
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/334971732

Feedback-Based Resource Allocation for Batch Scheduling of Scientific

Workflows

Conference Paper · August 2019

CITATIONS

0
READS

61

3 authors, including:

Some of the authors of this publication are also working on these related projects:

CellFInder View project

no project View project

Carl Witt

Humboldt-Universität zu Berlin

9 PUBLICATIONS 44 CITATIONS

SEE PROFILE

Ulf Leser

Humboldt-Universität zu Berlin

349 PUBLICATIONS 5,367 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ulf Leser on 05 August 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/334971732_Feedback-Based_Resource_Allocation_for_Batch_Scheduling_of_Scientific_Workflows?enrichId=rgreq-474831dc5876e715c5cec9b480ab01f1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDk3MTczMjtBUzo3ODg1NjExMDQyMDc4NzJAMTU2NTAxOTAyNjAwMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/334971732_Feedback-Based_Resource_Allocation_for_Batch_Scheduling_of_Scientific_Workflows?enrichId=rgreq-474831dc5876e715c5cec9b480ab01f1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDk3MTczMjtBUzo3ODg1NjExMDQyMDc4NzJAMTU2NTAxOTAyNjAwMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/CellFInder?enrichId=rgreq-474831dc5876e715c5cec9b480ab01f1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDk3MTczMjtBUzo3ODg1NjExMDQyMDc4NzJAMTU2NTAxOTAyNjAwMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/no-project-112?enrichId=rgreq-474831dc5876e715c5cec9b480ab01f1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDk3MTczMjtBUzo3ODg1NjExMDQyMDc4NzJAMTU2NTAxOTAyNjAwMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-474831dc5876e715c5cec9b480ab01f1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDk3MTczMjtBUzo3ODg1NjExMDQyMDc4NzJAMTU2NTAxOTAyNjAwMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carl_Witt?enrichId=rgreq-474831dc5876e715c5cec9b480ab01f1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDk3MTczMjtBUzo3ODg1NjExMDQyMDc4NzJAMTU2NTAxOTAyNjAwMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carl_Witt?enrichId=rgreq-474831dc5876e715c5cec9b480ab01f1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDk3MTczMjtBUzo3ODg1NjExMDQyMDc4NzJAMTU2NTAxOTAyNjAwMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Humboldt-Universitaet_zu_Berlin?enrichId=rgreq-474831dc5876e715c5cec9b480ab01f1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDk3MTczMjtBUzo3ODg1NjExMDQyMDc4NzJAMTU2NTAxOTAyNjAwMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carl_Witt?enrichId=rgreq-474831dc5876e715c5cec9b480ab01f1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDk3MTczMjtBUzo3ODg1NjExMDQyMDc4NzJAMTU2NTAxOTAyNjAwMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ulf_Leser?enrichId=rgreq-474831dc5876e715c5cec9b480ab01f1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDk3MTczMjtBUzo3ODg1NjExMDQyMDc4NzJAMTU2NTAxOTAyNjAwMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ulf_Leser?enrichId=rgreq-474831dc5876e715c5cec9b480ab01f1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDk3MTczMjtBUzo3ODg1NjExMDQyMDc4NzJAMTU2NTAxOTAyNjAwMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Humboldt-Universitaet_zu_Berlin?enrichId=rgreq-474831dc5876e715c5cec9b480ab01f1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDk3MTczMjtBUzo3ODg1NjExMDQyMDc4NzJAMTU2NTAxOTAyNjAwMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ulf_Leser?enrichId=rgreq-474831dc5876e715c5cec9b480ab01f1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDk3MTczMjtBUzo3ODg1NjExMDQyMDc4NzJAMTU2NTAxOTAyNjAwMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ulf_Leser?enrichId=rgreq-474831dc5876e715c5cec9b480ab01f1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDk3MTczMjtBUzo3ODg1NjExMDQyMDc4NzJAMTU2NTAxOTAyNjAwMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Feedback-Based Resource Allocation for Batch
Scheduling of Scientific Workflows

Carl Witt
Humboldt-Universität zu Berlin

Berlin, Germany
wittcarl@informatik.hu-berlin.de

Dennis Wagner
Humboldt-Universität zu Berlin

Berlin, Germany
wagnerde@informatik.hu-berlin.de

Ulf Leser
Humboldt-Universität zu Berlin

Berlin, Germany
leser@informatik.hu-berlin.de

Abstract—A scientific workflow is a set of interdependent
compute tasks orchestrating large scale data analyses or in-silico
experiments. Workflows often comprise thousands of tasks with
heterogeneous resource requirements that need to be executed on
distributed resources. Many workflow engines solve paralleliza-
tion by submitting tasks to a batch scheduling system, which
requires resource usage estimates that have to be provided by
users. We investigate the possibility to improve upon inaccurate
user estimates by incorporating an online feedback loop between
workflow scheduling, resource usage prediction, and measure-
ment.

Our approach can learn resource usage of arbitrary type;
in this paper, we demonstrate its effectiveness by predicting
peak memory usage of tasks, as it is an especially sensitive
resource type that leads to task termination if underestimated
and decreased throughput if overestimated.

We compare online versions of standard machine learning
models for peak memory usage prediction and analyze their
interactions with different workflow scheduling strategies. By
means of extensive simulation experiments, we found that the
proposed feedback mechanism improves resource utilization and
execution times compared to typical user estimates.

Index Terms—Distributed Computing, Resource Management,
Scheduling, Scientific Workflows, Machine Learning

I. INTRODUCTION

The scale of analysis workflows in science and commercial
applications grows rapidly. For instance, bioinformatics, ma-
terial science, astronomy, and earth science frequently require
the processing of large data sets with various command-line
tools arranged in a complex analysis pipeline [1], [2]. To scale
these workflows to large problem sizes, it is necessary to
distribute the individual steps across compute resources.

A common approach to parallelization data-intensive work-
loads is task-based computing, e. g., by partitioning the data
for a single analysis step into chunks that are processed in
parallel. For compute-intensive workloads, parameter sweeps
are a common pattern that lead to large numbers of tasks. To
orchestrate distributed execution of tasks with dependencies,
scientific workflow management systems (SWMS) can be
used. SWMS accept workflow specifications in a specific
language and execute them on different compute infrastruc-
tures; examples are Pipeline Script for Nextflow [3], DAX for
Pegasus [4], or Cuneiform [5] for Saasfee [6].

Due to the complexity of executing tasks on distributed
compute infrastructures, many workflow systems are designed
as layers on top of distributed resource management software.

For example, Nextflow comes with executors that can run a
workflow on various batch scheduling systems, such as LSF
or HTCondor, which is also the underlying resource manager
for the Pegasus SWMS.

Batch scheduling systems require users to estimate task
resource usage and often enforce these estimates by killing
tasks that exceed them. This incentivizes users to overestimate
resource usage, which is especially problematic for peak mem-
ory estimates: Compared to overestimated runtimes, where
excess time can be allocated to other tasks after a task finishes,
excessively allocated memory is not usable by other tasks
during the runtime of a task and is thus wasted. Depending
on the variety and complexity of analysis steps, workflow task
frequently have vastly heterogeneous resource requirements,
and optimizing resource allocations is key to reduce workflow
execution times.

Even experienced users may not be able to accurately esti-
mate resource usage for their programs [7]. As an alternative,
estimates based on past performance measurments have been
proposed [8]. However, the resource usage of a task might
strongly depend on the output of its ancestor tasks, which
is reliably known only at runtime. In addition, data analysis
workflows in a scientific context are “routinely unique” [9],
meaning that past resource usage measurements on similar
input data and compute infrastructure might not be available,
contrary to repetitive production batch jobs in commercial
scenarios [10].

Here, we investigate a system design that allows for online
learning task resource consumption. Our approach is based on
a feedback loop (Figure 1) where scheduling decisions affect
predictor re-training and assessment, and predictions affect
scheduling decisions. This allows estimates to be continuously
updated and to incorporate the size of intermediate result sets
for predictions, whereas offline schedulers have to ignore or
guess intermediate result set sizes in advance. In summary, we
make the following contributions:

• Contrary to prior work, which views prediction and
scheduling as separate problems, we show that there exist
significant interaction effects.

• We show that statistical methods can serve as a reliable
fallback in cases where user estimates align poorly with
actual resource usage.

• We provide insights on the impact of improved prediction
accuracy on memory utilization and makespan.

The paper is structured as follows: Section 2 covers back-
ground and related work, Section 3 describes our online
scheduling and prediction approach, Section 4 describes online
prediction models, Section 5 covers the experimental setup,
and Section 6 presents our results. We conclude with a
discussion and future work in Section 7.

II. BACKGROUND AND RELATED WORK

We briefly introduce the notion of a scientific workflow,
prior work on resource usage prediction and scheduling, and
discuss the potential for improving resource usage with an
online learning approach.

A. Scientific Workflows

A scientific workflow specifies how different command-line
tools are combined to analyze or produce large amounts of
data in a parallel fashion [1]. These workflows often comprise
programs with widely varying resource requirements ranging
from simple data transformations to complex analysis steps.
Executing the same tool with varying input data or parameters
yields a set of similar tasks, which we collectively refer to
as an abstract task. Figure 2 shows an exemplary workflow
that illustrates the typical repetitive structure of scientific
workflows [11], where each abstract task corresponds to one
level in the graph.

Scientific workflows treat both tasks and data as black
boxes, which contrasts with distributed computing approaches
centered around a single language or data model, such as
Spark [12]. Each analysis step is encapsulated as an invocation
of a program which processes input files in an arbitrary format,
yielding maximum flexibility in the choice of tools and data
formats.

B. Task Sizing and Distributed Resource Management

The task sizing problem [13] refers to selecting the right
amount of resources for a task. This problem arises whenever
a scientific workflow management systems (SWMS) obtains
compute resources by negotiating with a resource manager.
For instance, the SWMS Nextflow [3] supports job schedulers
like LSF or Slurm [14] to run workflows on HPC resources. A
task is executed by submitting a corresponding job to the job
scheduler, along with the requested resources, e. g., CPU cores,
memory, or an upper bound on the execution duration of the
job. The required estimates have to be included by the user in
Nextflow’s workflow description format. To handle suboptimal
initial estimates, Nextflow allows the user to specify how to
increase, e. g., the amount of memory with every task failure.
In contrast, we propose to derive this information at run time
from the observed memory usage of successful tasks, which
reduces the number of successive trial and error allocations.

Many batch scheduling systems provide detailed resource
usage information, such as CPU utilization or memory usage.
In addition, scientific workflow management systems often
collect resource usage measurements [11], [15], [16]. In our

Fig. 1: The Scheduling-Prediction feedback loop. Dashed lines
indicate components beyond the control of our approach.

Fig. 2: Ligo is a typical embarrassingly parallel workflow.
Tasks that execute the same program on different data are
placed at the same vertical position.

model, we immediately use this information to improve re-
source allocation for the remaining workflow.

C. Resource Consumption Prediction and Scheduling

Most workflow scheduling research assumes that resource
usage estimates, usually task execution duration and commu-
nication times, are given [17]. The problem of obtaining such
estimates is considered a separate issue [8]. On the other hand,
research on predicting the resource usage of computational
workloads usually focuses on sophisticated methods to learn
from and extrapolate historical performance measurements,
without considering interactions with a scheduler. Our work
considers a novel scenario where resource estimates change
according to scheduling decisions.

Classical workflow scheduling algorithms [18], [19] use
task execution and file transfer duration estimates to compute
a schedule before execution. We consider memory as an
additional dimension, motivated by memory-intensive work-
flows [2], [20] and the requirements of batch schedulers and
resource managers like YARN to specify the amount of main
memory for each job/task. Dynamic scheduling algorithms
decide at runtime which task to place where and often lack
the ability to plan ahead and incorporate the entire DAG into
their decisions. Scheduling with both multi-variate resource
demands and dependencies between tasks is rarely studied,
despite its importance [21]. An overview of workflow schedul-
ing algorithms is given in [22], but none considers the online
learning scenario covered here.

Since static schedulers depend on the accuracy of runtime
estimates, prior studies have evaluated the scheduling quality

under fixed degrees of prediction accuracy [23], [24], [25],
[26], [22]. We are interested in the novel scenario where
resource usage estimates are changing at runtime, in response
to scheduling decisions. Silva et al. [27] showed that applying
a task runtime prediction model during workflow execution
yields improvements compared to estimating file sizes and
runtimes in advance. However, in their work, no learning takes
place at runtime, since the prediction model is built from prior
executions before the workflow starts, and only the actual
intermediate result set sizes are passed to the pre-built model
at runtime. Our prediction models are continuously updated
and applied at runtime.

III. FEEDBACK-BASED SCHEDULING

In this section, we describe our approach to feedback-based
scientific workflow scheduling. Figure 1 the the components
and their interactions in our architecture. We control the
workflow scheduling component and resource usage prediction
component, as described in the following two subsectinos.
In addition, the architecture comprises three components that
are beyond our control: (1) the batch scheduler used for task
execution, (2) the workflow specification, and (3) the initial
user estimates.

The basic idea is to immediately incorporate resource usage
measurements collected from successful task executions into
online prediction models to optimize the resource allocation
for the execution of the remaining workflow. Resource us-
age measurements constitute the first type of feedback. Task
successes and failures constitute a second type of feedback
that influences the order in which tasks are considered for
execution, as described in the following.

A. Workflow Scheduling

We consider different workflow scheduling heuristics for
the use within our feedback-based scheduling approach. The
core responsibility of the workflow scheduler is to select tasks
to be executed when resources are scarce and the workflow
cannot run at its full degree of parallelism, besides enforcing
the dependency constraints on task execution order. Here we
present basic heuristics (see Table I) and introduce our least-
finished-first (LFF) heuristic, which is tailored to the online
prediction approach.

A common approach to workflow scheduling is to execute
tasks in a first-in-first-out (FIFO) order. When a task becomes
eligible for execution, i. e., its parent tasks have finished, the
task is queued for execution. When resources are available,
tasks are taken from the head of the queue for execution.

We compared this strategy to schedulers that prioritize tasks
based on workflow topology. The BFS and DFS heuristics use
a task’s depth as priority, i. e., the longest path to a task without
predecessors. The BFS heuristic executes ready tasks with a
low depth first. This is similar to a breadth-first search through
a graph. A possible advantage of this strategy is that it tends
to produce larger sets of ready tasks, which in turn can lead
to higher degrees of parallelism. In contrast, the DFS strategy

prioritizes tasks with high depth, which resembles a depth-
first search. This has the potential advantage of running tasks
of newly available abstract task types as early as possible,
which produces resource usage measurements for abstract
tasks earlier.

The topology-rank (TR) heuristic is based on the rank of
a task, i. e., the longest path to a task without children. This
focus on the ends of the workflow incorporates a lookahead
component into scheduling that tends to favors task with
more downstream work. A similar concept is used in the
popular HEFT [28] heuristic, which uses average task runtimes
as weight. We do not assume task runtime estimates to be
available when starting a task and consider only topology.

Finally, we propose a least-finished-first (LFF) heuristic,
which favors tasks that belong to abstract tasks of which the
least number of tasks have completed, i. e., for which the
least training data is currently available. This follows a similar
rationale like the DFS heuristic. But instead of looking only
at the topology, LFF considers the number of successfully
executed tasks and thus the amount of training data for the
online prediction models. Because the success of tasks depends
on prediction accuracy, the available resources, and the relative
runtimes of the tasks, this yields significantly different task
execution orders compared to DFS.

B. Resource Usage Feedback

To predict peak memory usage for tasks, we train one model
(e. g., linear regression, see Section IV) per abstract task. Every
time a task completes successfully, the model for that abstract
task is retrained incrementally with the observed peak memory
usage and the size of the input files. The updated model is then
used to predict the peak memory usage of the remaining tasks
of that type.

When a task fails because a model has underestimated its
peak memory usage, we ensure that the task is eventually as-
signed sufficient memory by repeatedly doubling the allocated
memory. For any task’s first attempt, the predictor is applied
if it is ready, otherwise an estimate provided by the user is
used. If the task has failed before, we distinguish two cases.
If the faulty peak memory estimate was based on an initial
guess and the predictor has become ready in the meantime,
the predictor is applied. If the peak memory estimate was
based on a prediction, the memory assigned to the task is
repeatedly doubled until the task succeeds or fails on the
maximum possible amount of memory, in which case the
workflow cannot be executed with the given resources.

C. Task Failure Feedback

We found that incorporating the number of failed attempts
into scheduling has a stong impact on throughput and resource
utilization.

We thus derived two variants from each of the topology-
aware scheduling heuristics. The persevere variant prioritizes
tasks by with a high number of failed attempts. The intuition
is that failed executions do not contribute new peak memory
observations and thus re-trying such tasks persistently helps

TABLE I: Workflow Scheduling Heuristics Overview.

Scheduler First Priority Second Priority

FIFO Earliest queue insertion time None
BFS Shortest path to entry (shallow tasks) Failed attempts
DFS Longest path to entry (deep tasks) Failed attempts
TR Task with longest path to exit (rank) Failed attempts
LFF Abstract task with least finished tasks Failed attempts

to gather the additional data needed to improve the inaccurate
prediction model. The postpone variant executes those tasks
with the least number (usually zero) of failed attempts first, in
an attempt gather additional data from better predictable tasks.

After a task has failed, it becomes ready again and is
re-inserted in a scheduler’s priority queue. The number of
failed attempts is used as a secondary criterion by first sorting
according to depth or rank and then by the number of failed
attempts. The only exception is the FIFO scheduler, which
treats a failed task as if it became ready for the first time, which
we refer to as the time of arrival failure handling strategy,
which is similar to the postpone strategy. For an overview of
the simulated variants, refer to II.

IV. MEMORY USAGE PREDICTION

We experimented with two approaches for predicting peak
memory usage: (1) based on the distribution of memory usages
seen so far, and (2) by correlating it to input size.

A. Basic Prediction with Percentiles and Regression

Our first method, the percentile predictor predicts peak
memory usage of a task as a percentile of the peak memory
usages of all successful task executions so far. We use the 95th
percentile (PC 95) as a conservative estimator that predicts
memory usage close to the largest observed memory usage.
We also consider the median memory usage (PC 50) as a
more optimistic predictor. Although this leads to an expected
half of the tasks failing on their first attempt, it may still work
well if tasks fail quickly.

Our second method is based on the observation that memory
usage correlates to input size. We evaluate a linear regression
predictor (LR) that relates the sum of a task’s input files to its
peak memory consumption. This predictor is less conservative
than the percentile predictor and aims at tighter memory
allocations rather than reducing the number of failed task
attempts. We update the regression coefficients incrementally
with every new observation.

We start using the PC and LR predictors as soon as 1 or 2
successful observations have been collected, respectively.

B. Offsetting for Linear Regression

Since we expect the consequences of predicting slightly too
little memory to be more severe than predicting slightly too
much memory, we also developed more conservative variants
of the regression approach by adding various offset terms.

The offset terms are adaptive in the sense that they depend
on the prediction errors made by the current fitted model f .
Assume a set of (input size, peak memory usage) observations

D = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y and a prediction
function f : X → Y . We derive more conservative estimates
from f by adding an offset o(f,D) that depends on the
function and the training data.

The LR mean ± approach adds as offset o(f,D) the sample
standard deviation, i. e., the expected difference between the
predicted and the true peak memory usage.

o(f,D) =

√√√√ 1

n− 1

∑
(x,y)∈D

(f(x)− y)2 (1)

The LR mean − approach is similar to the previous ap-
proach, but considers only underpredictions, i. e., negative er-
rors. To this end, we divide by m = |{(x, y) ∈ D|f(x) < y}|.

o(f,D) =

√√√√ 1

m− 1

∑
(x,y)∈D : f(x)<y

(f(x)− y)2 (2)

The LR max − approach is the most conservative approach
and adds the largest seen underprediction to the next predic-
tion.

o(f,D) = max
(x,y)∈D

y − f(x) (3)

After a new task completes, the regression coefficients are
updated incrementally and the offset is recomputed.

V. EXPERIMENTAL SETUP

This section covers the Memory Allocation Quality metric,
the synthetic workflows used for evaluation, and general
simulation parameters used in the experiments.

A. Memory Allocation Quality

To characterize the quality of a scheduler’s memory alloca-
tion decisions, we introduce the Memory Allocation Quality
(MAQ) metric. The metric indicates the amount of wasted
memory that results from underestimating or overestimating
task memory usage. In contrast to average memory utilization,
MAQ does not depend on the compute infrastructure or task
precedence constraints, which may enforce inevitable periods
of low utilization.

We measure memory usage and wastage in megabyte-
seconds, i. e., the product of the amount of allocated memory
and the duration of the allocation. Since allocating too little
memory leads to task failure, we consider all of the memory
allocated to this attempt as wasted. When allocating too
much memory, we consider the difference between allocated
memory and the task’s peak memory usage as wasted. We
define the amount of wasted memory W as the sum of wasted
megabyte-seconds. Memory allocation quality is defined as the
used megabyte-seconds U divided by total allocated megabyte-
seconds. Accordingly, 100% corresponds to no wastage.

MAQ =
U

U +W
(4)

B. Synthetic Workflows

We generate workflows using the Pegasus Workflow Gen-
erator [31], which synthesizes workflows from five different
domains. We extended the workflow generator to generate a
hypothetical memory model for each abstract task from which
peak memory consumption values are sampled. The design of
our memory models is based on the observation that memory
consumption may vary strongly within and across abstract
tasks [11], [32] and tasks frequently consume memory that
is linearly related to the sum of input file sizes [20].

Each memory model describes the relationship between
input size and memory consumption for a particular abstract
task. With a chance of 50%, an abstract task exposes a linear
relationship to the sum of input file sizes, otherwise input
size and memory consumption are sampled independently. The
error term N (0, v) adds variation in memory consumption that
is not explained by input size. We first generate a random mean
µ, standard deviation σ, error v, and slope m1 for the model
according to Table II. We then sample input sizes and memory
consumption such that they follow Equation 5.

y(t) = m1x(t) +m0 +N (0, v) (5)

We consider different relative times to failure (TTF) for
tasks in case of insufficient memory allocation. In reality, the
time to failure depends on the task’s memory usage profile,
i. e., at which point in time the memory usage first exceeds
the assigned amount of memory. In an optimistic scenario
tasks fail early, reducing the resource wastage resulting from
underprediction. In a pessimistic scenario, tasks execute almost
to completion before they run out of memory. We used TTFs
of 0.1, 0.5, and 0.9 in our experiments.

We generated a total of 500 workflows, 100 each from the
workflow types Sipht, Montage, Genome, Ligo, and Cyber-
shake [11]. Each workflow comprises 1000 tasks. After gener-
ating peak memory consumption values for each task, the task
runtimes are scaled such that each workflow consumes exactly
one terabyte-week of main memory. This is convenient for
evaluating experiments because the total amount of work, i. e.,
runtimes and peak memory consumption, across workflows
may differ by orders of magnitude.

C. Generating User Estimates

To provide reference values to compare our prediction
models to, we use two approaches to generate hypothetical
user estimates for our synthetic workflows.

The first approach is based on rounding: Given the true
maximum memory usage for an abstract task, the Power 2
approach computes the user estimate as the nearest power of
two, in Gigabytes. For instance, if the actual peak memory
usage across the tasks of an abstract task is 1.2 GB, the
estimate for this abstract task is assumed to be 1 GB. This
reflects the fact that user estimates are typically coarse-grained
and round numbers [29]. As a variant, we use the same method
but round to the nearest power of ten Gigabytes (Power 10).

As a second method, we generate hypothetical user esti-
mates from the true peak memory usage of each abstract task

TABLE II: Simulation Parameters

Group Parameter Value

Workflows Type Cybershake, Genome, Ligo, Montage,
Sipht

Number 500 (100 per type)
Tasks 1000 per workflow
Time to failure 0.1, 0.5, 0.9

Memory Models Average µ = U(1GB, 1TB)
Std. Deviation σ = U(0.03, 0.1)µ
Error v = U(0.1, 0.75)σ2

Slope U(1, 10)
Resources Cores 128

RAM 1952 GB
Execution Scheduling FIFO, BFS, DFS, TR, LFF

Predictor PC, LR, User Estimates (Power, Max)

by applying a constant factor (Max approach). For instance,
Max +20% estimates the memory usage of a task as the
maximum memory usage of the abstract task multiplied by
1.2. This approach reflects the fact that users tend to provide
conservative estimates in practice [30].

D. Simulation Setup

Our simulations are conducted in DynamicCloudSim [33], a
simulation environment based on the CloudSim [34] software.
DynamicCloudSim adds workflow execution functionality to
CloudSim, such as data structures for workflows and algo-
rithms to schedule them. We added the proposed feedback-
based scheduling mechanism and the online prediction models
from Section IV to the framework.

In our experiments, a simulation scenario corresponds to
a combination of a specific workflow (including its mem-
ory usage profile), a scheduling algorithm, a predictor, and
a TTF value. Our simulations assume a shared resource
pool of 128 CPU cores and 1952 GB of main memory.
Since all workflows allocate a total of one terabyte-week of
main memory, a lower bound on workflow execution time is
7 terabyte-days/1.952 Gigabyte ≈ 3.5 days. The simulation
parameters are summarized in Table II.

VI. RESULTS

In the following, we report simulation results on the re-
lationship between resource efficiency and speed, the best
performing scheduling policies, and demonstrate interaction
effects between scheduling policy and prediction model.

A. Relationship between MAQ and Makespan

Figure 3 shows how MAQ relates to makespan for a sample
of 50,000 simulated scenarios. It is apparent that MAQ limits
the execution time from below, which reflects the memory
bottleneck induced by the compute infrastructure. Although
higher MAQ is correlated to lower makespans, makespans
expose considerable variation across scenarios with identical
MAQ. This is due to different workflow scheduling policies,
the different graph structures of the different workflow types,
and different TTF values. These factors will be analyzed in
the next sections. In the following, we will use MAQ and
makespan as separate evaluation metrics.

Fig. 3: The relationship between MAQ and execution time
on a sample of 50,000 simulation scenarios for three peak
memory prediction methods. Power 2 corresponds to a type of
user estimates, LR corresponds to a linear regression model,
and PC 50 corresponds to predicting memory usage as the
median of previously seen memory consumptions. High MAQ
is necessary but not sufficient for low makespan.

Across the selected predictors, few simulation scenarios
exceed a MAQ of 80%. The maximum observed MAQ across
all simulation scenarios is 87.1%. The PC 50 predictor is
responsible for most of the worst simulation scenarios, because
it leads to many failed task attempts, that have severe impact
on makespan when the relative time to task failure is high.
User estimates, i. e., the Power 2 predictor performs better,
but frequently show MAQ values below 50%. The simula-
tion scenarios featuring the LR mean− approach concentrate
favorably in a region of high MAQ and low makespan, but
include some extreme scenarios with very low MAQ and high
makespans.

B. Best Scheduling Policies

Next, we analyze which workflow scheduling heuristics per-
form best. For each workflow under each TTF, we determine
the combination of predictor and scheduling heuristic that
achieves the lowest makespan or highest MAQ, respectively1.
Figure 4 shows the number of workflows (out of the 500
workflows) for which each scheduling heuristic performs
best. If tasks fail quickly, the commonly used FIFO strategy
performs best, both for optimizing makespan and MAQ.
However, the picture changes dramatically for larger time to
failure values. In these scenarios, LFF performs best, both for
makespan and MAQ. Overall, the persevere failure handling
strategy performs better than the postpone strategy, likely
because failures indicate that user estimates or predictions are
inaccurate, and a certain degree of persistence is necessary to

1In 98% of the cases, there is a single best performing combination. If ties
between combinations exist, we count all winning schedulers.

TTF: 0.1 TTF: 0.5 TTF: 0.9
C

R
IT

: m
a

k
e

s
p

a
n

C
R

IT
: m

a
q

LF
F

BFS
D
FS TR

FIF
O

LF
F

BFS
D
FS TR

FIF
O

LF
F

BFS
D
FS TR

FIF
O

0

100

200

0

100

200

Best Scheduler

N
u

m
b

e
r

o
f

W
o

rk
flo

w
s

Failure Handling Persevere Postpone Time of Arrival

Fig. 4: Which workflow scheduler performs best depends
whether MAQ or makespan should be optimized, the time to
failure, and the failure handling strategy.

bring tasks to completion, which allows to retrain prediction
models. Interestingly, neither of the topology-based scheduling
heuristics DFS, BFS, and TR are competitive. In the following,
we focus our analysis on the best scheduling heuristics, FIFO
and LFF.

C. Interaction Between Scheduling and Prediction

In our feedback-based scheduling model, prediction and
scheduling strongly influence each other. Scheduling deci-
sions control which training data becomes available first,
and prediction errors modify task priorities. Figure 5 shows
the best combinations of scheduler and makespan, as the
number of workflows where that combination achieves the
lowest makespan or best MAQ, respectively. This shows that
FIFO’s advantage in the low TTF scenarios strongly depends
on the choice of the PC 50 predictor. For LFF, moderately
conservative prediction models such as LR mean− or PC 95
work best. Figure 6 shows how the memory allocation quality
differs for each workflow when using a regression approach
compared to fixed user estimates, both with the LFF Perservere
scheduler.

Figure 7 shows the worst performing combinations. These
feature mainly the optimistic predictors PC 50 in combination
with a postpone failure handling strategy, which leads to
large numbers of failed tasks attempts, without learning about
resource usage and improving prediction models.

VII. CONCLUSION AND FUTURE WORK

We demonstrated the potential of workflow execution en-
gines that feature joint workflow scheduling and resource us-
age prediction. Compared to requesting user estimates prior to
workflow execution, the proposed feedback-based scheduling
offers the advantage of adapting to the true resource usage of
tasks during workflow execution. We also demonstrated that

TTF: 0.1 TTF: 0.5 TTF: 0.9

C
R

IT
: m

a
k
e

s
p

a
n

C
R

IT
: m

a
q

FIF
O

LF
F P

er
se

ve
re

LF
F P

os
tp

on
e

FIF
O

LF
F P

er
se

ve
re

LF
F P

os
tp

on
e

FIF
O

LF
F P

er
se

ve
re

LF
F P

os
tp

on
e

Power 10

Power 2

LR

LR mean +-

LR mean -

LR max -

PC 50

PC 95

Power 10

Power 2

LR

LR mean +-

LR mean -

LR max -

PC 50

PC 95

Best Scheduler

B
e

s
t

P
re

d
ic

to
r

25 50 75
count

Fig. 5: Number of workflows for which a given scheduler-
predictor combination performs best with respect to workflow
execution time (top) and memory allocation quality (bottom).

in a feedback-based design, scheduling and prediction, which
are traditionally thought of as separate independent problems,
expose significant interaction effects.

Regarding online prediction, we showed how to modify
a standard linear regression model to construct appropriately
conservative predictors that allow to take into account input
file sizes as available only during workflow execution.

We plan to extend the architecture such that the scheduler
learns models of runtime and also time to failure for each ab-
stract task. It also seems promising to incorporate information
gathered from failed task attempts as censored data since they
already provide a lower bound on the true peak memory usage
and run time of the task.

In some scenarios, resource demands may not be hard
constraints, but allow trading-off between resources. Some
abstract tasks can be assigned a varying number of CPU cores,
leading to different runtimes. Similarly, some tasks may be
able to complete with lesser memory than requested, taking a
runtime penalty for using swap. Taking into account malleable
resource demands adds further complexity to the scheduling
problem but also provides additional degrees of freedom for
the scheduler to reduce makespan.

A related question is whether additional information and
predictions could be used for more sophisticated scheduling. In
most situations, the scheduler can sacrifice memory allocation
quality to reduce the chance of task failure. Which one is

Regression is better

User estimates are better40.0%

50.0%

60.0%

70.0%

80.0%

40.0% 60.0% 80.0%

MAQ with User Estimates (Power 2)

M
A

Q
 w

ith
 P

re
d

ic
tio

n
 (

L
R

 m
e

a
n

 -
)

Workflow Type
Cybershake Genome Ligo

Montage Sipht

Fig. 6: Comparison of the memory allocation quality achieved
by user estimates and a linear regression approach. Each point
represents one workflow, the scheduler was fixed to LFF
Persevere.

favorable depends on the specific loss of time associated with
a task attempt, its importance for making progress in the
workflow, the current pressure on resources, etc. For instance,
it seems reasonable to assign more memory to tasks that have
many children or need to be completed before workflow ex-
ecution can progress (tasks that are synchronization barriers).
This could be complemented by online learned estimates of
task runtimes, both in case of failure and success, to estimate
the risk associated to underestimating the memory usage of
specific tasks.

ACKNOWLEDGEMENTS

Carl Witt received funding by Deutsche Forschungsgemein-
schaft through the SOAMED graduate school (GRK 1651).

REFERENCES

[1] C. S. Liew, M. P. Atkinson, M. Galea, T. F. Ang, P. Martin, and
J. I. V. Hemert, “Scientific Workflows: Moving Across Paradigms,” ACM
Computing Surveys (CSUR), vol. 49, no. 4, pp. 66–39, Feb. 2017.

[2] A. Rheinländer, M. Lehmann, A. Kunkel, J. Meier, and U. Leser,
“Potential and Pitfalls of Domain-Specific Information Extraction at
Web Scale,” in SIGMOD Conference. Humboldt-Universitat zu Berlin,
Berlin, Germany, 2016, pp. 759–771.

[3] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
and C. Notredame, “Nextflow enables reproducible computational work-
flows.” Nature Biotechnology, vol. 35, no. 4, pp. 316–319, Apr. 2017.

TTF: 0.1 TTF: 0.5 TTF: 0.9

C
R

IT
: m

a
k
e

s
p

a
n

C
R

IT
: m

a
q

BFS P
er

se
ve

re

BFS P
os

tp
on

e

D
FS P

er
se

ve
re

D
FS P

os
tp

on
e

TR
 P

os
tp

on
e

TR
 P

er
se

ve
re

BFS P
er

se
ve

re

BFS P
os

tp
on

e

D
FS P

er
se

ve
re

D
FS P

os
tp

on
e

TR
 P

os
tp

on
e

TR
 P

er
se

ve
re

BFS P
er

se
ve

re

BFS P
os

tp
on

e

D
FS P

er
se

ve
re

D
FS P

os
tp

on
e

TR
 P

os
tp

on
e

TR
 P

er
se

ve
re

Power 10

Power 2

Max +50%

Max +20%

LR

LR mean +-

LR mean -

LR max -

PC 50

PC 95

Power 10

Power 2

Max +50%

Max +20%

LR

LR mean +-

LR mean -

LR max -

PC 50

PC 95

Worst Scheduler

W
o

rs
t

P
re

d
ic

to
r

50 100 150 200
count

Fig. 7: Number of workflows for which a given scheduler-
predictor combination performs worst with respect to work-
flow execution time (top) and memory allocation quality
(bottom).

[4] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus, a workflow management system for science automation,”
Future Generation Computer Systems, vol. 46, pp. 17–35, May 2015.

[5] J. Brandt, W. Reisig, and U. Leser, “Computation semantics of the func-
tional scientific workflow language Cuneiform,” Journal of Functional
Programming, vol. 27, p. 373, Oct. 2017.

[6] M. Bux, J. Brandt, C. Lipka, K. Hakimzadeh, J. Dowling, and U. Leser,
“SAASFEE: Scalable Scientific Workflow Execution Engine.” PVLDB,
vol. 8, no. 12, pp. 1892–1903, 2015.

[7] A. W. Mu’alem and D. G. Feitelson, “Utilization, Predictability, Work-
loads, and User Runtime Estimates in Scheduling the IBM SP2 with
Backfilling,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 6, pp. 529–543, Jun. 2001.

[8] C. Witt, M. Bux, W. Gusew, and U. Leser, “Predictive performance
modeling for distributed batch processing using black box monitoring
and machine learning,” Information Systems, Jan. 2019.

[9] J. Chang, “Core services: Reward bioinformaticians,” Nature, vol. 520,
no. 7546, pp. 151–152, Apr. 2015.

[10] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “CherryPick - Adaptively Unearthing the Best Cloud Config-
urations for Big Data Analytics,” in USENIX Symposium on Networked
Systems Design and Implementation. 13th USENIX Symposium on
Networked Systems Design and Implementation, 2017.

[11] G. Juve, A. L. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and
K. Vahi, “Characterizing and profiling scientific workflows.” Future
Generation Computer Systems, vol. 29, no. 3, pp. 682–692, 2013.

[12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets - A
Fault-Tolerant Abstraction for In-Memory Cluster Computing.” NSDI,
2012.

[13] B. Tovar, R. Ferreira da Silva, G. Juve, E. Deelman, W. Allcock,
D. Thain, and M. Livny, “A Job Sizing Strategy for High-Throughput

Scientific Workflows,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 2, pp. 240–253, 2018.

[14] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux Util-
ity for Resource Management,” in Computer Performance Engineering.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 44–60.

[15] T. Ohta, T. Tanjo, and O. Ogasawara, “Accumulating computational
resource usage of genomic data analysis workflow to optimize cloud
computing instance selection,” bioRxiv, p. 456756, Oct. 2018.

[16] Tracing & visualisation — Nextflow 18.10.1 documentation. [Online].
Available: https://www.nextflow.io/docs/latest/tracing.html

[17] B. Jennings and R. Stadler, “Resource Management in Clouds - Survey
and Research Challenges.” J. Network Syst. Manage., vol. 23, no. 3, pp.
567–619, 2014.

[18] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Computing Surveys,
vol. 31, no. 4, pp. 406–471, Dec. 1999.

[19] M. A. Rodriguez and R. Buyya, “A taxonomy and survey on scheduling
algorithms for scientific workflows in IaaS cloud computing envi-
ronments.” Concurrency and Computation: Practice and Experience,
vol. 29, no. 8, 2017.

[20] M. Bux, J. Brandt, C. Witt, J. Dowling, and U. Leser, “Hi-WAY:
Execution of Scientific Workflows on Hadoop YARN,” in International
Conference on Extending Database Technology, 2017.

[21] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni, “GRAPHENE
- Packing and Dependency-Aware Scheduling for Data-Parallel Clus-
ters.” OSDI, 2016.

[22] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Algorithms for
cost- and deadline-constrained provisioning for scientific workflow en-
sembles in IaaS clouds,” Future Generation Computer Systems, vol. 48,
pp. 1–18, Jul. 2015.

[23] R. Armstrong, D. Hensgen, and T. Kidd, “The relative performance
of various mapping algorithms is independent of sizable variances in
run-time predictions,” in Seventh Heterogeneous Computing Workshop
(HCW’98). IEEE Comput. Soc, 1989, pp. 79–87.

[24] R. Gibbons, “A Historical Application Profiler for Use by Parallel
Schedulers.” Job Scheduling Strategies for Parallel Processing, vol.
1291, no. Chapter 3, pp. 58–77, 1997.

[25] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, “Heuristics
for scheduling parameter sweep applications in grid environments,” 9th
Heterogeneous Computing Workshop (HCW 2000), pp. 349–363, 2000.

[26] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling Using System-
Generated Predictions Rather than User Runtime Estimates.” IEEE
Transactions on Parallel and Distributed Systems, vol. 18, no. 6, pp.
789–803, 2007.

[27] R. Ferreira da Silva, G. Juve, M. Rynge, E. Deelman, and M. Livny, “On-
line Task Resource Consumption Prediction for Scientific Workflows,”
Parallel Processing Letters, vol. 25, no. 03, p. 1541003, 2015.

[28] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.
260–274, Mar. 2002.

[29] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale,” in ACM Symposium
on Cloud Computing. New York, New York, USA: ACM Press, 2012,
pp. 1–13.

[30] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and QoS-
aware cluster management.” ASPLOS, pp. 127–144, 2014.

[31] R. Ferreira da Silva, W. Chen, G. Juve, and K. Vahi, “Community
resources for enabling research in distributed scientific workflows,” in e-
Science and Grid Computing, IEEE International Conference on, 2014.

[32] A. Singh, A. Rao, S. Purawat, and I. Altintas, “A machine learning
approach for modular workflow performance prediction,” in Workflows
in Support of Large Scale Science. New York, New York, USA: ACM
Press, 2017, pp. 1–11.

[33] M. Bux and U. Leser, “DynamicCloudSim: Simulating heterogeneity in
computational clouds,” Future Generation Computer Systems, 2015.

[34] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23–50,
Aug. 2010.

View publication statsView publication stats

https://www.nextflow.io/docs/latest/tracing.html
https://www.researchgate.net/publication/334971732

	Introduction
	Background and Related Work
	Scientific Workflows
	Task Sizing and Distributed Resource Management
	Resource Consumption Prediction and Scheduling

	Feedback-Based Scheduling
	Workflow Scheduling
	Resource Usage Feedback
	Task Failure Feedback

	Memory Usage Prediction
	Basic Prediction with Percentiles and Regression
	Offsetting for Linear Regression

	Experimental Setup
	Memory Allocation Quality
	Synthetic Workflows
	Generating User Estimates
	Simulation Setup

	Results
	Relationship between MAQ and Makespan
	Best Scheduling Policies
	Interaction Between Scheduling and Prediction

	Conclusion and Future Work
	References

