LLL’05 Challenge: Genic Interaction Extraction

Identification of Language Patterns
Based on Alignment and Finite State Automata

Jorg Hakenberg
Conrad Plake
UIf Leser

HAKENBERGQINFORMATIK.HU-BERLIN.DE
PLAKEQINFORMATIK.HU-BERLIN.DE
LESERQINFORMATIK.HU-BERLIN.DE

Knowledge Management in Bioinformatics, Humboldt-Universitéit zu Berlin, Germany

Harald Kirsch
Dietrich Rebholz-Schuhmann

KIRSCHQEBI.AC.UK
REBHOLZQEBI.AC.UK

Rebholz-Group, European Bioinformatics Institute, Hinxton, United Kingdom

Abstract

We present a system for the identification of
syntax patterns describing interactions be-
tween genes and proteins in scientific text.
The system uses sequence alignments applied
to sentences annotated with interactions and
syntactical information (part-of-speech), as
well as finite state automata optimized with
a genetic algorithm. Both methods iden-
tified syntactical patterns that are general-
izations of textual representations of agent-
target relations. We match the generated
patterns against arbitrary text to extract in-
teractions and their respective partners. Our
best system uses finite state automata opti-
mized with a genetic algorithm, and scored
an Fl-measure of 51.8% on the LLL’05 eval-
uation set.

1. Introduction

The task for the Learning Language in Logic (LLL’05)
challenge was to build systems that extract inter-
actions between genes and/or proteins from biologi-
cal literature. From sentences annotated with agent-
target relations and other linguistic information, rules
or models had to be learned and were evaluated after-
wards (Genic Interaction Extraction Challenge, 2005).
For this benchmark, not only the interacting partners
had to be extracted, but also the agent-target depen-

Appearing in Proceedings of the 4** Learning Language in
Logic Workshop (LLLO05), Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

dencies had to be resolved correctly.

The task of relation mining in the biomedical domain
has been studied widely over the last years. Current
research covers protein-protein interactions (Huang
et al., 2004; Daraselia et al., 2004), subcellular loca-
tions (Stapley et al., 2002), disease-treatment-relations
(Rosario & Hearst, 2004), and certain other types.
Early systems relied on simple co-occurrence analy-
ses, and such techniques still provide very good re-
call performance for obvious reasons. Including syn-
tactical information for shallow parsing leads to bet-
ter results in the identification of co-occurring terms
in conjunction with a verbal phrase (Chen & Sharp,
2004), i.e., yields more precise predictions. Currently,
systems based on sequence modeling, and pattern- or
rule-based extraction provide the best results for de-
tecting protein-protein interactions (Xiao et al., 2005;
Huang et al., 2004; Saric et al., 2005).

The relation extraction system we used for the LLL’05
challenge consisted of two major components. The
first extracted syntax patterns typical for textual
descriptions of interactions from labeled examples.
These patterns reside on part-of-speech information
and markup of genes and selected nouns and verbs.
We followed two strategies to learn such patterns from
a given training sample. One was to apply a pat-
tern generating algorithm comparable to the one de-
scribed in Huang et al. (2004) to annotated examples.
Subsequent pairwise alignment of sentences ultimately
yielded patterns with as much support in the training
data as possible. The other strategy was to generate
finite state automata representing patterns, and to op-
timize these automata on the training sample using a
genetic algorithm to achieve optimal results.

LLL’05: Identification of Language Patterns Based on Alignment and Finite State Automata

After patterns had been extracted, the second compo-
nent matched these against arbitrary text to detect in-
teractions.Matching was either based on aligning new
sentences with patterns, or on mapping new sentences
into FSAs, respectively.

All patterns we extracted from the given examples re-
sembled sentences often used for describing interac-
tions. Typical examples often found in the literature
are, for instance,

ykuD is transcribed by SigK RNA polymerase (1)
yfhS is transcribed by E sigma E (2)
ComK regulates the expression of degR (3)
GerE inhibits the transcription of sigK (4)

It can easily be seen that (1) & (2), and (3) & (4)
share a similar syntax, respectively. Replacing words
with their respective part-of-speech tags, phrases (1)
and (2) could be subsumed with the pattern

gene verb:p3s verb:pp preposition protein

This pattern describes every (partial) sentence that
contains a gene, followed by a verb (present, third per-
son singular), another verb (past participle), a prepo-
sition, and finally a protein!. The second verb could
be narrowed down even further, by either accepting
only verbs seen in the training data, or by compil-
ing a list of possible verbs used for describing inter-
actions. We followed the second idea, and had lists
for verbs and nouns, which we refer to as interaction
verbs and - nouns or simply types in the following (see
Section 2.4.1 and supplementary information).

In this paper, we shall give an overview of all methods
and algorithms used, present the preprocessing of the
data set, and conclude with a discussion of our results
and findings.

2. Methods and Algorithms

There were two possibilities to extract and represent
patterns from a set of labeled examples. The first gen-
erated a set of patterns using pairwise alignments of
sentences from the training sample. These alignments
were transformed into a pattern. The second method
was learning finite state automata from the training
sample.

For both approaches, we represented each sentence as
a sequence of POS tags instead of tokens. Addition-
ally, we did not take the full sentences, but only the
immediate phrases relevant to the description of the
interaction. This included a certain boundary around

Tn the following, we do not distinguish between genes
and proteins.

Table 1. POS tags and costs for matches/mismatches.
Costs shown: Gap - aligning POS tag with gap; Match -
exact match; Group - match within group (same first let-
ter); Other - mismatch.

POS Tag Gap | Match | Group | Other
PTN -10 +4 -3
IVERB -10 +3 -3
INOUN -8 +3 -3
NN/NNP -8 +2 +1 -1
NNS/NNPS -7 +2 +1 -1
VB/VBP/VBZ/

VBD/VBN/VBG | -7 +2 +1 -1
IN, CC, TO 6 +2 1
7(77 7)7’ 777 _6 +2 _1
RB, RBR, RBS -1 +2 +1 -1
JJ, JIR, JJS -1 +2 +1 -1
DT, WDT -1 +2 1

the phrases (we experimented with up to three words
to the left and right).

2.1. Pairwise Alignment to Generate Patterns
2.1.1. ALIGNMENTS

Quite a few methods are available to measure the sim-
ilarity of two (or multiple) sentences. Our method
was sequence alignment, which calculates a consen-
sus sequence in addition to the similarity score. This
consensus sequence represented all parts (POS tags
and their positions) the aligned sequences had in com-
mon, and could be used directly to form a pattern.
Figure 1 shows an example for two aligned sentences.
For the alignment and scoring of sentence pairs, we
implemented the local and end-space free alignments
(Smith & Waterman, 1981; Needleman & Wunsch,
1970). With local alignment, the aligned sentences
could be quite dissimilar overall, but had to contain
regions that were highly similar (e.g., a verb phrase or
main clause). All other parts could have completely
different syntax and semantics. Using the end-space
free variation of global alignment, gaps at the begin-
ning or end of a sentence had costs of zero, regardless
of length. For calculating the costs for matches, mis-
matches, and gaps in the alignment, we used a substi-
tution matrix covering the whole alphabet (19 part-of-
speech tags). These costs were derived from previous
experiments, and are are shown in Table 1. We found
that while the exact values were less influential, the
overall tendency of rewards and penalties for different
sorts of replacements was important. A substitution
matrix for an extended alphabet (full Penn Treebank
tag-set) can be found in the supplementary informa-
tion.

LLL’05: Identification of Language Patterns Based on Alignment and Finite State Automata

the oxidized cytochrome c binds phosvitin and -> DT JJ PTN IVERB -- PTN CC
the profilin binds to G-actin , -> DT -- PTN IVERB IN PTN ,
consensus sequence of both (partial) sentences - DT PTN IVERB PTN

Figure 1. Example for an alignment and consensus sequence of two POS tags sequences. Sentences are represented using
POS tags. CC, conjunction; DT, determiner; IN: preposition; JJ: adjective; PTN, protein/gene; IVERB: verb describing

an interaction.

2.1.2. PATTERNS

Each pattern consisted of two types of information:
the pattern itself, i.e the sequence of POS tags, and
the positions of agent, target, and interaction type in
this pattern. A simple example for a pattern would be

= PTN IVERB PTN
= {(a=1, t=3, i=2)},

pattern
relation

matching sentences with the basic structure “pro-
tein interaction-verb protein”, for instance, “ComK
regulates degR”. The agent-target dependency is given
via the tuple (a,t,i), where the first two digits refer to
the positions of agent and target, and the third digit
to the position of the interaction type, respectively.
Please note that we did not distinguish between genes
and proteins, but mapped both entities to the same
tag, ‘PTN.

An example is shown in Figure 2. Each pattern p con-
sisted of a POS sequence s, and a (set of) relations,
K. Each element of K depicted a single interaction,
and the triple (a, ¢, 1) referred to the positions of agent,
target, and interaction type within the sequence, re-
spectively. Note that for the positions, we took into
account only proteins and interaction nouns or verbs.
(1,3,2) thus stood for a relation between the agent
protein at position 1 and the target protein at posi-
tion 3, described by the verb at position 2.

2.1.3. GENERATING PATTERNS WITH ALIGNMENTS

The pattern generating algorithm iterated over all sen-
tence pairs and calculated the best alignment for each
pair (see Section 2.1.1). Each respective consensus se-
quence from the optimal alignment of these two sen-
tences formed a pattern. We counted the occurrences
of all such patterns to calculate the support for each
pattern in the training data. The maximum number of
patterns for n sentences is n(n-)/2, but in practice not
all were generated, since a set of different alignments
can lead to the same consensus sequence. On the other
hand, in case there were multiple optimal alignments,
all alignments were taken to form (different and/or
identical) patterns. The algorithm in Figure 3 shows
the pattern generating algorithm as pseudo-code.

Text t,
Pattern p = {5, K), K= { (1.3.2), (14,2) }

t: Cbfa/PTN NN WDT interacts//VT'IN NN IN Cbfcl/PTV CC Cbfc2/PTNV
EH PIN - INTIN -- DT REN: CE PTN

t,: Cbfa/PTH, interacts/INT, IN

S

{Cbfa, Cbfcl, interacts)
(Cbfa, Cbfc2, interacts)

Cbicl/PTH, CC Chfe2/PTH,

Figure 2. Text t aligned with pattern p. Consensus se-
quence is t., forming two interactions: agent; with targets
via typez, and agent; with targets via verb types, respec-
tively.

Our pattern generating algorithm iteratively searched
for the most similar sentences, and tried to subsume
these with a more general expression, if necessary. As
we took alignments for this step, we used the respec-
tive consensus sequences for the generalized sequences.
This general expression, which we call pattern, was
then added to a set. This set functioned as a model to
explain the training data. Only patterns with at least
two proteins and one interactor (specific verb or noun)
were included in the final set. From the final set, all
patterns below a minimum support (i.e. the number
of aligned sentence pairs producing this pattern) were
removed.

2.1.4. APPLYING PATTERNS TO ARBITRARY TEXT

We studied different methods to apply the generated
patterns to arbitrary text: alignments, finite state au-
tomata, hidden Markov modeling, and hand-crafted
rules (Plake et al., 2005a; Plake et al., 2005b). For
the LLL’05 challenge, we used local and end-space-free
alignment.

The alignment worked just like described in Section
2.1.1. Figure 2 shows an example for a pattern, its
information, its alignment with a text and the result-
ing interactions. The positions for agent, target, and
interaction type (the latter was not necessary for the

LLL’05: Identification of Language Patterns Based on Alignment and Finite State Automata

Input: set of annotated sequences, S;
threshold d
for all 5;,s; € 5,¢# j do
¢;; = consensus(s;, s;)
K = (posa, posy, pos;) = positions of
partners a, b, and interactor ¢ in c; ;
p = (cij, K)
if p ¢ P then
add p to P; occp, =1
else
occp++
end if
end for
remove all p € P with occ, < d
Output: set of patterns, P

Figure 3. Pseudocode of the pattern generating algorithm.

LLL’05) in the new sentence were deduced from the in-
formation stored with each pattern. This was needed
to solve the dependency between two proteins and for
cases with multiple proteins in one sentence.

2.2. Learning Patterns with Finite State
Automata

For the second approach to generate and represent pat-
terns describing protein-protein interactions, we used
Mealy finite state automata (FSAs). In these au-
tomata, each position in a sentence (i.e. part-of-speech
tag) was represented by a transition from one state
to another. Transitions thus modeled the sequence of
POS tags in a sentence. The FSA has a dedicated
start state, depicting the position before the first tag
in a phrase. We stored each transition possible from
each state to another in a matrix. For each state in the
FSA, such a matrix contained all transitions possible
to a new state using the next POS tag in the sequence.
Figure 4 shows an example, where columns represent
the alphabet (=POS tags), and rows the states, respec-
tively. Each cell denoted whether a transition from the
current using a particular POS tag was possible or not,
and to which new state this transition would lead.

It was possible to further generalize FSAs. By intro-
ducing word gaps of variable length between states
(i.e. between positions in a sentence), the FSA con-
tained not only sentences fitting phrases exactly, but
allowed for insertions (for example, short subordinate
clauses or expressions in brackets). See Figure 5 for
examples. Intuitively, a more “strict” FSA (no word
gaps) would yield more precise results, while a “loose”
FSA (word gaps of infinite length) would gain a higher
recall, by fitting more sentences.

POS POS N
fé\ DT %1)\ PTN @\ INT %PTN @
N TN T A
> |DT N PTN INT POS
S
0 1 X X b4 X
1 X X 2 X 1
2 X X X 3 2
3 bis 3 4 X X
4 (F) x X X X X

Figure 4. Mealy-FSA and its transition matrix; s: number
of states, 3: alphabet of POS tags. For example, from
state 1 a transition is possible either to state 2 using 'PTN’,
or back to state 1 using any other, non-listed POS tag.

We encoded the transition matrix described above in
a single array. The value in each cell was transformed
into a binary representation, depicting the index of
a new state, when the transition using a particular
POS tag was possible, or zero otherwise. In addition,
we added a bit to this cell value. Whenever this bit
was set to one, the transition led not only to a next
state, but in addition, this state was an end-state. Ta-
ble 2 shows an example for the binary representation
of state 3 from Figure 4. In addition, the positions
for agent(s), target(s), and interaction type(s) in the
sentences had to be encoded. Taken together, this led
to a binary representation of FSAs, which we refer to
as a genome. In such a genome, all positions for the
states, and all positions for transitions and end-states
were fixed. Translations from a matrix to a genome
and back thus were unambiguous.

The task now was to find one or more good FSAs en-
coded by such genomes. We first started with a set
of random genomes, representing a population, where
each individual encoded an FSA with six states?. Ini-
tially, most of the individual members of a population
would encode a valid, but certainly a “bad performing”
matrix. We optimized this population on the training
sample using a genetic algorithm, see (Plake et al.,
2005b). For this approach, we could use either preci-

2The number of states was evaluated in further experi-
ments; data not shown.

LLL’05: Identification of Language Patterns Based on Alignment and Finite State Automata

7

(A) VBINT O
g
® pos

Ay

Figure 5. FSAs with word gaps. (A) shows the original
transitions between two states, with a protein tag in the
middle. In (B), the FSA was extended with an additional
transition from the left state, using any POS tag, to the
same state. This transition could be used multiple times.
(C) shows an extension for a maximum of two, instead of
multiple, optional POS tags.

Table 2. Binary representation of state 3 from the matrix
in Figure 4. The table shows all possible transitions, and
to which new state each transition leads. Using ‘PTN’, the
transition from 3 to 4 would lead to an end-state.

POS new end- possible transition
tag state state?

DT 000 0 “no transition possible”
IN 011 0 “possible to state 3”
PTN 100 1 “to state 4 = end-state”
INT 000 0 “no transition possible”
POS 000 0 “no transition possible”

sion, recall, or f-measure as a fitness function to mea-
sure the performance of every individual FSA in the
population. Choosing the best 25% of a population
to form the basis for a new generation, we filled the
missing 75% using recombinations, cross-overs, and
mutations of this parents. Ultimately, this led to an
FSA (the “best” genome in the population) covering at
least some positive examples® from the training sam-
ple. As soon as no further improvements could be
achieved, we removed all training sentences covered
by this FSA. On the remaining sample, we started
over with a completely new random population. We
followed this separate-and-conquer strategy, until no
positive sentences were left in the training sample, or
a certain number of FSAs was found.

2.2.1. APPLYING FINITE STATE AUTOMATA

In order to match interactions and to learn patterns
based on FSAs, we had to foresee in our patterns that
they match variability in the text. This meant that
starting at the first tag in each phrase, a sequence
of states including repetition of transitions had to be
foreseen in our FSAs, ultimately leading to an end-
state with the last tag. To parse complete sentences,

3 A positive example contains at least one interaction.

we tested all sub-phrases starting at the first word,
the second word, the third word, and so on. If the
language of an FSA covered a phrase, then index posi-
tions similar to the ones described in 2.1.1 defined the
interaction’s partners and type.

2.3. Data Sets

For generating patterns, we used two corpora in
two separate runs. All contained sentences found
in MEDLINE citations, together with markup for all
gene/protein names, all interactions and their respec-
tive types (i.e. agent-target relations). The first cor-
pus was the training data set provided with the LLL’05
challenge, consisting of 55 sentences with 103 genic
interactions. No negative examples were included in
this corpus. The other corpus had annotated protein-
protein interactions, and consisted of 1000 sentences
with 256 interactions in 174 sentences. This second
corpus was derived from the BioCreAtIvE task 1A
data set (Hirschman et al., 2005), in which gene and
protein names were marked. Further annotations for
protein-protein interactions based on this markup were
added manually.

For the evaluation of strategies and methods, we gen-
erated patterns from the 1000 sentences, and applied
them to the 55 sentences, on which we could measure
the performance. The final test set consisted of 86 sen-
tences containing genic interactions, and was provided
with the LLL’05 challenge.

We tested different combinations of data sets for train-
ing and testing, and different methods for applying
patterns to the respective test set. For the final solu-
tion, we learned patterns from our own corpus of 1000
sentences and combined them with patterns learned
from the 55 training sentences.

2.4. Preprocessing

In order to apply our system to the training and test
data, we had to perform several pre-processing steps.
First of all, we transformed the data into XML for-
mat, including a proper tokenization. The indices of
words in the word-list provided differed slightly from
the corresponding token’s index. Our tokenization in-
cluded punctuation marks, brackets, and hyphens. We
split expressions like ’sigma(K)-dependent’ into three
tokens, ‘sigma(K) - dependent’.

2.4.1. NAMED ENTITY RECOGNITION

A full list of all gene and protein names and synonyms
or spelling variants appearing in the corpus was pro-
vided with the data. Named entity recognition could

LLL’05: Identification of Language Patterns Based on Alignment and Finite State Automata

Table 3. Slight modifications of the dictionaries and data sets.

- removed blanks

- removed symbols

- removed symbols & blanks
- added to dictionary

- altered in dictionary

pro-sigma E (K)

E sigma 27 (29, 43); E sigma A (D,E,F,G,H); sigma 29 (32, 70)
sigma-43; Spo0A-P, Spo0A "P; SpolTAA-P; alpha-amylase; PBP4*; PhoP P

lacZ (ID 8169223-5,10767540-2); orfl0 (10481082-2)
sigma 27 = sigK according to 2492118-2

- added ’.” at end of sentence | ID 10400595-1

thus be reduced to an exact matching of sentences
against the dictionary. However, we introduced some
minor modifications to cope with blanks, symbols, and
overlapping gene names (’sigma E’ versus 'E sigma
E’ and ’pro-sigma E’). We normally tackle the NER
task using machine learning approaches based on sup-
port vector machines (Hakenberg et al., 2005). We did
not distinguish between genes and proteins, neither in
NER nor in patterns. In the literature, names refer-
ring to genes or proteins often are quite similar or even
used as synonyms, and the exact meaning most times
is hard to resolve.

Our pattern composition is based on part-of-speech
tags annotated for each token. For POS-tagging,
we used the TnT-Tagger, trained on the Wall-Street-
Journal corpus (Brants, 2000), generating tags from
the Penn Treebank tag-set (Santorini, 1990). In addi-
tion, we needed markup for tokens describing interac-
tions, referred to as either interaction mouns or verbs
(such as ’activation’, or “inhibits’). We performed this
step by combining POS-tag and word stem (Porter,
1980) to find an entry in fixed term-lists for nouns and
verbs. The tokens in these lists were selected by expe-
rience gathered in previous studies, and additionally
included suggestions from Temkin and Gilder (2003)
as well (see supplementary information). We restricted
the tags used in this approach to the ones shown in Ta-
ble 1.

2.4.2. DICTIONARY AND CANONICAL FORMS

For the LLL data sets, we transformed every pro-
tein/gene name to its respective canonical form, as
provided with the data. We subsequently matched ev-
ery spelling variant of protein/gene names occurring in
the corpus to its corresponding canonical form, start-
ing with the longest synonyms to avoid errors in over-
lapping names. In addition, we altered some entries in
the dictionary to deal with these problems. In general,
in the refined dictionary, canonical forms did not have
blanks or symbols (see Table 3). We added two names
(lacZ and orf10), because they occurred in the corpus,
but not in the dictionary.

Table 4. Patterns extracted from our corpus; table shows
only patterns with a support of >30. Dependencies refer
to different possibilities for agent/target relations; A: first
protein in the sentences, B: second, C:third.

Pattern Support Dependencies
PTN IVERB PTN 1405 |A—B, B—A, A—B
PTN IVERB DT PTN 258 A—B, A—B
PTN IVERB IN PTN 173 A—B, B—A
PTN INOUN PTN 138 A—B, B—A
PTN INOUN IN PTN 116 A—B, B—A
PTN IVERB IN DT PTN| 46 A—B
PTN RB IVERB PTN 45 A—B, A~B
INOUN IN PTN IN PTN 35 A—B, B—A
PTN IVERB NN PTN 35 A—B
PTN IVERB PTN PTN 30 A—B, A—C

Table 5. Performance on different types of interactions; all
without linguistic information, without co-refs. Numbers
in brackets give the total number of existing interactions
(FN), and predicted interactions (FP), respectively.

action bind | regulon | nothing all
TP 19 7 2 0 28
FN | 17(36) | 5 (12) | 2 (4) 0(0) | 24 (52)
FP | 10 (29) | 4 (11) | 1(3) | 13 (13) | 28 (56)

3. Results and Discussion

From our corpus of 1000 sentences, we were able to ex-
tract 148 patterns (see Table 4). The pattern with the
highest support was “PTN IVERB PTN” — 1405 dif-
ferent alignments produced this sequence. The second
best pattern, “PTN IVERB DT PTN” had a support
of 258 only. These numbers included multiple optimal
alignments for pairing two sentences. Table 4 shows
the ten patterns with the highest support in the train-
ing data.

We decided to send the prediction (supposedly) having
the highest F1-measure. This solution scored an F1 of
51.8% (precision of 50.0% at 53.8% recall; see Tables 5
and 6).

For the challenge, we did not use the co-references
and linguistic information as provided with the cor-
pus. Error analysis (for predictions on the training
data) revealed that our system often predicted the in-

LLL’05: Identification of Language Patterns Based on Alignment and Finite State Automata

Table 6. Results from the
methods and corpora. Upper corpus for train-
ing, lower for test; Ciooo: corpus of 1000 sentences;
Css: genic_interaction_data; Cge: basic_test_data.

evaluation for different

Method Corpus Pre Rec F1

Ahgnment CIOOO 57.1 7.8 13.7
Css

Alignment Css 63.6 8.1 14.4
Cse

Mealy CIOOO 64.3 17.5 27.5

(2 FSAS) C55

Mealy CIOOO 42.9 9.2 15.2

(2 FSAS) Cse

Mealy Css 28.1 31.4 29.6

(4 FSAS) Cse

Mealy CIOOO+55 50.0 53.8 51.8

(5 FSAS) Cge

teracting partners correctly, but erred on the direc-
tion of the interaction, i.e. it interchanges agent and
target. Using linguistic information, it might be pos-
sible to resolve some of these dependencies. Syntac-
tic relations could help to generate more specific pat-
terns containing whole phrases instead of single tags
(“expression of rsfA”). For this specific phrases, cer-
tain positions could even be restricted to particular
tokens, instead of general POS tags. Combinations
of verbs and prepositions, for instance, contain lin-
guistic information clearly stating the exact role of a
gene/protein appearing before or after this verb phrase
(“was phosphorylated by”). Grouping particular in-
teraction types together (e.g., “phosphorylation” and
“methylation” refer to the creation of bonds, while “re-
duction” and “repression” imply an inactivation) and
restricting patterns to these particular types might fur-
ther help to exploit nomenclature usages.

We saw that the performance of our approach is clearly
dependent on the size of the training set. Our system
was able to detect only interactions for which it en-
countered a quite similar example in the training data.
Using only 55 sentences for generating patterns proved
insufficient, as many relations in the test set did not
resemble any of these.

Our training corpus of 1000 sentences contained 256
different protein-protein interactions, but these were
in general quite dissimilar from the genic interactions
in the LLL data. This difference clearly had an impact
on the performance. For instance, our examples did
not include any descriptions of regulon family mem-
berships at all. Most of our examples describe ac-
tions and bindings, and our system performed better
in these categories (see Table 5).

Statistical analyses of the corpora revealed that the

pattern protein-interactor-protein (PIP) was used in
78.1% of all cases, and IPP accounted for 18%, leaving
3.9% for PPI. In 58% of the relations, the agent was
mentioned before the target.

The results of the system presented here were not
overly satisfying. On our own corpus, alignments
scored a precision of 91% or a recall of 65%, and Mealy-
FSAs yielded 79% precision or 88% recall. These re-
sults could be confirmed on the IEPA corpus (Ding
et al., 2002), which contains protein-protein interac-
tions as well.

SUPPLEMENTARY INFORMATION

For supplementary information, please visit
http://www.informatik.hu-berlin.de/ hakenber/
publ/suppl/.

ABBREVIATIONS

FSA, finite state automaton; NER, named entity
recognition; PGA, pattern generating algorithm; POS,
part-of-speech (tag).

Acknowledgments

This work is supported by the German Federal Min-
istry of Education and Research (BMBF) under grant
contract 0312705B. The Knowledge Management in
Bioinformatics Group is a member of the Berlin Cen-
ter for Genome Based Bioinformatics (BCB). Funding
for the Rebholz group is provided by the Network of
Excellence “Semantic Interoperability and Data Min-
ing in Biomedicine” (NoE 507505). JH is additionally
supported by the German Foreign Exchange Service
(DAAD), reference number D/05/26768.

References

Brants, T. (2000). TnT - a statistical part-of-speech
tagger. Proc 6th Applied NLP Conference. Seattle,
USA.

Chen, H., & Sharp, B. M. (2004). Content-rich bio-
logical network constructed by mining PubMed ab-
stracts. BMC' Bioinformatics, 5, 147.

Daraselia, N., Yuryev, A., Egorov, S., Novichkova,
S., Nikitin, A., & Mazo, I. (2004). Extracting hu-
man protein interactions from medline using a full-
sentence parser. Bioinformatics, 20, 604—611.

Ding, J., Berleant, D., Nettleton, D., & Wurtele, E.
(2002). Mining MEDLINE: Abstracts, Sentences,
or Phrases? Pacific Symposium on Biocomputing
(pp. 326-337). Kaua’i, Hawaii, USA.

LLL’05: Identification of Language Patterns Based on Alignment and Finite State Automata

Genic Interaction Extraction Challenge (2005).
Learning Language in Logic Workshop (LLL).
http://genome.jouy.inra.fr/texte/LLLchallenge/.

Hakenberg, J., Bickel, S., Plake, C., Brefeld, U.,
Zahn, H., Faulstich, L., Leser, U., & Scheffer, T.
(2005). Systematic Feature Evaluation for Gene
Name Recognition. BMC' Bioinformatics, 6, S9.

Hirschman, L., Yeh, A., Blaschke, C., & Valencia, A.
(2005). Overview of BioCreAtIvE: critical assess-
ment of information extraction for biology. BMC
Bioinformatics, 6, 1.

Huang, M., Zhu, X., Hao, Y., Payan, D. G., Qu, K.,
& Li, M. (2004). Discovering patterns to extract
protein-protein interactions from full texts. Bioin-
formatics, 20, 3604-3612.

Needleman, S., & Wunsch, C. (1970). A general
method applicable to the search for similarities in
the amino acid sequence of two proteins. J. Mol.
Biol., 48, 443-53.

Plake, C., Hakenberg, J., & Leser, U. (2005a). Learn-
ing Patterns for Information Extraction from Free
Text. Proc Workshop des Arbeitskreises Knowledge
Discovery. Karlruhe, Germany.

Plake, C., Hakenberg, J., & Leser, U. (2005b). Op-
timizing Syntax Patterns for Discovering Protein-
Protein Interactions. Proc ACM Symposium for Ap-

plied Computing, Bioinformatics track. Santa Fe,
USA.

Porter, M. (1980). An algorithm for suffix stripping.
Program, 130-137.

Rosario, B., & Hearst, M. (2004). Classifying seman-
tic relations in bioscience texts. Proceedings of the
42nd Annual Meeting of the Association for Com-
putational Linguistics, ACL. Barcelona, Spain.

Santorini, B. (1990). Part-of-speech tagging guidelines
for the Penn Treebank Project (Technical Report).
MS-CIS-90-47, University of Pennsylvania.

Saric, J., Jensen, L., Ouzounova, R., Rojas, 1., & Bork,
P. (2005). Large-scale Extraction of Protein/Gene
Relations for Model Organisms. Proc Symp on Se-
mantic Mining in Biomedicine (p. 50).

UK.

Hinxton,

Smith, T., & Waterman, M. (1981). Identification of
common molecular subsequences. J. Mol. Biol., 147,
195-197.

Stapley, B., Kelley, L., & Sternberg, M. (2002). Pre-
dicting the sub-cellular location of proteins from
text using support vector machines. Proceedings of
the Pacific Symposium on Biocomputing (pp. 374—
385).

Temkin, J. M., & Gilder, M. R. (2003). Extraction of
protein interaction information from unstructured
text using a context-free grammar. Bioinformatics,
19, 2046-2053.

Xiao, J., Su, J., Zhou, G., & Tan, C. (2005).
Protein-Protein Interaction Extraction: A Super-
vised Learning Approach. Proc Symp on Semantic
Mining in Biomedicine (pp. 51-59). Hinxton, UK.

