
Information Retrieval Exercises

Mario Sänger (saengema@informatik.hu-berlin.de)

Assignment 1:
IMDB Spider

mailto:patrick.schaefer@hu-berlin.de

Mario Sänger: Information Retrieval Exercises – Assignment 1 2

IMDB: Internet Movie Database

Mario Sänger: Information Retrieval Exercises – Assignment 1 3

Assignment

• Task:
– Given a list of 500 movies, answer queries on movies

• Problem:
– IMDB data is human-readable, but semi-structured

• Idea:
– “Scrap”* data from each movie on IMDB
– Then, we perform queries on the scrapped data.

* Data scrapping is a technique in which a computer program extracts data
from human-readable output coming from another program.

Mario Sänger: Information Retrieval Exercises – Assignment 1 4

Concrete tasks

1. Implement a JAVA program that reads a list of 500 movie titles
from a JSON file

2. For each movie title, perform a web search on IMDB and retrieve
movie’s URL

3. For each movie, extract metadata (e.g. actors, budget,
description) from the movie’s URL and store them in a JSON file

4. Implement queries on movies’ metadata

Mario Sänger: Information Retrieval Exercises – Assignment 1 5

1. Read movie titles from JSON file

• Read movie titles from a JSON* file “movies.json”:
[

{"movie_name":"Avatar"},
{"movie_name":"Star Wars VII: The Force Awakens"},
...

]

• You can use any Java library for parsing JSON files
• Reference implementation: Oracle’s JSONP (https://jsonp.java.net/)
• JSON.simple (https://github.com/fangyidong/json-simple)
• GSON (https://github.com/google/gson)
• Jackson Project (https://github.com/FasterXML/jackson)

* JSON is a common syntax for storing and exchanging data. JSON is a widespread
alternative to XML: http://www.w3schools.com/js/js_json_intro.asp

https://jsonp.java.net/
https://github.com/fangyidong/json-simple
https://github.com/google/gson
https://github.com/FasterXML/jackson
http://www.w3schools.com/js/js_json_intro.asp

Mario Sänger: Information Retrieval Exercises – Assignment 1 6

2. Perform a web search on IMDB

• Implement IMDBSpider.java that opens the URL:
https://www.imdb.com/find?q=<MOVIE>&s=tt&ttype=ft

• From the results, extract the first element and its URL
• Use URL encoding of movie titles

Mario Sänger: Information Retrieval Exercises – Assignment 1 7

2. Perform a web search on IMDB

• You have to parse the html file to extract the URL
• You can use any method. You could use XPATH and html cleaner:

– http://htmlcleaner.sourceforge.net
– http://htmlcleaner.sourceforge.net/doc/org/htmlcleaner/XPather.html

The table is named „findList“

An entry is named „result_text“

http://htmlcleaner.sourceforge.net/
http://htmlcleaner.sourceforge.net/doc/org/htmlcleaner/XPather.html

Mario Sänger: Information Retrieval Exercises – Assignment 1 8

2. Perform a web search on IMDB

• XPATH is a syntax for navigating parts of an XML document
• Has a directory-path-like syntax

• <table class=”list" >
<tr>

<td class=”result">Avatar</td>
</tr>

</table>

• XPATH:
/table[@class='list']//td[@class='result']/text()

=> Avatar

Mario Sänger: Information Retrieval Exercises – Assignment 1 9

3. Extract metadata from movie’s URL

Mario Sänger: Information Retrieval Exercises – Assignment 1 10

3. Extract Metadata from Movie’s URL

• Extract the following information from each movie and store it to a

separate JSON file:

url, title, year, genreList, countryList, description, budget,

gross, ratingValue, ratingCount, duration, castList,

characterList, directorList

• Treat each attribute as a string and list names refer to JSON lists

– Stick to exactly these names!

• Refer to example_avatar.json for an example.

[{ "url":"https://www.imdb.com/title/tt0499549/?ref_=fn_ft_tt_1",
"title":"Avatar - Aufbruch nach Pandora (2009)",
"year":"2009",
"genreList":["Action","Adventure", "Fantasy", "Sci-Fi"], ...
}

]

Mario Sänger: Information Retrieval Exercises – Assignment 1 11

3. Extract Metadata from Movie’s URL

• Watch out: sometimes one or more information can be missing!
– Use empty strings or empty arrays!

• Special case ”gross”
– First search for “Cumulative Worldwide Gross”
– If missing, search for “Gross USA”
– Only use dollar values (no Yen, Euros, etc)!

• Optional: extract further meta information
languageList, keywordList, aspectRatio, contentRating,
reviews, critics

Mario Sänger: Information Retrieval Exercises – Assignment 1 12

4. Easy Queries I

• You have to correctly implement (at least) three basic / easy queries
out of:

1. All-rounder: Determine all movies in which the director stars as an actor (cast).
Return the top ten matches sorted by decreasing IMDB rating.

2. Under the radar: Determine the top ten US-American movies until (including)
2015 that have made the biggest loss despite an IMDB score above
(excluding) 8.0, based on at least 1,000 votes. Here, loss is defined as gross
minus budget.

3. The pillars of storytelling: Determine all movies that contain both (sub-)strings
"kill" and "love" in their lowercase description (String.toLowerCase()). Sort the
results by the number of appearances of these strings and return the top ten
matches.

Mario Sänger: Information Retrieval Exercises – Assignment 1 13

4. Easy Queries II

4. The red planet: Determine all movies of the Sci-Fi genre that mention "Mars"

in their description (case-aware!). List all found movies in ascending order of

publication (year).

5. Colossal failure: Determine all US-American movies with a duration beyond 2

hours, a budget beyond 1 million and an IMDB rating below 5.0. Sort results

by ascending IMDB rating.

Mario Sänger: Information Retrieval Exercises – Assignment 1 14

4. Harder Queries (Aggregation & Join) I

• You have to correctly implement (at least) two hard queries out of:

6. Uncreative writers: Determine the ten most frequent character names of all
times ordered by frequency of occurrence. Filter any name containing
"himself", "doctor", and "herself" from the result.

7. Workhorse: Provide a ranked list of the top ten most active actors (cast), i.e.,
those actors which have starred in most movies.

8. Must see: List the best rated movie of each year starting from 1990 until
(including) 2010 with more than 10,000 ratings. Order the movies by
increasing year.

Mario Sänger: Information Retrieval Exercises – Assignment 1 15

4. Harder Queries (Aggregation & Join) II

9. Rotten Tomatoes: List the worst rated movie of each year starting from 1990
till (including) 2010 with an IMCB score larger than 0. Order the movies by
increasing year.

10. Magic Couples: Determine those couples that feature together in the most
movies (e.g. Adam Sandler and Allen Covert feature together in multiple
movies). Report the top 10 pairs of actors and sort the result by the number
of movies.

Mario Sänger: Information Retrieval Exercises – Assignment 1 16

4. Optional: Custom Queries

• Come up with a fancy custom query
• Give a text description of the query, the implementation

and the result

• Very creative queries can earn an extra point for the
competition

Mario Sänger: Information Retrieval Exercises – Assignment 1 17

Caveats

• Crawler:
– You must implement the Java class IMDBSpider.java, which

reads the movie titles from a JSON file and stores each movie in
a separate JSON file

• Queries:
– You must implement five queries in IMDBQueries.java
– Optional Custom Query: You can implement one fancy custom

query. Give a description of the query, source code and the
result.

– A query counts as implemented if it is correct. So, implement
more than five to be sure J

– No query result caching!

Mario Sänger: Information Retrieval Exercises – Assignment 1 18

Competition

• Queries should not only be correct but as fast as possible
• While you have 500 movies - I will execute your queries

with 5000+ movies

• Evaluation:
– A correctly implemented query
– Bonus for faster implementation

• The 5 best teams get points!

Mario Sänger: Information Retrieval Exercises – Assignment 1 19

• Java source codes and two executable JARs
– IMDBSpider must be callable with

java -jar IMDBSpider.jar movies.json <moviesDir>

– IMDBQueries must be callable with
java -jar IMDBQueries.jar <moviesDir>

• Stick to the specified class interfaces
– Don’t change class or method signatures
– Don’t move the classes into other packages
– But: You can create additional classes for your implementation

Submission

Mario Sänger: Information Retrieval Exercises – Assignment 1 20

• Group 1: Monday, 07.05., 23:59 (midnight)
• Group 2: Wednesday, 09.05., 23:59 (midnight)

• Upload a ZIP archive named ass1_<group-name>.zip to
https://hu.berlin/ire18_assignment1

• Test your JAR archives on gruenau!

Submission

https://hu.berlin/ire18_assignment1

Mario Sänger: Information Retrieval Exercises – Assignment 1 21

Presentation of solutions

• You are be able to pick when and what you‘d like to
present (first-come-first-served):

Monday:
https://dudle.inf.tu-dresden.de/zluz35py/

Wednesday:
https://dudle.inf.tu-dresden.de/8ks22llb/

• Presentation has to be given on 14.05./16.05.

https://dudle.inf.tu-dresden.de/zluz35py/
https://dudle.inf.tu-dresden.de/8ks22llb/

Mario Sänger: Information Retrieval Exercises – Assignment 1 22

Next week (attendance optional)

• Q/A session for assignment 1
• If desired: Live coding session

– JSON parsing, Opening URLs, XPATH
– Maven, Executable Jars
– …

• If you have questions about topics from the lecture,
write me an email in advance!

Mario Sänger: Information Retrieval Exercises – Assignment 1 23

Questions?

