Übungsblatt 2

Aufgabe 6 (mündlich)

Verschlüsseln Sie den Text DREIEINS mittels einer

- a) additiven Chiffre mit dem Schlüssel k = 13,
- b) affinen Chiffre mit dem Schlüssel k = (17, 6),
- c) Vigenère-Chiffre mit dem Schlüssel k = TIM,
- d) Hill-Chiffre mit der 4×4 -Schlüsselmatrix aus der Vorlesung.

Aufgabe 7 (mündlich)

Bestimmen Sie die Anzahl der Lösungen $x \in \{0, \dots, m-1\}$ der Kongruenzgleichung

$$ax \equiv_m b$$

in Abhängigkeit von ggT(a, m) und b. Betrachten Sie zunächst den Fall b = 0.

Aufgabe 8 (mündlich)

Bestimmen Sie für m=6,8 und 26 die Anzahl der invertierbaren 2×2 -Matrizen über \mathbb{Z}_m .

Hinweis: Benutzen Sie Aufgabe 10 und den Chinesischen Restsatz.

Aufgabe 9 (mündlich)

- a) Zeigen Sie, dass für jede selbstinverse Matrix A über \mathbb{Z}_{26} gilt: $\det(A) \equiv_{26} \pm 1$.
- b) Bestimmen Sie die Anzahl der selbstinversen 2×2 -Matrizen über \mathbb{Z}_{26} .

Aufgabe 10 (schriftlich, 10 Punkte)

- a) Zeigen Sie, dass im Fall p prim genau $(p^2-1)(p^2-p)$ invertierbare 2×2 -Matrizen über \mathbb{Z}_p existieren.
- b) Bestimmen Sie die Anzahl aller invertierbaren $k \times k$ -Matrizen über \mathbb{Z}_p .

Hinweis: Benutzen Sie, dass eine $k \times k$ -Matrix über \mathbb{Z}_p , p prim, genau dann invertierbar ist, wenn die Zeilen der Matrix linear unabhängige Vektoren (über \mathbb{Z}_p) sind.