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Abstract

We consider the problem of finding interval graph representations that additionally respect given interval
lengths and/or pairwise intersection lengths, which are represented as weight functions on the vertices
and edges, respectively. Pe’er and Shamir proved that the problem is NP-complete if only the former are
given [SIAM J. Discr. Math. 10.4, 1997]. For the case when both are given, Fulkerson and Gross gave an
O(n2) time algorithm [Pacif. J. Math. 15.3, 1965]; we improve this to O(n+m) time and supplement it with
a logspace algorithm. For the case when only the latter are given, we give both an O(nm) time algorithm
and a logspace algorithm. In all these bounds, n is the number of vertices and m is the number of edges in
the input graph.

Complementing their hardness result, Pe’er and Shamir give a polynomial-time algorithm for the case
that the input graph has a unique interval ordering of its maximal cliques. For such graphs, their algorithm
computes an interval representation (if it exists) that respects a given set of distance inequalities between
the interval endpoints. We observe that deciding if such a representation exists is NL-complete.

Keywords: Constrained graph representation, intersection graph, interval graph, linear time, logspace

1. Introduction

The interval representation problem asks for a given graph G = (V,E), if G is an interval graph, and if so,
to compute an interval representation ρ for G, i.e., ρ determines for each vertex u ∈ V an interval ρ(u) such
that E =

{
{u, v}

∣∣ ρ(u) ∩ ρ(v) 6= ∅
}
. Booth and Lueker [BL76] solve this problem in linear time, introducing

the widely used concept of a PQ-tree to succinctly encode all interval orderings of the (inclusion-)maximal
cliques of G (i.e., all orderings of the maximal cliques such that each vertex appears in consecutive maximal
cliques). Hsu and Ma [HM99] give a simpler linear-time algorithm that relies on modular decomposition
instead. Corneil et al. [COS09] show a further simplification, avoiding ordering the maximal cliques, by using
lexicographic breadth first search. Klein [Kle96] gave a parallel AC2 algorithm. Köbler et al. [KKLV11] show
that the interval representation problem is complete for logspace.

Algorithmic aspects of interval graphs have been the subject of ongoing research for several decades,
stimulated by their numerous applications; see e.g. [Gol04]. In some applications, interval representations
with special properties are required. In scheduling, for example, tasks can have certain durations that should
be reflected by the lengths of their intervals; and two consecutive tasks can require a certain handover period
that determines by how much their intervals should intersect. Another early application of interval graphs is
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genome assembly; also here the length of the observed subsequences is known as well as the lengths of the
overlaps between them. Throughout the paper, we use ` to denote a given weight function prescribing for
each vertex u ∈ V the length `(u) of the interval ρ(u), and s to denote a given weight function prescribing
for each edge {u, v} ∈ E the length s(u, v) of the intersection ρ(u) ∩ ρ(v) of the intervals ρ(u) and ρ(v).
An interval representation ρ is called `-respecting if each interval ρ(u) has the prescribed length `(u), it is
called s-respecting if each intersection ρ(u) ∩ ρ(v) has the prescribed length s(u, v), and (`, s)-respecting if it
satisfies both conditions.

Fulkerson and Gross [FG65] gave an algorithm that finds (`, s)-respecting interval representations in
O(n2) time. Pe’er and Shamir [PS97] showed that it is NP-complete to decide if a graph G admits an
`-respecting interval representation. For the restricted case that the given graph G is a UCO graph (i.e., up to
reflection G has a unique interval ordering on its maximal cliques), the same authors gave a polynomial-time
algorithm that can also handle more general constraints on differences between interval endpoints. The
problem of finding s-respecting interval representations has also been investigated by Yamamoto [Yam07].

Our contribution
Using techniques from [KKLV11] we describe algorithms for constructing (`, s)-respecting interval repre-

sentations in linear time or alternatively in logspace, and s-respecting interval representations in O(nm) time
or alternatively in logspace. Since computing `-respecting interval representations is NP-hard, our result
illustrates that the additional restriction imposed by the function s is quite helpful.

The first step towards our algorithms is to show that all interval representations ρ of the appropriate
type have the same inclusion and overlap relationships between their intervals. For example, the equality
s(u, v) = `(u) enforces the inclusion ρ(u) ⊆ ρ(v). We also show how these relations can be efficiently
computed when G, s (and `) are given as input.

In the next step we focus on graphs with overlap-connected representations and show that up to reflection,
these graphs have a unique (`, s)-respecting representation. For graphs with several overlap components we
arrange these components into a tree, and combine their (`, s)-respecting interval representations into one for
the whole graph. We also show that all (`, s)-respecting interval representations are isomorphic (meaning
that arbitrary intersections of intervals or complemented intervals must have a fixed length that only depends
on ` and s). This provides an alternative proof for [FG65, Theorem 2.1].

In order to compute s-respecting interval representations efficiently, we repeatedly use our algorithm for
computing an (`, s)-respecting interval representation as a subroutine. We prove that the lengths of the
pairwise intersections uniquely determine the interval lengths if we require that the resulting s-respecting
interval representation is minimal, i.e., it contains a minimum number of points. We also show that all
minimal s-respecting interval representations are isomorphic.

Furthermore, we consider two variants of the interval representation problem for which Pe’er and
Shamir [PS97] gave polynomial time algorithms for the case that the input graph G is restricted to be a
UCO graph. The first variant is called BIG (short for bounded interval graph recognition) and allows the
specification of lower and/or upper bounds on the lengths of the intervals representing the vertices of G.
In the second variant (called DCIG, short for distance-constrained interval graph) it is even possible to
prescribe lower and/or upper bounds on the distances between arbitrary interval endpoints. We observe
that the decision versions of both problems (i.e., to decide whether there is an interval representation for
a given UCO graph G fulfilling all given lower and upper bounds) are NL-complete, provided that these
bounds are polynomially bounded. Hence, it is unlikely that these generalizations of the `-respecting interval
representation problem are solvable in deterministic logspace even for the class of UCO graphs. This contrasts
with our logspace algorithm for s-respecting interval representation of general graphs.

Related work
There are several related notions of constrained interval representation problems, many of which are

motivated by scheduling and artificial intelligence applications. In an influential paper, Allen [All83] classified
the possible temporal relations between intervals, which give rise to an interval algebra consisting of all unions
of these relations. In a series of results, constraint satisfaction problems over various subalgebras of this
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interval algebra have been considered. See [KJJ03] for the final classification into tractable and NP-complete
cases, which also contains a survey of previous results. While Allan’s interval algebra and its subalgebras
focus on ordering the intervals, several extensions have been studied that additionally allow constraints on
interval lengths. Krokhin et al. [KJJ04] study the case where disjunctions of linear relations on the intervals
are given and each of these disjunctions contains at most one relation other than 6=. They characterize which
subalgebras of Allen’s interval algebra remain tractable after this addition.

Skrien [Skr84] considers a variant of the interval representation problem where the endpoints of the desired
representation must be placed according to a given partial order, giving anO(n3) time algorithm that finds such
a representation or detects that none exists. Jampani and Lubiw [JL10] give an O(n2 log n) time algorithm
that computes simultaneous interval representations for two given graphs, i.e., vertices that are present in
both graphs must be mapped to the same interval in both representations. Klavík et al. [KKV11] describe an
O(n2) time algorithm for extending partial interval representations, where an interval representation ρ0 of an
induced subgraph of G is given as additional input and the resulting interval representation of G is required
to agree with ρ0 on the vertices of this subgraph. Bläsius and Rutter [BR13] give linear time algorithms for
both simultaneous interval representation and for extending partial interval representations. They obtain
these algorithms by giving linear time reductions from the latter to the former and from the former to a
special case of simultaneous PQ-ordering, i.e., the problem of finding a linear order that is compatible with a
given set of PQ-trees. They give a linear time algorithm for this special case and also show that simultaneous
PQ-ordering is NP-complete in general.

An interval graph is called proper if it admits an interval representation where no interval contains another
one. Such representations can be found in linear time using algorithms by Deng et al. [DHH96] and by Hell
et al. [HSS01]. Köbler et al. [KKLV11] give a logspace algorithm for the same task. A generalization of proper
interval graphs are the interval matrices studied by McConnell [McC03], which prescribe the desired relation
between each pair of intervals as either disjoint, contained, containing, or overlapping. McConnell [McC03]
shows how representations of interval matrices can be computed in linear time; a logspace algorithm is given
by Köbler et al. [KKV13].

Generalizing the work on extending partial interval representations, Balko et al. [BKO13] give a linear
time algorithm for the bounded interval representation problem, where each interval endpoint must be placed
in a prescribed range. They also give an O(n2) time algorithm for the case that the interval representation is
additionally required to be proper. Klavík et al. [KKO+14] show that the bounded interval representation
problem is NP-complete for unit interval representations, i.e., when all intervals must have the same length.
They also give a linear time algorithm for extending partial proper interval representations and an algorithm
for extending unit interval representations that runs in O(n2) time if the endpoints of the prescribed intervals
have the same denominator.

Organization of the paper
In Section 3 we show that all (`, s)-respecting and all minimal s-respecting interval representations have

the same inclusion and overlap relationships between their intervals. In Section 4 we describe our algorithm
for computing (`, s)-respecting interval representations and in Section 5 we show how to compute s-respecting
interval representations efficiently. In Section 6, we show that the problems BIG and DCIG are both
NL-complete on UCO graphs.

2. Preliminaries

We say that two sets A and B overlap and write A G B, if A ∩B 6= ∅, A \B 6= ∅, and B \A 6= ∅. The
cardinality of a finite set A is denoted by |A|. By Z+ we denote the set of positive integers.

For a graph G = (V,E), the number of its vertices is denoted by n, the number of its edges is denoted
by m, and the set of neighbors of a vertex v ∈ V is denoted by N(v). The graph G is called interval if there
is a system I of nonempty intervals over Z+ (we allow I to be a multiset) and a bijection ρ : V → I such
that for all u, v ∈ V with u 6= v, it holds that {u, v} ∈ E ⇔ ρ(u) ∩ ρ(v) 6= ∅. In this case, ρ is called an
interval representation of G, and I is called an interval model of G. The latter is also denoted by ρ(G).
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For a, b ∈ Z with a ≤ b, we write [a, b] to denote the interval I = {i ∈ Z | a ≤ i ≤ b} of integers. With
the length |I| of I we denote the number of points i ∈ I.3 For an interval system I we always suppose⋃

I∈I I = [1, k] for some k, i.e., we disallow gaps and shifting the whole system. An interval system I can be
regarded as a hypergraph with nodes [1, k] and hyperedges I. Two interval systems I and I ′ with points [1, k]
are isomorphic if they are isomorphic as hypergraphs, i.e., if there is a permutation π : [1, k]→ [1, k] of the
points that induces a bijection between the intervals of I and I ′ (preserving multiplicities). We call two interval
representations ρ1 and ρ2 of a simple graph G isomorphic if the resulting interval models ρ1(G) and ρ2(G) are
isomorphic. The slots of I are the equivalence classes on [1, k] with respect to containment in the intervals
in I. That is, two points are in the same slot, if each interval in I contains either both or none of them.

Let ` : V → Z+ and s : E → Z+ be weight functions for a graph G = (V,E). For convenience, we
write s(u, v) instead of s({u, v}) for {u, v} ∈ E; for {u, v} /∈ E we let s(u, v) = 0. An interval representation
ρ : V → I of G is called `-respecting if |ρ(v)| = `(v) for all v ∈ V , s-respecting if |ρ(u)∩ ρ(v)| = s(u, v) for all
{u, v} ∈ E, and (`, s)-respecting if both conditions hold. An s-respecting interval representation ρ of G is
called minimal if there is no s-respecting interval representation ρ′ of G that uses fewer points, i.e., that
satisfies

∣∣⋃
v∈V ρ

′(v)
∣∣ < ∣∣⋃v∈V ρ(v)

∣∣.
Logspace computations

As usual, L is the class of all languages decidable by deterministic Turing machines using only O(logN)
space on the work tapes, where N is the input size. The read-only input tape is exempt from this space
bound. The class NL is defined using non-deterministic Turing machines that otherwise obey the same
restrictions. The class FL contains all functions computable by deterministic Turing machines with the same
restrictions; the result of the function is placed on an additional write-only output tape, which is, like the
input tape, exempt from the space bound. Note that FL is closed under composition: To compute f

(
g(x)

)
for f, g ∈ FL, simulate the Turing machine for f and keep track of the position of its input head. Every time
this simulation needs a character from f ’s input tape, simulate the Turing machine for g on input x until
it outputs the required character. Note also that g can first output a copy of its input x and afterwards
compute additional information to be used by f . This construction can be iterated a constant number of
times, still preserving the logarithmic space bound. We will utilize this closure property in our logspace
algorithms by employing pre- and post-processing steps.

By applying this closure property it is easy to generalize our logspace results to the case where the
prescribed lengths are rational: Bring all lengths to a common denominator and use the resulting numerators.
This transformation can be performed in logspace as iterated integer multiplication is in DLOGTIME-
uniform TC0 [HAB02].

It should be stressed that linear-time bounds are formally incomparable with logspace bounds. On the
other hand, the membership of a computational problem in L implies the existence of logarithmic time
parallel algorithms for this problem.

3. Deriving structural information

Let G = (V,E) be a graph and let ` : V → Z+ and s : E → Z+ specify the prescribed interval and
intersection lengths. Let {u, v} ∈ E be an edge. We say that vertex u exceeds vertex v in an interval
representation ρ of G if ρ(u) \ ρ(v) 6= ∅. The following two relations R`,s, Rs ⊆ V × V allow us to determine
for each (`, s)-respecting interval representation of G and for each minimal s-respecting interval representation
of G, whether u exceeds v or not:

R`,s =
{
(u, v) ∈ V × V

∣∣ {u, v} ∈ E ∧ s(u, v) < `(u)
}
,

Rs =
{
(u, v) ∈ V × V

∣∣ {u, v} ∈ E ∧ ∃w ∈ N(u) \ {v} : min{s(w, v), s(u, v)} < s(w, u)
}
.

The following lemma shows that these relations indeed have the intended meaning.

3This does not coincide with the usual notion of length |I| = b− a. However, if we replace I by the interval (a− 0.5, b+ 0.5)
of reals, then both measures coincide.
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Lemma 3.1. Let ρ be an (`, s)-respecting interval representation and let ρ′ be a minimal s-respecting interval
representation of a graph G = (V,E). Then for each edge {u, v} ∈ E,

(i) (u, v) ∈ R`,s if and only if ρ(u) \ ρ(v) 6= ∅ and
(ii) (u, v) ∈ Rs if and only if ρ′(u) \ ρ′(v) 6= ∅.

Proof. Let {u, v} ∈ E be an edge. Part (i) easily follows from the following equivalences:

s(u, v) < `(u)⇔ |ρ(u) ∩ ρ(v)| < |ρ(u)| ⇔ ρ(u) \ ρ(v) 6= ∅ .

To show Part (ii), we first assume that (u, v) ∈ Rs. Then there is a vertex w ∈ N(u) \ {v} such that
s(w, v) < s(w, u) or s(u, v) < s(w, u). Either way, there must be a point p ∈ ρ′(w) ∩ (ρ′(u) \ ρ′(v)), implying
ρ′(u) \ ρ′(v) 6= ∅.

For the backward implication, consider a point p ∈ ρ′(u) \ ρ′(v). By minimality of ρ′, there is a vertex
w ∈ N(u) with p ∈ ρ′(w). Note that w 6= v by the choice of p. If ρ′(w) ⊃ ρ′(u)∩ρ′(v) (see Fig. 1(a)), it follows
that s(w, u) > s(u, v). Otherwise (see Fig. 1(b)), ρ′(w)∩ ρ′(u) ) ρ′(w)∩ ρ′(v), and thus s(w, u) > s(w, v). �

(a)

p

ρ′(w)

ρ′(u)

ρ′(v)

(b)

p

ρ′(w)

ρ′(u)

ρ′(v)

Figure 1: The two cases in the proof of Lemma 3.1(ii).

Lemma 3.2. Given G, ` and s, the relations R`,s and Rs can be enumerated in time O(m) and O(nm),
respectively, and both can be enumerated in logspace.

Proof. Both R`,s and Rs are defined by first order formulas; these can easily be evaluated in logspace.
Iterating over all pairs (u, v) ∈ V × V gives logspace enumeration.

To enumerate R`,s in O(m) time, loop over all edges {u, v} ∈ E (considering both orientations) and
output (u, v) if `(u) > s(u, v).

To enumerate Rs in O(nm) time, loop over all edges {w, u} ∈ E (again, considering both orientations)
and all nodes v ∈ V \ {w, u}, and output (u, v) if s(w, u) > min{s(w, v), s(u, v)}. �

We write u G`,s v if (u, v) ∈ R`,s ∧ (v, u) ∈ R`,s, and u ⊆`,s v if {u, v} ∈ E ∧ (u, v) /∈ R`,s. The relations
Gs and ⊆s are defined analogously using Rs. By Lemma 3.1, these relations describe the situation in any
appropriate representation of G. For example, we have u G`,s v ⇔ ρ(u) G ρ(v) in any (`, s)-respecting interval
representation ρ of G, and u Gs v ⇔ ρ′(u) G ρ′(v) in any minimal s-respecting interval representation ρ′ of G.

Given two intervals I1 = [a1, b1] and I2 = [a2, b2] with I1 G I2, we say that I1 overlaps I2 from the left if
a2 ∈ I1, and from the right if b2 ∈ I1.

Lemma 3.3. Let ρ be any s-respecting interval representation of G. For any three vertices v, w1, w2 ∈ V
such that ρ(w1) G ρ(v) G ρ(w2), the intervals ρ(w1) and ρ(w2) overlap ρ(v) from the same side if and only if
s(w1, w2) > min{s(w1, v), s(w2, v)}.

Note that this condition can be decided both in constant time and in logspace.

Proof. See Figure 2 for an illustration. If ρ(w1) and ρ(w2) overlap ρ(v) from the same side, then
ρ(w1) and ρ(w2) contain at least one common point outside ρ(v), making their intersection larger than the
minimum of |ρ(w1) ∩ ρ(v)| and |ρ(w2) ∩ ρ(v)|.

Now suppose to the contrary that ρ(w1) and ρ(w2) overlap ρ(v) from different sides. In this case
(ρ(w1)∩ ρ(v)) \ ρ(w2) and (ρ(w2)∩ ρ(v)) \ ρ(w1) are both non-empty, implying that |ρ(w1)∩ ρ(w2)| is smaller
than both |ρ(w1) ∩ ρ(v)| and |ρ(w2) ∩ ρ(v)|. �
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ρ(v)

ρ(w1)

ρ(w2)

ρ(v)

ρ(w1)

ρ(w2)

ρ(v)

ρ(w1)

ρ(w2)

Figure 2: Three different ways how ρ(w1) and ρ(w2) can overlap ρ(v), illustrating the proof of Lemma 3.3.

4. Given interval and intersection lengths

Let G = (V,E) be a graph, and let ` : V → Z+ and s : E → Z+ specify the prescribed interval and
intersection lengths, respectively. In this section, we give linear-time and logspace algorithms that construct
an (`, s)-respecting interval representation of G, or detect that such a representation does not exist.

We define E`,s =
{
{u, v} ∈ E

∣∣ u G`,s v} and G`,s = (V,E`,s), and call the connected components of G`,s

the overlap components of G. As a first step, we consider overlap-connected graphs.

Lemma 4.1. Given a graph G = (V,E) and the functions ` : V → Z+ and s : E → Z+ such that G`,s

is connected, it is possible to compute in O(n +m) time (resp., in logspace) an (`, s)-respecting interval
representation ρ of G, or to detect that none exists. Moreover, ρ is unique up to reflection.

Proof. We first compute the relations R`,s, G`,s and ⊆`,s; this can be done efficiently by Lemma 3.2. Let
v1, v2, . . . , vN be a walk in G`,s that visits every vertex at least once; such a walk can be constructed in
linear time using depth first search or in logspace using Reingold’s [Rei08] universal exploration sequences.
The following algorithm computes an interval representation ρ of G by moving along this walk (which we
assume has been computed in a pre-processing step). At each step of the walk, we compute an interval
Ii = [pi, pi + `(vi)− 1] for vi. If vi is visited for the first time (i.e., there is no j < i with vj = vi), we set
ρ(vi) = Ii. For the first two vertices of the walk, we define p1 = 1 and p2 = `(v1)− s(v1, v2) + 1. Note that
after I1 has been placed, there are only two possibilities for I2 that respect (`, s); see Fig. 3 for an illustration.
After that, all further intervals are uniquely determined because Lemma 3.3 allows to detect whether the
next interval Ii has to overlap Ii−1 from the same side as Ii−2. This allows to define

pi =

{
pi−1 − `(vi) + s(vi−1, vi) if Ii overlaps Ii−1 from the left, and
pi−1 + `(vi−1)− s(vi−1, vi) otherwise.

Note that Ii can be computed from the walk and the functions ` and s, remembering only the two previous
intervals, so these intervals can be enumerated in logspace.

In a post-processing step, we check that ρ is indeed an (`, s)-respecting interval representation of G, i.e.,
that |ρ(v)| = `(v) for all v ∈ V and |ρ(u)∩ρ(v)| = s(u, v) for all {u, v} ∈ E, and that ρ(u)∩ρ(v) 6= ∅ implies
{u, v} ∈ E. To verify the latter in linear time, the algorithm iterates over the endpoints of the interval
model ρ(V ) from left to right, maintaining a set of vertices whose intervals contain the current point, and
verifies that each vertex whose left endpoint is the current point has edges to all vertices in this set.

In a second post-processing step, we shift the resulting intervals such that 1 becomes the smallest point.
If there is an (`, s)-respecting interval representation ρ0 of G at all, an easy induction along the walk

shows that ρ is a (possibly shifted and reflected) copy of ρ0, and thus also an (`, s)-respecting interval
representation of G. This shows that the algorithm always finds an appropriate interval representation if
there is one, and proves also the uniqueness part of the lemma. �

The next step is to generalize Lemma 4.1 to the case that G`,s is not connected. We can assume that there
are no vertices v and v′ such that both v ⊆`,s v

′ and v′ ⊆`,s v hold; otherwise we compute an (`, s)-respecting
interval representation ρ for the graph G′ = G \ {v′ | ∃v < v′ : v ⊆`,s v

′ ∧ v′ ⊆`,s v} and extend it to G
afterwards. Let C = {G1, . . . , Gk} be the connected components of G`,s. We write Gi ≤`,s Gj if i = j or if
there are vertices u in Gi and v in Gj such that u ⊆`,s v. The latter implies that, for any (`, s)-respecting
interval representation ρ of G, the interval

⋃
u∈Gi

ρ(u) is contained in some slot S ⊆ ρ(v) of the interval
system ρ(Gj), because otherwise there would be an overlap-path between ρ(Gi) and ρ(Gj). Thus ≤`,s is a
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ρ(vi−1)

ρ(vi)

`(vi−1)

`(vi) `(vi)

s(vi−1, vi) s(vi−1, vi)

Figure 3: If vi G`,s vi−1, and if ρ(vi−1) is already determined, there remain only the two dashed possibilities for ρ(vi). The
algorithm in the proof of Lemma 4.1 is based on this observation.

partial order on the overlap components of G, and each overlap component has a unique smallest successor.
If G is connected, (C,≤`,s) is also connected; by removing reflexive and transitive edges, we obtain a rooted
tree T`,s, which we call the overlap component tree of G.

Theorem 4.2. Given a graph G = (V,E) and the length functions ` : V → Z+ and s : E → Z+, it is possible
to compute in O(n+m) time (resp., logspace) an (`, s)-respecting interval representation ρ of G, or to detect
that none exists. Moreover, ρ is unique up to isomorphism.

Proof. We assume that G is connected, otherwise we consider its connected components separately and
concatenate their representations afterwards.

The algorithm works as follows: As pre-processing steps, it computes the relations R`,s, G`,s and ⊆`,s,
the connected components G1, . . . , Gk of G`,s, an (`, s)-respecting interval representation ρi for each of
them, and the overlap component tree T`,s. The main part of the algorithm constructs an (`, s)-respecting
interval representation ρ of G by combining appropriately shifted copies of the representations of the overlap
components. This is done in a depth-first traversal of the overlap component tree. Each overlap component Gi

is assigned an offset oi indicating the value of the smallest point in ρ(Gi). The representation of the root
component Gr is not shifted, i.e., or = 1. For each other overlap component Gi, compute the offset oi as the
sum oi = oj + ni + si, where

• oj is the offset of the parent Gj of Gi,

• ni is the number of points in ρj(Gj) that are to the left of the slot S of Gj containing Gi, and

• si is the sum of representation sizes of all previously visited siblings of Gi that are contained in the
same slot S of Gj as Gi.

The latter are available from their interval representations. Figure 4 shows an example. For a vertex v ∈ V ,
let Giv be the overlap component that contains v. Then the algorithm checks whether ρ(v) = ρiv (v) + oiv is
an (`, s)-respecting interval representation of G (as described in the proof of Lemma 4.1) and outputs ρ if
this is the case.

10 11 12 13 14 15 16 17 18 19 20 21

S

ρ(Gj)

ρ(Gi)

Figure 4: The offset oi for the overlap component Gi is the sum of the offset oj = 10 of its parent Gj , the number ni of points
in ρj(Gj) left of the slot S = [4, 10] of Gj that contains Gi (i.e., ni = 3), and the sum si of representation sizes of previously
handled siblings of Gi that are contained in the same slot S (i.e., si = 2), resulting in oi = 15.

If G admits an (`, s)-respecting interval representation, then this algorithm will find one: Each component
has a unique representation up to reflection by Lemma 4.1, implying that they all have the same length;
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and in every (`, s)-respecting interval representation of G, each overlap component must be placed in the
appropriate slot of its parent overlap component without intersecting the other overlap components placed in
this slot. In the construction of the representation ρ, the only arbitrary choices are the precise placement
of overlap components belonging to the same slot S of their parent component, the order of the connected
components of G, and whether the representations of the individual overlap components are reflected. All
these choices can be transformed into one another by isomorphisms of the resulting interval system, so ρ is
unique up to isomorphism.

To finish the proof, we show that the algorithm can be implemented in linear time or logspace. The
relations can be computed efficiently by Lemma 3.2. Connected components can be found in linear time using
depth first search, and in logspace using Reingold’s [Rei08] connectivity algorithm. The (`, s)-respecting
representations of the components of G`,s can be computed using Lemma 4.1. The construction of the
overlap component tree T`,s can easily be implemented in logspace. To obtain it in linear time, compute
≤`,s by iterating over the edges of G, and remove reflexive and transitive arcs; see [HMR93, Proposition 3.6]
for how the latter is possible in linear time. Computing the offsets for shifting is clearly possible in linear
time. To compute them in logspace, the algorithm traverses the overlap component tree (see e.g. [Lin92] for
how to do this in logspace). During this traversal, it only needs to store the offset oi for the current overlap
component Gi; this is sufficient because the offset oj = oi − ni − si of the parent component Gj of Gi can be
recovered from oi by recomputing the numbers ni and si. �

5. Given intersection lengths

Let G = (V,E) be a graph and let s : E → Z+ specify the prescribed intersection lengths. In this section,
we give a Turing reduction from the problem of finding a minimal s-respecting interval representation of G
to the problem of finding an (`, s)-respecting interval representation.

In particular, we show that the lengths of the intervals in a minimal s-respecting representation ρ are
determined by G and s, and can be computed efficiently. Notice that if ρ is not required to be minimal we
can always increase the length of some intervals by adding new points to an interval containing the largest
(or smallest) point of ρ(G) or by duplicating points that are contained in a single interval of ρ(G).

Lemma 5.1. Let G = (V,E) be an interval graph with the length function s : E → Z+, and let ρ be any
minimal s-respecting interval representation of G. Then the interval lengths `(v) = |ρ(v)| do not depend on
the choice of ρ and can be computed from G and s in logspace; or in O(n+m) time, if the relation Rs is
given as additional input.

Recall that Rs can be computed in O(nm) time or in logspace by Lemma 3.2.

Proof. We first describe the algorithm. For each v ∈ V , it distinguishes these cases:

1. If N(v) = ∅, the algorithms sets `(v) := 1.
2. If ∃w ∈ N(v) : v ⊆s w, it sets `(v) := s(v, w).
3. Else, if ∃w1, w2 ∈ N(v) such that v Gs w1 Gs w2 Gs v and s(w1, w2) < min{s(w1, v), s(w2, v)}

(i.e., w1 and w2 overlap each other, and overlap v from different sides, cf. Lemma 3.3), it sets
`(v) := s(w1, v) + s(w2, v)− s(w1, w2).

4. Otherwise, we consider the subgraph G[N(v)] and define `v : N(v) → Z+ by `v(w) = s(w, v) for all
w ∈ N(v). Additionally, we define sv :

(
E ∩

(
N(v)
2

))
→ Z+ by sv(w1, w2) = min{s(w1, v), s(w2, v)}

if w1 and w2 overlap v from the same side (see Lemma 3.3), and sv(w1, w2) = s(w1, w2) otherwise. The
algorithm computes an (`v, sv)-respecting interval representation ρv : N(v)→ Iv of G[N(v)], and sets
`(v) := |

⋃
I∈Iv I|.

Next, we show that the computed function ` satisfies `(v) = |ρ(v)| for each v ∈ V . For an isolated vertex v,
as considered in Case 1, we have |ρ(v)| = 1 by minimality of ρ, so `(v) = 1 is correct. By Lemma 3.1(b)
and the definitions of Gs and ⊆s, we have u Gs v ⇔ ρ(u) G ρ(v) and u ⊆s v ⇔ ρ(u) ⊆ ρ(v). In Case 2, this
immediately implies `(v) = s(v, w) = |ρ(v) ∩ ρ(w)| = |ρ(v)|.
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In Case 3, the intervals ρ(w1) and ρ(w2) cover the interval ρ(v), overlapping it from different sides (the latter
is true by Lemma 3.3), so we have the situation depicted in Fig. 5. Thus, `(v) = s(w1, v)+s(w2, v)−s(w1, w2) =
|ρ(w1) ∩ ρ(v)|+ |ρ(w2) ∩ ρ(v)| − |ρ(w1) ∩ ρ(w2)| = |(ρ(w1) ∪ ρ(w2)) ∩ ρ(v)| = |ρ(v)|.

ρ(v)

ρ(w1)

ρ(w2)

`(v)

s(w1, v)

s(w2, v)

s(w1, w2)

Figure 5: Proof of Lemma 5.1, Case 3: ρ(w1) and ρ(w2) cover ρ(v), overlapping it from different sides.

In Case 4, the definitions of `v and sv truncate the intervals of the vertices in N(v) to include only their
intersections with ρ(v). We have |ρv(u)| = |ρ(u)| for all u ⊆s v, and |ρv(w)| = |ρ(w) ∩ ρ(v)| for all w Gs v.
So truncating ρ(G[N(v)]) gives an (`v, sv)-respecting model ρv(G[N(v)]) of G[N(v)]. By Theorem 4.2, this
model is unique up to isomorphism; in particular, its length is uniquely determined, implying |ρ(v)| ≥ `(v).
Indeed, both values are equal, for if |ρ(v)| > `(v) then the part of ρ(G) that is covered by ρ(v) could be
replaced by the shorter ρv(G[N(v)]), contradicting the minimality of ρ.

It is obvious that this algorithm can be implemented in logspace. To see that it is also possible in linear
time, observe that in Case 3, Lemma 3.3 allows us to partition the Gs-neighbors of v into two sets W1 and W2,
where neighbors that overlap from the same side are in the same set, and that we can restrict the search by
requiring wi ∈Wi and s(wi, v) = max{s(w′i, v) | w′i ∈Wi}.

For seeing that Case 4 can be implemented in linear time, observe that each vertex u of G can occur in at
most three of the auxiliary graphs. Suppose to the contrary that there are vertices v1, v2, v3, v4 such that for
each i ∈ [1, 4], u ∈ N(vi) and Case 4 is reached for vi. The latter implies that no ρ(vi) = [v−i , v

+
i ] is contained

in any other interval, and that none of them is covered by two overlapping intervals. Because Case 2 does
not hold, there are no containments, so we can assume v−1 < v−2 < v−3 < v−4 and v+1 < v+2 < v+3 < v+4 . As
Case 3 holds neither, it follows that v+1 < v−3 and v+2 < v−4 . Now let ρ(u) = [u−, u+]. As u is a neighbor
of all vi, we know u− ≤ v+1 and v−4 ≤ u+. But this implies that ρ(u) either covers ρ(v2) alone or together
with ρ(v1), contradicting the assumption that Case 4 is reached for v2. We remark that Case 3 is subsumed
by Case 4 and is only handled separately to obtain the linear time bound. �

The following is a consequence of Theorem 4.2 and Lemmas 3.2 and 5.1.

Corollary 5.2. Given G = (V,E) and s : E → Z+, it is possible to compute in O(nm) time (resp., in
logspace) a minimal s-respecting interval representation ρ of G, or to detect that none exists. Moreover, ρ is
unique up to isomorphism.

6. Interval graphs with a unique maxclique ordering

As mentioned in the introduction, deciding if a graph has an `-respecting interval representation is
NP-complete [PS97]. This changes however, if the input graph G is required to have a unique (up to
reflection) interval ordering of its maximal cliques; such a graph is called UCO for unique clique order. On
UCO graphs, even a more general problem becomes tractable: Along with G, a system D of inequalities of
the form xi − xj ≤ c is given, where the variables refer to arbitrary endpoints of the intervals representing
the vertices of G (strict inequalities are allowed, too). The decision version of this problem is called DCIG
(short for distance constrained interval graph). It asks whether G has an interval representation satisfying all
the inequalities given by D, where all intervals are closed and their endpoints may take arbitrary rational
values. A more restricted problem is BIG (short for bounded interval graph recognition) which only allows
the specification of lower and/or upper bounds on the lengths of the intervals corresponding to the vertices
of G.
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Pe’er and Shamir [PS97] show that when restricted to UCO graphs, DCIG and BIG are both linear-time
equivalent to the problem NoNegCycle, i.e., checking whether a weighted digraph (V,E,w) with a weight
function w : E → Z does not have a negative cycle. We observe that the reductions given in [PS97] can
be performed in logspace. Moreover, the constants occurring in the instances of DCIG and BIG and the
weights occurring in the corresponding instances of NoNegCycle are polynomially related. Hence, as
NoNegCycle with polynomially bounded weights is easily seen to be NL-complete, it follows that DCIG
and BIG are both NL-complete on the class of UCO graphs when the constants of the inequalities are
polynomially bounded.

As an intermediate step in their reductions, Pe’er and Shamir consider the problem DiffIneq, which
asks whether a system of difference inequalities admits a solution over the rationals, i.e., the inequalities
have the form xi − xj ≤ ck or xi − xj < ck, where the constants ck are integral.

Lemma 6.1. The disjunctive reduction from DCIG on UCO graphs to DiffIneq given by Pe’er and
Shamir [PS97] can be implemented in logspace.

Proof. We first describe the reduction. Let G = (V,E) be the given UCO graph and let D be the distance
constraints for the interval endpoints. The idea is to extend D with additional constraints to two systems
A and A′ of difference inequalities, so that any interval representation of G that satisfies D corresponds to a
satisfying assignment for one of A and A′, and vice versa.

Any interval ordering ≺G on the maximal cliques of G can also be viewed as the partial order on V that
has u ≺G v if and only if ≺G places the interval of the maximal cliques containing u completely left of the
interval of the maximal cliques containing v. For v ∈ V , let v− and v+ denote the variables for its left and
right endpoint, respectively. Both A and A′ contain all distance constraints in D. Additionally, for each
pair of adjacent vertices u and v, both systems contain the constraints u− ≤ v+ and v− ≤ u+ to ensure that
their intervals intersect. For u ≺G v, the inequality u+ < v− is added to A, and the inequality v+ < u− is
added to A′. By assumption ≺G is unique up to reversal, so the result is unique up to exchanging A and A′.

Clearly, any solution to A (or to A′) also satisfies D and specifies the endpoints of an interval representation
of G. Conversely, any interval representation of G that satisfies D corresponds to ≺G or ≺−1G , and thus
satisfies one of A and A′ [PS97, Lemma 3.1]. It remains to observe that ≺G can be computed in logspace
using the interval graph representation algorithm of [KKLV11]; the rest of the reduction is easily possible in
logspace. �

Fact 6.2. The problems DiffIneq and NoNegCycle are equivalent under logspace many-one reductions.

Proof. Pe’er and Shamir [PS97, Lemma 3.2] prove that the general DiffIneq problem reduces to its special
case where all inequalities are weak (i.e., of the form xi − xj ≤ ck). This is achieved by choosing ε = 1

n
(where n is the number of variables), replacing each strict inequality x− y < c by x− y ≤ c− ε, and scaling
the constants by n to restore integrality. As this transformation can be implemented in logspace, we can
assume that all inequalities are weak.

It is not hard to see that a NoNegCycle instance (V,E,w) is equivalent to the DiffIneq instance (X,A)
with variables X = V and difference inequalities A = {xi − xj ≤ w(xj , xi) | (xj , xi) ∈ E}; see e.g. [AMO93,
pp. 103 ff.]. Note that this transformation can be performed in logspace and that it can easily be reversed to
obtain a logspace reduction in the opposite direction.

For the reader’s convenience we include a self-contained proof of the equivalence (X,A) ∈ DiffIneq⇔
(V,E,w) ∈ NoNegCycle. For each walk (v1, . . . , vk) of weight W =

∑k−1
i=1 w(vi, vi+1) in (V,E,w), any

assignment σ : X → Q that satisfies all difference inequalities in A also satisfies σ(vk) ≤ σ(v1) +W ; this can
be shown by an easy induction on k. If (V,E,w) contains a negative cycle (v1, . . . , vk−1, v1), this implies
σ(v1) < σ(v1), contradicting the existence of a valid assignment.

On the other hand, if (V,E,w) does not have a negative cycle, fix an ordering v1, . . . , vn of V such
that whenever there is a directed path from vj to vi for i < j, then there is also a directed path from vi
to vj . Such an ordering can be obtained by finding the strongly connected components, contracting each of
them to a single vertex, taking a topological ordering of the resulting acyclic digraph, and substituting each
representative vertex with the vertices of the strongly connected component it stands for. To construct a valid
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assignment σ : X → Z, let σ(v1) = 0, and for j > 1 let σ(vj) = min{σ(vi) + w(vi, vj) | vi ∈ N−(vj) ∧ i < j}.
This immediately satisfies all difference inequalities in A that correspond to edges in E that go forward with
respect to the chosen ordering of V , and also the others as there are no negative cycles. �

Fact 6.3. The problem NoNegCycle with polynomially bounded weight functions is NL-complete.

Proof. As NL is closed under complementation [Imm88, Sze88], it suffices to show that the problem
NegCycle, which is the problem of deciding whether a given weighted digraph contains a negative cycle, is
NL-complete. To check if a weighted digraph G = (V,E,w) with a polynomially bounded weight function
w : E → Z has a negative cycle, non-deterministically walk through G (along edges) for at most |V | steps,
i.e., guess a vertex v0 ∈ V , and proceed from vi by guessing vi+1 ∈ N+(vi). During the walk, store the
start vertex v0, the current vertex vi, the number i of steps taken so far, and the accumulated weight of the
traversed edges; this can be done in logarithmic space. Accept if the guessed walk returns to the start vertex
and has negative weight, otherwise reject. If G contains a negative cycle v0, . . . , vk, v0, the computation that
successively visits the vertices of this cycle accepts. On the other hand, any accepting computation witnesses
a negative closed walk, which must contain a negative cycle. Thus NegCycle is in NL.

To prove the hardness, we reduce from the NL-complete problem s-t-Con to decide if there is a directed
path from s to t in a given digraph. An instance (V,E, s, t) of s-t-Con is reduced to the NegCycle
instance (V,E′, w), where the digraph G′ = (V,E′) is obtained from G = (V,E) by adding the arc (t, s) if it
is not yet present, and the weight function w : E′ → Z is given by w(t, s) = −n and w(u, v) = 1 for all other
arcs (u, v) ∈ E′ \ {(t, s)}. If there is a path from s to t in G, it has length (and thus weight) at most n− 1.
Combining this path with the arc (t, s) results in a negative cycle in G′. Conversely, if there is a negative
cycle in G′, it must contain the arc (t, s), as this is the only one with negative weight. Cutting (t, s) out of
that cycle results in a path from s to t in G. �

Finally we show that also the problem BIG is NL-hard on the class of UCO graphs.

Lemma 6.4. The reduction from DiffIneq to the problem BIG on UCO graphs that is given in [PS97,
Section 3.2] can be implemented in logspace.

Proof. Again, we first describe the reduction. Let A be a system of difference inequalities on the vari-
ables X = {x1, . . . , xn}. As argued in the proof of Fact 6.2, it can be assumed that all inequalities are weak,
so write A = {xji − xki

≤ ci | i = 1, . . . ,m}. Fix C > 1 +
∑m

i=1|ci| and let c′i = ci + (ji − ki)C.
The reduction maps A to the DCIG instance (G,D), where G = (V,E) is the intersection graph of the

interval system I = I1 ∪ I2 ∪ I3 (i.e., V = I and {u, v} ∈ E ⇔ u ∩ v 6= ∅), defined by

I1 = {ai | i = 0, . . . , n} where ai = [i, i+ 1]

I2 = {bi/2 | i = 0, . . . , 2n+ 1} where bi/2 = [i/2, i/2]

I3 = {wi | i = 0, . . . ,m} where wi = [ki, ji] if ki < ji and wi = [ji +
1
4 , ki −

1
4 ] otherwise.

For integral i, the constraints b+i − b
−
i = 0 and b+i+1/2 − b

−
i+1/2 = 1 are included in D. For ji > ki, the

constraint w+
i − w

−
i ≤ c′i, and for ji < ki, the constraint w+

i − w
−
i ≥ −c′i − ε with ε < 1/n is added to D.

All these constructions are easily possible in logspace. �

7. Conclusion

We have shown how to compute (`, s)- and s-respecting interval representations, giving a linear-time
algorithm for the former, an O(nm) time algorithm for the latter, and logspace algorithms for both. We
remark that deciding whether a graph admits an (`, s)- or s-respecting interval representation is L-complete:
In the reduction proving that recognizing interval graphs is L-hard [KKLV11, Theorem 7.7], all generated
yes-instances are paths; so these graphs have (`, s)- and s-respecting interval representations if we let `(v) = 2
and s(e) = 1 for all vertices u and edges e.
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We also have shown that (`, s)- and minimal s-respecting interval representations are unique up to
isomorphism. This implies that any algorithm that computes canonical interval representations of interval
hypergraphs can be used to obtain canonical (`, s)- and s-respecting interval representations. The algorithm
given in [KKLV11, Theorem 4.6] solves this problem in logspace, and it can also be solved in linear time
using the PQ-tree algorithms of Booth and Lueker [BL76].

Open questions
The bottleneck in our O(nm) time algorithm for computing s-respecting interval representations is the

enumeration of Rs (see Lemma 3.2). Can this also be implemented in O(n+m) or at least O(n2) time?
Does the complexity of computing s-respecting interval representations increase, if the intersection lengths

are restricted only for some vertices? Our techniques are not directly applicable in this case, as the algorithm
of Lemma 5.1 relies on the uniqueness of the representation, which is not necessarily preserved in the modified
scenario.
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