

Network Reconstruction

Johannes Starlinger

Content

- Network reconstruction
 - Boolean models
 - Correlation-Based Approaches: REVEAL / ARACNE
 - Example

Networks

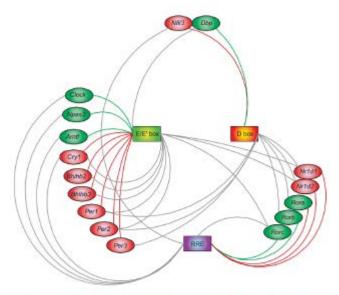
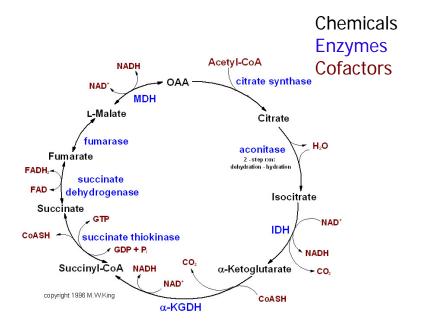


Abbildung 2: Zentrale Gene der zirkadianen Uhr und deren wechselseitiger Einfluss.
[UHC+05] (Kästen: Cis-Elemente/Grüne Ovale: Positiv regulierende Gene/Rote Ovale: Negativ regulierende Gene/Regulationsrichtung 1: Von Gen über farbige Kante zu Cis-Element/Regulationsrichtung 2: Von Cis-Element über graue Kante zu Gen)



How do we know? What does the network tell us?

Approaches to Network Reconstruction

- By many, many small-scale experiments
- By mathematical modeling from high-throughput data sets
- By evolutionary inference from model organisms
- By curation from the literature (see first bullet)

Reconstruction from Indirect High-Throughput Data

- Network reconstruction, re-engineering, inference, ...
- Idea: Derive network from indirect observations
 - Network: Links and their effect (strength, activation, ...)
 - We usually assume the players (genes, metabolites, ...) to be given
 - Observation: High-throughput measurements
 - Here: Transcriptome, microarrays, RNA-Seq
 - Indirect: We try to infer mechanistic causality by correlation
- Dynamic networks
 - Nodes get states (active / passive)
 - Current states determine future states of nodes
 - Leads to dynamic behavior
- Warning: All current methods are highly reductionist

Boolean Network Models

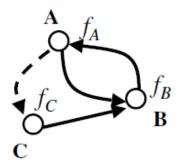
Definition

A Boolean Network is a digraph G=(V,E) where

- Every node has an associated Boolean state (on/off)
- Every node is labeled with a Boolean function over the states of all incoming nodes

Usage

- Vertices = genes
- Edge (v,w) models an effect of v on w
- The state of a node v is determined by its
 Boolean function over all "incoming" states
- Simplistic: No cofactors, no cellular context, no binding affinity, no time, no kinetics, ...



$$f_A(B) = B$$

 $f_B(A, C) = A$ and C
 $f_C(A) = \text{not } A$

Boolean Network

Network Dynamics

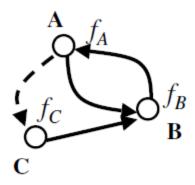
Definition

A Dynamic Boolean Network (DBN) is a Boolean network where every node v is assigned a sequence of states v_0, v_1, v_2, \ldots such that the state of v_t is defined over the Boolean function of v applied to the states w_{t-1} of all incoming nodes w

Remarks

- Models the state of every gene (on / off) over time
- States at time point t (only) depend on states at time point t-1
 - No buffering, synchronized time, ...
- Deterministic: Given all states at any time point t and the Boolean functions, any state at any later time point can be uniquely determined

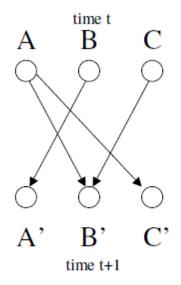
Example



$$f_A(B) = B$$

 $f_B(A, C) = A$ and C
 $f_C(A) = \text{not } A$

Boolean Network



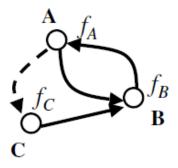
Wiring Diagram

State	INPUT			OUTPUT		
	A	В	C	A'	В'	C'
1	0	0	0	0	0	1
2	0	0	1	0	0	1
3	0	1	0	1	0	1
4	0	1	1	1	0	1
5	1	0	0	0	0	0
6	1	0	1	0	1	0
7	1	1	0	1	0	0
8	1	1	1	1	1	0

Transition table

Source: Filkov, "Modeling Gene Regulation", 2003

Example



$$f_A(B) = B$$

 $f_B(A, C) = A$ and C
 $f_C(A) = \text{not } A$

Boolean Network

genes time	A	В	С
0	1	1	0
1	1 1		0
2	0	0	0
3	0	0	1
4	0	0	1
5	•••	•••	•••

Network Analysis

- Many things can be analyzed using DBN
- For instance, an attractor is a (set of) states towards which the network state converges
 - Point attractor: State which cannot be left any more
 - Cyclic attractor: A series of states which will repeat forever
 - Probability of attractors depend largely on size of network and complexity of Boolean functions
- Skipped we want to reconstruct networks

Network Reconstruction

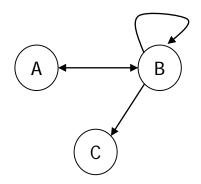
- Assume we know all genes, but not their relationships
- Assume we observe the states of n genes over m time points (a matrix S; the observations)
- Can we re-engineer the Boolean function of every gene given a sequence of states?

S

genes time	A	В	С	
0	1	1	0	
1 0		0	1	
2	1	0	0	
3	1	1	0	
4	0	0	1	
5	•••	•••	•••	

Network Reconstruction

- Assume we know all genes, but not their relationships
- Assume we observe the states of n genes over m time points (a matrix S; the observations)
- Can we re-engineer the Boolean function of every gene given a sequence of states?



genes time	A	В	С	
0	1	1	0	
1	0	0	1	
2	1	0	0	
3	1	1	0	
4	0	0	1	
5	•••	•••	•••	

Formal Problem

- Definition
 - Let S_t , $0 \le t \le m$, be the vector of all observed states of all genes V at time point t. A DBN G = (V, E) with functions $f_1, ..., f_n$, n = |V|, is called
 - consistent with S_t iff $S_t = [f_1(S_{t-1}), f_2(S_{t-1}), \dots f_n(S_{t-1})]$
 - consistent with S iff it is consistent for all S_t, 1≤t≤m
- The Boolean network reconstruction problem
 Given an observation S over a set V, find a DBN G=(V,E)
 that is consistent with S.
- Remark
 - Reconstruction means finding the functions f₁,...f_n
 - This also determines network topology (nodes appearing in a f_i)

Solutions

- Clearly, there are many observations S for which no consistent G exists
 - Recall that DBN are deterministic
 - Imagine S_t , S_{t+1} and S_u , S_{u+1} with $S_t = S_u$ but $S_{t+1} \neq S_{u+1}$
- Also, there are many observation S for which more than one consistent G exists
- Every time point narrows the options for G the longer S, the less (or no) consistent G's exist

Optimal Networks

Definition

- For a DBN G, let size(G) be the total number of variables (edges) appearing in the Boolean functions of G
- A DBN G is minimal for observation S, if G is consistent with S and there is no G' which is also consistent with S and size(G') < size(G)

Remark

- Parsimony assumption: Small models are better
- Thus, the smallest network is the best functions are as simple as possible, nothing is inferred that is not enforced by the data
- Not necessarily unique

Naïve Algorithm

- Exhaustive algorithm for finding minimal networks
- Very complex (AND, OR, NOT, no paranthesis)

```
k=1: 2n functions
k=2: 2*2n*2n=O(n²) functions
...
General: O(2²k-1*nk) functions
```

Pros and Cons

- Application (transcriptome data)
 - Perform time-series gene expression experiments
 - Brutally discretize each measurement: Genes are on or off
 - Reconstruct DBN
- Pros: Simple
- Cons
 - Binary values are not capturing reality
 - Synchronized, clocked time is nonsense
 - No quantification (It needs 2*A and one B to regulate C)
 - Only small networks are computable

– ...

Content

- Network reconstruction
 - Boolean models
 - Correlation-Based Approaches: REVEAL / ARACNE
 - Example

Towards Reality

- There are less complex & more robust algorithms
- REVEAL replaces Boolean functions by mutual information; correlations rather than deterministic switching
 - Liang, S., S. Fuhrman and R. Somogyi (1998). Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pacific Symposium on Biocomputing., Hawaii, US.
- ARACNE is even simpler: Only removal of some (presumably indirect) correlations
 - Margolin, A. A., I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. D. Favera and A. Califano (2006). "ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context." BMC Bioinformatics 7((Suppl 1), S7).

Foundations

Definition

Let X, Y be two discrete random variables. The mutual information MI(X,Y) is defined as

$$MI(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) * log\left(\frac{p(x,y)}{p(x)*p(y)}\right)$$

Remark

- Measure the variable's mutual dependency
- Dependency: Deviation of p(X,Y) from p(X)*p(Y)
- How much does the state of X determines the state of Y?
- Many similar measures (information gain, conditional entropy, cross entropy, ...)

Example

$$MI(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) * log\left(\frac{p(x,y)}{p(x) * p(y)}\right)$$

p(x,y)	y=0 p(y=0)=0.6	y=1 p(y=1)=0.4	
x=0; p(x=0)=0.2	0,12	0,08	
x=1; p(x=1)=0.8	0,48	0,32	

$$MI(X,Y)=0$$

p(x,y)	y=0 p(y=0)=0.6	y=1 p(y=1)=0.4	
x=0; p(x=0)=0.2	0,18	0,03	
x=1; p(x=1)=0.8	0,05	0,74	

$$MI(X,Y) = 0.53$$

Two more Facts

With a little math, we find

$$MI(X,Y) = H(X) - H(X|Y) = H(Y)-H(Y|X)$$

- H(X): Entropy of X
- H(X|Y): Conditional entropy of X given Y
- It follows that the maximal value of MI(X,Y)=H(X) (H(Y))
 - H(X|Y)=0, which means that X(Y) completely determines Y(X)
- MI can be extended to sets of three, four, ... variables
 - Like Boolean functions over three, four, ... variables
 - Multivariate mutual information

REVEAL

- Again, we have observations of n genes at m time points
 - Or m different conditions, treatments, ...
- Again, we discretize expression values to 0 or 1
 - More bins are possible
- MI(X,Y) means looking at pairs (x₁,y₀), (x₂,y₁), ...

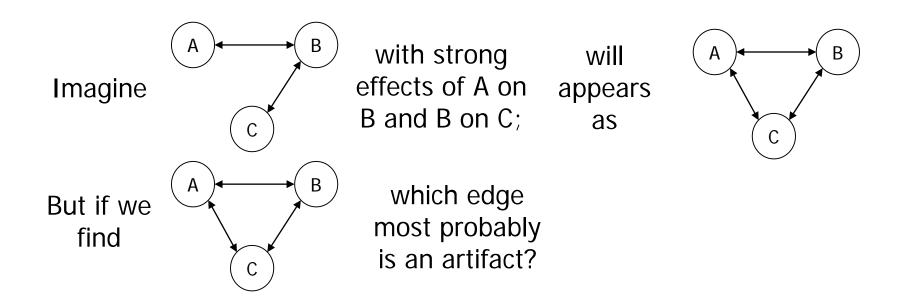
REVEAL in Practice

- In the formulation given, REVEAL would be as strict as Boolean functions
 - Dependencies must be perfect
- In the presence of noise, one must be satisfied with almost maximal MI
 - I.e., $|MI(X,Y)-H(X)| < \varepsilon$
- Can be extended to more than two possible states
 - Less strict discretization, more realistic model
- Most other restrictions of DBN remain

ARACNE

- Fast variation of REVEAL which (a) considers each pair in isolation and (b) gives up model minimality
- Idea
 - Compute mutual information between all pairs of genes
 - This gives a complete network
 - Remove edges where $|MI(X,Y)-H(X)| > \varepsilon$
 - ε can be estimated from the distribution of MI created at random?
 - Remove certain indirect effects ("data processing inequalities")
- Under certain assumptions, ARACNE provably converges to the true network
 - Given unlimited input, no loops
 - "True": Under all networks obeying our simplifying assumptions

Data Processing Inequalities



- Assumption: If MI(X,Z) ≤ min(MI(X,Y),MI(Y,Z)), then the correlation between X-Z is an indirect effect and removed
- Procedural: In every triangle, remove the smallest edge
 - But in which order should triangles be visited?

Content

- Network reconstruction
 - Boolean models
 - Correlation-Based Approaches: REVEAL/ ARACNE
 - Example

Reconstructing the Mammalian Clock

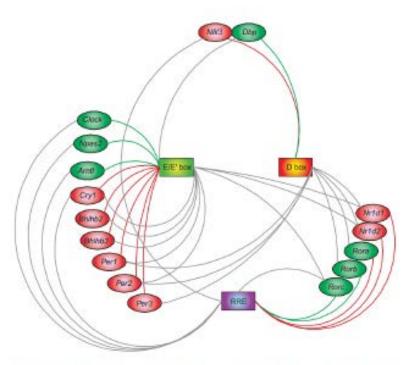


Abbildung 2: Zentrale Gene der zirkadianen Uhr und deren wechselseitiger Einfluss.

[UHC+05] (Kästen: Cis-Elemente/Grüne Ovale: Positiv regulierende
Gene/Rote Ovale: Negativ regulierende Gene/Regulationsrichtung 1:

Von Gen über farbige Kante zu Cis-Element/Regulationsrichtung 2: Von
Cis-Element über graue Kante zu Gen)

- DA Sven Lund, 2015
- Data
 - ~630 rather unspecific arrays from GEO
 - Compared to two timeresolved clock-specific experiments
- Reconstruction quality of three algorithms
 - Aracne, Bayes Networks,
 Time-Delay Aracne

Results

-	Kennzahl	Verfahren	тP	TN	FP	FN	Recall	Precision
•	Ī	Pearson	53.75	20.00	41.00	21.25	0.72	0.57
	.5	Pearson	4.979	8.718	8.718	4.979	0.068	0.070
•	Ī	Bayes	36.00	33.50	27.50	39.00	0.48	0.57
	.5	Bayes	12.739	10.282	10.282	12.739	0.170	0.020
•	Ī	ARACNE	18.88	48.00	13.00	56.13	0.25	0.59
	.5	ARACNE	5.515	3.207	3.207	5.515	0.072	0.091

Kennzahl	Datenquelle	тР	TN	FP	FN	Recall	Precision
ž	GEO	45.00	26.00	35.00	30.00	0.60	0.57
.5	GEO	17.550	16.480	16.480	17.550	0.235	0.034
Ī	Korenčič	35.67	36.22	24.78	39.33	0.48	0.60
.5	Korenčič	16.462	12.940	12.940	16.462	0.219	0.037
Ī	Hogenesch	30.89	36.67	24.33	44.11	0.41	0.55
.5	Hogenesch	15.648	12.708	12.708	15.648	0.208	0.094

- Filtering of ARACNE reduces recall a lot, while precision increases only marginally
- Data set size outweighs specificity reconstruction about as good using many untargeted arrays or using fewer targeted arrays