– How can we cheaply add an element to a heap – such that the new
structure again is a heap?

– How can we cheaply create a heap – from a given list?

Ulf Leser: Algorithms and Data Structures 22

DeleteMin()

• We first remove the root
– Creates two heaps
– We must connect them again

• We take the „last“ node,
place it in root, and “sift” it
down the tree
– Last node: right-most in the

last level (actually, we can
take any from the last level)

– Sifting down: Exchange with
smaller of both children as
long as at least one child is
smaller than the node itself

3

5 8

10 9 12 15

11 18 18

5 8

10 9 12 15

11
5

18 8

10 9 12 15

11
5

9 8

10 18 12 15

11

Ulf Leser: Algorithms and Data Structures 23

Analysis - Correctness

• We need to show that FC and HC still hold
• HC: Look at the tree after we choose new root k. k may

– … be smaller than its children. Then HC holds and we are done
– … be larger than at least one child k2. Assume that k2 is the

smaller of the two children (k1, k2) of k. We next swap k and k2.
The new parent (k2) now is smaller than its children (k1, k), so the
HC holds

– After the last swap, k has no children – HC holds and we are done
• FC: We remove one node, then we sift down

– Removing last node doesn’t affect FC as we remove in the last level
– Sifting does not change the topology of the tree (we only swap)

Ulf Leser: Algorithms and Data Structures 24

Analysis - Complexity

• Recall that a heap with n nodes has ceil(log(n+1)) levels
• During sifting, we perform at most one comparison and

one swap in every level
• Thus: O(ceil(log(n+1))) = O(log(n))

Ulf Leser: Algorithms and Data Structures 25

Add() on a Heap

• Cannot simply add on top
• Idea: We add new element

somewhere in last level
and sift up
– We might need a new level
– Sifting up: Compare to

parent and swap if parent is
larger

3

5 8

10 9 12 15

11 18 1

3

5

10 1

11 18

3

1

10 5

11 18
1

3

10 5

11 18

8

12 15

8

12 15

8

12 15

9

9

9

Ulf Leser: Algorithms and Data Structures 26

Analysis

• Correctness
– HC

• If parent has only one child, HC holds after each swap
• Assume a parent k has children k1 and k2, k2 was swapped there in

the last move, and k2<k. Since HC held before, k<k1, thus k2<k<k1.
We swap k2 and k, and thus the new parent is smaller than its
children. On the other hand, if k2≥k, HC holds immediately (and we
don’t swap).

– FC: See deleteMin()
• Complexity: O(log(n))

– See deleteMin()

Ulf Leser: Algorithms and Data Structures 27

How to Find the Next Free / Last Occupied Node

• What do we need to find?
– For deleteMin, we use the right-most leaf on the last level
– For add, we add the leaf right from the last leaf (or new level)

• We actually need the parent node k for inserting
– We can compute in O(1) the index p of the last leaf in the last

level: p = n – 2^(floor(log(n)))
• Or log(n+1) for add

– The parent k of the node at p has index floor(p/2) in level d-1
– The parent k’ of k has index floor(p/4) in level d-2
– …
– Now, in each node, we can decide whether to go left or right
– Fast trick: Use the binary representation of p

Ulf Leser: Algorithms and Data Structures 28

Illustration

• For deleteMin, we need x (or
x’); for add, we need y (or y’)
– p(x)=0, p(y)=1, p(x’)=4, p(y’)=5
– Binary: 000, 001, 100, 101

• Go through bitstring from left-
to-right

• Next bit=0: Go left
• Next bit=1: Go right

• Allows finding k in O(log(n))

p’

p

x y

0 1

00 01 10 11

000 001

010 011

100 101

110 111

x’ y’

Ulf Leser: Algorithms and Data Structures 29

Creating a Heap

• We start with an unsorted list with n elements
• Naïve: Start with empty heap and perform n additions

– Obviously O(n*log(n))
• Better: Bottom-Up-Sift-Down

– Build a “naïve” tree fulfilling the FC (but not HC)
• Simple fill a tree level-by-level – this is in O(n)

– Sift-down all nodes on the second-last level
– Sift-down all nodes on the third-last level
– …
– Sift down root

Ulf Leser: Algorithms and Data Structures 30

Analysis

• Correctness
– After finishing one level, all subtrees starting in this level are heaps

because sifting-down ensures FC and HC (see deleteMin())
– Thus, when we are done with the first level (root), we have a heap

• Analysis
– We look at the cost per level h (h∈[1 … d], d=log(n))
– For every node at level h, we need at most d-h swaps
– At every level h≠d, there are 2h-1 nodes

• For nodes at level d, we don’t do anything
– Summing over all levels, this yields

)(2*
2

*
2

22*)(*2)(
1

1

1

1
1

1

1
1

1

1 nOnhnhhhdnT
h

h

d

h
h

d
d

h

hd
d

h

h ==≤==−= ∑∑∑∑
∞

=

−

=

−
−

=

−−
−

=

−

Ulf Leser: Algorithms and Data Structures 31

Summary

Linked list Sorted linked list Heap
getMin() O(n) O(1) O(1)
deleteMin()
(after getMin()) O(1) O(1) O(log(n))

add() O(1) O(n) O(log(n))
merge() O(1) O(n1+n2) O(log(n1)*log(n2))
create() O(n) O(n*log(n)) O(n)
Space O(n) add. pointer O(n) add. pointer O(n) add. pointer

Heaps can be kept efficiently in
an array – no extra space, but

limit to heap size

Ulf Leser: Algorithms and Data Structures 32

Side Note: Heap Sort

• Heaps also are a suitable data structure for sorting
• Heap-Sort (a classical sorting algorithm)

– Given an unsorted list, first turn it into a heap (O(n))
– Repeat

• Take the smallest element and store in array in O(1)
• Remove smallest element in O(log(n)) (deleteMin())

– Until heap is empty – after n iterations
• This runs in O(n*log(n))
• Can be implemented in-place when heap is stored in array

– See [OW93] for details
• Note: Empirically, heap-sort is slower than quick-sort

Ulf Leser: Algorithms and Data Structures 33

Content of this Lecture

• Priority Queues
• Using Heaps
• Using Fibonacci Heaps

Ulf Leser: Algorithms and Data Structures 34

Fibonacci-Heaps (very rough sketch)

• A Fibonacci Heap (FH) is a forest of (non-binary) heaps
with disjoint values
– All roots are maintained in a double-linked list
– Special pointer (min) to the smallest root
– Accessing this value (getMin()) obviously is O(1)

Source: S.Albers,
Alg&DS, SoSe 2010

Ulf Leser: Algorithms and Data Structures 35

Maintainance of a FH

• FHs are maintained in a lazy fashion
– add(v): We create a new heap with a single element node with

value v. Add this heap to the list of heaps; adapt min-pointer, if v is
smaller than previous min

• Clearly O(1)
– merge(): Simple link the two root-lists and determine new min (as

min of two mins)
• Clearly O(1)

• Deleting an element (deleteMin()) needs more work
– Until now, we just added single-element heaps
– Thus, our structure after n add() is an unsorted list of n elements
– Finding the next min element after deleteMin() in a naïve

manner would require O(n)

Ulf Leser: Algorithms and Data Structures 36

deleteMin() on FH

• Method is not complicated
– We first remove the min element
– We then go through the root-list and merge heaps with the same

rank (=# of children) until all heaps in the list have different ranks
– Merging two heaps in O(1): (1) Find the heap with the smaller root

value; (2) Add it as child to the root of the other heap
• But analysis is fairly complicated

– The above method is O(n) in worst case
• But after every clean-up, the root-list is much smaller than before
• Subsequent clean-ups need much less time

– Amortized analysis shows: Average-case complexity is O(log(n))
– Analysis depends on the growth of the trees during merge – these

grow as the Fibonacci numbers

Ulf Leser: Algorithms and Data Structures 37

Disadvantage

• Though faster on average, Fibonacci Heaps have
unpredictable delays

• No log(n) upper bound for every operation
• Not suitable for real-time applications etc.

Ulf Leser: Algorithms and Data Structures 38

Summary

Linked list Sorted
linked list

Heap Fibonacci
Heap

getMin() O(n) O(1) O(1) O(1)
deleteMin() O(1) O(n) O(log(n)) O(log(n))*
add() O(1) O(n) O(log(n)) O(1)
merge() O(1) O(n1+n2) O(log(n)) O(1)
create() O(n) O(n*log(n)) O(n) O(n)

*: Amortized analysis

Ulf Leser: Algorithms and Data Structures 39

Exemplary Questions

• The PQ we described is a MinHeap. Describe insert and
getMin() operations for a maxHeap, wheren a parent node
must always be larger than ist children.

• Describe an algorithm for searching an arbitrary key in a
MinHeap. Analyze the WC complexity. Also analyze the AC,
assuming that the key being searching is contained in the
PQ.
– Searching keys is, for instance, necessary to change priorities

• What is the complexity of searching thr k-smallest element
in a MinHeap?

• Descrbe an algorithm that merges two minHeaps in
O(log(n1)*log(n2)), where n1, n2 are the sizes of the
original heaps.

	Foliennummer 1
	Specialized Queues: Priority Queues
	Simple Example
	Scheduler and Priority Queue	
	Second Example: Compression
	Huffman Codes
	Approach
	Compression
	Compression?
	Algorithm
	Example: D=aaaabaaccddaac
	Example
	Huffman and Priority Queues
	Content of this Lecture
	Priority Queues
	Maybe Arrays?
	Content of this Lecture
	Heap-based PQ
	Heaps
	Properties
	Operations
	DeleteMin()
	Analysis - Correctness
	Analysis - Complexity
	Add() on a Heap
	Analysis
	How to Find the Next Free / Last Occupied Node
	Illustration
	Creating a Heap
	Analysis
	Summary
	Side Note: Heap Sort
	Content of this Lecture
	Fibonacci-Heaps (very rough sketch)
	Maintainance of a FH
	deleteMin() on FH
	Disadvantage
	Summary
	Exemplary Questions

