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Preface 
In the past years, research in molecular biology and molecular medicine has accumulated enormous 
amounts of data. This includes genomic sequences gathered by the Human Genome Project, gene 
expression data from microarray experiments, protein identification and quantification data from 
proteomics experiments, and SNP data from high-throughput SNP arrays. However, our understanding 
of the biological processes underlying these data lags far behind. There is a strong interest in employing 
methods of knowledge discovery and data mining to generate models of biological systems. Mining 
biological databases imposes challenges which knowledge discovery and data mining have to address, 
and which form the focus of the European Workshop on Data Mining and Text Mining for Bioinformatics. 

This volume contains the papers presented at the European Workshop on Data Mining and Text Mining 
for Bioinformatics, held at the European Conference on Machine Learning and the European Conference 
on Principles and Practice of Knowledge Discovery in Databases, in Dubrovnik, Croatia, on September 
22, 2003. Three invited and ten contributed papers were presented at the workshop; invited 
presentations were given by 

• Luc Dehaspe, PharmaDM: “Great Expectations: A To-Do List for the Biologist’s in Silico 
Research Assistant”, 

• Udo Hahn, Freiburg University: “Challenging Natural Language Processors – Prospects for 
Bioinformatics in the Natural Language Engineering Age”, and 

• Steven J. Barrett, GlaxoSmithKline Research and Development: “Recurring Analytical Problems 
within Drug Discovery and Development”. 

We would like to thank the members of the program committee.  

• Sourav Bhomwick, Nanyang Technological University, Singapore. �
• Christian Blaschke, Centro Nacional de Biotecnologia.  
• Vladimir Brusic, Biodiscovery Group, Institute for Infocomm Research, Singapore. 
• Mark Craven, University of Wisconsin.  
• Saso Dzeroski, Jozef Stefan Institute.  
• George Forman, Hewlett Packard.  
• Jiawei Han, University of Illinois at Urbana Champaign.  
• Ross King, University of Wales, Aberystwyth, and PharmaDM.  
• Adam Kowalczyk, Telstra.  
• Stefan Kramer, University of Munich.  
• Knut Reinert, Free University, Berlin.  
• Steffen Schulze-Kremer, Max-Planck-Institute, Berlin.  
• Myra Spiliopoulou, University of Magdeburg.  
• Alfonso Valencia, Centro Nacional de Biotecnologia, Spain.  
• David Vogel, AI Insight.  
• Stefan Wrobel, Fraunhofer AiS and University of Bonn.  
• Mohammed Zaki, Rensselaer Polytechnic Institute.  

Additional reviews were written by Jörg Hakenberg. Based on these reviews, we selected nine research 
papers and one research note for presentation at the workshop.  
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Great expectations: a to do list for the biologist’s in 
silico research assistant 

Luc Dehaspe 
PharmaDM 

Kapeldreef, 60 
B-3001 Leuven, Belgium 

++32 16 387472 

Luc.Dehaspe@PharmaDM.com 
ABSTRACT 
Witness the response to this workshop, biology is increasingly attractive to text and data mining 
researchers in search of an application domain to validate their technology.  Vice-versa, biologists have 
set their hopes on text and data mining for providing them with the biologist-compliant software tools to 
explore and digest data directly (rather than indirectly, e.g., via a bioinformatician).   The attraction is 
clearly mutual, but the match between the research agenda of the provider/miner and the needs and 
expectations of the user/biologist is far less obvious.  This presentation looks at this complex relationship 
from the user perspective.  Not a biologist myself, I will list some requirements that have come up in 
discussions with biologists on data and text mining applications.  I will also present some (intermediate) 
research results inspired by those discussions. 

Text mining requirements will be mainly taken from the EC funded Biological Text Mining project 
BioMinT (www.biomint.org), in particular from feedback provided by  

1. two user partners (i.e., University of Manchester, and Swiss Institute of Bioinformatics) involved 
in database (i.e., PRINTS and SWISS-PROT) curation; and 

2. biology researchers from partner institutions and interested companies. 

For the data mining requirements I will focus on  “integrated data analysis”.  Various interpretations of 
that highly popular phrase will be discussed.  I will also argue that Relational Data Mining, 
supplemented with Data Cubes for visualization and interaction purposes, can address this issue quite 
naturally.  
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Challenging Natural Language Processors – 
Prospects for Bioinformatics in the Natural Language 

Engineering Age 

Udo Hahn 
Text Knowledge Engineering Lab 

Universität Freiburg, Germany 
 

 

 

The recent gain in maturity of natural language processing (NLP) methodology can, by and large, be 
attributed to a particular research (and funding) strategy actively pursued in the past decade. It is based 
on the external definition of challenging NLP tasks which can be probed by a number of research groups 
under controlled experimental conditions. Briefly considering the experience from past competition 
rounds in the field of document retrieval (TREC) and information extraction (MUC), this keynote will 
outline a framework for automatic knowledge capture from bioinformatics literature, in which task 
descriptions and corresponding evaluation scenarios meet special application requirements from the 
bioinformatics domain. This way, biological research might substantially benefit from state-of-the-art NLP 
techniques. 
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Recurring Analytical Problems within Drug Discovery 

and Development. 
 

S. J. Barrett 

Data Exploration Sciences, GlaxoSmithKline, Research and Development, 

Greenford, Middlesex, UK 

 

The overall processes driving pharmaceuticals discovery and development research involve many 
disparate kinds of problems and problem-solving at multiple levels of generality and specificity. The 
discovery/pre-clinical processes are also highly technology-driven and specific aspects may be more 
dynamic over time compared to  developmental research which is conducted in a more conservatively 
controlled manner, conducive to regulatory requirements. 

The widespread utilisation of robotics and miniaturisation of synthesis and screening technologies has 
greatly increased the through-put of discovery processes, which now yield vast amounts of richer data to 
the extent that discovery has evolved a critical dependence upon computerised systems. In tandem with 
this, the core need for specialists in disciplines related to biological and chemical information processing 
and analysis has increased greatly to enable organisation of this data into operational datamarts to 
support improved domain understanding and better decision-making for triaging compounds and 
reducing drug candidate attrition at later (more expensive) stages. 

Combinatorial library design involves the identification and selection of 'virtual' molecules to physically 
make and incorporates multiple sub-problems : modelling biological target-specific activity (often 
incoporating multiple - usually unknown - mechanisms for binding/activity), ADME properties prediction, 
overcoming compound space biases,etc. 

A key goal of this QSAR-type modelling is to generalise beyond the current data, and this is usually 
further complicated by massive class imbalance within previously sampled areas of chemical space. 
Methods involving learning from partially-labelled data, such as transduction, would be very useful if 
made effective. 

The library design and optimisation processes are heavily dependent upon the quality of the outputs of 
primary compound screening – vast numbers of compounds are now screened and cross-screened, 
increasingly using 'high content' methods, and the newer discipline of cheminformatics now supports the 
goal of improving this process via screening set selection, stringent data analysis of hits, identification of 
screening biases, etc. 

More recently, another source of vast complex data has evolved from the incorporation of the various 
'omics platforms into pharmaceuticals research, yielding increasing volumes of genomics, proteomics, 
metabolomics and lipomics data. With this comes new analysis challenges for relating cellular changes 
to chemical activity and new possiblities for crossing the divide and extrapolating between animal and 
human data/models. 

Genetic and SNP data from large population genetics studies and further initiatives to capture DNA from 
subjects in clinical trials yield yet more datasets to be analysed alongside primary endpoints in the 
search for 'surrogate' biomarkers. 

Much of the data coming from these newer platforms such as gene-chips is very high dimensional and 
additionally problematic in being small N x Large M type data. Much of the analysis and dimensional 
reduction effort currently relies upon conventional multivariate statistical approaches such as PCA, PLS 
and PLS-DA.  
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Increasingly, data from disparate sources and disciplines are being combined to ask new types of 
questions that are often not those which the data were originally generated to support. This also presents 
further problems for analysis from multi-relational data and disparately sized data sources. 

Exploratory, descriptive and predictive data-mining involving machine learning methods can contribute to 
these analyses in a variety of ways, and some examples are presented here for newer 'general-purpose' 
approaches such as genetic programming and support vector machines. The application of traditional 
methods such as clustering is also covered as well as the following domain areas/problems: 

 

-  Compound 'bioprofiling' and data-mining of HTS screening data 

 - QSAR 

-  SNPs marker identification 

-  predictive gene's selection from affymetrix data 

 

 



Improving Information Extraction through Biological
Correlation

Francisco M. Couto, Mário J. Silva
LaSIGE, Departamento de Informática

Faculdade de Ciências
Universidade de Lisboa

Campo Grande, 1749-016 Lisboa, Portugal

ffjmc,mjsg@di.fc.ul.pt

Pedro Coutinho
UMR 6098, Architecture et Fonction des

Macromolécules Biologiques
Centre National de la Recherche Scientifique

13402 Marseille CEDEX 20, France

pedro@afmb.cnrs-mrs.fr

ABSTRACT
We present a new method for improving the eÆciency of

information extraction systems applied to biological litera-
ture, using the correlation between structural and functional
classi�cations of gene products. The method evaluates ex-
tracted information by checking if gene products from a com-
mon family match a common set of biological properties.
To evaluate the method, we implemented it in a case-study,

where the method annotated carbohydrate-active enzymes
with functional properties extracted from literature. Each
carbohydrate-active enzyme is assigned to one or more fam-
ilies of catalytic and carbohydrate-binding modules accord-
ing to its modular structure. To compute the relatedness
between functional properties, we implemented a semantic

similarity measure in GO, a biological ontology. The results
present our quantitative measure of the correlation between
the modular structures and functional properties, showing
that our method is a viable approach for automatic valida-
tion of extracted biological information.

1. INTRODUCTION
Relevant facts discovered in molecular biology research, like
in other �elds, have been mainly published in scienti�c jour-
nals throughout the last century [9]. Extracting knowledge
from this large amount of unstructured information is a

painful and hard task, even to an expert. The solution
was to create and maintain structured databases, such as
GenBank and SwissProt that collect and distribute biolog-
ical information, in particular biological sequences. These
databases describe properties of common biological entities,
such as genes and proteins. In the past few decades, the ex-

plosion of data has caused the exponential growth of these
databases [3], where e�orts to compensate the lack of anno-
tation of many entries (mostly genomic) are at the origin of
the signi�cant misannotations, underprediction and overpre-
diction of properties found today in biologic databases [5].

Proceedings of the European Workshop on Data Mining and Text Mining for
Bioinformatics, held in conjunction with ECML/PKDD. 2003, Dubrovnik,
Croatia

The integration of literature-derived annotation to di�er-
ent sources of data corrects and completes our knowledge
about these biological entities [16]. However, a substantial

amount of knowledge important to the integration is still
only recorded in literature [18], which motivates the devel-
opment of automatic tools that could extract part of this
knowledge.

Information extraction methods �nd relevant information

in unstructured texts and encode it in a structured form,
like a database [11]. The application of these methods to
biological literature is a recent research topic with a high
activity despite its youth [2, 8, 17]. However, the use of
di�erent nomenclatures, di�erent data classi�cations, and
misannotations are hard barriers to overtake.

Our work aims to enhance information extraction systems
for automatic annotation of biological databases through
a new method, which we named CAC (Correlate the An-
notations' Components). It evaluates whether an anno-
tation is valid or not, based on the biological correlation

between structure and function of gene products [14]. To
check the e�ectiveness of CAC, we implemented it in case-
study, where CAC annotated carbohydrate-active enzymes
with functional properties extracted from literature. From
these annotations, we identi�ed a correlation between bio-

logical structure and function by using a semantic similarity
measure [10].

The rest of this paper is structured as follows. Section 2 de-
scribes CAC method in detail. In Section 3 we present our
case-study, describing its sources of biological information,

the validation process, and the results. Section 4 discusses
related work. Finally in Section 5 we express our main con-
clusions and directions for future work.

2. CAC
In CAC, we restrict an annotation to a pair composed by a
gene product and a biological property. The gene products

have to be classi�ed in families according to their structural
information, and the biological properties have to be orga-
nized in an ontology structured as a graph. CAC aims to
validate an annotation only when its components have a bi-
ological relationship between them.

We de�ne that two annotations converge if they relate di�er-
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ent gene products from a common family with similar biolog-

ical properties. CAC assumes that an annotation is valid if
it has a signi�cant number of convergent annotations in any
of its gene product's families. This assumption is supported
by the dogma of molecular biology, which postulates that se-
quences should be correlated with their biological activity,
i.e. gene products from a common family usually share a

common set of biological properties. To validate an annota-
tion in a family, it is not necessary to have all gene products
from the family sharing the biological property, but only a
signi�cant subset of them.

Similarity of gene products and biological properties are

fuzzy concepts, but we can still de�ne metrics to estimate
them. In our case, we need to de�ne two type of metrics:

� Given two gene products g1 and g2 from a common

family, we express their structural distance as �(g1; g2).

� Given two biological properties p1 and p2, we express
their functional distance as �(p1; p2).

Since it is only necessary to calculate the structural distance
between gene products from a common family, we should

calculate the structural distance according to factors that
characterize the family. For instance, we can measure the
sequence similarity of common modules using BLAST (Ba-
sic Local Alignment Search Tool) [1]. Functional distance
between biological properties can be measured through se-

mantic similarity measures, which details are described in
section 2.1

We de�ne a measure of the convergence between two anno-
tations as being proportional to its structural distance and
inversely proportional to its functional distance. Without

loss of generality, we consider a set of annotations Af whose
gene products belong to a common family f .

De�nition 1. Given two annotations (g1; p1)2Af and (g2; p2)2Af ,
their annotation convergence is de�ned as:

�((g1; p1); (g2; p2)) =
�(g1; g2)

�(p1; p2)

We can visualize the notion of annotation convergence by
representing an annotation as an arrow from a gene product
to a biological property. If two arrows start from distant
locations and �nish in close locations, then they are conver-

gent. In other words, two annotations are convergent if their
structural distance is larger than their functional distance.

Example 1. Figure 1 presents three di�erent cases for

the annotations a1=(g1; p1), a2=(g2; p2) and

a3=(g3; p3), whose components we placed on the shaded re-

gions according to their structural or functional distance. In

case (a) we have �(g1; g2) = �(g2; g3) = �(g1; g3)=2 and

�(p1; p2) = �(p2; p3) = �(p1; p3), which makes �(a1; a3) >
�(a1; a2). In case (b) we have �(g1; g2) = �(g2; g3) =
�(g1; g3) and �(p1; p2) = �(p2; p3) = �(p1; p3)=2, thus

�(a1; a2) > �(a1; a3). Finally, in case (c) we have �(a1; a2)=0

and �(a2; a3)

=1, since a1 and a2 annotate the same gene product (ori-

gin) whereas a2 and a3 annotate the same biological property

(destiny).

Since we de�ned the concept of annotation convergence by
two measures from di�erent universes, it is not reasonable to
establish a coeÆcient from which we can consider the anno-
tations convergent. However, it is possible to de�ne a more

exible relation that considers two annotations convergent if

their annotation convergence is greater than a certain value.

De�nition 2. Given two annotations a12Af and

a22Af , and a threshold h, they are h-convergent if �(a1; a2) �
h.

Finally, given a threshold h, we de�ne the correlation degree
of an annotation as the number of h-convergent annotations
in a common family.

De�nition 3. Given an annotation a02Af and a threshold
h, the correlation degree of a0 for h is de�ned as Dh(a0) =
#fax : ax2Af ^ �(a0; ax) � hg.

The method validates annotations that have a correlation
degree larger than a certain value in at least one family.

This value and the convergence threshold are parameters
that statistical classi�cation methods can adjust [26].

2.1 Semantic Similarity Measures
Semantic similarity measures compute distances between
terms structured in a hierarchical taxonomy. Two kinds of
approaches are prevalent: information content (node based)
and conceptual distance (edge based). Information content
considers the similarity between two terms the amount of

information they share, where a term contains less informa-
tion when it occurs very often. Conceptual distance is a
more intuitive approach. It identi�es the shortest topologic
distance between two terms in the scheme taxonomy. Bu-
danitsky et al. experimentally compared �ve di�erent pro-
posed semantic similarity measures in WordNet [10]. The

comparison shows that Jiang and Conrath's semantic sim-
ilarity measure provides the best results overall [19]. This
semantic similarity measure is a hybrid approach, i.e. it
combines information content and conceptual distance with
some parameters that control the degree of each factor's

contribution.

To compute the functional distance between functional prop-
erties we propose to use Jiang and Conrath's measure. How-
ever, to measure the distance between two functional prop-
erties, we must be able to compute the following factors:

their closest common ancestor; the shortest path between
each term and their common ancestor; and for each term
in these paths its information content, its depth and the
number of its direct descendents (i.e. local density).

The information content computation depends on the terms'

frequency. We have to compute the number of occurrences

9
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p1 p2

g1 g2

a 3a2a 1

(c)

Figure 1: Annotations examples

of each term in the corpora. However, if a term occurs
then all its ancestor terms also occur. Thus, we have to

propagate the term occurrences throughout the hierarchy,
reaching a frequency for the root node equal to the sum of
all the occurrences, as it does not represent any relevant
information.

The conceptual distance is based on the node depth and den-
sity factors. The node depth factor relies on the argument
that similarity increases as we descend the hierarchy, since
the relations are based on increasingly �ner details. The
density factor relies on the argument that when the parent
node has several child nodes (high density) they tend to be

more similar.

3. CASE-STUDY
This section presents a case-study to evaluate if CACmethod

is a viable approach. The case-study uses the following bio-
logical information sources:

� CAZy (Carbohydrate Active enZYmes) is a database

of carbohydrate-active enzymes identi�ed and classi-
�ed in various families by careful sequence and struc-
tural comparisons [13]. It describes the families of
structurally-related catalytic and carbohydrate bind-
ing modules (or functional domains) of enzymes that

degrade, modify, or create glycosidic bonds. It also
links the sequences to GenBank(GenPept) [6], Swis-
sProt [4] and PDB [7] entries. These databases are
repositories of gene and protein sequence and struc-
tural data used to characterize CAZy's enzymes.

� GO (Gene Ontology) provides a structured controlled

vocabulary of gene and protein biological roles [12].
The three organizing principles of GO are molecular
function, biological process and cellular component.
Rison et al. discuss the reasons for choosing GO as the
functional scheme in a survey about functional classi-
�cation schemes [23]. They describe GO as \represen-

tative of the `next generation' of functional schemes".
Unlike other schemes, GO is not a tree-like hierarchy,
but a directed acyclic graph (DAG), which permits a
more complete and realistic annotation.

CAZy and GO provide the structural and functional clas-
si�cation schemes, respectively, for our case-study. Thus,
CAZy enzymes and GO terms will assume the role of gene
products and biological properties, respectively, in our con-

cept of annotation.

PubMed is an online interface for the MEDLINE database
[20]. MEDLINE provides a vast collection of abstracts and

bibliographic information, which have been published in biomed-
ical journals. In this paper, we consider a document as a
bibliographic item whose citation is present in MEDLINE.

3.1 Validation
To assure that CAC method produces valuable results, we
need to identify a correlation between CAZy and GO clas-
si�cation schemes. Our strategy to identify this correlation

is to compare the probability of extracting similar terms in
a family with the probability of extracting similar terms in
general. We structured the validation process in three steps:

1. Retrieve a set of documents related to each enzyme
from available literature.

2. Extract annotations that associates each enzyme with
GO terms extracted from its related documents.

3. Compute the probability of similar terms inside a fam-
ily and in general.

Instead of extracting information from the entire available
corpora, we retrieve only documents somehow related to
each enzyme. CAZy links its enzymes to external databases

(GenBank, SwissProt and PDB) that contain bibliographic
references. We retrieve for each enzyme the documents cited
in its linked external database entries.

We extract the annotations based on the occurrences in
text [18, 15, 25]. We assume that if a document mentions

a GO term then there is an underlying biological relation
between the enzymes related to the document and the GO
term, i.e. we annotated the enzymes with the GO term.
This is a very strong assumption and a source of misanno-
tations. However, it satis�es our goal of evaluating CAC by

using it to �lter misannotations.

The three organizing principles of GO represent three or-
thogonal ontologies, thus we did not mix annotations from
di�erent organizing principles. We choose to start by ex-
tracting only molecular functional terms, given its greater

importance to CAZy.

We consider that two GO terms are similar if their functional
distance is smaller than a given threshold. We implemented
Jiang and Conrath's semantic similarity measure in GO to
compute the functional distance. Given a speci�c term, we

can de�ne its probability of similar terms in a set of terms

10



as the number of its similar terms over the total number of

terms.

De�nition 4. Given a term t, a set of terms T , and a

similarity threshold k, we de�ne the term's probability of

similar terms in the set as:

Psim(t; T ) =
#ftx : tx2T ^ 0 � �(t; tx) � kg

#T

We assign to each family the set of terms annotated with its

enzymes.

De�nition 5. Considering the set of all extracted annota-

tions A, we de�ne the set of all extracted terms as T = ft :
(e; t)2Ag, and given a family f we de�ne its set of terms as
Tf = ft : (e; t)2A ^ e2fg.

We de�ne the probability of extracting similar terms in a
particular family as the average of its term's probability of
similar terms in the family.

De�nition 6. Given a family f , we de�ne the family's

probability of extracting similar terms in it as Pin(f) =

fPsim(t; Tf n ftg) : t2Tfg.

We de�ne the probability of extracting similar terms in a
family as the average of Pin(f) for all the families.

De�nition 7. Given a set of families F , we de�ne the
probability of extracting similar terms in a family as Pin =

fPin(f) : f2Fg.

To provide a good source of comparison, we de�ne the prob-
ability of extracting similar terms in general analogously to
Pin. The only di�erence is that for each family's term we
identify its similar terms in all the extracted annotations.

De�nition 8. Given a family f , we de�ne the family's

probability of extracting similar terms in general as Pall(f) =

fPsim(t; T n ftg) : t2Tfg.

De�nition 9. Given a set of families F , we de�ne the
probability of extracting similar terms in general as Pall =
fPall(f) : f2Fg.

If Pin is signi�cantly larger than Pall for a given similarity
threshold then there is a correlation between CAZy and GO

classi�cation schemes, which is a strong argument to con-
clude that the annotations validated by CAC method have
a larger precision than all the extracted annotations.

Example 2. Consider T =ft1; t2; t3g with �(ti; tj)
=i + j, Tf=ft1; t2g for the family f , and k = 4. Then we

have Pin(f) = fPsim(t1; ft2g);Psim(t2; ft1g)g =

f1; 1g=1, Pall(f)=fPsim(t1; ft2; t3g);Psim(t2; ft1; t3g)g

=f1; 1=2g=3=4, and therefore Pin(f) > Pall(f) because �(t2; t3) >

k.

bibliographic
references

distinct
documents

GenBank 22849 4575

SwissProt 8998 4006

PDB 3561 785

Total 6377

Table 1: Number of items retrieved
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Figure 2: Pin over Pall

3.2 Results
This section describes the results of our last analysis per-
formed on the January 2003 release of GO and CAZy databases.
Table 1 presents the number of bibliographic references re-
trieved and the number of documents cited by them. From

these documents, we extracted 13869 annotations. We com-
puted the probability of extracting similar terms for 90 fam-
ilies of glycoside hydrolases (GHs), which are the best cu-
rated enzymes in CAZy. These families were associated with
3748 documents, from which were extracted 343 distinct GO
terms.

Figure 2 shows the ratio of Pin=Pall. We computed these
values for the similarity threshold that maximized the di�er-
ence between Pin and Pall. The parameters � and � control
the degree of how much the node depth and density fac-
tors contribute to semantic similarity computation. These

contributions become less signi�cant when � approaches 0
and � approaches 1. The values achieved show that the
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probability of extracting similar terms is signi�cantly larger

inside a family, as anticipated. The graph has a peak when
� 2 [0:1; 0:2], where Pin=Pall is larger than 12 for all �, ex-
cept for �=0. This means that the density of the DAG and
the depth of each node are important conceptual distance
factors to amplify the correlation.

The maximum value of Pin=Pall is obtained with �=1:0
and �=0:1. Figure 3 uses this con�guration to show Pin

against Pall for di�erent similarity thresholds. As expected,
both probabilities are proportional to the similarity thresh-
old, since a larger similarity threshold implies also a larger
number of similar terms. The relevant fact in the graphic

is that Pin is always signi�cantly larger than Pall, which
shows that enzymes with similar modular structure tend to
be annotated with similar functional terms.

4. RELATED WORK
Di�erent techniques for computing similarity measures be-
tween terms have been developed to address a variety of
problems. Early approaches were based only on counting
edge distances between terms [22]. These were later im-
proved by using the information content of each term, a

classic Information Retrieval technique [24].

More recently, Lord et al. investigated an information con-
tent semantic similarity measure, and its application to an-
notations found in SwissProt [21] that also associate gene

products with GO terms. They present results showing
that semantic similarity is correlated with sequence simi-
larity, i.e. function is correlated with structure. Since we
propose an e�ective information extraction tool for biologi-
cal literature, we evaluated the measure of this correlation
with annotations automatically extracted from free text, in-

stead of using human curated annotations. In our work, we
replaced the sequence similarity by a modular structure clas-
si�cation, which is a more precise structural classi�cation.
We also tested the application of a hybrid semantic similar-
ity measure, which integrates the information content with
other valuable factors.

5. CONCLUSIONS & FUTURE WORK
We presented CAC method, which improves the eÆciency
of information extraction systems applied to biological lit-

erature. The method uses the correlation between structure
and function to increase the precision of automatically ex-
tracted annotations.

We automatically annotated carbohydrate-active enzymes

with functional terms extracted from literature. From the
annotations, we computed the probability of extracting sim-
ilar terms, which was signi�cantly larger for enzymes from a
common family. This result shows a correlation between
modular structure and molecular function, which assures
that CAC method increases the precision of extracted an-

notations, thus making it an e�ective tool for automatic
information extraction of biological literature.

We implemented a hybrid semantic similarity measure to
compute the similarity between GO terms, which shows that
this kind of measures is feasible in a biological setting. More-

over, our results show that the information content measure

improves its e�ectiveness when integrated with a conceptual

distance measure.

To present results where the annotations validated by CAC
have a larger precision than all the extracted annotations
we �rst need to curate the extracted annotations. Besides
human curation, we also intend to incorporate human cu-

rated annotations recorded in di�erent biological sources to
accelerate this procedure.
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Abstract. Most of the bio-data analysis problems process datasets with a very large number of attributes and few 
training data. This situation is usually suited for support vector machine (SVM) approaches. We have imple-
mented a new column-incremental linear proximal SVM to deal with this problem. Without any feature selection 
step, the algorithm can deal with very large datasets (at least 109 attributes) on standard personal computers. We 
have evaluated its performance on bio-medical datasets and compared the results with other SVM algorithms. 
Furthermore, we propose a new visualization tool to try to explain the results of automatic SVM algorithms by 
displaying the data distribution according to the distance to the separating plane. 

1   Introduction 

In recent years, data stored worldwide has doubled every 20 months, so that the need to extract knowledge from 
very large databases is increasing. Knowledge Discovery in Databases (KDD) has been defined as the non-trivial 
process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data. Data mining 
can be defined as one particular step of the KDD process: the identification of interesting structures in data. It uses 
different algorithms for classification, regression, clustering or association rules. These new progresses in data min-
ing have already been applied to bio-data analysis (Zaki et al., 2002). SVM algorithms (Vapnik, 1995) are one of 
the most well-known of a class of performing methods for bio-data analysis. Recently, a number of powerful SVM 
learning algorithms have been proposed (Bennett et al., 2000). SVM uses the idea of kernel substitution for classify-
ing the data in a high dimensional feature space. They have been successfully applied to various applications, for 
example in face identification, text categorization, bioinformatics (Guyon, 1999). Especially, SVM performs par-
ticularly well in bio-data analysis problems (Mukherjee et al., 1999, Brown et al., 1999, Furey et al., 2000). How-
ever, SVM solution is obtained from quadratic programming problem possessing a global solution, so that, the 
computational cost of a SVM approach depends on the optimization algorithm used. The very best algorithms today 
are typically quadratic and require multiple scans of the data. The new proximal SVM algorithm proposed by (Fung 
et al., 2001) changes the inequality constraints to equalities in the optimization problem, thus the training task re-
quires the solution of a system of linear equations, so that PSVM is very fast to train. Furthermore, PSVM can con-
struct incrementally the model without loading the whole dataset in main memory. The Sherman-Morrison-
Woodbury formula (Golub et al., 1996) is used to adapt PSVM to a row-incremental or column-incremental version 
(but not both yet). Thus the algorithm can deal with large datasets (at least 109 in one dimension: row or column) on 
standard personal computers (with standard RAM and disk capacities). The algorithm has been used on bio-medical 
datasets, the results are compared with some others in terms of learning time and classification accuracy. We have 
also developed a visualization tools to try to explain the SVM results. The display of the datapoint distribution ac-
cording to the distance to the separating plane helps us to verify the robustness of obtained models. 

We summarize the content of the paper now. In section 2, we introduce very general SVM classifier. In section 3, 
we describe PSVM and its incremental versions. We present the graphical method for visualizing the SVM results 
in section 4. Some numerical test results on bio-medical datasets can be found in section 5 before the conclusion in 
section 6. 

Some notations will be used in this paper: all vectors are column vectors, the 2-norm of the vector x is denoted by 
||x||, the matrix A[mxn] is the m training points in the n-dimensional input space Rn. The diagonal matrix D[nxn] of 
±1 contains the classes +1 and –1 of m training points. e is the column vector of 1. w, b are the coefficients and the 
scalar of the hyperplane. z is the slack variable and ν is a positive constant. The identity matrix is denoted I. 

2   Support Vector Machines 
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Fig. 1. Linear separation of the datapoints into two classes 

Let us consider a linear binary classification task, as depicted in figure 1, with m data points in the n-dimensional 
input space Rn, represented by the mxn matrix A, having corresponding labels ±1, denoted by the mxm diagonal 
matrix D of ±1.  

For this problem, the SVM try to find the best separating plane, i.e. furthest from both class +1 and class -1. It 
can simply maximize the distance or margin between the support planes for each class (xTw – b = +1 for class +1, 
xTw – b = -1 for class -1). The margin between these supporting planes is 2/||w||. Any point falling on the wrong side 
of its supporting plane is considered to be an error. Therefore, the SVM has to simultaneously maximize the margin 
and minimize the error. The standard SVM solution with linear kernel is given by the following quadratic pro-
gram (1): 

 
min  f(z,w,b) = νeTz + (1/2)||w||2 

      (1) 
s.t.  D(Aw - eb) + z ≥ e   

 
where slack variable z ≥ 0 and constant ν > 0 is used to tune errors and margin size. 
 
The plane (w,b) is obtained by the solution of the quadratic program (1). And then, the classification function of 

a new data point x based on the plane is:  
 
f(x) = sign(w.x – b)   (2) 

 
SVM can use some other classification functions, for example a polynomial function of degree d, a RBF (Radial 

Basis Function) or a sigmoid function. To change from a linear to non-linear classifier, one must only substitute a 
kernel evaluation in the objective function instead of the original one. The details can be found in (Bennett et al. 
2000) and (Cristianini et al., 2000). 

3   Linear Proximal Support Vector Machines 

The proximal SVM classifier proposed by Fung and Mangasarian changes the inequality constraints to equalities 
in the optimization problem (1) and adding a least squares 2-norm error into the objective function f, it changes the 
formulation of the margin maximization to the minimization of (1/2)||w,b||2. Thus substituting for z from the con-
straint in terms (w,b) into the objective function f we get an unconstraint problem (3): 

 
min f(w,b)= (ν/2)||e – D(Aw–eb)||2 + (1/2)||w,b||2   (3) 

 
 
 
 
The Karush-Kuhn-Tucker optimality condition of (3) will give the linear equation system (4) of (n+1) variables 

(w,b): 
 

[w1 w2 .. wn b]T = (I/ν + ETE)-1ETDe  (4) 

A- 

A+ 

xT.w – b = 0 

xT.w – b = +1 

xT.w – b = -1 

margin = 2/||w|| 
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where E = [A     -e]  
 
Therefore, the linear PSVM is very fast to train because it expresses the training in terms of solving a set of linear 

equations of (w,b) instead of quadratic programming. The accuracy can be compared with standard SVM. Note that 
all we need to store in memory is the (m)x(n+1) training data matrix E, the (n+1)x(n+1) matrix ETE and the (n+1)x1 
vector d = ETDe. If the dimensional input space is small enough (less than 103), even if there are millions datapoints, 
PSVM is able to classify them on a standard personal computer. For example, the linear PSVM can easily handle 
large datasets as shown by the classification of 2 million 10-dimensional points in 15 seconds on a Pentium-4 
(2.4GHz, 256 Mb RAM, Linux).  

The algorithm is limited by the storage capacity of the (m)x(n+1) training data matrix E. In order to deal with 
very large (at least one billion points) datasets, the incremental version is extended from the computation of ETE and 
d=ETDe. 

3.1   Row-incremental PSVM (Fung et al., 2002) 

We can split the training dataset E into blocks of lines Ei, Di and compute ETE and d=ETDe from these blocks: 
 

ETE = ∑ Ei
TEi   

d = ∑ di = ∑ Ei
TDie 

 
For each step, we only need to load the (blocksize)x(n+1) matrix Ei and the (blocksize)x1 vector Die for comput-

ing ETE and d=ETDe. Between two incremental steps, we need to store in memory (n+1)x(n+1) and (n+1)x1 matri-
ces although the order of the dataset is one billion data points. The authors have performed the linear classification 
of one billion data points in 10-dimensional input space into two classes in less than 2 hours and 26 minutes on a 
Pentium II (400 MHz, 2 GB RAM, 30% of the time being spent to read data from disk). 

3.2   Column-incremental PSVM 

The algorithm described in the previous section can handle datasets with a very large number of datapoints and 
small number of attributes. But some applications (like bioinformatics or text mining) require datasets with a very 
large number of attributes and few training data. Thus, the (n+1)x(n+1) matrix ETE is too large and the solution of 
the linear equation system of (n+1) variables (w,b) has a high computational cost. To adapt the algorithm to this 
problem, we have applied the Sherman-Morrison-Woodbury formula to the linear equation system (4) to obtain: 

 
[w1 w2 .. wn b]T  = (I/ν + ETE)-1ETDe = νET[De – (I/ν + EET)-1EETDe] (5) 
where E = [A     -e]  

 
The solution of (5) depends on the inversion of the (m)x(m) matrix (I/ν + EET) instead of the (n+1)x(n+1) matrix 

(I/ν + ETE) in (4). The cost of storage and computation depends on the number of training data. This formulation 
can handle datasets with very large number of attributes and few training data. 

We have imitated the row-incremental algorithm for constructing the column-incremental algorithm able to deal 
with very large number of dimensions. 

The data are split in blocks of columns Ei and then we perform the incremental computation of EET = ∑ EiEi
T. 

For each step, we only need to load the (m)x(blocksize) matrix Ei for computing EET. Between two incremental 
steps, we need to store in memory the (m)x(m) matrix EET although the order of the dimensional input space is very 
high.  

With these two formulations of the linear incremental PSVM, we are able to deal with very large datasets (large 
either in training data or number of attributes, but not yet both simultaneously). We have used them to classify bio-
medical datasets with interesting results in terms of learning time and classification accuracy.  

4   Visualization of Linear SVM Results 

Although the SVM algorithms have been successfully applied to a number of applications, they provide limited 
information. Most of the time, the user only knows the classification accuracy and the hyperplane equation. It is 
difficult to really explain or verify the constructed model or to understand why the SVM algorithms are more effi-
cient than the other ones. Visualization techniques can be used to improve the results comprehensibility. We have 
developed a new method that can help the user to understand the model constructed by the SVM algorithm.  
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While the classification task is processed (based on the hyperplane obtained), we also compute the datapoint dis-
tribution according to the distance to the hyperplane as shown in figure 2. 

 
 
 
 
 
 
 
 
 
 

 

 

Fig. 2. Datapoints distribution based on parallel planes 

For each class, the positive distribution is the set of correctly classified data points, and the negative distribution 
is the set of misclassified data points. An example of such a distribution is shown in the right part of the figure 2. 
The method is applied to  Lung Cancer dataset (2 classes, 32 training, 149 testing, 12533 numerical attributes) as 
shown in figure 3.  

 
Fig. 3. Data distribution of Lung Cancer data according to distance to the hyperplane 

The visualization of the datapoint distribution according to the distance to the separating plane helps us to evalu-
ate the robustness of obtained models by SVM algorithm. 

5   Numerical Test Results 

The software program is written in C/C++ on SGI-O2 workstation (IRIX) and PC (Linux). To validate the perform-
ances of the incremental algorithms, we have classified bio-medical datasets (Jinyan et al., 2002) and the Thrombin 
drug design dataset from the KDD cup’01 (Hatzis et al., 2001). These datasets are described in table 1. 

Table 1. Dataset description. 

 classes datapoints attributes evaluation method 
ALL-AML Leukemia 2 72 7129 38 Tr – 34 Tst 
Breast Cancer 2 97 24481 78 Tr – 19 Tst 
Central Nervous System 2 60 7129 leave-one-out 
Colon Tumor 2 62 2000 leave-one-out 
MLL Leukemia 3 72 12582 57 Tr – 15 Tst 
Ovarian Cancer 2 253 15154 leave-one-out 
Prostate Cancer 2 136 12600 102 Tr – 34 Tst 
Subtypes of Acute Lym-
phoblastic Leukemia 

7 327 12558 215 Tr – 112 Tst 

Lung Cancer 2 181 12533 32 Tr – 149 Tst 
Translation Initiation Sites 2 13375 927 10-fold 

-1 

+l 

xT.w – b = 0

hyperplane 
nb points 

dist. to  the plane 

–1   

correct classification 

misclassification 

+1 
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Thrombin Drug Design 2 2543 139351 1909 Tr – 634 Tst 
 
Thus, we have obtained the results (concerning the training time and accuracy) shown in table 2 on a personal 

computer Pentium-4 (2.4GHz, 256 Mb RAM, Linux Redhat 7.2). Without any feature selection, almost all datasets 
are classified by the column-incremental linear PSVM with one exception Translation Initiation Sites is classified by 
the row-incremental and the column-incremental (*) versions of the linear PSVM. The one-against-all approach has 
been used to classify multi-class datasets (more than 2 classes), thus we have taken the average accuracy. The results 
are compared with the linear kernel of SVMLight (Joachims, 2002). 

Table 2. Numerical test results. 

     
 IPSVM SVMLight IPSVM SVMLight 
ALL-AML Leukemia 0.64 9.14 97.06 97.06 
Breast Cancer 4.43 269.66 78.95 73.68 
Central Nervous System 0.68 15.29 71.67 68.33 
Colon Tumor 0.41 1.80 90.32 90.32 
MLL Leukemia 3.42 133.68 100 97.78 
Ovarian Cancer 12.51 403.60 100 100 
Prostate Cancer 2.73 61.97 97.06 79.41 
SAL Leukemia 8.26 42.10 98,65 97.41 
Lung Cancer 1.25 20.80 98.66 98.66 
Translation Initiation Sites 63 (4238*) 314 90.05 92.41 
Thrombin Drug Design 425.12 88.87 79.02 76.34 

 
As we can see in table 2, the incremental version of linear PSVM is generally outperforming SVMLight on learn-

ing time and classification correctness. The results shown in table 2 indicate that the column-incremental PSVM can 
be compared with standard SVM in terms of classification accuracy. But its training time is always better (from 4 to 
60 times) than SVMLight one. The only one exception is the Thrombin Drug Design: this dataset has very few not 
null values (0.6823 %) and then SVMLight is faster than our column-incremental PSVM because we did not use a 
compressed data representation like SVMLight. The other algorithms can not run even with 1 GB RAM. They usu-
ally have to use a pre-processing task. Our column-incremental PSVM has given 79.02 % accuracy without any 
feature selection. The results concerning the Translation Initiation Sites show the interest of being able to choose 
between the column or the row incremental versions of the PSVM. The time needed for the classification task is 
divided by 70 (with exactly the same accuracy) when using the most appropriate version of the incremental algo-
rithms. 

6   Conclusion and Future Work 

We have presented a new implementation of incremental linear PSVM which can deal with large datasets (at least 
109 in one dimension: row or column if the other one stays under 104) on standard personal computers without any 
pre-processing task. The Sherman-Morrison-Woodbury formula is used to adapt PSVM to row-incremental or col-
umn-incremental. The algorithm has been estimated on bio-medical datasets. The column-incremental is a very 
convenient way to handle bio-medical datasets because it avoids loading the whole dataset in main memory and is 
very fast to train datasets with a very high number of attributes and few training data. Its performance concerning 
training time and classification accuracy can be compared with standard SVM. 

We have also proposed a way to visualize SVM results. The datapoints distribution according to the distance to 
the separating plane helps us to estimate the robustness of models obtained by SVM algorithms.  

A forthcoming improvement will be to extend these algorithms to the non-linear kernel cases. Another one will 
be to combine our method with other graphical techniques (Fayyad et al., 2001) to construct another kind of coop-
eration between SVM and visualization tools for applying it to bio-medical data analysis. 
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ABSTRACT
In bioinformatics there exist research topics that cannot be
uniquely characterized by a set of key words because relevant
key words are (i) also heavily used in other contexts and (ii)

often omitted in relevant documents because the context is
clear to the target audience. Information retrieval interfaces
such as entrez/Pubmed produce either low precision or low
recall in this case. To yield a high recall at a reasonable
precision, the results of a broad information retrieval search
have to be �ltered to remove irrelevant documents. We use

automated text categorization for this purpose.
In this study we use the topic of conserved secondary RNA

structures in viral genomes as running example. Pubmed re-
sult sets for two virus groups, Picornaviridae and Flaviviri-

dae, have been manually labeled by human experts. We

evaluated various classi�ers from the Weka toolkit together
with di�erent feature selection methods to assess whether
classi�ers trained on documents dedicated to one virus group
can be successfully applied to �lter literature on other virus
groups. Our results indicate that in this domain a biblio-
graphic search tool trained on a reference corpus may sig-

ni�cantly reduce the amount of time needed for extensive
literature recherches.

Keywords
Automated Text Categorization, Document Filtering

1. INTRODUCTION
An important part of bioinformatics research is the com-

parison of computational results with experimental results.

These are, unfortunately, often hidden in the vast body of
molecular biology literature. More often than not, the data
that are of interest for a particular computational study are
mentioned only in passing and in a di�erent context in the
experimental literature. As a concrete example we consider

here the survey of conserved RNA secondary structures in
viral genomes1 that has been initiated a few years ago by the
Vienna group [9, 14, 11]. To our surprise, the bibliographic

1http://rna.tbi.univie.ac.at

Proceedings of the European Workshop on Data Mining
and Text Mining for Bioinformatics, held in conjunction with
ECML/PKDD. 2003, Dubrovnik, Croatia

search for experimental evidence of and further information
on RNA secondary structures in a given group of virus |
a seemingly rather straightforward task | turned out to
be more tedious than the work on the actual sequence and
structure data.

There are several reasons for this diÆculty: (i) RNA sec-
ondary structure is usually referred to only as secondary

structure or simply as structure since the context RNA

is clear. The term secondary structure, however, appears
much more frequently in the context of protein structures
for the same virus group because proteins are usually dis-

cussed more frequently and in much more detail. (ii) RNA
secondary structures are rarely the main topic of research
papers on viruses. Rather, only one or a few paragraphs
are devoted to them. (iii) With few exceptions there is no
well-established nomenclature of RNA features in viruses so
that keyword searches for speci�c structural motifs are not

very e�ective. (iv) Relevant articles are written by authors
from rather diverse scienti�c communities, from clinical vi-
rologists to structural biologists.
Our target topic of \conserved RNA secondary structure

in viral genomes" consists of several subtopics, each dedi-

cated to a speci�c group of RNA viruses (e.g., Picornaviri-
dae, Flaviviridae, Coronaviridae, or Hepadnaviridae). For
some of these subtopics, manually labeled document corpora
exist. The question addressed in this exploratory study is
whether classi�ers trained for one subtopic can be applied
successfully to other subtopics. This would be in particular

attractive for subtopics with a large amount of available lit-
erature, e.g., on the HIV virus in the case of Retroviridae. In
our context, successful means a high recall (e.g., 80%) with
a not too low precision (e.g., 30%) because the emphasis is
on �nding most of the relevant literature with a tolerable
overhead caused by false positives.

Our goal is to make bibliographic search more e�ective by
using classi�ers trained on sample corpora in a system that
�lters and ranks search results from bibliographic databases
such as Pubmed. This kind of application is known as docu-
ment �ltering. The �ltering part is essentially a binary text
categorization problem. Ranking comes for free in conjunc-

tion with distribution classi�ers because they return proba-
bilities that can be used as document scores. The vast body
of literature on automated text categorization is surveyed
in [8]. In the Information Retrieval community, much work
(from [6] to [1, 3, 4, 10, 15]) has been done on adaptive

document �ltering, where relevance feedback from users is
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Table 1: The training corpora.

Corpus Source Size Positive

picorna Pubmed query:
picornavirus RNA secondary
structure

40 68%

picorna2 picorna + 24 extra docu-
ments

64 58%


avi Pubmed query:

RNA AND (IRES OR
"secondary structure" OR
"conserved structure" OR
"5'utr" OR "3'utr" OR
"coding region") AND
("hepatitis C virus" OR
"hepatitis G virus" OR
pestivirus OR dengue OR
"japanese encephalitis
virus" OR "yellow fever
virus"OR "tick-borne
encephalitis virus")

153 8%


avi2 
avi + 34 extra documents 187 12%

hepadna Pubmed query:

(Hepadnaviridae OR "Hep-
atitis B" OR "HBV") AND
(RNA secondary structure)
NOT delta

16 69%

employed to adjust document �lters.
The preliminary results presented here indicate that a

classi�er trained on one virus group can be applied success-
fully to search the literature on other virus groups. There-
fore, a system for supporting bibliographic search based on
automated text categorization seems feasible for our target
topic.
The remainder of this article is organized as follows: in

Sec. 2 we present the data sets used for this work. The
methods and tools used are described in Sec. 3. Our exper-
iments and their results are presented in Sec. 4. Finally we
give in Sec. 5 a conclusion and outline our future research.

2. DATA SETS
Training data has been obtained from searching the Pubmed

collection via the entrez interface2 and then downloading the
referenced articles as PDF documents (as far as available).
The search queries (see Table 1) have been speci�ed by our

domain experts (PFS, CT, CW). The resulting corpora are
referred to as picorna, 
avi, and hepadna. They are dedi-
cated to the virusgroups Picornaviridae, Flaviviridae, and
Hepadnaviridae, respectively.
Since corpus picorna is quite small and corpus 
avi con-

tains only few positive examples, we decided to add more

documents. These documents were provided by our do-
main experts from their private bibliographical collections.
The resulting corpora are referred to as picorna2 and 
avi2.
The small corpus hepadna is only used for testing classi�ers
trained on the latter two corpora.
A document is considered a positive example within its

corpus if it contains information on the secondary structure
of the RNA of viruses belonging to the virus group the cor-
pus is dedicated to.

2http://www.ncbi.nlm.nih.gov/Entrez/

3. METHODS

3.1 Data Preparation
The PDF documents where converted into text using the

Unix tools pdftotext and ps2ascii. The ConceptComposer text
analysis suite [2] was used to build a full text index of the
resulting text documents in a relational database (mysql).
Based on this index, the documents were transformed into

vector representation using a SQL script. We computed
term weights according to the standard t�df method (see

e.g. [7]). Each corpus is stored in a separate mysql database.
For feature selection we implemented the term relevance

measures Odds Ratio and Mutual Information (see [8]). In
addition we implemented derived term relevance measures
where the original relevance value for a term is weighted with
its frequency in the test database that is used for evaluation.

3.2 Text Categorization
We built the Java application litsift on top of the Weka 3

machine learning software [13] to classify the document cor-
pora. This enabled us to experiment with the variety of
classi�ers provided by Weka. Further parameters that can
be varied are

� the term relevance measure to use for feature selection

� the number of features to be taken into account

� the target recall when evaluating a classi�er on the test
corpus

� classi�er speci�c parameters

The application reads class labels for documents and their

term weights for the selected features from the training data-
base and creates a set of Weka instances from it. This in-
stance set is either used for cross evaluation on the training
corpus or it is used to train a classi�er that is evaluated
on a separate test corpus. In the latter case, only those
documents are classi�ed as positive whose predicted class-

membership probability exceeds a certain threshold. This
threshold is adjusted automatically to achieve at least the
chosen target recall (if possible at all) in a trade-o� with
the achieved precision. The threshold is found by comput-
ing histograms on the number of positives and true positives
over the predicted probabilities.

4. RESULTS
Before we assess the applicability of classi�ers trained on

one corpus to another corpus, we present cross-evaluation
results on each corpus as a base line for comparison.

4.1 Feature Selection
To assess the performance of di�erent term relevance mea-

sures, we varied the number N of features. From the corpus
we �ltered those documents that contained at least one of
the N best terms of the chosen measure. Then we com-
puted precision and recall of this �lter by counting the se-

lected documents as positives and the rest of the corpus as
negatives. The results are shown in Table 2. It shows that
10{30 features are always suÆcient to retrieve all positive
examples. Moreover it shows that the corpora picorna and
picorna2 are quite trivial since they can be classi�ed com-
pletely and correctly by using just the �rst 20 (picorna) or
30 (picorna2) features selected by Mutual Information.
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Table 2: Filtering results for di�erent corpora, and

relevance measures (column \msr"), with target re-

call 100%. The relevance measures Mutual Informa-

tion and Odds Ratio are abbreviated as \MI" and

\OR", respectively. Column \pavg" shows the av-

erage precision over all feature counts where the

target recall is exceeded. Column \pmax" shows

the maximum precision. The minimum feature

count at which this maximum precision is reached

is labeled\d". The recall achieved with this number

of features is shown in column \r".

corpus msr pavg pmax r d


avi MI 11.2% 23.1% 100.0% 20


avi OR 7.8% 7.9% 100.0% 10


avi2 MI 20.2% 40.7% 100.0% 20


avi2 OR 11.8% 11.8% 100.0% 10

picorna MI 76.7% 100.0% 100.0% 20

picorna OR 67.6% 69.2% 100.0% 10

picorna2 MI 69.3% 100.0% 100.0% 30

picorna2 OR 58.0% 59.7% 100.0% 10

4.2 Cross Evaluation on Each Corpus
As a base line for comparison we cross-evaluated several

classi�ers from the Weka toolkit, namely C4.5 (\J48"), Sup-
port Vector Machine (\SMO"), and Naive Bayes (\N.B."),

in combination with the available term relevance measures
on each corpus. The results are shown in Table 3. It shows
that

1. on 
avi and 
avi2 the target recall of 80% can be
reached only by the NaiveBayes classi�er

2. with few exceptions, less than 50 features are needed
to achieve maximum recall

3. corpora picorna and picorna2 can be almost perfectly
classi�ed in most cases

4. J48 seems sensitive with respect to the relevance mea-
sure: on 
avi2, Odds Ratio performs much better, on
picorna2, Mutual Information performs much better.

4.3 Validation on a Separate Test Corpus
We �rst present some exemplary experiments with SMO

and then give in an overview of all experiments in form of a
table.

4.3.1 Training on 
avi, Validation on picorna

A SMO classi�er trained on 
avi with Odds Ratio mea-
sure evaluated on picorna2 reaches the target recall of 80%

beginning with 30 features. The precision reaches a max-
imum of 80% at about 150 features (see Fig. 1a). Using
Mutual Information yields similar results.

4.3.2 Training on 
avi2, Validation on picorna2

Compared to Sec. 4.3.1, the average precision of SMO
drops slightly from 74% to 66% (see Fig. 1b) which is still

quite acceptable for bibliographic search.

Table 3: Cross evaluation results for di�erent cor-

pora, classi�ers, and relevance measures, with tar-

get recall 80%. The classi�ers shown in column

\class" are C4.5 (\J48"), Support Vector Machine

(\SMO"), and Naive Bayes (\N.B."). For the mean-

ing of the remaining columns see Table 2. The aver-

age precision is ommitted in cases where the target

recall was not reached.

corpus class msr pavg pmax r d


avi J48 MI { 85.7% 60.0% 10


avi J48 OR { 72.7% 66.7% 60


avi N.B. MI 21.3% 38.5% 83.3% 30


avi N.B. OR 25.2% 44.0% 91.7% 40


avi SMO MI { 75.0% 30.0% 10


avi SMO OR { 80.0% 33.3% 30


avi2 J48 MI { 73.7% 63.6% 160


avi2 J48 OR { 77.3% 77.3% 30


avi2 N.B. MI 28.3% 41.9% 81.8% 80


avi2 N.B. OR 37.8% 58.1% 81.8% 30


avi2 SMO MI { 66.7% 54.5% 30


avi2 SMO OR { 73.3% 50.0% 40

picorna J48 MI 99.3% 100.0% 100.0% 10

picorna J48 OR 89.2% 92.6% 92.6% 50

picorna N.B. MI 79.3% 100.0% 95.2% 10

picorna N.B. OR 80.5% 100.0% 100.0% 20

picorna SMO MI 90.6% 100.0% 100.0% 10

picorna SMO OR 91.7% 100.0% 85.2% 30

picorna2 J48 MI 95.3% 100.0% 100.0% 10

picorna2 J48 OR 85.2% 88.2% 81.1% 110

picorna2 N.B. MI 77.6% 100.0% 96.7% 10

picorna2 N.B. OR 79.7% 100.0% 94.6% 20

picorna2 SMO MI 93.5% 100.0% 100.0% 10

picorna2 SMO OR 93.1% 100.0% 81.1% 40

4.3.3 Training on picorna, Validation on 
avi

While SMO trained on corpus 
avi can be successfully ap-
plied to the corpora picorna and picorna2, the inverse setting
is not as successful. At 80% recall, SMO achieves a maxi-
mum precision of 23% precision at 60 features (see Fig. 2a).
With Mutual Information, the precision is even lower (about

10%).
Using a derived term relevance measure (Odds Ratio, weigh-

ted with term frequencies from 
avi) did not yield any im-
provement, either.
23% precision may not seem high, but in our application

to bibliographic search it is still more tolerable than in other

�elds of text classi�cation.

4.3.4 Training on picorna2, Validation on 
avi2

Compared to Sec. 4.3.3, precision of SMO increases to
30% starting from 40 features (see Fig. 2b).

4.3.5 Discussion
In Table 4, all experiments with evaluation on a separate

corpus are listed. We may summarize these results as fol-
lows:

1. Corpora picorna and picorna2 can quite successfully be

classi�ed after training on 
avi and 
avi2, respectively.
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Figure 1: Performance for Weka SMO with Odds

Ratio, target recall 80%: (a) on corpus picorna after

training on corpus 
avi, (b) on corpus picorna2 after

training on corpus 
avi2.

(a) With J48 or NaiveBayes, 100% recall can be achieved
with maximum precisions above 70%, using only

few features (10{30).

(b) Mutual Information seems to perform better than
Odds Ratio.

2. Corpora 
avi and 
avi2 can not as easily classi�ed after
training on picorna and picorna2, respectively.

(a) The best maximum precision is achieved by SMO
with Odds Ratio

(b) Corpus 
avi2 is easier to classify than 
avi

3. Corpus hepadna can quite successfully be classi�ed af-
ter training on picorna2 or 
avi2.

(a) In both cases, SMO performs best, reaching a
maximum precision of 90%.

(b) In most cases Odds Ratio performs much bet-

ter than Mutual Information, i.e., it needs much
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Figure 2: Performance for Weka SMO with Odds

Ratio, target recall 80%: (a) on corpus 
avi after

training on corpus picorna, (b) on corpus 
avi2 after

training on corpus picorna2.

fewer features to achieve a better maximum pre-
cision.

4. In most cases the di�erence between average and max-
imum precision is quite small. This supports the ob-
servation from Figs. 1 and 2 that precision does not
depend too much on the number of features.

The asymmetry between the picorna* and 
avi* corpora

can to some extent be explained by the fact that the Fla-

viviridae virus group is more heterogenous than the Pi-

cornaviridae group. For instance, while all Picornaviri-

dae genomes have so-called IRES (Internal Ribosomal Entry
Site) regions, this does not hold for all Flaviviridae. This
means that a classi�er trained on a picorna* corpus only

�nds those positive examples in 
avi* that are similar to
those in the training corpus. In the other direction this par-
tition within a 
avi* corpus seems to be suÆcient to learn
the characteristics of the positive examples in the picorna*
corpora. The additional positives in corpus 
avi2 might be
more \picorna"-like which would explain the better perfor-

mance when testing on 
avi2 instead of 
avi.
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Table 4: Transfer results for di�erent training and test corpora, classi�ers, and relevance measures, with target

recall 80%. The classi�ers shown in column \class" are C4.5 (\J48"), Support Vector Machine (\SMO"), and

Naive Bayes (\N.B."). For the meaning of the remaining columns see Table 2.

training test class msr pavg pmax r d


avi picorna J48 MI 69.1% 76.7% 100.0% 30


avi picorna J48 OR 67.3% 67.5% 100.0% 10


avi picorna N.B. MI 69.1% 76.7% 100.0% 30


avi picorna N.B. OR 67.5% 67.5% 100.0% 10


avi picorna SMO MI 74.4% 80.6% 92.6% 160


avi picorna SMO OR 74.0% 84.6% 81.5% 150


avi2 picorna2 J48 MI 65.8% 100.0% 80.0% 10


avi2 picorna2 J48 OR 57.8% 57.8% 100.0% 10


avi2 picorna2 N.B. MI 65.9% 83.3% 100.0% 10


avi2 picorna2 N.B. OR 57.8% 57.8% 100.0% 10


avi2 picorna2 SMO MI 68.3% 83.3% 100.0% 10


avi2 picorna2 SMO OR 66.2% 73.2% 81.1% 150

picorna 
avi J48 MI 12.6% 16.4% 91.7% 90

picorna 
avi J48 OR 13.7% 15.7% 91.7% 60

picorna 
avi N.B. MI 9.5% 14.7% 83.3% 10

picorna 
avi N.B. OR 9.4% 12.2% 100.0% 30

picorna 
avi SMO MI 12.3% 20.0% 83.3% 110

picorna 
avi SMO OR 18.6% 22.7% 83.3% 60

picorna2 
avi2 J48 MI 15.1% 22.6% 86.4% 130

picorna2 
avi2 J48 OR 16.3% 19.3% 100.0% 40

picorna2 
avi2 N.B. MI 16.1% 20.0% 100.0% 20

picorna2 
avi2 N.B. OR 14.0% 15.4% 95.5% 180

picorna2 
avi2 SMO MI 18.7% 23.8% 86.4% 130

picorna2 
avi2 SMO OR 26.2% 32.7% 81.8% 180


avi2 hepadna J48 MI 78.4% 81.8% 81.8% 180


avi2 hepadna J48 OR 68.8% 71.4% 90.9% 20


avi2 hepadna N.B. MI 78.4% 81.8% 81.8% 180


avi2 hepadna N.B. OR 68.8% 68.8% 100.0% 10


avi2 hepadna SMO MI 75.0% 75.0% 81.8% 200


avi2 hepadna SMO OR 73.6% 90.9% 90.9% 50

picorna2 hepadna J48 MI 76.6% 83.3% 90.9% 90

picorna2 hepadna J48 OR 70.1% 71.4% 90.9% 40

picorna2 hepadna N.B. MI 76.6% 83.3% 90.9% 90

picorna2 hepadna N.B. OR 69.6% 75.0% 81.8% 170

picorna2 hepadna SMO MI 76.7% 81.8% 81.8% 90

picorna2 hepadna SMO OR 77.9% 90.0% 81.8% 70

4.3.6 Usefulness
How useful could a bibliographic search tool based on au-

tomated classi�cation be for a scientist who wants to per-
form a literature recherche? To assess this, we consider the

following scenario: the scientist wants to identify relevant
literature with minimal e�ort without loosing to many rel-
evant articles. For a �xed recall r, the amount of work is
determined by the number of articles that the scientist has
to inspect.
We assume a �xed corpus of articles that have been re-

turned by the bibliographic database (i.e., Pubmed). By ran-
domly selecting documents with a probability r, we achieve
also recall r since the probability for a relevant document to
be selected is r. In this case, the scientist has to inspect a
fraction Prand = r of all documents. This is the baseline for
a comparison with an automated classi�er.

The fraction Pauto of documents selected by an automated
classi�er with precision p and recall r on a corpus with a frac-

tion c of relevant documents is Pauto = cr=p. Hence the work
is reduced by the factor s = Pauto=Prand = c=p. In Table 5
the work reduction s is shown for some of the cases from

Table 4. Most work can be saved on corpora such as 
avi2
with few relevant documents (assuming that the precision
does not deteriorate too much). The percentage of relevant
documents in the small corpora picorna2 and hepadna is too
high to reach large work reductions.

Table 5: Work reduction s for selected sample con-

�gurations.

training test class msr pmax r s


avi2 picorna2 SMO MI 83.3% 100.0% 70%

picorna2 
avi2 SMO OR 32.7% 81.8% 37%


avi2 hepadna SMO OR 90.9% 90.9% 75%

picorna2 hepadna SMO OR 90.0% 81.8% 75%
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5. CONCLUSION AND OUTLOOK
The results presented in this study are rather heteroge-

neous. Nevertheless, they indicate that classi�ers trained on

one subtopic can be applied to another subtopic and achieve
precisions (here 20% { 100%) that will result in cost savings
when searching for relevant literature while not too many
(here 20%) relevant documents are lost.
The complications of bibliographic search that plague the

case of RNA secondary structure features in viral RNAs

are not a restricted to this particular topic. Whenever the
available literature has to be searched for information that
is rarely the main focus of the publication keyword-based
searches tend to have either low recall or low precision. Reg-
ulatory sequences associated with certain classes of genes

may serve as another example.
We thus plan to extend the litsift application into a biblio-

graphic search tool that sends a user query to a bibliographic
database such as Pubmed, retrieves the search results and
the articles cited therein, and ranks the results according to
the predictions of a classi�er previously trained using the

same tool. The user may choose to re-label some of the re-
sults manually and retrain the classi�er in order to enhance
its performance. An interesting option for further improving
this tool would be to include classi�cation techniques that
take unlabeled data into account, e.g. [5, 12].
Open questions that require further research are: (i) what

are good heuristics for choosing a number of features and (ii)
are there indicators for the transferability of a classi�er to
another corpus?
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Abstract

Statistical techniques for aggressive feature

reduction are studied on data obtained in

a gene knock-out experiment. The essen-

tial part of the process is automatic assess-

ment of the quality of various feature selec-

tion methods. This is done by comparison

of the performance of discriminating models

built on candidate subsets of features. Ex-

periments show that typical settings of popu-

lar 2-class discriminators, support vector ma-

chines (SVM), cannot be used as they pro-

duce models of very poor quality. The pro-

posed way around is to use \fringe classi-

�ers" such as SVMs trained on positive class

data only or class centroids. Additionally, we

also use models generated by such algorithms

directly for identi�cation of most discrimi-

nating features. We recommend that such

simple machine learning techniques should

be included into a repertoire of discrimina-

tors used on such occasions. We show that

such relatively superior performance of fringe

SVMs can also be observed on regular text-

mining data bases, such as Reuters newswire

benchmark, if only the less frequent features

(words) are used.

1. Introduction

As our knowledge of genome of various organisms in-

creases, the number of potentially relevant scienti�c

articles proliferates, making it impossible for an indi-

vidual to keep up. This creates a need for statistical

tools capable of pre-�ltering and identifying useful in-

formation prior to human inspection, thus alleviating

the information overload.

Traditional statistical tools typically deal with situa-

tions when there are more \training " examples than

potentially predictive features to consider. However, in

biological domains, it can be expensive to perform lab-

oratory tests to obtain training data, while it may be

easy to obtain millions of potentially relevant features.

Solving problems in such domains would therefore re-

quire methods that robustly deal with (1) extremely

high dimensional spaces with only a handful of \train-

ing " examples and (2) \low" relevance of available

features to any particular problem.

As a �rst step towards development of such methods,

we explore, in this paper, the use of support vector

machines (SVM) in many di�erent modes. We con-

sider, in particular, fringe classi�ers that correspond

to some extreme settings of parameters, e.g. learn-

ing from examples of a single class and settings that

provide solutions that are equivalent to learning from

data centroids. We show that for the 2002 KDD cup

data (AHR-data) [4], these fringe classi�ers provide ro-

bust discriminating models, which are far more accu-

rate than typical 2-class SVMs. Additionally, we show

that the phenomenon of domination of fringe classi�ers

is not unique to AHR-data, but is observable in the

popular Reuters Newswires text mining benchmark.

We investigate the utility of such classi�ers along with

other discriminating models for feature selection. We

use these classi�ers, �rstly for the evaluation of feature

selection methods based on their accuracy of predic-

tion, and secondly, for directly selecting informative

features using the generated models. Our investiga-

tion shows that such model-based selection can both

provide accurate classi�ers and select a small subset of

features which may be used in a variety of ways: (1) in-

spection by researchers for identi�cation of biological

mechanisms underlying an investigated phenomenon,

(2) generation of key words for retrieval of relevant sci-

enti�c articles, and (3) development of a more re�ned

and simpler to interpret discriminating models.

The paper is organised as follows. Section 2 introduces

the machine learning algorithms and the performance

measure used in this research. Sections 3 and 4 present

our experiments with AHR-data and Reuters data, re-

spectively. In Section 5, we discuss the implications of

our results and present some intuitive explanations of
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the observed phenomena.

2. Classi�ers and Metrics

In this section we introduce the basic machine learn-

ing algorithms used in this paper. We focus on lin-

ear classi�ers, in particular, on Support Vector Ma-

chines (SVM). There are a number of reasons for this

focus. Firstly, SVMs have been top performers in

text [9, 16] and biomining tasks. Secondly, they have

been top performers on AHR-data: 3 out of the top 5

submissions to KDD Cup 2002 were based on SVMs

[6, 13, 11]. Finally and most importantly, SVMs are

well suited to process sparse, high dimensional data.

Our classi�cation problem is formulated as follows.

Given a training sequence (xi; yi) of binary n-vectors

xi 2 f0; 1gn�Rn and bipolar labels yi 2 f�1g for

i = 1; :::;m. The case of prime interest here is when

the target class, labelled +1, is much smaller than the

background class (labelled �1), � 1% of the data. Our

aim is to �nd a \good" discriminating linear function

f(x) := w � x+ b (1)

that scores the target class instances higher than the

background class instances. Here x 2 R
n ,\�" denotes

the dot product in Rn and (w; b) 2 R
n�R is de�ned

by one of the �ve learning algorithms described below.

The �rst four algorithms, requiring dedicated solvers,

are versions of the popular SVMs. For all of them the

solution (w; b) 2 R
n �R is de�ned as a minimiser of

the regularised risk functional of the following form.

kw; bk
2
�
+

mX
i=1

Ci�
�
1� yi(w � xi + b)

�
; (2)

where k k2
�
is a squared \norm" penalising for the

\complexity of the classi�er", � : R ! R+ is a convex

loss function penalising for deviations of the machine

from allocated labels and the regularisation constants

are de�ned as follows:

Ci =

(
(1 +B)C=(2m+) if yi = +1,

(1�B)C=(2m�) if yi = �1,
(3)

for i = 1; :::;m, where C > 0, m+ and m� denote the

numbers of examples with labels yi = +1 and yi = �1,

respectively. Here �1 � B � 1 is a balance parameter

designed to balance the impact of instances from the

positive and the negative class, respectively.

Now we specify four variations of the regularised risk

(2) leading to four di�erent machines to be used in this

paper.

Algorithm 1, SVM1
BC: This is the popular SVM

with linear penalty. Here, we use the norm jjw; bjj2
�
:=

jjwjj2 = w � w and the \hinge loss" �(�) := max(0; �),

� 2 R [5, 19, 20];

Algorithm 2, hSVM1
BC: Replacing the norm in the

above de�nition by

jjw; bjj
2
�
:= jjwjj

2 + b
2 (4)

we obtain the homogeneous SVM with linear penalty;

Algorithm 3, hSVM2
BC: For the (homogeneous)

SVM with quadratic penalty [5] we use norm (4) and

the squared hinge loss �(�) := (max(0; �))
2
for � 2 R;

Algorithm 4, hRN2
BC: For the homogeneous reg-

ularisation network [7, 21] or the ridge regression

[5, 7, 21] we use norm (4) and ordinary square loss

�(�) := (�)2 for � 2 R.

Algorithm 5, CntrB: This is the simplest of the

�ve algorithms. Here, we set b := 0 and

w :=
1 +B

2m+

X
i;yi=+1

xi �
1�B

2m�

X
i;yi=�1

xi:

For B = +1 vector w is exactly the centroid of the mi-

nority (the target) class, for B = �1 it is the centroid

of the majority (the background) class while for B = 0

it is half of the di�erence between the centroids of the

two classes.

Note that CntrB can be viewed as the \limit"

case of the SVM , in the sense that CntrB =

limC!0+
SVM

p

BC

C
, for p = 1; 2. We refer to [12] for

further discussion of this link.

2.1 1-class SVMs

Note that hSVM1
BC , hSVM

2
BC and hRN

2
BC imple-

ment classi�ers that correspond to separation of the

data (xi; 1; yi) 2 R
n � R � f�1g by a hyperplane

h(w; b);~(x; 1)i = 0 passing through the origin (0; 0) 2

R
n �R. One thing to stress is that (2) provides a

non-trivial (i.e. 6=constant), unique classi�er (1) in all

\regular" cases of interest, in particular, for B = �1

if at least one Ci 6= 0 and (0; 0) 2 R
n � R does

not belong to the convex shell spanned by all vectors

yi(xi; 1) 2 R
N �R. These cases of B are equivalent

to learning from data belonging to a single class label,

the target class yi = +1 for B = +1 and the back-

ground class yi = �1 for B = �1. We shall call such

machines the 1-class SVM's.

On the level of the extended feature space Rn �R,

any hSVM
1
BC , hSVM

2
BC or hRN2

BC can be reduced

to a single class machine. In fact, we can always ab-

sorb the signum yi by considering the data (~zi; ~yi) :=
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(yixi; yi; 1) rather than (xi; 1; yi) and then minimising

the following functional equivalent to (2):

h ~w; ~wi+

mX
i=1

Ci� (1� h ~w; ~zii) (5)

where h ; i stands for the dot product in Rn�R. This

formally reduces the two class problem (2) to \single

class learning". In the case of hSVM1, the solution to

(5) can be found using SVM1 if an extra point, namely

(0; 0) 2 R
N �R, with the opposite label �1, is added

to the data. Such a method for one-class learning has

been considered previously in [14, 18].

We shall refer to any hSVM
p

�1;C , p = 1; 2, hRN2
�1;C or

Cntr�1 as fringe SVMs. We include here Cntr�1 since

the SVM solution for low C approaches the solution of

CntrB (cf. [12]). This equivalence also motivates our

setting of C to 5000 (the \hard margin" case) for our

feature selection experiments, since the low values of

C are covered by the centroid solution.

2.2 Performance measures

We have used AROC, the Area under the Receiver Op-

erating Characteristic (ROC) curve as our main per-

formance measure. In that, we follow the steps of KDD

2002 Cup, but also, we see it as the natural metric of

general goodness of classi�er (as corroborated below)

capable of meaningful results even if the target class

is a tiny fraction of the data.

We recall that the ROC curve is a plot of the true posi-

tive rate or precision, P (f(xi) > �jyi = 1), against the

false positive rate, P (f(xi) > �jyi = �1), as a decision

threshold � is varied. The concept of ROC curve orig-

inates in signal detection but these days it is widely

used in many other areas, including data mining, psy-

chophysics and medical diagnosis (cf. review [2]). In

the latter case, AROC is viewed as a measure of gen-

eral \goodness" of a test, formalised as a predictive

model f in our context, with a clear statistical mean-

ing as follows. AROC(f) is equal to the probability of

correctly answering the two-alternative-forced-choice

problem: given two cases, one xi from the negative

and the other xj from the positive class, allocate scores

in the right order, i.e. f(xi) < f(xj). Additional at-

traction of AROC as a �gure of merit is its direct link

to the well researched area of order statistics, via U -

statistics and Wilcoxon-Whitney-Mann test [1].

There are some ambiguities in the case of AROC es-

timated from a discrete set in the case of ties, i.e.

when multiple instances from di�erent classes receive

the same score. Following [1] we implement in this

paper the de�nition

AROC(f) = P (f(xi) < f(xj)j � yi = yj = 1)

+0:5P (f(xi) = f(xj)j � yi = yj = 1)

expressing AROC in terms of conditional probabili-

ties.

3. Analysis of AHR-data

In our main experiments we have used AHR-data set

which is the combined training and test data sets used

for task 2 of KDD Cup 2002. The data set is based

on experiments by Guang Yao and Chris Brad�eld of

McArdle Laboratory for Cancer Research, University

of Wisconsin. These experiments aimed at identi�ca-

tion of yeast genes that, when knocked out, cause a

signi�cant change in the level of activity of the Aryl

Hydrocarbon Receptor signalling pathway (cf. [4] for

more details). In this paper we follow the setting of

the \broad task" of the KDD Cup: the discrimination

between 127 `positive' genes from the combined class

encompassing the labels \change" and \control" and

the remaining 4380 genes forming the `negative' class.

In our experiments this set has been repeatedly split

into 70% for training and 30% for testing. All averages

and standard deviations reported are for independent

tests on 20 such random splits.

3.1 Data representation

Each training and test gene was represented by a vec-

tor of binary attributes extracted from the very rich

data sources provided: function/localisation annota-

tions, protein-protein interactions and Medline ab-

stracts.

Hierarchical information about function, protein

classes and localisation was converted to a vector per

gene. For instance, the following two entries in the �le

function.txt

YGR072W cytoplasm j subcellular localisation

YGR072W nucleus j subcellular localisation

yielded three function attributes: \cytoplasm", \sub-

cellular localisation" and \nucleus" each with a value

of 1 for the gene \YGR072W". This processing created

409 attributes: 213 for gene function, 154 for protein

classes and 42 for localisation.

Textual information from all abstracts associated with

a gene was converted to `word token' presence vectors

(`a bag of words'). A `word token', in this context,

is any string of alphanumeric characters, which may

or may not correspond to an ordinary word. Word

tokens corresponding to words in a standard list of

stop words, such as \the", \a" and \in", have been
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excluded. All ordinary words were stemmed using a

standard Porter stemmer. The resulting word token

attributes were then checked against the gene alias �le,

and all aliases were replaced by a single gene name.

The above abstract processing resulted in 48,089 word

token attributes. Around 3/4th of these attributes

were subsequently eliminated by discarding all those

that occurred in only one gene, and by discarding all

those which had a total frequency that was greater

than one standard deviation from the mean. After this

processing, we were left with 16,474 attributes from

the abstracts.

The gene-gene interaction �le is symmetric. Hence,

each entry in the �le interaction.txt creates two

attributes. For instance, the entry, \YFL039C

YMR092C" creates two interaction attributes:

\YFL039C" and \YMR092C", and the attribute

\YFL039C" is set to 1 for the gene \YMR092C" and

vice-versa. Processing of the gene interactions �le

yielded a total of 1,447 attributes.

Thus, the total number of binary attributes used by

the learning algorithm was 18,330 (= 409 + 16,474 +

1,447).

3.2 Feature selection

We now explore the utility of the classi�ers for feature

selection as (i) techniques for evaluation of various se-

lected feature sets and (ii) tools for selection of such

sets.

We investigate several strategies for scoring features:

the �rst four score features based on their distribution

in the training set (the �lter approach as de�ned in

[10]), while the others are based on the SVM mod-

els generated (w). In all cases, the computed score is

used to sort the features so that the most informative

features may be selected.

A: DocFreq (Document frequency thresholding):

This method has its origins in information re-

trieval [17] and is based on the supposition that rare

features are not informative for predicting classes. In

this case the score of a feature is simply the number

of instances where it has been equal to 1.

B: ChiSqua (�2): The �2 measures the lack of in-

dependence between a feature and a class of interest.

First, for each feature and each class, i.e. y = �1, a

score is computed on the basis of the two-way contin-

gency table [22].

C: MutInfo: (Mutual Information): The score is allo-

cated to a feature on the basis of the joint and marginal

probabilities of its usage estimated from the training

set [22].

D: InfGain: (Information gain): This is frequently

employed as a term goodness measure in machine

learning [15], and measures the number of bits of in-

formation obtained for class prediction by knowing the

presence or absence of a term in an instance.

E-J: Model-based feature selection: In this case,

the score of a feature is simply the magnitude of the

weight allocated to it by a linear model generated to

discriminate two classes of interest, i.e. correspond-

ing entries in the vector w = (w1; :::; wn). Thus,

our method is much simpler and easier to implement

than the sophisticated SVM-model-based selection de-

scribed in [8].

Our model-based approach is also di�erent from the

wrapper approach used in [10] in that we do not re-

strict the use of the selected features for the particular

learning algorithm. Instead, the chosen features are

then used as features for evaluating all algorithms.

In our experiments we employ a small variation: we

average w over 20 models generated for 20 random

strati�ed splits of the data into 70% training and

30% test sets (instances of both classes were split

independently in the indicated proportions). We

have used three learning machines, hSVM1
B;5000(E,F),

hSVM
2
B;5000(G,H) and CntrB(I,J) in two modes: pos-

itive 1-class mode B = +1 (E,G,I) and balanced 2-

class mode, B = 0 (F,H,J), thus yielding six additional

methods.

Figure 1 shows the results of evaluation of the ten fea-

ture selection techniques (columns A-J) by four di�er-

ent algorithms (rows 1-4). Each evaluation technique

has been used in two modes: positive 1-class and bal-

anced 2-class. (We have not shown evaluation results

for SVM1 as they are very similar to those for 2-class

hSVM
1.) The results can be summarised as follows:

1. As a general rule, for all SVMs, 1-class models per-

form much better than 2-class models when using the

same set of features. In addition, these two modes

of SVM often give quite opposite evaluation of the

utility of selected features (the notable exception be-

ing column H). While 1-class �nds them informative

(AROC > 0:5), 2-class �nds them detrimental with

AROC < 0:5, i.e. below that of the random classi�er.

2. DocFreq and MutInfo both provide very poor re-

sults for low number of features, although they use

completely di�erent metrics for scoring. MutInfo

is strongly in
uenced by the marginal probability of

terms and tends to favour rare terms, while DocFreq

selects the most common terms.
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Figure 1. Evaluation of ten feature selection methods (columns A-J) by four classi�cation algorithms (rows 1 - 4). Plots

show mean AROC �Std as an envelope as a function of the % of features selected out of the total 18,330. Curves are

plotted for two modes: the positive 1-class (B = +1, solid lines) and balanced 2-class (B = 0, dashed lines). All SVMs

used C = 5000.

3. Cntr0 (row 4, dashed line) performs the best of all

2-class algorithms, generally matching 1-class centroid

classi�er, Cntr+1.

4. 2-class hSVM
2
0;5000 (Columns H) provides very

good features for 2-class mode classi�ers, allowing

them to perform above random AROC > 0:5. In

fact, this feature selection in combination with ridge

regression learning, hRN2
0;5000, provides the best per-

formance for around 2% (� 300) features.

5. As a general trend, features selected by models al-

low development of better discriminating models than

features selected by the evaluated feature selection al-

gorithms (A-D), provided positive 1-class mode is used

for learning.

3.2.1 Selected Features

Table 1 lists the top 20 features selected according to

di�erent methods. We observe that there is a large

overlap between features selected by �
2 and positive

1-class methods: hSVM
p
+1;5000, p = 1; 2 and Cntr+1.

The features selected are primarily from function and

localisation data. The 10 common features in the top

20 are: 1: F4 - subcellular localisation, 2: F7 - cell cycle

and dna processing, 3: F10 - metabolism, 4: F17 - cell

fate, 5: F27 - mrna transcription, 6: F28 - transcrip-

tion, 7: F29 - unclassi�ed proteins, 8: F32 - cellular

transport and transport mechanisms, 9: F58 - protein

fate (folding, modi�cation, destination), 10: L4 - cy-

toplasm.

Similarly, there are overlaps between InfGain and the

2-class centroid, Cntr0. However, these sets include

many features from the abstracts, and thus are di�er-

ent from those selected by the positive 1-class meth-

ods. The 15 common features are: 1: F4 - subcellular

localisation, 2: F22 - nucleus, 3: L3 - nucleus, 4: A419

- redund, 5: A426 - much, 6: A543 - abnorm, 7: A613 -

comprom, 8: A639 - despit, 9: A711 - harbor, 10:A973 -

surprisingli, 11: A1002 - subset, 12: A1291 - carboxi, 13:

A1609 - green, 14: A2104 - taken, 15: A4290 - inviabl.

Interestingly, there are no overlaps in the top 20 fea-

tures between the 2-class centroid (Cntr0) and the 2-

class SVMs (B = 0) or between InfGain and the

2-class SVMs.

4. Tests on Reuters

Experiments reported in the previous section show

that fringe SVMs tend to perform better than tra-

ditional 2-class SVMs on AHR-data. In this section

we report some experiments with popular text min-

ing benchmark, Reuters-21578 news-wires, which show

similar tendency. For these experiments we used a col-
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Table 1. Top twenty features selected by ten feature selection methods. We use the following convention: the letters stand

for the data source (A -abstracts, F - function class, P - protein class, I - gene interactions, and L -localisation) and the

subscript is the number of the feature. The last row gives mean AROC � Std of the models used for the model-selection

method. We put \�" in front of features with negative weights (2-class SVMs).

Doc- Chi- Mut- Inf- hSVM1

B;5000 hSVM2

B;5000 CntrB
Rank Freq Squa Info Gain B=1 B=0 B=1 B=0 B=1 B=0

1 F95 F4 P48 F4 F29 F2 F29 L4 F4 F4

2 I1150 F29 P92 F22 F4 F46 F4 I953 F29 A2104

3 A1045 F10 P110 L3 F20 F150 F58 I104 L3 F22

4 I1136 L3 I61 A2104 P17 F10 F10 -F10 F22 L3

5 F172 F22 I66 A4260 F58 F58 L4 -F46 F10 A4260

6 F39 F28 I83 A543 L4 -I104 L3 F110 F58 A426

7 A89 F58 I85 A426 F21 F45 F7 I835 F7 A639

8 A925 F7 I95 A711 F10 F38 F22 I210 F17 A543

9 A970 L4 I533 A1609 F75 F28 F28 P64 A426 A1002

10 A1098 F27 I534 A1002 F86 -L4 F27 F29 A2104 A1609

11 A426 F21 I535 A973 F67 -I835 F17 -F28 F28 A419

12 A430 F17 I645 A613 F32 -I351 F67 -F2 F27 A711

13 A448 F34 I658 A1291 F7 P2 F32 F75 A639 F58

14 I1129 F32 I686 A639 F65 F40 P17 -F45 L4 F7

15 A669 F26 I727 A562 F66 F20 F6 -F58 A543 A1714

16 A586 F15 I838 F27 F64 F32 F21 -F39 F32 A1291

17 I1123 F16 I870 A1699 F17 -I210 F20 A1721 A1714 F17

18 I1299 F6 I871 A849 F28 F59 F65 I351 A973 A613

19 I1212 A426 I1050 A1345 F27 P16 F66 P48 A1282 A973

20 P17 F25 I1160 A419 F6 F39 F26 -F38 A1002 A273

AROC :61� :05 :43 � :05 :63� :04 :42� :05 :62� :03 :62 � :04

lection of 12902 documents (combined test and train-

ing sets of so called modApte split available from

http://www.research.att.com/lewis) which are cate-

gorised into 115 overlapping categories. Each docu-

ment in the collection has been converted to a vec-

tor of 20,197 dimensional word-presence feature space

(full analogy to the preprocessing of Abstract for AHR-

data). Then we gradually removed the most frequent

features (highest DocFreq scores) and trained classi-

�ers on random 5% (strati�ed sample) and then tested

on remaining 95% of the data. As usual, the average

AROC �Std for 20 such tests is shown in Figure 2.

Four di�erent target cases were used: the 3rd, the 6th,

the 9th and the combined 11th-15th largest categories.

The sizes of target classes are shown in the sub-�gure

titles.

An inspection of plots highlights a few observations:

1. The accuracy of all classi�ers is very high when

all features are used. As the most frequent features

are removed, all SVM models start degenerating, how-

ever, the drop in performance for 2-class SVM mod-

els is much larger, and 1-class SVM models start out-

performing the 2-class models. This behaviour is also

present in other categories not shown in Figure 2, so

long as the target class is less than 10% of the total

data. This trend of better performance with 1-class

models is most apparent in hSVM
1
B;5000, although

hSVM
2
B;5000 also shows similar trends. Thus, when

there are many weakly informative features, and the

target class is a small fraction of the data set, the fringe

classi�ers outperform traditional 2-class SVM models.

2. The mean AROC is always > 0:5 indicating that

even after feature removal, this data set does not quite

have all the properties of AHR-data where 2-class

models performed worse than random for many set-

tings of the regularisation constant.

5. Discussion

Related Research. A possibility of single class

learning with support vector machines (SVM) has

been noticed previously. In particular, Sch�olkopf et

al. [18] have suggested a method of adapting the SVM

methodology to 1-class learning by treating the origin

as the only member of the second class. This method-

ology has been used for image retrieval [3] and for doc-

ument classi�cation [14]. In both cases, modelling was

performed using examples from the positive class only,

and the 1-class models perform reasonably, although

much worse than the 2-class models learned using ex-

amples from both classes.

In contrast, in this paper, we show that for certain

problems such as AHR-data, positive 1-class SVMs sig-

ni�cantly outperform models learned using examples
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Figure 2. Mean AROC as a function of the % of fea-

tures removed (with standard deviation envelope). Four

di�erent target cases were used: the 3rd, the 6th, the

9th and the combined 11th-15th largest categories. Re-

sults are presented for four machines: (1) hSVM1

B;5000 ,

(2) hSVM2

B;5000 (3) RN2

B;5000 and (4) CntrB. Plots are

shown for the positive 1-class (B = +1) (solid line) and

the balanced 2-class (B = 0) (dashed line) modes.

from both classes.

Impact of regularisation constant. In this pa-

per, we have restricted our investigation to C = 5000

(the \hard margin" case) and the very low values of

C through the Cntr classi�er. However, other experi-

ments with di�erent values of C show that the perfor-

mance of 1-class SVMs, unlike that of 2-class SVMs,

is very robust across the whole range of C values [12].

The performance of 2-class SVMs improves as the reg-

ularisation constant decreases, and for very low values

of C, its performance is roughly equal to that of 1-class

SVMs.

Deterioration of 2-class SVMs. We have observed

that for AHR-data, fringe SVMs tend to have sys-

tematically better AROC than the traditional 2-class

SVMs. Typically, the latter deteriorates with increase

in the number of features used. In order to gain some

insight into this phenomenon, we have compared two

2-class models, a hSVM
2
0;5000 (test AROC = 0:39)

and Cntr0 (test AROC = 0:63) trained on the same

data split. For this training set, we found that there

were 14,610 features occurring only in the negative

class training instances (NegOnly features). Both

models allocate non-positive (all negative for Cntr0)

weights to such features. Our hypothesis is that for

many of these features hSVM
2
0;5000 allocates exces-

sively low (highly negative) weights, which is an `easy
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Figure 3. Understanding the in
uence of sparse high di-

mensional space on the solutions of 2-class learners.

(A) Magnitude of weights for 2-class models for the

NegOnly (features used only in the negative class in the

training set) features in decreasing order of magnitude.

(B) Usage of NegOnly features in the positive test set.

Plots are shown for hSV M2

0;5000 (solid line) and Cntr0
(dashed line).

way' to minimise the margin errors. However, when

some of these features occur in positive test examples,

they push the scores of these examples excessively into

negative direction, which causes a deterioration in the

overall performance.

Figure 3 shows results corroborating this hypothesis.

In Figure 3A we plot weights allocated to theNegOnly

features, sorted in the reverse order of their magnitude,

for each model separately and for each weight vector

normalised to the unit length. Figure 3B shows proba-

bility of usage of these features in the positive class test

examples (the curves are in fact 50-bin histograms).

For both models the usage distribution is very similar

and the most popularNegOnly features have the most

negative weights. However, the weights from SVM for

those most popular NegOnly features are about twice

as large in magnitude as those for Cntr0 model. These

weights result in excessive decreasing of scores of some

positive test instances leading to deterioration in the

overall performance.

Persistent dominance of 1-class SVMs. The

above analysis is applicable to a high dimensional fea-

ture set. However, we have also observed in Section 3.2

that even in low dimensional spaces, this phenomenon

of better performance with one-class learners persists.

Our intuitive explanation here is that if the learner

uses the minority class examples only, the \corner"

(the half space) where minority data resides is properly

determined. However, when data from both classes is
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used, the minority class is \swamped" by the back-

ground class. In such a case the SVM solver seeking a

\maximal margin" separation between classes, chooses

a direction which is suboptimal in terms of AROC. The

strange thing is that heavy discounting of the major-

ity class by a factor B = 0:99999 does not rectify this

impact completely [11].

Weakly informative features. An alternative ex-

planation for the relatively good performance of fringe

classi�ers is implied by experiments with Reuters data.

We hypothesise that one factor is the relatively \weak"

connection between the labels and the features in the

case of AHR-data. Since the contrary is true for topic-

based classi�cation in Reuters, the superior perfor-

mance with fringe classi�ers is not evident until the

most frequent features, which tend to be strongly in-

dicative of the labels for this dataset, are removed (Fig-

ure 2). Thus, we may expect fringe classi�ers to work

well in other real world applications with weak con-

nection between labels and attributes.

Importance of evaluation algorithm for feature

selection. An additional point regarding feature

selection is that the performance of any dedicated sta-

tistical system for that purpose is a function of both,

the feature selection method and the learning strat-

egy for evaluation of the selection. For instance, all

1-class SVMs and all centroid learners in Figure 1 per-

form very well with features selected by ChiSqua and

MutInfo, while all 2-class learners, other than the 2-

class centroid, perform poorly with the same features.

6. Conclusion

We have shown that SVMs even for a single kernel can

split into a number of di�erent modes, with dramati-

cally di�erent performance. Thus this popular class of

learning machines cannot be treated as a monolithic

black box, but should be viewed as a rich family of

classi�ers that need to be carefully tuned if top per-

formance is required.

Further, some easy to implement fringe classi�ers, such

as centroids and positive 1-class SVMs, often outper-

form complicated 2-class SVMs. The very good per-

formance of the fringe classi�ers is related to sparsity

of data and weak links between labels and features,

and persists even after aggressive feature reduction.

Thus, these classi�ers could be used as baseline meth-

ods for biomining in general and for machine evalu-

ation of utility of various feature selections. In par-

ticular, we recommend the use of centroid classi�ers,

which are trivial to implement.

Finally, model-based feature selection techniques can

provide better results than dedicated feature pre-

selection algorithm, facilitating development of more

accurate discriminating models.
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ABSTRACT. 
We report a new text classification task originated 
from our high-throughput genomic labs. Biologists 
desire to have an automatic tool to separate tens of 
thousands gene names into two categories: known 
and unknown ones, based on their gene names. To 
solve this typical text classification problem, we 
first evaluated two off-the-shelf machine learning 
tools. In parallel, we also asked the human-expert to 
derive a set of rules. Both decision trees (CART) 
and Support Vector Machines (SVMs) outperform 
the human-expert rules; the cross-validated error 
rates are below 1%, and the area under the curve of 
Receiver Operating Characteristic (ROC) curves 
reach higher than 0.99. In summary, we describe a 
new text classification problem that is biologically 
important. Our investigation indicates that off-the-
shelf programs can adequately solve the problem; no 
special text mining methodology-development is 
necessary for this task. The classifier we built has 
been successfully utilized in several internal 
projects, and it can be applied to many related 
applications of high-throughput genomics.  

Keywords 
Gene name, Known gene, unknown gene, 
Classification and Regression Tree (CART), 
Support Vector Machines (SVM), expert system, 
text data mining 

1. INTRODUCTION 
 

Genes are named to convey some comprehensible 
meaning. Simply by its name, biologists can usually 
tell if a gene is a known one or an unknown one.  By 
                                                                 
. In Proceedings of the European Workshop on Data Mining 

and Text Mining for Bioinformatics, held in conjunction with 
ECML/PKDD. Dubrovnik, Croatia, 2003. 

classifying the gene into the known category, the 
expert indicates that the gene was previously studied 
or characterized. For example, “superoxide 
dismutase” is a known gene, whereas “ESTs, 
Weakly similar to MAP-kinase activating death 
domain” is an unknown one. 

With the rapid advance of genome sequencing, 
millions of gene names have been deposited in the 
Genbank (http://ncbi.nlm.nih.gov) and other private 
databases. One particular problem arose from Duke 
University Comprehensive Cancer Center research 
labs is to find all the unknown genes from these 
databases, and then make a specialized microarray 
just for unknown genes.  

This particular problem motivates us to investigate 
the possibility of classifying genes purely based on 
gene names. To our knowledge, this problem was 
not previously reported in the literature. Identifying 
if the gene is known or unknown also has many 
other practical applications:  

• In computational annotation of genomic 
sequences, annotators are generally 
transferring the name and function of a 
known gene to the un-annotated one. By 
knowing which genes are already 
functionally known, we can prevent “null-
chaining” by claiming a gene’s function and 
directing it to another unknown gene (Karp 
et al., 2001).  

• In pharmaceutical research, unknown genes 
are usually given higher priority as a 
potential novel drug target. Quickly finding 
out what are the unknown genes in a large 
screening data set will let the investigator 
make an informed decision regarding which 
targets to pursue experimentally (Jones & 
Fitzpatrick, 1999). 
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• In analyzing the statistics of genomic 
databases, we need to know what percentage 
of the genes are still functionally unknown. 

• In the tracking and cleaning of genomic data 
warehouses, it is crucial to monitor the 
status of the genes being changed from 
unknown to known. Updated nomenclature 
of the genes can expedite biological 
discoveries by providing information 
regarding an unknown gene that might not 
otherwise be considered by human viewing 
database identifiers.    

However, judging if a gene is known or unknown by 
using a human-expert to look at the name is not only 
time consuming but is also prone to human errors. 
Thus, we would like to devise a machine that can 
mimic human experts in performing the same task. 
That casts the problem into a typical machine 
learning task, which usually contains two phases. In 
phase one, a data set will be acquired from a human 
expert; i.e., the true answer to the problems are 
labeled by the expert. In the next phase, a machine 
learner will be trained. Cross-validation will be used 
to assess how well the machine ‘learns’ and to 
prevent overfitting.   

In this paper, we report our investigation of two off-
the-shelf machine learning tools -- decision trees 
(CART) and support vector machines (SVM)-- to 
classify genes into known and unknown categories 
by looking at their names.  

2. RELATED WORK 
 

Since no previous research has been reported on 
categorizing genes into known and unknown groups 
by their names, we reviewed literature in text 
categorization and machine learning. The problem 
we are facing resembles a lot with the well studied 
news classification problem (Kongovi et al., 2002).  
 
In text categorization, it is indicated (Yang & Liu, 
1999) that SVM and k-nearest neighbor (kNN) 
techniques outperform neural networks (NNet) and 
naïve Bayes (NB) classifiers. Rule-based learners 
were also studied due to their expressive power 
(Cohen, 1996). Thus, we first investigate SVM and 
CART in this paper.  

3. METHODS 
 

Knowledge acquisition from the expert 

Training data set. We randomly selected 
1,624 genes and presented their names to the human 
expert. The expert was asked to classify the genes 
into known or unknown categories.  

Expert rule-sets. We also asked the expert 
how he conducted the classification. The expert 
generated a set of rules that included certain 
keywords (See Figure 1).   

 

Data model 

We chose a much simpler data model than the 
commonly used term frequency/inverse document 
frequency weighting (TF-IDF) model (Salton, 
1991). Each gene name is represented by a vector of 
words, where 1 indicates the presence of the word 
and 0 indicates the absence of the word. A survey of 
the training data indicates the gene names have a 
different structure than regular text data. Thus, we 
do not remove the so called stop words, such as 
‘and’, ‘or’, and ‘is’. However, we do filter out  
infrequent words and numbers from the training set. 
A high-pass filter at a frequency of 2 is used. Our 
classification performance indicates that this simple 
data model is adequate for this task.  

 

CART 

We used the rpart implementation of CART 
(Breiman, 1993) in the R-statistical package 
(http://cran.r-project.org). Five-fold cross validation 
was used to select the complexity (Cp) parameter.  
Cp parameter controls the size of the tree. Large tree 
can cause over fitting. Thus, we used the 
parsimonious “1-SE” rule (Venables & Ripley, 
2002) to choose the Cp associated with the largest 
error rate within one standard deviation of the 
minimum error rate. 

 

SVM  

SVM is a new learning method introduced by 
Vapnik and coworkers (Vapnik, 1995). We used the 
SVMlib (Chang & Lin, 2001) implemented in the R-
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statistical package. Different choice of kernels-- 
linear, polynomial, radial basic function, and 
sigmoid -- flexibly maps the input space into a 
higher-dimensional space where the cases are 
separated with the maximum margin. Five-fold cross 
validation was used to select the appropriate kernels.  

 

ROC curve comparison 

To compare the two classification methods, we use 
the ROC analysis (Metz, 1978). Receiver Operator 
Characteristics (ROC) curves plot sensitivity (Y 
axis) against 1 minus the specificity (X axis) 
providing a clear visualization of area under the 
curve (AUC).  The greater the accuracy, the greater 
the AUC (1.0 is perfect classification). Thus, the 
‘better’ classification method is the one with the 
most area under the curve.   

 

Outside data set to be classified 

We tested the production system with a set of 7,447 
genes to be classified. These genes were retrieved 
from the Affymetrix U74A DNA microarray chip.  

4. RESULTS 
 

Training data set acquisition  

We acquired a training data set consisting of 1,624 
mouse gene names, of which 698 genes are known, 
and 926 genes are unknown. After filtering out 
infrequent words, this training data set consists of 
522 unique words as attributes, and expressed as a 
1,624 by 522 data matrix of zeros and ones. The 
training data set acquired from the expert is called 
T0 (see Table 1). During the machine learning 
process, we found errors in this data set (details are 
discussed later). The corrected data set is called T1.  
 

Table 1. Training data sets. 
Data Set T0 Data Set T1

unknown 926 929
known 698 695
total 1,624 1,624  

 

Expert rule-set acquisition 

The expert summarized his knowledge into a set of 
rules to look at certain keywords (Figure 1). 
Performance of the rule-based classifier is 
summarized in Table 2. 

1. if ((x$ESTS==1)) {
y.predicted <- 0}

2. if ((x$HYPOTHETICAL==1)) {
y.predicted <- 0}

3. if ((x$SIMILAR==1)& (x$TO==1)) {
y.predicted <- 0}

4. ((x$CDNA==1)& (x$SEQUENCE=1)) {
y.predicted <- 0}

5. if ((x$RIKEN==1) & (x$CDNA==1)) {
y.predicted <- 0}

6. if ((x$EXPRESSED==1) & (x$SEQUENCE==1)) {
y.predicted <- 0}

7. if ((x$DNA==1) & (x$SEGMENT==1)) {
y.predicted <- 0}

8. if ((x$MUS==1)& (x$MUSCULUS==1) &
(x$CLONE==1)){
y.predicted <- 0}

Figure 1. Classification rules derived by the expert. For 
example, rule #1 indicates if there is an “EST” in the gene name, 
then the predicted class of this gene is unknown (class 0).   

 
Table 2. Confusion table by expert rules using training data set 
T1. 

true.unknown true.known
predicted.unknown 923 (56.8%) 10   (0.6%)
predicted.known 6   (0.4%) 685 (42.2%)  
 

Classifier by CART 

CART was used to induct the decision tree. To 
determine the best complexity of the tree, we ran a 
five-fold cross validation. According to the “1-SE” 
rule, we chose Cp = 0.0018 (Figure 2), which 
corresponds to a tree with 9 leaves (Figure 3).  

 



 38

Figure 2. Using five fold cross-validation to determine the best 
complexity parameter Cp. The dotted line indicates the highest 
error rate within one SE of the lowest cross-validated training 
error. Results were obtained using training data set T0. 

After cross-validation, we used all training data in 
set T1 to induce the tree. Results are shown in 
Figure 3 and Table 3. 

 
Figure 3. Decision tree by CART analysis. Unknown genes 
(class 0) are distinguished from know genes (class 1) by 
answering a series of questions in the flow chart. The purity of 
each leave is shown below each leave (class0/class1).  

 

 Table 3. Confusion table by CART using training data set T1. 

true.unknown true.known
predicted.unknown 924 (56.9%) 1   (0.1%)
predicted.known 5   (0.3%) 694 (42.7%)  
 

Classifier by SVM 

To choose the best kernel for SVM, we ran a five-
fold cross validation. A simple linear kernel is the 
best choice (Table 4). The performance of the SVM 
classifier is summarized in Table 5.   
Table 4. Choice of kernel by SVM using five fold cross-
validation (data set T1). 

Kernel Error Rate (%)
linear (gamma=0.0019)   0.3 ±   0.4
polynominal (degree=3, 
gamma=0.0019)

42.8 ±   2.0

RBF (gamma=0.0019)   8.8 ±   5.4
sigmoid ( gamma=0.0019)  25.1± 18.9  

 

Table 5. Confusion table by linear SVM using training data set 
T1. 

true.unknown true.known
predicted.unknown 928 (57.1%) 1   (0.06%)
predicted.known 1   (0.06%) 694 (42.7%)  
 

Not all training data points are equally important in 
determining the decision boundary of SVM. 
“Support vectors” are those critical data points that 
are close to the separating hyperplane. A list of the 
supporting vectors is found in Table 6. This data can 
help us understanding how SVM perform the task, 
although SVM is largely treated as a ‘black-box’ 
classifier.  
Table 6. Support vectors indicates those cases close to the 
decision boundary. 

gene.name support
1 acetylcholinesterase 1.0000000
2 aconitase 1 1.0000000
3 apelin 1.0000000
4 axin 1.0000000
5 carbonic anhydrase like sequence 1 1.0000000
6 expressed sequence 2 embryonic lethal 1.0000000
7 major urinary protein 2 1.0000000
8 placental protein 6 0.9363062
9 EST AI426782 -1.0000000
10 EST AI447490 -1.0000000
11 ESTs -1.0000000
12 expressed sequence 2 embryonic lethal -1.0000000
13 expressed sequence AA408140 -1.0000000
14 expressed sequence AA420392 -1.0000000
15 expressed sequence AA517758 -1.0000000
16 hypothetical protein MNCb 4414 -1.0000000
17 hypothetical protein DKFZp564K0822 -0.9991421
18 RIKEN cDNA 0610007P06 gene -1.0000000
19 WAVE3 -1.0000000

 

Machine classifiers detect errors made by experts 
in the training data set 

Using CART and SVM, we found some mistakes 
made by the human expert in training data set T0, 
and revised the training data set into set T1 
accordingly (Table 7).  In the next section, we use 
the training data set T1 to re-induct the classifiers 
and compare them.  
Table 7. Mistakes made by the human expert in training data set 
T0.
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Gene Name Label in T0 Label in T1
ESTs  Weakly similar to A Chain 
A  Crystal Structure Of The 
Human Acyl Protein 
Thioesterase 1 At 1 5 A 

know n unknow n

expressed sequence AI173355   know n unknow n
Mus musculus  Similar to 
hypothetical gene LOC150274  
clone MGC 41340 IMAGE 

know n unknow n

  

Comparing the three classifiers 

Comprehensibility. The expert rules and 
CART are easily comprehensible. They describe 
what attributes are important for classification; a 
flow chart is given for performing the classification. 
In contrast, SVM reveals the classification from 
another angle by looking at the critical cases.  In that 
sense, Nishikawa and colleagues (El-Naqa et al., 
2002) called SVM a template-matching detector.  
Table 6 shows the cases on the decision boundary 
whose ‘support’ is important to make the decision. 
They consist of the difficult-to-classify examples on 
the “border line”. The SVM classifier memorizes 
these cases as critical knowledge to perform the 
task. In general, we can see the three classifiers 
acquired the same knowledge such as ‘Riken cDNA’ 
and ‘hypothetical protein’ etc for the classification.  

Performance and efficiency. As shown in 
Table 8, expert rules are the most expensive to 
obtain. It took more than 10 hours for the expert to 
generate this set of rules. The production runtime 
for the three methods are comparable. The error rate 
in Table 8 is a non cross-validated error rate, since it 
is impossible to cross-validate the expert rule 
process. 
Table 8. Comparison of three classifiers.  

Expert Rule CART SVM
nominal error rate 0.99% 0.37% 0.12%
rule induction time > 10 hr < 5 min < 5 min
production runtime < 5 min < 5 min < 5 min
 

ROC.  Since no threshold structure exists in 
the expert rules, only CART and SVM are compared 
here. Both CART and SVM achieve a good balance 
of sensitivity and specificity. The area under the 
curve for CART and SVM are 0.9971 and 0.9995, 
respectively (see Figure 4).  

 
Figure 4. ROC analysis of CART and SVM. Red: CART; 
Black: SVM. The area under the curve (AUC) of CART and 
SVM are  0.9971 and 0.9995, respectively.  

 

An application of the machine classifiers  

We applied the two machine classifiers to categorize 
7,447 genes on the Affymetrix U74A microarray 
DNA chip.  
 

Table 9. Prediction results of CART and SVM for the 7,447 
genes on the Affymetrix U74A microarray chip. 

CART SVM
predicted.unknown 1747 (23.5%) 1797 (24.0%)
predicted.known 5700 (76.5%) 5650 (76.0%)
total     7447 (100%)    7447 (100%)
  

The major discrepancy of CART and SVM 
prediction results in Table 9 is that of 51 genes, 
where CART classified them as known but SVM 
classified them as unknown. A manual inspection of 
these genes indicated that the CART rule is unable 
to handle cases like “EST C78513” (34 cases) and 
“DNA Segment Chr 6  human D12S2489E” (12 
cases) correctly. Thus, the production performance 
is in agreement with the evaluations on the training 
data set. The SVM classifier consistently 
outperforms the CART classifier in this application.  

5. DISCUSSION 
 

We have successfully built a text classification 
system that is able to capture knowledge from the 
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expert to perform a gene name classification task. 
We have shown that the rule-acquisition process 
from the human-experts is not only time-consuming, 
but also prone to errors. The machine classifiers 
have been able to find classification errors by 
experts in the training data set. Similar experience 
has also been reported in a leukemia microarray data 
set (Golub et al., 1999), where a consensus of 
different classifiers strongly suggests the potential 
errors made by the human expert (Lin & Johnson, 
2002).  

 

In this application domain, we observed that SVM 
outperforms CART, although the prediction errors 
of both are acceptably low for production purposes. 
It can be explained by the capability of SVM to 
handle high-dimensional data based on Vapnik’s 
statistical learning theory. In contrast, CART 
utilizes tree nodes to select only a small number of 
attributes for classification. In text data mining, a 
variable selection by CART might not be 
appropriate, because the message in the text is not 
only conveyed by certain keywords but also by other 
words in the context. In other words, text data is 
presented by a dense concept vector where few 
irrelevant features exist (Joachims, 1998).  

 

We demonstrated an application of this system 
where we classified all the genes on a mouse U74A 
chip. It is one of the most commonly used DNA 
chips in biomedical research. According to 
Affymetrix, on the U74A microarray chip, the 
majority of the genes are known ones. However, 
there is no quantitative description of what this 
“majority” is. Here we estimate 70% of the genes on 
U74A are known ones. With our results, we can tell 
which genes are known or unknown on this chip. 
This system can help to accelerate the drug 
development process where priority is given to 
unknown genes after a microarray screening. 

 

Actually, classification of genes into known and 
unknown categories can also be achieved by using 
other information from the database, other than the 
gene names. For example, if there are publications 
of a gene, it is a strong indication that this gene is a 
known one. We started our investigation simply 

from using gene names, which is the absolutely 
available information associated with the task, since 
publications related to genes are often lag-behind in 
database registration.  

 

6. CONCLUSIONS 
 

We described a new text data mining problem 
emerged from genomic research. To our knowledge, 
this gene name classification problem was not 
reported previous in the literature. However, the 
problem resembles the classical news categorization 
problem. Thus, we first assessed off-the-shelf 
machine learning tools.  
 
To prevent over-fitting, both CART and SVM are 
deployed on cross-validated training sets. For this 
task, both methods perform well. Therefore, no new 
algorithm is necessary to be developed. Our 
experience indicates that SVM has better capability 
to handle high-dimensional text data where few 
irrelevant features exist.  
 
Although the result of our investigation indicates the 
solution is simple, the impact of this classification 
tool is non-trivial. It has appropriately solved our 
biomedical research problems. We have utilized this 
tool to select unknown genes in several research 
projects, including microarray design and 
microarray screening.  
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Abstract: In this article, we present a case study on the analysis of the biomedical patent literature. For 
a set of Unilever’s patents we show how to apply visual datamining by applying dimension reduction 
to document, term, and author data and interactive exploration of 3D scatterplots. We complement this 
approach by focusing on author and document networks, which we analyse with PSIEYE, a tool for the 
graph-theoretic analysis of interaction networks (Schroeder et al. 2003). We show how to apply graph-
theoretic measures such as sum of distance, connectivity, cluster index and interaction rank to the 
networks and how to derive maps of the trends and topics in the documents and of the most important 
authors behind these trends. 

Introduction 
Biomedical literature grows at a tremendous pace of over 8000 abstracts a month. Due to this size, 
simple web-based text search of the literature is not yielding the best results and a lot of important 
information remains buried in the masses of text. Textmining of biomedical literature aims to address 
this problem. There have been a number of approaches using literature databases such as PubMed to 
extract relationships such as protein interactions (Blaschke et al. 1999, Thomas et al. 2002), pathways 
(Friedman et al. 2001), and micro array data (Tanabe, 1999).  For a good overview see (Feldman et al. 
2003). Mostly, these approaches aim to improve literature search by going beyond mere keyword 
search by providing natural language processing capabilities. While these approaches are successful in 
their remit, they do not mimick human information foraging. A typical biologist might pursue a quite 
sophisticated strategy to find the right papers. To get the most relevant literature on breast cancer and 
micro arrays, a biologist might enter these keywords into a search engine or PubMed. A quick scan of 
the best hits and the papers they cite will give a good indication on which labs around the world use 
micro arrays to investigate breast cancer. Then the user may visit the pages of the labs and look at their 
publication track record focusing on the prime researcher within the groups and publications in top 
journals. For these hits, the biologist will then read abstracts and possibly the whole paper.  
The important difference of the above information foraging strategy to pure keyword search is that 
implicitly users navigate networks – networks of documents and networks of authors. The idea of 
considering network topology for searching has already proved successful for general search engines 
such as Google. In this paper, we pursue this line of research and apply it to mine a small part of 
Unilever Bestfoods’ patent portfolio. We will use PSIEYE (Schroeder, 2003), a tool for the analysis 
and visualisation of interaction networks, to analyse a specific author and document network of patent 
literature. Besides this network approach, we show how classical term co-occurrence data can be 
visually mined for relevant terms and relationships.  
The paper is organised as follows: First, we introduce our application domain of mining patents. Next, 
we discuss the types of data available and some basic analysis techniques such as clustering and 3D 
scatter plots to analyse the documents. This motivates our novel approach of document and author 
network analysis. To this end, we review PSIEYE, a tool for the graph-theoretic analysis of interaction 
networks (Schroeder et al. 2003) and show and discuss results for the patent analysis. 

Mining Biomedical Literature and Patents 
Besides the main literature databases such as PubMed there is a wealth of information in patent 
databases available. Most of these patent databases provide only very simple keyword search facilities. 
However, one also provides the possibility to submit sequences and search patents that have mentioned 
similar sequences. To fully use the potential of these literature databases a more thorough analysis is 
required. (Breitzman and Mogee 2002) have reported on the many applications of patent analysis and 
have described a number of patent analysis software tools. VantagePoint is one of these tools and is 
capable of data and text mining.  They also list a couple of features that VantagePoint displays, the 
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ability to make lists and co-occurrence matrices and it is noted that co-occurrence techniques may be 
used to identify areas of competence. A company’s patent portfolio can for example reveal key 
personnel, technology areas of interest and inventor networks.  It must be realised that any patent 
portfolio is dependent on publication policies and how prolific each inventor is.  
 
(Porter at al 2002) report that VantagePoint is a useful tool for bibliographic analyses of up to 20000 
references for text, numerical and graphical depiction. By visualising large data sets it is possible to use 
broader searches which may in turn enable topical linkages to be seen, that would otherwise have been 
lost. In order to produce maps Porter et al select keywords of interest which are then visualised. The 
software does not allow ‘drilling down’ from a topical view to increasing detail. A different approach 
has been taken by (Buter and Noyons 2001), who present maps based on co-occurrence of phrases 
where the map is intended to provide an interface into a large set of bibliographic references, in the 
region of 100000 records. Furthermore, their maps have one significant capability not currently 
displayed by VantagePoint and it is the possibility of showing a dynamic version of a map, where they 
animate the changes in position of the clusters over time. In order to aid the strategic direction of a 
business it is useful to follow temporal shifts of science and technology trends from literature and 
patent publications, as a backward looking guide.  Another software is ArrowSmith  
(http://arrowsmith.psych.uic.edu/cgi-test/arrowsmith_uic/start.cgi), which is based on the work by 
(Swanson 1987 and Swanson and Smalheiser 1998) and enables the user to find scientific cross-
category links by looking at titles in PubMed. In ArrowSmith, the user provides two topics, A and C, of 
interest and ArrowSmith fills in the gaps to relate these two topics. It does so by identifying common 
terms from the two topics, by finding titles containing the words A and B, and B and C, respectively. 
Thus it can be implied that A relates to C via B, the first example published was the discovery that 
articles on Raynaud’s disease and articles on eicosapentaenoic acid when considered together implied 
that Raynaud patients may benefit from dietary fish oils rich in this acid. Two years later clinical trials 
proved this hypothesis to be correct. Obvious drawbacks of this tool are that it can only be used on 
publications in PubMed and that it only works on titles, as there can be a large number of other sources 
of interest as well as the opportunity of utilising the knowledge in the whole paper is missed. For multi-
national corporations innovation has to grow at ever increasing rates in order to remain competitive. 
Discovery of cross-category links (such as A, B ,C) is a very attractive route to increase efficiency in 
research. To these authors there are currently no tools available on the market that can deal with these 
kinds of issues, using any source, any text and with visualisation possibilities that include showing the 
bigger picture as well as zooming into greater detail.  

Case Study: Unilever Patents 
In this paper, we will use a case study consisting of a set of patents by Unilever to compare some 
existing approaches with our novel approach of mining document and author network. The authors 
have decided to carry to this case study on a small dataset that is well known to one of the authors in 
order to be able to determine the effectiveness of the text analysis and subsequent visualisation. Thus 
the dataset contains 59 patents, originating from a search made in the Micropatent database, all by the 
author Norton at Unilever. While most approaches aim to pinpoint the most relevant documents, we 
aim to map out the topic and trends implicit in a set of documents. For the former task, documents are 
usually represented as term vectors. For the latter task, we use a complementary approach: We want to 
map out and cluster relevant terms  from the documents and thus we represent terms as document 
vectors. This is possible using VantagePoint via a co-occurrence matrix of terms by document with 
subsequent visualisation. However, this visualisation is limited to represent only a very small (or a 
selection of a) dataset to a maximum of ca 30-50 clusters in a 2D scatterplot. More clusters make CPU 
time excessive and the resultant visualisation difficult to interpret when using the current version of 
VantagePoint. Additionally, we obtain a term vector for each author. The term vector represents a 
profile for each author containing all the relevant terms an author used in the abstract of the patents he 
or she co-authored.  Given the two matrices, how can we analyse them? First of all, let us consider the 
analyses that VantagePoint provides (see Figure 1). We applied dimension reduction with principal 
component analysis (see Figure 2) to each document reducing the matrix of the above document 
vectors and term vectors, respectively, to the three factors, which cater for most of the variance in the 
data.  Next, we visualised the resulting 3D matrix as a 3D scatterplot using SpaceExplorer  (Schroeder 
et al. 2001).  
Consider Figure 3. It shows distinct clusters of terms, which map out a topic and describe a number of 
patents, which can then be further analysed. The user can navigate freely in the 3D scatterplots and 
zoom in focussing on details, thus providing for focus and context. The clusters contain  terms such as 
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thickener composition, emulsion, viscosity, protein, pourable etc. Eight patents mention  protein. The 
context in which protein is mentioned can not be determined from the scatterplot. However, the term 
protein is in a small cluster a significant distance away from the main cluster. This distance indicates 
that the context in which the term protein is mentioned in a context which is different to the context of 
the majority of terms in the main cluster. It is at this point it is necessary to be a content expert, in order 
to be able to postulate what the visualisation is suggesting. It can now be speculated that the outlying 
point protein is mentioned in the context as an ingredient as opposed to most of the patents in the large 
aggregate which are assumed to have a context concerning processing and science and technology. By 
analysing (manually reading) all patents in this dataset this has been confirmed to be correct, i.e. the 
distances in the plot has accurately visualised differences in the context terms are placed in. . 
Furthermore, as the terms thickener composition and emulsion are so closely linked it is postulated that 
both terms are mentioned in the same abstracts. This was confirmed in the two patents mentioning 
thickener composition (nine patents mentioned the term emulsion). The distance between the two 
clusters is suggested to be due to a texture difference according to each abstract. The cluster further 
down is not a pourable texture, but rather a stronger texture, in comparison to the cluster above that 
concerns pourable textures. This was found to be mostly correct, with the majority of patents in the 
lower cluster being spreads patents (one pourable product) and vice versa for the pourable cluster (two 
spread products). The example of this particular trend can quickly be interpreted by a content expert, 
i.e. that there is a range of textures. By looking at the products in the market place it is clear that 
Unilever utilises a range of textures for its products. Thus, the implication of this is that by carrying out 
these types of analyses it is possible to estimate what is going on in our competitive environment. Of 
course, the other side of the coin is that our competitors can postulate what we are doing, as we are 
leaving similar marks by our publications, whether papers or patents.Consider Figure 4. As mentioned 
above, we complement the analysis of terms, by an analysis of authors. Representing each author as a 
term vector of terms used in any of his/her patents, we can apply dimension reduction with PCA to this 
high-dimensional data and represent the result as a 3D scatterplot. Additionally, the size of the spheres 
in the scatterplots indicates the number of patents. The screenshot on the left of Figure 4 clearly 
indicates that Norton, Brown, and Applequist are the most prolific authors with 59, 32, and 9 patents, 
respectively. The patent abstracts analysed in this paper were patents published by Norton between 
January 1974 and June 2003, i.e. Norton is an author in every patent. Brown and Norton were Norton’s 
two most prolific co-authors during this time period. From the text analysis and visualisation above it 
can now be implicated that these authors have contributed to work that relates to the same type of 
products. Furthermore, by understanding the science and technology behind these products it is now 
also possible to hypothesise these authors areas of expertise. Clark and Cain, which are the ouliers in 
Figure 4 on the right, are two authors which distinguish themselves from the remaining authors in that 
their abstracts contain the phrases edible plastic/plastified dispersion. The two authors are closely 
associated as Clark is a co-author in two of Cain’s 3 patents, and Clark only has two patents in this data 
set.  
 
While the above analysis is different to most classical text mining efforts in that it aims to map out 
topics to understand trends and to represent authors to identify the most prolific authors and their areas 
of expertise from the terms used in their abstracts, it nonetheless focuses on classical visual datamining 
techniques with dimension reduction and scatterplots. In the next section we shift the focus towards the 
analysis of the document and author networks. 
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Figure 1: Screenshot of VantagePoint. Across shows authors and their number of records in this 
dataset. Down are the NLP phrases extracted from each abstract. At the intersection you find the 
number of times the phrase has been used by the specific author. By selecting this number you get 
access to the relevant abstracts.  
 
 

Figure 2: Dimension reduction with Principal Component Analysis (PCA). Documents are represented 
as term vectors and thus represent a point in a high-dimensional space. PCA rotates the points in space 
so that the factor catering for most of the variance is aligned to the first axis, the factor explaining most 
of the remaining variance is mapped to the second axis etc. By considering only the first 2 or 3 factors 
the original high-dimensional data has been mapped to a 2 or 3D space, which can be visualised as 
scatterplot. 
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Figure 3: To map out the topic of a set of documents, terms are represented as document vectors, PCA 
is applied and the result is visualised as 3D scatterplot, which can be interactively explored. The 
leftmost figure shows two distance term clusters consisting e.g. of terms such as “thickener 
composition”, “emulsion”, “range” and “viscosity”, “temperature”, “pourable”, “protein”. The terms 
are mentioned in 2, 9, 2, 4, 6, 3 and 8 patents, respectively.  
 

 
Figure 4: For the patent data set we represent authors as term vectors according to the terms used in 
the patents they co-authored. We applied PCA to these high-dimensional term vectors and visualised 
the result as 3D scatterplots. The size of the spheres on the left indicates the number of patents. The 
screenshot on the left clearly indicates that Norton and Brown are the most prominent authors in the 
analysed dataset. On the right, the two outliers labelled Clark and Cain indicate that these authors have 
closely collaborated on topics different from the rest of the authors. 

 

Analysing Author and Document Networks  
One approach to mine text data focuses on networks of documents. Google is the best example of how 
additional information on link structures can be useful to rate the relevance of a document. We pursue a 
similar line of research by focusing the literature analysis on networks of documents, but also on 
networks of authors. The networks can be defined in a number of ways. In an author network, there can 
be a link between two authors if they co-authored a paper or if one cited the other. Similarly, a 
document network may contain a link between two documents if one cites the other or if a number of 
crucial terms co-occur between the two documents. Given such large networks how can we analyse and 
visualise them? To this end, we deploy PSIEYE (Schroeder et al. 2003), an integrated network 
visualisation and analysis tool. It implements a number of graph-theoretic measures, which rate 
proteins according to number of interaction partners, overall network location, and local interaction 
density (cluster index). PSIEYE complements these measures with a novel parameter, interaction rank, 
which treats interaction as a Markov process, and combines aspects of connectivity and cluster index.  
Interaction rank pinpoints important nodes given the topology of the whole network. 
 
Consider Figure 5 with a screenshot of PSIEYE. The central panel shows the co-authorship graph for 
the patent data. The panel is linked by brushing to the list on the left, which displays the authors sorted 
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by number of co-authors, cluster index, eccentricity, interaction rank, etc. The panel in the middle 
implements a fish-eye view to maintain a context and the ability to focus on parts of the network. The 
right panel can display web pages with additional detailed information for an author such as e.g. the 
patents he or she co-authored. As the graphs are usually big and difficult to clearly represent it is 
important to swiftly move from an overview to a detailed view with only a few nodes selected by 
criteria such as number of co-authors. This is achieved by the semantic zoom, which allows to remove 
nodes from the display and thus focus on a few selected ones, a significant improvement to the 
visualisation capabilities of vantagePoint. Overall, PSIEYE fulfils all requirements set by 
Schneiderman’s visual information-seeking mantra of overview first, zoom and filter, then details-on-
demand (Card, Mackinlay, Shneiderman; 1999). 
 
Broadly, PSIEYE ranks nodes using measures relating to the location of nodes within the network and 
measures of interactivity. There are two measures of vertex centrality in a network. A vertex's 
eccentricity is the distance to the farthest vertex in the network. The center of the network are the 
vertices, which have the smallest eccentricity.  A vertex's sum of distances to all other vertices in the 
network is a measure related to eccentricity. Similar to the center, the barycenter are the vertices with 
the smallest sum of distances.  In contrast to eccentricity, the sum of distance averages over all vertices. 
In Figure 8 on the left, the colour indicates the sum of distance and the lowest sum of distance is 
achieved by Norton, who therefore forms the barycentre of the network.  
 
Regarding interactivity, PSIEYE provides three measures: connectivity, cluster index, and interaction 
rank.  A vertex's connectivity is the number of interaction partners it has. In Figure 6, it has been 
applied together with semantic zoom to focus on the authors with the greatest number of co-authors. 
The left shows the five most cooperative authors. Interestingly, this most highly interactive group of 
authors closely cooperates with each other as they form a clique, i.e. all of them have co-authored 
patents with each other. Overall, these authors can be considered as the core and most important, at 
least most prolific, authors in the network. The right figure shows an example of visual querying. The 
colour is mapped to the number of co-authors. The colour scale ranges from blue (many co-authors) to 
red (few co-authors). 
 
The connectedness of a node’s direct neighbourhood is measured by cluster index (Watts and Strogatz 
1998), which is defined as the number of interactions between a vertex's neighbours divided by the 
total number of possible interactions between them. A cluster index of 0 means that none of a vertex's 
neighbours interact, whereas 1 indicates that they all interact with each other.  In Figure 7, the left 
figure shows the author network coloured by cluster index, where blue indicates a high cluster index 
and red a low one. Norton, who has many co-authors, does not score well in terms of cluster index, as 
not all of his co-authors have co-authored patents.  The large number of authors with a moderate 
number of co-authors score well in terms of cluster index indicating also the teams, in which the work 
has been carried out.  
 
Both connectivity and cluster index have shortcomings: connectivity does not consider interactions in a 
vertex's neighbourhood; cluster index favours low connectivity vertices. Interaction Rank addresses 
these shortcomings. Interaction rank treats networks as Markov processes: If two vertices are linked in 
the network, then there is a certain probability they will interact at any one time. Using the 
simplification of an unweighted interaction network we get a 1/|N(v) chance for vertex v to interact 
with a neighbour w, where |N(v)|  is the size of the set of v's neighbours. If we enumerate all vertices 
from 1 to n, we can capture this Markov process as a matrix M. The interaction rank is defined as the 
steady state of M. In general, the interaction rank is the better, the more interaction partners there are 
and the better connected a vertex's neighbourhood is.  Thus interaction rank combines aspects of 
connectivity and cluster index on a global scale. 
 
Consider Figure 8 on the right. Similar to author networks we can consider term and document 
networks. The figure shows such a term network based on co-occurrence. The network puts terms such 
as  process, shear, dispersion, edible dispersion, another aspect, concentration level, continuous fat 
phase, weight, advantage, invention, mouth, water, agents, gel setting temperature, least two, low fat 
content, present invention into the same context. It is clear that only some of these terms are useful, 
while other are of general nature and should be removed from the analysis. The colour of the nodes 
represents there interaction rank. Blue indicates a high interaction rank, red a low one. In this respect, 
process and preparation are the defining terms for this term cluster. 
 



In Proceedings of the European Workshop on Data Mining and Text Mining for Bioinformatics, 
held in conjunction with ECML/PKDD. Dubrovnik, Croatia, 2003. 

 

 48

Finally, PSIEYE allows one to select individual nodes and to explore their neighbourhoods. The right 
figure in Figure 7 shows an example for such visual querying. It shows that Aronson co-authored 
patents with 5 authors., who in turn co-authored with each other, thus also leading to a good cluster 
index of Aronson.  
 
 
 

 
Figure 5: A screenshot of PSIEYE. 
 

 
Figure 6: The authors with most co-authors have been selected using PSIEYE’s semantic zoom 
feature. The left shows the 5 most cooperative authors, who also closely cooperate with each other as 
they form a clique, i.e. all of them have co-authored patents with each other. The right figure shows an 
example of visual querying. The colour is mapped to the number of co-authors. The colour scale ranges 
from blue (many co-authors) to red (few co-authors).  
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Figure 7: Cluster index measures the connectivity of a node’s neighbourhood. 0 indicates that none of 
the neighbours interact, 1 means all interact. The left shows the author network coloured by cluster 
index, where red indicates a low cluster index and blue a high one. The right figure shows an example 
for visual querying. For a selected node its neighbourhood can be visualised. It shows that Aronson co-
authored patents with 5 authors, who in turn co-authored with each other, thus also leading to a good 
cluster index of Aronson.  

 
Figure 8: Left: The whole author network with colour indicating the sum of distance to all other 
authors. The colour grading ranges from blue (low) via green/yellow (medium) to red (high). Norton is 
the node with the lowest sum of distance and this forms the barycentre of the whole network. Right: 
Similar to author networks we can consider term and document networks. The figure shows such a 
term network based on co-occurrence. The network puts terms such as  process, shear, dispersion, 
edible dispersion, another aspect, concentration level, continuous fat phase, weight, advantage, 
invention, mouth, water, agents, gel setting temperature, least two, low fat content, present invention 
into the same context. It is clear that only some of these terms are useful, while other are of general 
nature and should be removed from the analysis. The colour of the nodes represents there interaction 
rank. Blue indicates a high interaction rank, red a low one. In this respect, process and preparation are 
the defining terms for this term cluster. 
 

Conclusion 
With the tremendous growth of the biomedical literature, text mining has become paramount. In this 
paper we have presented a case study, in which we applied visual datamining to a selected set of 
Unilever patents.  The goal of this effort is to map out current topics and developments by identifying 
term clusters in recent patents and to identify the most relevant authors behind these emerging trends. 
To achieve this goal, we first applied dimension reduction with principal component analysis to terms 
represented document vectors and authors represented as term vectors. We then visualised the result as 
3D scatterplots, which we interactively explored. We complemented this approach by focusing on term 
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and author networks. We mined these networks using PSIEYE, which provides a number of graph-
theoretic measures besides the visualisation of the networks. 
A number of conclusions can be drawn: First, the focus on networks of authors is an important 
emphasis in text mining analysis as research is a social process. It is also important that author 
networks have special properties (Watts and Strogatz 1998), which require appropriate measures for 
analysis. To this end, cluster index (Watts and Strogatz 1998) and interaction rank (Schroeder et al. 
2003) are important concepts beside the basic measures such as connectivity and eccentricity. Second, 
it is important to stress that visualisation (Card, Mackinlay, Shneiderman 1999) is an important part of 
our mining effort. Visual datamining puts the human back into the loop and makes datamining an 
interactive exploratory process aimed at supporting hypothesis formulation. In particular, tools need to 
support this process by providing means for  showing overviews, to filter/zoom, to display detail-on-
demand, to visually querying, to link views, etc. (Card, Mackinlay, Shneiderman 1999). SpaceExplorer 
(Schroeder et al. 2001) and PSIEYE (Schroeder et al. 2003), which were used in this case study, both 
provide these capabilities. Third, expertise in the scientific/technical field under investigation is 
necessary in order to interpret views and draw conclusions/make hypothesis about what the analysis is 
suggesting. 
The case study provides valuable insights on how to approach visual datamining of bibliometric 
networks. However, there are a number of limits. In our current work, we relied on tools such as 
VantagePoint, whose natural language processing capabilities are limited. While e.g. temperature and 
temp can be equated by stemming, other terms are equivalently used in different communities (e.g. the 
gene names YOR141c and ARP8 are equivalent) and cannot be equated. Most important, it will be 
important to distinguish types of words and apply templates in parsing such as  process (e.g. heating) is 
applied to a substance (e.g. water) , which is in a certain state (e.g. liquid). There are text analysis tools 
on the market that have gone some way towards aiming to solve this issue, but huge manual input are 
generally needed. 
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Abstract. In text mining for bioinformatics, one important bottle-neck
is the availability of high-quality tagged corpora. We introduce a novel
approach to learn extraction patterns from pre-classi�ed but untagged

corpora, which are easier to generate automatically. We apply our ap-
proach to two datasets derived from SWISS-PROT plus associated MED-
LINE references. In both experiments a Ripper-like rule learner, JRip, is

competitive to all other learners; outputs a manageable number of un-
derstandable rules; and performs comparably to a human domain expert
investigating the same task. Based on our results, we note weaknesses

and strengths of both human model and machine learning approaches,
which indicates that they have distinct areas of expertise. Our approach
may be used to generate initial rulesets for information extraction, to be

iteratively re�ned by domain experts; or as a stand-alone approach with
some losses in precision.

1 Introduction

In text mining for bioinformatics, one important bottle-neck is the availability of
high-quality tagged corpora. Creating a pre-tagged corpus entails high workload
for domain experts, but a corpus for a speci�c domain can usually not be directly
transferred to other domains. Disagreement between domain experts even for
basic issues such as extent of protein and gene names [4] further complicate the
issue.

In this paper, we propose and evaluate an alternative approach to informa-
tion extraction from pre-classi�ed, but untagged corpora; in our case created
automatically from the SWISS-PROT and MEDLINE databases. We reformu-
late the information extraction problem as learning problem where each distinct
class represents a unique slot value to be extracted from the document. Thus,
we are also able to learn synonyms and utilize partial evidence for slot values.
On the other hand we require that the full list of values for a given slot is known
a priori. Also, the scalability of our approach towards very high number of slot
values remains to be investigated.

We will proceed to show that our approach is competitive to state-of-the-art
approaches such as Support Vector Machines and Decision Trees; results in a
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manageable number of easily understood extraction rules for each slot value and
even performs competitively to a human domain expert investigating the same
extraction task. The automatic approach and the domain expert each has its own
area of expertise: domain experts are better at creating rules with high precision
at cost of lower recall, while the automatic approach is biased towards creating
rules with lower precision and higher recall. Still, the automatic approach gives
better models than our domain expert in a third of cases; and generally manages
the trade o� between precision and recall much better.

2 Databases

SWISS-PROT [5, 1] is one of the largest protein databases. All its entries are
created by biologists and are continually updated, extended and corrected. Thus
the quality of the entries is considered to be quite high, which is not yet the
case with automatically generated databases. On the other hand, the number
of available examples is much smaller but still suÆcient for our experiments.
SWISS-PROT is biased towards better described proteins; also, the attached
MEDLINE references are selected to be representative of each entry. Both of
this may lead to overestimation of true performance, which should be kept in
mind; but this bias is in our opinion a small price to pay for such a wealth of
data with excellent quality.

We obtained a recent snapshot of the SWISS-PROT database, consisting
of 121,745 entries. We also obtained all referenced MEDLINE entries, yielding
83,044 documents. For our experiments, we focus on the OS �eld which encodes
taxonomic information in the form of organism, or species, where the protein is
present. We are interested in predicting domain and species of an organism from
the associated MEDLINE documents.

All in all, there are 7,803 distinct species referenced in our SWISS-PROT
snapshot, on average 1.1�0.3 per entry. It is thus not unlikely that a protein
appears in more than one species; however, since then the learning problem is not
well de�ned, we removed these entries. We also removed those entries without
MEDLINE references (10.6%), and used only the �rst referenced MEDLINE
entry1 in each of the remaining cases, on the premise that it is the most relevant
document. 104,747 entries remain after these prior selections, each consisting of
a species value and an associated MEDLINE publication. These form the basis
for our experiments.

From each MEDLINE publication, we chose to use title, abstract and MeSH
terms. Throughout this paper, we use word occurrence vector representations.2

We removed all characters except whitespace, lower- and uppercase letters,
numbers, the dash (-) and the prime ('). Each continguous sequence of non-

1 On average, each SWISS-PROT entry references 1.9�2.0 MEDLINE entries.
2 I.e. one binary attribute for each word which encodes if it appears in the text (1)
or not (0) { a widely used representation in text mining, which of course loses
information on word sequence.
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Table 1. Results for predicting species domain. Acc.CV shows two-fold cross-validation

on 5% of data; Acc.Test shows performance of trained model from 5% data on the
remaining 95%. Approximate execution times are also given.

Classi�er Acc.CV Exec Acc.Test Exec

ZeroR (baseline) 49.8% 1.4s 47.6% 0.2s
OneR 85.3% 1m 84.2% 0.1s
NaiveBayes-K 93.6% 5m 93.3% 176s

J48 96.2% 36m 96.4% 0.33s
PART 96.4% 36m 96.8% 0.4s
JRip 97.0% 108m 97.5% 0.1s

Logistic 97.4% 285m 96.4% 7s
SMO-RBF 97.5% 17m 97.6% 842s
SMO 97.7% 2m 97.8% 2.6s

whitespace characters framed by whitespace3 is considered a word. For simplic-
ity, we combined all words from title, abstract and MeSH terms into a single
word vector.

3 Species Domain

As preliminary step, we investigated the task of predicting the species domain,
or kingdom { one of Archaea, Bacteria, Eukaryota or Virus { from MEDLINE
documents. We chose to restrict our word occurrence vector representation to
the most-frequent 1044 words, which form the input attributes for our four-class
learning problem.

Initially, we used 5% of our examples with two-fold cross-validation4. For val-
idation, all classi�ers were retrained on 5% data and evaluated on the remaining
95% for validation. A selection of common classi�ers from WEKA5 was chosen:
ZeroR is a simple baseline classi�er which always predicts the most common
class from training data, independent of the speci�c example to be classi�ed;
OneR is a simple classi�er which learns one rule based on a single attribute's
values; NaiveBayes is another well-known classi�er based on the Bayes Theo-
rem for conditional probability; J48 is a decision tree learner based on C4.5R8,
PART corresponds to c4.5rules and generates rulesets from all paths within a
C4.5 decision tree; JRip is a rule learner similar in spirit to the commercial rule
learner Ripper; SMO and SMO-RBF are support vector machine implementations
with linear resp. Radial-Basis-Function kernels. Space restrictions prevent us
from giving more details on strengths and weaknesses of the various approaches

3 The character before the beginning and after the end of text is also considered
whitespace.

4 This is equivalent to splitting the data into two equally sized halves (retaining class

distributions); using one part for training, the other part for testing; then swapping
the sets, repeating train/test and averaging over the two test-set results.

5 The source code of WEKA is available at www.cs.waikato.ac.nz/~ml/weka
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Table 2. Results for predicting top twenty species. Acc.CV shows two-fold cross-

validation on the complete dataset. Approximate execution time is also given.

Classi�er Acc.CV Exec

ZeroR (baseline) 19.0% 12s

OneR 26.5% 52m
NaiveBayes-K 76.4% 10h
JRip 88.9% 312h

SMO 89.3% 29h

- however, as we shall see, most of them perform similarily, so we can a�ord to
focus on a single rule-based approach, JRip.

Results can be found in Table 1. We see that more than half of our classi-
�ers perform similarily.6 According to runtime, we see that the support vector
implementation SMO is both much faster than JRip and slightly better; however,
for the purposes of communicating our models to domain experts, JRip is much
better suited. For illustration, Figure 2 shows the model which was obtained by
JRip.

4 Species Top Twenty

We then decided to predict the top twenty largest species appearing in SWISS-
PROT, 42.1% of all entries. This gives us 43,761 examples. We chose to restrict
ourselves to the top 3,834 most frequent words as input attributes for our learn-
ing algorithms. For this task, we also obtained a domain expert's model for
comparison. The expert utilized multi-word patterns, or phrases.7 To ensure a
fair comparison with our approach, we counted the number of rule matches and
chose the rule with maximum number of matches. Ties were resolved in favor of
the more common class according to training data.8

We chose a subset of classi�ers from the previous experiment, based on con-
siderations of runtime, accuracy and understandability. Experimental results are
found in Table 2. JRip performs again slightly worse than SMO. Again, we prefer
JRip because of its more understandable and small rule set (172 rules for twenty
classes), even if its training takes an order of magnitude longer.

For a more detailed analysis, we compared each species separately, see Ta-
ble 3. Maximum values are marked bold in this table. We can see at once that

6 It deserves mention that the very simple model by OneR, IF document contains word

'Bacterial' => Bacteria ELSE Eukaryota, already improves signi�cantly over the
baseline.

7 Due to the limits of word vector representations information on word sequence is

lost and thus multi-word patterns cannot be learned with our approach, which may
create a signi�cant disadvantage for our model.

8 We expect JRip to use similar optimizations.
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Fig. 1. Results for predicting top twenty species. X shows recall, Y shows precision.
The dot (.) shows the domain expert's result, the other end of the line shows JRip's

result. Each line corresponds to one species.

JRip performs better in terms of recall and F-measure9, while the domain ex-
pert's model usually o�ers higher precision.

Figure 1 shows the same data in graphical form. In most cases, the domain
expert improves precision at the cost of recall, i.e. the lines point10 to the top left.
Since domain experts have told us that they emphasize precision over recall, these
results are not surprising. However, in seven cases JRip o�ers better precision
than the human model; and in some cases the domain expert's model yields very
low recall { once even less than 1%. It should be mentioned that this re
ects
shortcomings of the domain expert's model rather than the domain expert's
judgement.

JRip also manages the trade o� between precision and recall better, which
can be seen by the F-measure being higher in three-fourths of cases. Average
precision, recall and F-measure are also uniformly higher and the standard devi-
ation of these values are uniformly lower than those of the domain expert, which
also con�rms this observation.

9 The F-measure is a simple combination of recall and precision, i.e. 2 � r�p

r+p
.

10 The dot at one end of the line shows the performance of our domain expert. We
consider the lines to point towards this dot.
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Table 3. Results for predicting top twenty species. p shows precision, r shows recall,

F shows the F-measure, 2 � r�p

r+p
. On the left, we see results by JRip, on the right those

from the domain expert's model. Best values are shown in bold. Average and standard
deviation for all columns is also given.

Species Name JRip Human
p r F p r F

Homo sapiens (Human) 80.57 81.00 80.79 50.99 93.18 65.91
Xenopus laevis (African clawed frog) 75.17 83.10 78.94 84.15 70.14 76.51

Escherichia coli 96.90 96.13 96.51 81.13 96.45 88.13
Caenorhabditis elegans 87.53 91.09 89.27 85.37 93.73 89.36

Haemophilus in
uenzae 99.04 99.83 99.43 99.94 99.03 99.49

Arabidopsis thaliana (Mouse-ear cress) 97.80 96.66 97.23 99.85 71.49 83.32
Bos taurus (Bovine) 71.38 83.05 76.77 94.52 11.64 20.72
Bacillus subtilis 98.82 98.74 98.78 99.87 96.93 98.38

Archaeoglobus fulgidus 100.00 100.00 100.00 100.00 0.69 1.36
Mus musculus (Mouse) 78.97 79.81 79.39 90.73 13.26 23.15
Mycobacterium tuberculosis 99.85 99.77 99.81 100.00 99.55 99.77

Salmonella typhimurium 89.65 91.81 90.71 95.71 91.45 93.53
Synechocystis sp. (strain PCC 6803) 99.13 99.67 99.40 100.00 93.57 96.68
Pseudomonas aeruginosa 97.12 99.02 98.06 99.87 97.43 98.64

Saccharomyces cerevisiae (Bakers yeast) 95.55 93.73 94.63 84.52 94.85 89.39
Methanococcus jannaschii 99.87 99.87 99.87 63.76 99.93 77.85
Gallus gallus (Chicken) 79.85 85.31 82.49 93.75 44.39 60.25

Rattus norvegicus (Rat) 86.04 72.16 78.49 80.24 68.90 74.14
Schizosaccharomyces pombe (Fission yeast) 94.81 95.35 95.08 98.25 87.99 92.84
Drosophila melanogaster (Fruit 
y) 87.55 90.23 88.87 94.83 70.00 80.55

Max 7 15 16 14 5 4

Avg 90.78 91.82 91.23 89.87 74.73 75.50

� stdDev 9.31 8.35 8.62 13.22 32.03 28.56

5 Related Research

[6] introduces a system to generate extraction patterns from untagged, but pre-
classi�ed corpus by exhaustively generating all extraction patterns, which are
then manually selected. Our approach is related in that we extract patterns
based on preclassi�ed documents without a manually tagged corpus. No manual
inspection of extraction patterns are necessary for our approach which makes it
more eÆcient.

[7] introduces a support vector machine classi�er to classify sub-cellular lo-
cation. In their case, the machine learning approach still performs signi�cantly
worse than the best manually created rulesets from [3]. SVM models are also
hard to visualise and understand, while our approach generates understandable
rulesets of manageable size.

[2] also investigate the prediction of sub-cellular location, among other tasks.
While using a pre-tagged corpus at �rst, they later resort to weakly labeled
training instances, generated from online databases. Their approach is somewhat
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(archaeon) => domain=A (163.0/0.0)
(Archaeal) and (!Bacterial) => domain=A (92.0/0.0)
(Halobacterium) => domain=A (22.0/3.0)
(archaebacterium) and (Bacterial) => domain=A (7.0/0.0)
(Methanobacterium) => domain=A (6.0/2.0)
(Archaea) and (!Proteins) => domain=A (2.0/0.0)
(Viral) => domain=V (351.0/18.0)
(Bacterial) and (!Animal) => domain=B (1665.0/14.0)
(Bacterial) and (!RNA) and (!cerevisiae) => domain=B (211.0/10.0)
(!Animal) and (Escherichia) and (!Proteins) and (!Fungal) and (!cDNA) => domain=B (26.0/2.0)
(!Animal) and (bacteria) and (!cDNA) => domain=B (19.0/3.0)
(strain) and (!Fungal) and (!Proteins) and (!2) => domain=B (17.0/1.0)
(!Animal) and (cyanobacterium) => domain=B (9.0/1.0)
(Bacteria) and (!Animal) => domain=B (6.0/1.0)
(Frames) and (operon) => domain=B (4.0/1.0)
(Salmonella) => domain=B (2.0/0.0)
(Streptomyces) and (!at) => domain=B (5.0/0.0)
(Anabaena) => domain=B (3.0/0.0)
(bacterium) => domain=B (5.0/1.0)
(Bacillus) and (!Animal) => domain=B (5.0/1.0)
(pneumoniae) => domain=B (2.0/0.0)
=> domain=E (2534.0/20.0)

Fig. 2. JRip's model for species domain. (word) encodes word occurrence and (!word)
word non-occurrence. E.g. second rule reads like this: If the (title, abstract, MeSH
terms) of a MEDLINE entry contains Archaeal and not Bacterial, predict domain

archaea (domain=A). This rule is corrent for 92 examples and incorrect for none
(92.0/0.0). The last line is the default rule, which is chosen if no other rule matches.

similar to ours, in that our training instances are also weakly labeled (i.e. we do
not know where exactly the required information is present in the text). They
also investigate using relational learning for this task, and �nd that it improves
precision.

6 Conclusion

We have reformulated a problem of information extraction within BioInformatics
as learning problem. More speci�cally, we have aimed to extract organism names
(domain and species) from MEDLINE documents related to proteins.

The reported results show that our approach is competitive to a model by a
human domain expert, both having distinct areas of expertise: Humans are better
at creating rules with high precision at cost of lower recall, while our approach
is well suited to create rules with lower precision and higher recall. This is in
accordance with our domain expert's preference for precision. Still, in a third of
cases our approach yields models with better precision than the domain expert's
models. The focus on precision over recall may impair the domain expert's ability
for a reasonable trade o� between precision and recall11 while our approach
manages the trade o� fairly well.

11 Recall as low as 0.7% was observed, for small or even nonexisting improvements in
precision
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Our approach returns an easily understandable ruleset of manageable size12

and could either be used for generating initial rulesets for iterative re�nement
by domain experts; or as a stand-alone approach with some losses in precision.

We intend to investigate the scalability of our approach to thousands of slot
values in the future; and also see how well it performs with data from other
sources. We will also look into relational learning approaches and support vector
machines with string kernels; and other interesting problems within the �eld
BioInformatics.
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Abstract. In some domains, named entity recognition might be con-
sidered a solved problem. This does not hold for biological text mining,
where protein and gene name recognition are still open research problems
[4, 6]. In this paper, we compare two current approaches to the problem
of protein name recognition, KeX [5] and Yapex [4]. Unlike manual eval-
uation which relies on domain experts' judgement concerning position
and extent of all relevant names and entails a high workload, our com-
parison methodology is fully automatic. Our results agree with previous
manual evaluations of KeX and Yapex which validates our approach.

1 Introduction

While for some tasks named entity recognition may be considered a solved prob-
lem, this is not the case for protein name recognition in biological text mining.
Although useful results can be achieved with a �xed static dictionary [1, 8] thou-
sands of new papers appear daily and no �xed dictionary is expected to be
accurate for long. Current implementations of protein name recognizers rely on
heuristics and proprietary text processing, and do not yet learn, although they
are quite able to recognize previously unseen protein names. Machine learning
approaches to this problem are also upcoming1. In this paper, we focus on two
approaches which are already available, KeX2 [5] and Yapex3 [4].

A reasonable approach to compare protein name recognizers is to measure
them against the gold standard { a domain expert which marks up all protein
names in a set of test papers. While this is not completely unproblematic { do-
main experts may sometimes disagree to the extent of protein names or what
kinds of names are considered valid [4] { it entails a high workload which is better
put to more productive use. Therefore, we propose a fully automatic approach
to comparison, using the full SWISS-PROT [7, 2] database and associated MED-
LINE4 publications as approximation to the gold standard. Our approach allows

? In Proceedings of the European Workshop on Data Mining and Text Mining for
Bioinformatics, held in conjunction with ECML/PKDD. Dubrovnik, Croatia, 2003

1 GAPSCORE, http://bionlp.standford.edu, which we look forward to investigate.
2 The KeX source code has been made freely available by the authors at http://www.
hgc.ims.u-tokyo.ac.jp/service/tooldoc/KeX/intro.html

3 Yapex is available via web form http://www.sics.se/humle/projects/prothalt/

yapex.cgi and utilizes a commercial tagger which is subject to licensing.
4 MEDLINE is a bibliographic database owned by the U.S. National Library
of Medicine and can be searched via PubMed: http://www.ncbi.nlm.nih.gov/

entrez/query.fcgi
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to utilize several orders of magnitude more text for evaluation than manual ap-
proaches.5 While we cannot o�er speci�c answer keys, and our approach is only
based on positive examples of protein names, our results agree with an earlier
comparison of KeX and Yapex by classical means.

2 Databases

SWISS-PROT is one of the largest proteomics databases. All its entries are
created by biologists; continually updated, extended and corrected.

For our experiments, we obtained a recent snapshot of the SWISS-PROT
database, consisting of 121,745 entries. We also obtained all referenced MED-
LINE entries, yielding 83,044 documents. For our experiments, we focus on the
DE �eld which encodes protein names and synonyms; and use it as standard
against which di�erent protein name recognizers are measured, using the refer-
enced MEDLINE entries as input. Since MEDLINE publications are expected
to reference other proteins as well, we also measured each recognizer against a
full list of proteins names generated from the whole SWISS-PROT database.

All in all, there are 95,982 unique protein names and synonyms referenced
in our SWISS-PROT snapshot. This is less than the total number of entries,
so not all proteins have an unique name. Non-speci�c entries such as 111 kDa
protein, which refers to any protein with a speci�c molecular weight, explain this
discrepancy. On average, each SWISS-PROT entry includes 2.34�1.52 protein
names and synonyms.

From each MEDLINE publication, we chose title and abstract. For KeX, we
compiled KeX and executed it locally; for Yapex we are obliged to Kristofer
Franzen, who supervised the processing at their site. Both KeX and Yapex are
quite fast; parsing all 83,044 MEDLINE documents took about a working day,
i.e. 8-10h. Thus, parsing all new MEDLINE entries in real-time seems feasible
with either of these approaches.

Since SWISS-PROT is biased towards better characterized proteins6; and the
referenced MEDLINE publications are usually more representative that a ran-
dom selection, our approach may overestimate the true performance of protein
name recognizers. Even in that case, a relative comparison is still meaningful.

3 Experiments

Extracting the protein names from KeX and Yapex output is quite simple { both
use html-like tags which enclose protein names and parts. While KeX always
outputs a single level of tags, those by Yapex are sometimes recursively nested
in multiple levels. Therefore we chose to use the full word sequence within the
outermost level of tags for Yapex, to prevent duplication of parts of protein
names which may bias our evaluation. We match each protein name from KeX
and Yapex separately against SWISS-PROT.

Matching recognized protein names to SWISS-PROT protein names is less
obvious. Inspired by [4], we have considered three matching schemes:

5 We do indirectly rely on SWISS-PROT curators painstakingly collecting protein
names { so even our approach heavily relies on reusing human expertise.

6 For example, we were unable to �nd the yeast prion proteins Rnq1p, Sup35p and
Ure2p
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Table 1. This table shows results for KeX and Yapex with di�erent comparison
methodologies, as well as vs. all of SPROTs protein names or vs. only those which
are associated to a given MEDLINE publication. Better values are shown in bold.

all SPROT only SPROT refs
Yapex KeX Yapex KeX

Strict 0.202�0.401 0.097�0.296 0.077�0.267 0.038�0.192
PNP 0.606�0.423 0.529�0.374 0.328�0.426 0.221�0.346
Sloppy 0.732�0.443 0.775�0.420 0.415�0.493 0.354�0.478

{ Strict, i.e. matching of the whole string. We observed slight di�erences in
capitalization and therefore chose to use case-insensitive matching.

{ Protein Name Parts (PNP), i.e. a degree of match between 0 and 1 as ratio of
those words within the recognized protein which are matched to any words in
a given SWISS-PROT template. Word matching is done both with lowercase
and uppercase �rst letter to account for di�erences in capitalization. We rely
on the protein recognizer to emphasize word boundaries, which we consider
to be whitespace, or parentheses wrapped in whitespace.

{ Sloppy, i.e. a match is counted even if only a single word matches. This is
equivalent to PNP>0.

The Left and Right schemes from [4] are not applicable since we have no infor-
mation on the position of a probable match. Furthermore, our protein list is not
exhaustive, so we have no complete data on non-matches.

Along an orthogonal dimension, we compared each protein name recognizer
against a full list of all unique SWISS-PROT protein names (all SPROT ); or
only against those SWISS-PROT names which are associated with the given
MEDLINE publication (only SPROT refs). The latter is considered to be more
speci�c { it is expected that at least one entry from this list appears in every
MEDLINE publication. This is almost the case for Yapex with 0.81�1.93 entries
per publication; and less so for KeX with 0.46�1.33. Therefore, not all synonyms
are recorded in SWISS-PROT, which agrees with our domain experts stated
opinion that the protein lists from SWISS-PROT are not exhaustive.

Table 1 gives the results. We give averages and standard deviations over
the match values from all recognized proteins, based on the three matching
schemes. A match is considered 1 and no match 0 for Strict and Sloppy ; and a
ratio between 0 and 1 for PNP. We see that Sloppy is the only matching scheme
where KeX performs comparable to Yapex, which was also found in [4]. Under the
other matching schemes, Yapex performs better. If we consider only SPROT refs,
Yapex always performs better than KeX. The high standard deviation for most
entries indicates that there are large 
uctuations in the proportion of correct
matches from abstract to abstract which may bias the arithmetic average7, so
we now take a closer look at the speci�c match values from PNP.

We take a closer look at the distributions of PNP match values in Figure 1.
Alas, the most obvious patterns are just artefacts of ratio scores { short protein
names mean a smaller number of possible scores, since each word can only match
or not. Since there are many short protein names, the values tend to cluster near
simple ratios, such as 1

2
;
1

3
;
2

3
and so on. For longer protein names, the number

of possible scores increases, so longer names tend to distribute over a wider area
and are more susceptible to disappear into the background.

7 Using the median would probably have been more appropriate.
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Fig. 1. This �gure shows histograms for the PNP comparison: Yapex on top, KeX on
the bottom. The �gures on the left show results vs. all of SPROT; those on the right,
vs. only references SPROT entries.

There are some patterns, though. The match values for KeX are biased to-
wards smaller values, indicating that its protein names contains super
uous parts
and are thus on average too long, which was also found by [4]. The former is
also indicated by the average length of recognized proteins: for Yapex, this is
1.59�0.95 which for KeX it is much higher at 2.17�1.56. For Yapex, the values
are quite symmetric in their arrangement between match values 0 and 1.

4 Related Research

[4] gives an excellent overview on the challenges and issues of protein name
recognition; and also compares Yapex to KeX on manually annotated data.
We found their discussion of comparison methodologies for protein names quite
enlightening.

[5] introduces a system to extract protein names, which has been extended
towards KeX. They report excellent results, which have been called in question
by [3, 4], and incidentially also by our work here.
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5 Conclusion

We have applied an automatic comparison methodology on two protein name
recognizers. We were able to validate some conclusions from an earlier man-
ual comparison of the same two recognizers by [4], concerning the comparable
performance of KeX and Yapex when compared via Sloppy, and the overlong
matches of KeX.

We look forward to compare all current approaches within the same method-
ology, and also investigate in more detail the strengths and weaknesses of di�er-
ent approaches. Ultimately, we hope to create large, unbiased training sets for
protein name recognition tasks with this approach, complementary to manually
generated training sets.
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Abstract 

 
The paper describes a set of experiments aimed at 
identifying and evaluating context features and 
machine learning methods to identify medical 
semantic relations in texts. We use manually 
constructed lists of pairs of MeSH-classes that 
represent specific relations, and a linguistically and 
semantically annotated corpus of medical abstracts 
to explore the contextual features of relations. 
Using hierarchical clustering we compare and 
evaluate linguistic aspects of relation context and 
different data representations. Through feature 
selection on a small data set we also show that 
relations are characterized by typical context 
words, and by isolating these we can construct a 
more robust language model representing the 
target relation. Finally, we present graph 
visualization as an alternative and promising way 
of data representation facilitating feature selection.   
 
1. Introduction 
 
Finding previously unknown information in large 
text collections is undoubtedly the greatest 
challenge of Text Mining, and biomedicine remains 
one of its most interesting domains of application. 
This is primarily due to the potentially very broad 
impact of biomedical findings, but also to the 
extensiveness of electronic knowledge sources (e.g. 
UMLS and Medline), “waiting” to be exploited in 
an innovative way integrating natural language 
processing and machine learning techniques. 
  
Using linguistic analysis and medical thesauri, we 
introduce multiple levels of semantic annotation 
which help us narrow our search to selected 
medical concepts or semantic types.  Despite all 
this explicitly or implicitly available knowledge, 
the identification of semantic relations, such as 
substance A treats disease B, remains a non-trivial 
task. Of course, the Semantic Network of the 
Unified Medical Language System (UMLS) already 
defines 54 domain-specific relations between the 
134 available semantic types, which enables us to 
identify instances of UMLS relations in texts. 
However, applying the Semantic Network relations 
to medical abstracts shows that those relations are 

often too generic, ambiguous or incomplete. Also, 
for many knowledge modelling or information 
extraction tasks 54 different relations are too much, 
as the boundaries between, say, associated_with 
and interacts_with tend to be blurred. We therefore 
seek for better ways of identifying selected domain-
specific relations in medical texts, and since we 
believe that meaningful relations between concepts 
are verbalized in some way or another, the aim is to 
identify the context features that most reliably point 
to a certain semantic relation and learn the most 
effective way of representing them. By context 
features we mean in particular the linguistic 
environment of a pair of concepts, which we 
explore at different levels, including pure tokens, 
selected part-of-speech classes and semantic 
classes.   
 
The first indicator of a possible semantic relation is 
when two concepts co-occur more frequently than 
would be expected by chance. We use a corpus of 
medical abstracts obtained from Springer (a subset 
of Medline) to extract pairs of co-occurring 
concepts, which we generalize according to MeSH-
tree membership at level 0. In order to explore 
context features in a controlled environment we use 
manually compiled lists of pairs of MeSH-tree 
leaves, which according to the medical expert very 
probably represent a specific semantic relation. 
Thus, for the relation treats the medical expert 
provided a list of over 100 pairs, such as D13|C23. 
Similar lists were compiled for 3 other relations, 
location_of, causes and analyzes.  
 
Using these data sets and the semantically 
annotated corpus, we seek to answer the following 
two questions: Firstly, which context features most 
reliably characterize a relation or help us 
distinguish between possible relations, and 
secondly, which data representation and mining 
algorithm works best in grouping MeSH-pairs 
according to the relation they represent. 
 
2. Related work 

 
We are aware of several approaches to mining 
semantic relations from text for various 
applications, e.g. ontology construction, 
information retrieval and knowledge discovery, 
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much of the latter in the biomedical domain. 
Approaches to ontology construction are primarily 
focused on discovering taxonomic or non-
taxonomic relations between concepts, for example 
by learning association rules [12] or by concept 
clustering combined with grammatical relations [2]. 
In contrast to a typical ontology building scenario, 
we exploit an already existing ontology (UMLS) to 
identify our concepts and semantic classes and then 
focus on specific (i.e. labelled) medical relations for 
potential ontology enrichment.  
 
A more supervised line of research aims to find 
relations via lexico-syntactic patterns, e.g. {NP}, 
especially {NP}, which would match pairs of 
hypernyms as in European countries, especially 
France [10], [9], [6], [1].  
  
For the purposes of knowledge discovery in 
medicine even unlabelled associations or statistical 
correlations may prove useful for hypothesis 
generation, as Swanson’s experiments show [15]. 
Later work by Weeber et al. [16] proposes a more 
sophisticated model of automatic hypothesis 
generation from a medical corpus, which already 
integrates some linguistic processing and semantic 
annotation. Finding specific medical relations, such 
as X causes Y, was initially attempted through 
tables of pattern-matching rules based on co-
occurrences of MeSH-classes [4]. Rosario et al. 
[13] use MeSH in a similar way to determine 
semantic relations within noun compounds. Our 
approach also uses pairs of co-occurring MeSH-
classes, however instead of providing patterns or 
rules we try to learn the context that determines a 
particular relation.  
 
3. Linguistic and semantic processing 
 
To obtain concept co-occurrence data and 
contextual features we use two corpora of medical 
abstracts: the MuchMore Springer bilingual corpus1 
of ca. 9,000 abstracts in German and English and a 
subpart of the Ohsumed corpus of 22,000 abstracts 
in English. Both corpora were linguistically and 
semantically processed using tools developed 
within the MuchMore2 projecton cross-lingual 
information retrieval in the medical domain. 
Linguistic processing plays an important role in the 
accuracy of semantic annotation, where we identify 
medical terms and map them to UMLS concepts. 
Linguistic processing included tokenization, part-
of-speech tagging and lemmatization; for the latter 
the morphological lexicon was extended to include 
medical terminology.  

                                                 
1 http://muchmore.dfki.de/resources1.htm 
2 http://muchmore.dfki.de 

The main semantic resource for the medical domain 
is UMLS (Unified Medical Language System)3, a 
multilingual database of medical terms, concepts, 
definitions and semantic relations. UMLS consists 
of 3 major parts: Metathesaurus, Semantic Network 
and Specialist Lexicon. The Metathesaurus is 
essentially a large termbank listing medical terms 
and expressions and assigning a language 
independent code to each term (CUI – Concept 
Unique Identifier). Since UMLS is being developed 
as an integrated system unifying various medical 
thesauri and sources, it also includes the mappings 
of CUIs to some of these more specific thesauri. 
Thus, one of such core sources is MeSH (Medical 
Subject Headings), a thesaurus organizing medical 
knowledge into 15 top tree nodes, each of which is 
marked with a letter and subdivided into branches. 
For example, A stands for Anatomy, B for 
Organisms, C for Diseases etc.  
 
In our semantic annotation we identify medical 
terms and label them with codes (CUIs) from the 
UMLS Metathesaurus. These are mapped further to 
semantic types (TUI – Type Unique Identifier) as 
well as to MeSH codes corresponding to the nodes 
in the MeSH tree hierarchy. Although the 134 
semantic types defined by the UMLS are also 
hierarchically ordered, we opted for using MeSH 
descriptors instead, because these transparently 
show the position of a certain concept within the 
MeSH tree structure. They also allow us to choose 
the desired level of abstraction simply by climbing 
to higher-level tree nodes. Thus, if a text contains 
the medical term anorexia nervosa, it will be 
assigned the concept code C0003125 and the MeSH 
descriptor F03.375.100, which can then be 
abstracted to F03 – Mental Disorders. 
 
4. Text Mining methods 
 
4.1 Hierarchical clustering 
Clustering is an unsupervised learning method [15]. 
Given data about a set of instances, a clustering 
algorithm creates groups of objects following two 
criteria. Firstly, instances are close (or similar) to 
the other instances from the same group (internal 
cohesion) and secondly, they are distant (or 
dissimilar) from instances in the other groups 
(external isolation). 
 
A particular class of clustering methods, studied 
and widely used in statistical data analysis are 
hierarchical clustering methods [15]. The 
hierarchical clustering algorithm starts with 
assigning each instance to its own cluster, and 
iteratively joins together the two closest (most 
similar) clusters. The distances between instances 
are provided as input to the clustering algorithm. 

                                                 
3 http://www.nlm.nih.gov/research/umls/ 
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The iteration continues until all instances are 
clustered into a single cluster. The output of the 
hierarchical clustering algorithm is a hierarchical 
tree of clusters or dendrogram that illustrates the 
order in which instances are joined together in 
clusters. In the final step of the hierarchical 
clustering algorithm, clusters are obtained by 
cutting the dedrogram into sub-trees: elements in 
each sub-tree form a cluster. Cutting the same 
dendrogram at different heights produces different 
number of clusters. The optimal “cut point” that 
produces clusters with maximal internal 
cohesiveness and minimal external isolation from a 
given dendrogram is where the difference between 
heights of two successive nodes in the tree is 
maximal. 
 
4.2 Data representation and distance measures 
In our experiments, instances are MeSH-pairs. Each 
MeSH-pair (e.g. A1|C23) is described by 300 most 
frequent contextual features, which were observed 
to be nouns and verbs. Two different data 
representation were used to represent the feature 
vectors. The first data representation is relative 
frequency, i.e., frequency of context words relative 
to the frequency of the observed instance in the 
corpora.  The second is simple binary true/false 
representation where only presence/absence of 
words in the context of the observed MeSH-pair is 
considered. 
 
Another parameter that may influence the success 
of clustering is the measure of distance between 
instances. Apart from the standard Euclidean and 
Manhattan distances, which can be used with both 
the relative frequency and binary data 
representation, we also tested a distance measure 
based on the Jaccard coefficient (1) for measuring 
similarity between binary vectors interpreted as sets 
of words (X and Y): 
 

.
||
||1),(

YX
YXYXJD

∪
∩−=  (1) 

 
4.3 Evaluation of clustering 
We used a metric for evaluation of clustering that is 
based on comparison of the set of clusters, obtained 
in the experiments (candidate clustering), with the 
reference clustering, provided by human expert.  
Namely, for each instance in the dataset human 
expert provides the relation represented by the pair 
(e.g., treats or location_of). Then, let 

},{ 21 RRR = 4 be the reference clustering and 
},,,{ 21 nCCCC l= be the candidate clustering.  

                                                 
4 In this paper we deal with the task of 
distinguishing between two relations only, so the 
reference clustering consists of two clusters only. 

The measure of quality of C with respect to R can 
be defined as: 
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where ikki CRO ∩=  measures the overlap 
between clusters and N is the number of instances 
in the data set. The quality measure assesses the 
classification accuracy of the classifier that assigns 
semantic relations to MeSH-pair instances based on 
the obtained clustering C. The range of the quality 
measure is [0,1]. The quality of 1 is obtained when 
the candidate clustering C is identical to the 
reference R. 
 
5. Identifying context features for relation 

mining 
 
5.1 Evaluation of context features 
Starting from the hypothesis that a frequently co-
occurring pair of MeSH classes indicates the 
existence of a semantic relation and that this 
relation is somehow expressed through language, 
we wish to determine the context features that help 
us identify and label the relation. Many 
linguistically motivated approaches to relations 
have focussed on verbs as vehicles of relationships 
between syntactic elements, however in medical 
texts we observe that nominalizations are 
frequently used instead of verbal forms, as in The 
treatment of [disease X] through [substance Y] 
proved successful.  We therefore tested the 
following possible features occurring within the 
same sentence: 

• all tokens (tokens), 
• all verbs (verbs), 
• all nouns (nouns), 
• all other concepts (cuis). 

 
Context tl_old tl_new 
tokens 0.5454 0.5642 
nouns 0.6591 0.6703 
verbs 0.6363 0.6872 
cuis 0.5681 0.5195 

Table 1: Selecting context 

 
For each of the above, frequency data was collected 
from the corpus for our sets of manually labelled 
pairs and used for hierarchical clustering. Table 1 
shows a comparison of clustering accuracy for all 
of these settings on two different data sets (tl_old 
and tl_new); the data representation selected for the 
above comparison was binary.  
 
It is clear from the above that among these settings, 
nouns and verbs perform best, we therefore used 
nouns and verbs as context for all further 
experiments. We also experimented with the 
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number of attributes used to describe each pair, 
which resulted in an optimal cut-off point of 300 
for most frequent verbs and nouns.  
 
5.2 Data representation and distance measure 
Table 2 shows the evaluation of data representation 
and distance measures for three different data sets: 

• tl_old: 49 MeSH-pairs representing the 
relations treats and location_of, 

• tl_new: 287 additional MeSH-pairs 
representing the relations treats and 
location_of, 

• ac: 89 MeSH-pairs representing the 
relations analyzes and causes. 

 
The distance measures tested were Euclidean (euc), 
Manhattan (man) and Jaccard (jacc). 
 
Data 
set 

Data 
representation 

Distance 
measure Score 

euc/man 0.5227 binary jacc 0.4318 
euc 0.5454 tl_old relative 

frequency man 0.5682 
euc/man 0.5225 binary jacc 0.7528 
euc 0.6910 tl_new relative 

frequency man 0.7303 
euc/man 0.7368 binary jacc 0.5131 
euc 0.6973 ac relative 

frequency man 0.6578 

Table 2: Data representation and distance 
measures 

 
5.3 Learning typical contexts 
 
For some purposes, for example information 
retrieval, the results as given by Table 2 might be 
sufficient to distinguish between two or more 
relations on the basis of context. However, in all 
above scenarios the clusters are still very fuzzy. 
Using the optimal split into clusters indeed 
produces two clusters most of the time, but the 
quality of the clusters remains between 70 and 
80%. Therefore, in order to obtain a clearer view of 
which features best function as distinctive and 
whether it was possible to generalize these findings, 
an experiment involving supervised feature 
selection was performed. For the data set tl_old of 
49 manually selected MeSH-pairs representing the 
relations treats and location_of, the context words 
were automatically weighted according to their 
occurrence with either treats-pairs or location_of-
pairs. Then, only words that were found to occur 
with one of the relations significantly more often 
than with the other were kept as context words, 
others were omitted. Recursively testing this 

controlled context on the same data set left us with 
4% of the initial context words, a list of 290 
distinctive context words for the selected relation 
pair. Table 3 lists the results obtained with 40%, 
20% and 4% of the context words respectively.  
 
To test whether this list was distinctive only for the 
data set it had been produced with or for all data 
sets representing the same relation pair, the new 
data set tl_new of 190 MeSH-pairs representing the 
relations treats and location_of was constructed. 
The context features were now no longer most 
frequent verbs and nouns but the list of 290 
distinctive words, for which data was obtained from 
the larger corpus, Ohsumed, and clustered. The last 
two lines of Table 3 show the results of this 
controlled-context experiment (tl_new 0.04) 
compared with the uncontrolled-context result 
given above (tl_new W/O 1.0). The improvement is 
significant, which shows that contextual features 
learned on a small data set can be generalized to a 
larger data set of the selected relation pair. 
 

Data set Filtering 
threshold Score 

0.40 0.6888 
0.20 0.6888 tl_old 
0.04 0.8889 
0.04 0.8212 tl_new W/O (1.0) 0.5225 

Table 3: Selecting context words 

 
6. Graphical representation 
 
The graphical representation is used for visualising 
the data and for inducing new data instance vectors 
that serve as alternative input for the ML 
algorithms. We provide a powerful data 
engineering facility while projecting the data onto a 
two-dimensional grid, since the 2D graph format 
visualises potentially interesting structures. The 
spatial co-ordinates form new input for learning 
schemes apart from those obtained using regular 
attribute selection and discretization methods in 
higher-dimensional attribute vector spaces. 
 
We use an information-preserving mapping from 
vector data attributes to graphical properties where 
all attribute values are reflected in the 
corresponding graph [3], [5]. Most of these 
properties represent input to a graph layout 
optimisation algorithm: We use an automatic graph 
layout with layout constraints and an objective 
function based on aesthetic criteria that serves well 
for displaying semantic proximity if the graph 
structure is well designed.  
 
Most of the global graph properties represent input 
to the graph layout optimisation algorithm. Every 
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data instance is presented as an undirected graph 
with all data attributes as vertices. The target 
concept is a special vertex, with special shape, 
colour and size. The shape and the colour are 
perceptual attributes for better visual data 
inspection, while the size of the node reflects the 
special status of the target node as a special 
attribute. 
 
Each target node is connected with an edge to every 
attribute. The ratio of the target node size and 
attribute node accounts for the fact that one target 
node is always connected to several attribute nodes. 
The attribute value (e.g. relative frequency) is 
projected onto a discrete numerical value 
representing the preferred edge length that is also 
input to the layout algorithm. The algorithm accepts 
integer values between 80 and 400. The mapping 
function was defined in a way to map the attribute 
values inversely proportional on this interval. This 
means that a high attribute value sets a low 
preferred edge length on the edge between the 
target node and the attribute node reflecting high 
term/word weight as (semantic/spatial) proximity 
between attribute and target. 
 
When laying out a graph, nodes are considered to 
be physical objects with mutually repulsive forces, 
like protons or electrons. The connections between 
nodes also follow the physical analogy and are 
considered to be metal springs attached to the pair 
of nodes. These springs produce repulsive or 
attractive forces between their endpoints if they are 
too short or too long. The layouter simulates these 
physical forces and rearranges the positions of the 
nodes in such a way that the sum of the forces 
emitted by the nodes and the edges reaches a (local) 
minimum [7], [8]. 
 
6.1 Clustering coordinates 
Using graph objects and their visualization as an 
alternative way of representing our data and 
evoking an automatic layout algorithm (and tuning 
the layout parameters) now produces two-
dimensional vectors of co-ordinates, which can be 
clustered with the same algorithm as before and the 
Euclidean distance. Using the co-ordinates as new 
input vectors is a special kind of dimensionality 
reduction method inspired by visualisation 
techniques for analysing meaning [17]. Table 4 
shows the clustering results for all 3 data sets.  
 
In general, the performance of this method is 
roughly comparable to the statistical method, 
slightly better with some data sets and slightly 
worse with others. The visualisation shows that 
clusters can better be separated visually than 
automatic clustering reflects. 
 

It is clear however that any semi-automated or 
interactive approach to knowledge discovery would 
benefit from a graphical representation, both for 
data/parameter selection and evaluation. The 
graphical representation may act as additional view 
of the text data to reveal new data characteristics 
that can be visually explored by the domain expert 
and quantified by graph properties. In particular, to 
find relationships between term distribution models 
and graphical representations may help to 
characterize how informative a word is [11]. 
 

Data set Score 
ac_rf_ne_404 (4) 0.4473 
ac_rf_ne_smart (3) 0.5131 
tl_new_smart40 (4) 0.4213 
tl_old_smart400 (2) 0.5454 
tl_old_smart_rf (4) 0.5909 

Table 4: Visualization and clustering 
coordinates 

 
6.2 Feature selection through visualization 
 
Knowing that semantic relations can be identified 
by their context, graphical representation can also 
be used as an alternative way of selecting 
distinctive features, e.g. typical words. Pictures 1 
(ac_rf_ne_smart) and 2 (tl_old_smart_rf) below 
show the distribution of typical features on the two-
dimensional grid and their correspondence to the 
formation of visual clusters. Large black and white 
boxes represent instances of the two relations, 
analyzes and causes, and the small boxes represent 
context words. It can be seen very clearly how 
typical context words "pull" instances into the 
white or black cluster. 
Picture 3 (ac_rf_ne_404) shows the term cloud for 
analyses-causes. In this constellation we allow for 
overlapping nodes, which leaves less constraints for 
the resulting layout.  Although the score for this 
dataset was low, one can see that the different 
relations are apparent. Interestingly, typical stop 
words (be, have, are, patient) are positioned in the 
barycentre of the graph. 
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Picture 1: Distinctive features for treats - 
location_of 

 
 

 
Picture 2: Distinctive features for analyzes - 

causes 

 

 
      Picture 3: Term Cloud for analyses-causes 

  
7. Conclusions 
 
Starting from the hypothesis that semantic relations 
are realized in texts through identifyable context 
features, the goal of the described experiments was 
to design a methodology to model relations and 
determine the parameters that distinguish relations.  
After evaluating different data representations we 
propose a method for feature selection on a 
relatively small data set of 49 manually selected 
relation instances, which was found to perform well 
also on a larger set of relation instances. In further 
work we will explore the interaction between 
general statistical methods, vector-based 
representations and graph representations. The 
result could be used as decision support for text-
mining algorithm selection or be combined with the 
outcome of a text-mining algorithm on the original 
data. 
 
Although all our test sets were limited to two 
relations, the approach can be easily generalized to 
an arbitrary number of domain-specific relations. 
The evaluation of the approach on distinguishing 
between more than two relations is another 
direction for further work. 
 
By learning context models of medical semantic 
relations, new unlabelled instances can be classified 
and thus identified in texts. A particularly important 
application of relation extraction is in document 
retrieval, where a query may be pruned or expanded 
according to the target relation. On the other hand, 
collecting new relation evidence from large text 
collections can also be used for the purposes of 
enriching the UMLS.  
 
In order to test the usability of the methods we 
propose, context models should be constructed for 
all target relations and evaluated in a classification 
task. Finally, we also envisage transferring this 
approach to a proper knowledge discovery task by 
expanding the context of a relation to larger text 
sections or entire documents or search for 
document parts where the vocabulary and thus the 
context of a relation instance shifts from one 
instance to another. 
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ABSTRACT 
In this paper, we propose a clustering method to group the high 
dimensional gene expression into clusters that are easy to 
understand by biologists.  The importance of study gene 
expression data is that it gives us opportunities to understand 
those biological processes within organisms at molecular level.  
By increasing our knowledge through information comes from the 
data, many genetic related diseases would be cured.  However, 
gene expression data is high dimensional in nature and it is not 
easy to manipulate and understand. In view of their successes in 
solving different data mining problems, the emerging patterns 
(EPs) and projected clustering techniques are integrated for 
effective clustering of gene expression data.  The key concept of 
the resulted EP-based projected clustering (EPPC) algorithm is to 
introduce the readability and strong discriminatory power of EPs 
in the dimension projection process of the projected clustering so 
that the readability of the projected clusters can be improved. 
Encouraging experimental results were obtained.   

Keywords 
Data mining, emerging patterns, projected clustering, 
bioinformatics, gene expression data. 

1. INTRODUCTION 
Knowledge discovery from the gene expression data by clustering 
techniques is hot, especially in the cancers related studies.  
However, the high dimensionality of the gene expression data and 
the required readability of clustering results give challenges to 
most of the existing data mining methods.  We propose a new 
clustering method called “Emerging Pattern based Projected 
Clustering” (EPPC) to form easy understandable clusters for gene 
expression data and cancer correlation studies. 

Bioinformatics is one of the most popular research areas since 
biological scientists started to open the molecular black box in 

living cells with the advanced biotechnologies [12].  Biological 
scientists are now not limited to study the large components of a 
cell by electronic microscopes. They also started to discover the 
secret of life at molecular level.  One of the most significant 
projects, U. S. Human Genome Project [13], started in 1990.  In 
this year, scientists have determined the sequences of the 3 billion 
chemical base pairs that make up human DNA already.  Those 
determined sequences are used in identify genes in human DNA 
and various kind of researches.  Although we have learned many 
new insights from the sequence, there is still tons of knowledge 
waiting for us to discover.  The advancements in biotechnologies 
generate a lot of data and the use of computer becomes one of the 
essential components in biological data analysis. 

Bioinformatics is an interdisciplinary subject that focus on the use 
of computational techniques to assists the understanding and 
organization of the information associated with biological 
macromolecules.  Not limited to the raw DNA sequences, there 
are various types of data, such as protein sequences data, 
macromolecular structure data, genomes data, gene expression 
data and so on.  They provide unpredictable opportunities to 
researchers and most of them are available freely on the internet.  
In recent years, data mining techniques are frequently used in the 
correlation studies of gene expression data and cancers. 

Gene expression patterns are different between different tissues.  
In normal tissues, every cell of our body contains a full set of 
chromosomes and identical genes.  However, only a fraction of 
these gene are turned on, called expressed [11], during the protein 
synthesis.  Those expressed genes determine the unique properties 
of different types of cells and those mRNA [11] that the cell can 
produce.  By study the types and amounts of mRNA produced by 
a cell, scientists can determine those genes that are expressed and 
obtained the gene expression context under different 
environments.  By using the microarray technology, we can 
retrieve large amounts of gene expression data from a single 
experiment and many genetic related studies become possible.  
For example, scientists are now using the context of gene 
expression levels to discover the causes of cancers since there are 
differences in gene expression between normal and cancer tissues. 
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The high dimensional nature of gene expression data is inherited 
by the physical properties of the microarray experiments. In a 
single experiment, large number of genes in a tissue is examined 
under different conditions.  For example, there exist microarray 
experiments that can examine about 40,000 genes from 10 
samples under 20 different conditions in one single experiment 
[4].  Therefore, the gene expression data always consists of large 
number of numerical attributes, i.e. gene expression values, but 
limited records  

On the other hand, gene expression data always contain class 
information.  Microarray experiments are still expensive in terms 
of both time and cost, they are only being conducted to investigate 
some of the biological significant properties.  The data itself 
always contains predefined class labels of important biological 
meanings, e.g., normal and cancerous tissues in cancer related 
data [1].  

In summary, we are challenging by the flood of gene expression 
data as well as their complexity.  High dimensionality is the major 
challenge to those existing mining algorithms in the knowledge 
discovery process.  The sparseness of data in the high-dimensional 
space, referred as dimensionality curse, causes the meaningfulness 
of proximity or clustering being questioned [3]. Moreover, most 
of the available datasets contain very limited number of records 
compared with the number of available attributes.  For example, 
the "Subtype of childhood leukemia" dataset [10] from St. Jude 
Children Research Hospital contains more than 12,000 genes but 
only 327 samples.  It is very difficult for us to obtain a good 
approximation of the real world from the data. Last, but not the 
least, the readability and understandability are important to these 
biological related studies. 

Pattern association and clustering are two data mining techniques 
that are now frequently applied in the field of cancer and gene 
expression correlation studies, but they cannot satisfy our needs.  
They are expected to discover the cancer causing gene expression 
patterns for different diagnosis purposes, e.g., identifying the 
development of cancers in earlier stages and proposing useful 
treatment plans [8]. However, the usefulness of the gene 
expression data analysis obtained by traditional data mining 
techniques is still questionable due to the aforementioned 
dimensionality curse problem.  Furthermore, clusters formed by 
conventional measures of tightness of data points often lack of 
practical meaningful support and they are not easy to understand 
and become applicable in the knowledge discovery process in 
biology domain.  In short, techniques for gene expression data 
analysis needed to tackle the high dimensionality of data and 
provide easy understandable analysis results. 

Projected clustering method is designed to tackle the problem of 
dimensionality curse.  It overcomes the sparsity of data points by 
projecting them into lower dimensional subspace.  The strength of 
projected clustering is that it eliminates the limitations of feature 
selections that may not always be possible to prune off too many 
features without any information loss [3]. However, the resulting 
clusters are not easy to understand, particularly to biologists. 

Emerging patterns (EPs) [5] are specific patterns that their 
occurrences have significant differences between different 
partitions of a dataset.  For example, EPs may only exist in 
cancerous tissues but they are absent from normal tissues.  Unlike 
the frequent patterns in ordinary association analysis, EPs have 

high discriminatory power in nature and they have been proved to 
be useful in classification problem [6].  EPs are also easy to 
understand because they are just the collections of attributes in 
dataset and this property is especially important for bioinformatics 
applications.  However, the volume of EPs generated is very large 
for high dimensional gene expression data [7].  In order to 
maintain the efficiency in using EPs, we have to use top EPs 
instead of full set of EPs in applications.  Although the accuracy 
in the classification studied in literatures is still high [6], [9], the 
robustness of EPs for the new data is still questionable.  Using 
large number of top EPs in application can absolutely improve the 
robustness but the efficiency will become lower and it should not 
be an ultimate solution.  

In this paper, our target is to group the gene expression data 
points into clusters that are easy to understand. We make use of 
the domain knowledge and patterns generated from different 
classes in the gene expression data to form clusters.  Our 
clustering strategy is closely related to projected clustering [3], a 
technique used to cluster high dimensional data.  In the past, 
emerging patterns and projected clustering techniques were used 
independently in solving different types of problems since they 
are strong in different domains.  In this paper, we propose to 
integrate them for effective clustering of gene expression data.  
The key concept of our approach is to introduce the readability 
and strong discriminatory power of EPs in the dimension 
projection process of the projected clustering so that the 
readability of the projected clusters can be improved. The rest of 
the paper is organized as follows. The use of EPs is briefly 
described in section 2.  In Section 3, we present our EP-based 
projected clustering approach.  The dataset used and the 
experimental results are reported in section 4.  The final section 
concludes the paper. 

2. USE OF EMERGING PATTERNS 
Emerging patterns (EPs) were first introduced by Dong and Li 
[5].  They are defined as itemsets whose supports increase 
significantly, larger than the threshold value called the growth rate 
(ρ), from one dataset (D1) to another (D2).  There are several 
types of EPs, such as Jumping EPs (JEPs), plateau EPs and so on.  
All of them have different properties and they are applied to 
different problems.  They are easy to understand because they are 
only collections of data attributes.  For example, a cancerous EP 
[7]: 

{gene(K03001) ≥ 89.20} and {gene(R76254) ≥ 127.16} and 
{gene(D31767) ≥ 63.03} 

is a pattern that only occurs in cancerous tissues but not in normal 
tissues.   

Another advantage of EPs is their discrimination power in 
classification.  EPs capture the significant differences of attribute's 
values that exist in different partitions of dataset.  So, EPs 
naturally identify those collections of attributes of data points that 
are close within the same cluster but far away to others. Yet 
another advantage about EPs is the border based mining 
algorithms [5] which can mine a complete set of EPs efficiently 
even the support value of EPs is low.  It is very important for the 
bioinformatics applications because patterns with low occurrence 
are still important.  For example, cancer classification problem is 
targeted to find out cancer tissues whose occurrence is relatively 
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low when compared those normal ones.  Other patterns, such as 
traditional frequent patterns from association analysis, are 
potentially having problems in their extraction process. 

In terms of the discrimination power, the EPs with highest growth 
rates are most preferred.  Therefore, the JEPs, whose growth rate 
is infinity, are being employed in our proposed method.  
However, the number of JEPs is still numerous [7].  For the sake 
of simplicity and efficiency, we use the top 20 cancerous tissues 
JEPs and the top 20 normal tissues JEPs mined [9] from 35 top-
ranked genes by entropy method in this study.   

3. EP-BASED PROJECTED CLUSTERING 
Before proceeding to describe our EP-based projected clustering 
(EPPC) algorithm, we introduce some notations and definitions.  
Let N be the total number of data points and ni be the number of 
data points in cluster Ci.  Assume that the dimensionality of full 
data space D is equal to d and the dimensionality of projected 
space Di of cluster Ci is equal to di, where di ≤ d.  Let 
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As mentioned in Section 2, the EPs have high discrimination 
power in nature.  Set of EPs can be considered as collections of 
features that are highly discriminated between different classes 
and highly correlated within the same class.  Therefore, we 
propose to employ EPs as guidance in dimension projection for 
the projected clustering instead of using variants of singular value 
decomposition (SVD) techniques in order to improve the 
interpretability of clustering results and consequently the 
readability for the biologists.  In our experiments, the top JEPs [9] 
having the highest discrimination power were employed.  All of 
them have infinity growth rate and highest occurrence in one of 
the partitions of the datasets.   

3.1 EP-based Projected Clustering Algorithm 
Finding projected clusters can be established as a two-fold 
problem [2] [3].  First of all, we have to locate the cluster's center 
and then to find out the projected dimensions for the 
corresponding clusters. The proposed EP-based projected 
clustering algorithm includes three phases similar to [3], namely, 
initialization, iteration and refinement phase.  In general, the 
initialization phase is to pick the initial cluster seeds for the 
iteration phase.  In the iteration phase, data points are assigned to 
different clusters and the projected dimensions of those newly 
formed clusters are being evaluated.  The iteration phase 
continues until the number of user specified clusters are obtained.  
Once the set of good cluster seeds is obtained, the refinement 
phase will start and all the data points will be reassigned to those 
cluster seeds obtained by the iteration phase to form the final 
clusters.  These three phases of the proposed EPPC algorithm are 
detailed in Figure 1. 

 

 
Figure 1. EPPC algorithm. 

 

3.1.1 Initialization phase 
In this phase, the number of final clusters is assigned by the users. 
We randomly pick k0 initial cluster seeds from the dataset, where 
k0 should be several times larger than k, and the projected 
dimensions of all initial seeds are initialized to the full dimensions 
of the dataset initially.   

3.1.2 Iteration phase 
The goal of the iteration phase is to improve the quality of the 
cluster seeds iteratively in order to find the best clusters.  There 
are three operations in this phase. 

3.1.2.1 Assignment operation 
There should be kc cluster seeds in the current iteration.  In this 
operation, the data points in the dataset are assigned to their 
closest seed.  We used the distance metric, such as city block 
distance or Euclidean distance, to measure the distance between 
the data points and cluster seeds under those projected 
dimensions, i.e. the projected distance. After the partitions are 
formed, the centroids of each partition are evaluated and they are 
used as the new seeds in the next iteration.  This procedure is 
illustrated in Figure 2. 

3.1.2.2 Dimension projection operation 
Those partitions formed by the assignment operation consist of a 
set of data points.  In this operation, the projected dimensions of 
each projected cluster are evaluated by their own data points.  For 
each partition, we examine its data points and find those EPs 
embedded.  The EPs with most frequent occurrence are chosen 
and they act as the collection of projected dimensions for that 
particular partition.  This procedure is described in Figure 3. 

Algorithm EPPC (k0, k, E){ 
Initialization phase 
Pick k0 > k initial cluster seeds randomly from 
the dataset; 
Set no. of current cluster to no. of initial cluster;  
for each cluster {  

Set the cluster dimension to full dimensionality 
}  
Iterative phase 
While no. of current cluster > user requirement { 

Assign the data points to the nearest cluster seeds; 
Determine the cluster dimensions associated to each 
cluster;  
Merge the closest clusters and obtain the new seed for 
the newly merged cluster; 
Update the no. of current cluster; 

} 
Refinement phase 
Reassign the data points to the set of good seeds 
obtained from iteration phase; 
Determine the cluster dimensions associated to  
each cluster; 
Return the projected clusters with cluster seeds,  
corresponding dimensions and data points; 

} 
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3.1.2.3 Merging operation 
The closest pair of clusters is merged together to form a new 
cluster.  They are obtained by evaluating the average distance 
between the union of data points and new cluster seed of merged 
clusters.  The smaller the average distance, the closer the pair of 
clusters. The details of this operation can be found in Figure 4. 

3.1.3 Refinement phase 
The resulting cluster seeds obtained from the iteration phase are 
then used to form the final clusters by assigning all the data points 
to them again.  The goal of this phase is to ensure that all data 
points are assigned to the closest cluster seeds after the final 
cluster seeds are found. 
 

 
Figure 2. Data point assignment algorithm. 

 

 
Figure 3. Dimension projection algorithm. 

 

 
Figure 4. Cluster merging algorithm. 

4. EXPERIMENTAL RESULTS 
The dataset we used consists of 2000 gene expression values of 40 
tumor and 22 normal colon tissues samples [1] and it is publicly 
available at http://microarray.princeton. 
edu/oncology/affydata/index.html. Since the original dataset 
consists of huge number of attributes and not all of them are 
useful in separating samples into different classes, the dataset is 
first reduced its size by the entropy discretization method.  The 
reduced dataset consists of 35 top-ranked genes in the dataset as 
mentioned in [9].  In order to facilitate the study of the 
relationship between different genes and the tissue types, each 
gene expression value of the reduced dataset is normalized before 
clustering.  The mean of the normalized gene expression values is 
0 while the standard deviation is 1.  
In this paper, we report the clustering performance of our 
proposed EPPC algorithm.  Different number of initial and final 
clusters combination are used and three most popular distance 
metrics, namely, Euclidean, City block and City segmental 
distance, are employed.  All samples in the dataset are used in the 
experiments and the error of the resulting cluster is calculated as: 
In order to minimize the effect from different initializations, each 
combination of experiment settings was simulated 50 times and 
the average error rate is listed in Tables 1 – 3. 

Table 1. Clustering error based on Euclidean distance 
Final Cluster Num. 

. 4 8 12 16 20 24 28 32 
8 0.221 0.135       
16 0.249 0.167 0.152 0.110     
24 0.243 0.165 0.151 0.135 0.140 0.095   
32 0.272 0.177 0.136 0.135 0.113 0.122 0.123 0.084In

iti
al

 C
lu

st
er

 N
um

 

40 0.257 0.174 0.137 0.116 0.103 0.092 0.102 0.096

 

Table 2. Clustering error based on City block distance 
Final Cluster Num. 

. 4 8 12 16 20 24 28 32 
8 0.288 0.129       
16 0.304 0.230 0.222 0.107     
24 0.311 0.233 0.213 0.206 0.198 0.092   
32 0.284 0.240 0.197 0.182 0.177 0.166 0.162 0.080In

iti
al

 C
lu

st
er

 N
um

 

40 0.318 0.237 0.199 0.170 0.154 0.145 0.138 0.114

 
Table 3. Clustering error based on City segmental distance 

Final Cluster Num. 

. 4 8 12 16 20 24 28 32 
8 0.195 0.129       
16 0.188 0.157 0.141 0.107     
24 0.193 0.152 0.136 0.120 0.117 0.093   
32 0.209 0.167 0.143 0.123 0.114 0.100 0.089 0.076In

iti
al

 C
lu

ste
r N

um
 

40 0.197 0.169 0.147 0.119 0.096 0.085 0.076 0.074

 

From the tables above, the City segmental distance gives the 
smallest cluster errors.  It was observed that in every final cluster, 
the number of projected dimensions varies due to different EPs 
being used in their own projections. Thus, better clustering 
subspaces were identified for better classification. It can also been 

Algorithm Data_Point_Assignment { 
for each data point { 

for each cluster { 
Determine the projected distance between  
the data points and current seeds; 

} 
Add the data points to their nearest cluster; 

} 
Remove cluster from the set if it is empty; 
Set the centroids of those projected clusters as the new 
cluster seed;  
Return the cluster seed and data set in projected clusters; 

} 

Algorithm Dimension_Projection { 
for each cluster { 

Find the EPs having most frequent occurrence among 
the data points in the cluster; 
Find the corresponding attributes that make up the EPs;
Set the projected dimensions to those collection of 
attributes; 

} 
Return the dimensions for the projected clusters;  

} 

Algorithm Cluster_Merging { 
Find the closest pair of clusters from the set of 
existing clusters;  
Merge the data points of the two clusters; 
Find the projected dimensions of the unified data points; 
Find the new seed of the unified data points; 
Evaluate the radius of the merged clusters; 
Merge the closest pair of clusters such that the  
radius of the merged clusters is minimal; 
Return the set of new cluster seeds; 

} 
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seen that the decrease in clustering error as a result of increasing 
the number of final clusters from 4 to 8 is most significant.  It is 
because there may have quite a number of sources causing the 
cancer to develop. In our clustering context, more than two 
natural clusters exist in those gene expression data and using 8 
final clusters gives a much better result than using 4.  However, if 
the number of the final clusters is larger than the number of 
natural clusters in the data, the further increase in the number of 
clusters may not be so important and thus the improvement in the 
clustering error becomes limited.  Although we only have two 
class labels obtained from the microarray experiments, we can 
guess the number of natural clusters from our clustering results 
and such kind of information is potentially useful in providing 
some directions for further biological studies. 

In order to demonstrate the effectiveness of the EPPC algorithm, 
the K-means algorithm implemented by a public domain package 
called NetLab3.2 was used to cluster the same set of data.  Again, 
the simulation was repeated for 50 times for each individual 
setting. As shown in Table 4, the performance of the K-means 
algorithm is not as accurate as ours.   

Table 4. Clustering error using K-means algorithm 
Cluster Num. 

8 16 24 32 
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0.321 0.270 0.233 0.190 

 

In traditional clustering algorithms, the resulting clusters give us 
information on those data points that are similar under a particular 
distance metric.  Projected clustering algorithm gives us more, 
i.e., the similarity of data points is high in a particular set of 
dimensions.  But many of them, such as the resulting cluster 
dimensions obtained by the principle components [3], are not easy 
to understand.  However, our proposed algorithm can give us 
information that is easier to understand.  In our gene expression 
data experiments, the projected clusters found by the EPPC 
algorithm are characterized by a collection of attributes. An 
example is shown in Table V where cluster 2 consists of 6 
cancerous tissues that are similar in gene expression values with 
respect to two suspected genes M76378 and T47377. 

Table 5. Examples of resulting clusters obtained by EPPC 
Cluster Dimension 

 No. of 
sample 

Tissue 

 Type Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 

Cluster 1 7 Normal H51015 R10066 U32519 T47377 Z50753

Cluster 2 6 Cancer M76378 T47377    

Cluster 3 10 Cancer H08393 M76378    

 

5. CONCLUSIONS 
In this paper, we propose and discuss the integration of emerging 
patterns and projected clustering in high-dimensional data 
analysis.  The experimental results not only demonstrate the 
possibility of using emerging patterns in dimension projection of 
projected clustering, but also show that the resulting clusters are 
more readable to end users. Such a feature is very important to 
many bioinformatics applications.  In our future work, we will 

examine how to extract more information from emerging patterns 
in order to improve the accuracy of our EPPC algorithm. 
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