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Abstract—The amount of graph-structured data has recently
experienced an enormous growth in many applications. To trans-
form such data into useful information, fast analytics algorithms
and software tools are necessary. One common graph analytics
kernel is disjoint community detection (or graph clustering).
Despite extensive research on heuristic solvers for this task, only
few parallel codes exist, although parallelism will be necessary
to scale to the data volume of real-world applications. We
address the deficit in computing capability by a flexible and
extensible community detection framework with shared-memory
parallelism. Within this framework we design and implement
efficient parallel community detection heuristics: A parallel label
propagation scheme; the first large-scale parallelization of the
well-known Louvain method, as well as an extension of the
method adding refinement; and an ensemble scheme combining
the above. In extensive experiments driven by the algorithm
engineering paradigm, we identify the most successful parameters
and combinations of these algorithms. We also compare our im-
plementations with state-of-the-art competitors. The processing
rate of our fastest algorithm often reaches 50M edges/second. We
recommend the parallel Louvain method and our variant with
refinement as both qualitatively strong and fast. Our methods
are suitable for massive data sets with billions of edges.!

Keywords: Disjoint community detection, graph clustering,
parallel Louvain method, parallel algorithm engineering, network
analysis

I. INTRODUCTION

The data volume produced by electronic devices is growing
at an enormous rate. Important classes of such data can
be modeled by complex networks, which are increasingly
used to represent phenomena as varied as the WWW, social
relations, and brain topology. The resulting graph data sets can
easily reach billions of edges for many relevant applications.
Analyzing data of this volume in near real-time challenges the
state of the art in terms of hardware, software, and algorithms.
A particular challenge is not only the amount of data, but
also its structure. Complex networks have topological features
which pose computational challenges different from traditional
HPC applications: In a scale-free network, the presence of a
few high-degree nodes (hubs) among many low degree nodes
generates load balancing issues. In a small-world network,
the entire graph can be visited in only a few hops from any
source node, which negatively affects cache performance. To
enable network analysis methods to scale, we need algorithmic
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methods that harness parallelism and apply specifically to
complex networks.

In this work, we deal with the task of community detection
(also known as graph clustering) in large networks, i.e. the
discovery of dense subgraphs. Among manifold applications,
community detection has been used to counteract search
engine rank manipulation [32], to discover scientific com-
munities in publication databases [34], to identify functional
groups of proteins in cancer research [15], and to organize
content on social media sites [12]. So far, extensive research
on community detection in networks has given rise to a variety
of definitions of what constitutes a good community and
a variety of methods for finding such communities, many
of which are described in surveys by Schaeffer [32] and
Fortunato [10]. Among these definitions, the lowest common
denominator is that a community is an internally dense node
set with sparse connections to the rest of the graph. While
it can be argued that communities can overlap, we restrict
ourselves to finding disjoint communities, i.e. a partition of
the node set which uniquely assigns a node to a community.
The quality measure modularity [14] formalizes the notion of a
good community detection solution by comparing its coverage
(fraction of edges within communities) to an expected value
based on a random edge distribution model which preserves
the degree distribution. Modularity is not without flaws (like
the resolution limit [11], which can be partially overcome
by different techniques [2], [18], [23]) nor alternatives [37],
but has emerged as a well-accepted measure of community
quality. This makes modularity our measure of choice. While
optimizing modularity is NP-hard [6], efficient heuristics have
been introduced which explicitly increase modularity.

For graphs with millions to billions of edges, only (near)
linear-time community detection algorithms are practical. Sev-
eral fast methods have been developed in recent years. Yet,
there is a lack of research in adapting these methods to take
advantage of parallelism. A recent attempt at assessing the
state of the art in community detection was the 10th DIMACS
Implementation Challenge on Graph Partitioning and Graph
Clustering [1]. DIMACS challenges are scientific competitions
in which the participants solve problems from a specified test
set, with the aim of high solution quality and high speed.
Only two of the 15 submitted implementations for modularity
optimization relied on parallelism and only very few could
handle graphs with billions of edges in reasonable time.

Accordingly, our objective is the development and imple-



mentation of parallel community detection heuristics which are
able to handle massive graphs quickly while also producing
a high-quality solution. In the following, the competitors of
the DIMACS challenge will be used for a comparative experi-
mental study. In the design of such heuristics, we necessarily
trade off solution quality against running time. The DIMACS
challenge also showed that there is no consensus on what
running times are acceptable and how desirable an increase
in the third decimal place of modularity is. We therefore need
to clarify our design goals as follows: In the comparison with
other proposed methods, we want to place our algorithms
on the Pareto frontier so that they are not dominated, i.e.
surpassed in speed and quality at the same time. Secondly,
we target a usage scenario: Our algorithms should be suitable
as part of interactive data analysis workflows, performed by a
data analyst operating a multicore workstation. Networks with
billions of edges should be processed in minutes rather than
hours, and the solution quality should be competitive with the
results of well-established sequential methods.

We implement three standalone parallel algorithms: Label
propagation [28] is a simple procedure where nodes adopt
the community assignment (label) which is most frequent
among their neighbors until stable communities emerge. We
implement a parallel version of the approach as the PLP
algorithm. The Louvain method [5] is a multilevel technique
in which nodes are repeatedly moved to the community of
a neighbor if modularity can be improved. We are the first
to present a parallel implementation of the method for large
inputs, named PLM. We also extend the method by adding
a refinement phase on every level, which yields the PLMR
algorithm. In addition to these basic algorithms, we also
implement a two-phase approach that combines them. It is
inspired by ensemble learning, in which the output of several
weak classifiers is combined to form a strong one. In our case,
multiple base algorithms run in parallel as an ensemble. Their
solutions are then combined to form the core communities,
representing the consensus of all base algorithms. The graph
is coarsened according to the core communities, and then
assigned to a single final algorithm. Within this extensible
framework, which we call the ensemble preprocessing method
(EPP), we apply PLP as base algorithms and PLMR as the
final algorithm.

With our shared-memory parallel implementation of com-
munity detection by label propagation (PLP), we provide an
extremely fast basic algorithm that scales well with the number
of processors (considering the heterogeneous structure of the
input). The processing rate of PLP reaches 50M edges per
second for large graphs, making it suitable for massive data
sets. With PLM, we present the first parallel implementation of
the Louvain community detection method for massive inputs,
and demonstrate that it is both fast and qualitatively strong.
We show that solution quality can be further improved by
extending the method with a refinement phase on every level
of the hierarchy, yielding the PLMR algorithm. The EPP
ensemble algorithm can yield a good quality-speed tradeoff on
some instances when an even lower time to solution is desired.

In comparative experiments, our implementations perform well
in comparison to other state-of-the-art algorithms (Sec. V-E
and V-F): Three of our algorithms are on the Pareto frontier.
Our community detection software framework, written in
C++, is flexible, extensible, and supports rapid iteration be-
tween design, implementation and testing required for algo-
rithm engineering [25]. In this work, we focus on specific
configurations of algorithms, but future combinations can be
quickly evaluated. We distribute our community detection code
as a component of NetworKit [36], our open-source network
analysis package, which is under continuous development.

II. RELATED WORK

This section gives a short overview over related efforts.
For a comprehensive overview of community detection in
networks, we refer the interested reader to aforementioned
surveys [32], [10]. Recent developments and results are also
covered by the 10th DIMACS Implementation Challenge [1].

Among efficient heuristics for community detection we can
distinguish between those based on community agglomeration
and those based on local node moves. Agglomerative algo-
rithms successively merge pairs of communities so that an
improvement with respect to community quality is achieved.
In contrast, local movers search for quality gains which can be
achieved by moving a node to the community of a neighbor.

A globally greedy agglomerative method known as
CNM [8] runs in O(mdlogn) for graphs with n nodes and m
edges, where d is the depth of the dendrogram of mergers and
typically d ~ logn. Among the few parallel implementations
competing in the DIMACS challenge, Fagginger Auer and
Bisseling [9] submitted an agglomerative algorithm with an
implementation for both the GPU (using NVIDIA CUDA) and
the CPU (using Intel TBB). The algorithm weights all edges
with the difference in modularity resulting from a contraction
of the edge, then computes a heavy matching M and contracts
according to M. This process continues recursively with
a hierarchy of successively smaller graphs. The matching
procedure can adapt to star-like structures in the graph to
avoid insufficient parallelism due to small matchings. In the
challenge, the CPU implementation competed as CLU_TBB
and proved exceptionally fast. Independently, Riedy et al. [30]
developed a similar method, which follows the same principle
but does not provide the adaptation to star-like structures.
An improved implementation, labeled CEL in the following,
corresponds to the description in [29].

Community detection by label propagation belongs to the
class of local move heuristics. It has originally been described
by Raghavan et al. [28]. Several variants of the algorithm exist,
one of them (under the name peer pressure clustering) is due
to Gilbert et al. [13]. The latter use the algorithm as a proto-
type application within a parallel toolbox that uses numerical
algorithms for combinatorial problems. Unfortunately, Gilbert
et al. report running times only for a different algorithm, which
solves a very specific benchmark problem and is not applicable
in our context. A variant of label propagation by Soman and
Narang [33] for multicore and GPU architectures exists, which
seeks to improve quality by re-weighting the graph.



A locally greedy multilevel-algorithm known as the Louvain
method [5] combines local node moves with a bottom-up
multilevel approach. Bhowmick and Srinivasan [3] presented
a previous parallel version of the algorithm. According to their
experimental results, our implementation is about four orders
of magnitude faster. Noack and Rotta [31] evaluate similar se-
quential multilevel algorithms, which combine agglomeration
with refinement.

Ovelgonne and Geyer-Schulz [27] apply the ensemble learn-
ing paradigm to community detection. They develop what
they call the Core Groups Graph Clusterer scheme, which
we adapt as the Ensemble Preprocessing (EPP) algorithm.
They also introduce an iterated scheme in which the core
communities are again assigned to an ensemble, creating a
hierarchy of solutions/coarsened graphs until quality does
not improve any more. Within this framework, they employ
Randomized Greedy (RG), a variant of the aforementioned
CNM algorithm. It avoids a loss in solution quality that
arises from highly unbalanced community sizes. The resulting
CGGC algorithm emerged as the winner of the Pareto part
of the DIMACS challenge, which related quality to speed
according to specific rules. Recently Ovelgonne [26] presented
a distributed implementation (based on the big data frame-
work Hadoop) of an ensemble preprocessing scheme using
label propagation as a base algorithm. This implementation
processes a 3.3 billion edge web graph in a few hours on a
50 machine Hadoop cluster [26, p. 73]. (Our OpenMP-based
implementation of the similar EPP algorithm requires only 4
minutes on a shared-memory machine with 16 physical cores.)

From an algorithmic perspective, disjoint community de-
tection is related to graph partitioning (GP). Although the
problems are different in important aspects (unbalanced vs bal-
anced blocks, unknown vs known number of blocks, different
objectives), algorithms such as the Louvain method or PLMR
bear conceptual resemblance to multilevel graph partitioners.
Exploiting parallelism has been studied extensively for GP.
Several established tools are discussed in recent surveys [4],
[7], most of them for machines with distributed memory. Often
employed techniques are parallel matchings for coarsening and
parallel variants of Fiduccia-Mattheyses for local improve-
ment. These techniques are at best partially helpful in our
scenario since vanilla matching-based coarsening is ineffective
on complex networks and distributed-memory parallelism is
not necessary for us. Related to our work is a recent study on
multithreaded GP by LaSalle and Karypis [20], who explore
the design space of multithreaded GP algorithms. Their results
provide interesting insights, but are not completely transferable
to our scenario. Very recently they presented Nerstrand [21], a
fast parallel community detection algorithm based on modular-
ity maximization and the multilevel paradigm, using different
aggregation schemes. Our work on PLP in this paper has also
inspired a new parallel multilevel algorithm for partitioning
massive complex networks [24].

We observe that most efficient disjoint community detection
heuristics make use of agglomeration or local node moves,
possibly in combination with multilevel or ensemble tech-

niques. Both basic approaches can be adapted for parallelism,
but this is currently the exception rather than the norm in our
scenario. In this work we compare our own algorithms with
the best currently available, sequential and parallel alike.

III. ALGORITHMS

In this section we formulate and describe our parallel vari-
ants of existing sequential community detection algorithms,
as well as ensemble techniques which combine them. Imple-
mentation details are also discussed. We use the following
notation: A graph, the abstraction of a network data set, is
denoted as G = (V, E) with a node set V of size n and
an edge set E of size m. In the following, edges {u,v} are
undirected and have weights w : £ — RT. The weight of
a set of nodes is denoted as w(E’) := > ¢, yepw(u,v). A
community detection solution { = {C1,...,C}} is a partition
of the node set V into disjoint subsets called communities.
Equivalently, such a solution can be understood as a mapping
where ((v) returns the community containing node v. For our
implementation, the nodes have consecutive integer identifiers
id(v) and edges are pairs of node identifiers. A solution is
represented as an array indexed by integer node identifiers
and containing integer community identifiers.

A. Parallel Label Propagation (PLP)

a) Algorithm: Community detection by label propaga-
tion, as originally introduced by Raghavan et al. [28], extracts
communities from a labelling V' — N of the node set. Initially,
each node is assigned a unique label, and then multiple
iterations over the node set are performed: In each iteration,
every node adopts the most frequent label in its neighborhood
(breaking ties arbitrarily). Densely connected groups of nodes
thus agree on a common label, and eventually a globally
stable consensus is reached, which usually corresponds to a
good solution for the network. Label propagation therefore
finds communities in nearly linear time: Each iteration takes
O(m) time, and the algorithm has been empirically shown
to reach a stable solution in only a few iterations, though
not mathematically proven to do so. The number of iterations
seems to depend more on the graph structure than the size.
More theoretical analysis is done by Kothapalli et al. [16].
The algorithm can be described as a locally greedy coverage
maximizer, i.e. it tries to maximize the fraction of edges which
are placed within communities rather than across. With its
purely local update rule, it tends to get stuck in local optima
of coverage which implicitly are good solutions with respect
to modularity: A label is likely to propagate through and cover
a dense community, but unlikely to spread beyond bottlenecks.
The local update rule and the absence of global variables make
label propagation well-suited for a parallel implementation.

Algorithm 1 denotes PLP, our parallel variant of label
propagation. We adapt the algorithm in a straightforward way
to make it applicable to weighted graphs. Instead of the most
frequent label, the dominant label in the neighborhood is
chosen, i.e. the label l that maximizes Do ueN(@):c(u)=1 W0, u)
We continue the iteration until the number of nodes which
changed their labels falls below a threshold 6.



Algorithm 1: PLP: Parallel Label Propagation

Input: graph G = (V, E)
Result: communities ¢ : V' — N
1 parallel for v € V

2 | C(v) +id(v)

3 updated <+ n

4 Vactive <+ V

s while updated > 6 do

6 updated < 0

7 parallel for v € {u € Vaeiive : deg(u) > 0}
8 " < argmaxi 3, e v vy (u)=t @ (U, 0)
9 if ((v) # 1™ then

10 C(v) «I*

1 updated < updated + 1

12 Viactive <= Vactive U N(’U)

13 else

14 L Vactive <= Vactive \ {U}

15 return ¢

b) Implementation: We make a few modifications to the
original algorithm. In the original description [28], nodes
are traversed in random order. Since the cost of explicitly
randomizing the node order in parallel is not insignificant, we
make this optional and rely on some randomization through
parallelism otherwise. We also observe that forgoing random-
ization has a negligible effect on quality. We avoid unnecessary
computation by distinguishing between active and inactive
nodes. It is unnecessary to recompute the label weights for
a node whose neighborhood labels have not changed in the
previous iteration. Nodes which already have the heaviest
label become inactive (Algorithm 1, line 14), and are only
reactivated if a neighboring node is updated (line 12). We
restrict iteration to the set of active nodes. Iterations are
repeated until the number of nodes updated falls below a
threshold value. The motivation for setting threshold values
other than zero is that on some graph instances, the majority
of iterations are spent on updating only a very small fraction
of high-degree nodes (see Figure 12 in the supplementary
material for an example). Since preliminary experiments have
shown that time can be saved and quality is not significantly
degraded by simply omitting these iterations, we set an update
threshold of § = n - 107°. Note that we do not use the
termination criterion specified in [27] as it does not lead to
convergence on some inputs. The original criterion is to stop
when all nodes have the label of the relative majority in their
neighborhood [28].

Label propagation can be parallelized easily by dividing
the range of nodes among multiple threads which operate
on a common label array. This parallelization is not free
of race conditions, since by the time the neighborhood of
a node u is evaluated in iteration ¢ to set (;(u), a neigh-
bor v might still have the previous iteration’s label ;_1(v)
or already (;(v). The outcome thus depends on the order
of threads. However, these race conditions are acceptable
and even beneficial in an ensemble setting since they in-
troduce random variations and increase base solution diver-

sity. This also corresponds to asynchronous updating, which
has been found to avoid oscillation of labels on bipar-
tite structures [28]. When dealing with scale-free networks
whose degree distribution follows a power law, assigning
node ranges of equal size to each thread will lead to load
imbalance as computational cost depends on the node degree.
Instead of statically dividing the iteration among the threads,
guided scheduling (with #pragma omp parallel for
schedule (guided)) assigns node ranges of decreasing
size from a queue to available threads. This way it can help
to overcome load balancing issues, since threads processing
large neighborhoods will receive fewer vertices in later phases
of the dynamical assignment process. This introduces some
overhead, but we observed that guided scheduling is generally
superior to static parallelization for PLP and similar methods.

B. Parallel Louvain Method (PLM)

Algorithm: The Louvain method for community detection
was first presented by Blondel et al. [5]. It can be classified
as a locally greedy, bottom-up multilevel algorithm and uses
modularity as the objective function. In each pass, nodes are
repeatedly moved to neighboring communities such that the
locally maximal increase in modularity is achieved, until the
communities are stable. Algorithm 2 denotes this move phase.
Then, the graph is coarsened according to the solution (by con-
tracting each community into a supernode) and the procedure
continues recursively, forming communities of communities.
Finally, the communities in the coarsest graph determine those
in the input graph by direct prolongation.

Computation of the objective function modularity is a cen-
tral part of the algorithm. Let w(u, C) := > ¢, ,1.pec w(u,v)
be the weight of all edges from u to nodes in community
C, and define the volume of a node and a community as
vol(u) =3 ¢, ywen (@ (U, ) + 2 w(u,u) and vol(C) :=
> wecc vol(u), respectively. The modularity of a solution is
defined as

mod(¢,G) := Z

ce¢

(“’(C) - ”OZ(C)Q) (IIL1)

w(E)  4dw(E)?

Note that the change in modularity resulting from a node
move can be calculated by scanning only the local neighbor-
hood of a node, because the difference in modularity when
moving node v € C' to community D is:

Amod(u, C — D) = w(u, D'\ {U}C)U(EC)U(%C \ {u})
n (vol(C'\ {u}) —vol(D \ {u})) - vol(u)
2 w(E)

We introduce a shared-memory parallelization of the Lou-
vain method (PLM, Algorithm 3) in which node moves are
evaluated and performed in parallel instead of sequentially.
This approach may work on stale data so that a monotonous
modularity increase is no longer guaranteed. Suppose that
during the evaluation of a possible move of node u other
threads might have performed moves that affect the Amod




scores of u. In some cases this can lead to a move of
u that actually decreases modularity. Still, such undesirable
decisions can also be corrected in a following iteration, which
is why the solution quality is not necessarily worse. Working
only on independent sets of vertices in parallel does not
provide a solution since the sets would have to be very small,
limiting parallelism and/or leading to the undesirable effect of
a very deep coarsening hierarchy. Concerns about termination
turned out to be theoretical for our set of benchmark graphs,
all of which can be successfully processed with PLM. The
community size resolution produced by PLM can be varied
through a parameter + in the range [0, 2m], 0 yielding a single
community, 1 being standard modularity and 2m producing
singletons. Tuning this parameter is a possible practical rem-
edy [18] against modularity’s resolution limit.

Algorithm 2: move: Local node moves for modularity
gain

Input: graph G = (V, E), communities { : V — N

Result: communities ¢ : V' — N

1 repeat

2 parallel for v € V

3 d  maxyenw) {Amod(u, ((u) — ((v))}

4 C + ((arg max,e n(w) {Amod(u, ((u) = ((v))})
5 if § > O then
6 | ¢(u)«C

7 until ¢ stable
8 return ¢

Algorithm 3: PLM: Parallel Louvain Method
Input: graph G = (V, E)
Result: communities ¢ : V — N

1 ¢+ Csingleton(G)

2 ¢ < move(q, ()

3 if ¢ changed then

L [G', 7] < coarsen(G, ()

¢+ PLM(@")
¢ « prolong(¢’, G, G, )

7 return ¢

D U B

Implementation: The main idea of PLM (Algorithm 3)
is to parallelize both the node move phase and the coarsening
phase of the Louvain method. Since the computation of the
Amod scores is the most frequent operation, it needs to be
very fast. We store and update some interim values, which is
not apparent from the high-level pseudocode in Algorithm 3.
An earlier implementation associated with each node a map
in which the edge weight to neighboring communities was
stored and updated when node moves occurred. A lock for
each vertex v protected all read and write accesses to v’s map
since std: :map is not thread-safe. Meant to avoid redundant
computation, we later discovered that this introduces too much
overhead (map operations, locks). Recomputing the weight to
neighbor communities each time a node is evaluated turned
out to be faster. The current implementation only stores and
updates the volume of each community. An additional opti-
mization to the PLM implementation eliminated the overhead

associated with using an std: :map to store for each node
the weights of edges leading to neighboring communities. the
mechanism was replaced by one std::vector for each
of the p threads, leading to an acceleration of a factor of 2
on average, at the cost of a memory overhead of O(p - n).
The former version (referred to as PLM*) can still be used
optionally under tighter memory constraints.

Graph coarsening according to communities is performed in
a straightforward way such that the nodes of a community in
G are aggregated to a single node in G’. An edge between two
nodes in G’ receives as weight the sum of weights of inter-
community edges in G, while self-loops preserve the weight
of intra-community edges. A mapping 7 of nodes in the fine
graph to nodes in the coarse graph is also returned. In earlier
versions of PLM, the graph coarsening phase proved to be a
major sequential bottleneck. We address this problem with a
parallel coarsening scheme: Each thread first scans a portion
of the edges in G and constructs a coarse graph G of its own.
These partial graphs are then combined into G’ by processing
each node of G’ in parallel and merging the adjacencies stored
in each G.

C. Farallel Louvain Method with Refinement (PLMR)

Following up on the work by Noack and Rotta on multilevel
techniques and refinement heuristics [31], we extend the Lou-
vain method by an additional move phase after each prolon-
gation. This makes it possible to re-evaluate node assignments
in view of the changes that happened on the next coarser level,
giving additional opportunities for modularity improvement at
the cost of additional iterations over the node set in each level
of the hierarchy. We denote the method and implementation
as PLMR for Parallel Louvain Method with Refinement. We
present a recursive implementation in Algorithm 4 which uses
the same concepts as PLM.

Algorithm 4: PLMR: Parallel Louvain Method with Re-
finement

Input: graph G = (V, E)

Result: communities ¢ : V' — N

1 ¢+ (singleton (G)
2 ¢ < move((, G)
3 if ¢ changed then

4 [G’, 7] « coarsen(G, ¢)
5 ¢' + PLMR(G")

6 ¢ «+ prolong(¢’, G, G', )
7 ¢ + move(¢, G)

8 return ¢

D. Ensemble Preprocessing (EPP)

In machine learning, ensemble learning is a strategy in
which multiple base classifiers or weak classifiers are com-
bined to form a strong classifier. Classification in this context
can be understood as deciding whether a pair of nodes
should belong to the same community. We follow this general
idea, which has been applied successfully to graph clustering
before [27]. Subsequently, we describe an ensemble techniques



EPP. We also briefly describe algorithms for combining
multiple base solutions.

Algorithm 5: EPP: Ensemble Preprocessing

Input: graph G = (V, E), ensemble size b
Result: communities ¢ : V — N

1 parallel for ¢ € [1, ]

| ¢« Basei(G)

¢ < combine(¢y, ..., )
G, + coarsen(G,

¢’ + Final(G")

¢ « prolong(¢’, G, G, )
return ¢

(5]

NS e W

In a preprocessing step, assign G to an ensemble of
base algorithms. The graph is then coarsened according to
the core communities 6, which represent the consensus of
the base algorithms. Coarsening reduces the problem size
considerably, and implicitly identifies the contested and the
unambiguous parts of the graph. After the preprocessing phase,
the coarsened graph G’ is assigned to the final algorithm,
whose result is applied to the input graph by prolongation. Our
implementation of the ensemble technique EPP is agnostic to
the base and final algorithms and can be instantiated with a
variety of such algorithms. We instantiate the scheme with
PLP as a base algorithm and PLMR as the final algorithm.
Thus we achieve massive nested parallelism with several
parallel PLP instances running concurrently in the first phase,
and proceed in the second phase with the more expensive
but qualitatively superior PLMR. This constitutes the EPP
algorithm (Algorithm 5). We write EPP(b, Base, Final) to
indicate the size of the ensemble b and the types of base and
final algorithm.

Implementation: A consensus of b > 1 base algorithms
is formed by combining the base solutions (; in the following
way: Only if a pair of nodes is classified as belonging to the
same community in every (;, then it is assigned to the same
community in the core communities ¢. Formally, for all node
pairs u,v € V:

Vi € [1,0] Gi(u) = Gi(v) C(u) = {(v).

We introduce a highly parallel combination algorithm based
on hashing. With a suitable hash function h(¢y (v), ..., ((v)),
the community identifiers of the base solutions are mapped
to a new identifier ((v) in the core communities. Except for
unlikely hash collisions, a pair of nodes will be assigned to the
same community only if the criterion above is satisfied. We
use a relatively simple function called djb2 due to Bernstein,?
which appears sufficient for our purposes. The use of a b-way
hash function is fast due to a high degree of parallelism.

<= (I11.2)

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP
A. Framework and Settings
The language of choice for all implementations is C++
according to the C++11 standard, allowing us to use object-

Zhash functions: http://www.cse.yorku.ca/~oz/hash.html

oriented and functional programming concepts while also
compiling to native code. We implemented all algorithms on
top of a general-purpose adjacency array graph data structure.
Basically, it represents the adjacencies of each node by storing
them in an std: :vector, allowing for efficient insertions
and deletions of nodes and edges. A high-level interface
encapsulates the data structure and enables a clear and concise
notation of graph algorithms. In particular, our interface con-
veniently supports parallel programming through parallel node
and edge iteration methods which receive a function and apply
it to all elements in parallel. Parallelism is achieved in the form
of loop parallelization with OpenMP, using the parallel
for directive with schedule (guided) where appropriate
for improved load balancing.

We publish our source code under a permissive free software
license to encourage reproduction, reuse and contribution by
the community. Implementations of all community detection
algorithms mentioned are part of NetworKit [36], our growing
toolkit for network analysis.> The software combines fast
parallel algorithms written in C++ with an interactive Python
interface for flexible and interactive data analysis workflows.

For representative experiments we average quality and speed
values over multiple runs in order to compensate for fluctua-
tions. Table I provides information on the multicore platform
used for all experiments.

phiputel .iti.kit.edu
compiler | gecc 4.8.1
CPU 2 x 8 Cores: Intel(R) Xeon(R)
E5-2680 0 @ 2.70GHz, 32 threads
RAM 256 GB
oS SUSE 13.1-64

Table I: Platform for experiments

B. Networks

We perform experiments on a variety of graphs from
different categories of real-world and synthetic data sets. Our
focus is on real-world complex networks, but to add variety
some non-complex and synthetic instances are included as
well. The test set includes web graphs (uk-2002, eu-2005,
in-2004, web-BerkStan), internet topology networks
(as-227julyo0e6, as-Skitter, caidaRouterLevel),
social networks (soc-LiveJournal, fb-Texas84,
com-youtube, wiki-Talk, soc-pokec, com-orkut),
scientific coauthorship networks
coPapersDBLP), a connectome graph (con-fiber_big),
a street network (europe-osm) and synthetic graphs
(G_n_pin_pout, kron_g500-simple-1logn20,
hyperbolic-268M). Therefore, we cover a range of
graph-structural properties. Real-world complex networks are
heterogeneous data sets, which makes it impossible to pick an
ideal or generic instance from which to generalize. Our main
test set is chosen such that it can be handled by competing
codes as well. It contains 20 networks from different domains.
With this test set we aim for generalizable results. Note

(cohruthorsCiteseer,

3 NetworKit: https://networkit.iti kit.edu/



graph n m maxdeg comp Icc
as-22july06 22963 48436 2390 1 0.3493
G_n_pin_pout 100000 501198 25 6 | 0.0040
caidaRouterLevel 192244 609066 1071 308 | 0.2016
coAuthorsCiteseer 227320 814134 1372 1 0.7629
fb-Texas84 36371 1590655 6312 4 | 0.1985
com-youtube 1157828 2987624 28754 22939 | 0.1725
wiki-Talk 2394385 4659565 100029 2555 | 0.1991
web-BerkStan 685231 6649470 84230 677 | 0.6343
as-Skitter 1696415 11095298 35455 756 | 0.2930
in-2004 1382908 13591473 21869 134 | 0.7013
coPapersDBLP 540486 15245729 3299 1 | 08111
eu-2005 862664 16138468 68963 1 0.6509
soc-pokec 1632804 22301964 14854 2 | 0.1223
soc-LiveJournal 4847571 43369619 20334 1876 | 0.3667
kron_g500-simple... 1048576 44619402 131503 | 253380 | 0.2096
con-fiber_big 591428 46374120 5166 727 | 0.6024
europe-osm 50912018 54054660 13 1 0.0012
com-orkut 3072627 117185083 33313 187 | 0.1735
uk-2002 18520486 261787258 194955 38359 | 0.6892
hyperbolic-268M 6710886 268851810 71585 1 0.7895
uk-2007-05 105896555 3301876564 975419 | 756936 0.743

Table II: Overview of graphs used in experiments

that the achievable modularity for a network depends on its
size and inherent community structure, which may or may
not be distinctive, and varies widely among the instances.
The majority of test networks are taken from the collection
compiled for the 10th DIMACS Implementation Challenge*
as well as the Stanford Large Network Dataset Collection’
and are freely available on the web. They are undirected,
unweighted graphs. Table II gives an overview over graph
sizes as well as some structural features: A high maximum
node degree (maxdeg) indicates possible load balancing
issues. The number of connected components (comp) points
to isolated single nodes or small groups of nodes. A high
average local clustering coefficient (lcc) is an indicator for
the presence of dense subgraphs. We evaluate solution quality
and running time for all of our own algorithms as well as
several relevant competitors on this set. For those algorithms
that can process in reasonable time the largest real-world
graph available to us, a web graph of the .uk domain with
m = 3.3-10°, we add further experiments (see Section V-H).
To measure strong scaling, we run our parallel algorithms on
this web graph.

V. EXPERIMENTS AND RESULTS

In this section we report on a representative subset of our
experimental results for our different parallel algorithms, as
well as competing codes. Figures 7 and 8 (as well as Fig-
ures 16 and 17 in the supplementary material) show running
time and quality differences broken down by the networks of
our test set. The bars of the charts are in ascending order
of graph size. We have selected a diverse test set and show
results for each network. The Pareto evaluation (Section V-F)
then aims to condense this into a single performance score.

A. Parallel Label Propagation (PLP)
PLP is extremely fast and able to handle the large graphs
easily. The “weak classifier” PLP is nonetheless able to detect

4DIMACS collection: http://www.cc.gatech.edu/dimacs10/downloads.shtml
SStanford collection: http://snap.stanford.edu/data/index.html

an inherent community structure and produce a solution with
reasonable modularity values, although it cannot distinguish
communities in a Kronecker graph, which has a very weak
community structure. To demonstrate strong scaling behavior,
we apply PLP to the large uk—2007-05 web graph and
increase the number of threads from 1 to 32 (Figure 1). (Weak
scaling results on PLP and PLM are shown in Figure 10.)
A speedup of about factor 8 is achieved when scaling from
1 to 32 threads. Note that we have only 16 physical cores
and the step from 16 to 32 threads implies hyperthreading,
so that a lower speedup is expected. Our results indicate
that PLP can benefit from increased parallelism. Figure 13
in the supplementary material breaks running times down by
iteration, showing that the vast majority of time is spent in the
first couple of iterations.
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Figure 1: PLP strong scaling on the uk—2007-05 web graph

B. Parallel Louvain Method (PLM)

For PLM we observe only small deviations in quality
between single-threaded and multi-threaded runs, supporting
the argument that the algorithm is able to correct undesirable
decisions due to stale data. PLM detects communities with
relatively high modularity in the majority of networks. Even
large instances are processed in no more than a few minutes.
Figure 2 shows the scaling behavior of PLM. Since both
the node move phase and the coarsening phase have been
parallelized, PLM profits from increased parallelism as well,
achieving a speedup of factor 9 for 32 threads. In comparison
to PLP (Figure 7b), we observe that PLP can solve instances
in only half the time required by PLM, but at a significant
loss of modularity. As discussed in Sec. VI, the communities
detected by the two algorithms can be markedly different.
Because the Louvain method for community detection is well-
known and accepted, we choose the performance of PLM as
our baseline (Figure 7a) and present quality and running time
of other algorithms relative to PLM.

C. Parallel Louvain Method with Refinement (PLMR)

As shown by Figure 7c, adding a refinement phase generally
leads to a (sometimes significant) improvement in modularity.
This improvement is paid for by a small increase in running
time. The results indicate that our proposed extension of the
original Louvain method by a refinement phase can efficiently
increase solution quality. We also evaluate the scaling behavior
of each phase of the PLMR algorithm. In Figure 3 a yellow
bar indicates the running time on the finest graph while the
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Figure 2: PLM strong scaling on the uk—2007—-05 web graph

red bar stops at the total running time of the phase. Time spent
on the finest graph clearly dominates all running times. Our
experiments show that the move and refinement phases scale
well with the number of threads, while the coarsening phase
only partially profits from parallelization. The results on this
graph are representative for the trend of the scaling behavior
for the algorithm’s phases: Figure 4 shows speedup factors for
each of the phases, aggregated over the test set of 20 graphs.
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Figure 3: PLMR strong scaling of the move, coarsening and
refinement phases (top to bottom) on uk—2007-05
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D. Ensemble Preprocessing (EPP)

Figure 15 in the supplementary material demonstrates the
effectiveness of the ensemble approach. Results were gen-
erated by an EPP instance with a 4-piece PLP ensemble
and PLMR as final algorithm in comparison to a single PLP
instance. We observe that the approach of EPP pays off in
the form of improved modularity on most instances, exploiting
differences in the base solutions and spending extra time on
classifying contested nodes. For larger networks, this comes at
a cost of about 5 times the running time of PLP alone. It also
becomes clear that for small networks the approach does not
pay off as running time becomes dominated by the overhead of
the ensemble scheme. In comparison to PLM (Figure 7d), the
ensemble approach can be slightly faster on some networks,
but quality is slightly worse in most cases. We conclude that
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Figure 4: PLMR strong scaling of the move, coarsening and
refinement phases (top to bottom) — speedup factors aggregated

the ensemble technique EPP is effective in improving on
the quality of a single algorithm. While somewhat lower in
modularity, the communities detected are similar (see Sec. VI)
to those of the Louvain method. In practice, our acceleration
of the PLM algorithm have made the ensemble approach less
relevant.

E. Comparison with State-of-the-Art Competitors

In this section we present results for an experimental com-
parison with several relevant competing community detection
codes. These are mainly those which excelled in the DIMACS
challenge either by solution quality or time to solution: The
agglomerative algorithms CLU_TBB® and RG, as well as
CGGC and CGGCi’, ensemble algorithms based on RG.
We also include the widely used original sequential Louvain®
implementation, as well as the agglomerative algorithm CEL.
In contrast to the DIMACS challenge, we run all codes on the
same multicore machine (Tab. I) and measure time to solution
for sequential and parallel ones alike.

a) Louvain: Although not submitted to the DIMACS
competition, the original sequential implementation of the
Louvain method is still relatively fast (Figure 8a). The
marginally different modularity values in comparison to PLM
may be caused by subtle differences in the implementation. For
example, Louvain explicitly randomizes the order in which
nodes are visited, while we rely on implicit randomization
through parallelism. For the smallest graphs, running time
values are missing because the implementation reported a run-
ning time of zero. Louvain eventually falls behind the parallel
algorithm for large graphs, confirming that the overhead and

SCLU_TBB http://www.staff.science.uu.nl/~faggi101/
7RG etc: http://www.umiacs.umd.edu/~mov/
8Louvain https://sites.google.com/site/findcommunities/



complexity introduced by parallelism is eventually justified
when we target massive datasets.

b) CLU TBB and CEL: CLU TBB, one of the few
parallel entries in the DIMACS competition, is a very fast
implementation of agglomerative modularity maximization,
solving the larger instances more quickly than PLM (Fig-
ure 8b). Qualitatively however, PLM is clearly superior on
most networks. Both in terms of modularity and running time,
CLU_TBB occupies a middle ground between PLP and PLM,
and is qualitatively very similar to our ensemble algorithm
EPP. CEL, as another fast parallel program, produced con-
sistently and significantly worse modularity than PLM, failed
to produce a solution on some graphs, and is not as fast as
PLP.

¢) RG CGGC and CGGCi: Ovelgonne and Geyer-
Schulz entered the DIMACS challenge with an ensemble
approach conceptually similar to what we have developed in
this paper. Their base algorithm is the sequential agglomerative
RG, and two ensemble variants exist: CGGC implements
anensemble technique very similar to EPP, while CGGCi
iterates the approach. The RG algorithm achieves a high
solution quality, surpassing PLM by a small margin on most
networks (Figure 8c). Quality is again slightly improved by the
ensemble approach CGGC and its iterated version CGGCi
(Figure 8d, and 16a in the SM), with the latter surpassing
any other heuristic known to us. However, all three are very
expensive in terms of computation time, often taking orders
of magnitude longer than PLM. We consider running times of
several hours for many of our networks no longer viable for
the scenario we target, namely interactive data analysis on a
parallel workstation.

E. Pareto Evaluation

We have so far presented results broken down by data
set to stress that observed effects may vary strongly from
one network to another, a sign of the heterogeneity of real-
world complex networks. Additionally, we want to give a
condensed picture of the results. For this purpose we use the
previous experimental data to compute a score for running
time and solution quality. The time score is the geometric
mean of running time ratios over our test set of networks
with the running time of PLM as the baseline, while the
modularity score is the arithmetic mean of absolute modularity
differences. Figure 5 shows the resulting points. It becomes
clear that all algorithms except CEL and EPP are placed on or
close to the Pareto frontier. PLP is unrivaled in terms of time
to solution, but solution quality is suboptimal. In the middle
ground between label propagation and Louvain method, the
parallel CLU_TBB achieves about the same modularity but
beats the ensemble approach in terms of speed. PLM and
PLMR emerge as qualitatively strong and fast candidates,
closest to the lower right corner. (Their more memory-efficient
implementation PLM* is about a factor of 2 slower.) It is
also evident that our extended version PLMR can improve
solution quality for a small computational extra charge. We
recommend both PLM and PLMR as the default algorithms for

parallel community detection in large networks. The original
sequential implementation of the Louvain method is thus no
longer on the Pareto frontier since it cannot benefit from
multicore systems. RG and its ensemble combinations have
the best modularity scores by a narrow margin, while they are
by far the most computationally expensive ones, which places
them outside of the application scenario we target.
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Figure 5: Pareto evaluation of community detection algorithms

G. LFR Benchmark

The LFR benchmark [19] is an established method for eval-
uating community detection algorithms: A generator produces
graphs that resemble real complex networks and contain dense
communities which are the more sparsely connected the lower
the mixing parameter p. Algorithm performance is measured
as the accuracy in recognizing the ground truth communities
supplied by the generator, in view of increasing difficulty (u).
Although there are real-world networks that come with sup-
posed ground truth communities (e. g. interest-based groups of
online social networks in the SNAP collection), we consider
only a synthetic ground truth reliable enough for our purposes.
In Figure 6 we plot the agreement (graph-structural Rand
index, where 1 is complete agreement) between detected and
ground truth communities for our algorithms, and show that
the PLM method is able to detect the ground truth even with
strong noise (4 = 0.8), while PLP (and hence EPP) is
somewhat less robust.
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Figure 6: LFR benchmark (n = 10°): accuracy in recognizing
ground truth while increasing inter-community edges
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Figure 7: Performance of our algorithms in comparison: PLM serves as the baseline. 32 threads used.
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Figure 8: Performance of competitors relative to baseline PLM. 32 threads used for CLU_TBB.



H. One More Massive Network

In addition to the experiments that went into the Pareto
evaluation, we run our parallel algorithms on the web graph
uk-2007-05, at about 3.3 billion edges the largest real-world
data set currently available to us. CLU_TBB fails at reading
the input file. This leaves us with five of our own parallel
algorithms for Figure 9: EPP(4,PLP,PLMR) takes about 219
seconds, while PLM requires about 156 seconds to arrive at
a slightly higher modularity. As expected, PLP is by far the
fastest algorithm and terminates in less than a minute. If a
certain modularity loss (here 0.02) is acceptable, PLP is also
an appropriate choice for quickly detecting communities in
billion-edge networks. The processing rate for PLP is over
53M edges/second and over 21M edges/second for PLM with
respect to a complete run of each algorithm. These rates
confirm the suitability of our algorithms for analyzing massive
complex networks on a commodity shared-memory server.
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Figure 9: Modularity and running time at 32 threads for our
parallel algorithms on the massive web graph uk-2007-05

1. Weak Scaling

For weak scaling experiments, we use a series of synthetic
graphs where each graph has twice the size of its predecessor
(from logm = 25...30), and double the number of threads
simultaneously from 1 to 32. The graphs were created using
a generator [22] based on a unit-disk graph model in hyper-
bolic geometry [17] (HUD), which produces both a power
law degree distribution and distinctive dense communities.
Figure 10 shows the results of weak scaling experiments for
PLP and PLM. It must be noted that perfect scaling cannot
be expected due to the complex structure of the input. The
results of the respective last column have been obtained with
hyperthreading, which explains the steeper increase. Figure 14
in the supplementary material show results for additional weak
scaling experiments on synthetic graphs generated with the R-
MAT model.

VI. QUALITATIVE ASPECTS

In this work we concentrate on achieving a good tradeoff
between high modularity, a widely accepted quality measure
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Figure 10: PLP (left) and PLM (right) weak scaling on the
series of HUD graphs

for community detection, and low running time. Ideally one
should also look for further validation of the detected com-
munities beyond good modularity. This is a difficult task for
several reasons. For most networks, we do not have a reliable
ground-truth partition, especially because community structure
is likely a multi-factorial phenomenon in real networks. Our
task is to uncover the hidden community structure of the
network. In order to know whether we have succeeded in this
data mining task, we would have to check whether the solution
helps us to formulate hypotheses to predict and explain real-
world phenomena on the basis of network data. Whether one
solution is more appropriate than another may strongly depend
on the domain of the network. Domain-specific validation of
this kind goes beyond the scope of this paper as we focus on
parallelization aspects. Also, most sequential counterparts of
our algorithms have been validated before, see e.g. [5].

However, we give an example to illustrate differences be-
tween our algorithms in a more qualitative way. Coarsening
the input graph according to the detected communities yields a
community graph, which we then visualize by drawing the size
of nodes proportional to the size of the respective community.
Figure 11 shows community graphs for the PGPgiantcompo
graph, a social network and web of trust resulting from
signatures on PGP keys. From top to bottom, the solutions
were produced by PLP, PLM, PLMR and EPP(4, PLP,
PLMR). It is apparent that PLP has a much finer resolution
and detects ca. 1000 small communities. This is true for
most of our data sets, but the inverse case also appears. On
this network, higher modularity is associated with coarser
resolution. PLM, PLMR and EPP(4, PLP, PLMR) have a
very similar resolution and divide the network into ca. 100
communities. While PGPgiantcompo is admittedly a very
small graph, this example shows how community detection
can help to reduce the complexity of networks for visual
representation.

VII. CONCLUSION AND FUTURE WORK

We have developed and implemented several parallel algo-
rithms for community detection, a common and challenging
task in network analysis. Successful techniques and param-
eter settings have been identified in extensive experiments
on synthetic and real-world networks. They include three
standalone parallel algorithms, all of which are placed on the
Pareto frontier with respect to running time and modularity
in an experimental comparison with other state-of-the-art
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Figure 11: Community graphs of the PGPgiantcompo web
of trust for (top to bottom) PLP, PLM, PLMR and EPP(4,
PLP, PLMR)

implementations. While the PLP label propagation algorithm
is extremely fast, its solution might not always be satisfactory
for some applications. PLM is to the best of our knowledge
the first parallel variant of the established Louvain algorithm
which can handle massive inputs. On our machine, it detects
high-quality communities in a network with 3.3 billion edges
in under 3 minutes using 32 threads. Achieving significant par-
allel speedups over the frequently used sequential algorithm,
it can accelerate analysis workflows now and even further
on future multicore systems. Our modification PLMR of this
method adds a refinement phase which enhances modularity
for a small increase in running time.

Our implementations are published as a component of Net-
worKit [36], an open-source package of performant implemen-
tations for established and novel network analysis algorithms.
We invite researchers in algorithm engineering and network
science to benefit from our software development efforts and
consider contribution to the project. NetworKit is under active
development by several researchers and may be extended by
additional community detection methods in the future, e.g.
considering overlapping communities as well.
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