
Vorlesungsskript

Theoretische Informatik III
Sommersemester 2008

Prof. Dr. Johannes Köbler
Humboldt-Universität zu Berlin

Lehrstuhl Komplexität und Kryptografie

17. Juni 2009

Inhaltsverzeichnis

1 Einleitung 1

2 Suchen und Sortieren 2
2.1 Suchen von Mustern in Texten 2

2.1.1 String-Matching mit endlichen Automaten . . 3
2.1.2 Der Knuth-Morris-Pratt-Algorithmus 4

2.2 Durchsuchen von Zahlenfolgen 6
2.3 Sortieralgorithmen 7

2.3.1 Sortieren durch Einfügen 7
2.3.2 Sortieren durch Mischen 8
2.3.3 Lösen von Rekursionsgleichungen 10
2.3.4 Eine untere Schranke für das Sortierproblem . 10
2.3.5 QuickSort . 11
2.3.6 HeapSort . 14
2.3.7 BucketSort 16
2.3.8 CountingSort 16
2.3.9 RadixSort . 17
2.3.10 Vergleich der Sortierverfahren 17

2.4 Datenstrukturen für dynamische Mengen 18
2.4.1 Verkettete Listen 18
2.4.2 Binäre Suchbäume 19
2.4.3 Balancierte Suchbäume 20

3 Graphalgorithmen 24
3.1 Grundlegende Begriffe 24
3.2 Datenstrukturen für Graphen 26
3.3 Keller und Warteschlange 26

3.4 Durchsuchen von Graphen 28
3.4.1 Suchwälder 29
3.4.2 Klassifikation der Kanten eines (Di-)Graphen 29
3.4.3 Spannbäume und Spannwälder 31
3.4.4 Berechnung der Zusammenhangskomponenten 32
3.4.5 Breiten- und Tiefensuche 32
3.4.6 Starke Zusammenhangskomponenten 36

3.5 Kürzeste Pfade in Distanzgraphen 39
3.5.1 Der Dijkstra-Algorithmus 39

ii

1 Einleitung

In den Vorlesungen ThI 1 und ThI 2 standen folgende Themen im
Vordergrund:

• Mathematische Grundlagen der Informatik, Beweise führen, Mo-
dellierung Aussagenlogik,
Prädikatenlogik
• Welche Probleme sind lösbar? (Berechenbarkeitstheorie)
• Welche Rechenmodelle sind adäquat? (Automatentheorie)
• Welcher Aufwand ist nötig? (Komplexitätstheorie)

Dagegen geht es in der VL ThI 3 in erster Linie um folgende Frage:

• Wie lassen sich eine Reihe von praktisch relevanten Problem-
stellungen möglichst effizient lösen?
• Wie lässt sich die Korrektheit von Algorithmen beweisen und
wie lässt sich ihre Laufzeit abschätzen?

Die Untersuchung dieser Fragen lässt sich unter dem Themengebiet
Algorithmik zusammenfassen.
Der Begriff Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zurück. Der älteste bekannte nicht-triviale
Algorithmus ist der nach Euklid benannte Algorithmus zur Berechnung
des größten gemeinsamen Teilers zweier natürlicher Zahlen (300 v.
Chr.). Von einem Algorithmus wird erwartet, dass er jede Problemein-
gabe nach endlich vielen Rechenschritten löst (etwa durch Produktion
einer Ausgabe). Ein Algorithmus ist ein „Verfahren“ zur Lösung eines
Entscheidungs- oder Berechnungsproblems, das sich prinzipiell auf
einer Turingmaschine implementieren lässt (Church-Turing-These).

Die Registermaschine

Bei Aussagen zur Laufzeit von Algorithmen beziehen wir uns auf die
Registermaschine (engl. random access machine; RAM). Dieses Modell
ist etwas flexibler als die Turingmaschine, da es den unmittelbaren
Lese- und Schreibzugriff (random access) auf eine beliebige Speiche-
reinheit (Register) erlaubt. Als Speicher stehen beliebig viele Register
zur Verfügung, die jeweils eine beliebig große natürliche Zahl speichern
können. Auf den Registerinhalten sind folgende arithmetische Ope-
rationen in einem Rechenschritt ausführbar: Addition, Subtraktion,
abgerundetes Halbieren und Verdoppeln. Unabhängig davon geben
wir die Algorithmen in Pseudocode an. Das RAM-Modell benutzen
wir nur zur Komplexitätsabschätzung.
Die Laufzeit von RAM-Programmen wird wie bei TMs in der Länge
der Eingabe gemessen. Man beachte, dass bei arithmetischen Pro-
blemen (wie etwa Multiplikation, Division, Primzahltests, etc.) die
Länge einer Zahleingabe n durch die Anzahl dlog ne der für die Binär-
kodierung von n benötigten Bits gemessen wird. Dagegen bestimmt
bei nicht-arithmetischen Problemen (z.B. Graphalgorithmen oder
Sortierproblemen) die Anzahl der gegebenen Zahlen die Länge der
Eingabe.

Asymptotische Laufzeit und Landau-Notation

Definition 1. Seien f und g Funktionen von N nach R+. Wir schrei-
ben f(n) = O(g(n)), falls es Zahlen n0 und c gibt mit

∀n ≥ n0 : f(n) ≤ c · g(n).

Die Bedeutung der Aussage f(n) = O(g(n)) ist, dass f „nicht
wesentlich schneller“ als g wächst. Formal bezeichnet der Term
O(g(n)) die Klasse aller Funktionen f , die obige Bedingung erfül-
len. Die Gleichung f(n) = O(g(n)) drückt also in Wahrheit eine
Element-Beziehung f ∈ O(g(n)) aus. O-Terme können auch auf

1

der linken Seite vorkommen. In diesem Fall wird eine Inklusionsbe-
ziehung ausgedrückt. So steht n2 +O(n) = O(n2) für die Aussage
{n2 + f | f ∈ O(n)} ⊆ O(n2).

Beispiel 2.
• 7 log(n) + n3 = O(n3) ist richtig.
• 7 log(n)n3 = O(n3) ist falsch.
• 2n+O(1) = O(2n) ist richtig.
• 2O(n) = O(2n) ist falsch (siehe Übungen).

/

Es gibt noch eine Reihe weiterer nützlicher Größenvergleiche von
Funktionen.

Definition 3. Wir schreiben f(n) = o(g(n)), falls es für jedes c > 0
eine Zahl n0 gibt mit

∀n ≥ n0 : f(n) ≤ c · g(n).

Damit wird ausgedrückt, dass f „wesentlich langsamer“ als g wächst.
Außerdem schreiben wir
• f(n) = Ω(g(n)) für g(n) = O(f(n)), d.h. f wächst mindestens
so schnell wie g)
• f(n) = ω(g(n)) für g(n) = o(f(n)), d.h. f wächst wesentlich
schneller als g, und
• f(n) = Θ(g(n)) für f(n) = O(g(n)) ∧ f(n) = Ω(g(n)), d.h. f
und g wachsen ungefähr gleich schnell.

2 Suchen und Sortieren

2.1 Suchen von Mustern in Texten

In diesem Abschnitt betrachten wir folgende algorithmische Problem-
stellung.

String-Matching (StringMatching):
Gegeben: Ein Text x = x1 · · ·xn und ein Muster y = y1 · · · ym

über einem Alphabet Σ.
Gesucht: Alle Vorkommen von y in x.

Wir sagen y kommt in x an Stelle i vor, falls xi+1 · · ·xi+m = y ist.
Typische Anwendungen finden sich in Textverarbeitungssystemen
(emacs, grep, etc.), sowie bei der DNS- bzw. DNA-Sequenzanalyse.

Beispiel 4. Sei Σ = {A,C,G,U}.

Text x = AUGACGAUGAUGUAGGUAGCGUAGAUGAUGUAG,
Muster y = AUGAUGUAG.

Das Muster y kommt im Text x an den Stellen 6 und 24 vor. /

Bei naiver Herangehensweise kommt man sofort auf folgenden Algo-
rithmus.

Algorithmus naive-String-Matcher(x, y)
1 Input: Text x = x1 · · · xn und Muster y = y1 · · · ym
2 V := ∅
3 for i := 0 to n−m do

2

2 Suchen und Sortieren 2.1 Suchen von Mustern in Texten

4 if xi+1 · · ·xi+m = y1 · · · ym then
5 V := V ∪ {i}
6 Output: V

Die Korrektheit von naive-String-Matcher ergibt sich wie folgt:

• In der for-Schleife testet der Algorithmus alle potentiellen Stel-
len, an denen y in x vorkommen kann, und
• fügt in Zeile 4 genau die Stellen i zu V hinzu, für die
xi+1 · · ·xi+m = y ist.

Die Laufzeit von naive-String-Matcher lässt sich nun durch fol-
gende Überlegungen abschätzen:

• Die for-Schleife wird (n−m+ 1)-mal durchlaufen.
• Der Test in Zeile 4 benötigt maximal m Vergleiche.

Dies führt auf eine Laufzeit von O(nm) = O(n2). Für Eingaben der
Form x = an und y = abn/2c ist die Laufzeit tatsächlich Θ(n2).

2.1.1 String-Matching mit endlichen Automaten

Durch die Verwendung eines endlichen Automaten lässt sich eine
erhebliche Effizienzsteigerung erreichen. Hierzu konstruieren wir einen
DFAMy, der jedes Vorkommen von y in der Eingabe x durch Erreichen
eines Endzustands anzeigt. My erkennt also die Sprache

L = {x ∈ Σ∗ | y ist Suffix von x}.

Konkret konstruieren wir My = (Z,Σ, δ, 0,m) wie folgt:

• My hat m + 1 Zustände, die den m + 1 Präfixen y1 · · · yk,
k = 0, . . . ,m, von y entsprechen, d.h. Z = {0, . . . ,m}.
• Liest My im Zustand k das Zeichen yk+1, so wechselt My in den

Zustand k + 1, d.h. δ(k, yk+1) = k + 1 für k = 0, . . . ,m− 1:

0 1 2 3 . . . m

y1 y2 y3 y4 ym

• Falls das nächste Zeichen a nicht mit yk+1 übereinstimmt
(engl. mismatch), wechselt My in den Zustand

δ(k, a) = max{j ≤ m | y1 · · · yj ist Suffix von y1 · · · yka}.

Der DFA My speichert also in seinem Zustand die maximale Länge
k eines Präfixes y1 · · · yk von y, das zugleich ein Suffix der gelesenen
Eingabe ist:

δ̂(0, x) = max{k ≤ m | y1 · · · yk ist Suffix von x}.

Die Korrektheit vonMy folgt aus der Beobachtung, dassMy isomorph
zum Äquivalenzklassenautomaten MRL für L ist. MRL hat die Zustän-
de [y1 · · · yk], k = 0, . . . ,m, von denen nur [y1 · · · ym] ein Endzustand
ist. Die Überführungsfunktion ist definiert durch

δ([y1 · · · yk], a) = [y1 · · · yj],

wobei y1 · · · yj das längste Präfix von y = y1 · · · ym ist, welches Suffix
von y1 · · · yja ist (siehe Übungen).

Beispiel 5. Für das Muster y = laola hat My folgende Gestalt:

0 1 2 3 4 5
l a o l a

a, o l

o

a

l

a, o
l

o
a

l

o

δ 0 1 2 3 4 5
a 0 2 0 0 5 0
l 1 1 1 4 1 1
o 0 0 3 0 0 3

3

2 Suchen und Sortieren 2.1 Suchen von Mustern in Texten

My macht bei der Suche nach dem Muster y = laola im Text x = olalaolala
folgende Übergänge:

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10
o l a l a o l a l a

/

Insgesamt erhalten wir somit folgenden Algorithmus.

Algorithmus DFA-String-Matcher(x, y)
1 Input: Text x = x1 · · ·xn und Muster y = y1 · · · ym
2 konstruiere den DFA My = (Z,Σ, δ, 0,m)
3 V := ∅
4 k := 0
5 for i := 1 to n do
6 k := δ(k, xi)
7 if k = m then V := V ∪ {i−m}
8 Output: V

Die Korrektheit von DFA-String-Matcher ergibt sich unmittelbar
aus der Tatsache, dass My die Sprache

L(My) = {x ∈ Σ∗ | y ist Suffix von x}

erkennt. Folglich fügt der Algorithmus genau die Stellen j = i−m zu
V hinzu, für die y ein Suffix von x1 · · ·xi (also xj+1 · · ·xj+m = y) ist.

Die Laufzeit von DFA-String-Matcher ist die Summe der Laufzei-
ten für die Konstruktion von My und für die Simulation von My bei
Eingabe x, wobei letztere durch O(n) beschränkt ist. Für δ ist eine
Tabelle mit (m+ 1)‖Σ‖ Einträgen

δ(k, a) = max{j ≤ k + 1 | y1 · · · yj ist Suffix von y1 · · · yka}

zu berechnen. Jeder Eintrag δ(k, a) ist in Zeit O(k2) = O(m2) bere-
chenbar. Dies führt auf eine Laufzeit von O(‖Σ‖m3) für die Konstruk-
tion von My und somit auf eine Gesamtlaufzeit von O(‖Σ‖m3 + n).
Tatsächlich lässt sich My sogar in Zeit O(‖Σ‖m) konstruieren.

2.1.2 Der Knuth-Morris-Pratt-Algorithmus

Durch eine Modifikation des Rücksprungmechanismus’ lässt sich die
Laufzeit von DFA-String-Matcher auf O(n+m) verbessern. Hierzu
vergegenwärtigen wir uns folgende Punkte:

• Tritt im Zustand k ein Mismatch a 6= yk+1 auf, so ermittelt
My das längste Präfix p von y1 · · · yk, das zugleich Suffix von
y1 · · · yka ist, und springt in den Zustand j = δ(k, a) = |p|.
• Im Fall j > 0 hat p also die Form p = p′a, wobei p′ = y1 · · · yj−1

sowohl echtes Präfix als auch echtes Suffix von y1 · · · yk ist. Zu-
dem gilt yj = a.
• Die Idee beim KMP-Algorithmus ist nun, bei einem Mismatch
unabhängig von a auf das nächst kleinere Präfix p̃ = y1 · · · yi
von y1 · · · yk zu springen, das auch Suffix von y1 · · · yk ist.
• Stimmt nach diesem Rücksprung das nächste Eingabezeichen
a mit yi+1 überein, so wird dieses gelesen und der KMP-
Algorithmus erreicht (nach einem kleinen Umweg über den
Zustand i) den Zustand i+ 1 = j, in den auch My wechselt.
• Andernfalls springt der KMP-Algorithmus nach derselben Me-

thode solange weiter zurück, bis das nächste Eingabezeichen a

4

2 Suchen und Sortieren 2.1 Suchen von Mustern in Texten

„passt“ (also yi+1 = a und somit p̃a ein Präfix von y ist) oder
der Zustand 0 erreicht wird.
• In beiden Fällen wird a gelesen und der Zustand δ(k, a) ange-

nommen.

Der KMP-Algorithmus besucht also alle Zustände, die auch My

besucht, führt aber die Rücksprünge in mehreren Etappen aus.
Die Sprungadressen werden durch die so genannte Präfixfunktion
π : {1, . . . ,m} → {0, . . . ,m− 1} ermittelt:

π(k) = max{0 ≤ j ≤ k − 1 | y1 · · · yj ist Suffix von y1 · · · yk}.

Beispiel 6. Für das Muster y = laola ergibt sich folgende Präfixfunk-
tion π:

0 1 2 3 4 5
l a o l a

k 1 2 3 4 5
π(k) 0 0 0 1 2

Wir können uns die Arbeitsweise dieses Automaten wie folgt vorstellen:

1. Erlaubt das nächste Eingabezeichen einen Übergang vom aktuel-
len Zustand k nach k + 1, so führe diesen aus.

2. Ist ein Übergang nach k+ 1 nicht möglich und k ≥ 1, so springe
in den Zustand π(k) ohne das nächste Zeichen zu lesen.

3. Andernfalls (d.h. k = 0 und ein Übergang nach 1 ist nicht
möglich) lies das nächste Zeichen und bleibe im Zustand 0.

Der KMP-Algorithmus macht bei der Suche nach dem Muster y =
laola im Text x = olalaolala folgende Übergänge:

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10
o l a l a o l a l a

/

Auf die Frage, wie sich die Präfixfunktion π möglichst effizient berech-
nen lässt, werden wir später zu sprechen kommen. Wir betrachten
zunächst das Kernstück des KMP-Algorithmus, das sich durch eine
leichte Modifikation von DFA-String-Matcher ergibt.

DFA-String-Matcher(x, y)
1 Input: Text x1 · · ·xn

und Muster y1 · · · ym
2 konstruiere My

3 V := ∅
4 k := 0
5 for i := 1 to n do
6 k := δ(k, xi)

7 if k = m then
8 V := V ∪ {i−m}
9 Output: V

KMP-String-Matcher(x, y)
1 Input: Text x1 · · ·xn und

Muster y1 · · · ym
2 π := KMP-Prefix(y)
3 V := ∅
4 k := 0
5 for i := 1 to n do
6 while (k > 0 ∧ xi 6= yk+1) do
7 k := π(k)
8 if xi = yk+1 then k := k + 1
9 if k = m then

10 V := V ∪ {i−m}, k := π(k)
11 Output: V

Die Korrektheit des Algorithmus KMP-String-Matcher ergibt sich
einfach daraus, dass er den Zustand m an genau den gleichen Text-
stellen besucht wie DFA-String-Matcher, und somit wie dieser alle
Vorkommen von y im Text x findet.

5

2 Suchen und Sortieren 2.2 Durchsuchen von Zahlenfolgen

Für die Laufzeitanalyse von KMP-String-Matcher (ohne die Berech-
nung von KMP-Prefix) stellen wir folgende Überlegungen an.
• Die Laufzeit ist proportional zur Anzahl der Zustandsübergänge.
• Bei jedem Schritt wird der Zustand um maximal Eins erhöht.
• Daher kann der Zustand nicht öfter verkleinert werden als er

erhöht wird (Amortisationsanalyse).
• Es gibt genau n Zustandsübergänge, bei denen der Zustand

erhöht wird bzw. unverändert bleibt.
• Insgesamt finden also höchstens 2n = O(n) Zustandsübergänge

statt.
Nun kommen wir auf die Frage zurück, wie sich die Präfixfunktion π
effizient berechnen lässt. Die Aufgabe besteht darin, für jedes Präfix
y1 · · · yi, i ≥ 1, das längste echte Präfix zu berechnen, das zugleich
Suffix von y1 · · · yi ist.
Die Idee besteht nun darin, mit dem KMP-Algorithmus das Muster
y im Text y2 · · · ym zu suchen. Dann liefert der beim Lesen von yi
erreichte Zustand k gerade das längste Präfix y1 · · · yk, das zugleich
Suffix von y2 · · · yi ist (d.h. es gilt π(i) = k). Zudem werden bis zum
Lesen von yi nur Zustände kleiner als i erreicht. Daher sind die π-
Werte für alle bis dahin auszuführenden Rücksprünge bereits bekannt
und π kann in Zeit O(m) berechnet werden.

Prozedur KMP-Prefix(y)
1 π(1) := 0
2 k := 0
3 for i := 2 to m do
4 while (k > 0 ∧ yi 6= yk+1) do k := π(k)
5 if yi = yk+1 then k := k + 1
6 π(i) := k
7 return(π)

Beispiel 7. Die Verarbeitung des Musters y = laola durch

KMP-Prefix ergibt folgendes Ablaufprotokoll:

a o l a
0

1

2

1 2 3 4 5
a o l a

k 1 2 3 4 5
π(k) 0 0 0 1 2

/

Wir fassen die Laufzeiten der in diesem Abschnitt betrachteten String-
Matching Algorithmen in einer Tabelle zusammen:

Algorithmus Vorverarbeitung Suche Gesamtlaufzeit

naiv 0 O(nm) O(nm)
DFA (einfach) O(‖Σ‖m3) O(n) O(‖Σ‖m3 + n)
DFA (verbessert) O(‖Σ‖m) O(n) O(‖Σ‖m+ n)
Knuth-Morris-Pratt O(m) O(n) O(n)

2.2 Durchsuchen von Zahlenfolgen

Als nächstes betrachten wir folgendes Suchproblem.

Element-Suche
Gegeben: Eine Folge a1, . . . , an von natürlichen Zahlen und eine

Zahl a.
Gesucht: Ein Index i mit ai = a (bzw. eine Fehlermeldung, falls

a 6∈ {a1, . . . , an} ist).

Typische Anwendungen finden sich bei der Verwaltung von Daten-
sätzen, wobei jeder Datensatz über einen eindeutigen Schlüssel (z.B.
Matrikelnummer) zugreifbar ist. Bei manchen Anwendungen können
die Zahlen in der Folge auch mehrfach vorkommen. Gesucht sind dann

6

2 Suchen und Sortieren 2.3 Sortieralgorithmen

evtl. alle Indizes i mit ai = a. Durch eine sequentielle Suche lässt sich
das Problem in Zeit O(n) lösen.

Algorithmus Sequential-Search

1 Input: Eine Zahlenfolge a1, . . . , an und eine Zahl a
2 i := 0
3 repeat
4 i := i+ 1
5 until (i = n ∨ a = ai)
6 Output: i, falls ai = a bzw. Fehlermeldung, falls

ai 6= a

Falls die Folge a1, . . . , an sortiert ist, d.h. es gilt ai ≤ aj für i ≤ j,
bietet sich eine Binärsuche an.

Algorithmus Binary-Search

1 Input: Eine Zahlenfolge a1, . . . , an und eine Zahl a
2 l := 1
3 r := n
4 while l < r do
5 m := b(l + r)/2c
6 if a ≤ am then r := m else l := m+ 1
7 Output: l, falls al = a bzw. Fehlermeldung, falls

al 6= a

Offensichtlich gibt der Algorithmus im Fall a 6∈ {a1, . . . , an} eine Feh-
lermeldung aus. Im Fall a ∈ {a1, . . . , an} gilt die Schleifeninvariante
al ≤ a ≤ ar. Daher muss nach Abbruch der while-Schleife a = al
sein. Dies zeigt die Korrektheit von Binary-Search.
Da zudem die Länge l− r + 1 des Suchintervalls [l, r] in jedem Schlei-
fendurchlauf mindestens auf b(l − r)/2c+ 1 reduziert wird, werden
höchstens dlog ne Schleifendurchläufe ausgeführt. Folglich ist die Lauf-
zeit von Binary-Search höchstens O(log n).

2.3 Sortieralgorithmen

Wie wir im letzten Abschnitt gesehen haben, lassen sich Elemente in
einer sortierten Folge sehr schnell aufspüren. Falls wir diese Operation
öfters ausführen müssen, bietet es sich an, die Zahlenfolge zu sortieren.

Sortierproblem
Gegeben: Eine Folge a1, . . . , an von natürlichen Zahlen.
Gesucht: Eine Permutation ai1 , . . . , ain dieser Folge mit aij ≤ aij+1

für j = 1, . . . , n− 1.

Man unterscheidet vergleichende Sortierverfahren von den übrigen Sor-
tierverfahren. Während erstere nur Ja-Nein-Fragen der Form „ai≤aj?“
oder „ai<aj?“ stellen dürfen, können letztere auch die konkreten Zah-
lenwerte ai der Folge abfragen. Vergleichsbasierte Verfahren benötigen
im schlechtesten Fall Ω(n log n) Vergleiche, während letztere unter
bestimmten Zusatzvoraussetzungen sogar in Linearzeit arbeiten.

2.3.1 Sortieren durch Einfügen

Ein einfacher Ansatz, eine Zahlenfolge zu sortieren, besteht darin,
sequentiell die Zahl ai (i = 2, . . . , n) in die bereits sortierte Teilfolge
a1, . . . , ai−1 einzufügen.

Algorithmus Insertion-Sort(a1, . . . , an)
1 for i := 2 to n do z := ai
2 j := i− 1
3 while (j ≥ 1 ∧ aj > z) do
4 aj+1 := aj
5 j := j − 1
6 aj+1 := z

Die Korrektheit von Insertion-Sort lässt sich induktiv durch den
Nachweis folgender Schleifeninvarianten beweisen:

7

2 Suchen und Sortieren 2.3 Sortieralgorithmen

• Nach jedem Durchlauf der for-Schleife sind a1, . . . , ai sortiert.
• Nach jedem Durchlauf der while-Schleife gilt z < ak für
k = j + 2, . . . , i.

Zusammen mit der Abbruchbedingung derwhile-Schleife folgt hieraus,
dass z in Zeile 5 an der jeweils richtigen Stelle eingefügt wird.
Da zudem die while-Schleife für jedes i = 2, . . . , n höchstens (i− 1)-
mal ausgeführt wird, ist die Laufzeit von Insertion-Sort durch∑n
i=2O(i− 1) = O(n2) begrenzt.

Bemerkung 8.

• Ist die Eingabefolge a1, . . . , an bereits sortiert, so wird die while-
Schleife niemals durchlaufen. Im besten Fall ist die Laufzeit
daher ∑n

i=2 Θ(1) = Θ(n).
• Ist die Eingabefolge a1, . . . , an dagegen absteigend sortiert, so
wandert z in i − 1 Durchläufen der while-Schleife vom Ende
an den Anfang der bereits sortierten Teilfolge a1, . . . , ai. Im
schlechtesten Fall ist die Laufzeit also ∑n

i=2 Θ(i− 1) = Θ(n2).
• Bei einer zufälligen Eingabepermutation der Folge 1, . . . , n wird
z im Erwartungswert in der Mitte der Teilfolge a1, . . . , ai einge-
fügt. Folglich beträgt die (erwartete) Laufzeit im durchschnittli-
chen Fall ebenfalls ∑n

i=2 Θ(i−1
2) = Θ(n2).

2.3.2 Sortieren durch Mischen

Wir können eine Zahlenfolge auch sortieren, indem wir sie in zwei
Teilfolgen zerlegen, diese durch rekursive Aufrufe sortieren und die
sortierten Teilfolgen wieder zu einer Liste zusammenfügen.
Diese Vorgehensweise ist unter dem Schlagwort “Divide and Conquer”
(auch “divide et impera”, also “teile und herrsche”) bekannt. Dabei
wird ein Problem gelöst, indem man es

• in mehrere Teilprobleme aufteilt,

• die Teilprobleme rekursiv löst, und
• die Lösungen der Teilprobleme zu einer Gesamtlösung des ur-

sprünglichen Problems zusammenfügt.
Die Prozedur Mergesort(A, l, r) sortiert ein Feld A[l . . . r], indem sie
• es in die Felder A[l . . .m] und A[m+ 1 . . . r] zerlegt,
• diese durch jeweils einen rekursiven Aufruf sortiert, und
• die sortierten Teilfolgen durch einen Aufruf der Prozedur
Merge(A, l,m, r) zu einer sortierten Folge zusammenfügt.

Algorithmus Mergesort(A, l, r)
1 if l < r then
2 m := b(l + r)/2c
3 Mergesort(A, l,m)
4 Mergesort(A,m+ 1, r)
5 Merge(A, l,m, r)

Die Prozedur Merge(A, l,m, r) mischt die beiden sortierten Felder
A[l . . .m] und A[m+ 1 . . . r] zu einem sortierten Feld A[l . . . r].

Prozedur Merge(A, l,m, r)
1 allokiere Speicher fuer ein neues Feld B[l . . . r]
2 j := l
3 k := m+ 1
4 for i := l to r do
5 if j > m then
6 B[i] := A[k]
7 k := k + 1
8 else if k > r then
9 B[i] := A[j]

10 j := j + 1
11 else if A[j] ≤ A[k] then
12 B[i] := A[j]

8

2 Suchen und Sortieren 2.3 Sortieralgorithmen

13 j := j + 1
14 else
15 B[i] := A[k]
16 k := k + 1
17 kopiere das Feld B[l . . . r] in das Feld A[l . . . r]
18 gib den Speicher fuer B wieder frei

Man beachte, dass Merge für die Zwischenspeicherung der gemisch-
ten Folge zusätzlichen Speicher benötigt. Mergesort ist daher kein
“in place”-Sortierverfahren, welches neben dem Speicherplatz für die
Eingabefolge nur konstant viel zusätzlichen Speicher belegen darf.
Zum Beispiel ist Insertion-Sort ein “in place”-Verfahren. Auch
Mergesort kann als ein “in place”-Sortierverfahren implementiert
werden, falls die zu sortierende Zahlenfolge nicht als Array, sondern
als mit Zeigern verkettete Liste vorliegt (hierzu muss allerdings auch
noch die Rekursion durch eine Schleife ersetzt werden).
Unter der Voraussetzung, dass Merge korrekt arbeitet, können wir
per Induktion über die Länge n = r− l+ 1 des zu sortierenden Arrays
die Korrektheit von Mergesort wie folgt beweisen:
n = 1: In diesem Fall tut Mergesort nichts, was offensichtlich korrekt

ist.
n ; n+ 1: Um eine Folge der Länge n+ 1 ≥ 2 zu sortieren, zerlegt

sie Mergesort in zwei Folgen der Länge höchstens n. Diese
werden durch die rekursiven Aufrufe nach IV korrekt sortiert
und von Merge nach Voraussetzung korrekt zusammengefügt.

Die Korrektheit von Merge lässt sich leicht induktiv durch den Nach-
weis folgender Invariante für die for-Schleife beweisen:
• Nach jedem Durchlauf enthält B[l · · · i] die i− l + 1 kleinsten

Elemente aus A[l · · ·m] und A[m+ 1 · · · r] in sortierter Reihen-
folge.
• Hierzu wurden die ersten j − 1 Elemente von A[l · · ·m] und die

ersten k − 1 Elemente von A[m+ 1 · · · r] nach B kopiert.

Nach dem letzten Durchlauf (d.h. i = r) enthält daher B[l · · · r] al-
le r − l + 1 Elemente aus A[l · · ·m] und A[m + 1 · · · r] in sortierter
Reihenfolge, womit die Korrektheit von Merge bewiesen ist.
Um eine Schranke für die Laufzeit von Mergesort zu erhalten, schät-
zen wir zunächst die Anzahl V (n) der Vergleiche ab, die Mergesort im
schlechtesten Fall benötigt, um ein Feld A[l · · · r] der Länge n = r−l+1
zu sortieren. Offensichtlich erfüllt V (n) die Rekursionsgleichung

V (n) =

0, falls n = 1,
V (bn/2c) + V (dn/2e) +M(n), n ≥ 2.

Dabei ist M(n) = n− 1 die Anzahl der Vergleiche, die Merge benö-
tigt, um die beiden sortierten Felder A[l . . .m] und A[m+ 1 . . . r] zu
mischen. Falls n eine Zweierpotenz ist, erhalten wir also die Rekursion

V (1) = 0 und V (n) = 2V (n/2) + n− 1, n ≥ 2.

Für die Funktion f(k) = V (2k) gilt dann

f(0) = 0 und f(k) = 2f(k − 1) + 2k − 1, k ≥ 1.

Aus den ersten Folgengliedern

f(0) = 0,
f(1) = 1,
f(2) = 2 + 22 − 1 = 1 · 22 + 1,
f(3) = 2 · 22 + 2 + 23 − 1 = 2 · 23 + 1,
f(4) = 2 · 2 · 23 + 2 + 24 − 1 = 3 · 24 + 1

lässt sich vermuten, dass f(k) = (k − 1) · 2k + 1 ist. Dies lässt
sich leicht durch Induktion über k verifizieren, so dass wir für
V die Lösungsfunktion V (n) = n log2 n − n + 1 erhalten. Ist n
keine Zweierpotenz, so können wir die Anzahl der Fragen durch
V (n) ≤ V (n′) ≤ V (2n) = O(V (n)) abschätzen, wobei n′ < 2n die
kleinste Zweierpotenz größer als n ist.

9

2 Suchen und Sortieren 2.3 Sortieralgorithmen

Da die Laufzeit T (n) von MergeSort asymptotisch durch die Anzahl
V (n) der Vergleiche beschränkt ist, folgt T (n) = O(V (n)).
Satz 9. MergeSort ist ein vergleichendes Sortierverfahren mit einer
Laufzeit von O(n log n).

2.3.3 Lösen von Rekursionsgleichungen

Im Allgemeinen liefert der “Divide and Conquer”-Ansatz einfach zu
implementierende Algorithmen mit einfachen Korrektheitsbeweisen.
Die Laufzeit T (n) erfüllt dann eine Rekursionsgleichung der Form

T (n) =

Θ(1), falls n „klein“ ist,
D(n) +∑`

i=1 T (ni) + C(n), sonst.

Dabei ist D(n) der Aufwand für das Aufteilen der Probleminstanz
und C(n) der Aufwand für das Verbinden der Teillösungen. Um solche
Rekursionsgleichungen zu lösen, kann man oft eine Lösung „raten“
und per Induktion beweisen. Mit Hilfe von Rekursionsbäumen lassen
sich Lösungen auch „gezielt raten“. Eine asymptotische Abschätzung
liefert folgender Hauptsatz der Laufzeitfunktionen (Satz von Akra &
Bazzi).
Satz 10 (Mastertheorem). Sei T : N→ N eine Funktion der Form

T (n) =
∑̀
i=1

T (ni) + f(n) mit ni ∈ {bαinc, dαine},

wobei 0 < αi < 1, i = 1, . . . , `, fest gewählte reelle Zahlen sind. Dann
gilt im Fall f(n) = Θ(nk) für ein k ≥ 0:

T (n) =


Θ(nk), falls ∑`

i=1 α
k
i < 1,

Θ(nk log n), falls ∑`
i=1 α

k
i = 1,

Θ(nc), falls ∑`
i=1 α

k
i > 1,

wobei c Lösung der Gleichung ∑`
i=1 α

c
i = 1 ist.

Beispiel 11. Die Anzahl V (n) der Vergleiche von MergeSort erfüllt
die Rekursion

V (n) = V (bn/2c) + V (dn/2e) + n− 1,

d.h. l = 2, α1 = α2 = 1/2 und f(n) = n − 1 = Θ(nk) für k = 1.
Wegen ∑`

i=1 α
k
i = 1/2 + 1/2 = 1 folgt daher V (n) = Θ(n log n).

2.3.4 Eine untere Schranke für das Sortierproblem

Frage. Wie viele Vergleichsfragen benötigt ein vergleichender Sor-
tieralgorithmus A mindestens, um eine Folge (a1, . . . , an) von n Zahlen
zu sortieren?

Zur Beantwortung dieser Frage betrachten wir alle n! Eingabefolgen
(a1, . . . , an) der Form (π(1), . . . , π(n)), wobei π ∈ Sn eine beliebige
Permutation auf der Menge {1, . . . , n} ist. Um diese Folgen korrekt zu
sortieren, muss A solange Fragen der Form ai < aj (bzw. π(i) < π(j))
stellen, bis höchstens noch eine Permutation π ∈ Sn mit den er-
haltenen Antworten konsistent ist. Damit A möglichst viele Fragen
stellen muss, beantworten wir diese so, dass mindestens die Hälfte
der verbliebenen Permutationen mit unserer Antwort konsistent ist
(Mehrheitsvotum). Diese Antwortstrategie stellt sicher, dass nach i Fra-
gen noch mindestens n!/2i konsistente Permutationen übrig bleiben.
Daher muss A mindestens

dlog2(n!)e = n log2 n− n log2 e+ 1/2 log n+ Θ(1) = n log2 n−Θ(n)

Fragen stellen, um die Anzahl der konsistenten Permutationen auf
Eins zu reduzieren.

Satz 12. Ein vergleichendes Sortierverfahren benötigt mindestens
dlog2(n!)e Fragen, um eine Folge (a1, . . . , an) von n Zahlen zu sortie-
ren.

10

2 Suchen und Sortieren 2.3 Sortieralgorithmen

Wir können das Verhalten von A auch durch einen Fragebaum B
veranschaulichen, dessen Wurzel mit der ersten Frage von A markiert
ist. Jeder mit einer Frage markierte Knoten hat zwei Kinder, die
die Antworten ja und nein auf diese Frage repräsentieren. Stellt A
nach Erhalt der Antwort eine weitere Frage, so markieren wir den
entsprechenden Antwortknoten mit dieser Frage. Andernfalls gibt A
eine Permutation π der Eingabefolge aus und der zugehörige Antwort-
knoten ist ein Blatt, das wir mit π markieren. Nun ist leicht zu sehen,
dass die Tiefe von B mit der Anzahl V (n) der von A benötigten
Fragen im schlechtesten Fall übereinstimmt. Da jede Eingabefolge
zu einem anderen Blatt führt, hat B mindestens n! Blätter. Folglich
können wir in B einen Pfad der Länge dlog2(n!)e finden, indem wir
jeweils in den Unterbaum mit der größeren Blätterzahl verzweigen.
Da also jedes vergleichende Sortierverfahren mindestens Ω(n log n)
Fragen benötigt, ist Mergesort asymptotisch optimal.

Korollar 13. MergeSort ist ein vergleichendes Sortierverfahren
mit einer im schlechtesten Fall asymptotisch optimalen Laufzeit von
O(n log n).

2.3.5 QuickSort

Ein weiteres Sortierverfahren, das den “Divide and Conquer”-Ansatz
benutzt, ist QuickSort. Im Unterschied zu MergeSort wird hier
das Feld vor den rekursiven Aufrufen umsortiert. Als Folge hiervon
bereitet die Zerlegung in Teilprobleme die Hauptarbeit, während das
Zusammenfügen der Teillösungen trivial ist. Bei MergeSort ist es
gerade umgekehrt.

Algorithmus QuickSort(A, l, r)
1 if l < r then m := Partition(A, l, r)
2 QuickSort(A, l,m− 1)
3 QuickSort(A,m+ 1, r)

Die Prozedur QuickSort(A, l, r) sortiert ein Feld A[l . . . r] wie folgt:
• Zuerst wird die Funktion Partition(A, l, r) aufgerufen.
• Diese wählt ein Pivotelement, welches sich nach dem Aufruf in
A[m] befindet, und sortiert das Feld so um, dass gilt:
A[i] ≤ A[m] ≤ A[j] für alle i, j mit l ≤ i < m < j ≤ r. (∗)

• Danach werden die beiden Teilfolgen A[l . . .m− 1] und A[m+
1 . . . r] durch jeweils einen rekursiven Aufruf sortiert.

Die Funktion Partition(A, l, r) pivotisiert das Feld A[l . . . r], indem
sie
• x = A[r] als Pivotelement wählt,
• die übrigen Elemente mit x vergleicht und dabei umsortiert und
• den neuen Index i+ 1 von x zurückgibt.

Prozedur Partition(A, l, r)
1 i := l − 1
2 for j := l to r − 1 do
3 if A[j] ≤ A[r] then
4 i := i+ 1
5 if i < j then
6 vertausche A[i] und A[j]
7 if i+ 1 < r then
8 vertausche A[i+ 1] und A[r]
9 return(i+1)

Unter der Voraussetzung, dass die Funktion Partition korrekt ar-
beitet, d.h. nach ihrem Aufruf gilt (∗), folgt die Korrektheit von
QuickSort durch einen einfachen Induktionsbeweis über die Länge
n = r − l + 1 des zu sortierenden Arrays.
Die Korrektheit von Partition wiederum folgt leicht aus folgender
Invariante für die for-Schleife:
A[k] ≤ A[r] für k = l, . . . , i und A[k] > A[r] für k = i+ 1, . . . , j. (∗∗)

11

2 Suchen und Sortieren 2.3 Sortieralgorithmen

Da nämlich nach Ende der for-Schleife j = r − 1 ist, garantiert die
Vertauschung von A[i+ 1] und A[r] die Korrektheit von Partition.
Wir müssen also nur noch die Gültigkeit der Schleifeninvariante (∗∗)
nachweisen. Um eindeutig definierte Werte von j vor und nach je-
der Iteration der for-Schleife zu haben, ersetzen wir diese durch eine
semantisch äquivalente while-Schleife:

Prozedur Partition(A, l, r)
1 i := l − 1
2 j := l − 1
3 while j < r − 1 do
4 j := j + 1
5 if A[j] ≤ A[r] then
6 i := i+ 1
7 if i < j then
8 vertausche A[i] und A[j]
9 if i+ 1 < r then

10 vertausche A[i+ 1] und A[r]
11 return(i+1)

Nun lässt sich die Invariante (∗∗) leicht induktiv beweisen.

Induktionsanfang: Vor Beginn der while-Schleife gilt die Invariante,
da i und j den Wert l − 1 haben.

Induktionsschritt: Zunächst wird j hochgezählt und dann A[j] mit
A[r] verglichen.
Im Fall A[j] ≤ A[r] wird auch i hochgezählt (d.h. nach Zeile
6 gilt A[i] > A[r]). Daher gilt nach der Vertauschung in Zei-
le 8: A[i] ≤ A[r] und A[j] > A[r], weshalb die Gültigkeit der
Invariante erhalten bleibt.
Im Fall A[j] > A[r] behält die Invariante ebenfalls ihre Gültig-
keit, da nur j hochgezählt wird und i unverändert bleibt.

Als nächstes schätzen wir die Laufzeit von QuickSort im schlechtes-
ten Fall ab. Dieser Fall tritt ein, wenn sich das Pivotelement nach
jedem Aufruf von Partition am Rand von A (d.h. m = l oder
m = r) befindet. Dies führt nämlich dazu, dass Partition der Reihe
nach mit Feldern der Länge n, n − 1, n − 2, . . . , 1 aufgerufen wird.
Da Partition für die Umsortierung eines Feldes der Länge n genau
n− 1 Vergleiche benötigt, führt QuickSort insgesamt die maximal
mögliche Anzahl

V (n) =
n∑
i=1

(i− 1) =
(
n

2

)
= Θ(n2)

von Vergleichen aus. Dieser ungünstige Fall tritt insbesondere dann
ein, wenn das Eingabefeld A bereits (auf- oder absteigend) sortiert
ist.
Im besten Fall zerlegt das Pivotelement das Feld dagegen jeweils in
zwei gleich große Felder, d.h. V (n) erfüllt die Rekursion

V (n) =

0, n = 1,
V (b(n− 1)/2c) + V (d(n− 1)/2e) + n− 1, n ≥ 2.

Diese hat die Lösung V (n) = n log2 n − Θ(n) (vgl. die worst-case
Abschätzung bei MergeSort).
Es gibt auch Pivotauswahlstrategien, die in linearer Zeit z.B. den
Median bestimmen. Dies führt auf eine Variante von QuickSort mit
einer Laufzeit von Θ(n log n) bei allen Eingaben. Allerdings ist die
Bestimmung des Medians für praktische Zwecke meist zu aufwändig.
Bei der Analyse des Durchschnittsfalls gehen wir von einer zufälli-
gen Eingabepermutation A[1 . . . n] der Folge 1, . . . , n aus. Dann ist
die Anzahl V (n) der Vergleichsanfragen von QuickSort eine Zu-
fallsvariable. Wir können V (n) als Summe ∑1≤i<j≤nXij folgender
Indikatorvariablen darstellen:

Xij =

1, falls die Werte i und j verglichen werden,
0, sonst.

12

2 Suchen und Sortieren 2.3 Sortieralgorithmen

Ob die Werte i und j verglichen werden, entscheidet sich beim ersten
Aufruf von Partition(A, l, r), bei dem das Pivotelement x = A[r]
im Intervall

Iij = {i, . . . , j}
liegt. Bis zu diesem Aufruf werden die Werte im Intervall Iij nur mit
Pivotelementen außerhalb von Iij verglichen und bleiben daher im
gleichen Teilfeld A[l . . . r] beisammen. Ist das erste Pivotelement x in
Iij nun nicht gleich i oder j, dann werden i und j nicht miteinander
verglichen. Das liegt daran dass im Fall i < x < j die Werte i und
j bei diesem Aufruf in zwei verschiedene Teilfelder getrennt werden
ohne miteinander verglichen zu werden.
Die Werte i und j werden also genau dann verglichen, wenn das erste
Pivotelement x im Intervall Iij den Wert i oder j hat. Da die Eingabe
eine Zufallsfolge ohne Mehrfachvorkommen ist, nimmt x jeden Wert
in Iij mit Wahrscheinlichkeit 1/(j− i+ 1) an. Daher findet mit Wahr-
scheinlichkeit pij = 2/(j − i+ 1) ein Vergleich zwischen den Werten i
und j statt.
Der Erwartungswert von V (n) = ∑

1≤i<j≤nXij berechnet sich nun zu

E[V (n)] =
∑

1≤i<j≤n
E[Xij]︸ ︷︷ ︸
pij

=
n−1∑
i=1

n∑
j=i+1

2
j − i+ 1 =

n−1∑
i=1

n−i+1∑
k=2

2
k

≤
n−1∑
i=1

n∑
k=2

2
k
≤ 2

n−1∑
i=1

log n = O(n log n).

Damit ist die durchschnittliche Laufzeit von QuickSort O(n log n).
Dass dies für vergleichende Sortierverfahren asymptotisch optimal ist,
wird in den Übungen gezeigt.

Satz 14. QuickSort ist ein vergleichendes Sortierverfahren mit einer
im Durchschnitt asymptotisch optimalen Laufzeit von O(n log n).

Unabhängig davon nach welcher (deterministischen) Strategie das Pi-
votelement gewählt wird, wird es immer Eingabefolgen geben, für die

QuickSort
(
n
2

)
Vergleiche benötigt. Eine Möglichkeit, die Effizienz

von QuickSort im Durchschnittsfall auf den schlechtesten Fall zu
übertragen, besteht darin, eine randomisierte Auswahlstrategie für
das Pivotelement anzuwenden.
Die Prozedur RandomQuickSort(A, l, r) arbeitet ähnlich wie
QuickSort. Der einzige Unterschied besteht darin, dass als Pivotele-
ment ein zufälliges Element aus dem Feld A[l . . . r] gewählt wird.

Algorithmus RandomQuickSort(A, l, r)
1 if l < r then
2 m := RandomPartition(A, l, r)
3 RandomQuickSort(A, l,m− 1)
4 RandomQuickSort(A,m+ 1, r)

Prozedur RandomPartition(A, l, r)
1 guess randomly j ∈ {l, . . . , r}
2 if j < r then
3 vertausche A[j] und A[r]
4 return(Partition(A, l, r))

Es ist nicht schwer zu zeigen, dass sich RandomQuickSort bei jeder
Eingabefolge A[l, . . . , r] gleich verhält wie QuickSort bei einer zu-
fälligen Permutation dieser Eingabefolge (siehe Übungen). Daher ist
die erwartete Laufzeit von RandomQuickSort auch im schlechtesten
Fall durch O(n log n) beschränkt, falls die Zahlenwerte paarweise
verschieden sind.

Satz 15. RandomQuickSort ist ein randomisiertes vergleichendes
Sortierverfahren mit einer im schlechtesten Fall asymptotisch optima-
len erwarteten Laufzeit von O(n log n).

13

2 Suchen und Sortieren 2.3 Sortieralgorithmen

2.3.6 HeapSort

HeapSort benutzt als Datenstruktur einen so genannten Heap, um
ein Feld zu sortieren.

Definition 16. Ein Heap H mit n Knoten ist
ein geordneter Binärbaum nebenstehender Form.
Das heißt,

H

• H hat in Tiefe i = 0, 1, . . . , blog2 nc − 1 jeweils die maximale
Anzahl von 2i Knoten und
• in Tiefe blog2 nc sind alle Knoten linksbündig angeordnet.

Zudem ist jeder Knoten v mit einer Zahl H[v] beschriftet, deren Wert
mindestens so groß ist wie die Werte der Kinder von v (sofern vor-
handen).

Ein Heap H mit n Knoten lässt sich in einem Feld H[1, . . . , n] spei-
chern. Dabei gilt:
• Das linke Kind von Knoten i hat den Index left(i) = 2i.
• Das rechte Kind von Knoten i hat den Index right(i) = 2i+ 1.
• Der Elternknoten von Knoten i hat den Index parent(i) =
bi/2c.

Die Heap-Eigenschaft lässt sich nun wie folgt formulieren. Für alle
Knoten i ∈ {1, . . . , n} gilt

(2i ≤ n⇒ H[i] ≥ H[2i]) ∧ (2i+ 1 ≤ n⇒ H[i] ≥ H[2i+ 1]).

Da die Knoten im Intervall {bn/2c+ 1, . . . , n} keine Kinder haben,
ist für sie die Heap-Eigenschaft automatisch erfüllt.
Ist H[1, . . . , n] ein Heap, dann repräsentiert auch jedes Anfangsstück
H[1, . . . , r], 1 ≤ r ≤ n, einen Heap Hr mit r Knoten. Zudem ist für
1 ≤ i ≤ r ≤ n der Teilbaum von Hr mit Wurzel i ein Heap, den wir
mit Hi,r bezeichnen.

Da die Wurzel H[1] eines Heaps den größten Wert haben muss, können
wir eine in einem Feld H[1, . . . , n] gespeicherte Zahlenfolge sortieren,
indem wir H zuerst zu einem Heap umsortieren und dann sukzessive
• die Wurzel H[1] mit dem letzten Heap-Element vertauschen,
• den rechten Rand des Heaps um ein Feld nach links verschieben
(also die vormalige Wurzel des Heaps herausnehmen) und
• die durch die Ersetzung der Wurzel verletzte Heap-Eigenschaft
wieder herstellen.

Sei H[1, . . . , n] ein Feld, so dass der Teilbaum Hi,r die Heap-
Eigenschaft in allen Knoten bis auf seine Wurzel i erfüllt. Dann
stellt die Prozedur Heapify(H, i, r) die Heap-Eigenschaft im gesam-
ten Teilbaum Hi,r her.
Prozedur Heapify(H, i, r)
1 if (2i ≤ r) ∧ (H[2i] > H[i]) then
2 x := 2i
3 else
4 x := i
5 if (2i+ 1 ≤ r) ∧ (H[2i+ 1] > H[x]) then
6 x := 2i+ 1
7 if x > i then
8 vertausche H[x] und H[i]}
9 Heapify(H, x, r)

Unter Verwendung der Prozedur Heapify ist es nun leicht, ein Feld
zu sortieren.
Algorithmus HeapSort(H, 1, n)
1 for i := bn/2c downto 1 do
2 Heapify(H, i, n)
3 for r := n downto 2 do
4 vertausche H[1] und H[r]
5 Heapify(H, 1, r − 1)

14

2 Suchen und Sortieren 2.3 Sortieralgorithmen

Wir setzen zunächst voraus, dass die Prozedur Heapify korrekt ar-
beitet. D.h. Heapify(H, i, r) stellt die Heap-Eigenschaft im gesamten
Teilbaum Hi,r her, falls Hi,r die Heap-Eigenschaft höchstens in seiner
Wurzel i nicht erfüllt. Unter dieser Voraussetzung folgt die Korrektheit
von HeapSort mittels folgender Schleifeninvarianten, die sich sehr
leicht verifizieren lassen.
Invariante für die erste for-Schleife (Zeilen 1 – 2):

Für j = i, . . . , n ist der Teilbaum Hj,n ein Heap.
Nach Beendigung dieser Schleife (d.h. i = 1) ist demnach H1,n ein
Heap.
Invariante für die zweite for-Schleife (Zeilen 3 – 5):

H[r], . . . , H[n] enthalten die n− r+ 1 größten Feldelemen-
te in sortierter Reihenfolge und der Teilbaum H1,r−1 ist
ein Heap.

Am Ende der zweiten for-Schleife (d.h. r = 2) enthält also H[2, . . . , n]
die n− 1 größten Elemente in sortierter Reihenfolge, d.h. H[1, . . . , n]
ist sortiert.
Als nächstes zeigen wir die Korrektheit von Heapify. Sei also
H[1, . . . , n] ein Feld, so dass der Teilbaum Hi,r die Heap-Eigenschaft
in allen Knoten bis auf seine Wurzel i erfüllt. Dann müssen wir zeigen,
dass Heapify(H, i, r) die Heap-Eigenschaft im gesamten Teilbaum
Hi,r herstellt.
Heapify(H, i, r) bestimmt den Knoten x ∈ {i, 2i, 2i + 1} mit ma-
ximalem Wert H(x). Im Fall x = i erfüllt der Knoten i bereits die
Heap-Eigenschaft. Ist x dagegen eines der Kinder von i, so vertauscht
Heapify die Werte von i und x. Danach ist die Heap-Eigenschaft
höchstens noch im Knoten x verletzt. Daher folgt die Korrektheit von
Heapify durch einen einfachen Induktionsbeweis über die Rekursi-
onstiefe.
Es ist leicht zu sehen, dass Heapify(H, i, r) maximal 2h(i) Vergleiche
benötigt, wobei h(i) die Höhe des Knotens i in H1,r ist. Daher ist die

Laufzeit von Heapify(H, i, r) durch O(h(i)) = O(log r) beschränkt.
Für den Aufbau eines Heaps H der Tiefe t = blog2 nc wird Heapify
in der ersten for-Schleife für höchstens
• 20 = 1 Knoten der Höhe h = t,
• 21 = 2 Knoten der Höhe h = t− 1,

...
• 2t−1 Knoten der Höhe h = t− (t− 1) = 1

aufgerufen. Für h = 1, . . . , t sind das also höchstens 2t−h Knoten
der Höhe h. Da Heapify für einen Knoten der Höhe h höchstens 2h
Vergleichsfragen stellt, benötigt der Aufbau des Heaps maximal

V1(n) ≤ 2
t∑

h=1
h2t−h ≤ 2

t∑
h=1

h
n

2h < 2n
∞∑
h=1

h

2h = 4n

Vergleiche. Für den Abbau des Heaps in der zweiten for-Schleife wird
Heapify genau (n− 1)-mal aufgerufen. Daher benötigt der Abbau
des Heaps maximal

V2(n) ≤ 2(n− 1)blog2 nc ≤ 2n log2 n

Vergleiche.

Satz 17. HeapSort ist ein vergleichendes Sortierverfahren mit einer
im schlechtesten Fall asymptotisch optimalen Laufzeit von O(n log n).

Die Floyd-Strategie

Die Floyd-Strategie benötigt beim Abbau des Heaps im Durchschnitt
nur halb so viele Vergleiche wie die bisher betrachtete Williams-
Strategie. Die Idee besteht darin, dass Heapify(H, 1, r) beginnend
mit der Wurzel i0 = 1 sukzessive die Werte der beiden Kinder des
aktuellen Knotens ij vergleicht und jeweils zu dem Kind ij+1 mit dem

15

2 Suchen und Sortieren 2.3 Sortieralgorithmen

größeren Wert absteigt, bis nach t ≤ blog2 rc Schritten ein Blatt it
erreicht wird.
Nun geht Heapify auf diesem Pfad bis zum ersten Knoten ij
mit H[ij] ≥ H[1] zurück und führt auf den Werten der Knoten
ij, ij−1, . . . , i0 einen Ringtausch aus, um die Heap-Eigenschaft herzu-
stellen. Dies erfordert

t+ (t− j + 1) = 2t− j + 1

Vergleiche (im Unterschied zu 2j Vergleichen bei der Williams-
Strategie). Da sich der Knoten ij, an dessen Stelle der Wurzelknoten
eingefügt wird, im Mittel sehr weit unten im Baum befindet (d.h.
t− j = O(1)), spart man auf diese Art asymptotisch die Hälfte der
Vergleiche.

2.3.7 BucketSort

Die Prozedur BucketSort sortiert n Zahlen a1, . . . , an aus einem
Intervall [a, b) wie folgt (z.B. für n = 10, a = 0 und b = 100):

1. Erstelle für j = 1, . . . , n eine Liste Lj für das halb offene Intervall
Ij =

[
a+ (j − 1) b−a

n
, a+ j b−a

n

)
= [10(j − 1), 10j).

2. Bestimme zu jedem Element ai das Intervall Ij , zu dem es gehört,
und füge es in die entsprechende Liste Lj ein.

3. Sortiere jede Liste Lj.
4. Füge die sortierten Listen Lj wieder zu einer Liste zusammen.

Im schlechtesten Fall kommen alle Schlüssel in die gleiche Liste. Dann
hat BucketSort dieselbe asymptotische Laufzeit wie das als Unter-
routine verwendete Sortierverfahren. Sind dagegen die zu sortierenden
Zahlenwerte im Intervall [a, b) (annähernd) gleichverteilt, so ist die
durchschnittliche Laufzeit von BucketSort Θ(n). Dies gilt sogar,
wenn als Unterroutine ein Sortierverfahren der Komplexität O(n2)
verwendet wird.

Wir schätzen nun die erwartete Laufzeit von BucketSort ab, wobei
wir annehmen, dass die Folgenglieder ai im Intervall [a, b) unabhängig
gleichverteilt sind. Sei Xi die Zufallsvariable, die die Länge der Liste
Li beschreibt. Dann ist Xi binomialverteilt mit Parametern n und
p = 1/n. Also hat Xi den Erwartungswert

E[Xi] = np = 1

und die Varianz

V [Xi] = np(1− p) = 1− 1/n < 1.

Wegen V [Xi] = E[X2
i] − E[Xi]2 ist E[X2

i] = V [Xi] + E[Xi]2 < 2.
Daher folgt für die erwartete Laufzeit T (n) von BucketSort:

T (n) = O(n) + E

[
n−1∑
i=0
O(X2

i)
]

= O
(
n+

n−1∑
i=0

E[X2
i]
)

= O(n).

2.3.8 CountingSort

Die Prozedur CountingSort sortiert eine Zahlenfolge, indem sie zu-
nächst die Anzahl der Vorkommen jedes Wertes in der Folge und
daraus die Rangzahlen C[i] = ‖{j | A[j] ≤ i}‖ der Zahlenwerte
i = 0, . . . , k bestimmt. Dies funktioniert nur unter der Einschränkung,
dass die Zahlenwerte natürliche Zahlen sind und eine Obergrenze k
für ihre Größe bekannt ist.

Algorithmus CountingSort(A, 1, n, k)
1 for i := 0 to k do C[i] := 0
2 for j := 1 to n do C[A[j]] := C[A[j]] + 1
3 for i := 1 to k do C[i] := C[i] + C[i− 1]
4 for j := 1 to n do
5 B[C[A[j]]] := A[j]
6 C[A[j]] := C[A[j]]− 1
7 for j := 1 to n do A[j] := B[j]

16

2 Suchen und Sortieren 2.3 Sortieralgorithmen

Satz 18. CountingSort sortiert n natürliche Zahlen der Größe
höchstens k in Zeit Θ(n+ k) und Platz Θ(n+ k).

Korollar 19. CountingSort sortiert n natürliche Zahlen der Größe
O(n) in linearer Zeit und linearem Platz.

2.3.9 RadixSort

RadixSort sortiert d-stellige Zahlen a = ad · · · a1 eine Stelle nach der
anderen, wobei mit der niederwertigsten Stelle begonnen wird.

Algorithmus RadixSort(A, 1, n)
1 for i := 1 to d do
2 sortiere A[1, . . . , n] nach der i-ten Stelle

Hierzu sollten die Folgenglieder möglichst als Festkomma-Zahlen vor-
liegen. Zudem muss in Zeile 2 „stabil“ sortiert werden.

Definition 20. Ein Sortierverfahren heißt stabil, wenn es die relative
Reihenfolge von Elementen mit demselben Wert nicht verändert.

Es empfiehlt sich, eine stabile Variante von CountingSort als Unter-
routine zu verwenden. Damit CountingSort stabil sortiert, brauchen
wir lediglich die for-Schleife in Zeile 4 in der umgekehrten Reihenfolge
zu durchlaufen:

1 for j := 1 to n do C[A[j]] := C[A[j]] + 1
2 for i := 1 to k do C[i] := C[i] + C[i− 1]
3 for j := n downto 1 do
4 B[C[A[j]]] := A[j]
5 C[A[j]] := C[A[j]]− 1
6 for j := 1 to n do A[j] := B[j]

Satz 21. RadixSort sortiert n d-stellige Festkomma-Zahlen zur Ba-
sis b in Zeit Θ(d(n+ b)).

RadixSort sortiert beispielsweise n O(log n)-stellige Binärzahlen in
Zeit Θ(n log n). Wenn wir r benachbarte Ziffern zu einer „Ziffer“
z ∈ {0, . . . , br − 1} zusammenfassen, erhalten wir folgende Variante
von RadixSort.

Korollar 22. Für jede Zahl 1 ≤ r ≤ d sortiert RadixSort n d-
stellige Festkomma- Zahlen zur Basis b in Zeit Θ(d/r(n+ br)).

Wählen wir beispielsweise r = dlog2 ne, so erhalten wir für d =
O(log n)-stellige Binärzahlen eine Komplexität von

Θ (d/r(n+ 2r)) = Θ(n+ 2r) = Θ(n).

2.3.10 Vergleich der Sortierverfahren

Folgende Tabelle zeigt die Komplexitäten der betrachteten vergleichs-
basierten Sortierverfahren.

Insertion- MergeSort Quick- Heap-
Sort Sort Sort

worst-case Θ(n2) Θ(n log n) Θ(n2) Θ(n log n)
average-case Θ(n2) Θ(n log n) Θ(n log n) Θ(n log n)
Speicherplatz Θ(1) Θ(n) bzw. Θ(1) Θ(log n) Θ(1)
stabil ja ja nein nein

Wir fassen auch die wichtigsten Eigenschaften der betrachteten
Linearzeit-Sortierverfahren zusammen.
• BucketSort: Im Durchschnitt linearer Zeitverbrauch, falls die
n Zahlen in einem Intervall [a, b) gleichverteilt sind.
• CountingSort: Sogar im schlechtesten Fall lineare Zeit, falls

die Werte natürliche Zahlen sind und O(n) nicht übersteigen.

17

2 Suchen und Sortieren 2.4 Datenstrukturen für dynamische Mengen

• RadixSort: Bitweises Sortieren in linearer Zeit, falls die zu
sortierenden Zahlen in Festkomma-Darstellung nicht mehr als
O(log n) Bit haben.

2.4 Datenstrukturen für dynamische Mengen

Viele Algorithmen benötigen eine Datenstruktur für dynamische Men-
gen. Eine solche Datenstruktur S sollte im Prinzip beliebig viele
Elemente aufnehmen können. Die Elemente x ∈ S werden dabei
anhand eines Schlüssels k = key(x) identifiziert. Auf die Elemente
x ∈ S wird meist nicht direkt, sondern mittels Zeiger (engl. pointer)
zugegriffen.
Typische Operationen, die auf einer dynamische Mengen S auszufüh-
ren sind:
Insert(S, x): Fügt x in S ein.
Remove(S, x): Entfernt x aus S.
Search(S, k): Gibt für einen Schlüssel k (einen Zeiger auf) das Ele-

ment x ∈ S mit key(x) = k zurück, falls ein solches Element
existiert, und nil sonst.

Min(S): Gibt das Element in S mit dem kleinsten Schlüssel zurück.
Max(S): Gibt das Element in S mit dem größten Schlüssel zurück.
Prec(S, x): Gibt das Element in S mit dem nach x nächstkleineren

Schlüssel zurück (bzw. nil, falls x das Minimum ist).
Succ(S, x): Gibt das Element in S mit dem nach x nächstgrößeren

Schlüssel zurück (bzw. nil, falls x das Maximum ist).

2.4.1 Verkettete Listen

Die Elemente einer verketteten Liste sind in linearer Reihenfolge an-
geordnet. Das erste Element der Liste L ist head(L). Jedes Element
x „kennt“ seinen Nachfolger next(x). Wenn jedes Element x auch

seinen Vorgänger prev(x) kennt, dann spricht man von einer doppelt
verketteten Liste.
Die Prozedur L-Insert(L, x) fügt ein Element x in eine verkettete
Liste L ein.

Prozedur L-Insert(L, x)
1 next(x) := head(L)
2 head(L) := x

Die Prozedur DL-Insert(L, x) fügt ein Element x in eine doppelt
verkettete Liste L ein.

Prozedur DL-Insert(L, x)
1 next(x) := head(L)
2 if head(L) 6= nil then
3 prev(head(L)) := x
4 head(L) := x
5 prev(x) := nil

Die Prozedur DL-Remove(L, x) entfernt wieder ein Element x aus
einer doppelt verketteten Liste L.

Prozedur DL-Remove(L, x)
1 if x 6= head(L) then
2 next(prev(x)) := next(x)
3 else
4 head(L) := next(x)
5 if next(x) 6= nil then
6 prev(next(x)) := prev(x)

Die Prozedur DL-Search(L, k) sucht ein Element x mit dem Schlüssel
k in der Liste L.

Prozedur DL-Search(L, k)

18

2 Suchen und Sortieren 2.4 Datenstrukturen für dynamische Mengen

1 x := head(L)
2 while x 6= nil and key(x) 6= k do
3 x := next(x)
4 return(x)

Es ist leicht zu sehen, dass DL-Insert und DL-Remove konstante
Zeit Θ(1) benötigen, während DL-Search eine lineare (in der Länge
der Liste) Laufzeit hat.

Bemerkung 23.
• Wird DL-Remove nur der Schlüssel übergeben, dann wäre die
Laufzeit linear, da wir erst mit DL-Search das entsprechende
Element suchen müssen.
• Für einfach verkettete Listen ist der Aufwand von Remove eben-
falls linear, da wir keinen direkten Zugriff auf den Vorgänger
haben.
• Die Operationen Max, Min, Prec und Succ lassen sich ebenfalls
mit linearer Laufzeit berechnen (siehe Übungen).
• Da sich MergeSort für Listen als “in place”-Verfahren imple-
mentieren lässt (siehe Übungen), können Listen in konstantem
Platz und Zeit O(n log n) sortiert werden.

2.4.2 Binäre Suchbäume

Ein Binärbaum B kann wie folgt durch eine Zeigerstruktur repräsen-
tiert werden. Jeder Knoten x in B hat folgende drei Zeiger:
• left(x) zeigt auf das linke Kind,
• right(x) zeigt auf das rechte Kind und
• parent(x) zeigt auf den Elternknoten.

Für die Wurzel w = root(B) ist parent(w) = nil und falls ei-
nem Knoten x eines seiner Kinder fehlt, so ist der entsprechende

Zeiger ebenfalls nil. Auf diese Art lassen sich beispielsweise Heaps
für unbeschränkt viele Datensätze implementieren.

Definition 24. Ein binärer Baum B ist ein binärer Suchbaum, falls
für jeden Knoten x in B folgende Eigenschaften erfüllt sind:
• Für jeden Knoten y im linken Teilbaum von x gilt key(y) ≤
key(x) und
• für jeden Knoten y im rechten Teilbaum von x gilt key(y) ≥
key(x).

Folgende Prozedur ST-Search(B, k) sucht ein Element x mit dem
Schlüssel k im binären Suchbaum (engl. search tree) B.

Prozedur ST-Search(B, k)
1 x := root(B)
2 while x 6= nil ∧ key(x) 6= k do
3 if k ≤ key(x) then
4 x := left(x)
5 else
6 x := right(x)
7 return(x)

Die Prozedur ST-Insert(B, z) fügt ein neues Element z in B ein,
indem sie den nil-Zeiger „sucht“, der eigentlich auf den Knoten z
zeigen müsste.

Prozedur ST-Insert(B, z)
1 if root(B) = nil then
2 root(B) := z
3 parent(z) := nil
4 else
5 x := root(B)
6 repeat
7 y := x

19

2 Suchen und Sortieren 2.4 Datenstrukturen für dynamische Mengen

8 if key(z) ≤ key(x) then
9 x := left(x)

10 else
11 x := right(x)
12 until x = nil
13 if key(z) ≤ key(y) then
14 left(y) := z
15 else
16 right(y) := z
17 parent(z) := y

Satz 25. Die Prozeduren ST-Search und ST-Insert laufen auf ei-
nem binären Suchbaum der Höhe h in Zeit O(h).

Bemerkung 26. Auch die Operationen Min, Max, Succ, Prec und
Remove lassen sich auf einem binären Suchbaum der Höhe h in Zeit
O(h) implementieren (siehe Übungen).

Die Laufzeiten der Operationen für binäre Suchbäume hängen von
der Tiefe der Knoten im Suchbaum ab. Suchbäume können zu Listen
entarten. Dieser Fall tritt z.B. ein, falls die Datensätze in sortier-
ter Reihenfolge eingefügt werden. Daher haben die Operationen im
schlechtesten Fall eine lineare Laufzeit.
Für die Analyse des Durchschnittsfalls gehen wir davon aus, dass
die Einfügesequenz eine zufällige Permutation von n verschiedenen
Zahlen ist. Dann lässt sich zeigen, dass der resultierende Suchbaum
eine erwartete Tiefe von O(log n) hat (siehe Übungen). Somit ist die
erwartete Laufzeit der Operationen nur O(log n).

2.4.3 Balancierte Suchbäume

Um die Tiefe des Suchbaums klein zu halten, kann er während der
Einfüge- und Löschoperationen auch aktiv ausbalanciert werden. Hier-
für gibt es eine ganze Reihe von Techniken. Die drei bekanntesten

sind Rot-Schwarz-Bäume, Splay-Bäume und die AVL-Bäume, mit
denen wir uns im Folgenden etwas näher befassen möchten.

Definition 27. Ein AVL-Baum T ist ein binärer Suchbaum, der
höhenbalanciert ist, d.h. für jeden Knoten x von T unterscheiden sich
die Höhen des linken und rechten Teilbaumes von x höchstens um
eins (die Höhe eines nicht existierenden Teilbaumes setzen wir mit
−1 an).

Lemma 28. Die Höhe eines AVL-Baumes mit n Knoten ist O(log n).

Beweis. Sei M(h) die minimale Blattzahl eines AVL-Baumes der
Höhe h. Dann gilt

M(h) =

1, h = 0 oder 1,
M(h− 1) +M(h− 2), h ≥ 2.

M(h) ist also die (h+ 1)-te Fibonacci-Zahl Fh+1. Wir zeigen durch In-
duktion über h, dass Fh+1 ≥ φh−1 für h ≥ 0 ist, wobei φ = (1 +

√
5)/2

der goldene Schnitt ist. Der Induktionsanfang (h = 0 oder 1) ist
klar, da F2 = F1 = 1 = φ0 ≥ φ−1 ist. Unter der Induktionsannahme
Fh′+1 ≥ φh

′−1 für h′ ≤ h− 1 folgt wegen φ2 = φ+ 1

Fh+1 = Fh + Fh−1 ≥ φh−2 + φh−3 = φh−3(φ+ 1) = φh−1.

Daher hat ein AVL-Baum der Höhe h mindestens

b ≥M(h) = Fh+1 ≥ φh−1

Blätter. Da ein Binärbaum mit n Knoten höchstens b ≤ (n + 1)/2
Blätter hat, folgt

h ≤ 1 + logφ(b) < logφ(n+ 1) = O(log2 n).

Der konstante Faktor in O(log2 n) ist hierbei 1
log2(φ) ≈ 1,44. �

20

2 Suchen und Sortieren 2.4 Datenstrukturen für dynamische Mengen

Für die Aufrechterhaltung der AVL-Eigenschaft eines AVL-Baums
T benötigen wir folgende Information über jeden Knoten x. Seien hl
und hr die Höhen des linken und des rechten Teilbaums von x. Dann
heißt die Höhendifferenz

bal(x) = hl − hr

die Balance von x in T . T ist also genau dann ein AVL-Baum, wenn
jeder Knoten x in T die Höhendifferenz 0, 1 oder −1 hat. Im Folgenden
bezeichne T (x) den Teilbaum von T mit der Wurzel x.
Wir fügen einen neuen Knoten z in einen AVL-Baum T ähnlich wie
die Prozedur ST-Insert für binäre Suchbäume ein. D.h. wir „suchen“
den Schlüssel k = key(z) in T bis wir einen Knoten y mit k ≤ key(y)
und left(y) = nil bzw. k > key(y) und right(y) = nil erreichen
und fügen z an dieser Stelle als Kind von y ein. Da z ein Blatt ist,
erhält z den Wert bal(z) = 0. Das Einfügen von z kann nur für
Knoten auf dem Pfad von z zur Wurzel von T eine Änderung der
Höhendifferenz bewirken. Daher genügt es, diesen Suchpfad zurückzu-
gehen und dabei für jeden besuchten Knoten die AVL-Eigenschaft zu
testen und nötigenfalls wiederherzustellen.
Wir untersuchen zuerst, ob y die AVL-Eigenschaft verletzt.

1. Falls der Wert von bal(y) gleich −1
oder 1 ist, hatte T (y) schon vor dem
Einfügen von z die Höhe 1. Daher
genügt es, bal(y) = 0 zu setzen.

y
−1

z

0
x

0
y
0

z

0
x

0

2. Falls bal(y) = 0 ist, wurde z an
ein Blatt gehängt, d.h. die Höhe von
T (y) ist um 1 gewachsen. Zunächst
setzen wir bal(y) auf den Wert 1
oder −1,

y
1

z

0
y
−1

z

0

je nachdem ob z linkes oder rechtes Kind von y ist. Dann wird
die rekursive Prozedur AVL-Check-Insertion(y) aufgerufen,
die überprüft, ob weitere Korrekturen nötig sind.

Prozedur AVL-Insert(B, z)
1 if root(B) = nil then
2 root(B) := z
3 parent(z) := nil
4 bal(z) := 0
5 else
6 x := root(B)
7 repeat
8 y := x
9 if key(z) ≤ key(x) then

10 x := left(x)
11 else
12 x := right(x)
13 until (x = nil)
14 if key(z) ≤ key(y) then
15 left(y) := z
16 else
17 right(y) := z
18 parent(z) := y
19 bal(z) := 0
20 if bal(y) ∈ {−1, 1} then
21 bal(y) := 0
22 else
23 if z = left(y) then
24 bal(y) := 1
25 else
26 bal(y) := −1
27 AVL-Check-Insertion(y)

Als nächstes beschreiben wir die Prozedur AVL-Check-Insertion(y).
Dabei setzen wir voraus, dass bei jedem Aufruf folgende Bedingung
erfüllt ist:

Der Wert von bal(y) wurde von 0 auf ±1 aktualisiert, d.h.

21

2 Suchen und Sortieren 2.4 Datenstrukturen für dynamische Mengen

die Höhe von T (y) ist um 1 gewachsen.
Falls y die Wurzel von T ist, ist nichts weiter zu tun. Andernfalls
nehmen wir an, dass y linkes Kind von p = parent(y) ist (der Fall
y = right(p) ist analog).

1. Im Fall bal(p) = −1 genügt
es, bal(p) = 0 zu setzen.

p
−1

y
1 p

0

y
1

2. Im Fall bal(p) = 0 setzen
wir bal(p) = 1 und rufen
AVL-Check-Insertion(p)
auf.

p
1

y
1 p

1

y
−1

3. Im Fall bal(p) = 1 müssen
wir T umstrukturieren, da
die aktuelle Höhendifferenz
von p gleich 2 ist.

p
2

y
1 p

2

y
−1

3a. Im Fall bal(y) = 1 sei T1 der linke und T2 der rechte
Teilbaum von y. Weiter sei T3 der rechte Teilbaum von p
und h sei die Höhe von T (y). Dann gilt für die Höhen hi
der Teilbäume Ti:

h1 = h− 1 und h2 = h3 = h− 2.

Wir führen nun eine so genannte Rechts-Rotation aus,
p
2

y
1

T1
T2

T3

y
0

p
0

T1 T2 T3

d.h. p wird rechtes Kind von y und erhält T2 als linken
und T3 als rechten Teilbaum (d.h. bal(p) erhält den Wert
0) und T1 bleibt linker Teilbaum von y (d.h. bal(y) erhält

ebenfalls den Wert 0). Dann hat der rotierte Teilbaum
wieder die gleiche Höhe wie vor dem Einfügen von z. Daher
ist nichts weiter zu tun.

3b. Im Fall bal(y) = −1 sei T1 der linke
Teilbaum von y und T4 der rechte
Teilbaum von p. Weiter seien T2 und
T3 der linke und rechte Teilbaum von
x = right(y). Die Höhe von T (y)
bezeichnen wir wieder mit h. Dann
ist h3 = h2−bal(x), wobei bal(x) = 0

p
2

y
−1

x

1

T1
T2

T3

T4

nur im Fall h = 1 möglich ist (d.h. x = z und alle Teilbäu-
me T1, T2, T3 und T4 sind leer). Weiter gilt

h1 = h4 = h− 2 und h− 3 ≤ h2, h3 ≤ h− 2.

Daher genügt es, eine Doppel-Rotation (genauer: eine Links-
Rechts-Rotation) auszuführen,

p
2

y
−1

x

1

T1
T2

T3

T4

x

0

y
0

p
−1

T1 T2
T3

T4

d.h. y wird linkes und p wird rechtes Kind von x, y erhält
T1 als linken und T2 als rechten Teilbaum und p erhält T3
als linken und T4 als rechten Teilbaum. Die neuen Balance-
Werte von p, y und x sind

bal(p) =
{
−1, bal(x) = 1,

0, sonst, bal(y) =
{

1, bal(x) = −1,
0, sonst

und bal(x) = 0. Der rotierte Teilbaum hat die gleiche
Höhe wie der ursprüngliche Teilbaum an dieser Stelle und
daher ist nichts weiter zu tun.

22

2 Suchen und Sortieren 2.4 Datenstrukturen für dynamische Mengen

In Pseudocode lässt sich die Prozedur AVL-Check-Insertion dem-
nach wie folgt implementieren.

Prozedur AVL-Check-Insertion(B, y)
1 p := parent(y)
2 if p = nil then return
3 if y = left(p) then
4 if bal(p) = −1 then
5 bal(p) := 0
6 else if bal(p) = 0 then
7 bal(p) := 1
8 AVL-Check-Insertion(B, p)
9 else // bal(p) = 1

10 if bal(y) = 1 then
11 RightRotate(B, y)
12 else // bal(y) = −1
13 LeftRightRotate(B, y)
14 else // y = right(p)
15 if bal(p) = 1 then
16 bal(p) := 0
17 else if bal(p) = 0 then
18 bal(p) := −1
19 AVL-Check-Insertion(B, p)
20 else // bal(p) = −1
21 if bal(y) = −1 then
22 LeftRotate(B, y)
23 else // bal(y) = 1
24 RightLeftRotate(B, y)

Wir geben exemplarisch auch noch die Prozedur RightRotate in
Pseudocode an. Die übrigen Rotationsprozeduren lassen sich ganz
ähnlich implementieren (siehe Übungen).

Prozedur RightRotate(B, y)
1 p := parent(y)
2 T1 := left(y); T2 := right(y); T3 := right(p)
3 // setze y an die Wurzel des Teilbaums
4 T (p) p′ := parent(p)
5 if p′ = nil then
6 root(B) := y
7 else if left(p′) = p then
8 left(p′) := y
9 else // right(p′) = p

10 right(p′) := y
11 parent(y) := p′

12 // setze p als rechtes Kind von y
13 right(y) := p
14 parent(p) := y
15 // setze T2 als linken Teilbaum von p
16 left(p) := T2
17 if T2 6= nil then parent(T2) := p
18 bal(y) := 0; bal(p) := 0 // aktualisiere die Balancen

Folgende Tabelle fasst die worst-case Komplexitäten der betrachteten
Datenstrukturen für dynamische Mengen zusammen.

Search Min/Max Prec/Succ Insert Remove

Heap O(n) O(1) O(n) O(log n) O(log n)
Liste (einfach) O(n) O(n) O(n) O(1) O(n)
Liste (doppelt) O(n) O(n) O(n) O(1) O(1)
Suchbaum O(n) O(n) O(n) O(n) O(n)
AVL-Baum O(log n) O(log n) O(log n) O(log n) O(log n)

23

3 Graphalgorithmen

3.1 Grundlegende Begriffe

Definition 29. Ein (ungerichteter) Graph ist ein Paar G = (V,E),
wobei

V - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.

Hierbei gilt
E ⊆

(
V
2

)
=
{
{u, v} ⊆ V | u 6= v

}
.

Sei v ∈ V ein Knoten.
a) Die Nachbarschaft von v ist NG(v) = {u ∈ V | {u, v} ∈ E}.
b) Der Grad von v ist degG(v) = ‖NG(v)‖.
c) Der Minimalgrad von G ist δ(G) = minv∈V degG(v) und der

Maximalgrad von G ist ∆(G) = maxv∈V degG(v).

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach
N(v), deg(v), δ usw.

Beispiel 30.

• Der vollständige Graph (V,E) auf n Knoten, d.h. ‖V ‖ = n und
E =

(
V
2

)
, wird mit Kn und der leere Graph (V, ∅) auf n Knoten

wird mit En bezeichnet.

K1: K2: K3: K4: K5:

• Der vollständige bipartite Graph (A,B,E) auf a+b Knoten, d.h.
A∩B = ∅, ‖A‖ = a, ‖B‖ = b und E = {{u, v} | u ∈ A, v ∈ B}
wird mit Ka,b bezeichnet.

K1,1: K1,2: K2,2: K2,3: K3,3:

• Der Pfad der Länge n− 1 wird mit Pn bezeichnet.

P2: P3: P4: P5:

• Der Kreis der Länge n wird mit Cn bezeichnet.

C3: C4: C5: C6:

Definition 31. Sei G = (V,E) ein Graph.
a) Eine Knotenmenge U ⊆ V heißt stabil, wenn es keine Kante

von G mit beiden Endpunkten in U gibt, d.h. es gilt E∩
(
U
2

)
= ∅.

Die Stabilitätszahl ist

α(G) = max{‖U‖ | U ist stabile Menge in G}.

b) Eine Knotenmenge U ⊆ V heißt Clique, wenn jede Kante mit
beiden Endpunkten in U in E ist, d.h. es gilt

(
U
2

)
⊆ E. Die

Cliquenzahl ist

ω(G) = max{‖U‖ | U ist Clique in G}.

c) Eine Abbildung f : V → N heißt Färbung von G, wenn
f(u) 6= f(v) für alle {u, v} ∈ E gilt. G heißt k-färbbar, falls
eine Färbung f : V → {1, . . . , k} existiert. Die chromatische
Zahl ist

χ(G) = min{k ∈ N | G ist k-färbbar}.

d) Ein Graph heißt bipartit, wenn χ(G) ≤ 2 ist.

24

3 Graphalgorithmen 3.1 Grundlegende Begriffe

e) Ein Graph G′ = (V ′, E ′) heißt Sub-/Teil-/Untergraph von G,
falls V ′ ⊆ V und E ′ ⊆ E ist. Ein Subgraph G′ = (V ′, E ′) heißt
(durch V ′) induziert, falls E ′ = E ∩

(
V ′

2

)
ist. Hierfür schreiben

wir auch H = G[V ′].
f) Ein Weg ist eine Folge von (nicht notwendig verschiedenen)

Knoten v0, . . . , v` mit {vi, vi+1} ∈ E für i = 0, . . . , ` − 1. Die
Länge des Weges ist die Anzahl der Kanten, also `. Im Fall ` = 0
heißt der Weg trivial. Ein Weg v0, . . . , v` heißt auch v0-v`-Weg.

g) Ein Graph G = (V,E) heißt zusammenhängend, falls es für
alle Paare {u, v} ∈

(
V
2

)
einen u-v-Weg gibt.

h) Ein Zyklus ist ein u-v-Weg der Länge ` ≥ 2 mit u = v.
i) Ein Weg heißt einfach oder Pfad, falls alle durchlaufenen Kno-

ten verschieden sind.
j) Ein Kreis ist ein Zyklus v0, v1 . . . , v`−1, v0 der Länge ` ≥ 3, für

den v0, v1, . . . , v`−1 paarweise verschieden sind.
k) Ein Graph G = (V,E) heißt kreisfrei, azyklisch oder Wald, falls

er keinen Kreis enthält.
l) Ein Baum ist ein zusammenhängender Wald.

m) Jeder Knoten u ∈ V vom Grad deg(u) ≤ 1 heißt Blatt und die
übrigen Knoten (vom Grad ≥ 2) heißen innere Knoten.

Es ist leicht zu sehen, dass die Relation

Z = {(u, v) ∈ V × V | es gibt in G einen u-v-Weg}

eine Äquivalenzrelation ist. Die durch die Äquivalenzklassen von Z in-
duzierten Teilgraphen heißen die Zusammenhangskomponenten (engl.
connected components) von G.

Definition 32. Ein gerichteter Graph oder Digraph ist ein Paar
G = (V,E), wobei
V - eine endliche Menge von Knoten/Ecken und

E - die Menge der Kanten ist.

Hierbei gilt

E ⊆ V × V =
{

(u, v) | u, v ∈ V
}
,

wobei E auch Schlingen (u, u) enthalten kann. Sei v ∈ V ein Knoten.
a) Die Nachfolgermenge von v ist N+(v) = {u ∈ V | (v, u) ∈ E}.
b) Die Vorgängermenge von v ist N−(v) = {u ∈ V | (u, v) ∈ E}.
c) Die Nachbarmenge von v ist N(v) = N+(v) ∪N−(v).
d) Der Ausgangsgrad von v ist deg+(v) = ‖N+(v)‖ und der Ein-

gangsgrad von v ist deg−(v) = ‖N−(v)‖. Der Grad von v ist
deg(v) = deg+(v) + deg−(v).

e) Ein gerichteter v0-v`-Weg ist eine Folge von Knoten v0, . . . , v`
mit (vi, vi+1) ∈ E für i = 0, . . . , `− 1.

f) Ein gerichteter Zyklus ist ein gerichteter u-v-Weg der Länge
` ≥ 1 mit u = v.

g) Ein gerichteter Weg heißt einfach oder gerichteter Pfad, falls
alle durchlaufenen Knoten verschieden sind.

h) Ein gerichteter Kreis ist ein gerichteter Zyklus v0, v1 . . . , v`−1, v0
der Länge ` ≥ 1, für den v0, v1, . . . , v`−1 paarweise verschieden
sind.

i) Ein Digraph G = (V,E) heißt kreisfrei oder azyklisch, wenn er
keinen gerichteten Kreis hat.

j) Ein Digraph G = (V,E) heißt schwach zusammenhängend,
wenn es für jedes Paar {u, v} ∈

(
V
2

)
einen gerichteten u-v-Pfad

oder einen gerichteten v-u-Pfad gibt.
k) G = (V,E) heißt stark zusammenhängend, wenn es für jedes

Paar {u, v} ∈
(
V
2

)
sowohl einen gerichteten u-v-Pfad als auch

einen gerichteten v-u-Pfad gibt.

25

3 Graphalgorithmen 3.2 Datenstrukturen für Graphen

3.2 Datenstrukturen für Graphen

Sei G = (V,E) ein Graph bzw. Digraph und sei V = {v1, . . . , vn}.
Dann ist die (n× n)-Matrix A = (aij) mit den Einträgen

aij =

1, {vi, vj} ∈ E
0, sonst

bzw. aij =

1, (vi, vj) ∈ E
0, sonst

die Adjazenzmatrix von G. Für ungerichtete Graphen ist die Adja-
zenzmatrix symmetrisch mit aii = 0 für i = 1, . . . , n.
Bei der Adjazenzlisten-Darstellung wird für jeden Knoten vi eine Liste
mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet man
entweder nur die Liste der Nachfolger oder zusätzlich eine weitere
für die Vorgänger. Falls die Anzahl der Knoten gleichbleibt, organi-
siert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit
Index i verweist auf die Adjazenzliste von Knoten vi. Falls sich die
Anzahl der Knoten dynamisch ändert, so werden die Adjazenzlisten
typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 33.
Betrachte den gerichteten Graphen G = (V,E)
mit V = {1, 2, 3, 4} und E = {(2, 3),
(2, 4), (3, 1), (3, 4), (4, 4)}. Dieser hat folgende
Adjazenzmatrix- und Adjazenzlisten-Darstellung:

1 2

43

1 2 3 4
1 0 0 0 0
2 0 0 1 1
3 1 0 0 1
4 0 0 0 1

1
2
3
4

3 4
1 4
4

/

Folgende Tabelle gibt den Aufwand der wichtigsten elementaren Opera-
tionen auf Graphen in Abhängigkeit von der benutzten Datenstruktur

an. Hierbei nehmen wir an, dass sich die Knotenmenge V nicht ändert.

Adjazenzmatrix Adjazenzlisten
einfach clever einfach clever

Speicherbedarf O(n2) O(n2) O(n+m) O(n+m)
Initialisieren O(n2) O(1) O(n) O(1)

Kante einfügen O(1) O(1) O(1) O(1)
Kante entfernen O(1) O(1) O(n) O(1)
Test auf Kante O(1) O(1) O(n) O(n)

Bemerkung 34.
• Der Aufwand für die Initialisierung des leeren Graphen in der
Adjazenzmatrixdarstellung lässt sich auf O(1) drücken, indem
man mithilfe eines zusätzlichen Feldes B die Gültigkeit der
Matrixeinträge verwaltet (siehe Übungen).
• Die Verbesserung beim Löschen einer Kante in der Adjazenzlis-

tendarstellung erhält man, indem man die Adjazenzlisten doppelt
verkettet und im ungerichteten Fall die beiden Vorkommen jeder
Kante in den Adjazenzlisten der beiden Endknoten gegenseitig
verlinkt (siehe Übungen).
• Bei der Adjazenzlistendarstellung können die Knoten auch in
einer doppelt verketteten Liste organisiert werden. In diesem
Fall können dann auch Knoten in konstanter Zeit hinzugefügt
und in Zeit O(n) wieder entfernt werden (unter Beibehaltung
der übrigen Speicher- und Laufzeitschranken).

3.3 Keller und Warteschlange

Für das Durchsuchen eines Graphen ist es vorteilhaft, die bereits
besuchten (aber noch nicht abgearbeiteten) Knoten in einer Menge B
zu speichern. Damit die Suche effizient ist, sollte die Datenstruktur
für B folgende Operationen effizient implementieren.

26

3 Graphalgorithmen 3.3 Keller und Warteschlange

Init(B): Initialisiert B als leere Menge.
Empty(B): Testet B auf Leerheit.

Insert(B, u): Fügt u in B ein.
Element(B): Gibt ein Element aus B zurück.
Remove(B): Gibt ebenfalls Element(B) zurück und

entfernt es aus B.

Andere Operationen wie z.B. Remove(B, u) werden nicht benötigt.
Die gewünschten Operationen lassen sich leicht durch einen Keller
(auch Stapel genannt) (engl. stack) oder eine Warteschlange (engl.
queue) implementieren. Falls maximal n Datensätze gespeichert wer-
den müssen, kann ein Feld zur Speicherung der Elemente benutzt
werden. Andernfalls können sie auch in einer einfach verketteten Liste
gespeichert werden.

Stack S – Last-In-First-Out

Top(S): Gibt das oberste Element von S zurück.
Push(S, x): Fügt x als oberstes Element zum Keller hinzu.

Pop(S): Gibt das oberste Element von S zurück und ent-
fernt es.

Queue Q – Last-In-Last-Out

Enqueue(Q, x): Fügt x am Ende der Schlange hinzu.
Head(Q): Gibt das erste Element von Q zurück.

Dequeue(Q): Gibt das erste Element von Q zurück und ent-
fernt es.

Die Kelleroperationen lassen sich wie folgt auf einem Feld S[1 . . . n]
implementieren. Die Variable size(S) enthält die Anzahl der im
Keller gespeicherten Elemente.

Prozedur StackInit(S)
1 size(S) := 0

Prozedur StackEmpty(S)
1 return(size(S) = 0)

Prozedur Top(S)
1 if size(S) > 0 then
2 return(S[size(S)])
3 else
4 return(nil)

Prozedur Push(S, x)
1 if size(S) < n then
2 size(S) := size(S) + 1
3 S[size(S)] := x
4 else
5 return(nil)

Prozedur Pop(S)
1 if size(S) > 0 then
2 size(S) := size(S)− 1
3 return(S[size(S) + 1])
4 else
5 return(nil)

Es folgen die Warteschlangenoperationen für die Speicherung in einem
Feld Q[1 . . . n]. Die Elemente werden der Reihe nach am Ende der
Schlange Q (zyklisch) eingefügt und am Anfang entnommen. Die
Variable head(Q) enthält den Index des ersten Elements der Schlan-
ge und tail(Q) den Index des hinter dem letzten Element von Q
befindlichen Eintrags.

27

3 Graphalgorithmen 3.4 Durchsuchen von Graphen

Prozedur QueueInit(Q)
1 head(Q) := 1
2 tail(Q) := 1
3 size(Q) := 0

Prozedur QueueEmpty(Q)
1 return(size(Q) = 0)

Prozedur Head(Q)
1 if QueueEmpty(Q) then
2 return(nil)
3 else
4 returnQ[head(Q)]

Prozedur Enqueue(Q, x)
1 if size(Q) = n then
2 return(nil)
3 size(Q) := size(Q) + 1
4 Q[tail(Q)] := x
5 if tail(Q) = n then
6 tail(Q) := 1
7 else
8 tail(Q) := tail(Q) + 1

Prozedur Dequeue(Q)
1 if QueueEmpty(Q) then
2 return(nil)
3 size(Q) := size(Q)− 1
4 x := Q[head(Q)]
5 if head(Q) = n then
6 head(Q) := 1

7 else
8 head(Q) := head(Q) + 1
9 return(x)

Satz 35. Sämtliche Operationen für einen Keller S und eine Warte-
schlange Q sind in konstanter Zeit O(1) ausführbar.
Bemerkung 36. Mit Hilfe von einfach verketteten Listen sind Keller
und Warteschlangen auch für eine unbeschränkte Anzahl von Daten-
sätzen mit denselben Laufzeitbeschränkungen implementierbar.

Die für das Durchsuchen von Graphen benötigte Datenstruktur B
lässt sich nun mittels Keller bzw. Schlange wie folgt realisieren.

Operation Keller S Schlange Q
Init(B) StackInit(S) QueueInit(Q)
Empty(B) StackEmpty(S) QueueEmpty(Q)
Insert(B, u) Push(S, u) Enqueue(Q, u)
Element(B) Top(S) Head(Q)
Remove(B) Pop(S) Dequeue(Q)

3.4 Durchsuchen von Graphen

Wir geben nun für die Suche in einem Graphen bzw. Digraphen
G = (V,E) einen Algorithmus GraphSearch mit folgenden Eigen-
schaften an:

GraphSearch benutzt eine Prozedur Explore, um alle Knoten
und Kanten von G zu besuchen.
Explore(w) findet Pfade zu allen von w aus erreichbaren Knoten.
Hierzu speichert Explore(w) für jeden über eine Kante {u, v} bzw.
(u, v) neu entdeckten Knoten v 6= w den Knoten u in parent(v).
Wir nennen die bei der Entdeckung eines neuen Knotens v durch-
laufenen Kanten (parent(v), v) parent-Kanten.

28

3 Graphalgorithmen 3.4 Durchsuchen von Graphen

Algorithmus GraphSearch(V,E)
1 for all v ∈ V, e ∈ E do
2 visited(v) := false
3 parent(v) := nil
4 visited(e) := false
5 for all w ∈ V do
6 if visited(w) = false then Explore(w)

Prozedur Explore(w)
1 visited(w) := true
2 Init(B)
3 Insert(B,w)
4 while ¬Empty(B) do
5 u := Element(B)
6 if ∃ e = {u, v} bzw. e = (u, v) ∈ E : visited(e) = false

then
7 visited(e) := true
8 if visited(v) = false then
9 visited(v) := true

10 parent(v) := u
11 Insert(B, v)
12 else
13 Remove(B)

3.4.1 Suchwälder

Definition 37. Sei G = (V,E) ein Digraph.

• Ein Knoten w ∈ V heißt Wurzel von G, falls alle Knoten v ∈ V
von w aus erreichbar sind (d.h. es gibt einen gerichteten w-v-
Weg in G).

• G heißt gerichteter Wald, wenn G kreisfrei ist und jeder Knoten
v ∈ V Eingangsgrad deg−(v) ≤ 1 hat.
• Ein Knoten u ∈ V vom Ausgangsgrad deg+(u) = 0 heißt Blatt.
• Ein Knoten u ∈ V heißt Nachfahre von v, falls in G ein gerich-

teter v-u-Weg existiert. In diesem Fall ist v ein Vorfahre von u.
Gilt zudem u 6= v, so sprechen wir auch von echten Nach- bzw.
Vorfahren.
• Ein gerichteter Wald, der eine Wurzel hat, heißt gerichteter

Baum.

In einem gerichteten Baum liegen die Kantenrichtungen durch die
Wahl der Wurzel bereits eindeutig fest. Daher kann bei bekannter
Wurzel auf die Angabe der Kantenrichtungen auch verzichtet werden.
Man spricht dann von einem Wurzelbaum.
Betrachte den durch SearchGraph(V,E) erzeugten Digraphen W =
(V,Eparent) mit

Eparent =
{

(parent(v), v) | v ∈ V und parent(v) 6= nil
}
.

Da parent(v) vor v markiert wird, ist klar, dass W kreisfrei ist. Zu-
dem hat jeder Knoten v höchstens einen Vorgänger parent(v). Dies
zeigt, dass W tatsächlich ein gerichteter Wald ist. W heißt Such-
wald von G und die Kanten (parent(v), v) von W werden auch als
Baumkanten bezeichnet.
W hängt zum einen davon ab, wie die Datenstruktur B implementiert
ist (z.B. als Keller oder als Warteschlange). Zum anderen hängt W
aber auch von der Reihenfolge der Knoten in den Adjazenzlisten ab.

3.4.2 Klassifikation der Kanten eines (Di-)Graphen

Die Kanten eines Graphen G = (V,E) werden durch den Suchwald
W = (V,Eparent) in vier Klassen eingeteilt. Dabei erhält jede Kante
die Richtung, in der sie bei ihrem ersten Besuch durchlaufen wird.

29

3 Graphalgorithmen 3.4 Durchsuchen von Graphen

Neben den Baumkanten (parent(v), v) ∈ Eparent gibt es noch
Rückwärts-, Vorwärts- und Querkanten. Rückwärtskanten (u, v) ver-
binden einen Knoten u mit einem Knoten v, der auf dem parent-Pfad
P (u) von u liegt. Liegt dagegen u auf P (v), so wird (u, v) als Vor-
wärtskante bezeichnet. Alle übrigen Kanten heißen Querkanten. Diese
verbinden zwei Knoten, von denen keiner auf dem parent-Pfad des
anderen liegt.
Die Klassifikation der Kanten eines Digraphen G erfolgt analog, wobei
die Richtungen jedoch bereits durch G vorgegeben sind (dabei werden
Schlingen der Kategorie der Vorwärtskanten zugeordnet).

Beispiel 38. Bei Aufruf mit dem
Startknoten a generiert die Prozedur
Explore nebenstehenden Suchwald.

b d

a c

f e

bes. bes. bes. bes.
Menge B Knoten Kante Typ B Knoten Kante Typ
{a} a (a, b) B {d, e, f} d (d, e) V
{a, b} a (a, f) B {d, e, f} d (d, f) Q
{a, b, f} a - - {d, e, f} d - -
{b, f} b (b, d) B {e, f} e (e, d) R
{b, d, f} b - - {e, f} e - -
{d, f} d (d, c) B {f} f (f, e) Q
{c, d, f} c (c, e) B {f} f - -
{c, d, e, f} c - - ∅

Bei einem Graphen durchläuft
Explore die Knoten und Kanten
in der gleichen Reihenfolge wie bei dem

f c

a b

e d

Digraphen, der für jede ungerichtete
Kante {u, v} die beiden gerichteten
Kanten (u, v) und (v, u) enthält.

f c

a b

e d

Menge B Knoten Kante B Knoten Kante
{a} a {a, e} B {c, d, e, f} c {c, f} Q
{a, e} a {a, f} B {c, d, e, f} c - -
{a, e, f} a - - {d, e, f} d {d, b} -
{e, f} e {e, a} - {d, e, f} d {d, c} -
{e, f} e {e, c} B {d, e, f} d {d, e} R
{c, e, f} c {c, b} B {d, e, f} d - -
{b, c, e, f} b {b, c} - {e, f} e {e, d} -
{b, c, e, f} b {b, d} B {e, f} e - -
{b, c, d, e, f} b - - {f} f {f, a} -
{c, d, e, f} c {c, d} V {f} f {f, c} -
{c, d, e, f} c {c, e} - {f} f - -

/

Satz 39. Falls der (un)gerichtete Graph G in Adjazenzlisten-
Darstellung gegeben ist, durchläuft GraphSearch alle Knoten und
Kanten von G in Zeit O(n+m).

Beweis. Offensichtlich wird jeder Knoten u genau einmal zu B hin-
zugefügt. Dies geschieht zu dem Zeitpunkt, wenn u zum ersten Mal
„besucht“ und das Feld visited für u auf true gesetzt wird. Außer-
dem werden in Zeile 6 von Explore alle von u ausgehenden Kanten
durchlaufen, bevor u wieder aus B entfernt wird. Folglich werden
tatsächlich alle Knoten und Kanten von G besucht.
Wir bestimmen nun die Laufzeit des Algorithmus GraphSearch. In-
nerhalb von Explore wird die while-Schleife für jeden Knoten u genau

30

3 Graphalgorithmen 3.4 Durchsuchen von Graphen

(deg(u) + 1)-mal bzw. (deg+(u) + 1)-mal durchlaufen:
• einmal für jeden Nachbarn v von u und
• dann noch einmal, um u aus B zu entfernen.

Insgesamt sind das n+2m im ungerichteten bzw. n+m Durchläufe im
gerichteten Fall. Bei Verwendung von Adjazenzlisten kann die nächste
von einem Knoten v aus noch nicht besuchte Kante e in konstanter
Zeit ermittelt werden, falls man für jeden Knoten v einen Zeiger auf
(den Endpunkt von) e in der Adjazenzliste von v vorsieht. Die Ge-
samtlaufzeit des Algorithmus GraphSearch beträgt somit O(n +m).

�

Als nächstes zeigen wir, dass Explore(w) zu allen von w aus erreich-
baren Knoten v einen (gerichteten) w-v-Pfad liefert. Dieser lässt sich
mittels parent wie folgt zurückverfolgen. Sei

ui =

v, i = 0,
parent(ui−1), i > 0 und ui−1 6= nil

und sei ` = min{i ≥ 0 | ui+1 = nil}. Dann ist u` = w und
p = (u`, . . . , u0) ein w-v-Pfad. Wir nennen P den parent-Pfad von v
und bezeichnen ihn mit P (v).

Satz 40. Falls beim Aufruf von Explore alle Knoten und Kanten als
unbesucht markiert sind, berechnet Explore(w) zu allen erreichbaren
Knoten v einen (gerichteten) w-v-Pfad P (v).

Beweis. Wir zeigen zuerst, dass Explore(w) alle von w aus erreich-
baren Knoten besucht. Hierzu führen wir Induktion über die Länge `
eines kürzesten w-v-Weges.
` = 0: In diesem Fall ist v = w und w wird in Zeile 1 besucht.
` ; `+ 1: Sei v ein Knoten mit Abstand l + 1 von w. Dann hat ein

Nachbarknoten u ∈ N(v) den Abstand ` von w. Folglich wird u

nach IV besucht. Da u erst dann aus B entfernt wird, wenn alle
seine Nachbarn (bzw. Nachfolger) besucht wurden, wird auch v
besucht.

Es bleibt zu zeigen, dass parent einen Pfad P (v) von w zu jedem
besuchten Knoten v liefert. Hierzu führen wir Induktion über die
Anzahl k der vor v besuchten Knoten.

k = 0: In diesem Fall ist v = w. Da parent(w) = nil ist, liefert
parent einen w-v-Pfad (der Länge 0).

k − 1 ; k: Sei u = parent(v). Da u vor v besucht wird, liefert
parent nach IV einen w-u-Pfad P (u). Wegen u = parent(v)
ist u der Entdecker von v und daher mit v durch eine Kante
verbunden. Somit liefert parent auch für v einen w-v-Pfad
P (v). �

3.4.3 Spannbäume und Spannwälder

In diesem Abschnitt zeigen wir, dass der Algorithmus GraphSearch
für jede Zusammenhangskomponente eines (ungerichteten) Graphen
G einen Spannbaum berechnet.

Definition 41. Sei G = (V,E) ein Graph und H = (U, F) ein Un-
tergraph.

• H heißt spannend, falls U = V ist.
• H ist ein spannender Baum (oder Spannbaum) von G, falls
U = V und H ein Baum ist.
• H ist ein spannender Wald (oder Spannwald) von G, falls
U = V und H ein Wald ist.

Es ist leicht zu sehen, dass für G genau dann ein Spannbaum existiert,
wenn G zusammenhängend ist. Allgemeiner gilt, dass die Spannbäu-
me für die Zusammenhangskomponenten von G einen Spannwald

31

3 Graphalgorithmen 3.4 Durchsuchen von Graphen

bilden. Dieser ist bzgl. der Subgraph-Relation maximal, da er in kei-
nem größeren Spannwald enthalten ist. Ignorieren wir die Richtungen
der Kanten im Suchwald W , so ist der resultierende Wald W ′ ein
maximaler Spannwald für G.
Da Explore(w) alle von w aus erreichbaren Knoten findet, spannt
jeder Baum des (ungerichteten) Suchwaldes W ′ = (V,E ′parent) mit

E ′parent =
{
{parent(v), v} | v ∈ V und parent(v) 6= nil

}
eine Zusammenhangskomponente von G.

Korollar 42. Sei G ein (ungerichteter) Graph.
• Der Algorithmus GraphSearch(V,E) berechnet in Linearzeit
einen Spannwald W ′, dessen Bäume die Zusammenhangskom-
ponenten von G spannen.
• Falls G zusammenhängend ist, ist W ′ ein Spannbaum für G.

3.4.4 Berechnung der Zusammenhangskomponenten

Folgende Variante von GraphSearch bestimmt die Zusammenhangs-
komponenten eines (ungerichteten) Eingabegraphen G.

Algorithmus CC(V,E)
1 k := 0
2 for all v ∈ V, e ∈ E do
3 cc(v) := 0
4 cc(e) := 0
5 for all w ∈ V do
6 if cc(w) = 0 then
7 k := k + 1
8 ComputeCC(k, w)

Prozedur ComputeCC(k, w)

1 cc(w) := k
2 Init(B)
3 Insert(B,w)
4 while ¬Empty(B) do
5 u := Element(B)
6 if ∃ e = {u, v} ∈ E : cc(e) = 0 then
7 cc(e) := k
8 if cc(v) = 0 then
9 cc(v) := k

10 Insert(B, v)
11 else
12 Remove(B)

Korollar 43. Der Algorithmus CC(V,E) bestimmt für einen Graphen
G = (V,E) in Linearzeit O(n+m) sämtliche Zusammenhangskom-
ponenten Gk = (Vk, Ek) von G, wobei Vk = {v ∈ V | cc(v) = k} und
Ek = {e ∈ E | cc(e) = k} ist.

3.4.5 Breiten- und Tiefensuche

Wie wir gesehen haben, findet Explore(w) sowohl in Graphen als
auch in Digraphen alle von w aus erreichbaren Knoten. Als nächstes
zeigen wir, dass Explore(w) zu allen von w aus erreichbaren Knoten
sogar einen kürzesten Weg findet, falls wir die Datenstruktur B als
Warteschlange Q implementieren.
Die Benutzung einer Warteschlange Q zur Speicherung der bereits
entdeckten, aber noch nicht abgearbeiteten Knoten bewirkt, dass
zuerst alle Nachbarknoten u1, . . . , uk des aktuellen Knotens u besucht
werden, bevor ein anderer Knoten aktueller Knoten wird. Da die
Suche also zuerst in die Breite geht, spricht man von einer Breitensu-
che (kurz BFS, engl. breadth first search). Den hierbei berechneten
Suchwald bezeichnen wir als Breitensuchwald.

32

3 Graphalgorithmen 3.4 Durchsuchen von Graphen

Bei Benutzung eines Kellers wird dagegen u1 aktueller Knoten, bevor
die übrigen Nachbarknoten von u besucht werden. Daher führt die
Benutzung eines Kellers zu einer Tiefensuche (kurz DFS, engl. depth
first search). Der berechnete Suchwald heißt dann Tiefensuchwald.
Die Breitensuche eignet sich eher für Distanzprobleme wie z.B. das
Finden

• kürzester Wege in Graphen und Digraphen,
• längster Wege in Bäumen (siehe Übungen) oder
• kürzester Wege in Distanzgraphen (Dijkstra-Algorithmus).

Dagegen liefert die Tiefensuche interessante Strukturinformationen
wie z.B.

• die zweifachen Zusammenhangskomponenten in Graphen,
• die starken Zusammenhangskomponenten in Digraphen oder
• eine topologische Sortierung bei azyklischen Digraphen (s. Übun-

gen).

Wir betrachten zuerst den Breitensuchalgorithmus.

Algorithmus BFS(V,E)
1 for all v ∈ V, e ∈ E do
2 visited(v) := false
3 parent(v) := nil
4 visited(e) := false
5 for all w ∈ V do
6 if visited(w) = false then BFS-Explore(w)

Prozedur BFS-Explore(w)
1 visited(w) := true
2 QueueInit(Q)
3 Enqueue(Q,w)
4 while ¬QueueEmpty(Q) do

5 u := Head(Q)
6 if ∃ e = {u, v} bzw. e = (u, v) ∈ E : visited(e) = false

then
7 visited(e) := true
8 if visited(v) = false then
9 visited(v) := true

10 parent(v) := u
11 Enqueue(Q, v)
12 else
13 Dequeue(Q)

Beispiel 44. BFS-Explore generiert
bei Aufruf mit dem Startknoten a ne-
benstehenden Breitensuchwald.

b c

a d

f e

bes. bes. bes. bes.
Schlange Q Knoten Kante Typ Q Knoten Kante Typ
←a← a (a, b) B c, e, d c (c, e) Q
a, b a (a, f) B c, e, d c (c, f) Q
a, b, f a - - c, e, d c - -
b, f b (b, c) B e, d e (e, c) Q
b, f, c b - - e, d e (e, d) Q
f, c f (f, e) B e, d e (e,f) R
f, c, e f - - e, d e - -
c, e c (c, d) B d d - -

/

Satz 45. Sei G ein Graph oder Digraph und sei w Wurzel des von
BFS-Explore(w) berechneten Suchbaumes T . Dann liefert parent
für jeden Knoten v in T einen kürzesten w-v-Weg P (v).

33

3 Graphalgorithmen 3.4 Durchsuchen von Graphen

Beweis. Wir führen Induktion über die kürzeste Weglänge ` von w
nach v in G.

` = 0: Dann ist v = w und parent liefert einen Weg der Länge 0.
` ; `+ 1: Sei v ein Knoten, der den Abstand `+ 1 von w in G hat.

Dann existiert ein Knoten u ∈ N−(v) (bzw. u ∈ N(v)) mit
Abstand ` von w in G hat. Nach IV liefert also parent einen
w-u-Weg P (u) der Länge `. Da u erst aus Q entfernt wird,
nachdem alle Nachfolger von u entdeckt sind, wird v von u oder
einem bereits zuvor in Q eingefügten Knoten z entdeckt. Da
Q als Schlange organisiert ist, ist P (u) nicht kürzer als P (z).
Daher folgt in beiden Fällen, dass P (v) die Länge `+ 1 hat.

�

Wir werden später noch eine Modifikation der Breitensuche kennen ler-
nen, die kürzeste Wege in Graphen mit nichtnegativen Kantenlängen
findet (Algorithmus von Dijkstra).
Als nächstes betrachten wir den Tiefensuchalgorithmus.

Algorithmus DFS(V,E)
1 for all v ∈ V, e ∈ E do
2 visited(v) := false
3 parent(v) := nil
4 visited(e) := false
5 for all w ∈ V do
6 if visited(w) = false then DFS-Explore(w)

Prozedur DFS-Explore(w)
1 visited(w) := true
2 StackInit(S)
3 Push(S,w)
4 while ¬StackEmpty(S) do
5 u := Head(S)

6 if ∃ e = {u, v} bzw. e = (u, v) ∈ E : visited(e) = false
then

7 visited(e) := true
8 if visited(v) = false then
9 visited(v) := true

10 parent(v) := u
11 Push(S, v)
12 else
13 Pop(S)

Beispiel 46. Bei Aufruf mit dem
Startknoten a generiert die Prozedur
DFS-Explore nebenstehenden Tiefen-
suchwald.

b c

a d

f e

bes. bes. bes. bes.
Keller S Knoten Kante Typ S Knoten Kante Typ
a↔ a (a, b) B a, b, c c (c, f) B

a, b b (b, c) B a, b, c, f f (f, e) Q
a, b, c c (c, d) B a, b, c, f f - -
a, b, c, d d - - a, b, c c - -
a, b, c c (c, e) B a, b b - -
a, b, c, e e (e, c) R a a (a, f) V
a, b, c, e e (e, d) Q a a - -
a, b, c, e e - -

Die Tiefensuche auf nebenstehendem
Graphen führt auf folgende Klassifika-
tion der Kanten (wobei wir annehmen,

b c

a d

f e

34

3 Graphalgorithmen 3.4 Durchsuchen von Graphen

b c

a d

f e

dass die Nachbarknoten in den Ad-
jazenzlisten alphabetisch angeordnet
sind):

Keller S Kante Typ Keller S Kante Typ
a↔ {a, b} B a, b, c, d, e, f {f, c} R
a, b {b, a} - a, b, c, d, e, f {f, e} -
a, b {b, c} B a, b, c, d, e, f - -
a, b, c {c, b} - a, b, c, d, e - -
a, b, c {c, d} B a, b, c, d - -
a, b, c, d {d, c} - a, b, c {c, e} -
a, b, c, d {d, e} B a, b, c {c, f} -
a, b, c, d, e {e, c} R a, b, c - -
a, b, c, d, e {e, d} - a, b - -
a, b, c, d, e {e, f} B a {a, f} -
a, b, c, d, e, f {f, a} R a - -

/

Die Tiefensuche lässt sich auch rekursiv implementieren. Dies hat den
Vorteil, dass kein (expliziter) Keller benötigt wird.

Prozedur DFS-Explore-rec(w)
1 visited(w) := true
2 while

∃ e = {u, v} bzw. e = (u, v) ∈ E : visited(e) = false
do

3 visited(e) := true
4 if visited(v) = false then
5 parent(v) := w
6 DFS-Explore-rec(v)

Da DFS-Explore-rec(w) zu parent(w) zurückspringt, kann auch
das Feld parent(w) als Keller fungieren. Daher lässt sich die Prozedur
auch nicht-rekursiv ohne zusätzlichen Keller implementieren, indem
die Rücksprünge explizit innerhalb einer Schleife ausgeführt werden
(siehe Übungen).
Bei der Tiefensuche lässt sich der Typ jeder Kante algorithmisch leicht
bestimmen, wenn wir noch folgende Zusatzinformationen speichern.
• Ein neu entdeckter Knoten wird bei seinem ersten Besuch grau

gefärbt. Sobald er abgearbeitet ist, also bei seinem letzten Be-
such, wird er schwarz. Zu Beginn sind alle Knoten weiß.
• Zudem merken wir uns die Reihenfolge, in der die Knoten ent-

deckt werden, in einem Feld k.
Dann lässt sich der Typ jeder Kante e = (u, v) bei ihrem ersten
Besuch wie folgt bestimmen:

Baumkante: farbe(v) = weiß,
Vorwärtskante: farbe(v) 6= weiß und k(v) ≥ k(u),

Rückwärtskante: farbe(v) = grau und k(v) < k(u),
Querkante: farbe(v) = schwarz und k(v) < k(u).

Nun lässt sich der Typ jeder Kante e = (u, v) bei ihrem Besuch in
Zeile 6 anhand der Werte von farbe(v) und k(v) wie folgt bestimmen:

Baumkante: farbe(v) = weiß,
Vorwärtskante: farbe(v) 6= weiß und k(v) ≥ k(u),
Rückwärtskante: farbe(v) = grau und k(v) < k(u),
Querkante: farbe(v) = schwarz und k(v) < k(u).

Die folgende Variante von DFS berechnet diese Informationen.

Algorithmus DFS(V,E)
1 k := 0
2 for all v ∈ V, e ∈ E do
3 farbe(v) := weiß
4 visited(e) := false

35

3 Graphalgorithmen 3.4 Durchsuchen von Graphen

5 for all u ∈ V do
6 if farbe(u) = weiß then DFS-Explore(u)

Prozedur DFS-Explore(u)
1 farbe(u) := grau
2 k := k + 1
3 k(u) := k
4 while ∃ e = (u, v) ∈ E : visited(e) = false do
5 visited(e) := true
6 if farbe(v) = weiß then
7 DFS-Explore(v)
8 farbe(u) := schwarz

Beispiel 47. Bei Aufruf mit dem
Startknoten a werden die Knoten im
nebenstehenden Digraphen von der
Prozedur DFS-Explore wie folgt ge-
färbt (die Knoten sind mit ihren k-
Werten markiert).

b

2
c

3

a

1
d

4

f

6
e

5

Keller Farbe Kante Typ Keller Farbe Kante Typ
a a: grau (a, b) B a, b, c, e e: schwarz - -
a, b b: grau (b, c) B a, b, c - (c, f) B
a, b, c c: grau (c, d) B a, b, c, f f : grau (f, e) Q
a, b, c, d d: grau - - a, b, c, f f : schwarz - -

d: schwarz a, b, c c: schwarz - -
a, b, c - (c, e) B a, b b: schwarz - -
a, b, c, e e: grau (e, c) R a - (a, f) V
a, b, c, e - (e, d) Q a a: schwarz - -

/

Bei der Tiefensuche in ungerichteten Graphen können weder Quer-
noch Vorwärtskanten auftreten. Da v beim ersten Besuch einer sol-
chen Kante (u, v) nicht weiß ist und alle grauen Knoten auf dem
parent-Pfad P (u) liegen, müsste v nämlich bereits schwarz sein. Dies
ist aber nicht möglich, da die Kante {u, v} in v-u-Richtung noch
gar nicht durchlaufen wurde. Folglich sind alle Kanten, die nicht zu
einem neuen Knoten führen, Rückwärtskanten. Das Fehlen von Quer-
und Vorwärtskanten spielt bei manchen Anwendungen eine wichtige
Rolle, etwa bei der Zerlegung eines Graphen G in seine zweifachen
Zusammenhangskomponenten.

3.4.6 Starke Zusammenhangskomponenten

Sei G = (V,E) ein Digraph. Dann ist leicht zu sehen, dass die Relation

S = {(u, v) ∈ V ×V |es gibt in G einen u-v-Weg und einen v-u-Weg}

eine Äquivalenzrelation ist. Für (u, v) ∈ S schreiben wir auch kurz
u ∼ v.

Definition 48. Die durch die Äquivalenzklassen U1, . . . , Uk von S
induzierten Teilgraphen G[U1], . . . , G[Uk] heißen die starken Zusam-
menhangskomponenten (engl. strongly connected components) von
G.

Satz 49. Sei G = (V,E) ein Digraph mit den starken Zusammen-
hangskomponenten G[U1], . . . , G[Uk]. Dann ist der Digraph (C,D) mit
C = {1, . . . , k} und

D = {(i, j) | 1 ≤ i 6= j ≤ k ∧ ∃u ∈ Ui, v ∈ Uj : (u, v) ∈ E}

azyklisch.

Beweis. Da der Digraph (C,D) schlingenfrei ist, müsste ein Zyklus
mindestens zwei verschiedene Knoten i 6= j enthalten. Dann wären

36

3 Graphalgorithmen 3.4 Durchsuchen von Graphen

aber alle Knoten in den beiden Komponenten G[Ui] und G[Uj] gegen-
seitig erreichbar, d.h. alle Knoten in Ui ∪ Uj müssten in derselben
Komponente liegen (Widerspruch). �

Sei G = (V,E) ein Digraph mit zugehörigem Tiefensuchwald W
und starken Zusammenhangskomponenten G[U1], . . . , G[Uk]. Den im
Suchwald W durch alle Nachfahren von v induzierten Baum mit der
Wurzel v bezeichnen wir mit T (v).
Für i = 1, . . . , k sei si der erste bei der Tiefensuche innerhalb von
Ui besuchte Knoten. Wir bezeichnen si als den Startknoten von Ui.
Dann bilden die Knoten s1, . . . , sk ein Repräsentantensystem für die
Äquivalenzklassen U1, . . . , Uk.
Sei Vi die Menge aller Knoten in T (si), die für keinen echten Nach-
fahren sj von si in T (sj) enthalten sind. Es ist klar, dass die Mengen
V1, . . . , Vk eine Partition von V bilden. Wir behaupten, dass die Men-
gen Vi in Ui enthalten sind und somit Ui = Vi ist.
Angenommen, ein Knoten u ∈ Vi wäre nicht in Ui, sondern in Uj für
ein j 6= i enthalten. Da sj erst schwarz wird, nachdem alle von sj aus
erreichbaren Knoten besucht wurden, enthält T (sj) alle Knoten in Uj
und somit auch u. Wegen u ∈ Vi könnte dann sj kein Nachfahre von
si sein. Da u in T (si) und T (sj) liegt, müsste sj also ein Vorfahre von
si sein. Wegen u ∼ sj impliziert dies jedoch u ∼ si.
Die Mengen Ui lassen sich also leicht bestimmen, falls wir die Startkno-
ten si während der Tiefensuche bei ihrem letzten Besuch identifizieren
können. In diesem Fall gehören alle seit dem ersten Besuch von si
besuchten Knoten zu Ui, die nicht schon einem anderen sj zugeordnet
wurden. Um die Startknoten erkennen zu können, betrachten wir die
Funktion

low(u) = min{k(v) | v ∈ P (u) und es gibt einen u-v-Weg in G}.

Da der zu u gehörige Startknoten si ∼ u von u aus erreichbar ist und
auf dem parent-Pfad P (u) von u liegt, ist low(u) ≤ k(si) ≤ k(u). Da

es zudem keinen u-v-Weg zu einem Knoten v auf P (u) mit k(v) < k(si)
geben kann (sonst wäre v Startknoten von Ui), ist low(u) = k(si).
Folglich ist

low(u) = min{k(si) | si ∈ P (u) und es gibt einen u-si-Weg in G}

und nur für die Startknoten nehmen low und k den gleichen Wert an.
Einfacher als low lässt sich die Funktion

l(u) = min{k(v) | v = u ∨ ∃u′ ∈ T (u), v ∈ T (si) : (u′, v) ∈ E},

berechnen, wobei si der eindeutig bestimmte Startknoten mit u ∼ si
ist.
Dann gilt low(u) ≤ l(u) ≤ k(u), wobei l(u) = k(u) mit low(u) =
k(u) (also mit u = si) gleichbedeutend ist. Ist nämlich u 6= si, so liegt
si nicht in T (u) und daher muss jeder u-si-Weg eine (Rückwärts- oder
Quer-) Kante (u′, v) mit u′ ∈ T (u) und v ∈ T (si)− T (u) enthalten.
Da jedoch alle von u aus erreichbaren Knoten, deren k-Wert größer
als der von u ist, in T (u) enthalten sind, muss k(v) < k(u) und somit
l(u) < k(u) sein.

Algorithmus SCC(V,E)
1 k := 0
2 StackInit(S)
3 for all v ∈ V, e ∈ E do
4 visited(e) := false
5 k(v) := 0
6 onStack(v) := false
7 for all u ∈ V do
8 if k(u) = 0 then Compute-SCC(u)

Prozedur Compute-SCC(u)
1 k := k + 1
2 k(u) := k

37

3 Graphalgorithmen 3.4 Durchsuchen von Graphen

3 l(u) := k
4 Push(S, u)
5 while ∃ e = (u, v) ∈ E : visited(e) = false do
6 visited(e) := true
7 if k(v) = 0 then
8 Compute-SCC(v)
9 l(u) := min{l(u), l(v)}

10 else if onStack(v) = true then
11 l(u) := min{l(u), k(v)}
12 if l(u) = k(u) then
13 Output-SCC(u)

Prozedur Output-SCC(u)
1 write(Neue Komponente:)
2 repeat
3 v := Pop(S)
4 onStack(v) := false
5 write(v)
6 until(v = u)

Der Algorithmus SCC berechnet für jeden Knoten u den Wert l(u) und
gibt der Reihe nach die Mengen Ui aus. SCC speichert alle entdeckten
Knoten, die noch keiner Menge Ui zugeordnet werden konnten, in
einem Keller S. Das Feld onStack speichert die Information, wel-
che Knoten sich aktuell in S befinden. Besitzt ein Knoten u bei
seinem letzten Besuch den Wert l(u) = k(u), so wird die Prozedur
Output-SCC(u) aufgerufen. Output-SCC(u) leert den Keller S bis
einschließlich u und gibt diese Knoten als neu entdeckte Menge Ui
aus.
Dass SCC bis zum letzten Besuch eines Knotens u tatsächlich den
Wert l(u) korrekt berechnet, lässt sich leicht induktiv über die Anzahl
der vor u in T (u) schwarz gewordenen Knoten zeigen.

Wird u als erster Knoten in T (u) schwarz, so enthält S genau die
Nachbarn von u, die in T (si) liegen. Folglich werden die k-Werte dieser
Nachbarn bei der Berechnung von `(u) in Zeile 11 berücksichtigt.
Sind dagegen vor u bereits andere Knoten in T (u) schwarz geworden,
so können wir nach IV annehmen, dass die `-Werte dieser Knoten rich-
tig berechnet wurden. Da diese `-Werte in Zeile 9 an die Elternknoten
übermittelt werden, wird dann aber auch `(u) korrekt berechnet.

Beispiel 50. Rufen wir SCC mit dem
Startknoten a für nebenstehenden Di-
graphen auf, so werden die folgenden
starken Zusammenhangskomponenten
berechnet (die Startknoten der Kom-
ponenten sind dick umrandet).

a

e f

dcb

g

Keller S Knoten u `(u) k(u) Kante (u, v) output
a a 1 1 (a, b) -
a, b b 2 2 - b

a a 1 1 (a, e) -
a, e e 3 3 (e, f) -
a, e, f f 4 4 (f, b) -
a, e, f f 4 4 (f, d) -
a, e, f, d d 5 5 (d, c) -
a, e, f, d, c c 6 6 (c, b) -
a, e, f, d, c c 6 6 (c, f) -
a, e, f, d, c c 4 6 - -
a, e, f, d, c d 4 5 (d, g) -
a, e, f, d, c, g g 7 7 - g

a, e, f, d, c d 4 5 - -
a, e, f, d, c f 4 4 - f, d, c

a, e e 3 3 - e

a a 1 1 - a /

38

3 Graphalgorithmen 3.5 Kürzeste Pfade in Distanzgraphen

3.5 Kürzeste Pfade in Distanzgraphen

In vielen Anwendungen tritt das Problem auf, einen kürzesten Weg
von einem Startknoten s zu einem Zielknoten t in einem Digraphen zu
finden, dessen Kanten (u, v) vorgegebene Längen l(u, v) haben. Die
Länge eines Weges W = (v0, . . . , v`) ist

l(W) =
`−1∑
i=0

l(vi, vi+1).

Die kürzeste Pfadlänge von s nach t wird als Distanz d(s, t) von s zu
t bezeichnet,

d(s, t) = min{l(W) | W ist ein s-t-Weg}.

Falls kein s-t-Weg existiert, setzen wir d(s, t) =∞. In vielen Fällen
haben alle Kanten in E eine nichtnegative Länge l(u, v) ≥ 0. Dann
wird D = (V,E, l) auch Distanzgraph genannt.

3.5.1 Der Dijkstra-Algorithmus

Der Dijkstra-Algorithmus speichert alle Knoten u, zu denen bereits
ein s-u-Weg W bekannt ist, zusammen mit der Länge d = l(W) in
einer Menge P bis klar ist, dass W optimal ist. Damit die Suche effizi-
ent ist, sollte die Datenstruktur für P folgende Operationen effizient
implementieren.

Init(P): Initialisiert P als leere Menge.
Update(P, u, d): Erniedrigt den Wert von u auf d (nur wenn der ak-

tuelle Wert größer als d ist). Ist u noch nicht in P
enthalten, wird u mit dem Wert d in P eingefügt.

RemoveMin(P): Gibt ein Element aus P mit dem kleinsten Wert
zurück und entfernt es aus P . Ist P leer, wird nil
zurückgegeben.

Der Dijkstra-Algorithmus findet einen kürzesten Weg vom Startknoten
s zu allen erreichbaren Knoten (single-source shortest-path problem).
Hierzu führt der Algorithmus eine modifizierte Breitensuche mit dem
Startknoten s aus. Wird nur ein kürzester Weg von s zu einem Ziel-
knoten t gesucht, kann man die Suche abbrechen, sobald t als fertig
markiert ist. Voraussetzung für die Korrektheit des Algorithmus’ ist,
dass alle Kanten in E eine nichtnegative Länge l(u, v) ≥ 0 haben.

Algorithmus Dijkstra(V,E, l, s)
1 for all v ∈ V do
2 g(v) :=∞
3 parent(v) := nil
4 done(v) := false
5 g(s) := 0
6 Init(P)
7 Update(P, s, 0)
8 while u := RemoveMin(P) 6= nil do
9 done(u) := true

10 for all v ∈ N+(u) do
11 if done(v) = false ∧ g(u) + l(u, v) < g(v) then
12 g(v) := g(u) + l(u, v)
13 Update(P, v, g(v))
14 parent(v) := u

Der Algorithmus führt eine Breitensuche durch und speichert den
aktuellen Breitensuchbaum T im Feld parent. Das Feld g dient zur
Speicherung der aktuellen Wurzeldistanzen im Breitensuchbaum T .
Knoten außerhalb von T haben den Wert ∞.
In jedem Schleifendurchlauf wird in Zeile 8 ein unfertiger Knoten u
in T mit kleinstem g-Wert aus P entfernt und als fertig markiert.
Anschließend werden alle unfertigen Nachfolger v von u an den Knoten
u in T an- bzw. umgehängt, falls sich dadurch ihre Wurzeldistanz
g(v) verkleinert.

39

3 Graphalgorithmen 3.5 Kürzeste Pfade in Distanzgraphen

Beispiel 51. Betrachte den nebenste-
henden Distanzgraphen G. Bei Aus-
führung des Dijkstra-Algorithmus’ mit
dem Startknoten a werden die folgen-
den kürzesten Wege berechnet.

b c

a d

e f

1

7

3

3 6
8

1

1
3

Inhalt von P entfernt besuchte Kanten Update-Op.
(a, 0) (a, 0) (a, b), (a, e) (b, 1), (e, 7)
(b, 1), (e, 7) (b, 1) (b, c) (c, 4)
(c, 4), (e, 7) (c, 4) (c, d), (c, e), (c, f) (d, 12), (f, 10)
(e, 7), (f, 10), (d, 12) (e, 7) (e, f) (f, 8)
(f, 8), (d, 12) (f, 8) (f, c), (f, d) (d, 10)
(d, 10) (d, 10) − −

/

40

	1 Einleitung
	2 Suchen und Sortieren
	2.1 Suchen von Mustern in Texten
	2.1.1 String-Matching mit endlichen Automaten
	2.1.2 Der Knuth-Morris-Pratt-Algorithmus

	2.2 Durchsuchen von Zahlenfolgen
	2.3 Sortieralgorithmen
	2.3.1 Sortieren durch Einfügen
	2.3.2 Sortieren durch Mischen
	2.3.3 Lösen von Rekursionsgleichungen
	2.3.4 Eine untere Schranke für das Sortierproblem
	2.3.5 QuickSort
	2.3.6 HeapSort
	2.3.7 BucketSort
	2.3.8 CountingSort
	2.3.9 RadixSort
	2.3.10 Vergleich der Sortierverfahren

	2.4 Datenstrukturen für dynamische Mengen
	2.4.1 Verkettete Listen
	2.4.2 Binäre Suchbäume
	2.4.3 Balancierte Suchbäume

	3 Graphalgorithmen
	3.1 Grundlegende Begriffe
	3.2 Datenstrukturen für Graphen
	3.3 Keller und Warteschlange
	3.4 Durchsuchen von Graphen
	3.4.1 Suchwälder
	3.4.2 Klassifikation der Kanten eines (Di-)Graphen
	3.4.3 Spannbäume und Spannwälder
	3.4.4 Berechnung der Zusammenhangskomponenten
	3.4.5 Breiten- und Tiefensuche
	3.4.6 Starke Zusammenhangskomponenten

	3.5 K"urzeste Pfade in Distanzgraphen
	3.5.1 Der Dijkstra-Algorithmus

