Algorithms and Data Structures

Sorting:
Simple Methods and a Lower Bound

UIf Leser

Large-Scale Sorting

e Imagine you are the IT head of a telco-company

e You have 30.000.000 customers each performing ~100
telephone calls per months, each call creating 200 bytes
— That's 30M*100*12*200=7.200.000.000.000 bytes per year
— Somewhere in the 200 bytes is information on revenue per call
— Imagine the data is in one file, one line per call

e At the end of the year, management wants a list of all
customers with aggregated revenue per day (for one year)
— That's ~30M*12*30 ~ 10.000.000.000 real numbers

e Problem: How can we compute these 10E9 numbers?

Ulf Leser: Algorithms and Data Structures 3

Approach 0Oa: Load into Memory and Scan

e This won't work
e Data is too big to be loaded into main memory

Ulf Leser: Algorithms and Data Structures 4

Approach Ob: Load into a DBMS and use SQL

e This will work
e Not topic of our lecture

e [Will be slow — inserting is costly]
e [Better to already keep the data in a RDBMS — no loading]
e [DBMS will use the same trick we present right now]

Ulf Leser: Algorithms and Data Structures)

Approach 1: Scan and Keep Intermediate Results

e Eventually, we need 10E9 real numbers

e Scan the file from start to end
— Build table (list! how?) of every combination of customer and day
— When reading a record, look-up combination in table and update

e That's fast (if the table-look-up is fast)

o But we need ~100GB
— E.g. 1 byte day, 1 byte month, 4 byte customer ID, 4 byte float

e What if want the sum for each day over 10 years?
e This won't scale

Ulf Leser: Algorithms and Data Structures 6

Approach 2: Partition Data, Multiple Reads

e Assume we can keep 30M*30 ~ 1E9 numbers in memory
— Solve the problem month-by-month (1 month ~ 30 days)

— Read the call-file 12 times, each time computing aggregates for all
customers and the days of one month

— This will be slow

1st read

2nd read

3rd read

Meier, 10.1.2010
Miiller, 18.4.2010
Meier, 1.2.2010
Meier, 18.1.2010
Schmidt, 14.1.2010
Schmidt, 6.4.2010
Miiller, 27.2.2010
Miiller, 9.4.2010
Schmidt, 1.3.2010
Schmitt, 9.2.2010
Schmitt, 30.3.2010
Schmitt, 3.1.2010

Meier, 10.1.2010
Miiller, 18.4.2010
Meier, 1.2.2010
Meier, 18.1.2010
Schmidt, 14.1.2010
Schmidt, 6.4.2010
Miller, 27.2.2010
Mdller, 9.4.2010
Schmidt, 1.3.2010
Schmitt, 9.2.2010
Schmitt, 30.3.2010
Schmitt, 3.1.2010

Meier, 10.1.2010
Mdller, 18.4.2010
Meier, 1.2.2010
Meier, 18.1.2010
Schmidt, 14.1.2010
Schmidt, 6.4.2010
Muller, 27.2.2010
Muller, 9.4.2010
Schmidt, 1.3.2010
Schmitt, 9.2.2010
Schmitt, 30.3.2010
Schmitt, 3.1.2010

Meier, 10.1.2010
Miiller, 18.4.2010
Meier, 1.2.2010
Meier, 18.1.2010
Schmidt, 14.1.2010
Schmidt, 6.4.2010
Miiller, 27.2.2010
Mdller, 9.4.2010
Schmidt, 1.3.2010
Schmitt, 9.2.2010
Schmitt, 30.3.2010
Schmitt, 3.1.2010

Approach 3: Sorting

o Alternative?
— Sort the file by customer and day

— Read sorted file once and compute
aggregates on the fly

Meier, 10.1.2010
Meier, 10.1.2010 —% Sum

— Whenever a pair (day, customer) is mei”er, 12;220210010—> Sum
.. : uller, 27.2. — Sum
finished (i.e., new values appear), Miiller, 9.4.2010
sum can be written out and next Miiller, 9.4.2010 — Sum
Schmidt, 14.1.2010
daylcu.stomer starts achmidt, 1.3.3010
— This will be very fast Schmidt, 6.4.2010
_ _ Schmitt, 3.1.2010
— Needs virtually no memory during Schmitt, 3.1.2010
Counting Schmitt, 30.3.2010

e But: Can we sort ~3 billion
records using less than 12 reads?

Ulf Leser: Algorithms and Data Structures 8

Content of this Lecture

e Sorting
e Simple Methods
e |Lower Bound

Ulf Leser: Algorithms and Data Structures 9

Sorting

e Assumptions
— We have n values (integer, called keys) that should be sorted

— Values are stored in an array S (i.e., O(1) access to i'th element)
e Sorting in other list implementations is very different

— Comparing two values costs O(1)
— We usually count # of comparisons; sometimes also # of swaps

— Values are not interpreted

e We do not know what a “big” value is or how many percent of all
values are smaller than a given value or ...

— All we can do is compare two values
e We seek a permutation = of the indexes of S such that
vi,j<n with n(i)<n(j) : S[n(i)] < S[=(j)]

Ulf Leser: Algorithms and Data Structures 10

Variations

e External versus internal sorting
— Internal sorting: S fits into main memory
— External sorting: There are too many records to fit in memory
— We only look at internal sorting (see DB lecture)

e In-place or with additional memory

— In-place sorting only requires a constant (independent of n)
amount of additional memory (on top of S)

— We will look at both
e Pre-Sorting

— Some algorithms can take advantage of an existing (incomplete,
erroneous) order in the data, some not

— We will not exploit pre-sorting

Ulf Leser: Algorithms and Data Structures 11

Applications

e Sorting is a ubiquitous task in computer science
— [OW93] claims that 25% of all computing time is spent in sorting

e Second example: Information Retrieval
— Imagine you want to build g*****++

— Fundamental operation: In a very large set of documents, find
those that contain a given set of keywords

e [Note: That's not quite what a search engine does in reality!]
— Popular way of doing this: Build an inverted index

Ulf Leser: Algorithms and Data Structures 12

Inverted Index

m m

Baseball is played during summer months. baseball

el

Summer is the time for picnics here. during
3 Months later we found out why. found

Why is summer so hot here? here
hot

B

is
months
summer
the

why

UIf Leser: Algorithms and Data Structures

1
1
1
2
1
3
2
-
1
2

[1]

(3]

(2], [4]

[4]

[1], [2], [4]
[1], [3]
[1], [2], [4]
[2]

(3], [4]

Source: http://docs.lucidworks.com

13

Answering a IR-style Query

e A query is a set of keywords

e Finding the answer

— For each keyword k; of the query, find list d; of docs containing k;
from inverted index

— Build intersection of all d
— Docs in this list are your answer

e Imagine the query “the man eats a bread” on the Web
— Doc-list for “the” and “a” will contain >10 billion documents

e How do we compute the intersection of two sets of 10
billion IDs?

Ulf Leser: Algorithms and Data Structures 14

Intersection of Two Sets

With non-sorted sets: With sorted sets:
O(m*n) O(n+m)
1 _ D
Sl
7 \: 8
8 /?/ 9
12 11

Ulf Leser: Algorithms and Data Structures 15

Content of this Lecture

e Sorting

e Simple Methods
— Selection sort
— Insertion sort
— Bubble sort

e Lower Bound

Ulf Leser: Algorithms and Data Structures 16

Recall: Selection Sort

— e Analysis showed that
n o= |s| selection sort is in O(n?)
for i = 1..n-1 do .
for § = i41..n do e Jtis easy to see that
if S[i]>S[j] then selection sort also is in
tmp := S[J]’ p)
S[j] := S[i]; Q(n)
s3] = erp e How often do we swap
end for; values?
end for; — That depends a lot on the

pre-sorted’ness of the array

— But actually we can do a bit
better

Ulf Leser: Algorithms and Data Structures

17

Selection Sort Improved

o IrreroR nanes e Same number of
for i = 1..n-1 do comparisons
for 3 = 1+1..n do e How often do we swap
if ?[min_pos]>.S[j] then values?
enrdnlzgl;)os o — At most once for every
end for; position
iftzgnii[;;i then — Thus: O(n) swaps
S[i] := S[min pos] ; e Compared to O(n?2) times
enz [rin';r:_posl 1= tmp; — But still O(n2) assignments
end for;

Ulf Leser: Algorithms and Data Structures 18

Analogy

e |et's assume you keep your
cards sorted

e How to get this order?

— Selection sort: Take up all cards at
once and build sorted prefixes of
increasing length by always starting
to scan from the left

— Insertion sort: Take up cards one
by one and sort every new card
into the sorted subset in your hand

— Bubble sort: Take up all cards at
once and swap neighbors until
everything is fine

Ulf Leser: Algorithms and Data Structures

19

Insertion Sort

o After each loop of i, the
prefix S[1..i] of S is sorted

S: array of names;]
n = |S| e While-loop runs backwards
for 1 =2..n do from current position (to be
J = 1i; . .
key i< S[3]: inserted) until value gets
while (S[j-1]>key) and (j>1) do smaller than S[]]
S[j] := s[j-11;
j i= §-1; e Example: 54816
end while; . .
S[3] = key: e One problem is the required
end for; movement of many values

until correct place is found

— Could be implemented much
better with a double-linked list

Ulf Leser: Algorithms and Data Structures 20

Complexity (Worst Case)

e Comparisons

i: ;T:ij‘names" — Outer loop: n times
for 1 =2..ndo — Inner-loop: i times

ljce;_;i;s[j]; — Thus, O(n?)

e sy e) e e How many swaps?

j i= 3-1; — (We move and don't swap, but

end while; both are in O(1))

enz[ilr:,: ke — In worst-case, every
comparison incurs a “swap”
— Thus: O(n?)

e We got worse?

Ulf Leser: Algorithms and Data Structures 21

Complexity (Best Case)

S: array of names;
n := |S|
for i = 2..n do
j = 1i;
key := S[]j];
while (S[j-1]>key) and (j>1) do
S[j] := s[j-1]1;
j o= Jj-1;
end while;
S[J] := key;
end for;

Ulf Leser: Algorithms and Data Structures

Assume the best case: S is
already sorted

Comparisons

— Quter loop: n times

— Inner-loop: 1 time

— Thus, O(n)

Swaps

— None

Insertion Sort is in Q(n)

We might be better!

22

Bubble Sort

e (o through array again and again
in some order

e Compare all direct neighbors
ism ® Swap if in wrong order

e Repeat until a loop finishes
without a single swaps

:[7] e Analysis: About as good/bad as

217 the others (so far)

— Worst case O(n?) comparisons and
O(n2) swaps

— Best case O(n) comparisons and
Zero moves / swaps

Source: HKI, KoIn

Ulf Leser: Algorithms and Data Structures 23

Quiz

e Mark everything that is correct
— SelectionSort is worse than InsertionSort in Best Case
— A list in reverse order is a worst case instance for InsertionSort

— A single swap has the same complexity in a linked list and in an
array

— In SelectionSort, the number of CPU cycles is independent of the
concrete instance for a given n

— It requires Q2(n) operations to test if a list is sorted

Ulf Leser: Algorithms and Data Structures 24

Summary

Comparisons | Comparisons Additional Swaps/moves
worst case best case space worst/best
Selection Sort O(n?) O(n?) O(1) O(n)
Insertion Sort O(n?) O(n) O(1) O(n2) / O(n)
Bubble Sort O(n?) O(n) O(1) O(n?) / O(1)

Ulf Leser: Algorithms and Data Structures

26

Summary

Comparisons | Comparisons Additional Swaps/moves
worst case best case space worst/best
Selection Sort O(n2) O(n2) 0O(1) O(n)
Insertion Sort O(n?) O(n) O(1) O(n2) / O(n)
Bubble Sort O(n?) O(n) O(1) O(n%) / O(1)
Merge Sort O(n*log(n)) O(n*log(n)) O(n) O(n*log(n))

Ulf Leser: Algorithms and Data Structures

27

Summary

Comparisons | Comparisons Additional Moves
worst case best case space worst/best
Selection Sort O(n2) O(n2) 0O(1) O(n)*
Insertion Sort O(n?) O(n) O(1) O(n2) / O(n)
Bubble Sort O(n?) O(n) O(1) O(n%) / O(1)
Merge Sort O(n*log(n)) O(n*log(n)) O(n) O(n*log(n))
Magic Sort (?) O(n) O(n)

Ulf Leser: Algorithms and Data Structures

28

Content of this Lecture

e Sorting
e Simple Methods
e |Lower Bound

Ulf Leser: Algorithms and Data Structures 29

Lower Bound

o We found three algorithms with WC-complexity O(n?)
e Maybe there is no better algorithm?

e There are some in O(n*log(n))

e Maybe there are even better algorithms?

o Is there a lower bound on the number of comparisons?

Ulf Leser: Algorithms and Data Structures 30

Lemma

e Lemma

To sort a list of n distinct keys using only key comparisons,
every algorithm needs Q(n*log(n)) comparisons in worst
case

e Implications

— We cannot sort with less than O(n*log(n)) comparisons in worst
case without using other properties of the data

— We can be better, when other operations than comparisons are
allowed — see radix sort / bucket sort

Ulf Leser: Algorithms and Data Structures 31

Proof Structure

e We find the best safe way to find the right permutation =
e There are n! different permutations
e Each could be the right one
— And there is only one “right one” (we disregard duplicates)
e To find the right one, we may only compare two keys

e Every comparison splits the group of all permutations into
two disjoint partitions
— One with all permutations where the result of the test is TRUE
— One with all permutations where the result of the test is FALSE

e How often do we need to compare at least until every
partition has size 1
— At least: In the best of all worlds

Ulf Leser: Algorithms and Data Structures 32

Decision Tree

Elements mean:
1st element goes 15t
5th goes 29,

~

oth goes 31, ... §5186359317
53718367171

961532486

Without loss of generality: 33::2 g g 2;
Let's assume 274998299
S=[1,2,3,4,5,6,7,8,9] 318477154
6 59114745

Then content (numbers) is 895261533

identical to position

Some exemplary permutations
(columns) of an arbitrary list S
with |S|=9

Ulf Leser: Algorithms and Data Structures 33

Example

59317
83671

32486

16832
77 955

98299
4 5124

14745

61533

S[5]<S[7]?

1863
5371

9615

4 4 36
31514
27 49

72 8 8

6 591

8 952

34

Ulf Leser: Algorithms and Data Structures

General Case

S[i;1<8[3,17

/\

186 3 59317

5371 8 3671

96 15 32486

4 4 3 6 168 32

725 8 4 5925

27 4 9 982 99

31814 77 15 4

6 591 14745

8 95 2 61533

All permutations of S where All permutations of S where

the value at position i, is the value at position iy is
smaller than the value at larger than the value at

position j; position j;

Ulf Leser: Algorithms and Data Structures 35

Decision Tree

S[1,1<8[3,17

/\

186 3 59317
5371 8 36171
96 15 32486
4 4 3 6 168 32
7 2 5 8 4 5925
27 4 9 98299
31814 77 15 4
6 591 147 45
8 95 2 61533
S[1,1<8[3J.17 S[i,1<S[3¢]1?

Ulf Leser: Algorithms and Data Structures 36

Decision Tree

S[1,1<8[3,17

/\

S[i,]1<S[j,]1? S[ic1<S[36l1?

1
7
8
3
2
9
5
4
3

oo WNId»OOUG R
OCURrJIDNMMOWO
OO 0 U1lwEkEdJdo
wWuolk OUUNODRJ

3
1
5
6
8
9
4
1
2

OO R JdJOUdbdEFE WOLWOWL
R JoO U DN W
OdFEPDNOOOOGOW

Non-optimal choice of i,, j,

Ulf Leser: Algorithms and Data Structures 37

Full Decision Tree

S[1,1<8[3,17

/\

S[i,]1<S[j,]1? S[ic1<S[36l1?

VAN

AN

\y

WUk OoUuMNMGOBRERJ

NERr_dOOOOUGRW

oORrRJdJOUbhEFE WOLWOWL

OO YWoodUlwEkErdJdo

Wbk OTODMNMNWOOLIR

N WINI OO R
OCURr JINdOWO
OOdFEDNOWO_OW
R J0o0O UMD W

Ulf Leser: Algorithms and Data Structures 38

(00]

Optimal Sequence of Comparisons

e \We have no clue about which concrete series of
comparisons is optimal for a given list

e But: Here we are looking for a lower bound: We may
always assume to take the best choice

e Best choice: Creating only 1-partitions with as few
comparisons as possible

e If we always magically take the best choice — how long can
we still need in worst case?

e Thus, we want to know the length of the longest path
through the optimal (lowest) decision tree

— Even in the best of all worlds we may need to make this number of
comparisons to find the correct permutation

e The optimal tree is the one with the shortest longest path

Intuition

Good Bad
(not optimal)

Ulf Leser: Algorithms and Data Structures 40

Shortest Longest Path

e Definition
The height of a binary tree is the length of its longest path.

e Lemma
A binary tree with k leaves has at least height log(k).

e Proof
— Every inner node has at most two children

— To cover as many leaves as possible in the level above the leaves,
we need ceil(k/2) nodes

— In the second-last level, we need ceil(k/2/2) nodes
— Etc.

— After log(k) levels, only one node remains (root)

— ged.

Ulf Leser: Algorithms and Data Structures 41

Putting it all together

e QOur decision tree has n! leaves
e The height of a binary tree with n! leaves is at least log(n!)

e Thus, the longest path in the optimal tree has at least
log(n!) comparisons

e Since n!'>(n/2)"2: log(n') = log((n/2)"2) = n/2*log(n/2)

e This gives the overall lower bound Q(n*log(n))

e Qed. -

2 B 10 14 S— |Og(n!) iS in
O(n*log(n))

Y
n! leaves

Ulf Leser: Algorithms and Data Structures 42

Stop: Why not test in O(n)?

S[n-1]<S[n]"?

/\

S[n-2]<S[n-1]"7

N

S

e This is the best case — not the best comps
worst case

e In general, the solution will not be in \
this partition

e We need a strategy that is always fast, —
not “faster” in some cases

Ulf Leser: Algorithms and Data Structures 43

Exemplary Exam Questions

e Give best case and worst case instances for the following
algorithms: insertion sort, bubble sort. Explain your
examples

e Proof that bubble sort is in O(n?) and Q(n?) worst case
(comparisons)

e Image a list S consisting of k sorted subarrays of arbitrary
size (example for k=4: <1,6,7,8,2,5,1,5,7,9,3,5>). Find an
algorithm for sorting S which runs in O(n*k)

Ulf Leser: Algorithms and Data Structures 44

	Foliennummer 1
	Large-Scale Sorting
	Approach 0a: Load into Memory and Scan
	Approach 0b: Load into a DBMS and use SQL
	Approach 1: Scan and Keep Intermediate Results
	Approach 2: Partition Data, Multiple Reads
	Approach 3: Sorting
	Content of this Lecture
	Sorting
	Variations
	Applications
	Inverted Index
	Answering a IR-style Query
	Intersection of Two Sets
	Content of this Lecture
	Recall: Selection Sort
	Selection Sort Improved
	Analogy
	Insertion Sort
	Complexity (Worst Case)
	Complexity (Best Case)
	Bubble Sort
	Quiz
	Summary
	Summary
	Summary
	Content of this Lecture
	Lower Bound
	Lemma
	Proof Structure
	Decision Tree
	Example
	General Case
	Decision Tree
	Decision Tree
	Full Decision Tree
	Optimal Sequence of Comparisons
	Intuition
	Shortest Longest Path
	Putting it all together
	Stop: Why not test in O(n)?
	Exemplary Exam Questions

