
Modellbasierte Softwareentwicklung (MODSOFT)

Part II

Domain Specific Languages

Semantics
Prof. Joachim Fischer /

Dr. Markus Scheidgen / Dipl.-Inf. Andreas Blunk

{fischer,scheidge,blunk}@informatik.hu-berlin.de
LFE Systemanalyse, III.310

1

prolog
(1 VL)

Introduction: languages and their aspects, modeling vs.
programming, meta-modeling and the 4 layer model

0.
(2 VL)

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description,
features, p2-repositories, RCPs

1.
(2 VL)

Structure: Ecore, genmodel, working with generated code,
constraints with Java and OCL, XML/XMI

2.
(3 VL)

Notation: Customizing the tree-editor, textural with XText,
graphical with GEF and GMF

3.
(4 VL)

Semantics: interpreters with Java, code-generation with Java and
XTend, model-transformations with Java and ATL

epilog
(2 VL)

Tools: persisting large models, model versioning and
comparison, model evolution and co-adaption, modular
languages with XBase, Meta Programming System (MPS)

Agenda

2

➡

Previously on MODSOFT

3

Eclipse Modeling Framework

4

structure

EMFnotation semantics

Repository

Revision Diff

Compilation
Unit

* *

prevnext

«relation,
fragmentation»

* *

Meta-Languages

5

editor/
parser

repository/
constraint checker

compiler/
simulator/
intepreter

instance representation
(program, model, description)

instance semantics
(running software, results)

la
ng

ua
ge

 to
ol

s notationmeta tools

structuremeta tools

semanticsmeta tools

human input

generated output

Different Types of Semantics

▶ Operational Semantics

▶ Denotational Semantics

▶ Axiomatic Semantics

▶ Translational Semantics

6

Semantics and DSLs

7

DSL Validation

CheckingPetri-Nets

Simulation
Language Simulation

Java

C++

Java Tests

C++ Tests

Operational Semantics
with EMF

8

Approaches to Operational Semantics with EMF

▶ Programming

■ Java or other JRE compatible languages (e.g. Groovy, Scala)

■ other languages via XMI/XML

▶ Action languages

■ imperative description of meta-model method implementations

◆ e.g. UML Activities and UML Action Language

▶ Graph rewriting

■ declarative description of execution steps

■ semantics as a series of in-place model-transformations

■ like term rewriting on context-free syntax (terms), but on EMF-
models (graphs)

9

Abstract Syntax and Runtime Concepts

▶ Abstract syntax covers all concepts that can be used to write
models/programs before the model/program is executed

▶ Runtime concepts are necessary to model program/model
state while the model/program is executed

▶ Runtime concepts can be realized within or outside of EMF

▶ Runtime concepts are often instances of syntax concepts

■ remember Multi-Level-Meta-Modeling with ambiguous
instantiation and replication of concepts

▶ Runtime concepts can also be implemented in an existing
runtime library, without any EMF or model connections

10

Meta-Model Operations and Operational Semantics

▶ EMF classes can declare operations

▶ Main operation to start interpretation

▶ Model as a start configuration of objects

▶ operation implementations can create and destroy model
object

▶ syntax becomes runtime state

11

Implementation of EMF operations

▶ Java

▶ delegation to external implementations in other languages

▶ e.g. action languages

▶ e.g. Actions

■ UML activities to choreograph actions on the model

■ Actions are

◆ instantiation

◆ modification of value sets

◆ destruction of objects

◆ call operations

■ OCL can be used to describe expressions to compute decisions, values, and
operation arguments

■ Actions can be reversed

12

Java Example for Operational Semantics

13

1
2

3

0.3

0.2

0.5

0.7

0.3

0.1

Sonne Regen0.7

0.6

0.4

0.3

▶ Markov chains

■ finite number of labeled states

■ directed edges with constant probabilities

■ sum of all outgoing probabilities = 1

✓
0.7 0.6
0.3 0.4

◆
·
✓
1
0

◆
=

✓
0.7
0.3

◆

✓
0.7 0.6
0.3 0.4

◆
·
✓
0.7
0.3

◆
=

✓
0.67
0.33

◆

M · sn = sn+1

Java Example for Operational Semantics

14

Java Example for Operational Semantics

15

Java Example for Operational Semantics

16

public void transition() {
	 double random = Math.random();
	 double propabilitySum = 0;
	 for(Transition transition: getCurrentState().getOutgoingTransitions()) {
	 	 propabilitySum += transition.getPropability();
	 	 if (random <= propabilitySum) {
	 	 	 setCurrentState(transition.getTarget());
	 	 	 return;
	 	 }
	 }
	
	 throw new IllegalArgumentException("Sum of all transition propabilities must by 1");
}

public void run() {
	 RuntimeState rs = MarkovFactory.eINSTANCE.createRuntimeState();
	 rs.setCurrentState(getStart());
	 for (int i = 0; i < getTurns(); i++) {
	 	 System.out.println(rs.getCurrentState());
	 	 rs.transition();
	 }
}

Java Example for Operational Semantics

17

1
2

3

0.3

0.2

0.5

0.7

0.3

0.1

Sonne Regen0.7

0.6

0.4

0.3

Sonne
Regen
Sonne
Sonne
Regen

run from sonne for 5

sonne
 to regen with 0.3
 to sonne with 0.7

regen
 to sonne with 0.6
 to regen with 0.4

Another Example

18

Another Example

19

Another Example

20

rest

play

mate

1

m

p+m

p

p+m

e�
1
m

1� e�
1
m

Another Example

20

public PetMarkovModel instantiateMarkovModel() {
	 PetMarkovModel markovModel = FidoFactory.eINSTANCE.createPetMarkovModel();
	
	 State play = createState("play", markovModel);
	 State mate = createState("mate", markovModel);
	 State rest = createState("rest", markovModel);
	
	 markovModel.setCurrentState(rest);
	
	 float partners = getPlayPartners() + getMatePartners();
	 if (partners == 0) {
	 	 createTransition(rest, rest, 1);
	 } else {
	 	 createTransition(rest, play, getPlayPartners()/partners);
	 	 createTransition(rest, mate, getMatePartners()/partners);
	 }
	
	 double matePropability = Math.pow(Math.E, 1/(float)getMatePartners());
	 createTransition(play, mate, (float)matePropability);
	 createTransition(play, mate, (float)(1-matePropability));
	
	 createTransition(mate, rest, 1);
	
	 setMarkovModel(markovModel);
	 return markovModel;
}

rest

play

mate

1

m

p+m

p

p+m

e�
1
m

1� e�
1
m

Another Example

20

public PetMarkovModel instantiateMarkovModel() {
	 PetMarkovModel markovModel = FidoFactory.eINSTANCE.createPetMarkovModel();
	
	 State play = createState("play", markovModel);
	 State mate = createState("mate", markovModel);
	 State rest = createState("rest", markovModel);
	
	 markovModel.setCurrentState(rest);
	
	 float partners = getPlayPartners() + getMatePartners();
	 if (partners == 0) {
	 	 createTransition(rest, rest, 1);
	 } else {
	 	 createTransition(rest, play, getPlayPartners()/partners);
	 	 createTransition(rest, mate, getMatePartners()/partners);
	 }
	
	 double matePropability = Math.pow(Math.E, 1/(float)getMatePartners());
	 createTransition(play, mate, (float)matePropability);
	 createTransition(play, mate, (float)(1-matePropability));
	
	 createTransition(mate, rest, 1);
	
	 setMarkovModel(markovModel);
	 return markovModel;
}

rest

play

mate

1

m

p+m

p

p+m

e�
1
m

1� e�
1
m

private State createState(String name, MarkovModel model) {
	 State state = MarkovFactory.eINSTANCE.createState();
	 state.setName(name);
	 model.getStates().add(state);
	 return state;
}

private Transition createTransition(State from, State to, float propability) {
	 Transition transition = MarkovFactory.eINSTANCE.createTransition();
	 from.getOutgoingTransitions().add(transition);
	 transition.setPropability(propability);
	 transition.setTarget(to);
	 return transition;
}

Another Example

21

Another Example

21

Markus is friends with Kathi and owns
	 male dog Fido, male cat Gentle

Kathi owns
	 female dog Cleopatra, female cat Roxette

Another Example

21

Markus is friends with Kathi and owns
	 male dog Fido, male cat Gentle

Kathi owns
	 female dog Cleopatra, female cat Roxette

Day 0:
Fido tries to play
Gentle tries to play
Cleopatra tries to rest
Roxette tries to play
Day 1:
Fido tries to mate
Gentle tries to mate
Cleopatra tries to rest
Roxette tries to mate
Day 2:
Fido tries to rest
Gentle tries to rest
Cleopatra tries to rest
Roxette tries to rest
Day 3:
Fido tries to play
Gentle tries to play
Cleopatra tries to rest
Roxette tries to play
Day 4:
Fido tries to mate
Gentle tries to mate
Cleopatra tries to rest
Roxette tries to mate
Day 5:
Fido tries to rest
Gentle tries to rest
Cleopatra tries to rest
Roxette tries to rest

Action Language

22

Action Language

23

Action Language Example – Petri Nets

24

Action Language Example – Petri Nets

24

Abstract Syntax and Runtime Concepts

25

Runtime Concepts – Example Hierarchical Petri Nets

26

Runtime Concepts – Example Hierarchical Petri Nets

27

28

Traces and Debugging

▶ Only actions change the model

▶ It’s good practice to only modify the runtime-part of a model
and retain the user model/program

▶ Actions can be recorded as traces of the execution

■ reverse actions to go backwards

▶ Intermediate models can be stored (compare heap dump in
traditional programming)

▶ generated EMF edit and notifications can be used to create
views on the runtime for a custom debugger

▶ no easy out of the box debugging

■ no separation between model/program and semantics description

29

Traces and Debugging

30

Traces and Debugging

31

public class PetriSemantics implements ISemanticsProvider {
	 public void step(Resource model) {
	 	 Net net = (Net) model.getContents().get(0);
	 	 net.setRunning(true);
	 	 fireTransition(net);
	 }

	 protected void fireTransition(Net net) {
	 	 EList<Transition> ats = findActivatedTransitions(net);
	 	 if (!ats.isEmpty()) {
	 	 	 Transition t = choose(ats);
	 	 	 Place p = choose(t.getSrc());
	 	 	 consume(p);
	 	 	 p = choose(t.getSnk());
	 	 	 produce(p);
	 	 }
	 }

	 protected T choose(List<T> list) {
	 	 // Returns a randomly chosen member of list.
	 }
	 // ...
}

Traces and Debugging

31

public class PetriSemantics implements ISemanticsProvider {
	 public void step(Resource model) {
	 	 Net net = (Net) model.getContents().get(0);
	 	 net.setRunning(true);
	 	 fireTransition(net);
	 }

	 protected void fireTransition(Net net) {
	 	 EList<Transition> ats = findActivatedTransitions(net);
	 	 if (!ats.isEmpty()) {
	 	 	 Transition t = choose(ats);
	 	 	 Place p = choose(t.getSrc());
	 	 	 consume(p);
	 	 	 p = choose(t.getSnk());
	 	 	 produce(p);
	 	 }
	 }

	 protected T choose(List<T> list) {
	 	 // Returns a randomly chosen member of list.
	 }
	 // ...
}

Traces and Debugging

31

public class PetriSemantics implements ISemanticsProvider {
	 public void step(Resource model) {
	 	 Net net = (Net) model.getContents().get(0);
	 	 net.setRunning(true);
	 	 fireTransition(net);
	 }

	 protected void fireTransition(Net net) {
	 	 EList<Transition> ats = findActivatedTransitions(net);
	 	 if (!ats.isEmpty()) {
	 	 	 Transition t = choose(ats);
	 	 	 Place p = choose(t.getSrc());
	 	 	 consume(p);
	 	 	 p = choose(t.getSnk());
	 	 	 produce(p);
	 	 }
	 }

	 protected T choose(List<T> list) {
	 	 // Returns a randomly chosen member of list.
	 }
	 // ...
}

	 // ...
	 protected void fireTransition(Net net) {
	 	 EList<Transition> ats = findActivatedTransitions(net);
	 	 if (!ats.isEmpty()) {
	 	 	 Transition t = choose(ats);
	 	 	 for (Place p : t.getSrc())
	 	 	 	 consume(p);
	 	 	 for (Place p : t.getSnk())
	 	 	 	 produce(p);
	 	 }
	 }

	 // ...

Traces and Debugging

31

public class PetriSemantics implements ISemanticsProvider {
	 public void step(Resource model) {
	 	 Net net = (Net) model.getContents().get(0);
	 	 net.setRunning(true);
	 	 fireTransition(net);
	 }

	 protected void fireTransition(Net net) {
	 	 EList<Transition> ats = findActivatedTransitions(net);
	 	 if (!ats.isEmpty()) {
	 	 	 Transition t = choose(ats);
	 	 	 Place p = choose(t.getSrc());
	 	 	 consume(p);
	 	 	 p = choose(t.getSnk());
	 	 	 produce(p);
	 	 }
	 }

	 protected T choose(List<T> list) {
	 	 // Returns a randomly chosen member of list.
	 }
	 // ...
}

	 // ...
	 protected void fireTransition(Net net) {
	 	 EList<Transition> ats = findActivatedTransitions(net);
	 	 if (!ats.isEmpty()) {
	 	 	 Transition t = choose(ats);
	 	 	 for (Place p : t.getSrc())
	 	 	 	 consume(p);
	 	 	 for (Place p : t.getSnk())
	 	 	 	 produce(p);
	 	 }
	 }

	 // ...

Using the Environment

▶ Reasonable models/programs need to interact with the
environment when simulated/run

■ Input/output

■ Interaction with eclipse or other GUI elements

■ Interaction with databases

■ Simulation visualization

■ ...

▶ EMF is not self-contained: use operations and datatypes to
connect EMF to the rest of the Java world

▶ notations can be used to visualize runtime state

32

Summary

▶ Add runtime-concepts to the meta-model

▶ Declare operations

▶ Implement operations, e.g. with Java or M3Actions

▶ Interpreters need to load the model/program and call the
main operation.

▶ Lots of possibilities to debug and to build custom
debuggers, no simple out of the box solution

33

Translational Semantics
with EMF

34

Types of “Model Transformations”

▶ Operational semantics

■ Interpretation (model-to-execution)

▶ Translational semantics

■ Code-generation (model-to-code)

■ Model-transformation (model-to-model)

◆ new target

◆ existing target

◆ source=target, in-place transformation

◆ further classification necessary

35

Elaboration and Translational Semantics

▶ Generated artifacts can be modified or extended after generation

▶ Elaboration allows to vary the generated semantics, i.e. allows variance
in the semantics description

▶ Generated code can be modified, generated models can be extended

▶ Elaboration is paramount for practical abstraction

■ more flexibility for language users

■ smaller, more coherent, less expensive DSLs for language engineers

■ mitigates some problems of external DSLs (when compared to internal DSLs)

▶ Elaboration and re-generation

■ protected regions

■ elaboration by extension, if the target language supports external extension of
completed entities like e.g. in most object-oriented languages

36

Elaboration and Translational Semantics

37

PIM

PSM PSM

Code Code

Design Checking

Simulation

Test Code

Translational Semantics with EMF

▶ Programming

■ Java or other JRE compatible languages

■ other programming languages via XMI/XML

▶ Languages for code-generation

■ templates, e.g. Jet

■ programming languages with rich-strings, e.g. xtend

▶ Languages for model-to-model transformations

■ imperative, e.g. ATL

■ declarative, e.g. (triple graph) grammars

38

Operational vs. Translational

▶ self-contained

▶ requires a specific runtime
environment almost all the time

▶ debuggable

▶ platform specific, requires model
processing on that platform

▶ interpreters can be
parameterized for semantic
variations

▶ no generated artifacts, no
elaboration of generated artifacts

▶ no generated artifacts that need
to be maintained

39

▶ target language dependent

▶ sometimes requires specific
runtime environment

▶ hard to debug

▶ “platform independent”, platform
does not need to process model

▶ model transformations can be
parameterized for semantic
variations

▶ generated code can be elaborated
for semantic variations

▶ generated code is another asset
to maintain

Code-Generation vs. Model-Transformartions

▶ No guaranties that
generated artifacts are well-
formed or even
semantically sound

▶ In general, no properties
can be formally proved

▶ Structural differences
between source and target
possible

▶ Generated artifacts can be
syntactically elaborated
(there is concrete syntax)

40

▶ generated artifacts are at least
syntactically sound (no concrete
syntax involved)

▶ In theory and for some
techniques, some properties
(e.g. retention of properties) can
be proved

▶ Its harder to create structurally
different targets with most
model transformation languages

▶ Elaboration of generated
artifacts only via external
extension

Translational Semantics
Code Generation

41

Approaches to Code Generation with EMF

▶ Programming

■ Java or other JRE compatible languages (e.g. Groovy, Scala)

■ other languages via XMI/XML

▶ Template Language

■ XML-based languages, e.g. XSLT

■ EMF-based languages, e.g. Jet

▶ Rich Strings

■ Programming languages that support Rich Strings, e.g. xTend

42

Programming Code Generators

▶ programmatically traverse and navigate the model, e.g. via
higher order collection functions, internal OCL-like DSLs

▶ basic IO to print code snippets while traversing the model

▶ generated code can use runtime concepts implemented in a
runtime library.

▶ the generated code can be written in another language or
even in no formal/computer language at all

43

Java Example For Code Generator

44

public void generate(Model model) {
	 for(Owner owner: model.getOwner()) {
	 	 for (Pet pet: owner.getPets()) {
	 	 	 System.out.println(pet.getName() + "Rest");
	 	 	 System.out.println(" to " + pet.getName() + "Play with " + (pet.getPlayPartners()/(float)(pet.getPlayPartners()+pet.getMatePartners())));
	 	 	 System.out.println(" to " + pet.getName() + "Mate with " + (pet.getMatePartners()/(float)(pet.getPlayPartners()+pet.getMatePartners())));
	 	 	 System.out.println("");
	 	 	
	 	 	 System.out.println(pet.getName() + "Mate");
	 	 	 System.out.println(" to " + pet.getName() + "Rest with 1");
	 	 	 System.out.println("");
	 	 	
	 	 	 System.out.println(pet.getName() + "Play");
	 	 	 System.out.println(" to " + pet.getName() + "Mate with " + Math.pow(Math.E, -(1/(float)pet.getMatePartners())));
	 	 	 System.out.println(" to " + pet.getName() + "Mate with " + (1-Math.pow(Math.E, -(1/(float)pet.getMatePartners()))));
	 	 	 System.out.println("");
	 	 }
	 }
}

Java Example For Code Generator

45

public void generate(Model model) {
	 for(Owner owner: model.getOwner()) {
	 	 for (Pet pet: owner.getPets()) {
	 	 	 System.out.println(pet.getName() + "Rest");
	 	 	 System.out.println(" to " + pet.getName() + "Play with " + (pet.getPlayPartners()/(float)(pet.getPlayPartners()+pet.getMatePartners())));
	 	 	 System.out.println(" to " + pet.getName() + "Mate with " + (pet.getMatePartners()/(float)(pet.getPlayPartners()+pet.getMatePartners())));
	 	 	 System.out.println("");
	 	 	
	 	 	 System.out.println(pet.getName() + "Mate");
	 	 	 System.out.println(" to " + pet.getName() + "Rest with 1");
	 	 	 System.out.println("");
	 	 	
	 	 	 System.out.println(pet.getName() + "Play");
	 	 	 System.out.println(" to " + pet.getName() + "Mate with " + Math.pow(Math.E, -(1/(float)pet.getMatePartners())));
	 	 	 System.out.println(" to " + pet.getName() + "Mate with " + (1-Math.pow(Math.E, -(1/(float)pet.getMatePartners()))));
	 	 	 System.out.println("");
	 	 }
	 }
}

Java Example For Code Generator

46

FidoRest
 to FidoPlay with 1.0
 to FidoMate with 0.0

FidoMate
 to FidoRest with 1

FidoPlay
 to FidoMate with 0.0
 to FidoMate with 1.0

GentleRest
 to GentlePlay with 0.5
 to GentleMate with 0.5

GentleMate
 to GentleRest with 1

GentlePlay
 to GentleMate with 0.36787944117144233
 to GentleMate with 0.6321205588285577

CleopatraRest
 to CleopatraPlay with 0.0
 to CleopatraMate with 1.0

CleopatraMate
 to CleopatraRest with 1

CleopatraPlay
 to CleopatraMate with
0.36787944117144233
 to CleopatraMate with
0.6321205588285577

RoxetteRest
 to RoxettePlay with 1.0
 to RoxetteMate with 0.0

RoxetteMate
 to RoxetteRest with 1

RoxettePlay
 to RoxetteMate with 0.0
 to RoxetteMate with 1.0

SusiRest
 to SusiPlay with 0.0
 to SusiMate with 1.0

SusiMate
 to SusiRest with 1

SusiPlay
 to SusiMate with 0.36787944117144233
 to SusiMate with 0.6321205588285577

VictorRest
 to VictorPlay with 0.5
 to VictorMate with 0.5

VictorMate
 to VictorRest with 1

VictorPlay
 to VictorMate with 0.36787944117144233
 to VictorMate with 0.6321205588285577

Markus is friends with Kathi and owns
	 male dog Fido, male cat Gentle

Kathi owns
	 female dog Cleopatra, female cat Roxette
	
Peter owns
	 female dog Susi, male cat Victor

Rich Strings

▶ Part of some programming languages

▶ “printf”-style code generation, but with better “richer”
strings that support

■ indentation

■ control sequences

■ model expressions

■ method calls

47

Example Rich String Code Generator (xTend)

48

def generate(Model model) '''		
	 «FOR pet:model.owner.fold(new ArrayList<EList<Pet>>)[r,o|r.addAll(o.pets); r].flatten»
	 	 «pet.name»Rest
	 	 	 to «pet.name»Play with «pet.playPartners/((pet.playPartners+pet.matePartners) as float)»
	 	 	 to «pet.name»Mate with «pet.matePartners/((pet.playPartners+pet.matePartners) as float)»
	 	 	
	 	 «pet.name»Mate
	 	 	 to «pet.name»Rest with 1
	 	 	
	 	 «pet.name»Play
	 	 	 to «pet.name»Mate with «Math.pow(Math.E, -(1/(pet.matePartners as float)))»
	 	 	 to «pet.name»Rest with «1-Math.pow(Math.E, -(1/(pet.matePartners as float)))»
	 «ENDFOR»
'''

Templates

▶ Rich strings allow to embed generated code into the code-
generator code

▶ Templates allow to embed code-generator code into the
generated code

▶ similar approach to JSP or PHP

▶ e.g. with JET (subset of JSP), Java Emitter Templates

■ model expressions (Java)

■ control sequences (Java)

■ calls to other templates (JET)

■ embedded code is Java code

49

Template Example

50

<%@ jet
	 package="fido"
	 imports="de.hub.sam.modsoft.fido.*"%>
<% Model model = (Model) argument; %>
<%
for(Owner owner: model.getOwner()) {
	 for (Pet pet: owner.getPets()) {
%>
<%=pet.getName()%>Rest
 to <%=pet.getName()%>Play with <%=pet.getPlayPartners()/(float)(pet.getPlayPartners()+pet.getMatePartners())%>
 to <%=pet.getName()%>Mate with <%=pet.getMatePartners()/(float)(pet.getPlayPartners()+pet.getMatePartners())%>

<%=pet.getName()%>Mate
	 to <%=pet.getName()%>Rest with 1

<%=pet.getName()%>Play
	 to <%=pet.getName()%> with <%=Math.pow(Math.E, -(1/(float)pet.getMatePartners()))%>
	 to <%=pet.getName()%> with <%=1-Math.pow(Math.E, -(1/(float)pet.getMatePartners()))%>
<%
	 }
}
%>

xTend and JET Semantics

▶ How is xTend and JET Semantics realized?

■ parser plus code generator to Java

■ generated Java code uses “printf”-style code generation

■ xTend is a full programming language with syntax and static
semantics

■ JET just embeds Java snippets that are not directly checked for
correct syntax and static semantics

51

Code Generation and Elaboration

▶ Protected regions

■ specifically marked regions
in the generated code are not
regenerated

■ positive and negative

■ required target syntax to
contain marks (comments,
annotations)

■ e.g. generated NOT in EMF

■ required maintenance of
generated code (e.g. version
control)

52

▶ Generation gap pattern

■ generated classes are extended
and functionality is altered via
callbacks and overwriting

■ only works for object oriented
target language

■ can only change what is meant
to be changed

■ full separation of generated
and not generated code
(generation gap), generated
code does not need to be
maintained (e.g. version
controlled)

Summary

▶ Rich strings (e.g. in Xtend) and Template languages can be
used for code-generation

▶ Code-generation description language/framework is
independent of the target language

▶ very flexible, but unsafe

▶ protected regions vs. generation gap pattern to elaborate
generated code

53

