

# **Network Reconstruction**

Johannes Starlinger

# Content

- Network reconstruction
  - Boolean models
  - Correlation-Based Approaches: REVEAL / ARACNE
  - Example

### **Networks**



Abbildung 2: Zentrale Gene der zirkadianen Uhr und deren wechselseitiger Einfluss.
[UHC+05] (Kästen: Cis-Elemente/Grüne Ovale: Positiv regulierende Gene/Rote Ovale: Negativ regulierende Gene/Regulationsrichtung 1: Von Gen über farbige Kante zu Cis-Element/Regulationsrichtung 2: Von Cis-Element über graue Kante zu Gen)



# How do we know? What does the network tell us?

# Approaches to Network Reconstruction

- By many, many small-scale experiments
- By mathematical modeling from high-throughput data sets
- By evolutionary inference from model organisms
- By curation from the literature (see first bullet)

# Reconstruction from Indirect High-Throughput Data

- Network reconstruction, re-engineering, inference, ...
- Idea: Derive network from indirect observations
  - Network: Links and their effect (strength, activation, ...)
    - We usually assume the players (genes, metabolites, ...) to be given
  - Observation: High-throughput measurements
    - Here: Transcriptome, microarrays, RNA-Seq
  - Indirect: We try to infer mechanistic causality by correlation
- Dynamic networks
  - Nodes get states (active / passive)
  - Current states determine future states of nodes
  - Leads to dynamic behavior
- Warning: All current methods are highly reductionist

### **Boolean Network Models**

#### Definition

A Boolean Network is a digraph G=(V,E) where

- Every node has an associated Boolean state (on/off)
- Every node is labeled with a Boolean function over the states of all incoming nodes

# Usage

- Vertices = genes
- Edge (v,w) models an effect of v on w
- The state of a node v is determined by its
   Boolean function over all "incoming" states
- Simplistic: No cofactors, no cellular context, no binding affinity, no time, no kinetics, ...



$$f_A(B) = B$$
  
 $f_B(A, C) = A$  and  $C$   
 $f_C(A) = \text{not } A$ 

Boolean Network

# **Network Dynamics**

#### Definition

A Dynamic Boolean Network (DBN) is a Boolean network where every node v is assigned a sequence of states  $v_0, v_1, v_2, \ldots$  such that the state of  $v_t$  is defined over the Boolean function of v applied to the states  $w_{t-1}$  of all incoming nodes w

#### Remarks

- Models the state of every gene (on / off) over time
- States at time point t (only) depend on states at time point t-1
  - No buffering, synchronized time, ...
- Deterministic: Given all states at any time point t and the Boolean functions, any state at any later time point can be uniquely determined

# Example



$$f_A(B) = B$$
  
 $f_B(A, C) = A$  and  $C$   
 $f_C(A) = \text{not } A$ 

Boolean Network



Wiring Diagram

| State | INPUT |   |   | OUTPUT |    |    |
|-------|-------|---|---|--------|----|----|
|       | A     | В | C | A'     | В' | C' |
| 1     | 0     | 0 | 0 | 0      | 0  | 1  |
| 2     | 0     | 0 | 1 | 0      | 0  | 1  |
| 3     | 0     | 1 | 0 | 1      | 0  | 1  |
| 4     | 0     | 1 | 1 | 1      | 0  | 1  |
| 5     | 1     | 0 | 0 | 0      | 0  | 0  |
| 6     | 1     | 0 | 1 | 0      | 1  | 0  |
| 7     | 1     | 1 | 0 | 1      | 0  | 0  |
| 8     | 1     | 1 | 1 | 1      | 1  | 0  |

#### Transition table

Source: Filkov, "Modeling Gene Regulation", 2003

# Example



$$f_A(B) = B$$
  
 $f_B(A, C) = A$  and  $C$   
 $f_C(A) = \text{not } A$ 

Boolean Network

| genes<br>time | A          | В   | С   |
|---------------|------------|-----|-----|
| 0             | 1          | 1   | 0   |
| 1             | <b>1</b> 1 |     | 0   |
| 2             | 0          | 0   | 0   |
| 3             | 0          | 0   | 1   |
| 4             | 0          | 0   | 1   |
| 5             | •••        | ••• | ••• |

# **Network Analysis**

- Many things can be analyzed using DBN
- For instance, an attractor is a (set of) states towards which the network state converges
  - Point attractor: State which cannot be left any more
  - Cyclic attractor: A series of states which will repeat forever
  - Probability of attractors depend largely on size of network and complexity of Boolean functions
- Skipped we want to reconstruct networks

### **Network Reconstruction**

- Assume we know all genes, but not their relationships
- Assume we observe the states of n genes over m time points (a matrix S; the observations)
- Can we re-engineer the Boolean function of every gene given a sequence of states?





S

| genes<br>time | A   | В   | С   |  |
|---------------|-----|-----|-----|--|
| 0             | 1   | 1   | 0   |  |
| <b>1</b> 0    |     | 0   | 1   |  |
| 2             | 1   | 0   | 0   |  |
| 3             | 1   | 1   | 0   |  |
| 4             | 0   | 0   | 1   |  |
| 5             | ••• | ••• | ••• |  |

### **Network Reconstruction**

- Assume we know all genes, but not their relationships
- Assume we observe the states of n genes over m time points (a matrix S; the observations)
- Can we re-engineer the Boolean function of every gene given a sequence of states?



| genes<br>time | A   | В   | С   |  |
|---------------|-----|-----|-----|--|
| 0             | 1   | 1   | 0   |  |
| 1             | 0   | 0   | 1   |  |
| 2             | 1   | 0   | 0   |  |
| 3             | 1   | 1   | 0   |  |
| 4             | 0   | 0   | 1   |  |
| 5             | ••• | ••• | ••• |  |

### Formal Problem

- Definition
  - Let  $S_t$ ,  $0 \le t \le m$ , be the vector of all observed states of all genes V at time point t. A DBN G = (V, E) with functions  $f_1, ..., f_n$ , n = |V|, is called
    - consistent with  $S_t$  iff  $S_t = [f_1(S_{t-1}), f_2(S_{t-1}), \dots f_n(S_{t-1})]$
    - consistent with S iff it is consistent for all S<sub>t</sub>, 1≤t≤m
- The Boolean network reconstruction problem
   Given an observation S over a set V, find a DBN G=(V,E)
   that is consistent with S.
- Remark
  - Reconstruction means finding the functions f<sub>1</sub>,...f<sub>n</sub>
  - This also determines network topology (nodes appearing in a f<sub>i</sub>)

### Solutions

- Clearly, there are many observations S for which no consistent G exists
  - Recall that DBN are deterministic
  - Imagine  $S_t$ ,  $S_{t+1}$  and  $S_u$ ,  $S_{u+1}$  with  $S_t = S_u$  but  $S_{t+1} \neq S_{u+1}$
- Also, there are many observation S for which more than one consistent G exists
- Every time point narrows the options for G the longer S, the less (or no) consistent G's exist

# **Optimal Networks**

#### Definition

- For a DBN G, let size(G) be the total number of variables (edges) appearing in the Boolean functions of G
- A DBN G is minimal for observation S, if G is consistent with S and there is no G' which is also consistent with S and size(G') < size(G)</li>

#### Remark

- Parsimony assumption: Small models are better
- Thus, the smallest network is the best functions are as simple as possible, nothing is inferred that is not enforced by the data
- Not necessarily unique

# Naïve Algorithm

- Exhaustive algorithm for finding minimal networks
- Very complex (AND, OR, NOT, no paranthesis)

```
k=1: 2n functions
k=2: 2*2n*2n=O(n²) functions
...
General: O(2²k-1*nk) functions
```

### **Pros and Cons**

- Application (transcriptome data)
  - Perform time-series gene expression experiments
  - Brutally discretize each measurement: Genes are on or off
  - Reconstruct DBN
- Pros: Simple
- Cons
  - Binary values are not capturing reality
  - Synchronized, clocked time is nonsense
  - No quantification (It needs 2\*A and one B to regulate C)
  - Only small networks are computable

**–** ...

# Content

- Network reconstruction
  - Boolean models
  - Correlation-Based Approaches: REVEAL / ARACNE
  - Example

# **Towards Reality**

- There are less complex & more robust algorithms
- REVEAL replaces Boolean functions by mutual information; correlations rather than deterministic switching
  - Liang, S., S. Fuhrman and R. Somogyi (1998). Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pacific Symposium on Biocomputing., Hawaii, US.
- ARACNE is even simpler: Only removal of some (presumably indirect) correlations
  - Margolin, A. A., I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. D. Favera and A. Califano (2006). "ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context." BMC Bioinformatics 7((Suppl 1), S7).

### **Foundations**

#### Definition

Let X, Y be two discrete random variables. The mutual information MI(X,Y) is defined as

$$MI(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) * log\left(\frac{p(x,y)}{p(x)*p(y)}\right)$$

#### Remark

- Measure the variable's mutual dependency
- Dependency: Deviation of p(X,Y) from p(X)\*p(Y)
- How much does the state of X determines the state of Y?
- Many similar measures (information gain, conditional entropy, cross entropy, ...)

# Example

$$MI(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) * log\left(\frac{p(x,y)}{p(x) * p(y)}\right)$$

| p(x,y)          | y=0<br>p(y=0)=0.6 | y=1<br>p(y=1)=0.4 |  |
|-----------------|-------------------|-------------------|--|
| x=0; p(x=0)=0.2 | 0,12              | 0,08              |  |
| x=1; p(x=1)=0.8 | 0,48              | 0,32              |  |

$$MI(X,Y)=0$$

| p(x,y)          | y=0<br>p(y=0)=0.6 | y=1<br>p(y=1)=0.4 |  |
|-----------------|-------------------|-------------------|--|
| x=0; p(x=0)=0.2 | 0,18              | 0,03              |  |
| x=1; p(x=1)=0.8 | 0,05              | 0,74              |  |

$$MI(X,Y) = 0.53$$

### Two more Facts

With a little math, we find

$$MI(X,Y) = H(X) - H(X|Y) = H(Y)-H(Y|X)$$

- H(X): Entropy of X
- H(X|Y): Conditional entropy of X given Y
- It follows that the maximal value of MI(X,Y)=H(X) (H(Y))
  - H(X|Y)=0, which means that X(Y) completely determines Y(X)
- MI can be extended to sets of three, four, ... variables
  - Like Boolean functions over three, four, ... variables
  - Multivariate mutual information

### **REVEAL**

- Again, we have observations of n genes at m time points
  - Or m different conditions, treatments, ...
- Again, we discretize expression values to 0 or 1
  - More bins are possible
- MI(X,Y) means looking at pairs (x<sub>1</sub>,y<sub>0</sub>), (x<sub>2</sub>,y<sub>1</sub>), ...

# **REVEAL** in Practice

- In the formulation given, REVEAL would be as strict as Boolean functions
  - Dependencies must be perfect
- In the presence of noise, one must be satisfied with almost maximal MI
  - I.e.,  $|MI(X,Y)-H(X)| < \varepsilon$
- Can be extended to more than two possible states
  - Less strict discretization, more realistic model
- Most other restrictions of DBN remain

### **ARACNE**

- Fast variation of REVEAL which (a) considers each pair in isolation and (b) gives up model minimality
- Idea
  - Compute mutual information between all pairs of genes
    - This gives a complete network
  - Remove edges where  $|MI(X,Y)-H(X)| > \varepsilon$ 
    - ε can be estimated from the distribution of MI created at random?
  - Remove certain indirect effects ("data processing inequalities")
- Under certain assumptions, ARACNE provably converges to the true network
  - Given unlimited input, no loops
  - "True": Under all networks obeying our simplifying assumptions

# Data Processing Inequalities



- Assumption: If MI(X,Z) ≤ min(MI(X,Y),MI(Y,Z)), then the correlation between X-Z is an indirect effect and removed
- Procedural: In every triangle, remove the smallest edge
  - But in which order should triangles be visited?

# Content

- Network reconstruction
  - Boolean models
  - Correlation-Based Approaches: REVEAL/ ARACNE
  - Example

# Reconstructing the Mammalian Clock



Abbildung 2: Zentrale Gene der zirkadianen Uhr und deren wechselseitiger Einfluss.

[UHC+05] (Kästen: Cis-Elemente/Grüne Ovale: Positiv regulierende
Gene/Rote Ovale: Negativ regulierende Gene/Regulationsrichtung 1:

Von Gen über farbige Kante zu Cis-Element/Regulationsrichtung 2: Von
Cis-Element über graue Kante zu Gen)

- DA Sven Lund, 2015
- Data
  - ~630 rather unspecific arrays from GEO
  - Compared to two timeresolved clock-specific experiments
- Reconstruction quality of three algorithms
  - Aracne, Bayes Networks,
     Time-Delay Aracne

### Results

| - | Kennzahl | Verfahren | тP     | TN     | FP     | FN     | Recall | Precision |
|---|----------|-----------|--------|--------|--------|--------|--------|-----------|
| • | Ī        | Pearson   | 53.75  | 20.00  | 41.00  | 21.25  | 0.72   | 0.57      |
|   | .5       | Pearson   | 4.979  | 8.718  | 8.718  | 4.979  | 0.068  | 0.070     |
| • | Ī        | Bayes     | 36.00  | 33.50  | 27.50  | 39.00  | 0.48   | 0.57      |
|   | .5       | Bayes     | 12.739 | 10.282 | 10.282 | 12.739 | 0.170  | 0.020     |
| • | Ī        | ARACNE    | 18.88  | 48.00  | 13.00  | 56.13  | 0.25   | 0.59      |
|   | .5       | ARACNE    | 5.515  | 3.207  | 3.207  | 5.515  | 0.072  | 0.091     |

| Kennzahl | Datenquelle | тР     | TN     | FP     | FN     | Recall | Precision |
|----------|-------------|--------|--------|--------|--------|--------|-----------|
| ž        | GEO         | 45.00  | 26.00  | 35.00  | 30.00  | 0.60   | 0.57      |
| .5       | GEO         | 17.550 | 16.480 | 16.480 | 17.550 | 0.235  | 0.034     |
| Ī        | Korenčič    | 35.67  | 36.22  | 24.78  | 39.33  | 0.48   | 0.60      |
| .5       | Korenčič    | 16.462 | 12.940 | 12.940 | 16.462 | 0.219  | 0.037     |
| Ī        | Hogenesch   | 30.89  | 36.67  | 24.33  | 44.11  | 0.41   | 0.55      |
| .5       | Hogenesch   | 15.648 | 12.708 | 12.708 | 15.648 | 0.208  | 0.094     |

- Filtering of ARACNE reduces recall a lot, while precision increases only marginally
- Data set size outweighs specificity reconstruction about as good using many untargeted arrays or using fewer targeted arrays