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This Lecture

• Introduction
– Structure
– Function
– Databases

• Predicting Protein Secondary Structure

• Many figures from Zvelebil, M. and Baum, J. O. (2008). "Understanding 
Bioinformatics", Garland Science, Taylor & Francis Group.
E l f f O K hlb h V l S k h WS• Examples often from O. Kohlbacher, Vorlesung Strukturvorhersage, WS 
2004/2005, Universität Tübingen
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Central Dogma of Molecular Biologyg gy
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The Real Picture

• Alternative Splicing• Alternative Splicing
– “One gene – one protein” is wrong
– Exons may be spliced from the protein sequence
– Human: ~ 6 times more proteins than genes

• Post-translational modifications
– (De-)Phosporylation, glycolysation, cleavage of signals, …
– Estimates: 100K proteins, 500K protein forms

C l• Complexes
– Proteins gather together to perform specific function
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Example: Proteasomep

• Very large complexes present in allVery large complexes present in all 
eukaryotes (and more)
– >2000 kDa, made of dozens of single 

protein chains
– Formation of the complex is a very 

complex process only partly understood yetcomplex process only partly understood yet

• Breaks (mis-folded, broken, 
superfluous, …) proteins into small p , ) p
peptides for reuse
– Suspicious proteins are tagged with 

bi iti hi h bi d t th tubiquitin which binds to the proteasome
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Protein Structure

• Primary
– 1D-Seq. of AAq

• Secondary
– 1D-Seq. of 

“subfolds”

• Tertiary
3D St t– 3D-Structure

• Quaternary
3D Structure of– 3D-Structure of 
assembled 
complexes

Ulf Leser: Bioinformatics, Summer Semester 2011 6



Protein Function

• Proteins perform essentially everything that makes anProteins perform essentially everything that makes an  
organism alive
– Metabolism
– Signal processing
– Gene regulation

Cell c cle– Cell cycle 
– …

• For ~1/3 of all human• For ~1/3 of all human 
gene, no function is known

• Describing functionDescribing function
– Gene Ontology: 3 branches, >30.000 concepts
– Used world-wide to describe gene/protein function
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Protein Interactions and Networks

• Function usually is carried out by a complex interplayFunction usually is carried out by a complex interplay 
between many proteins and other molecules

• Pathways: (artificial) fragments of the cellular network y ( ) g
associated to a certain function
– See lectures later
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Function and Motifs

• A protein may “have”A protein may have  
many functions
– Avg. n# of GO terms 

assigned to a human protein: ~6

• Functions are carried out by substructures of a protein
C ll d tif d i– Called motifs or domains

• There probably exist only 4000-5000 motifs
Proteins: “Assemblies of functional motifs”– Proteins: Assemblies of functional motifs

• Performing a function often requires binding to another 
protein or moleculeprotein or molecule
– The binding requires a certain constellation of the protein structure
– Blocking such bindings is a major goal in pharmacological research
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Protein Families and Classification

• Several DBs classify proteinsSeveral DBs classify proteins 
according to their overall 
structure (CATH, SCOP, FSSP)

• Highly related to evolutionary 
relationships (and function)

• Example: CATH
– Class (all α, all β, α-β, other)

A hit t– Architecture
– Topology (similar folds)
– Homologous superfamilyHomologous superfamily

(sets of concrete proteins)

• Helpful to characterize novel proteins
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Functional Classification

• Folds correlate with function, but many exceptionsFolds correlate with function, but many exceptions
• Enzyme classification (EC-numbers)

– 4-level hierarchyy
– Based on chemical 

reactions that are catalyzed
Cl l t d t f ti– Closer related to function
than classes of folds

– Relation protein:EC-number p
is mostly 1:1

EC n mbe and GO• EC-number and GO-
annotation are highly correlated
– But >30 000 concepts versus <4000 EC-numbers
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Proteomics – Large Scale Protein Identificationg

• Measuring gene expression is comparably simpleMeasuring gene expression is comparably simple 
– Sequencing mRNA, microarrays (based on hybridization)

• Measuring proteins is much harderg p
– Isolating proteins is very complex
– Sequencing a protein is very slow

• Options (see lecture later)
– Using 2D-Page 

U i t t– Using mass spectrometry
– De-dovo sequencing with MS/MS
– Quantification is very difficultQuantification is very difficult

• Some classes of proteins are particularly hard to handle
– Membrane proteins, non-soluble proteins
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UniProt

• “Standard” database for protein sequences and annotationStandard  database for protein sequences and annotation
– Original name: SwissProt
– Started at the Swiss Institute of Bioinformatics, now mostly EBI
– Other: PIR, HPRD

• Continuous growth and curation
– >30 „Scientific Database Curators“
– Quarterly releases
– Very rich annotation set– Very rich annotation set
– Redundancy-free

• Actually two databasesActually two databases
– SwissProt: Curated, high quality, versioned
– TrEMBL: Automatic generation from (putative) coding genomic 

Ulf Leser: Bioinformatics, Summer Semester 2011 13

sequences, low quality, redundant, much larger



UniProt: Species [http://www.expasy.org/sprot/relnotes/relstat.html]p

20258 Homo sapiens (Human) 
16327 Mus musculus (Mouse) 
9842 Arabidopsis thaliana (Mouse-ear cress)9842 Arabidopsis thaliana (Mouse ear cress) 
7560 Rattus norvegicus (Rat) 
6582 Saccharomyces cerevisiae (Baker's yeast) 
5803 Bos taurus (Bovine) 
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PDB – Protein Structure Database

• Oldest protein database, evolved from a bookOldest protein database, evolved from a book
• Contains all experimentally obtained protein 3D-structures

– Plus DNA, protein-ligand, complexes, …, p g , p ,
– X-Ray (~75%), NMR (Nuclear magnetic resonance, ~23%)

• Still costly and slow techniques
– Growth much smaller than that

of sequence-related DBs

Many problems with legacy• Many problems with legacy
data and data formats
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InterPro

• Integrated database of protein signatures, classifications,Integrated database of protein signatures, classifications, 
and motifs
– Currently ~21.000 signatures

• Associates signatures with function (GO term)
• InterProScan – quick identification of signatures in a 

protein sequence
– For a fast, first functional annotation
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This Lecture

• IntroductionIntroduction
• Predicting Protein Secondary Structure

– Secondary structure elementsy
– Chou-Fasman
– GOR IV 
– Other methods

Ulf Leser: Bioinformatics, Summer Semester 2011 17



Amino Acids

• An AA consists of a commonAn AA consists of a common
„core“ and a specific residue
– Amino group – NH2

– Central Cα - Carbon – CH
– Carboxyl group – COOH

R id ( id h i )• Residues (side chains) vary 
greatly between AA

• Residues determine the• Residues determine the 
specific properties of a AA
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Structure of a Protein

• The core forms the backbone of a protein (AA chain)The core forms the backbone of a protein (AA chain)
• Main structure: Covalent 

peptide bond between p p
carboxyl and amino group
– Loss of H2O
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Structure Flexibilityy

• In principle, every chemical bond can rotate freely, whichIn principle, every chemical bond can rotate freely, which 
would allow arbitrary structures to be formed

• In proteins things are much more restrictedp g
– Peptide bound is “flat” – almost no torsion possible
– Flexibility only in the Cα-flanking bonds φ and ψ
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Ramachandran Plots

• Combinations of φ and ψ are highly constrainedCombinations of φ and ψ are highly constrained 
• Due to chemical properties of the backbone / side chains

• Two combinations are favored: α-helixes and β-sheetso o b a o a a o d α a d β
• More detailed classifications exist
• Angels lead to specific structures
• Secondary structure
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α-Helixes

• Comb. of angles forming a 
regularly structured helix

• Additional bonds between 
amino and carboxyl groups
– Very stable structure

• May have two orientations
M t i ht h d d– Most are right-handed

• 3.4 AA per twist
Oft h t ti• Often short, sometimes very 
long
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β-Sheetsβ

• Two linear and parallel stretches (β-strands)Two linear and parallel stretches (β strands)
• Strands are bound together by hydrogen bounds
• Can be parallel or anti-parallel (wrt. N/C terminus)Can be parallel or anti parallel (wrt. N/C terminus)
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Other Substructures

• α-helixes and β-sheets form around 50-80% of a proteinα helixes and β sheets form around 50 80% of a protein
• All other „glue“ parts are called loops or coils

– Usually not very important for the structure of the proteiny y p p
– But very important for its function
– Loops are often exposed on the surface and participate in binding 

t th l lto other molecules
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Importancep

• Secondary structure elements (SSE) are vital for the overall 
structure of a proteinp

• Thus, they often are evolutionary well conserved
• SSE can be used to classify proteinsy p

– Such classes are highly associated to function

• Knowing secondary structure thus gives important clues to 
protein function

• Secondary structure prediction (SSP) is much simpler than 
3D structure prediction
– And 3D structure prediction can benefit a lot from a good SSP
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Predicting Secondary Structureg y

• SSP: Given a protein sequence, assign each AA in theSSP: Given a protein sequence, assign each AA in the 
sequence one of the three classes Helix, E (Strand), or Coil

KVYGRCELAAAMKRLGLDNYRGYSLGNWVCAAKFESNFNTHATNRNTD
GSTDYGILQINSRWWCNDGRTPGSKNLCNIPCSALLSSDITASVNCAK
KIASGGNGMNAWVAWRNRCKGTDVHAWIRGCRL 

KVYGRCELAAAMKRLGLDNYRGYSLGNWVCAAKFESNFNTHATNRNTD 
-----HHHHHHHHH-------------EEEEE----------------
GSTDYGILQINSRWWCNDGRTPGSKNLCNIPCSALLSSDITASVNCAK 
----EEEEEE--------------------------------HHHHHH 
KIASGGNGMNAWVAWRNRCKGTDVHAWIRGCRL  
HHH-------EEE--------------------
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Classification

• Classification: Classify each AA into one of three classesy
• Classification is a fundamental problem (not only in bioinformatics)

– Classify the readout of a microarray as diseased / healthy
Cl if b f di / di– Classify a subsequence of a genome as coding / non-coding

– Classify an email as spam / no spam

• A wealth of different techniques exist (Machine Learning)q ( g)
– Naïve Bayes, Regression, Decision Trees, Support Vector Machines, Neural 

Networks, Sequential Models, …

• Many of them use the same abstraction and can be exchanged easily• Many of them use the same abstraction and can be exchanged easily
– Describe objects by features
– Learn properties of feature values in the different classes
– Derive a classification function on the features
– Pre-requisite: Distribution of feature values are at least slightly different in 

the different classes
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This Lecture

• IntroductionIntroduction
• Predicting Protein Secondary Structure

– Secondary structure elementsy
– Chou-Fasman
– Other methods
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Chou-Fasmann Algorithm 
Ch & F (1974) P di ti f t i f ti Bi h i t 13Chou & Fasman (1974). Prediction of protein conformation. Biochemistry 13

• Observation: Different AA favor different foldsObservation: Different AA favor different folds
– Different AA are more or less often in H, E, C
– Different AA are more or less often within, starting, or ending a 

stretch of H, E, C

• Chou-Fasman algorithm (rough idea)
Cl ifi h AA i t E H l ifi d AA i d C– Classifies each AA into E or H; unclassified AA are assigned C

– Compute a score for the probability of any AA to be E / H
– Basis: Relative frequencies of assignments in a set of sequencesBasis: Relative frequencies of assignments in a set of sequences 

with known secondary structure
– In principle, assigns each AA its most frequent class
– Add constraints about minimal length of E, H stretches and several 

other heuristics
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Some Details [sketch, some heuristics omitted]

• Let fj k be the relative frequency of observing AA j in class kLet fj,k be the relative frequency of observing AA j in class k
• Let fk be the average over all 20 fj,k values
• Compute the propensity of AA j to be part of class k asCompute the propensity of AA j to be part of class k as 

Pj,k=fj,k/fk

• Using Pj,k, classify each AA j for class k according into
– Strong, normal, weak builder (Hα, hα, Iα)Strong, normal, weak builder (Hα, hα, Iα)
– Strong, weak breaker (Bα, bα)
– Indifferent (iα)

• For now, context (neighboring AAs) is ignored completely 
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Concrete Values

• Originally computed on only 15 proteins (1974)Originally computed on only 15 proteins (1974)
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Algorithm for Helicesg

• Go through the protein sequenceGo through the protein sequence
• Score each AA with 1 (Hα, hα), 0.5 (Iα, iα), or -1 (Bα, bα)
• Find helix cores: subsequences of length 6 with anFind helix cores: subsequences of length 6 with an 

aggregated AA score ≥ 4
• Starting from the middle of each core, shift a window of g ,

length 4 to the left (then to the right)
– Compute the aggregated Pk-score P inside the window
– If P ≥ 4, continue; otherwise stop

• Similar method for strands
• Conflicts (regions assigned both H and E) are resolved 

based on aggregated Pk-scores
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Examplep
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Performance

• Accuracy app. 50-60%Accuracy app. 50 60%
– Measured on per-AA correctness

• Prediction is more accurate in helices than in strands
– Because helices build local bridges (hydrogen bounds between the 

turns; each AA binds to the +4 AA)

G l bl• General problem
– Secondary structure is not only a local problem

Looking only at single AAs is not enough– Looking only at single AAs is not enough
• Note: Scores are based on individual AA; aggregation by summation 

assumes statistical independence of pairs, triples … in a class

– One needs to include the context of an AA
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This Lecture

• IntroductionIntroduction
• Predicting Protein Secondary Structure

– Secondary structure elementsy
– Chou-Fasman
– Other methods
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Classes of Methods

• First generation: Only look at properties of single AAFirst generation: Only look at properties of single AA
– Accuracy: 50-60%
– E.g. Chou-Fasman (1974)

• Second generation: Include info. about neighborhood
– Accuracy: ~65%
– E.g. GOR (1974 – 1987)

• Third generation: Include info. from homologous seq’s
A 70 75%– Accuracy: ~70-75%

– E.g. PHD (1994)

• Forth generation: Build ensembles of good methods• Forth generation: Build ensembles of good methods
• Accuracy: ~80%
• E.g. Jpred (1998)
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GOR Algorithm
[Garnier et al. Analysis of the accuracy and implications of simple methods for predicting the secondary 

f l b l l f l l l 20( ) 9 8]structure of globular proteins, Jounal of Molecular Biology 120(1), 1978]

• In principle, GOR uses Pk values for 16-grams of AAsIn principle, GOR uses Pk values for 16 grams of AAs
– Recall: Helices have a “reach” of ~4 AA
– But neighbors in a strand can be arbitrarily far away from each 

other (but they are not in practice)

• These cannot be learned from counting
Th 1620 1 2E24 diff t h 16– There are 1620~1.2E24 different such 16-grams

• Different versions of GOR use different methods to 
estimate these valuesestimate these values
– GOR IV uses propensities of all pairs in this window

• Other differenceOther difference
– Use of negative information (chances of AA j not being in class k)
– No cores+extension: Each AA is classified based on its 16-context
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PHD [Rost et al.: PHD-an automatic mail server for protein SSP, Bioinformatics 10(1), 1994]

• Uses two neural networksUses two neural networks
• Input is not only the AA and its context, but its profile

– Given the input sequence X, PHD first search homologous p q , g
sequences (using PSI-BLAST)

– All these are subjected to a multiple sequence alignment
Th “ l ” f AA i X i it fil– The “column” of an AA in X is its profile

• Rationale
On average one can exchange ~65% of a protein without– On average, one can exchange ~65% of a protein without 
changing its secondary structure notably 

– Thus, the concrete AA is not as important as one might think
– Homologous sequences are believed to have the same function and 

the same secondary structure
– We do not classify the AA but the list of all its replacements
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Further Readingg

• Gerhard Steger (2003). “Bioinformatik – Methoden zurGerhard Steger (2003). Bioinformatik Methoden zur
Vorhersage von RNA- und Proteinstrukturen”, Birkhäuser, 
chapter 8,10,11,13

• Zvelebil, M. and Baum, J. O. (2008). "Understanding 
Bioinformatics", Garland Science, Taylor & Francis Group, 
h 2 11 12 ( l )chapter 2, 11, 12 (partly)
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