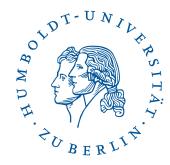
Übung Algorithmen und Datenstrukturen



Sommersemester 2017

Patrick Schäfer, Humboldt-Universität zu Berlin

Agenda: Suchen und Amortisierte Analyse

• Heute:

- Suchen / Schreibtischtest
- Amortisierte Analyse
- Nächste Woche: Vorrechnen (first-come first-served)
 - Gruppe 5 13-15 Uhr https://dudle.inf.tu-dresden.de/AlgoDatGr5U3/
 - Gruppe 6 15-17 Uhr https://dudle.inf.tu-dresden.de/AlgoDatGr6U3/

Übung: https://hu.berlin/algodat17

Vorlesung: https://hu.berlin/vl_algodat17

Organisatorisches

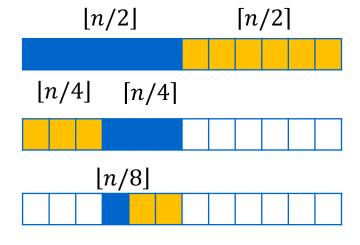
- Abholung alter Übungsaufgaben:
 - Montag, der 12.06. 14:45 15:15 RUD 25, 3.321
- Tutorium (amortisierte Analyse, etc.)
 - Zusätzlich zu den Übungsterminen gibt es noch ein Tutorium

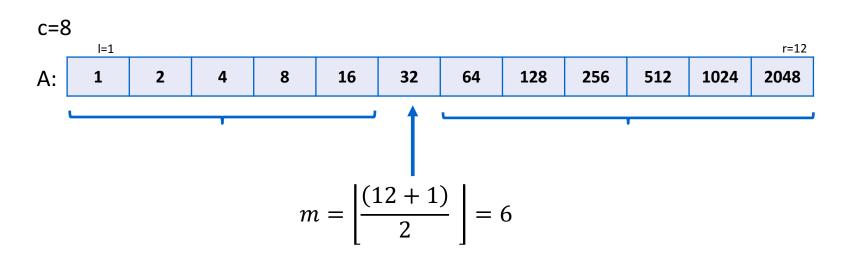
```
• Montag 17:00 - 19:00 s.t. RUD 26, 1'303
```

- Freitag
 11:00 13:00 c.t. RUD 26, 1'303, Stefanie Lowski
- In dieser Woche kann leider am Freitag (9.6.) kein Tutorium stattfinden
- Ersatztermin: heute, am Mittwoch (7.6.), von 17:00-18:30, RUD 26, 1'303.

- Suchverfahren aus der Vorlesung:
 - Binäre Suche (Aufgabe 2)

$$m = \left| \frac{(r+l)}{2} \right| = l + \left| \frac{(r-l)}{2} \right|$$





Suche: Schreibtischtest

Führen Sie einen Schreibtischtest für die *binäre* Suche durch, bei dem das folgende Array A nach dem Wert c = 68 durchsucht wird. Geben Sie dazu an, mit welchen Werten die Variablen 1, r und m nach jedem Aufruf von Zeile 4 belegt sind.

A = [5, 12, 15, 17, 22, 29, 45, 47, 60, 61, 68, 74, 77]

T	r	m
1	13	14/2=7
		•••

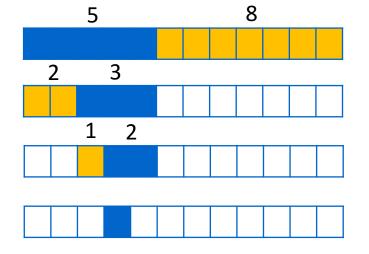
Algorithmus BinarySearch(A, c)

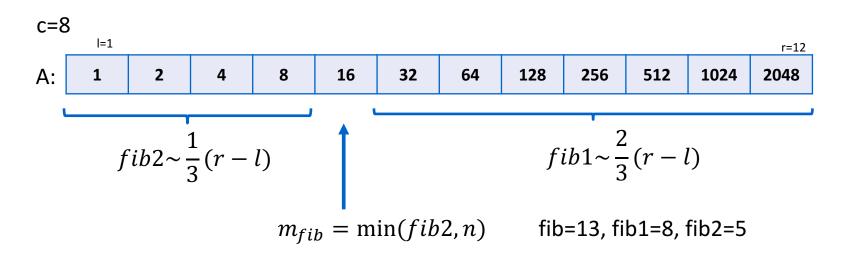
Input: Sortiertes Array A und Integer c Output: TRUE, falls das Element c in A ist.

- 1: l := 1; 2: r := |A|;
- 3: while $l \leq r$ do
- 4: $m := (l+r) \operatorname{div} 2;$
- 5: if c < A[m] then
- 6: r := m 1;
- 7: else if c > A[m] then
- 8: l := m + 1;
- 9: **else**
- 10: **return true**;
- 11: **end if**
- 12: end while
- 13: return false;

- Suchverfahren aus der Vorlesung:
 - Fibonacci-Suche (Aufgabe 1)

$$F_1 = 1, F_2 = 2, F_k = F_{k-2} + F_{k-1}$$





Suche: Schreibtischtest

Führen Sie einen Schreibtischtest für die Fibonacci-Suche durch, bei dem das folgende Array A nach dem Wert c=34 durchsucht wird. Geben Sie die aktuellen Belegungen der Variablen fib2, fib3, und m vor jedem Aufruf von Zeile 8 im Pseudocode von Folie 13 an.

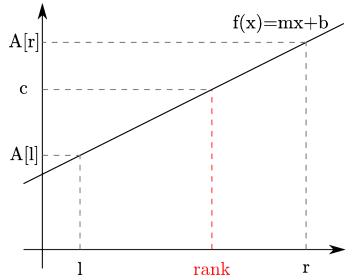
$$A = [5, 6, 9, 10, 12, 13, 34, 39, 43, 52, 63, 76]$$

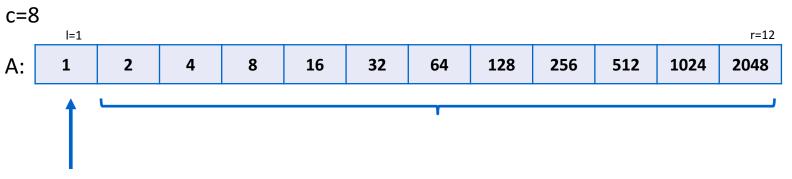
fib2	fib3	m
fib(5)=5	fib(4)=3	5

```
1. A: sorted int array;
2. c: int;
3. compute i; #fib(i) smallest ...
4. fib3 := fib(i-3);
5. fib2 := fib(i-2);
6. m := fib2;
7. repeat
    if c>A[m] then
9.
      if fib3=0 then return false
10. else
11. m := m+fib3;
12. tmp := fib3;
13.
        fib3 := fib2-fib3;
14.
        fib2 := tmp;
15.
      end if;
16. else if c<A[m]
17.
      if fib2=1 then return false
18.
      else
19. m := m-fib3;
20.
        fib2 := fib2 - fib3;
21.
        fib3 := fib3 - fib2;
22.
      end if:
    else return true;
24. until true;
```

- Suchverfahren aus der Vorlesung:
 - Interpolations-Suche (Aufgabe 2)

$$rank = l + \frac{(r-l)(c-A[l])}{A[r] - A[l]}$$

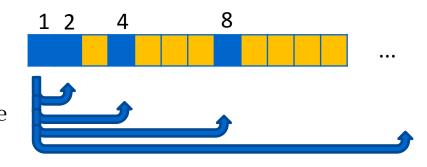


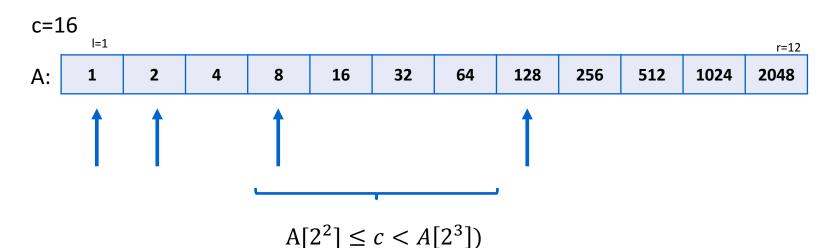


$$rank = 1 + \left[\frac{(12-1)(8-1)}{2048-1} \right] = 1$$

- Suchverfahren aus der Vorlesung:
 - Exponentielle Suche (Aufgabe 2):
 - Suche zunächst rechten Rand.
 - Suche im Suchbereich mit binärer Suche

$$A[2^i] \le c < \min(A[2^{i+1}], n)$$





Aufgabe 2: SortedSearch.java

- Unsere Vorlage verwendet ein Comparator-Objekt, das mitzählt, wie oft verglichen wird.
- Ein Comparator in JAVA liefert
 - >0, falls element > key
 - =0, falls element == key
 - <0, falls element < key

```
public static class LinearSearch extends Search {
    @Override
    public boolean search(Long[] sortedList, Long key) {
        for (Long element : sortedList) {
            // compare returns a negative integer, zero, or
            // a positive integer if the first argument is
            // less than, equal to, or greater than the second.
            int comparison = this.comparator.compare(element, key);
        if (comparison == 0) {
            return true;
        }
    }
    return false;
}
```

Agenda: Suchen und Amortisierte Analyse

- Suchen / Schreibtischtest
- Amortisierte Analyse
 - Binärzähler
 - Account-Methode
 - Potentialmethode

Binärzähler

- Geg.: k-Bit Binärzähler
- Entspricht Binärzahl $b_{k-1}...b_1b_0$ bzw. Dezimalzahl $\sum_i b_i 2^i$
- Operation: Zahl inkrementieren (um 1 erhöhen)
- Kosten: Anzahl der Bitänderungen (jedes Bit kostet 1)

n	b_4	b_3	$\boldsymbol{b_2}$	b_1	$\boldsymbol{b_0}$	
0	0	0	0	0	0	1
1	0	0	0	0	1	

n	b_4	\boldsymbol{b}_3	\boldsymbol{b}_2	\boldsymbol{b}_1	b_0
23	1	0	1	1	1
24	1	1	0	0	0

2 4 Bitwechsel

Binärzähler – Kostenabschätzung

- Gesucht: Kosten für *n* Inkrement-Operationen, wenn Zähler bei 0 beginnt.
 - Best Case: Eine Bitänderung $\Omega(n)$
 - Worst Case: Alle k Bits werden verändert: O(nk)
- Problem: sehr pessimistische Abschätzung, da Worst Case eher selten vorkommt

	$\boldsymbol{b_0}$	b_1	$\boldsymbol{b_2}$	\boldsymbol{b}_3	b_4	\boldsymbol{b}_5	b_6	b ₇	n	
$\sum k$ Bitwechsel	1	1	1	1	1	1	1	0	127	
A Ditwectise	0	0	0	0	0	0	0	1	128	

n	b_3	b_2	b_1	b_0	#BW
0	0	0	0	0	-
1	0	0	0	1	1
2	0	0	1	0	2
3	0	0	1	1	1
4	0	1	0	0	3
5	0	1	0	1	1
6	0	1	1	0	2
7	0	1	1	1	1
8	1	0	0	0	4
9	1	0	0	1	1
10	1	0	1	0	2

Summe der Kosten

T(n)	Σ#BW	$n \cdot k$		
n=1	1	4		
2	3	8		
3	4	12		
4	7	16		
5	8	20		
6	10	24		
7	11	28		
8	15	32		
9	16	36		
10	18	40		

⇒ Abschätzung zu pessimistisch

[⇒] Häufig geringe Kosten

Amortisierte Analyse

- Kosten werden über eine Sequenz von Operationen gemittelt.
- Amortisierte Analyse beschreibt mittlere Kosten einer Operation im schlechtesten Fall (Worst-Case).
- Grundidee von Account- und Potentialmethode: Anfänglich günstige Operation teurer bewerten, um spätere (teure) Operationen auszugleichen.
 - Überschuss wird als Kredit/Potential gespeichert.
 - Kredit/Potential wird verwendet, um für teurere Operation zu zahlen.
 - Verfahren unterstützten mehr als einen Operationstypen.

Account-Methode (Bankkonto~, Guthaben~)

- Idee: Operationen werden Kosten zugewiesen, wobei für einige mehr und für andere weniger als die *tatsächlichen Kosten* berechnet wird. Diese zugewiesenen Kosten nennen wir *amortisierte Kosten*.
- Übersteigen die amortisierten Kosten die tatsächlichen Koten, so wird die Differenz als Kredit in der Datenstruktur gespeichert.
- Der *Kredit* ist definiert als die Differenz zwischen den *amortisierten Kosten* mit $\hat{c_i}$ und den *tatsächlichen Kosten* c_i der *i*-ten Operation:

$$\sum_{i=1}^{n} \widehat{c_i} - \sum_{i=1}^{n} c_i \ge 0 \quad (nichtnegativ)$$

- Der Kredit muss zu allen Zeiten *nichtnegativ* sein, damit die amortisierten Kosten eine obere Schranke der Gesamtkosten bilden.
- Dieser Kredit kann später verwendet werden, um Operation zu bezahlen, deren tatsächliche Kosten höher als die amortisierten Kosten sind.

Binärzähler (Account-Methode)

- Tatsächliche Kosten: Wir verwenden 1\$, um das Kippen eines Bits zu bezahlen.
- Idee: Der gespeicherte Kredit soll der Anzahl 1en im Zähler entsprechen.
- Wir berechnen:
 - 2\$, um irgendein Bit von 0 auf 1 zu kippen. 1\$ für das Setzen des Bits und 1\$ für das (spätere) Rücksetzen auf 0.
 - 0\$, um irgendein Bit von 1 auf 0 zu setzen. Diese Kosten wurden bereits mit dem Setzen verrechnet.
- Amortisierte Kosten: Es kippt (maximal) eine 0 zu einer 1: entweder direkt an Stelle b_0 oder als Übertrag. Die amor. Kosten sind somit: $\widehat{c_i} \leq 2$.
- Nichtnegativ: Zu jedem Zeitpunkt hat jede 1 im Zähler 1\$ Kredit, um das Rücksetzen zu bezahlen. Somit befinden sich immer ausreichend \$ im Kredit, um das Rücksetzen eines Bits zu bezahlen.
- \Rightarrow Die amortisierten Kosten $\widehat{c_i}$ bilden eine obere Schranke der tatsächlichen Kosten c_i :

$$\sum_{i=1}^{n} c_i \le \sum_{i=1}^{n} \widehat{c_i} \le \sum_{i=1}^{n} 2 = 2n$$

 \Rightarrow Und somit ist die Worst-Case Komplexität O(n)

n	b_3	b_2	b_1	b_0	c_i	\widehat{c}_i	Kredi
0	0	0	0	0	-	-	0
1	0	0	0	1	1	2	1
2	0	0	1	0	2	2	1
3	0	0	1	1	1	2	2
4	0	1	0	0	3	2	1
5	0	1	0	1	1	2	2
6	0	1	1	0	2	2	2
7	0	1	1	1	1	2	3
8	1	0	0	0	4	2	1
9	1	0	0	1	1	2	2
10	1	0	1	0	2	2	2
				Σ	18	20	

Potentialmethode

- Die vorausbezahlten Kosten werden in der Datenstruktur D als *Potential* gespeichert, das freigegeben werden kann für zukünftige Operationen.
- Die *Potentialfunktion* Φ bildet die Datenstruktur D_i auf eine reelle Zahl ab, welche dieses Potential von D nach der i-ten Operation repräsentiert.
- Die amortisierten Kosten \widehat{c}_i der *i*-ten Operation sind somit definiert als: $\widehat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$
- D.h., die amortisierten Kosten von *n Operationen* sind:

$$\sum_{i=1}^{n} \widehat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})) = \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

• Diese bilden eine obere Schranke der tatsächlichen Kosten, wenn gilt:

$$\Phi(D_i) - \Phi(D_0) \ge 0$$
, für alle i (nichtnegativ)

Potentialmethode - Herangehensweise

- Ziel: Finde eine Potentialfunktion Φ, so dass
 - 1. $\Phi(D)$ von einer Eigenschaft von D abhängt,
 - 2. $\Phi(D_i) \ge \Phi(D_0)$ (nichtnegativ),
 - 3. $\hat{c_i}$ lässt sich für alle *i* berechnen.
- Dann sind die amortisierten Gesamtkosten obere Schranke für die tatsächlichen Gesamtkosten
- Herangehensweise: Ermitteln einer Potentialfunktion, die hinreichend (aber nicht unnötig viel) Potential für spätere teure Operationen sammelt

Binärzähler (Potentialmethode)

- Idee: Das Potential des Zählers entspricht der im Zähler gespeicherten Einsen nach der *i*-ten Operation: $\Phi(D_i) = \text{Anzahl 1en in } D_i \text{ nach der i-ten Operation}$
- Das Potential $\Phi(D_i)$ hängt von D ab und ist anfangs $\Phi(D_0) = 0$
- Das Potential ist *nichtnegativ*, denn es gilt für alle i: $\Phi(D_i) \Phi(D_0) = \Phi(D_i) \ge 0$
- Wir berechnen nun die amortisierten Kosten $\hat{c_i}$:
 - $\Phi(D_{i-1})$: Angenommen D_{i-1} endet auf l Einsen und enthält insgesamt l+z Einsen
 - $\Phi(D_i)$: Nun kippen in D_i l Einsen auf 0. Zusätzlich springt (maximal) eine 0 auf eine 1 (Übertrag). Beispiel: 1101 + 1 = 1110
- Es gilt: $\widehat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1}) \le (l+1) + (z+1) (z+l) = 2$
- Es gilt weiter: $\sum c_i = \sum \widehat{c_i} \Phi(D_n) + \Phi(D_0) \le 2n$ und somit ist die Worst-Case Komplexität O(n)

n	b_3	b_2	b_1	b_0	c_i	$\Phi(D_i)$	$\widehat{c_i}$
0	0	0	0	0	-	0	-
1	0	0	0	1	1	1	1+1-0=2
2	0	0	1	0	2	1	2+1-1=2
3	0	0	1	1	1	2	1+2-1=2
4	0	1	0	0	3	1	3+1-2=2
5	0	1	0	1	1	2	1+2-1=2
6	0	1	1	0	2	2	2+2-2=2
7	0	1	1	1	1	3	1+3-2=2
8	1	0	0	0	4	1	4+1-3=2
9	1	0	0	1	1	2	1+2-1=2
10	1	0	1	0	2	2	2+2-2=2
				Σ	18	20	