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Networks

How do we know?
What does the network tell us?

Chemicals
Enzymes
Cofactors
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Approaches to Network Reconstruction

• By many, many small-scale experiments
• By mathematical modeling from high-throughput data sets

• By evolutionary inference from model organisms
• By curation from the literature (see first bullet)
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Reconstruction from Indirect High-Throughput Data

• Network reconstruction, re-engineering, inference, …
• Idea: Derive network from indirect observations

– Network: Links and their effect (strength, activation, …)
• We usually assume the players (genes, metabolites, …) to be given

– Observation: High-throughput measurements
• Here: Transcriptome, microarrays, RNA-Seq

– Indirect: We try to infer mechanistic causality by correlation
• Dynamic networks

– Nodes get states (active / passive)
– Current states determine future states of nodes
– Leads to dynamic behavior

• Warning: All current methods are highly reductionist
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Boolean Network Models

• Definition
A Boolean Network is a digraph G=(V,E) where
– Every node has an associated Boolean 

state (on/off)
– Every node is labeled with a Boolean function 

over the states of all incoming nodes 
• Usage

– Vertices = genes 
– Edge (v,w) models an effect of v on w
– The state of a node v is determined by its 

Boolean function over all “incoming” states
– Simplistic: No cofactors, no cellular context, 

no binding affinity, no time, no kinetics, …
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Network Dynamics

• Definition
A Dynamic Boolean Network (DBN) is a Boolean network 
where every node v is assigned a sequence of states 
v0,v1,v2,… such that the state of vt is defined over the 
Boolean function of v applied to the states wt-1 of all 
incoming nodes w

• Remarks
– Models the state of every gene (on / off) over time
– States at time point t (only) depend on states at time point t-1

• No buffering, synchronized time, …
– Deterministic: Given all states at any time point t and the Boolean 

functions, any state at any later time point can be uniquely 
determined
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Example

Source: Filkov, „Modeling Gene Regulation“, 2003

Transition table
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Example

genes
time A B C

0 1 1 0
1 1 0 0
2 0 0 0
3 0 0 1
4 0 0 1
5 … … …
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Network Analysis

• Many things can be analyzed using DBN
• For instance, an attractor is a (set of) states towards which 

the network state converges
– Point attractor: State which cannot be left any more
– Cyclic attractor: A series of states which will repeat forever
– Probability of attractors depend largely on size of network and 

complexity of Boolean functions
• Skipped – we want to reconstruct networks
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Network Reconstruction

• Assume we know all genes, but not their relationships 
• Assume we observe the states of n genes over m time 

points (a matrix S; the observations)
• Can we re-engineer the Boolean function of every gene 

given a sequence of states?

genes
time A B C

0 1 1 0
1 0 0 1
2 1 0 0
3 1 1 0
4 0 0 1
5 … … …

A B

C S
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Network Reconstruction

• Assume we know all genes, but not their relationships 
• Assume we observe the states of n genes over m time 

points (a matrix S; the observations)
• Can we re-engineer the Boolean function of every gene 

given a sequence of states?

f(A)=not B
f(B) = A and not B
f(C)=B

A B

C

genes
time A B C

0 1 1 0
1 0 0 1
2 1 0 0
3 1 1 0
4 0 0 1
5 … … …
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Formal Problem

• Definition
Let St, 0≤t≤m, be the vector of all observed states of all 
genes V at time point t. A DBN G=(V,E) with functions 
f1,…fn, n=|V|, is called 
– consistent with St iff St=[f1(St-1), f2(St-1), … fn(St-1)]
– consistent with S iff it is consistent for all St, 1≤t≤m

• The Boolean network reconstruction problem
Given an observation S over a set V, find a DBN G=(V,E) 
that is consistent with S.

• Remark
– Reconstruction means finding the functions f1,…fn
– This also determines network topology (nodes appearing in a fi)
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Solutions

• Clearly, there are many observations S for which no 
consistent G exists
– Recall that DBN are deterministic
– Imagine St, St+1 and Su, Su+1 with St=Su but St+1≠Su+1

• Also, there are many observation S for which more than 
one consistent G exists

• Every time point narrows the options for G – the longer S, 
the less (or no) consistent G’s exist
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Optimal Networks

• Definition
– For a DBN G, let size(G) be the total number of variables (edges) 

appearing in the Boolean functions of G
– A DBN G is minimal for observation S, if G is consistent with S and 

there is no G’ which is also consistent with S and size(G’)<size(G)
• Remark

– Parsimony assumption: Small models are better
– Thus, the smallest network is the best – functions are as simple as 

possible, nothing is inferred that is not enforced by the data
– Not necessarily unique
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Naïve Algorithm

• Exhaustive algorithm for finding minimal networks
• Very complex (AND, OR, NOT, no paranthesis)

– k=1: 2n functions
– k=2: 2*2n*2n=O(n2) functions
– …
– General: O(22k-1*nk) functions

N = V;
for k=1…n # length of functions

for every n in N # all unexplained nodes
test all functions f of size k for n on S;
if f is consistent for n on S 

N := N \ n; # n is explained
Add f to network;

end if;
end for;

end for;
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Pros and Cons

• Application (transcriptome data)
– Perform time-series gene expression experiments
– Brutally discretize each measurement: Genes are on or off
– Reconstruct DBN

• Pros: Simple
• Cons

– Binary values are not capturing reality
– Synchronized, clocked time is nonsense
– No quantification (It needs 2*A and one B to regulate C)
– Only small networks are computable
– …
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Towards Reality

• There are less complex & more robust algorithms

• REVEAL replaces Boolean functions by mutual information; 
correlations rather than deterministic switching
– Liang, S., S. Fuhrman and R. Somogyi (1998). Reveal, a general reverse engineering

algorithm for inference of genetic network architectures. Pacific Symposium on 
Biocomputing., Hawaii, US.

• ARACNE is even simpler: Only removal of some 
(presumably indirect) correlations
– Margolin, A. A., I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. D. Favera

and A. Califano (2006). "ARACNE: an algorithm for the reconstruction of gene
regulatory networks in a mammalian cellular context." BMC Bioinformatics 7((Suppl
1), S7).
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Foundations

• Definition
Let X, Y be two discrete random variables. The mutual 
information MI(X,Y) is defined as

𝑀𝑀𝑀𝑀 𝑋𝑋,𝑌𝑌 = ∑𝑥𝑥∈𝑋𝑋∑𝑦𝑦∈𝑌𝑌 𝑝𝑝 𝑥𝑥,𝑦𝑦 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝 𝑥𝑥 ∗𝑝𝑝(𝑦𝑦)

• Remark
– Measure the variable’s mutual dependency
– Dependency: Deviation of p(X,Y) from p(X)*p(Y)
– How much does the state of X determines the state of Y?
– Many similar measures (information gain, conditional entropy, cross 

entropy, …)
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Example

p(x,y) y=0
p(y=0)=0.6

y=1
p(y=1)=0.4

x=0; p(x=0)=0.2 0,12 0,08
x=1; p(x=1)=0.8 0,48 0,32

MI(X,Y)=0

𝑀𝑀𝑀𝑀 𝑋𝑋,𝑌𝑌 = �
𝑥𝑥∈𝑋𝑋

�
𝑦𝑦∈𝑌𝑌

𝑝𝑝 𝑥𝑥,𝑦𝑦 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝(𝑥𝑥, 𝑦𝑦)

𝑝𝑝 𝑥𝑥 ∗ 𝑝𝑝(𝑦𝑦)

p(x,y) y=0
p(y=0)=0.6

y=1
p(y=1)=0.4

x=0; p(x=0)=0.2 0,18 0,03
x=1; p(x=1)=0.8 0,05 0,74

MI(X,Y)=0,53
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Two more Facts

• With a little math, we find 
MI(X,Y) = H(X) – H(X|Y) = H(Y)-H(Y|X)

– H(X): Entropy of X
– H(X|Y): Conditional entropy of X given Y

• It follows that the maximal value of MI(X,Y)=H(X) (H(Y))
– H(X|Y)=0, which means that X (Y) completely determines Y (X)

• MI can be extended to sets of three, four, … variables
– Like Boolean functions over three, four, … variables
– Multivariate mutual information
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REVEAL

• Again, we have observations of n genes at m time points
– Or m different conditions, treatments, …

• Again, we discretize expression values to 0 or 1 
– More bins are possible

• MI(X,Y) means looking at pairs (x1,y0), (x2,y1), …

N = V;
for k=1…n # number of nodes/variables

for every X in N # all unexplained nodes
find subset T=(Y1,…Yk) with MI(X,Y1,…Yk) = H(X);
if T exists 

N := N \ X; # n is explained
end for;

end for;
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REVEAL in Practice

• In the formulation given, REVEAL would be as strict as 
Boolean functions
– Dependencies must be perfect

• In the presence of noise, one must be satisfied with almost 
maximal MI
– I.e., |MI(X,Y)-H(X)| < ε

• Can be extended to more than two possible states
– Less strict discretization, more realistic model

• Most other restrictions of DBN remain
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ARACNE

• Fast variation of REVEAL which (a) considers each pair in 
isolation and (b) gives up model minimality

• Idea
– Compute mutual information between all pairs of genes

• This gives a complete network
– Remove edges where |MI(X,Y)-H(X)| > ε

• ε can be estimated from the distribution of MI – created at random?
– Remove certain indirect effects (“data processing inequalities”)

• Under certain assumptions, ARACNE provably converges to 
the true network 
– Given unlimited input, no loops
– “True”: Under all networks obeying our simplifying assumptions
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Data Processing Inequalities

A B

C

Imagine
with strong 

effects of A on 
B and B on C;

A B

C

will 
appears 

as 

But if we 
find

A B

C

which edge 
most probably 
is an artifact?

• Assumption: If MI(X,Z) ≤ min(MI(X,Y),MI(Y,Z)), then the 
correlation between X-Z is an indirect effect and removed

• Procedural: In every triangle, remove the smallest edge
– But in which order should triangles be visited?
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Reconstructing the Mammalian Clock

• DA Sven Lund, 2015
• Data

– ~630 rather unspecific arrays 
from GEO

– Compared to two time-
resolved clock-specific 
experiments

• Reconstruction quality of 
three algorithms 
– Aracne, Bayes Networks, 

Time-Delay Aracne
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Results

• Filtering of ARACNE reduces recall a lot, while precision 
increases only marginally

• Data set size outweighs specificity – reconstruction about 
as good using many untargeted arrays or using fewer 
targeted arrays
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