Vorlesungsskript Theoretische Informatik III

Sommersemester 2008

Prof. Dr. Johannes Köbler Humboldt-Universität zu Berlin Lehrstuhl Komplexität und Kryptografie

Inhaltsverzeichnis

1	Ein	Einleitung							
2 Suchen und Sortieren									
	2.1	Sucher	n von Mustern in Texten	2					
		2.1.1	String-Matching mit endlichen Automaten	3					
		2.1.2	Der Knuth-Morris-Pratt-Algorithmus	4					
	2.2	Durchs	suchen von Zahlenfolgen	6					
	2.3		algorithmen	7					
		2.3.1	Sortieren durch Einfügen	7					
		2.3.2	Sortieren durch Mischen	8					
		2.3.3	Lösen von Rekursionsgleichungen	10					
		2.3.4	Eine untere Schranke für das Sortierproblem . 1	10					
		2.3.5	QuickSort	11					
		2.3.6		14					
		2.3.7	BucketSort	16					
		2.3.8	CountingSort	16					
		2.3.9	RadixSort	17					
		2.3.10	Vergleich der Sortierverfahren	17					
	2.4	Datens	strukturen für dynamische Mengen 1	18					
		2.4.1	Verkettete Listen	18					
		2.4.2		19					
		2.4.3	Balancierte Suchbäume	20					
3	Gra	phalgo	rithmen 2	24					
	3.1			24					
	3.2			26					
	3.3			26					

3.4	Durch	suchen von Graphen	8
	3.4.1	Suchwälder	9
	3.4.2	Klassifikation der Kanten eines (Di-)Graphen 29	9
	3.4.3	Spannbäume und Spannwälder	1
	3.4.4	Berechnung der Zusammenhangskomponenten 33	2
	3.4.5	Breiten- und Tiefensuche	2
	3.4.6	Starke Zusammenhangskomponenten 36	6
3.5	Kürze	ste Pfade in Distanzgraphen	9
	3.5.1	Der Dijkstra-Algorithmus	9
3.6	Negat	ive Kantengewichte 42	2
	3.6.1	Der Bellman-Ford-Algorithmus 42	2
	3.6.2	Der Bellman-Ford-Moore-Algorithmus 43	3
3.7	Berech	nnung von allen kürzesten Wegen 48	5
	3.7.1	Der Floyd-Warshall-Algorithmus 48	5
3.8	Flüsse	in Netzwerken 40	6

1 Einleitung

In den Vorlesungen ThI 1 und ThI 2 standen folgende Themen im Vordergrund:

- Welche Probleme sind lösbar? (Berechenbarkeitstheorie)
- Welche Rechenmodelle sind adäquat? (Automatentheorie)
- Welcher Aufwand ist nötig? (Komplexitätstheorie)

Dagegen geht es in der VL ThI 3 in erster Linie um folgende Frage:

- Wie lassen sich eine Reihe von praktisch relevanten Problemstellungen möglichst effizient lösen?
- Wie lässt sich die Korrektheit von Algorithmen beweisen und wie lässt sich ihre Laufzeit abschätzen?

Die Untersuchung dieser Fragen lässt sich unter dem Themengebiet Algorithmik zusammenfassen.

Der Begriff Algorithmus geht auf den persischen Gelehrten Muhammed Al Chwarizmi (8./9. Jhd.) zurück. Der älteste bekannte nicht-triviale Algorithmus ist der nach Euklid benannte Algorithmus zur Berechnung des größten gemeinsamen Teilers zweier natürlicher Zahlen (300 v. Chr.). Von einem Algorithmus wird erwartet, dass er jede Problemeingabe nach endlich vielen Rechenschritten löst (etwa durch Produktion einer Ausgabe). Ein Algorithmus ist ein "Verfahren" zur Lösung eines Entscheidungs- oder Berechnungsproblems, das sich prinzipiell auf einer Turingmaschine implementieren lässt (Church-Turing-These).

Die Registermaschine

Bei Aussagen zur Laufzeit von Algorithmen beziehen wir uns auf die Registermaschine (engl. random access machine; RAM). Dieses Modell ist etwas flexibler als die Turingmaschine, da es den unmittelbaren Lese- und Schreibzugriff (random access) auf eine beliebige Speichereinheit (Register) erlaubt. Als Speicher stehen beliebig viele Register zur Verfügung, die jeweils eine beliebig große natürliche Zahl speichern können. Auf den Registerinhalten sind folgende arithmetische Operationen in einem Rechenschritt ausführbar: Addition, Subtraktion, abgerundetes Halbieren und Verdoppeln. Unabhängig davon geben wir die Algorithmen in Pseudocode an. Das RAM-Modell benutzen wir nur zur Komplexitätsabschätzung.

Die Laufzeit von RAM-Programmen wird wie bei TMs in der Länge der Eingabe gemessen. Man beachte, dass bei arithmetischen Problemen (wie etwa Multiplikation, Division, Primzahltests, etc.) die Länge einer Zahleingabe n durch die Anzahl $\lceil \log n \rceil$ der für die Binärkodierung von n benötigten Bits gemessen wird. Dagegen bestimmt bei nicht-arithmetischen Problemen (z.B. Graphalgorithmen oder Sortierproblemen) die Anzahl der gegebenen Zahlen die Länge der Eingabe.

Asymptotische Laufzeit und Landau-Notation

Definition 1. Seien f und g Funktionen von \mathbb{N} nach \mathbb{R}^+ . Wir schreiben $f(n) = \mathcal{O}(g(n))$, falls es Zahlen n_0 und c gibt mit

$$\forall n \ge n_0 : f(n) \le c \cdot g(n).$$

Die Bedeutung der Aussage $f(n) = \mathcal{O}(g(n))$ ist, dass f "nicht wesentlich schneller" als g wächst. Formal bezeichnet der Term $\mathcal{O}(g(n))$ die Klasse aller Funktionen f, die obige Bedingung erfüllen. Die Gleichung $f(n) = \mathcal{O}(g(n))$ drückt also in Wahrheit eine Element-Beziehung $f \in \mathcal{O}(g(n))$ aus. O-Terme können auch auf

der linken Seite vorkommen. In diesem Fall wird eine Inklusionsbeziehung ausgedrückt. So steht $n^2 + \mathcal{O}(n) = \mathcal{O}(n^2)$ für die Aussage $\{n^2 + f \mid f \in \mathcal{O}(n)\} \subseteq \mathcal{O}(n^2)$.

Beispiel 2.

- $7\log(n) + n^3 = \mathcal{O}(n^3)$ ist richtig.
- $7\log(n)n^3 = \mathcal{O}(n^3)$ ist falsch.
- $2^{n+\mathcal{O}(1)} = \mathcal{O}(2^n)$ ist richtig.
- $2^{\mathcal{O}(n)} = \mathcal{O}(2^n)$ ist falsch (siehe Übungen).

Es gibt noch eine Reihe weiterer nützlicher Größenvergleiche von Funktionen.

Definition 3. Wir schreiben f(n) = o(g(n)), falls es für jedes c > 0 eine Zahl n_0 gibt mit

$$\forall n \ge n_0 : f(n) \le c \cdot g(n).$$

Damit wird ausgedrückt, dass f "wesentlich langsamer" als g wächst. Außerdem schreiben wir

- $f(n) = \Omega(g(n))$ für $g(n) = \mathcal{O}(f(n))$, d.h. f wächst mindestens so schnell wie g)
- $f(n) = \omega(g(n))$ für g(n) = o(f(n)), d.h. f wächst wesentlich schneller als g, und
- $f(n) = \Theta(g(n))$ für $f(n) = \mathcal{O}(g(n)) \wedge f(n) = \Omega(g(n))$, d.h. f und g wachsen ungefähr gleich schnell.

2 Suchen und Sortieren

2.1 Suchen von Mustern in Texten

In diesem Abschnitt betrachten wir folgende algorithmische Problemstellung.

String-Matching (STRINGMATCHING):

Gegeben: Ein Text $x = x_1 \cdots x_n$ und ein Muster $y = y_1 \cdots y_m$ über einem Alphabet Σ .

Gesucht: Alle Vorkommen von y in x.

Wir sagen y kommt in x an Stelle i vor, falls $x_{i+1} \cdots x_{i+m} = y$ ist. Typische Anwendungen finden sich in Textverarbeitungssystemen (emacs, grep, etc.), sowie bei der DNS- bzw. DNA-Sequenzanalyse.

Beispiel 4. Sei $\Sigma = \{A, C, G, U\}$.

 $Text \ x = AUGACGAUGAUGUAGGUAGGUAGAUGAUGUAG,$ $Muster \ y = AUGAUGUAG.$

Das Muster y kommt im Text x an den Stellen 6 und 24 vor.

Bei naiver Herangehensweise kommt man sofort auf folgenden Algorithmus.

Algorithmus naive-String-Matcher(x, y)

- 1 Input: Text $x=x_1\cdots x_n$ und Muster $y=y_1\cdots y_m$
- $V := \emptyset$
- for i := 0 to n m do

◁

4 if
$$x_{i+1} \cdots x_{i+m} = y_1 \cdots y_m$$
 then
5 $V := V \cup \{i\}$
6 Output: V

Die Korrektheit von naive-String-Matcher ergibt sich wie folgt:

- ullet In der for-Schleife testet der Algorithmus alle potentiellen Stellen, an denen y in x vorkommen kann, und
- fügt in Zeile 4 genau die Stellen i zu V hinzu, für die $x_{i+1} \cdots x_{i+m} = y$ ist.

Die Laufzeit von naive-String-Matcher lässt sich nun durch folgende Überlegungen abschätzen:

- Die for-Schleife wird (n m + 1)-mal durchlaufen.
- \bullet Der Test in Zeile 4 benötigt maximal m Vergleiche.

Dies führt auf eine Laufzeit von $\mathcal{O}(nm) = \mathcal{O}(n^2)$. Für Eingaben der Form $x = a^n$ und $y = a^{\lfloor n/2 \rfloor}$ ist die Laufzeit tatsächlich $\Theta(n^2)$.

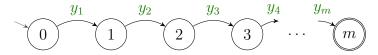
2.1.1 String-Matching mit endlichen Automaten

Durch die Verwendung eines endlichen Automaten lässt sich eine erhebliche Effizienzsteigerung erreichen. Hierzu konstruieren wir einen DFA M_y , der jedes Vorkommen von y in der Eingabe x durch Erreichen eines Endzustands anzeigt. M_y erkennt also die Sprache

$$L = \{ x \in \Sigma^* \mid y \text{ ist Suffix von } x \}.$$

Konkret konstruieren wir $M_y = (Z, \Sigma, \delta, 0, m)$ wie folgt:

- M_y hat m+1 Zustände, die den m+1 Präfixen $y_1 \cdots y_k$, $k=0,\ldots,m$, von y entsprechen, d.h. $Z=\{0,\ldots,m\}$.
- Liest M_y im Zustand k das Zeichen y_{k+1} , so wechselt M_y in den Zustand k+1, d.h. $\delta(k,y_{k+1})=k+1$ für $k=0,\ldots,m-1$:



• Falls das nächste Zeichen a nicht mit y_{k+1} übereinstimmt (engl. mismatch), wechselt M_y in den Zustand

$$\delta(k, a) = \max\{j \le m \mid y_1 \cdots y_j \text{ ist Suffix von } y_1 \cdots y_k a\}.$$

Der DFA M_y speichert also in seinem Zustand die maximale Länge k eines Präfixes $y_1 \cdots y_k$ von y, das zugleich ein Suffix der gelesenen Eingabe ist:

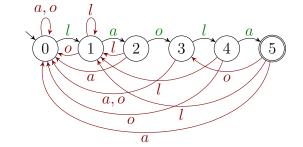
$$\hat{\delta}(0,x) = \max\{k \le m \mid y_1 \cdots y_k \text{ ist Suffix von } x\}.$$

Die Korrektheit von M_y folgt aus der Beobachtung, dass M_y isomorph zum Äquivalenzklassenautomaten M_{R_L} für L ist. M_{R_L} hat die Zustände $[y_1 \cdots y_k], k = 0, \ldots, m$, von denen nur $[y_1 \cdots y_m]$ ein Endzustand ist. Die Überführungsfunktion ist definiert durch

$$\delta([y_1\cdots y_k],a)=[y_1\cdots y_j],$$

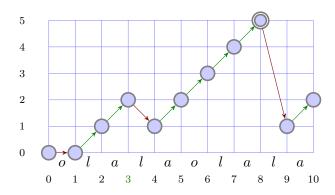
wobei $y_1 \cdots y_j$ das längste Präfix von $y = y_1 \cdots y_m$ ist, welches Suffix von $y_1 \cdots y_j a$ ist (siehe Übungen).

Beispiel 5. Für das Muster y = laola hat M_y folgende Gestalt:



δ	0	1	2	3	4	5
a	0	2	0 1	0	5	0
$\mid l \mid$	1	1	1	4	1	1
$\mid o \mid$	0	0	3	0	0	3

 M_y macht bei der Suche nach dem Muster y = laola im Text x = olalaolala folgende Übergänge:



Insgesamt erhalten wir somit folgenden Algorithmus.

Algorithmus DFA-String-Matcher(x, y)

```
Input: Text x=x_1\cdots x_n und Muster y=y_1\cdots y_m konstruiere den DFA M_y=(Z,\Sigma,\delta,0,m) V:=\emptyset k:=0 for i:=1 to n do k:=\delta(k,x_i) if k=m then V:=V\cup\{i-m\} Output: V
```

Die Korrektheit von DFA-String-Matcher ergibt sich unmittelbar aus der Tatsache, dass M_v die Sprache

$$L(M_y) = \{ x \in \Sigma^* \mid y \text{ ist Suffix von } x \}$$

erkennt. Folglich fügt der Algorithmus genau die Stellen j = i - m zu V hinzu, für die y ein Suffix von $x_1 \cdots x_i$ (also $x_{i+1} \cdots x_{i+m} = y$) ist.

Die Laufzeit von **DFA-String-Matcher** ist die Summe der Laufzeiten für die Konstruktion von M_y und für die Simulation von M_y bei Eingabe x, wobei letztere durch $\mathcal{O}(n)$ beschränkt ist. Für δ ist eine Tabelle mit $(m+1)\|\Sigma\|$ Einträgen

$$\delta(k, a) = \max\{j \le k + 1 \mid y_1 \cdots y_j \text{ ist Suffix von } y_1 \cdots y_k a\}$$

zu berechnen. Jeder Eintrag $\delta(k,a)$ ist in Zeit $\mathcal{O}(k^2) = \mathcal{O}(m^2)$ berechenbar. Dies führt auf eine Laufzeit von $\mathcal{O}(\|\Sigma\|m^3)$ für die Konstruktion von M_y und somit auf eine Gesamtlaufzeit von $\mathcal{O}(\|\Sigma\|m^3 + n)$. Tatsächlich lässt sich M_y sogar in Zeit $\mathcal{O}(\|\Sigma\|m)$ konstruieren.

2.1.2 Der Knuth-Morris-Pratt-Algorithmus

Durch eine Modifikation des Rücksprungmechanismus' lässt sich die Laufzeit von **DFA-String-Matcher** auf $\mathcal{O}(n+m)$ verbessern. Hierzu vergegenwärtigen wir uns folgende Punkte:

- Tritt im Zustand k ein Mismatch $a \neq y_{k+1}$ auf, so ermittelt M_y das längste Präfix p von $y_1 \cdots y_k$, das zugleich Suffix von $y_1 \cdots y_k a$ ist, und springt in den Zustand $j = \delta(k, a) = |p|$.
- Im Fall j > 0 hat p also die Form p = p'a, wobei $p' = y_1 \cdots y_{j-1}$ sowohl echtes Präfix als auch echtes Suffix von $y_1 \cdots y_k$ ist. Zudem gilt $y_j = a$.
- Die Idee beim KMP-Algorithmus ist nun, bei einem Mismatch unabhängig von a auf das nächst kleinere Präfix $\tilde{p} = y_1 \cdots y_i$ von $y_1 \cdots y_k$ zu springen, das auch Suffix von $y_1 \cdots y_k$ ist.
- Stimmt nach diesem Rücksprung das nächste Eingabezeichen a mit y_{i+1} überein, so wird dieses gelesen und der KMP-Algorithmus erreicht (nach einem kleinen Umweg über den Zustand i) den Zustand i+1=j, in den auch M_y wechselt.
- Andernfalls springt der KMP-Algorithmus nach derselben Methode solange weiter zurück, bis das nächste Eingabezeichen a

◁

◁

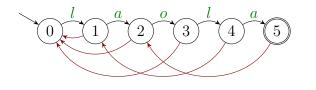
"passt" (also $y_{i+1} = a$ und somit $\tilde{p}a$ ein Präfix von y ist) oder der Zustand 0 erreicht wird.

• In beiden Fällen wird a gelesen und der Zustand $\delta(k,a)$ angenommen.

Der KMP-Algorithmus besucht also alle Zustände, die auch M_y besucht, führt aber die Rücksprünge in mehreren Etappen aus. Die Sprungadressen werden durch die so genannte $Präfixfunktion \pi: \{1, \ldots, m\} \to \{0, \ldots, m-1\}$ ermittelt:

$$\pi(k) = \max\{0 \le j \le k - 1 \mid y_1 \cdots y_j \text{ ist Suffix von } y_1 \cdots y_k\}.$$

Beispiel 6. Für das Muster y = laola ergibt sich folgende Präfixfunktion π :

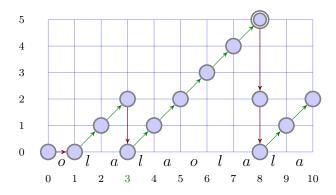


k	1	2	3	4	5
$\pi(k)$	0	0	0	1	2

Wir können uns die Arbeitsweise dieses Automaten wie folgt vorstellen:

- 1. Erlaubt das nächste Eingabezeichen einen Übergang vom aktuellen Zustand k nach k+1, so führe diesen aus.
- 2. Ist ein Übergang nach k+1 nicht möglich und $k \geq 1$, so springe in den Zustand $\pi(k)$ ohne das nächste Zeichen zu lesen.
- 3. Andernfalls (d.h. k = 0 und ein Übergang nach 1 ist nicht möglich) lies das nächste Zeichen und bleibe im Zustand 0.

Der KMP-Algorithmus macht bei der Suche nach dem Muster y = laola im Text x = olalaolala folgende Übergänge:



Auf die Frage, wie sich die Präfixfunktion π möglichst effizient berechnen lässt, werden wir später zu sprechen kommen. Wir betrachten zunächst das Kernstück des KMP-Algorithmus, das sich durch eine leichte Modifikation von **DFA-String-Matcher** ergibt.

DFA-String-Matcher(x, y)

```
Input: Text x_1\cdots x_n und Muster y_1\cdots y_m konstruiere M_y V:=\emptyset k:=0 for i:=1 to n do k:=\delta(k,x_i)
```

if k=m then

Output: V

 $V := V \cup \{i - m\}$

7 8 9

KMP-String-Matcher(x, y)

```
Input: Text x_1 \cdots x_n und

Muster y_1 \cdots y_m

x_i := \mathsf{KMP-Prefix}(y)

x_i := \emptyset

x_i := \emptyset

Muster x_i \cdots x_n und

x_i := \mathsf{KMP-Prefix}(y)

x_i := \emptyset

Muster x_i := \emptyset

M
```

Die Korrektheit des Algorithmus KMP-String-Matcher ergibt sich einfach daraus, dass er den Zustand m an genau den gleichen Textstellen besucht wie DFA-String-Matcher, und somit wie dieser alle Vorkommen von y im Text x findet.

Für die Laufzeitanalyse von KMP-String-Matcher (ohne die Berechnung von KMP-Prefix) stellen wir folgende Überlegungen an.

- Die Laufzeit ist proportional zur Anzahl der Zustandsübergänge.
- Bei jedem Schritt wird der Zustand um maximal Eins erhöht.
- Daher kann der Zustand nicht öfter verkleinert werden als er erhöht wird (*Amortisationsanalyse*).
- Es gibt genau *n* Zustandsübergänge, bei denen der Zustand erhöht wird bzw. unverändert bleibt.
- Insgesamt finden also höchstens $2n = \mathcal{O}(n)$ Zustandsübergänge statt.

Nun kommen wir auf die Frage zurück, wie sich die Präfixfunktion π effizient berechnen lässt. Die Aufgabe besteht darin, für jedes Präfix $y_1 \cdots y_i$, $i \geq 1$, das längste echte Präfix zu berechnen, das zugleich Suffix von $y_1 \cdots y_i$ ist.

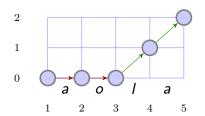
Die Idee besteht nun darin, mit dem KMP-Algorithmus das Muster y im Text $y_2 \cdots y_m$ zu suchen. Dann liefert der beim Lesen von y_i erreichte Zustand k gerade das längste Präfix $y_1 \cdots y_k$, das zugleich Suffix von $y_2 \cdots y_i$ ist (d.h. es gilt $\pi(i) = k$). Zudem werden bis zum Lesen von y_i nur Zustände kleiner als i erreicht. Daher sind die π -Werte für alle bis dahin auszuführenden Rücksprünge bereits bekannt und π kann in Zeit $\mathcal{O}(m)$ berechnet werden.

Prozedur KMP-Prefix(y)

```
\begin{array}{ll} 1 & \pi(1) := 0 \\ 2 & k := 0 \\ 3 & \textbf{for } i := 2 \ \textbf{to} \ m \ \textbf{do} \\ 4 & \textbf{while } (k > 0 \land y_i \neq y_{k+1}) \ \textbf{do} \ k := \pi(k) \\ 5 & \textbf{if } y_i = y_{k+1} \ \textbf{then } k := k+1 \\ 6 & \pi(i) := k \\ 7 & \textbf{return}(\pi) \end{array}
```

Beispiel 7. Die Verarbeitung des Musters y = laola durch

KMP-Prefix ergibt folgendes Ablaufprotokoll:



k	1	2	3	4	5
$\pi(k)$	0	0	0	1	2

Wir fassen die Laufzeiten der in diesem Abschnitt betrachteten String-Matching Algorithmen in einer Tabelle zusammen:

Algorithmus	Vorverarbeitung	Suche	Gesamtlaufzeit
naiv	0	$\mathcal{O}(nm)$	$\mathcal{O}(nm)$
DFA (einfach)	$\mathcal{O}(\ \Sigma\ m^3)$	$\mathcal{O}(n)$	$\mathcal{O}(\ \Sigma\ m^3+n)$
DFA (verbessert)	$\mathcal{O}(\ \Sigma\ m)$	$\mathcal{O}(n)$	$\mathcal{O}(\ \Sigma\ m+n)$
Knuth-Morris-Pratt	$\mathcal{O}(m)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$

2.2 Durchsuchen von Zahlenfolgen

Als nächstes betrachten wir folgendes Suchproblem.

Element-Suche

Gegeben: Eine Folge a_1, \ldots, a_n von natürlichen Zahlen und eine Zahl a.

Gesucht: Ein Index i mit $a_i = a$ (bzw. eine Fehlermeldung, falls $a \notin \{a_1, \ldots, a_n\}$ ist).

Typische Anwendungen finden sich bei der Verwaltung von Datensätzen, wobei jeder Datensatz über einen eindeutigen Schlüssel (z.B. *Matrikelnummer*) zugreifbar ist. Bei manchen Anwendungen können die Zahlen in der Folge auch mehrfach vorkommen. Gesucht sind dann

evtl. alle Indizes i mit $a_i = a$. Durch eine sequentielle Suche lässt sich das Problem in Zeit $\mathcal{O}(n)$ lösen.

Algorithmus Sequential-Search

```
Input: Eine Zahlenfolge a_1,\dots,a_n und eine Zahl a
i:=0
repeat
i:=i+1
until (i=n\vee a=a_i)
Output: i, falls a_i=a bzw. Fehlermeldung, falls a_i\neq a
```

Falls die Folge a_1, \ldots, a_n sortiert ist, d.h. es gilt $a_i \leq a_j$ für $i \leq j$, bietet sich eine $Bin \ddot{a}rsuche$ an.

Algorithmus Binary-Search

```
Input: Eine Zahlenfolge a_1, \ldots, a_n und eine Zahl a
l := 1
r := n
\text{while } l < r \text{ do}
m := \lfloor (l+r)/2 \rfloor
\text{if } a \leq a_m \text{ then } r := m \text{ else } l := m+1
\text{Output: } l \text{, falls } a_l = a \text{ bzw. Fehlermeldung, falls } a_l \neq a
```

Offensichtlich gibt der Algorithmus im Fall $a \notin \{a_1, \ldots, a_n\}$ eine Fehlermeldung aus. Im Fall $a \in \{a_1, \ldots, a_n\}$ gilt die *Schleifeninvariante* $a_l \leq a \leq a_r$. Daher muss nach Abbruch der **while**-Schleife $a = a_l$ sein. Dies zeigt die Korrektheit von **Binary-Search**.

Da zudem die Länge l-r+1 des Suchintervalls [l,r] in jedem Schleifendurchlauf mindestens auf $\lfloor (l-r)/2 \rfloor +1$ reduziert wird, werden höchstens $\lceil \log n \rceil$ Schleifendurchläufe ausgeführt. Folglich ist die Laufzeit von Binary-Search höchstens $\mathcal{O}(\log n)$.

2.3 Sortieralgorithmen

Wie wir im letzten Abschnitt gesehen haben, lassen sich Elemente in einer sortierten Folge sehr schnell aufspüren. Falls wir diese Operation öfters ausführen müssen, bietet es sich an, die Zahlenfolge zu sortieren.

Sortierproblem

Gegeben: Eine Folge a_1, \ldots, a_n von natürlichen Zahlen.

Gesucht: Eine Permutation a_{i_1}, \ldots, a_{i_n} dieser Folge mit $a_{i_j} \leq a_{i_{j+1}}$ für $j = 1, \ldots, n-1$.

Man unterscheidet vergleichende Sortierverfahren von den übrigen Sortierverfahren. Während erstere nur Ja-Nein-Fragen der Form " $a_i \le a_j$?" oder " $a_i < a_j$?" stellen dürfen, können letztere auch die konkreten Zahlenwerte a_i der Folge abfragen. Vergleichsbasierte Verfahren benötigen im schlechtesten Fall $\Omega(n \log n)$ Vergleiche, während letztere unter bestimmten Zusatzvoraussetzungen sogar in Linearzeit arbeiten.

2.3.1 Sortieren durch Einfügen

Ein einfacher Ansatz, eine Zahlenfolge zu sortieren, besteht darin, sequentiell die Zahl a_i ($i=2,\ldots,n$) in die bereits sortierte Teilfolge a_1,\ldots,a_{i-1} einzufügen.

Algorithmus Insertion-Sort (a_1, \ldots, a_n)

```
for i := 2 to n do z := a_i
j := i - 1
while (j \ge 1 \land a_j > z) do
a_{j+1} := a_j
j := j - 1
a_{j+1} := z
```

Die Korrektheit von Insertion-Sort lässt sich induktiv durch den Nachweis folgender Schleifeninvarianten beweisen:

- Nach jedem Durchlauf der for-Schleife sind a_1, \ldots, a_i sortiert.
- Nach jedem Durchlauf der while-Schleife gilt $z < a_k$ für k = j + 2, ..., i.

Zusammen mit der Abbruchbedingung der **while**-Schleife folgt hieraus, dass z in Zeile 5 an der jeweils richtigen Stelle eingefügt wird.

Da zudem die **while**-Schleife für jedes $i=2,\ldots,n$ höchstens (i-1)-mal ausgeführt wird, ist die Laufzeit von **Insertion-Sort** durch $\sum_{i=2}^{n} \mathcal{O}(i-1) = \mathcal{O}(n^2)$ begrenzt.

Bemerkung 8.

- Ist die Eingabefolge a_1, \ldots, a_n bereits sortiert, so wird die while-Schleife niemals durchlaufen. Im besten Fall ist die Laufzeit daher $\sum_{i=2}^{n} \Theta(1) = \Theta(n)$.
- Ist die Eingabefolge a_1, \ldots, a_n dagegen absteigend sortiert, so wandert z in i-1 Durchläufen der while-Schleife vom Ende an den Anfang der bereits sortierten Teilfolge a_1, \ldots, a_i . Im schlechtesten Fall ist die Laufzeit also $\sum_{i=2}^n \Theta(i-1) = \Theta(n^2)$.
- Bei einer zufälligen Eingabepermutation der Folge $1, \ldots, n$ wird z im Erwartungswert in der Mitte der Teilfolge a_1, \ldots, a_i eingefügt. Folglich beträgt die (erwartete) Laufzeit im durchschnittlichen Fall ebenfalls $\sum_{i=2}^{n} \Theta(\frac{i-1}{2}) = \Theta(n^2)$.

2.3.2 Sortieren durch Mischen

Wir können eine Zahlenfolge auch sortieren, indem wir sie in zwei Teilfolgen zerlegen, diese durch rekursive Aufrufe sortieren und die sortierten Teilfolgen wieder zu einer Liste zusammenfügen.

Diese Vorgehensweise ist unter dem Schlagwort "Divide and Conquer" (auch "divide et impera", also "teile und herrsche") bekannt. Dabei wird ein Problem gelöst, indem man es

• in mehrere Teilprobleme aufteilt,

- die Teilprobleme rekursiv löst, und
- die Lösungen der Teilprobleme zu einer Gesamtlösung des ursprünglichen Problems zusammenfügt.

Die Prozedur Mergesort(A, l, r) sortiert ein Feld $A[l \dots r]$, indem sie

- es in die Felder $A[l \dots m]$ und $A[m+1 \dots r]$ zerlegt,
- diese durch jeweils einen rekursiven Aufruf sortiert, und
- die sortierten Teilfolgen durch einen Aufruf der Prozedur Merge(A, l, m, r) zu einer sortierten Folge zusammenfügt.

Algorithmus Mergesort(A, l, r)

```
\begin{array}{ll} \text{if} & l < r \text{ then} \\ 2 & m := \lfloor (l+r)/2 \rfloor \\ 3 & \text{Mergesort}(A,l,m) \\ 4 & \text{Mergesort}(A,m+1,r) \\ 5 & \text{Merge}(A,l,m,r) \end{array}
```

Die Prozedur $\mathsf{Merge}(A, l, m, r)$ mischt die beiden sortierten Felder $A[l \dots m]$ und $A[m+1 \dots r]$ zu einem sortierten Feld $A[l \dots r]$.

Prozedur Merge(A, l, m, r)

```
allokiere Speicher fuer ein neues Feld B[l \dots r]
j := l
k := m + 1
   for i := l to r do
     if j > m then
        B[i] := A[k]
6
        k := k + 1
     else if k > r then
       B[i] := A[j]
9
       i := i + 1
10
     else if A[j] < A[k] then
11
       B[i] := A[j]
12
```

```
\begin{array}{lll} & j:=j+1\\ & \text{else}\\ \\ & B[i]:=A[k]\\ \\ & k:=k+1\\ \\ & \text{17} & \text{kopiere das Feld } B[l\dots r] \text{ in das Feld } A[l\dots r]\\ \\ & \text{18} & \text{gib den Speicher fuer } B \text{ wieder frei} \end{array}
```

Man beachte, dass Merge für die Zwischenspeicherung der gemischten Folge zusätzlichen Speicher benötigt. Mergesort ist daher kein "in place"-Sortierverfahren, welches neben dem Speicherplatz für die Eingabefolge nur konstant viel zusätzlichen Speicher belegen darf. Zum Beispiel ist Insertion-Sort ein "in place"-Verfahren. Auch Mergesort kann als ein "in place"-Sortierverfahren implementiert werden, falls die zu sortierende Zahlenfolge nicht als Array, sondern als mit Zeigern verkettete Liste vorliegt (hierzu muss allerdings auch noch die Rekursion durch eine Schleife ersetzt werden).

Unter der Voraussetzung, dass Merge korrekt arbeitet, können wir per Induktion über die Länge n=r-l+1 des zu sortierenden Arrays die Korrektheit von Mergesort wie folgt beweisen:

- n=1: In diesem Fall tut Mergesort nichts, was offensichtlich korrekt ist.
- $n \sim n+1$: Um eine Folge der Länge $n+1 \geq 2$ zu sortieren, zerlegt sie Mergesort in zwei Folgen der Länge höchstens n. Diese werden durch die rekursiven Aufrufe nach IV korrekt sortiert und von Merge nach Voraussetzung korrekt zusammengefügt.

Die Korrektheit von Merge lässt sich leicht induktiv durch den Nachweis folgender Invariante für die for-Schleife beweisen:

- Nach jedem Durchlauf enthält $B[l\cdots i]$ die i-l+1 kleinsten Elemente aus $A[l\cdots m]$ und $A[m+1\cdots r]$ in sortierter Reihenfolge.
- Hierzu wurden die ersten j-1 Elemente von $A[l\cdots m]$ und die ersten k-1 Elemente von $A[m+1\cdots r]$ nach B kopiert.

Nach dem letzten Durchlauf (d.h. i=r) enthält daher $B[l\cdots r]$ alle r-l+1 Elemente aus $A[l\cdots m]$ und $A[m+1\cdots r]$ in sortierter Reihenfolge, womit die Korrektheit von Merge bewiesen ist.

Um eine Schranke für die Laufzeit von Mergesort zu erhalten, schätzen wir zunächst die Anzahl V(n) der Vergleiche ab, die Mergesort im schlechtesten Fall benötigt, um ein Feld $A[l\cdots r]$ der Länge n=r-l+1 zu sortieren. Offensichtlich erfüllt V(n) die Rekursionsgleichung

$$V(n) = \begin{cases} 0, & \text{falls } n = 1, \\ V(\lfloor n/2 \rfloor) + V(\lceil n/2 \rceil) + M(n), & n \ge 2. \end{cases}$$

Dabei ist M(n) = n - 1 die Anzahl der Vergleiche, die Merge benötigt, um die beiden sortierten Felder $A[l \dots m]$ und $A[m+1 \dots r]$ zu mischen. Falls n eine Zweierpotenz ist, erhalten wir also die Rekursion

$$V(1) = 0$$
 und $V(n) = 2V(n/2) + n - 1, n \ge 2$.

Für die Funktion $f(k) = V(2^k)$ gilt dann

$$f(0) = 0$$
 und $f(k) = 2f(k-1) + 2^k - 1, k \ge 1$.

Aus den ersten Folgengliedern

$$f(0) = 0,$$

$$f(1) = 1,$$

$$f(2) = 2 + 2^{2} - 1 = 1 \cdot 2^{2} + 1,$$

$$f(3) = 2 \cdot 2^{2} + 2 + 2^{3} - 1 = 2 \cdot 2^{3} + 1,$$

$$f(4) = 2 \cdot 2 \cdot 2^{3} + 2 + 2^{4} - 1 = 3 \cdot 2^{4} + 1$$

lässt sich vermuten, dass $f(k) = (k-1) \cdot 2^k + 1$ ist. Dies lässt sich leicht durch Induktion über k verifizieren, so dass wir für V die Lösungsfunktion $V(n) = n \log_2 n - n + 1$ erhalten. Ist n keine Zweierpotenz, so können wir die Anzahl der Fragen durch $V(n) \leq V(n') \leq V(2n) = \mathcal{O}(V(n))$ abschätzen, wobei n' < 2n die kleinste Zweierpotenz größer als n ist.

Da die Laufzeit T(n) von MergeSort asymptotisch durch die Anzahl V(n) der Vergleiche beschränkt ist, folgt $T(n) = \mathcal{O}(V(n))$.

Satz 9. MergeSort ist ein vergleichendes Sortierverfahren mit einer Laufzeit von $\mathcal{O}(n \log n)$.

2.3.3 Lösen von Rekursionsgleichungen

Im Allgemeinen liefert der "Divide and Conquer"-Ansatz einfach zu implementierende Algorithmen mit einfachen Korrektheitsbeweisen. Die Laufzeit T(n) erfüllt dann eine Rekursionsgleichung der Form

$$T(n) = \begin{cases} \Theta(1), & \text{falls } n \text{ "klein" ist,} \\ D(n) + \sum_{i=1}^{\ell} T(n_i) + C(n), & \text{sonst.} \end{cases}$$

Dabei ist D(n) der Aufwand für das Aufteilen der Probleminstanz und C(n) der Aufwand für das Verbinden der Teillösungen. Um solche Rekursionsgleichungen zu lösen, kann man oft eine Lösung "raten" und per Induktion beweisen. Mit Hilfe von Rekursionsbäumen lassen sich Lösungen auch "gezielt raten". Eine asymptotische Abschätzung liefert folgender Hauptsatz der Laufzeitfunktionen (Satz von Akra & Bazzi).

Satz 10 (Mastertheorem). Sei $T: \mathbb{N} \to \mathbb{N}$ eine Funktion der Form

$$T(n) = \sum_{i=1}^{\ell} T(n_i) + f(n) \quad mit \quad n_i \in \{ \lfloor \alpha_i n \rfloor, \lceil \alpha_i n \rceil \},$$

wobei $0 < \alpha_i < 1$, $i = 1, ..., \ell$, fest gewählte reelle Zahlen sind. Dann gilt im Fall $f(n) = \Theta(n^k)$ für ein k > 0:

$$T(n) = \begin{cases} \Theta(n^k), & falls \ \sum_{i=1}^{\ell} \alpha_i^k < 1, \\ \Theta(n^k \log n), & falls \ \sum_{i=1}^{\ell} \alpha_i^k = 1, \\ \Theta(n^c), & falls \ \sum_{i=1}^{\ell} \alpha_i^k > 1, \end{cases}$$

wobei c Lösung der Gleichung $\sum_{i=1}^{\ell} \alpha_i^c = 1$ ist.

Beispiel 11. Die Anzahl V(n) der Vergleiche von MergeSort erfüllt die Rekursion

$$V(n) = V(\lfloor n/2 \rfloor) + V(\lceil n/2 \rceil) + n - 1,$$

d.h. l = 2, $\alpha_1 = \alpha_2 = 1/2$ und $f(n) = n - 1 = \Theta(n^k)$ für k = 1. Wegen $\sum_{i=1}^{\ell} \alpha_i^k = 1/2 + 1/2 = 1$ folgt daher $V(n) = \Theta(n \log n)$.

2.3.4 Eine untere Schranke für das Sortierproblem

Frage. Wie viele Vergleichsfragen benötigt ein vergleichender Sortieralgorithmus A mindestens, um eine Folge (a_1, \ldots, a_n) von n Zahlen zu sortieren?

Zur Beantwortung dieser Frage betrachten wir alle n! Eingabefolgen (a_1, \ldots, a_n) der Form $(\pi(1), \ldots, \pi(n))$, wobei $\pi \in S_n$ eine beliebige Permutation auf der Menge $\{1, \ldots, n\}$ ist. Um diese Folgen korrekt zu sortieren, muss A solange Fragen der Form $a_i < a_j$ (bzw. $\pi(i) < \pi(j)$) stellen, bis höchstens noch eine Permutation $\pi \in S_n$ mit den erhaltenen Antworten konsistent ist. Damit A möglichst viele Fragen stellen muss, beantworten wir diese so, dass mindestens die Hälfte der verbliebenen Permutationen mit unserer Antwort konsistent ist (Mehrheitsvotum). Diese Antwortstrategie stellt sicher, dass nach i Fragen noch mindestens $n!/2^i$ konsistente Permutationen übrig bleiben. Daher muss A mindestens

$$\lceil \log_2(n!) \rceil = n \log_2 n - n \log_2 e + 1/2 \log n + \Theta(1) = n \log_2 n - \Theta(n)$$

Fragen stellen, um die Anzahl der konsistenten Permutationen auf Eins zu reduzieren.

Satz 12. Ein vergleichendes Sortierverfahren benötigt mindestens $\lceil \log_2(n!) \rceil$ Fragen, um eine Folge (a_1, \ldots, a_n) von n Zahlen zu sortieren.

Wir können das Verhalten von A auch durch einen Fragebaum B veranschaulichen, dessen Wurzel mit der ersten Frage von A markiert ist. Jeder mit einer Frage markierte Knoten hat zwei Kinder, die die Antworten ja und nein auf diese Frage repräsentieren. Stellt A nach Erhalt der Antwort eine weitere Frage, so markieren wir den entsprechenden Antwortknoten mit dieser Frage. Andernfalls gibt A eine Permutation π der Eingabefolge aus und der zugehörige Antwortknoten ist ein Blatt, das wir mit π markieren. Nun ist leicht zu sehen, dass die Tiefe von B mit der Anzahl V(n) der von A benötigten Fragen im schlechtesten Fall übereinstimmt. Da jede Eingabefolge zu einem anderen Blatt führt, hat B mindestens n! Blätter. Folglich können wir in B einen Pfad der Länge $\lceil \log_2(n!) \rceil$ finden, indem wir jeweils in den Unterbaum mit der größeren Blätterzahl verzweigen.

Da also jedes vergleichende Sortierverfahren mindestens $\Omega(n \log n)$ Fragen benötigt, ist Mergesort asymptotisch optimal.

Korollar 13. MergeSort ist ein vergleichendes Sortierverfahren mit einer im schlechtesten Fall asymptotisch optimalen Laufzeit von $\mathcal{O}(n \log n)$.

2.3.5 QuickSort

Ein weiteres Sortierverfahren, das den "Divide and Conquer"-Ansatz benutzt, ist QuickSort. Im Unterschied zu MergeSort wird hier das Feld *vor* den rekursiven Aufrufen umsortiert. Als Folge hiervon bereitet die Zerlegung in Teilprobleme die Hauptarbeit, während das Zusammenfügen der Teillösungen trivial ist. Bei MergeSort ist es gerade umgekehrt.

Algorithmus QuickSort(A, l, r)

```
if \ l < r \ then \ m := {\sf Partition}(A,l,r) QuickSort(A,l,m-1) QuickSort(A,m+1,r)
```

Die Prozedur QuickSort(A, l, r) sortiert ein Feld $A[l \dots r]$ wie folgt:

- Zuerst wird die Funktion Partition(A, l, r) aufgerufen.
- Diese wählt ein *Pivotelement*, welches sich nach dem Aufruf in A[m] befindet, und sortiert das Feld so um, dass gilt:

$$A[i] \le A[m] \le A[j]$$
 für alle i, j mit $l \le i < m < j \le r$. (*)

• Danach werden die beiden Teilfolgen $A[l \dots m-1]$ und $A[m+1 \dots r]$ durch jeweils einen rekursiven Aufruf sortiert.

Die Funktion $\mathsf{Partition}(A,l,r)$ pivotisiert das Feld $A[l\dots r]$, indem sie

- x = A[r] als Pivotelement wählt,
- $\bullet\,$ die übrigen Elemente mit x vergleicht und dabei umsortiert und
- \bullet den neuen Index i+1 von x zurückgibt.

Prozedur Partition(A, l, r)

```
\begin{array}{ll} i:=l-1\\ 2 & \text{for } j:=l & \text{to } r-1 & \text{do}\\ 3 & \text{if } A[j] \leq A[r] & \text{then}\\ 4 & i:=i+1\\ 5 & \text{if } i < j & \text{then}\\ 6 & \text{vertausche } A[i] & \text{und } A[j]\\ 7 & \text{if } i+1 < r & \text{then}\\ 8 & \text{vertausche } A[i+1] & \text{und } A[r]\\ 9 & \text{return(i+1)} \end{array}
```

Unter der Voraussetzung, dass die Funktion Partition korrekt arbeitet, d.h. nach ihrem Aufruf gilt (*), folgt die Korrektheit von QuickSort durch einen einfachen Induktionsbeweis über die Länge n=r-l+1 des zu sortierenden Arrays.

Die Korrektheit von **Partition** wiederum folgt leicht aus folgender Invariante für die for-Schleife:

$$A[k] \le A[r]$$
 für $k = 1, ..., i$ und $A[k] > A[r]$ für $k = i + 1, ..., j$. (**)

Da nämlich nach Ende der for-Schleife j=r-1 ist, garantiert die Vertauschung von A[i+1] und A[r] die Korrektheit von Partition. Wir müssen also nur noch die Gültigkeit der Schleifeninvariante (**) nachweisen. Um eindeutig definierte Werte von j vor und nach jeder Iteration der for-Schleife zu haben, ersetzen wir diese durch eine semantisch äquivalente while-Schleife:

Prozedur Partition(A, l, r)

```
i:=l-1
j:=l-1
\text{while } j < r-1 \text{ do}
j:=j+1
\text{if } A[j] \leq A[r] \text{ then}
i:=i+1
\text{if } i < j \text{ then}
\text{vertausche } A[i] \text{ und } A[j]
\text{if } i+1 < r \text{ then}
\text{vertausche } A[i+1] \text{ und } A[r]
\text{return(i+1)}
```

Nun lässt sich die Invariante (**) leicht induktiv beweisen.

Induktionsanfang: Vor Beginn der while-Schleife gilt die Invariante, da i und j den Wert l-1 haben.

Induktionsschritt: Zunächst wird j hochgezählt und dann A[j] mit A[r] verglichen.

Im Fall $A[j] \leq A[r]$ wird auch i hochgezählt (d.h. nach Zeile 6 gilt A[i] > A[r]). Daher gilt nach der Vertauschung in Zeile 8: $A[i] \leq A[r]$ und A[j] > A[r], weshalb die Gültigkeit der Invariante erhalten bleibt.

Im Fall A[j] > A[r] behält die Invariante ebenfalls ihre Gültigkeit, da nur j hochgezählt wird und i unverändert bleibt.

Als nächstes schätzen wir die Laufzeit von QuickSort im schlechtesten Fall ab. Dieser Fall tritt ein, wenn sich das Pivotelement nach jedem Aufruf von Partition am Rand von A (d.h. m=l oder m=r) befindet. Dies führt nämlich dazu, dass Partition der Reihe nach mit Feldern der Länge $n,n-1,n-2,\ldots,1$ aufgerufen wird. Da Partition für die Umsortierung eines Feldes der Länge n genau n-1 Vergleiche benötigt, führt QuickSort insgesamt die maximal mögliche Anzahl

$$V(n) = \sum_{i=1}^{n} (i-1) = \binom{n}{2} = \Theta(n^2)$$

von Vergleichen aus. Dieser ungünstige Fall tritt insbesondere dann ein, wenn das Eingabefeld A bereits (auf- oder absteigend) sortiert ist.

Im besten Fall zerlegt das Pivotelement das Feld dagegen jeweils in zwei gleich große Felder, d.h. V(n) erfüllt die Rekursion

$$V(n) = \begin{cases} 0, & n = 1, \\ V(\lfloor (n-1)/2 \rfloor) + V(\lceil (n-1)/2 \rceil) + n - 1, & n \ge 2. \end{cases}$$

Diese hat die Lösung $V(n) = n \log_2 n - \Theta(n)$ (vgl. die worst-case Abschätzung bei MergeSort).

Es gibt auch Pivotauswahlstrategien, die in linearer Zeit z.B. den Median bestimmen. Dies führt auf eine Variante von QuickSort mit einer Laufzeit von $\Theta(n \log n)$ bei allen Eingaben. Allerdings ist die Bestimmung des Medians für praktische Zwecke meist zu aufwändig. Bei der Analyse des Durchschnittsfalls gehen wir von einer zufälligen Eingabepermutation $A[1 \dots n]$ der Folge $1, \dots, n$ aus. Dann ist die Anzahl V(n) der Vergleichsanfragen von QuickSort eine Zufallsvariable. Wir können V(n) als Summe $\sum_{1 \le i < j \le n} X_{ij}$ folgender Indikatorvariablen darstellen:

$$X_{ij} = \begin{cases} 1, & \text{falls die Werte } i \text{ und } j \text{ verglichen werden,} \\ 0, & \text{sonst.} \end{cases}$$

Ob die Werte i und j verglichen werden, entscheidet sich beim ersten Aufruf von $\mathsf{Partition}(A,l,r)$, bei dem das Pivotelement x=A[r] im Intervall

$$I_{ij} = \{i, \ldots, j\}$$

liegt. Bis zu diesem Aufruf werden die Werte im Intervall I_{ij} nur mit Pivotelementen außerhalb von I_{ij} verglichen und bleiben daher im gleichen Teilfeld $A[l\dots r]$ beisammen. Ist das erste Pivotelement x in I_{ij} nun nicht gleich i oder j, dann werden i und j nicht miteinander verglichen. Das liegt daran dass im Fall i < x < j die Werte i und j bei diesem Aufruf in zwei verschiedene Teilfelder getrennt werden ohne miteinander verglichen zu werden.

Die Werte i und j werden also genau dann verglichen, wenn das erste Pivotelement x im Intervall I_{ij} den Wert i oder j hat. Da die Eingabe eine Zufallsfolge ohne Mehrfachvorkommen ist, nimmt x jeden Wert in I_{ij} mit Wahrscheinlichkeit 1/(j-i+1) an. Daher findet mit Wahrscheinlichkeit $p_{ij}=2/(j-i+1)$ ein Vergleich zwischen den Werten i und j statt.

Der Erwartungswert von $V(n) = \sum_{1 \leq i < j \leq n} X_{ij}$ berechnet sich nun zu

$$E[V(n)] = \sum_{1 \le i < j \le n} \underbrace{E[X_{ij}]}_{p_{ij}} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}$$
$$\leq \sum_{i=1}^{n-1} \sum_{k=2}^{n} \frac{2}{k} \leq 2 \sum_{i=1}^{n-1} \log n = \mathcal{O}(n \log n).$$

Damit ist die durchschnittliche Laufzeit von QuickSort $\mathcal{O}(n \log n)$. Dass dies für vergleichende Sortierverfahren asymptotisch optimal ist, wird in den Übungen gezeigt.

Satz 14. QuickSort ist ein vergleichendes Sortierverfahren mit einer im Durchschnitt asymptotisch optimalen Laufzeit von $\mathcal{O}(n \log n)$.

Unabhängig davon nach welcher (deterministischen) Strategie das Pivotelement gewählt wird, wird es immer Eingabefolgen geben, für die

QuickSort $\binom{n}{2}$ Vergleiche benötigt. Eine Möglichkeit, die Effizienz von QuickSort im Durchschnittsfall auf den schlechtesten Fall zu übertragen, besteht darin, eine randomisierte Auswahlstrategie für das Pivotelement anzuwenden.

Die Prozedur RandomQuickSort(A, l, r) arbeitet ähnlich wie QuickSort. Der einzige Unterschied besteht darin, dass als Pivotelement ein zufälliges Element aus dem Feld $A[l \dots r]$ gewählt wird.

Algorithmus RandomQuickSort(A, l, r)

```
\begin{array}{ll} & \textbf{if} & l < r \ \textbf{then} \\ & m := \mathsf{RandomPartition}(A, l, r) \\ & \mathsf{RandomQuickSort}(A, l, m-1) \\ & \mathsf{RandomQuickSort}(A, m+1, r) \end{array}
```

Prozedur RandomPartition(A, l, r)

```
guess randomly j \in \{l, \dots, r\} if j < r then vertausche A[j] und A[r] return(Partition(A, l, r))
```

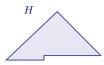
Es ist nicht schwer zu zeigen, dass sich RandomQuickSort bei jeder Eingabefolge $A[l,\ldots,r]$ gleich verhält wie QuickSort bei einer zufälligen Permutation dieser Eingabefolge (siehe Übungen). Daher ist die erwartete Laufzeit von RandomQuickSort auch im schlechtesten Fall durch $\mathcal{O}(n\log n)$ beschränkt, falls die Zahlenwerte paarweise verschieden sind.

Satz 15. RandomQuickSort ist ein randomisiertes vergleichendes Sortierverfahren mit einer im schlechtesten Fall asymptotisch optimalen erwarteten Laufzeit von $\mathcal{O}(n \log n)$.

2.3.6 HeapSort

HeapSort benutzt als Datenstruktur einen so genannten *Heap*, um ein Feld zu sortieren.

Definition 16. Ein Heap H mit n Knoten ist ein geordneter Binärbaum nebenstehender Form. Das heißt,



- H hat in Tiefe $i = 0, 1, ..., \lfloor \log_2 n \rfloor 1$ jeweils die maximale Anzahl von 2^i Knoten und
- in Tiefe $\lfloor \log_2 n \rfloor$ sind alle Knoten linksbündig angeordnet.

Zudem ist jeder Knoten v mit einer Zahl H[v] beschriftet, deren Wert mindestens so groß ist wie die Werte der Kinder von v (sofern vorhanden).

Ein Heap H mit n Knoten lässt sich in einem Feld $H[1, \ldots, n]$ speichern. Dabei gilt:

- Das linke Kind von Knoten i hat den Index left(i) = 2i.
- Das rechte Kind von Knoten i hat den Index right(i) = 2i + 1.
- Der Elternknoten von Knoten i hat den Index $parent(i) = \lfloor i/2 \rfloor$.

Die Heap-Eigenschaft lässt sich nun wie folgt formulieren. Für alle Knoten $i \in \{1, ..., n\}$ gilt

$$(2i \le n \Rightarrow H[i] \ge H[2i]) \land (2i+1 \le n \Rightarrow H[i] \ge H[2i+1]).$$

Da die Knoten im Intervall $\{\lfloor n/2 \rfloor + 1, \ldots, n\}$ keine Kinder haben, ist für sie die Heap-Eigenschaft automatisch erfüllt.

Ist $H[1,\ldots,n]$ ein Heap, dann repräsentiert auch jedes Anfangsstück $H[1,\ldots,r],\ 1\leq r\leq n$, einen Heap H_r mit r Knoten. Zudem ist für $1\leq i\leq r\leq n$ der Teilbaum von H_r mit Wurzel i ein Heap, den wir mit $H_{i,r}$ bezeichnen.

Da die Wurzel H[1] eines Heaps den größten Wert haben muss, können wir eine in einem Feld $H[1, \ldots, n]$ gespeicherte Zahlenfolge sortieren, indem wir H zuerst zu einem Heap umsortieren und dann sukzessive

- \bullet die Wurzel H[1] mit dem letzten Heap-Element vertauschen,
- den rechten Rand des Heaps um ein Feld nach links verschieben (also die vormalige Wurzel des Heaps herausnehmen) und
- die durch die Ersetzung der Wurzel verletzte Heap-Eigenschaft wieder herstellen.

Sei $H[1,\ldots,n]$ ein Feld, so dass der Teilbaum $H_{i,r}$ die Heap-Eigenschaft in allen Knoten bis auf seine Wurzel i erfüllt. Dann stellt die Prozedur $\mathsf{Heapify}(H,i,r)$ die Heap-Eigenschaft im gesamten Teilbaum $H_{i,r}$ her.

Prozedur Heapify(H, i, r)

```
\begin{array}{lll} & \text{if } (2i \leq r) \wedge (H[2i] > H[i]) \text{ then} \\ 2 & x := 2i \\ 3 & \text{else} \\ 4 & x := i \\ 5 & \text{if } (2i+1 \leq r) \wedge (H[2i+1] > H[x]) \text{ then} \\ 6 & x := 2i+1 \\ 7 & \text{if } x > i \text{ then} \\ 8 & \text{vertausche } H[x] \text{ und } H[i] \} \\ 9 & \text{Heapify}(H,x,r) \end{array}
```

Unter Verwendung der Prozedur **Heapify** ist es nun leicht, ein Feld zu sortieren.

Algorithmus HeapSort(H, 1, n)

```
for i:=\lfloor n/2\rfloor downto 1 do

Heapify(H,i,n)

for r:=n downto 2 do

vertausche H[1] und H[r]

Heapify(H,1,r-1)
```

Wir setzen zunächst voraus, dass die Prozedur Heapify korrekt arbeitet. D.h. Heapify(H,i,r) stellt die Heap-Eigenschaft im gesamten Teilbaum $H_{i,r}$ her, falls $H_{i,r}$ die Heap-Eigenschaft höchstens in seiner Wurzel i nicht erfüllt. Unter dieser Voraussetzung folgt die Korrektheit von HeapSort mittels folgender Schleifeninvarianten, die sich sehr leicht verifizieren lassen.

Invariante für die erste for-Schleife (Zeilen 1-2):

Für j = i, ..., n ist der Teilbaum $H_{j,n}$ ein Heap.

Nach Beendigung dieser Schleife (d.h. i=1) ist demnach $H_{1,n}$ ein Heap.

Invariante für die zweite for-Schleife (Zeilen 3-5):

 $H[r], \ldots, H[n]$ enthalten die n-r+1 größten Feldelemente in sortierter Reihenfolge und der Teilbaum $H_{1,r-1}$ ist ein Heap.

Am Ende der zweiten for-Schleife (d.h. r=2) enthält also $H[2, \ldots, n]$ die n-1 größten Elemente in sortierter Reihenfolge, d.h. $H[1, \ldots, n]$ ist sortiert.

Als nächstes zeigen wir die Korrektheit von Heapify. Sei also $H[1,\ldots,n]$ ein Feld, so dass der Teilbaum $H_{i,r}$ die Heap-Eigenschaft in allen Knoten bis auf seine Wurzel i erfüllt. Dann müssen wir zeigen, dass Heapify(H,i,r) die Heap-Eigenschaft im gesamten Teilbaum $H_{i,r}$ herstellt.

Heapify(H, i, r) bestimmt den Knoten $x \in \{i, 2i, 2i + 1\}$ mit maximalem Wert H(x). Im Fall x = i erfüllt der Knoten i bereits die Heap-Eigenschaft. Ist x dagegen eines der Kinder von i, so vertauscht Heapify die Werte von i und x. Danach ist die Heap-Eigenschaft höchstens noch im Knoten x verletzt. Daher folgt die Korrektheit von Heapify durch einen einfachen Induktionsbeweis über die Rekursionstiefe.

Es ist leicht zu sehen, dass $\mathsf{Heapify}(H,i,r)$ maximal 2h(i) Vergleiche benötigt, wobei h(i) die Höhe des Knotens i in $H_{1,r}$ ist. Daher ist die

Laufzeit von $\mathsf{Heapify}(H,i,r)$ durch $\mathcal{O}(h(i)) = \mathcal{O}(\log r)$ beschränkt. Für den Aufbau eines Heaps H der Tiefe $t = \lfloor \log_2 n \rfloor$ wird $\mathsf{Heapify}$ in der ersten for-Schleife für höchstens

- $2^0 = 1$ Knoten der Höhe h = t,
- $2^1 = 2$ Knoten der Höhe h = t 1,
- 2^{t-1} Knoten der Höhe h = t (t-1) = 1

aufgerufen. Für $h=1,\ldots,t$ sind das also höchstens 2^{t-h} Knoten der Höhe h. Da **Heapify** für einen Knoten der Höhe h höchstens 2h Vergleichsfragen stellt, benötigt der Aufbau des Heaps maximal

$$V_1(n) \le 2\sum_{h=1}^t h 2^{t-h} \le 2\sum_{h=1}^t h \frac{n}{2^h} < 2n\sum_{h=1}^\infty \frac{h}{2^h} = 4n$$

Vergleiche. Für den Abbau des Heaps in der zweiten for-Schleife wird Heapify genau (n-1)-mal aufgerufen. Daher benötigt der Abbau des Heaps maximal

$$V_2(n) \le 2(n-1)|\log_2 n| \le 2n\log_2 n$$

Vergleiche.

Satz 17. HeapSort ist ein vergleichendes Sortierverfahren mit einer im schlechtesten Fall asymptotisch optimalen Laufzeit von $\mathcal{O}(n \log n)$.

Die Floyd-Strategie

Die Floyd-Strategie benötigt beim Abbau des Heaps im Durchschnitt nur halb so viele Vergleiche wie die bisher betrachtete Williams-Strategie. Die Idee besteht darin, dass $\mathsf{Heapify}(H,1,r)$ beginnend mit der Wurzel $i_0 = 1$ sukzessive die Werte der beiden Kinder des aktuellen Knotens i_i vergleicht und jeweils zu dem Kind i_{i+1} mit dem

größeren Wert absteigt, bis nach $t \leq \lfloor \log_2 r \rfloor$ Schritten ein Blatt i_t erreicht wird.

Nun geht **Heapify** auf diesem Pfad bis zum ersten Knoten i_j mit $H[i_j] \geq H[1]$ zurück und führt auf den Werten der Knoten $i_j, i_{j-1}, \ldots, i_0$ einen Ringtausch aus, um die Heap-Eigenschaft herzustellen. Dies erfordert

$$t + (t - j + 1) = 2t - j + 1$$

Vergleiche (im Unterschied zu 2j Vergleichen bei der Williams-Strategie). Da sich der Knoten i_j , an dessen Stelle der Wurzelknoten eingefügt wird, im Mittel sehr weit unten im Baum befindet (d.h. $t-j=\mathcal{O}(1)$), spart man auf diese Art asymptotisch die Hälfte der Vergleiche.

2.3.7 BucketSort

Die Prozedur BucketSort sortiert n Zahlen a_1, \ldots, a_n aus einem Intervall [a, b) wie folgt (z.B. für n = 10, a = 0 und b = 100):

- 1. Erstelle für j = 1, ..., n eine Liste L_j für das halb offene Intervall $I_j = \left[a + (j-1)\frac{b-a}{n}, a+j\frac{b-a}{n}\right] = [10(j-1), 10j).$
- 2. Bestimme zu jedem Element a_i das Intervall I_j , zu dem es gehört, und füge es in die entsprechende Liste L_i ein.
- 3. Sortiere jede Liste L_i .
- 4. Füge die sortierten Listen L_i wieder zu einer Liste zusammen.

Im schlechtesten Fall kommen alle Schlüssel in die gleiche Liste. Dann hat BucketSort dieselbe asymptotische Laufzeit wie das als Unterroutine verwendete Sortierverfahren. Sind dagegen die zu sortierenden Zahlenwerte im Intervall [a,b) (annähernd) gleichverteilt, so ist die durchschnittliche Laufzeit von BucketSort $\Theta(n)$. Dies gilt sogar, wenn als Unterroutine ein Sortierverfahren der Komplexität $\mathcal{O}(n^2)$ verwendet wird.

Wir schätzen nun die erwartete Laufzeit von **BucketSort** ab, wobei wir annehmen, dass die Folgenglieder a_i im Intervall [a,b) unabhängig gleichverteilt sind. Sei X_i die Zufallsvariable, die die Länge der Liste L_i beschreibt. Dann ist X_i binomialverteilt mit Parametern n und p = 1/n. Also hat X_i den Erwartungswert

$$E[X_i] = np = 1$$

und die Varianz

$$V[X_i] = np(1-p) = 1 - 1/n < 1.$$

Wegen $V[X_i] = E[X_i^2] - E[X_i]^2$ ist $E[X_i^2] = V[X_i] + E[X_i]^2 < 2$. Daher folgt für die erwartete Laufzeit T(n) von BucketSort:

$$T(n) = \mathcal{O}(n) + E\left[\sum_{i=0}^{n-1} \mathcal{O}(X_i^2)\right] = \mathcal{O}\left(n + \sum_{i=0}^{n-1} E[X_i^2]\right) = \mathcal{O}(n).$$

2.3.8 CountingSort

Die Prozedur CountingSort sortiert eine Zahlenfolge, indem sie zunächst die Anzahl der Vorkommen jedes Wertes in der Folge und daraus die Rangzahlen $C[i] = \|\{j \mid A[j] \leq i\}\|$ der Zahlenwerte $i = 0, \ldots, k$ bestimmt. Dies funktioniert nur unter der Einschränkung, dass die Zahlenwerte natürliche Zahlen sind und eine Obergrenze k für ihre Größe bekannt ist.

Algorithmus CountingSort(A, 1, n, k)

```
for i := 0 to k do C[i] := 0
for j := 1 to n do C[A[j]] := C[A[j]] + 1
for i := 1 to k do C[i] := C[i] + C[i - 1]
for j := 1 to n do
B[C[A[j]]] := A[j]
C[A[j]] := C[A[j]] - 1
for j := 1 to n do A[j] := B[j]
```

Satz 18. CountingSort sortiert n natürliche Zahlen der Größe höchstens k in Zeit $\Theta(n+k)$ und Platz $\Theta(n+k)$.

Korollar 19. CountingSort sortiert n natürliche Zahlen der Größe $\mathcal{O}(n)$ in linearer Zeit und linearem Platz.

2.3.9 RadixSort

RadixSort sortiert d-stellige Zahlen $a = a_d \cdots a_1$ eine Stelle nach der anderen, wobei mit der niederwertigsten Stelle begonnen wird.

Algorithmus RadixSort(A, 1, n)

Hierzu sollten die Folgenglieder möglichst als Festkomma-Zahlen vorliegen. Zudem muss in Zeile 2 "stabil" sortiert werden.

Definition 20. Ein Sortierverfahren heißt stabil, wenn es die relative Reihenfolge von Elementen mit demselben Wert nicht verändert.

Es empfiehlt sich, eine stabile Variante von CountingSort als Unterroutine zu verwenden. Damit CountingSort stabil sortiert, brauchen wir lediglich die for-Schleife in Zeile 4 in der umgekehrten Reihenfolge zu durchlaufen:

```
for j := 1 to n do C[A[j]] := C[A[j]] + 1

for i := 1 to k do C[i] := C[i] + C[i - 1]

3 for j := n downto 1 do

4 B[C[A[j]]] := A[j]

5 C[A[j]] := C[A[j]] - 1

6 for j := 1 to n do A[j] := B[j]
```

Satz 21. RadixSort sortiert n d-stellige Festkomma-Zahlen zur Basis b in Zeit $\Theta(d(n+b))$.

RadixSort sortiert beispielsweise n $\mathcal{O}(\log n)$ -stellige Binärzahlen in Zeit $\Theta(n \log n)$. Wenn wir r benachbarte Ziffern zu einer "Ziffer" $z \in \{0, \ldots, b^r - 1\}$ zusammenfassen, erhalten wir folgende Variante von RadixSort.

Korollar 22. Für jede Zahl $1 \le r \le d$ sortiert RadixSort n d-stellige Festkomma- Zahlen zur Basis b in Zeit $\Theta(d/r(n+b^r))$.

Wählen wir beispielsweise $r = \lceil \log_2 n \rceil$, so erhalten wir für $d = \mathcal{O}(\log n)$ -stellige Binärzahlen eine Komplexität von

$$\Theta\left(\frac{d}{r}(n+2^r)\right) = \Theta(n+2^r) = \Theta(n).$$

2.3.10 Vergleich der Sortierverfahren

Folgende Tabelle zeigt die Komplexitäten der betrachteten vergleichsbasierten Sortierverfahren.

	Insertion- Sort	MergeSort	Quick- Sort	Heap- Sort
worst-case	$\Theta(n^2)$	$\Theta(n \log n)$	$\Theta(n^2)$	$\Theta(n \log n)$
average-case	$\Theta(n^2)$	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$
Speicherplatz	$\Theta(1)$	$\Theta(n)$ bzw. $\Theta(1)$	$\Theta(\log n)$	$\Theta(1)$
stabil	ja	ja	nein	nein

Wir fassen auch die wichtigsten Eigenschaften der betrachteten Linearzeit-Sortierverfahren zusammen.

- BucketSort: Im Durchschnitt linearer Zeitverbrauch, falls die n Zahlen in einem Intervall [a,b) gleichverteilt sind.
- CountingSort: Sogar im schlechtesten Fall lineare Zeit, falls die Werte natürliche Zahlen sind und $\mathcal{O}(n)$ nicht übersteigen.

• RadixSort: Bitweises Sortieren in linearer Zeit, falls die zu sortierenden Zahlen in Festkomma-Darstellung nicht mehr als $\mathcal{O}(\log n)$ Bit haben.

2.4 Datenstrukturen für dynamische Mengen

Viele Algorithmen benötigen eine Datenstruktur für dynamische Mengen. Eine solche Datenstruktur S sollte im Prinzip beliebig viele Elemente aufnehmen können. Die Elemente $x \in S$ werden dabei anhand eines $Schl{\ddot{u}}ssels\ k = \text{key}(x)$ identifiziert. Auf die Elemente $x \in S$ wird meist nicht direkt, sondern mittels Zeiger (engl. pointer) zugegriffen.

Typische Operationen, die auf einer dynamische Mengen S auszuführen sind:

Insert(S, x): Fügt x in S ein.

Remove(S, x): Entfernt x and S.

Search(S, k): Gibt für einen Schlüssel k (einen Zeiger auf) das Element $x \in S$ mit key(x) = k zurück, falls ein solches Element existiert, und nil sonst.

Min(S): Gibt das Element in S mit dem kleinsten Schlüssel zurück.

Max(S): Gibt das Element in S mit dem größten Schlüssel zurück.

 $\mathsf{Prec}(S,x)$: Gibt das Element in S mit dem nach x nächstkleineren Schlüssel zurück (bzw. nil , falls x das Minimum ist).

Succ(S, x): Gibt das Element in S mit dem nach x nächstgrößeren Schlüssel zurück (bzw. nil, falls x das Maximum ist).

2.4.1 Verkettete Listen

Die Elemente einer verketteten Liste sind in linearer Reihenfolge angeordnet. Das erste Element der Liste L ist head(L). Jedes Element x "kennt" seinen Nachfolger next(x). Wenn jedes Element x auch

seinen Vorgänger prev(x) kennt, dann spricht man von einer doppelt verketteten Liste.

Die Prozedur L-Insert(L, x) fügt ein Element x in eine verkettete Liste L ein.

Prozedur L-Insert(L, x)

```
\begin{array}{ll} \operatorname{next}(x) := \operatorname{head}(L) \\ \operatorname{head}(L) := x \end{array}
```

Die Prozedur $\mathsf{DL} ext{-}\mathsf{Insert}(L,x)$ fügt ein Element x in eine doppelt verkettete Liste L ein.

Prozedur DL-Insert(L, x)

```
\begin{array}{ll} \operatorname{next}(x) := \operatorname{head}(L) \\ \operatorname{2} & \text{if } \operatorname{head}(L) \neq \operatorname{nil} \text{ } \operatorname{then} \\ \operatorname{3} & \operatorname{prev}(\operatorname{head}(L)) := x \\ \operatorname{4} & \operatorname{head}(L) := x \\ \operatorname{5} & \operatorname{prev}(x) := \operatorname{nil} \end{array}
```

Die Prozedur $\mathsf{DL} ext{-}\mathsf{Remove}(L,x)$ entfernt wieder ein Element x aus einer doppelt verketteten Liste L.

Prozedur DL-Remove(L, x)

```
\begin{array}{ll} & \text{if} & x \neq \mathsf{head}(L) & \mathbf{then} \\ & & \mathsf{next}(\mathsf{prev}(x)) := \mathsf{next}(x) \\ & & \mathsf{else} \\ & & & \mathsf{head}(L) := \mathsf{next}(x) \\ & & & \mathsf{if} & \mathsf{next}(x) \neq \mathsf{nil} & \mathbf{then} \\ & & & & \mathsf{prev}(\mathsf{next}(x)) := \mathsf{prev}(x) \end{array}
```

Die Prozedur $\mathsf{DL}\text{-}\mathsf{Search}(L,k)$ sucht ein Element x mit dem Schlüssel k in der Liste L.

Prozedur DL-Search(L, k)

```
\begin{array}{ll} & x := \mathsf{head}(L) \\ & \text{while } x \neq \mathsf{nil} \  \, \mathsf{and} \  \, \mathsf{key}(x) \neq k \  \, \mathsf{do} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &
```

Es ist leicht zu sehen, dass DL-Insert und DL-Remove konstante Zeit $\Theta(1)$ benötigen, während DL-Search eine lineare (in der Länge der Liste) Laufzeit hat.

Bemerkung 23.

- Wird DL-Remove nur der Schlüssel übergeben, dann wäre die Laufzeit linear, da wir erst mit DL-Search das entsprechende Element suchen müssen.
- Für einfach verkettete Listen ist der Aufwand von Remove ebenfalls linear, da wir keinen direkten Zugriff auf den Vorgänger haben.
- Die Operationen Max, Min, Prec und Succ lassen sich ebenfalls mit linearer Laufzeit berechnen (siehe Übungen).
- Da sich MergeSort für Listen als "in place"-Verfahren implementieren lässt (siehe Übungen), können Listen in konstantem Platz und Zeit $\mathcal{O}(n \log n)$ sortiert werden.

2.4.2 Binäre Suchbäume

Ein Binärbaum B kann wie folgt durch eine Zeigerstruktur repräsentiert werden. Jeder Knoten x in B hat folgende drei Zeiger:

- left(x) zeigt auf das linke Kind,
- right(x) zeigt auf das rechte Kind und
- parent(x) zeigt auf den Elternknoten.

Für die Wurzel $w = \mathsf{root}(B)$ ist $\mathsf{parent}(w) = \mathsf{nil}$ und falls einem Knoten x eines seiner Kinder fehlt, so ist der entsprechende

Zeiger ebenfalls nil. Auf diese Art lassen sich beispielsweise Heaps für unbeschränkt viele Datensätze implementieren.

Definition 24. Ein binärer Baum B ist ein binärer Suchbaum, falls für jeden Knoten x in B folgende Eigenschaften erfüllt sind:

- Für jeden Knoten y im linken Teilbaum von x gilt $key(y) \le key(x)$ und
- für jeden Knoten y im rechten Teilbaum von x gilt $key(y) \ge key(x)$.

Folgende Prozedur ST-Search(B, k) sucht ein Element x mit dem Schlüssel k im binären Suchbaum (engl. search tree) B.

Prozedur ST-Search(B, k)

Die Prozedur $\mathsf{ST\text{-}Insert}(B,z)$ fügt ein neues Element z in B ein, indem sie den $\mathsf{nil\text{-}Zeiger}$ "sucht", der eigentlich auf den Knoten z zeigen müsste.

Prozedur ST-Insert(B, z)

```
if root(B) = nil then

root(B) := z

parent(z) := nil

else

x := root(B)

repeat

y := x
```

```
if key(z) \le key(x) then
8
           x := left(x)
9
         else
10
           x := \mathsf{right}(x)
11
      until x = nil
12
      if key(z) \le key(y) then
13
         left(y) := z
14
      else
15
         right(y) := z
16
      parent(z) := y
17
```

Satz 25. Die Prozeduren ST-Search und ST-Insert laufen auf einem binären Suchbaum der Höhe h in Zeit $\mathcal{O}(h)$.

Bemerkung 26. Auch die Operationen Min, Max, Succ, Prec und Remove lassen sich auf einem binären Suchbaum der Höhe h in Zeit $\mathcal{O}(h)$ implementieren (siehe Übungen).

Die Laufzeiten der Operationen für binäre Suchbäume hängen von der Tiefe der Knoten im Suchbaum ab. Suchbäume können zu Listen entarten. Dieser Fall tritt z.B. ein, falls die Datensätze in sortierter Reihenfolge eingefügt werden. Daher haben die Operationen im schlechtesten Fall eine lineare Laufzeit.

Für die Analyse des Durchschnittsfalls gehen wir davon aus, dass die Einfügesequenz eine zufällige Permutation von n verschiedenen Zahlen ist. Dann lässt sich zeigen, dass der resultierende Suchbaum eine erwartete Tiefe von $\mathcal{O}(\log n)$ hat (siehe Übungen). Somit ist die erwartete Laufzeit der Operationen nur $\mathcal{O}(\log n)$.

2.4.3 Balancierte Suchbäume

Um die Tiefe des Suchbaums klein zu halten, kann er während der Einfüge- und Löschoperationen auch aktiv ausbalanciert werden. Hierfür gibt es eine ganze Reihe von Techniken. Die drei bekanntesten sind Rot-Schwarz-Bäume, Splay-Bäume und die AVL-Bäume, mit denen wir uns im Folgenden etwas näher befassen möchten.

Definition 27. Ein AVL-Baum T ist ein binärer Suchbaum, der höhenbalanciert ist, d.h. für jeden Knoten x von T unterscheiden sich die Höhen des linken und rechten Teilbaumes von x höchstens um eins (die Höhe eines nicht existierenden Teilbaumes setzen wir mit -1 an).

Lemma 28. Die Höhe eines AVL-Baumes mit n Knoten ist $\mathcal{O}(\log n)$.

Beweis. Sei ${\cal M}(h)$ die minimale Blattzahl eines AVL-Baumes der Höhe h. Dann gilt

$$M(h) = \begin{cases} 1, & h = 0 \text{ oder } 1, \\ M(h-1) + M(h-2), & h \ge 2. \end{cases}$$

M(h) ist also die (h+1)-te Fibonacci-Zahl F_{h+1} . Wir zeigen durch Induktion über h, dass $F_{h+1} \geq \phi^{h-1}$ für $h \geq 0$ ist, wobei $\phi = (1+\sqrt{5})/2$ der goldene Schnitt ist. Der Induktionsanfang (h=0 oder 1) ist klar, da $F_2 = F_1 = 1 = \phi^0 \geq \phi^{-1}$ ist. Unter der Induktionsannahme $F_{h'+1} \geq \phi^{h'-1}$ für $h' \leq h-1$ folgt wegen $\phi^2 = \phi+1$

$$F_{h+1} = F_h + F_{h-1} \ge \phi^{h-2} + \phi^{h-3} = \phi^{h-3}(\phi + 1) = \phi^{h-1}.$$

Daher hat ein AVL-Baum der Höhe h mindestens

$$b \ge M(h) = F_{h+1} \ge \phi^{h-1}$$

Blätter. Da ein Binärbaum mit n Knoten höchstens $b \leq (n+1)/2$ Blätter hat, folgt

$$h \le 1 + \log_{\phi}(b) < \log_{\phi}(n+1) = \mathcal{O}(\log_2 n).$$

Der konstante Faktor in $\mathcal{O}(\log_2 n)$ ist hierbei $\frac{1}{\log_2(\phi)} \approx 1{,}44.$

Für die Aufrechterhaltung der AVL-Eigenschaft eines AVL-Baums T benötigen wir folgende Information über jeden Knoten x. Seien h_l und h_r die Höhen des linken und des rechten Teilbaums von x. Dann heißt die Höhendifferenz

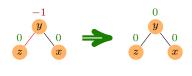
$$\mathsf{bal}(x) = h_l - h_r$$

die Balance von x in T. T ist also genau dann ein AVL-Baum, wenn jeder Knoten x in T die Höhendifferenz 0, 1 oder -1 hat. Im Folgenden bezeichne T(x) den Teilbaum von T mit der Wurzel x.

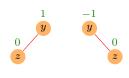
Wir fügen einen neuen Knoten z in einen AVL-Baum T ähnlich wie die Prozedur ST-Insert für binäre Suchbäume ein. D.h. wir "suchen" den Schlüssel $k = \ker(z)$ in T bis wir einen Knoten y mit $k \leq \ker(y)$ und $\operatorname{left}(y) = \operatorname{nil}$ bzw. $k > \ker(y)$ und $\operatorname{right}(y) = \operatorname{nil}$ erreichen und fügen z an dieser Stelle als Kind von y ein. Da z ein Blatt ist, erhält z den Wert $\operatorname{bal}(z) = 0$. Das Einfügen von z kann nur für Knoten auf dem Pfad von z zur Wurzel von T eine Änderung der Höhendifferenz bewirken. Daher genügt es, diesen Suchpfad zurückzugehen und dabei für jeden besuchten Knoten die AVL-Eigenschaft zu testen und nötigenfalls wiederherzustellen.

Wir untersuchen zuerst, ob \boldsymbol{y} die AVL-Eigenschaft verletzt.

1. Falls der Wert von $\mathsf{bal}(y)$ gleich -1 oder 1 ist, hatte T(y) schon vor dem Einfügen von z die Höhe 1. Daher genügt es, $\mathsf{bal}(y) = 0$ zu setzen.



2. Falls $\mathsf{bal}(y) = 0$ ist, wurde z an ein Blatt gehängt, d.h. die Höhe von T(y) ist um 1 gewachsen. Zunächst setzen wir $\mathsf{bal}(y)$ auf den Wert 1 oder -1,



je nachdem ob z linkes oder rechtes Kind von y ist. Dann wird die rekursive Prozedur AVL-Check-Insertion(y) aufgerufen, die überprüft, ob weitere Korrekturen nötig sind.

Prozedur AVL-Insert(B, z)

```
if root(B) = nil then
      root(B) := z
2
      parent(z) := nil
      bal(z) := 0
   else
5
      x := \mathsf{root}(B)
6
      repeat
7
        y := x
8
        if key(z) \le key(x) then
9
           x := \mathsf{left}(x)
10
        else
11
           x := right(x)
12
      until (x = nil)
13
      if key(z) \le key(y) then
14
        left(y) := z
15
16
      else
         right(y) := z
17
      parent(z) := y
18
      bal(z) := 0
19
      if bal(y) \in \{-1, 1\} then
20
        bal(y) := 0
21
22
      else
        if z = left(y) then
23
           bal(y) := 1
24
         else
25
           bal(y) := -1
26
        AVL-Check-Insertion(y)
27
```

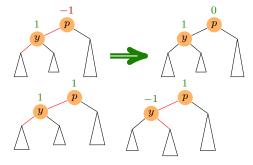
Als nächstes beschreiben wir die Prozedur $\mathsf{AVL}\text{-}\mathsf{Check-Insertion}(y)$. Dabei setzen wir voraus, dass bei jedem Aufruf folgende Bedingung erfüllt ist:

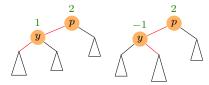
Der Wert von bal(y) wurde von 0 auf ± 1 aktualisiert, d.h.

die Höhe von T(y) ist um 1 gewachsen.

Falls y die Wurzel von T ist, ist nichts weiter zu tun. Andernfalls nehmen wir an, dass y linkes Kind von $p = \mathsf{parent}(y)$ ist (der Fall $y = \mathsf{right}(p)$ ist analog).

- 1. Im Fall bal(p) = -1 genügt es, bal(p) = 0 zu setzen.
- 2. Im Fall bal(p) = 0 setzen wir bal(p) = 1 und rufen AVL-Check-Insertion(p) auf.
- 3. Im Fall bal(p) = 1 müssen wir T umstrukturieren, da die aktuelle Höhendifferenz von p gleich 2 ist.

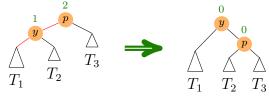




3a. Im Fall bal(y) = 1 sei T_1 der linke und T_2 der rechte Teilbaum von y. Weiter sei T_3 der rechte Teilbaum von p und h sei die Höhe von T(y). Dann gilt für die Höhen h_i der Teilbäume T_i :

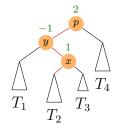
$$h_1 = h - 1$$
 und $h_2 = h_3 = h - 2$.

Wir führen nun eine so genannte Rechts-Rotation aus,



d.h. p wird rechtes Kind von y und erhält T_2 als linken und T_3 als rechten Teilbaum (d.h. bal(p) erhält den Wert 0) und T_1 bleibt linker Teilbaum von y (d.h. bal(y) erhält

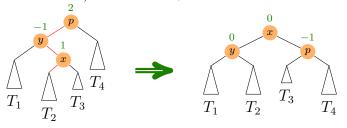
- ebenfalls den Wert 0). Dann hat der rotierte Teilbaum wieder die gleiche Höhe wie vor dem Einfügen von z. Daher ist nichts weiter zu tun.
- 3b. Im Fall $\operatorname{bal}(y) = -1$ sei T_1 der linke Teilbaum von y und T_4 der rechte Teilbaum von p. Weiter seien T_2 und T_3 der linke und rechte Teilbaum von $x = \operatorname{right}(y)$. Die Höhe von T(y) bezeichnen wir wieder mit h. Dann ist $h_3 = h_2 \operatorname{bal}(x)$, wobei $\operatorname{bal}(x) = 0$



nur im Fall h=1 möglich ist (d.h. x=z und alle Teilbäume $T_1,\,T_2,\,T_3$ und T_4 sind leer). Weiter gilt

$$h_1 = h_4 = h - 2$$
 und $h - 3 \le h_2, h_3 \le h - 2$.

Daher genügt es, eine *Doppel-Rotation* (genauer: eine *Links-Rechts-Rotation*) auszuführen,



d.h. y wird linkes und p wird rechtes Kind von x, y erhält T_1 als linken und T_2 als rechten Teilbaum und p erhält T_3 als linken und T_4 als rechten Teilbaum. Die neuen Balance-Werte von p, y und x sind

$$\mathsf{bal}(p) = \begin{cases} -1, \, \mathsf{bal}(x) = 1, \\ 0, \, \mathrm{sonst}, \end{cases} \quad \mathsf{bal}(y) = \begin{cases} 1, \, \mathsf{bal}(x) = -1, \\ 0, \, \mathrm{sonst} \end{cases}$$

und bal(x) = 0. Der rotierte Teilbaum hat die gleiche Höhe wie der ursprüngliche Teilbaum an dieser Stelle und daher ist nichts weiter zu tun.

In Pseudocode lässt sich die Prozedur AVL-Check-Insertion demnach wie folgt implementieren.

Prozedur AVL-Check-Insertion(B, y)

```
p := \mathsf{parent}(y)
_2 if p = nil then return
y = left(p) then
    if bal(p) = -1 then
       bal(p) := 0
5
    else if bal(p) = 0 then
6
       bal(p) := 1
       AVL-Check-Insertion(B, p)
    else // bal(p) = 1
9
       if bal(y) = 1 then
10
         RightRotate(B, y)
11
       else // bal(y) = -1
12
         LeftRightRotate(B, y)
13
14 else // y = right(p)
    if bal(p) = 1 then
15
       bal(p) := 0
16
    else if bal(p) = 0 then
17
       bal(p) := -1
18
       AVL-Check-Insertion(B, p)
19
    else // bal(p) = -1
20
       if bal(y) = -1 then
21
         LeftRotate(B, y)
22
       else // bal(y) = 1
23
         RightLeftRotate(B, y)
24
```

Wir geben exemplarisch auch noch die Prozedur **RightRotate** in Pseudocode an. Die übrigen Rotationsprozeduren lassen sich ganz ähnlich implementieren (siehe Übungen).

Prozedur RightRotate(B, y)

```
p := \mathsf{parent}(y)
T_1 := \mathsf{left}(y); \ T_2 := \mathsf{right}(y); \ T_3 := \mathsf{right}(p)
3 // setze y an die Wurzel des Teilbaums
   T(p) p' := parent(p)
   if p' = \text{nil then}
      root(B) := y
   else if left(p') = p then
      left(p') := y
9 else // right(p') = p
      right(p') := y
parent(y) := p'
12 // setze p als rechtes Kind von y
right(y) := p
parent(p) := y
15 // setze T_2 als linken Teilbaum von p
16 left(p) := T_2
if T_2 \neq \text{nil then parent}(T_2) := p
bal(y) := 0; bal(p) := 0 // aktualisiere die Balancen
```

Folgende Tabelle fasst die worst-case Komplexitäten der betrachteten Datenstrukturen für dynamische Mengen zusammen.

	Search	Min/Max	Prec/Succ	Insert	Remove
Heap	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Liste (einfach)	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$
Liste (doppelt)	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
Suchbaum	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$
AVL-Baum	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$O(\log n)$

3 Graphalgorithmen

3.1 Grundlegende Begriffe

Definition 29. Ein (ungerichteter) Graph ist ein Paar G = (V, E), wobei

V - eine endliche Menge von Knoten/Ecken und

E - die Menge der Kanten ist.

Hierbei gilt

$$E \subseteq \binom{V}{2} = \left\{ \{u, v\} \subseteq V \mid u \neq v \right\}.$$

 $Sei \ v \in V \ ein \ Knoten.$

- a) Die Nachbarschaft von v ist $N_G(v) = \{u \in V \mid \{u, v\} \in E\}.$
- b) Der Grad von v ist $\deg_G(v) = ||N_G(v)||$.
- c) Der Minimalgrad von G ist $\delta(G) = \min_{v \in V} \deg_G(v)$ und der Maximalgrad von G ist $\Delta(G) = \max_{v \in V} \deg_G(v)$.

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach N(v), deg(v), δ usw.

Beispiel 30.

• Der vollständige Graph (V, E) auf n Knoten, d.h. ||V|| = n und $E = {V \choose 2}$, wird mit K_n und der leere Graph (V, \emptyset) auf n Knoten wird mit E_n bezeichnet.

$$K_1$$
: K_2 : K_3 : K_4 : K_5 :

• Der vollständige bipartite Graph (A, B, E) auf a+b Knoten, d.h. $A \cap B = \emptyset$, ||A|| = a, ||B|| = b und $E = \{\{u, v\} \mid u \in A, v \in B\}$ wird mit $K_{a,b}$ bezeichnet.

$$K_{1,1}$$
: $K_{1,2}$: $K_{2,2}$: $K_{2,3}$: $K_{3,3}$:

• Der Pfad der Länge n-1 wird mit P_n bezeichnet.

• Der Kreis der Länge n wird mit C_n bezeichnet.

$$C_3$$
: C_4 : C_5 : C_6 :

Definition 31. Sei G = (V, E) ein Graph.

a) Eine Knotenmenge $U \subseteq V$ heißt stabil, wenn es keine Kante von G mit beiden Endpunkten in U gibt, d.h. es gilt $E \cap \binom{U}{2} = \emptyset$. Die Stabilitätszahl ist

$$\alpha(G) = \max\{||U|| \mid U \text{ ist stabile Menge in } G\}.$$

b) Eine Knotenmenge $U \subseteq V$ heißt Clique, wenn jede Kante mit beiden Endpunkten in U in E ist, d.h. es gilt $\binom{U}{2} \subseteq E$. Die Cliquenzahl ist

$$\omega(G) = \max\{\|U\| \mid U \text{ ist Clique in } G\}.$$

c) Eine Abbildung $f \colon V \to \mathbb{N}$ heißt Färbung von G, wenn $f(u) \neq f(v)$ für alle $\{u,v\} \in E$ gilt. G heißt k-färbbar, falls eine Färbung $f \colon V \to \{1,\ldots,k\}$ existiert. Die chromatische Zahl ist

$$\chi(G) = \min\{k \in \mathbb{N} \mid G \text{ ist } k\text{-}f\ddot{a}rbbar\}.$$

d) Ein Graph heißt bipartit, wenn $\chi(G) \leq 2$ ist.

- e) Ein Graph G' = (V', E') heißt Sub-/Teil-/Untergraph von G, falls $V' \subseteq V$ und $E' \subseteq E$ ist. Ein Subgraph G' = (V', E') heißt (durch V') induziert, falls $E' = E \cap \binom{V'}{2}$ ist. Hierfür schreiben wir auch H = G[V'].
- f) Ein Weg ist eine Folge von (nicht notwendig verschiedenen) Knoten v_0, \ldots, v_ℓ mit $\{v_i, v_{i+1}\} \in E$ für $i = 0, \ldots, \ell - 1$. Die Länge des Weges ist die Anzahl der Kanten, also ℓ . Im Fall $\ell = 0$ heißt der Weg trivial. Ein Weg v_0, \ldots, v_ℓ heißt auch v_0 - v_ℓ -Weg.
- g) Ein Graph G = (V, E) heißt zusammenhängend, falls es für alle Paare $\{u, v\} \in \binom{V}{2}$ einen u-v-Weg gibt.
- h) Ein Zyklus ist ein u-v-Weg der Länge $\ell \geq 2$ mit u = v.
- i) Ein Weg heißt einfach oder Pfad, falls alle durchlaufenen Knoten verschieden sind.
- j) Ein Kreis ist ein Zyklus $v_0, v_1, \dots, v_{\ell-1}, v_0$ der Länge $\ell \geq 3$, für den $v_0, v_1, \dots, v_{\ell-1}$ paarweise verschieden sind.
- k) Ein Graph G = (V, E) heißt kreisfrei, azyklisch oder Wald, falls er keinen Kreis enthält.
- l) Ein Baum ist ein zusammenhängender Wald.
- m) Jeder Knoten $u \in V$ vom Grad $\deg(u) \leq 1$ heißt **Blatt** und die übrigen Knoten (vom Grad ≥ 2) heißen **innere Knoten**.

Es ist leicht zu sehen, dass die Relation

$$Z = \{(u, v) \in V \times V \mid \text{ es gibt in } G \text{ einen } u\text{-}v\text{-Weg}\}$$

eine Äquivalenzrelation ist. Die durch die Äquivalenzklassen von Z induzierten Teilgraphen heißen die Zusammenhangskomponenten (engl. $connected\ components$) von G.

Definition 32. Ein gerichteter Graph oder Digraph ist ein Paar G = (V, E), wobei

V - eine endliche Menge von Knoten/Ecken und

E - die Menge der Kanten ist.

Hierbei gilt

$$E \subseteq V \times V = \{(u, v) \mid u, v \in V\},\$$

wobei E auch Schlingen (u, u) enthalten kann. Sei $v \in V$ ein Knoten.

- a) Die Nachfolgermenge von v ist $N^+(v) = \{u \in V \mid (v, u) \in E\}.$
- b) Die Vorgängermenge von v ist $N^-(v) = \{u \in V \mid (u, v) \in E\}.$
- c) Die Nachbarmenge von v ist $N(v) = N^+(v) \cup N^-(v)$.
- d) Der Ausgangsgrad von v ist $\deg^+(v) = ||N^+(v)||$ und der Eingangsgrad von v ist $\deg^-(v) = ||N^-(v)||$. Der Grad von v ist $\deg(v) = \deg^+(v) + \deg^-(v)$.
- e) Ein gerichteter v_0 - v_ℓ -Weg ist eine Folge von Knoten v_0, \ldots, v_ℓ mit $(v_i, v_{i+1}) \in E$ für $i = 0, \ldots, \ell 1$.
- f) Ein gerichteter Zyklus ist ein gerichteter u-v-Weg der Länge $\ell > 1$ mit u = v.
- g) Ein gerichteter Weg heißt einfach oder gerichteter Pfad, falls alle durchlaufenen Knoten verschieden sind.
- h) Ein gerichteter Kreis ist ein gerichteter Zyklus $v_0, v_1, \ldots, v_{\ell-1}, v_0$ der Länge $\ell \geq 1$, für den $v_0, v_1, \ldots, v_{\ell-1}$ paarweise verschieden sind.
- i) Ein Digraph G = (V, E) heißt kreisfrei oder azyklisch, wenn er keinen gerichteten Kreis hat.
- j) Ein Digraph G = (V, E) heißt schwach zusammenhängend, wenn es für jedes Paar $\{u, v\} \in \binom{V}{2}$ einen gerichteten u-v-Pfad oder einen gerichteten v-u-Pfad gibt.
- k) G = (V, E) heißt stark zusammenhängend, wenn es für jedes $Paar\{u,v\} \in \binom{V}{2}$ sowohl einen gerichteten u-v-Pfad als auch einen gerichteten v-u-Pfad gibt.

3.2 Datenstrukturen für Graphen

Sei G = (V, E) ein Graph bzw. Digraph und sei $V = \{v_1, \ldots, v_n\}$. Dann ist die $(n \times n)$ -Matrix $A = (a_{ij})$ mit den Einträgen

$$a_{ij} = \begin{cases} 1, & \{v_i, v_j\} \in E \\ 0, & \text{sonst} \end{cases}$$
 bzw. $a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E \\ 0, & \text{sonst} \end{cases}$

die Adjazenzmatrix von G. Für ungerichtete Graphen ist die Adjazenzmatrix symmetrisch mit $a_{ii} = 0$ für i = 1, ..., n.

Bei der Adjazenzlisten-Darstellung wird für jeden Knoten v_i eine Liste mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet man entweder nur die Liste der Nachfolger oder zusätzlich eine weitere für die Vorgänger. Falls die Anzahl der Knoten gleichbleibt, organisiert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit Index i verweist auf die Adjazenzliste von Knoten v_i . Falls sich die Anzahl der Knoten dynamisch ändert, so werden die Adjazenzlisten typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 33.

Betrachte den gerichteten Graphen G = (V, E)mit $V = \{1, 2, 3, 4\}$ und $E = \{(2, 3), (2, 4), (3, 1), (3, 4), (4, 4)\}$. Dieser hat folgende Adjazenzmatrix- und Adjazenzlisten-Darstellung:

	1	2	3	4
1	0	0	0	0
2	0	0	1	1
3				
4	0	0	0	1

Folgende Tabelle gibt den Aufwand der wichtigsten elementaren Operationen auf Graphen in Abhängigkeit von der benutzten Datenstruktur

an. Hierbei nehmen wir an, dass sich die Knotenmenge V nicht ändert.

	Adjazen	zmatrix	Adjazenzlisten		
	einfach	clever	einfach	clever	
Speicherbedarf	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n+m)$	$\mathcal{O}(n+m)$	
Initialisieren	$\mathcal{O}(n^2)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(1)$	
Kante einfügen	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	
Kante entfernen	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(1)$	
Test auf Kante	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	

Bemerkung 34.

- Der Aufwand für die Initialisierung des leeren Graphen in der Adjazenzmatrixdarstellung lässt sich auf $\mathcal{O}(1)$ drücken, indem man mithilfe eines zusätzlichen Feldes B die Gültigkeit der Matrixeinträge verwaltet (siehe Übungen).
- Die Verbesserung beim Löschen einer Kante in der Adjazenzlistendarstellung erhält man, indem man die Adjazenzlisten doppelt verkettet und im ungerichteten Fall die beiden Vorkommen jeder Kante in den Adjazenzlisten der beiden Endknoten gegenseitig verlinkt (siehe Übungen).
- Bei der Adjazenzlistendarstellung können die Knoten auch in einer doppelt verketteten Liste organisiert werden. In diesem Fall können dann auch Knoten in konstanter Zeit hinzugefügt und in Zeit $\mathcal{O}(n)$ wieder entfernt werden (unter Beibehaltung der übrigen Speicher- und Laufzeitschranken).

3.3 Keller und Warteschlange

Für das Durchsuchen eines Graphen ist es vorteilhaft, die bereits besuchten (aber noch nicht abgearbeiteten) Knoten in einer Menge B zu speichern. Damit die Suche effizient ist, sollte die Datenstruktur für B folgende Operationen effizient implementieren.

Init(B): Initialisiert B als leere Menge.

Empty(B): Testet B auf Leerheit.

Insert(B, u): Fügt u in B ein.

Element(B): Gibt ein Element aus B zurück.

Remove(B): Gibt ebenfalls Element(B) zurück und

entfernt es aus B.

Andere Operationen wie z.B. Remove(B, u) werden nicht benötigt.

Die gewünschten Operationen lassen sich leicht durch einen Keller (auch Stapel genannt) (engl. stack) oder eine Warteschlange (engl. queue) implementieren. Falls maximal n Datensätze gespeichert werden müssen, kann ein Feld zur Speicherung der Elemente benutzt werden. Andernfalls können sie auch in einer einfach verketteten Liste gespeichert werden.

Stack S – Last-In-First-Out

 $\mathsf{Top}(S)$: Gibt das oberste Element von S zurück.

 $\operatorname{\sf Push}(S,x)$: Fügt x als oberstes Element zum Keller hinzu.

 $\operatorname{\mathsf{Pop}}(S)$: Gibt das oberste Element von S zurück und ent-

fernt es.

Queue Q – Last-In-Last-Out

Enqueue(Q, x): Fügt x am Ende der Schlange hinzu.

 $\mathsf{Head}(Q)$: Gibt das erste Element von Q zurück.

 $\mathsf{Dequeue}(Q) \colon$ Gibt das erste Element von Qzurück und ent-

fernt es.

Die Kelleroperationen lassen sich wie folgt auf einem Feld S[1...n] implementieren. Die Variable $\mathtt{size}(S)$ enthält die Anzahl der im Keller gespeicherten Elemente.

Prozedur StackInit(S)

```
size(S) := 0
```

Prozedur StackEmpty(S)

```
return(size(S) = 0)
```

Prozedur Top(S)

```
\begin{array}{ll} \text{if } \operatorname{size}(S) > 0 \text{ then} \\ 2 & \operatorname{return}(S[\operatorname{size}(S)]) \\ 3 & \operatorname{else} \\ 4 & \operatorname{return}(\operatorname{nil}) \end{array}
```

Prozedur Push(S, x)

```
\begin{array}{ll} \text{if } \operatorname{size}(S) < n \text{ then} \\ \text{2} & \operatorname{size}(S) := \operatorname{size}(S) + 1 \\ \text{3} & S[\operatorname{size}(S)] := x \\ \text{4} & \operatorname{else} \\ \text{5} & \operatorname{return}(\operatorname{nil}) \end{array}
```

Prozedur Pop(S)

```
\begin{array}{ll} & \textbf{if } \mathtt{size}(S) > 0 \ \mathbf{then} \\ & \mathtt{size}(S) := \mathtt{size}(S) - 1 \\ & \mathtt{return}(S[\mathtt{size}(S) + 1]) \\ & \mathtt{else} \\ & \mathtt{return}(\mathtt{nil}) \end{array}
```

Es folgen die Warteschlangenoperationen für die Speicherung in einem Feld $Q[1\dots n]$. Die Elemente werden der Reihe nach am Ende der Schlange Q (zyklisch) eingefügt und am Anfang entnommen. Die Variable $\mathsf{head}(Q)$ enthält den Index des ersten Elements der Schlange und $\mathsf{tail}(Q)$ den Index des hinter dem letzten Element von Q befindlichen Eintrags.

3 Graphalgorithmen

$\mathbf{Prozedur}$ QueueInit(Q)

```
\begin{array}{ll} & \mathsf{head}(Q) := 1 \\ & \mathsf{tail}(Q) := 1 \\ & \mathsf{size}(Q) := 0 \end{array}
```

${\bf Prozedur} \ \ {\tt QueueEmpty}(Q)$

```
1 \mathbf{return}(\mathtt{size}(Q) = 0)
```

$\mathbf{Prozedur}\ \mathsf{Head}(Q)$

```
\begin{array}{ll} \text{if QueueEmpty}(Q) \text{ then} \\ \text{2} & \text{return}(\text{nil}) \\ \text{3} & \text{else} \\ \text{4} & \text{return}Q[\text{head}(Q)] \end{array}
```

Prozedur Enqueue(Q, x)

```
\begin{array}{ll} & \text{if } \operatorname{size}(Q) = n \ \operatorname{then} \\ & \operatorname{return}(\operatorname{nil}) \\ & \operatorname{size}(Q) := \operatorname{size}(Q) + 1 \\ & Q[\operatorname{tail}(Q)] := x \\ & \operatorname{if } \operatorname{tail}(Q) = n \ \operatorname{then} \\ & \operatorname{tail}(Q) := 1 \\ & \operatorname{else} \\ & \operatorname{tail}(Q) := \operatorname{tail}(Q) + 1 \end{array}
```

$\mathbf{Prozedur}$ $\mathsf{Dequeue}(Q)$

```
\begin{array}{ll} \text{if QueueEmpty}(Q) \text{ then} \\ \text{2} & \text{return}(\text{nil}) \\ \text{3} & \text{size}(Q) := \text{size}(Q) - 1 \\ \text{4} & x := Q[\text{head}(Q)] \\ \text{5} & \text{if head}(Q) = n \text{ then} \\ \text{6} & \text{head}(Q) := 1 \end{array}
```

```
7 else

8 head(Q) := head(Q) + 1

9 return(x)
```

Satz 35. Sämtliche Operationen für einen Keller S und eine Warteschlange Q sind in konstanter Zeit $\mathcal{O}(1)$ ausführbar.

Bemerkung 36. Mit Hilfe von einfach verketteten Listen sind Keller und Warteschlangen auch für eine unbeschränkte Anzahl von Datensätzen mit denselben Laufzeitbeschränkungen implementierbar.

Die für das Durchsuchen von Graphen benötigte Datenstruktur B lässt sich nun mittels Keller bzw. Schlange wie folgt realisieren.

Operation	Keller S	Schlange Q
Init(B)	StackInit(S)	${\tt QueueInit}(Q)$
Empty(B)	StackEmpty(S)	${\tt QueueEmpty}(Q)$
Insert (B,u)	Push(S,u)	Enqueue(Q,u)
lacktriangledown	Top(S)	Head(Q)
Remove(B)	Pop(S)	Dequeue(Q)

3.4 Durchsuchen von Graphen

Wir geben nun für die Suche in einem Graphen bzw. Digraphen G=(V,E) einen Algorithmus GraphSearch mit folgenden Eigenschaften an:

GraphSearch benutzt eine Prozedur **Explore**, um alle Knoten und Kanten von G zu besuchen.

 $\mathsf{Explore}(w)$ findet Pfade zu allen von w aus erreichbaren Knoten. Hierzu speichert $\mathsf{Explore}(w)$ für jeden über eine Kante $\{u,v\}$ bzw. (u,v) neu entdeckten Knoten $v \neq w$ den Knoten u in $\mathsf{parent}(v)$. Wir nennen die bei der Entdeckung eines neuen Knotens v durch-laufenen Kanten $(\mathsf{parent}(v),v)$ parent-Kanten.

Algorithmus GraphSearch(V, E)

```
\begin{array}{ll} \text{1} & \text{for all } v \in V, \ e \in E \ \text{do} \\ \text{2} & \text{visited}(v) := \text{false} \\ \text{3} & \text{parent}(v) := \text{nil} \\ \text{4} & \text{visited}(e) := \text{false} \\ \text{5} & \text{for all } w \in V \ \text{do} \\ \text{6} & \text{if visited}(w) = \text{false then Explore}(w) \end{array}
```

Prozedur Explore(w)

```
\mathsf{visited}(w) := \mathsf{true}
   Init(B)
    Insert(B, w)
    while \neg \text{Empty}(B) do
      u := \mathsf{Element}(B)
      if \exists e = \{u, v\} bzw. e = (u, v) \in E : \mathsf{visited}(e) = \mathsf{false}
        then
         visited(e) := true
7
         if visited(v) = false then
            visited(v) := true
9
            parent(v) := u
10
            Insert(B, v)
11
       else
12
         Remove(B)
13
```

3.4.1 Suchwälder

Definition 37. Sei G = (V, E) ein Digraph.

• Ein Knoten $w \in V$ heißt Wurzel von G, falls alle Knoten $v \in V$ von w aus erreichbar sind (d.h. es gibt einen gerichteten w-v-Weg in G).

- G heißt gerichteter Wald, wenn G kreisfrei ist und jeder Knoten $v \in V$ Eingangsgrad $\deg^-(v) \leq 1$ hat.
- Ein Knoten $u \in V$ vom Ausgangsgrad $\deg^+(u) = 0$ heißt Blatt.
- Ein Knoten $u \in V$ heißt Nachfahre von v, falls in G ein gerichteter v-u-Weg existiert. In diesem Fall ist v ein Vorfahre von u. Gilt zudem $u \neq v$, so sprechen wir auch von echten Nach-bzw. Vorfahren.
- Ein gerichteter Wald, der eine Wurzel hat, heißt gerichteter Baum.

In einem gerichteten Baum liegen die Kantenrichtungen durch die Wahl der Wurzel bereits eindeutig fest. Daher kann bei bekannter Wurzel auf die Angabe der Kantenrichtungen auch verzichtet werden. Man spricht dann von einem Wurzelbaum.

Betrachte den durch SearchGraph(V, E) erzeugten Digraphen $W = (V, E_{parent})$ mit

$$E_{\mathsf{parent}} = \left\{ (\mathsf{parent}(v), v) \mid v \in V \text{ und } \mathsf{parent}(v) \neq \mathsf{nil} \right\}.$$

Da parent(v) vor v markiert wird, ist klar, dass W kreisfrei ist. Zudem hat jeder Knoten v höchstens einen Vorgänger parent(v). Dies zeigt, dass W tatsächlich ein gerichteter Wald ist. W heißt Suchwald von G und die Kanten (parent(v), v) von W werden auch als Baumkanten bezeichnet.

W hängt zum einen davon ab, wie die Datenstruktur B implementiert ist (z.B. als Keller oder als Warteschlange). Zum anderen hängt W aber auch von der Reihenfolge der Knoten in den Adjazenzlisten ab.

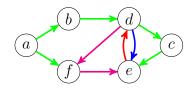
3.4.2 Klassifikation der Kanten eines (Di-)Graphen

Die Kanten eines Graphen G = (V, E) werden durch den Suchwald $W = (V, E_{\mathsf{parent}})$ in vier Klassen eingeteilt. Dabei erhält jede Kante die Richtung, in der sie bei ihrem ersten Besuch durchlaufen wird.

Neben den Baumkanten (parent(v), v) $\in E_{parent}$ gibt es noch $R\ddot{u}ckw\ddot{a}rts$ -, $Vorw\ddot{a}rts$ - und Querkanten. $R\ddot{u}ckw\ddot{a}rtskanten$ (u, v) verbinden einen Knoten u mit einem Knoten v, der auf dem parent-Pfad P(u) von u liegt. Liegt dagegen u auf P(v), so wird (u, v) als $Vorw\ddot{a}rtskante$ bezeichnet. Alle übrigen Kanten heißen Querkanten. Diese verbinden zwei Knoten, von denen keiner auf dem parent-Pfad des anderen liegt.

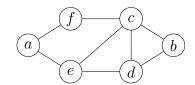
Die Klassifikation der Kanten eines Digraphen G erfolgt analog, wobei die Richtungen jedoch bereits durch G vorgegeben sind (dabei werden Schlingen der Kategorie der Vorwärtskanten zugeordnet).

Beispiel 38. Bei Aufruf mit dem Startknoten a generiert die Prozedur Explore nebenstehenden Suchwald.

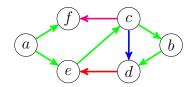


	bes.	bes.			bes.	bes.	
Menge B	Knoten	Kante	Тур	B	Knoten	Kante	Тур
$\{a\}$	a	(a,b)	В	d, e, f	d	(d,e)	V
$\{a,b\}$	a	(a, f)	В	$\{d, e, f\}$	d	(d, f)	Q
$\{a,b,f\}$	a	-	-	$\{d, e, f\}$	d	-	-
$\{b,f\}$	b	(b,d)	В	$\{e,f\}$	e	(e,d)	\mathbf{R}
$\{b,d,f\}$	b	-	-	$\{e,f\}$	e	-	-
$\{d, f\}$	d	(d,c)	В	{ <i>f</i> }	\int	(f,e)	Q
$\{c,d,f\}$	c	(c,e)	В	{ <i>f</i> }	f	_	-
$\{c,d,e,f\}$	c	_	_	Ø			

Bei einem Graphen durchläuft **Explore** die Knoten und Kanten in der gleichen Reihenfolge wie bei dem



Digraphen, der für jede ungerichtete Kante $\{u, v\}$ die beiden gerichteten Kanten (u, v) und (v, u) enthält.



<

Menge B	Knoten	Kante		B	Knoten	Kante	
$\{a\}$	a	$\{a,e\}$	В	$\{c,d,e,f\}$	c	$\{c,f\}$	Q
$\{a,e\}$	a	$\{a, f\}$	В	$\{c,d,e,f\}$	c	-	-
$\{a, e, f\}$	a	-	-	$\{d, e, f\}$	d	$\{d,b\}$	-
$\{e,f\}$	e	$\{e,a\}$	-	$\{d, e, f\}$	d	$\{d,c\}$	-
$\{e,f\}$	e	$\{e,c\}$	В	$\{d, e, f\}$	d	$\{d,e\}$	R
$\{c, e, f\}$	c	$\{c,b\}$	В	$\{d, e, f\}$	d	-	-
$\{b, c, e, f\}$	b	$\{b,c\}$	-	$\{e,f\}$	e	$\{e,d\}$	-
$\{b, c, e, f\}$	b	$\{b,d\}$	В	$\{e,f\}$	e	-	-
$ \{b, c, d, e, f\} $	b	-	-	{ <i>f</i> }	f	$\{f,a\}$	-
$\{c,d,e,f\}$	c	$\{c,d\}$	V	{ <i>f</i> }	f	$\{f,c\}$	-
$\{c,d,e,f\}$	c	$\{c,e\}$	_	{ <i>f</i> }	f	-	-

Satz 39. Falls der (un)gerichtete Graph G in Adjazenzlisten-Darstellung gegeben ist, durchläuft **GraphSearch** alle Knoten und Kanten von G in Zeit $\mathcal{O}(n+m)$.

Beweis. Offensichtlich wird jeder Knoten u genau einmal zu B hinzugefügt. Dies geschieht zu dem Zeitpunkt, wenn u zum ersten Mal "besucht" und das Feld **visited** für u auf **true** gesetzt wird. Außerdem werden in Zeile 6 von **Explore** alle von u ausgehenden Kanten durchlaufen, bevor u wieder aus u entfernt wird. Folglich werden tatsächlich alle Knoten und Kanten von u besucht.

Wir bestimmen nun die Laufzeit des Algorithmus GraphSearch. Innerhalb von Explore wird die while-Schleife für jeden Knoten u genau

 $(\deg(u) + 1)$ -mal bzw. $(\deg^+(u) + 1)$ -mal durchlaufen:

- \bullet einmal für jeden Nachbarn v von u und
- \bullet dann noch einmal, um u aus B zu entfernen.

Insgesamt sind das n+2m im ungerichteten bzw. n+m Durchläufe im gerichteten Fall. Bei Verwendung von Adjazenzlisten kann die nächste von einem Knoten v aus noch nicht besuchte Kante e in konstanter Zeit ermittelt werden, falls man für jeden Knoten v einen Zeiger auf (den Endpunkt von) e in der Adjazenzliste von v vorsieht. Die Gesamtlaufzeit des Algorithmus **GraphSearch** beträgt somit $\mathcal{O}(n+m)$.

Als nächstes zeigen wir, dass $\mathsf{Explore}(w)$ zu allen von w aus erreichbaren Knoten v einen (gerichteten) w-v-Pfad liefert. Dieser lässt sich mittels parent wie folgt zurückverfolgen. Sei

$$u_i = \begin{cases} v, & i = 0, \\ \mathsf{parent}(u_{i-1}), & i > 0 \text{ und } u_{i-1} \neq \mathsf{nil} \end{cases}$$

und sei $\ell = \min\{i \geq 0 \mid u_{i+1} = \mathsf{nil}\}$. Dann ist $u_{\ell} = w$ und $p = (u_{\ell}, \ldots, u_0)$ ein w-v-Pfad. Wir nennen P den parent-pfad von v und bezeichnen ihn mit P(v).

Satz 40. Falls beim Aufruf von Explore alle Knoten und Kanten als unbesucht markiert sind, berechnet Explore(w) zu allen erreichbaren Knoten v einen (gerichteten) w-v-Pfad P(v).

Beweis. Wir zeigen zuerst, dass $\mathsf{Explore}(w)$ alle von w aus erreichbaren Knoten besucht. Hierzu führen wir Induktion über die Länge ℓ eines kürzesten w-v-Weges.

 $\ell = 0$: In diesem Fall ist v = w und w wird in Zeile 1 besucht.

 $\ell \leadsto \ell+1$: Sei v ein Knoten mit Abstand l+1 von w. Dann hat ein Nachbarknoten $u \in N(v)$ den Abstand ℓ von w. Folglich wird u

nach IV besucht. Da u erst dann aus B entfernt wird, wenn alle seine Nachbarn (bzw. Nachfolger) besucht wurden, wird auch v besucht.

Es bleibt zu zeigen, dass parent einen Pfad P(v) von w zu jedem besuchten Knoten v liefert. Hierzu führen wir Induktion über die Anzahl k der vor v besuchten Knoten.

- k = 0: In diesem Fall ist v = w. Da parent(w) = nil ist, liefert parent einen w-v-Pfad (der Länge 0).
- $k-1 \sim k$: Sei $u = \mathsf{parent}(v)$. Da u vor v besucht wird, liefert parent nach IV einen w-u-Pfad P(u). Wegen $u = \mathsf{parent}(v)$ ist u der Entdecker von v und daher mit v durch eine Kante verbunden. Somit liefert parent auch für v einen w-v-Pfad P(v).

3.4.3 Spannbäume und Spannwälder

In diesem Abschnitt zeigen wir, dass der Algorithmus $\mathsf{GraphSearch}$ für jede Zusammenhangskomponente eines (ungerichteten) Graphen G einen Spannbaum berechnet.

Definition 41. Sei G = (V, E) ein Graph und H = (U, F) ein Untergraph.

- H heißt spannend, falls U = V ist.
- H ist ein spannender Baum (oder Spannbaum) von G, falls U = V und H ein Baum ist.
- H ist ein spannender Wald (oder Spannwald) von G, falls U = V und H ein Wald ist.

Es ist leicht zu sehen, dass für G genau dann ein Spannbaum existiert, wenn G zusammenhängend ist. Allgemeiner gilt, dass die Spannbäume für die Zusammenhangskomponenten von G einen Spannwald

bilden. Dieser ist bzgl. der Subgraph-Relation maximal, da er in keinem größeren Spannwald enthalten ist. Ignorieren wir die Richtungen der Kanten im Suchwald W, so ist der resultierende Wald W' ein maximaler Spannwald für G.

Da Explore(w) alle von w aus erreichbaren Knoten findet, spannt jeder Baum des (ungerichteten) Suchwaldes $W' = (V, E'_{parent})$ mit

$$E_{\mathsf{parent}}' = \left\{ \{\mathsf{parent}(v), v\} \mid v \in V \text{ und } \mathsf{parent}(v) \neq \mathsf{nil} \right\}$$

eine Zusammenhangskomponente von G.

Korollar 42. Sei G ein (ungerichteter) Graph.

- Der Algorithmus GraphSearch(V, E) berechnet in Linearzeit einen Spannwald W', dessen Bäume die Zusammenhangskomponenten von G spannen.
- Falls G zusammenhängend ist, ist W' ein Spannbaum für G.

3.4.4 Berechnung der Zusammenhangskomponenten

Folgende Variante von GraphSearch bestimmt die Zusammenhangskomponenten eines (ungerichteten) Eingabegraphen G.

Algorithmus CC(V, E)

```
\begin{array}{ll} 1 & k := 0 \\ 2 & \textbf{for all} \ v \in V, \ e \in E \ \textbf{do} \\ 3 & \textbf{cc}(v) := 0 \\ 4 & \textbf{cc}(e) := 0 \\ 5 & \textbf{for all} \ w \in V \ \textbf{do} \\ 6 & \textbf{if} \ \textbf{cc}(w) = 0 \ \textbf{then} \\ 7 & k := k + 1 \\ 8 & \textbf{ComputeCC}(k, w) \end{array}
```

$\mathbf{Prozedur}$ ComputeCC(k, w)

```
cc(w) := k
   Init(B)
   Insert(B, w)
    while \neg \text{Empty}(B) do
      u := \mathsf{Element}(B)
      if \exists e = \{u, v\} \in E : cc(e) = 0 then
         cc(e) := k
7
         if cc(v) = 0 then
8
            cc(v) := k
9
            Insert(B, v)
10
       else
11
         Remove(B)
12
```

Korollar 43. Der Algorithmus CC(V, E) bestimmt für einen Graphen G = (V, E) in Linearzeit O(n + m) sämtliche Zusammenhangskomponenten $G_k = (V_k, E_k)$ von G, wobei $V_k = \{v \in V \mid cc(v) = k\}$ und $E_k = \{e \in E \mid cc(e) = k\}$ ist.

3.4.5 Breiten- und Tiefensuche

Wie wir gesehen haben, findet $\mathsf{Explore}(w)$ sowohl in Graphen als auch in Digraphen alle von w aus erreichbaren Knoten. Als nächstes zeigen wir, dass $\mathsf{Explore}(w)$ zu allen von w aus erreichbaren Knoten sogar einen kürzesten Weg findet, falls wir die Datenstruktur B als Warteschlange Q implementieren.

Die Benutzung einer Warteschlange Q zur Speicherung der bereits entdeckten, aber noch nicht abgearbeiteten Knoten bewirkt, dass zuerst alle Nachbarknoten u_1, \ldots, u_k des aktuellen Knotens u besucht werden, bevor ein anderer Knoten aktueller Knoten wird. Da die Suche also zuerst in die Breite geht, spricht man von einer Breitensuche (kurz BFS, engl. breadth first search). Den hierbei berechneten Suchwald bezeichnen wir als Breitensuchwald.

3 Graphalgorithmen

Bei Benutzung eines Kellers wird dagegen u_1 aktueller Knoten, bevor die übrigen Nachbarknoten von u besucht werden. Daher führt die Benutzung eines Kellers zu einer *Tiefensuche* (kurz *DFS*, engl. *depth first search*). Der berechnete Suchwald heißt dann *Tiefensuchwald*.

Die Breitensuche eignet sich eher für Distanzprobleme wie z.B. das Finden

- kürzester Wege in Graphen und Digraphen,
- längster Wege in Bäumen (siehe Übungen) oder
- kürzester Wege in Distanzgraphen (Dijkstra-Algorithmus).

Dagegen liefert die Tiefensuche interessante Strukturinformationen wie z.B.

- die zweifachen Zusammenhangskomponenten in Graphen,
- die starken Zusammenhangskomponenten in Digraphen oder
- eine topologische Sortierung bei azyklischen Digraphen (s. Übungen).

Wir betrachten zuerst den Breitensuchalgorithmus.

Algorithmus BFS(V, E)

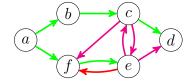
```
\begin{array}{ll} & \text{for all } v \in V, \ e \in E \ \text{do} \\ & \text{visited}(v) := \text{false} \\ & \text{parent}(v) := \text{nil} \\ & \text{visited}(e) := \text{false} \\ & \text{for all } w \in V \ \text{do} \\ & \text{if visited}(w) = \text{false then BFS-Explore}(w) \end{array}
```

Prozedur BFS-Explore(w)

```
\begin{array}{ll} \text{visited}(w) := \text{true} \\ \text{QueueInit}(Q) \\ \text{Solution} \\ \text{Enqueue}(Q,w) \\ \text{While } \neg \text{QueueEmpty}(Q) \ \mathbf{do} \end{array}
```

```
u := \mathsf{Head}(Q)
      if \exists e = \{u, v\} bzw. e = (u, v) \in E : \mathsf{visited}(e) = \mathsf{false}
6
        then
         visited(e) := true
         if visited(v) = false then
            visited(v) := true
9
            parent(v) := u
10
            Enqueue(Q, v)
11
      else
12
         Dequeue(Q)
13
```

Beispiel 44. BFS-Explore generiert bei Aufruf mit dem Startknoten a nebenstehenden Breitensuchwald.



◁

	bes.	bes.			bes.	bes.	
Schlange Q	Knoten	Kante	Тур	Q	Knoten	Kante	Тур
<i>←a←</i>	a	(a,b)	В	c, e, d	c	(c,e)	Q
a, b	a	(a, f)	В	c,e,d	c	(c, f)	Q
a, b, f	a	-	-	c,e,d	c	-	-
b, f	b	(b,c)	В	e, d	e	(e,c)	Q
b, f, c	b	-	-	e, d	e	(e,d)	Q
f, c	f	(f,e)	В	e, d	e	(e,f)	R
f, c, e	f	-	-	e, d	e	_	-
c, e	c	(c,d)	В	d	d	_	-

Satz 45. Sei G ein Graph oder Digraph und sei w Wurzel des von BFS-Explore(w) berechneten Suchbaumes T. Dann liefert parent für jeden Knoten v in T einen kürzesten w-v-Weg P(v).

3 Graphalgorithmen

Beweis. Wir führen Induktion über die kürzeste Weglänge ℓ von w nach v in G.

 $\ell = 0$: Dann ist v = w und parent liefert einen Weg der Länge 0.

 $\ell \leadsto \ell+1$: Sei v ein Knoten, der den Abstand $\ell+1$ von w in G hat. Dann existiert ein Knoten $u \in N^-(v)$ (bzw. $u \in N(v)$) mit Abstand ℓ von w in G hat. Nach IV liefert also parent einen w-u-Weg P(u) der Länge ℓ . Da u erst aus Q entfernt wird, nachdem alle Nachfolger von u entdeckt sind, wird v von u oder einem bereits zuvor in Q eingefügten Knoten z entdeckt. Da Q als Schlange organisiert ist, ist P(u) nicht kürzer als P(z). Daher folgt in beiden Fällen, dass P(v) die Länge $\ell+1$ hat. _

Wir werden später noch eine Modifikation der Breitensuche kennen lernen, die kürzeste Wege in Graphen mit nichtnegativen Kantenlängen findet (Algorithmus von Dijkstra).

Als nächstes betrachten wir den Tiefensuchalgorithmus.

Algorithmus DFS(V, E)

```
\begin{array}{ll} \text{for all } v \in V, \ e \in E \ \text{do} \\ \text{2} & \text{visited}(v) := \text{false} \\ \text{3} & \text{parent}(v) := \text{nil} \\ \text{4} & \text{visited}(e) := \text{false} \\ \text{5} & \text{for all } w \in V \ \text{do} \\ \text{6} & \text{if visited}(w) = \text{false then DFS-Explore}(w) \end{array}
```

$\mathbf{Prozedur}$ DFS-Explore(w)

```
visited(w) := true

StackInit(S)

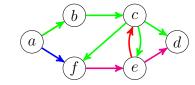
Push(S, w)

while ¬StackEmpty(S) do

u := \text{Head}(S)
```

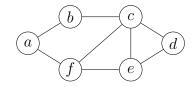
```
\begin{array}{ll} \text{if } \exists \ e = \{u,v\} \ \text{bzw.} \ e = (u,v) \in E : \texttt{visited}(e) = \texttt{false} \\ \text{then} \\ \text{7} & \texttt{visited}(e) := \texttt{true} \\ \text{8} & \text{if } \texttt{visited}(v) = \texttt{false then} \\ \text{9} & \texttt{visited}(v) := \texttt{true} \\ \text{10} & \texttt{parent}(v) := u \\ \text{11} & \texttt{Push}(S,v) \\ \text{12} & \textbf{else} \\ \text{13} & \texttt{Pop}(S) \end{array}
```

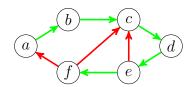
Beispiel 46. Bei Aufruf mit dem Startknoten a generiert die Prozedur DFS-Explore nebenstehenden Tiefensuchwald.



	bes.	bes.			bes.	bes.	
Keller S	Knoten	Kante	Тур	S	Knoten	Kante	Тур
$a \leftrightarrow$	a	(a,b)	B	a, b, c	c	(c,f)	B
a, b	b	(b,c)	B	a, b, c, f	f	(f,e)	Q
a, b, c	c	(c,d)	$\mid B \mid$	a, b, c, f	f	_	-
a, b, c, d	d	-	-	a, b, c	c	-	-
a, b, c	c	(c, e)	B	a, b	b	_	-
a, b, c, e	e	(e, c)	R	a	a	(a, f)	V
a, b, c, e	e	(e,d)	Q	a	a	_	-
a, b, c, e	e	-	-				

Die Tiefensuche auf nebenstehendem Graphen führt auf folgende Klassifikation der Kanten (wobei wir annehmen,





dass die Nachbarknoten in den Adjazenzlisten alphabetisch angeordnet sind):

Keller S	Kante	Тур	Keller S	Kante	Тур
$a \leftrightarrow$	$\{a,b\}$	B	a, b, c, d, e, f	$\{f,c\}$	R
a, b	$\{b,a\}$	-	a, b, c, d, e, f	f(f,e)	-
a, b	$\{b,c\}$	B	a, b, c, d, e, f	_	-
a, b, c	$\{c,b\}$	-	a, b, c, d, e	_	-
a, b, c	$\{c,d\}$	B	a, b, c, d	_	-
a, b, c, d	$\{d,c\}$	-	a, b, c	$\{c,e\}$	-
a, b, c, d	$\{d,e\}$	B	a, b, c	$ \{c,f\} $	-
a, b, c, d, e	$\{e,c\}$	R	a, b, c	_	-
a, b, c, d, e	$\{e,d\}$	-	a, b	_	-
a, b, c, d, e	$\{e,f\}$	B	a	$\{a,f\}$	-
a, b, c, d, e, f	$\{f,a\}$	R	a	_	_

Die Tiefensuche lässt sich auch rekursiv implementieren. Dies hat den Vorteil, dass kein (expliziter) Keller benötigt wird.

Prozedur DFS-Explore-rec(w)

```
visited(w) := true
while
\exists e = \{u, v\} \text{ bzw. } e = (u, v) \in E : \text{visited}(e) = \text{false do}
visited(e) := true
if visited(v) = false then
parent(v) := w
DFS-Explore-rec(v)
```

Da DFS-Explore-rec(w) zu parent(w) zurückspringt, kann auch das Feld parent(w) als Keller fungieren. Daher lässt sich die Prozedur auch nicht-rekursiv ohne zusätzlichen Keller implementieren, indem die Rücksprünge explizit innerhalb einer Schleife ausgeführt werden (siehe Übungen).

Bei der Tiefensuche lässt sich der Typ jeder Kante algorithmisch leicht bestimmen, wenn wir noch folgende Zusatzinformationen speichern.

- Ein neu entdeckter Knoten wird bei seinem ersten Besuch grau gefärbt. Sobald er abgearbeitet ist, also bei seinem letzten Besuch, wird er schwarz. Zu Beginn sind alle Knoten weiß.
- Zudem merken wir uns die Reihenfolge, in der die Knoten entdeckt werden, in einem Feld k.

Dann lässt sich der Typ jeder Kante e=(u,v) bei ihrem ersten Besuch wie folgt bestimmen:

```
Baumkante: farbe(v) = wei\beta,

Vorwärtskante: farbe(v) \neq wei\beta und k(v) \geq k(u),

Rückwärtskante: farbe(v) = grau und k(v) < k(u),

Querkante: farbe(v) = schwarz und k(v) < k(u).
```

Nun lässt sich der Typ jeder Kante e = (u, v) bei ihrem Besuch in Zeile 6 anhand der Werte von farbe(v) und k(v) wie folgt bestimmen:

```
Baumkante: farbe(v) = wei\beta,

Vorwärtskante: farbe(v) \neq wei\beta und k(v) \geq k(u),

Rückwärtskante: farbe(v) = grau und k(v) < k(u),

Querkante: farbe(v) = schwarz und k(v) < k(u).
```

Die folgende Variante von ${\tt DFS}$ berechnet diese Informationen.

Algorithmus DFS(V, E)

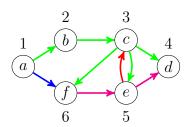
```
1 \mathbf{k} := 0
2 \mathbf{for} \mathbf{all} v \in V, e \in E \mathbf{do}
3 \mathbf{farbe}(v) := \mathbf{wei}\mathbf{\hat{s}}
4 \mathbf{visited}(e) := \mathbf{false}
```

- 5 for all $u \in V$ do
- if farbe(u) = weiß then DFS-Explore(u)

Prozedur DFS-Explore(u)

- farbe(u) := grau
- k := k + 1
- $\mathsf{k}(u) := \mathsf{k}$
- while $\exists e = (u, v) \in E : \mathsf{visited}(e) = \mathsf{false do}$
- visited(e) := true
- if farbe(v) = weiß then
- 7 DFS-Explore(v)
- 8 farbe(u) := schwarz

Beispiel 47. Bei Aufruf mit dem Startknoten a werden die Knoten im nebenstehenden Digraphen von der Prozedur DFS-Explore wie folgt gefärbt (die Knoten sind mit ihren k-Werten markiert).



Keller	Farbe	Kante	Тур	Keller	Farbe	Kante	Тур
a	a: grau	(a,b)	В	a, b, c, e	e: schwarz	-	-
a, b	b: grau	(b,c)	В	a, b, c	_	(c,f)	В
a, b, c	c: grau	(c,d)	В	a, b, c, f	f: grau	(f,e)	Q
a, b, c, d	d: grau	_	-	a, b, c, f	f: schwarz	-	-
	d: schwarz			a, b, c	c: schwarz	-	-
a, b, c	_	(c,e)	В	a, b	b: schwarz	-	-
a, b, c, e	e: grau	(e,c)	\mathbf{R}	a	_	(a,f)	V
a, b, c, e	_	(e,d)	Q	a	a: schwarz	_	-

Bei der Tiefensuche in ungerichteten Graphen können weder Quernoch Vorwärtskanten auftreten. Da v beim ersten Besuch einer solchen Kante (u,v) nicht weiß ist und alle grauen Knoten auf dem parent-Pfad P(u) liegen, müsste v nämlich bereits schwarz sein. Dies ist aber nicht möglich, da die Kante $\{u,v\}$ in v-u-Richtung noch gar nicht durchlaufen wurde. Folglich sind alle Kanten, die nicht zu einem neuen Knoten führen, Rückwärtskanten. Das Fehlen von Querund Vorwärtskanten spielt bei manchen Anwendungen eine wichtige Rolle, etwa bei der Zerlegung eines Graphen G in seine zweifachen Zusammenhangskomponenten.

3.4.6 Starke Zusammenhangskomponenten

Sei G=(V,E) ein Digraph. Dann ist leicht zu sehen, dass die Relation $S=\{(u,v)\in V\times V\,|\, \text{es gibt in }G\text{ einen }u\text{-}v\text{-Weg und einen }v\text{-}u\text{-Weg}\}$ eine Äquivalenzrelation ist. Für $(u,v)\in S$ schreiben wir auch kurz $u\sim v.$

Definition 48. Die durch die Äquivalenzklassen U_1, \ldots, U_k von S induzierten Teilgraphen $G[U_1], \ldots, G[U_k]$ heißen die starken Zusammenhangskomponenten (engl. strongly connected components) von G.

Satz 49. Sei G = (V, E) ein Digraph mit den starken Zusammenhangskomponenten $G[U_1], \ldots, G[U_k]$. Dann ist der Digraph (C, D) mit $C = \{1, \ldots, k\}$ und

$$D = \{(i,j) \mid 1 \le i \ne j \le k \land \exists u \in U_i, v \in U_j : (u,v) \in E\}$$

azyklisch.

Beweis. Da der Digraph (C, D) schlingenfrei ist, müsste ein Zyklus mindestens zwei verschiedene Knoten $i \neq j$ enthalten. Dann wären

aber alle Knoten in den beiden Komponenten $G[U_i]$ und $G[U_j]$ gegenseitig erreichbar, d.h. alle Knoten in $U_i \cup U_j$ müssten in derselben Komponente liegen (Widerspruch).

Sei G = (V, E) ein Digraph mit zugehörigem Tiefensuchwald W und starken Zusammenhangskomponenten $G[U_1], \ldots, G[U_k]$. Den im Suchwald W durch alle Nachfahren von v induzierten Baum mit der Wurzel v bezeichnen wir mit T(v).

Für $i=1,\ldots,k$ sei s_i der erste bei der Tiefensuche innerhalb von U_i besuchte Knoten. Wir bezeichnen s_i als den Startknoten von U_i . Dann bilden die Knoten s_1,\ldots,s_k ein Repräsentantensystem für die Äquivalenzklassen U_1,\ldots,U_k .

Sei V_i die Menge aller Knoten in $T(s_i)$, die für keinen echten Nachfahren s_j von s_i in $T(s_j)$ enthalten sind. Es ist klar, dass die Mengen V_1, \ldots, V_k eine Partition von V bilden. Wir behaupten, dass die Mengen V_i in U_i enthalten sind und somit $U_i = V_i$ ist.

Angenommen, ein Knoten $u \in V_i$ wäre nicht in U_i , sondern in U_j für ein $j \neq i$ enthalten. Da s_j erst schwarz wird, nachdem alle von s_j aus erreichbaren Knoten besucht wurden, enthält $T(s_j)$ alle Knoten in U_j und somit auch u. Wegen $u \in V_i$ könnte dann s_j kein Nachfahre von s_i sein. Da u in $T(s_i)$ und $T(s_j)$ liegt, müsste s_j also ein Vorfahre von s_i sein. Wegen $u \sim s_j$ impliziert dies jedoch $u \sim s_i$. $\not \downarrow$

Die Mengen U_i lassen sich also leicht bestimmen, falls wir die Startknoten s_i während der Tiefensuche bei ihrem letzten Besuch identifizieren können. In diesem Fall gehören alle seit dem ersten Besuch von s_i besuchten Knoten zu U_i , die nicht schon einem anderen s_j zugeordnet wurden. Um die Startknoten erkennen zu können, betrachten wir die Funktion

 $low(u) = min\{k(v) \mid v \in P(u) \text{ und es gibt einen } u\text{-}v\text{-Weg in } G\}.$

Da der zu u gehörige Startknoten $s_i \sim u$ von u aus erreichbar ist und auf dem parent-Pfad P(u) von u liegt, ist $low(u) \leq k(s_i) \leq k(u)$. Da

es zudem keinen u-v-Weg zu einem Knoten v auf P(u) mit $k(v) < k(s_i)$ geben kann (sonst wäre v Startknoten von U_i), ist $low(u) = k(s_i)$. Folglich ist

$$low(u) = min\{k(s_i) \mid s_i \in P(u) \text{ und es gibt einen } u\text{-}s_i\text{-}Weg in }G\}$$

und nur für die Startknoten nehmen **low** und **k** den gleichen Wert an. Einfacher als **low** lässt sich die Funktion

$$l(u) = \min\{k(v) \mid v = u \lor \exists u' \in T(u), v \in T(s_i) : (u', v) \in E\},\$$

berechnen, wobei s_i der eindeutig bestimmte Startknoten mit $u \sim s_i$ ist.

Dann gilt $low(u) \leq l(u) \leq k(u)$, wobei l(u) = k(u) mit low(u) = k(u) (also mit $u = s_i$) gleichbedeutend ist. Ist nämlich $u \neq s_i$, so liegt s_i nicht in T(u) und daher muss jeder u- s_i -Weg eine (Rückwärts- oder Quer-) Kante (u', v) mit $u' \in T(u)$ und $v \in T(s_i) - T(u)$ enthalten. Da jedoch alle von u aus erreichbaren Knoten, deren k-Wert größer als der von u ist, in T(u) enthalten sind, muss k(v) < k(u) und somit l(u) < k(u) sein.

Algorithmus SCC(V, E)

```
1 \mathbf{k} := 0

2 \mathsf{StackInit}(S)

3 \mathsf{for\ all}\ v \in V,\ e \in E\ \mathbf{do}

4 \mathsf{visited}(e) := \mathsf{false}

5 \mathsf{k}(v) := 0

6 \mathsf{onStack}(v) := \mathsf{false}

7 \mathsf{for\ all}\ u \in V\ \mathbf{do}

8 \mathsf{if\ k}(u) = 0\ \mathsf{then\ Compute-SCC}(u)
```

Prozedur Compute-SCC(u)

```
1 k := k + 1
2 k(u) := k
```

3 Graphalgorithmen

```
l(u) := k
   Push(S, u)
   while \exists e = (u, v) \in E : visited(e) = false do
      visited(e) := true
      if k(v) = 0 then
7
        Compute-SCC(v)
8
        l(u) := \min\{l(u), l(v)\}\
9
      else if onStack(v) = true then
10
        l(u) := \min\{l(u), k(v)\}\
11
   if l(u) = k(u) then
      Output-SCC(u)
13
```

Prozedur Output-SCC(u)

```
\begin{array}{ll} \text{ write(Neue Komponente: )} \\ \text{2} & \textbf{repeat} \\ \text{3} & v := \text{Pop}(S) \\ \text{4} & \text{onStack}(v) := \text{false} \\ \text{5} & \text{write}(v) \\ \text{6} & \textbf{until}(v = u) \end{array}
```

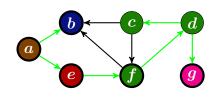
Der Algorithmus SCC berechnet für jeden Knoten u den Wert $\mathfrak{l}(u)$ und gibt der Reihe nach die Mengen U_i aus. SCC speichert alle entdeckten Knoten, die noch keiner Menge U_i zugeordnet werden konnten, in einem Keller S. Das Feld onStack speichert die Information, welche Knoten sich aktuell in S befinden. Besitzt ein Knoten u bei seinem letzten Besuch den Wert $\mathfrak{l}(u) = \mathsf{k}(u)$, so wird die Prozedur Output-SCC(u) aufgerufen. Output-SCC(u) leert den Keller S bis einschließlich u und gibt diese Knoten als neu entdeckte Menge U_i aus.

Dass SCC bis zum letzten Besuch eines Knotens u tatsächlich den Wert $\mathsf{l}(u)$ korrekt berechnet, lässt sich leicht induktiv über die Anzahl der vor u in T(u) schwarz gewordenen Knoten zeigen.

Wird u als erster Knoten in T(u) schwarz, so enthält S genau die Nachbarn von u, die in $T(s_i)$ liegen. Folglich werden die k-Werte dieser Nachbarn bei der Berechnung von $\ell(u)$ in Zeile 11 berücksichtigt.

Sind dagegen vor u bereits andere Knoten in T(u) schwarz geworden, so können wir nach IV annehmen, dass die ℓ -Werte dieser Knoten richtig berechnet wurden. Da diese ℓ -Werte in Zeile 9 an die Elternknoten übermittelt werden, wird dann aber auch $\ell(u)$ korrekt berechnet.

Beispiel 50. Rufen wir SCC mit dem Startknoten a für nebenstehenden Digraphen auf, so werden die folgenden starken Zusammenhangskomponenten berechnet (die Startknoten der Komponenten sind dick umrandet).



Keller S	Knoten u	$\ell(u)$	k(u)	Kante (u, v)	output
a	a	1	1	(a,b)	-
a, b	b	2	2	-	b
a	a	1	1	(a,e)	-
a, e	e	3	3	(e,f)	-
a, e, f	f	4	4	(f,b)	-
a, e, f	f	4	4	(f,d)	-
a, e, f, d	d	5	5	(d,c)	-
a, e, f, d, c	c	6	6	(c,b)	-
a, e, f, d, c	c	6	6	(c,f)	-
a, e, f, d, c	c	4	6	_	-
a, e, f, d, c	d	4	5	(d,g)	-
a, e, f, d, c, g	g	7	7	_	g
a, e, f, d, c	d	4	5	_	-
a, e, f, d, c	f	4	4	_	f, d, c
a, e	e	3	3	_	e
a	a	1	1	-	a

3.5 Kürzeste Pfade in Distanzgraphen

In vielen Anwendungen tritt das Problem auf, einen kürzesten Weg von einem Startknoten s zu einem Zielknoten t in einem Digraphen zu finden, dessen Kanten (u, v) vorgegebene $L\ddot{a}ngen\ l(u, v)$ haben. Die Länge eines Weges $W = (v_0, \ldots, v_\ell)$ ist

$$l(W) = \sum_{i=0}^{\ell-1} l(v_i, v_{i+1}).$$

Die kürzeste Pfadlänge von s nach t wird als $Distanz\ dist(s,t)$ von s zu t bezeichnet,

$$dist(s,t) = \inf\{l(W) \mid W \text{ ist ein } s\text{-}t\text{-Weg}\}.$$

Falls kein s-t-Weg existiert, setzen wir $dist(s,t)=\infty$. Man beachte, dass die Distanz auch den Wert $-\infty$ annehmen kann, falls Kreise mit negativer Länge existieren. In vielen Fällen haben jedoch alle Kanten in E eine nichtnegative Länge $l(u,v)\geq 0$. In diesem Fall nimmt dist keine negativen Werte an und D=(V,E,l) wird dann auch Distanzgraph genannt.

3.5.1 Der Dijkstra-Algorithmus

Der Dijkstra-Algorithmus findet einen kürzesten Weg P(u) von s zu allen erreichbaren Knoten u (single-source shortest-path problem). Hierzu führt der Algorithmus eine modifizierte Breitensuche aus. Dabei werden die in Bearbeitung befindlichen Knoten in einer Prioritätswarteschlange U verwaltet. Genauer werden alle Knoten u, zu denen bereits ein s-u-Weg P(u) bekannt ist, zusammen mit der Weglänge g solange in U gespeichert bis P(u) optimal ist. Auf der Datenstruktur U sollten folgende Operationen (möglichst effizient) ausführbar sein.

Init(U): Initialisiert U als leere Menge.

Update(U, u, g): Erniedrigt den Wert von u auf g (nur wenn der aktuelle Wert größer als g ist). Ist u noch nicht in U enthalten, wird u mit dem Wert g zu U hinzugefügt.

RemoveMin(U): Gibt ein Element aus U mit dem kleinsten Wert zurück und entfernt es aus U (ist U leer, wird der Wert nil zurückgegeben).

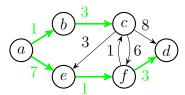
Voraussetzung für die Korrektheit des Algorithmus' ist, dass alle Kanten eine nichtnegative Länge haben. Während der Suche werden bestimmte Kanten e=(u,v) daraufhin getestet, ob $g(u)+\ell(u,v) < g(v)$ ist. Da in diesem Fall die Kante e auf eine Herabsetzung von $\mathbf{g}(v)$ auf den Wert $g(u)+\ell(u,v)$ "drängt", wird diese Wertzuweisung als **Relaxation** von e bezeichnet. Welche Kanten auf Relaxation getestet werden, wird beim Dijkstra-Algorithmus durch eine einfache Greedystrategie bestimmt: Wähle u unter allen in Bearbeitung befindlichen Knoten mit minimalem \mathbf{g} -Wert.

${\bf Algorithmus} \ \ {\tt Dijkstra}(V,E,l,s)$

```
1 for all v \in V do
      g(v) := \infty
      parent(v) := nil
      done(v) := false
   g(s) := 0
   Init(P)
   Update(P, s, 0)
   while u := RemoveMin(P) \neq nil do
      done(u) := true
      for all v \in N^+(u) do
10
         if done(v) = false \wedge g(u) + l(u, v) < g(v) then
11
           g(v) := g(u) + l(u, v)
12
           \mathsf{Update}(P, v, \mathsf{g}(v))
13
           parent(v) := u
14
```

Der Algorithmus speichert die aktuelle Länge des Pfades P(u) in $\mathbf{g}(u)$. Knoten außerhalb des aktuellen Breitensuchbaums T haben den Wert $\mathbf{g}(u)=\infty$. In jedem Schleifendurchlauf wird in Zeile 8 ein Knoten u mit minimalem g-Wert aus U entfernt und als abgearbeitet markiert. Anschließend werden alle von u wegführenden Kanten e=(u,v) auf Relaxation getestet sowie g, U und T gegebenenfalls aktualisiert.

Beispiel 51. Betrachte den nebenstehenden Distanzgraphen G. Bei Ausführung des Dijkstra-Algorithmus' mit dem Startknoten a werden die folgenden kürzesten Wege berechnet.



Inhalt von P	entfernt	besuchte Kanten	Update-Op.
(a,0)	(a, 0)	(a,b),(a,e)	(b,1), (e,7)
(b,1), (e,7)	(b, 1)	(b, c)	(c,4)
(c,4), (e,7)	(c,4)	(c,d),(c,e),(c,f)	(d, 12), (f, 10)
(e,7), (f,10), (d,12)	(e,7)	(e, f)	(f,8)
(f,8),(d,12)	(f, 8)	(f,c),(f,d)	(d, 10)
(d, 10)	(d, 10)	_	_

Als nächstes beweisen wir die Korrektheit des Dijkstra-Algorithmus'.

Satz 52. Sei D = (V, E, l) ein Distanzgraph und sei $s \in V$. Dann berechnet Dijkstra(V, E, l, s) im Feld parent für alle von s aus erreichbaren Knoten $t \in V$ einen kürzesten s-t-Weg P(t).

Beweis. Wir zeigen zuerst, dass alle von saus erreichbaren Knoten $t\in V$ zu Uhinzugefügt werden. Dies folgt aus der Tatsache, dass s zu Uhinzugefügt wird, und spätestens dann, wenn ein Knoten u in Zeile 8 aus Uentfernt wird, sämtliche Nachfolger von u zu Uhinzugefügt werden.

Zudem ist klar, dass $g(u) \ge dist(s, u)$ ist, da P(u) im Fall $g(u) < \infty$ ein s-u-Weg der Länge g(u) ist. Es bleibt also nur noch zu zeigen,

dass P(u) für jeden aus U entfernten Knoten u ein kürzester s-u-Weg ist, d.h. es gilt $g(u) \leq dist(s, u)$.

Hierzu zeigen wir induktiv über die Anzahl k der vor u aus U entfernten Knoten, dass $\mathbf{q}(u) \leq dist(s, u)$ ist.

k=0: In diesem Fall ist u=s und P(u) hat die Länge g(u)=0.

 $k-1 \sim k$: Sei $W=v_0,\ldots,v_\ell=u$ ein kürzester s-u-Weg in G und sei v_i der Knoten mit maximalem Index i auf diesem Weg, der vor u aus P entfernt wird.

Nach IV gilt dann

$$g(v_i) = dist(s, v_i). (3.1)$$

Zudem ist

$$g(v_{i+1}) \le g(v_i) + l(v_i, v_{i+1}). \tag{3.2}$$

Da u im Fall $u \neq v_{i+1}$ vor v_{i+1} aus P entfernt wird, ist

$$g(u) \le g(v_{i+1}). \tag{3.3}$$

Daher folgt

$$g(u) \overset{(3.3)}{\leq} g(v_{i+1}) \overset{(3.2)}{\leq} g(v_i) + l(v_i, v_{i+1})$$

$$\overset{(3.1)}{=} dist(s, v_i) + l(v_i, v_{i+1})$$

$$= dist(s, v_{i+1}) \leq dist(s, u).$$

Um die Laufzeit des Dijkstra-Algorithmus' abzuschätzen, überlegen wir uns zuerst, wie oft die einzelnen Operationen auf der Datenstruktur P ausgeführt werden. Sei n = ||V|| die Anzahl der Knoten und m = ||E|| die Anzahl der Kanten des Eingabegraphen.

- Die Init-Operation wird nur einmal ausgeführt.
- Da die while-Schleife für jeden erreichbaren Knoten höchstens einmal durchlaufen wird, wird die RemoveMin-Operation höchstens $\min\{n, m\}$ -mal ausgeführt.

• Wie die Prozedur BFS-Explore besucht der Dijkstra-Algorithmus jede Kante maximal einmal. Daher wird die Update-Operation höchstens m-mal ausgeführt.

Beobachtung 53. Bezeichne Init(n), RemoveMin(n) und Update(n) den Aufwand zum Ausführen der Operationen Init, RemoveMin und Update für den Fall, dass P nicht mehr als n Elemente aufzunehmen hat. Dann ist die Laufzeit des Dijkstra-Algorithmus' durch

$$\mathcal{O}(n + m + Init(n) + \min\{n, m\} \cdot RemoveMin(n) + m \cdot Update(n))$$

beschränkt.

Die Laufzeit hängt also wesentlich davon ab, wie wir die Datenstruktur U implementieren. Falls alle Kanten die gleiche Länge haben, wachsen die Distanzwerte der Knoten monoton in der Reihenfolge ihres (ersten) Besuchs. D.h. wir können U als Warteschlange implementieren. Dies führt wie bei der Prozedur BFS-Explore auf eine Laufzeit von $\mathcal{O}(n+m)$.

Für den allgemeinen Fall, dass die Kanten unterschiedliche Längen haben, betrachten wir folgende drei Möglichkeiten.

- 1. Da die Felder **g** und **done** bereits alle zur Verwaltung von U benötigten Informationen enthalten, kann man auf die (explizite) Implementierung von U auch verzichten. In diesem Fall kostet die RemoveMin-Operation allerdings Zeit $\mathcal{O}(n)$, was auf eine Gesamtlaufzeit von $\mathcal{O}(n^2)$ führt.
 - Dies ist asymptotisch optimal, wenn G relativ dicht ist, also $m=\Omega(n^2)$ Kanten enthält. Ist G dagegen relativ dünn, d.h. $m=o(n^2)$, so empfiehlt es sich, U als Prioritätswarteschlange zu implementieren.
- 2. Es ist naheliegend, U in Form eines Heaps H zu implementieren. In diesem Fall lässt sich die Operation RemoveMin in Zeit $\mathcal{O}(\log n)$ implementieren. Da die Prozedur Update einen

linearen Zeitaufwand erfordert, ist es effizienter, sie durch eine Insert-Operation zu simulieren. Dies führt zwar dazu, dass derselbe Knoten evtl. mehrmals mit unterschiedlichen Werten in H gespeichert wird. Die Korrektheit bleibt aber dennoch erhalten, wenn wir nur die erste Entnahme eines Knotens aus H beachten und die übrigen ignorieren.

Da für jede Kante höchstens ein Knoten in H eingefügt wird, erreicht H maximal die Größe n^2 und daher sind die Heap-Operationen Insert und RemoveMin immer noch in Zeit $\mathcal{O}(\log n^2) = \mathcal{O}(\log n)$ ausführbar. Insgesamt erhalten wir somit eine Laufzeit von $\mathcal{O}(n+m\log n)$.

Die Laufzeit von $\mathcal{O}(n+m\log n)$ bei Benutzung eines Heaps ist zwar für dünne Graphen sehr gut, aber für dichte Graphen schlechter als die implizite Implementierung von U mithilfe der Felder \mathbf{g} und \mathbf{done} .

3. Als weitere Möglichkeit kann U auch in Form eines so genannten $Fibonacci\text{-}Heaps\ F$ implementiert werden. Dieser benötigt nur eine konstante amortisierte Laufzeit $\mathcal{O}(1)$ für die Update-Operation und $\mathcal{O}(\log n)$ für die RemoveMin-Operation. Insgesamt führt dies auf eine Laufzeit von $\mathcal{O}(m+n\log n)$. Allerdings sind Fibonacci-Heaps erst bei sehr großen Graphen mit mittlerer Dichte schneller.

Eine offene Frage ist, ob es auch einen Algorithmus mit linearer Laufzeit $\mathcal{O}(n+m)$ gibt. Wir fassen die verschiedenen Möglichkeiten zur Implementation der Datenstruktur U in folgender Tabelle zusammen.

	implizit	Heap	Fibonacci-Heap
Init	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
Update	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
RemoveMin	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Gesamtlaufzeit	$\mathcal{O}(n^2)$	$\mathcal{O}(n + m \log n)$	$\mathcal{O}(m + n \log n)$

3.6 Negative Kantengewichte

In manchen Anwendungen treten negative Kantengewichte auf. Geben die Kantengewichte beispielsweise die mit einer Kante verbundenen Kosten wider, so kann ein Gewinn durch negative Kosten modelliert werden. Gesucht ist dann meist ein kürzester Pfad (also ein kürzester Weg, der jeden Knoten höchstens einmal besucht). Auf diese Weise lassen sich auch längste Pfade in Distanzgraphen berechnen, indem man alle Kantenlängen $\ell(u,v)$ mit -1 multipliziert und in dem resultierenden Graphen einen kürzesten Pfad bestimmt.

Die Komplexität des Problems hängt wesentlich davon ab, ob man (gerichtete) Kreise mit negativer Länge zulässt oder nicht. Falls negative Kreise zugelassen werden, ist das Problem NP-hart. Andernfalls existieren effiziente Algorithmen wie z.B. der Bellman-Ford-Algorithmus (BF-Algorithmus) oder der Bellman-Ford-Moore-Algorithmus (BFM-Algorithmus). Diese Algorithmen lösen das single-source shortest-path Problem mit einer Laufzeit von $\mathcal{O}(nm)$ im schlechtesten Fall.

Der Ford-Algorithmus arbeitet ganz ähnlich wie der Dijkstra-Algorithmus, betrachtet aber jede Kante nicht wie dieser nur einmal, sondern eventuell mehrmals. In seiner einfachsten Form sucht der Algorithmus wiederholt eine Kante e=(u,v) mit

$$g(u) + \ell(u, v) < g(v)$$

und aktualisiert den Wert von $\mathbf{g}(v)$ auf $\mathbf{g}(u) + \ell(u,v)$ (Relaxation). Die Laufzeit hängt dann wesentlich davon ab, in welcher Reihenfolge die Kanten auf Relaxation getestet werden. Im besten Fall lässt sich eine lineare Laufzeit erreichen (z.B. wenn der zugrunde liegende Graph azyklisch ist). Bei der Bellman-Ford-Variante wird in $\mathcal{O}(nm)$ Schritten ein kürzester Weg von s zu allen erreichbaren Knoten gefunden (sofern keine negativen Kreise existieren).

Wir zeigen induktiv über die Anzahl k der Kanten eines kürzesten s-u-Weges, dass $\mathbf{g}(u) = dist(s, u)$ gilt, falls \mathbf{g} für alle Kanten (u, v)

die Dreiecksungleichung $g(v) \leq g(u) + \ell(u, v)$ erfüllt (also keine Relaxationen mehr möglich sind).

Im Fall k=0 ist nämlich u=s und somit g(s)=0=dist(s,s). Im Fall k>0 sei v ein Knoten, dessen kürzester s-v-Weg W aus k Kanten besteht. Dann gilt nach IV für den Vorgänger u von v auf W g(u)=dist(s,u). Aufgrund der Dreiecksungleichung folgt dann

$$g(v) \le g(u) + \ell(u, v) = dist(s, u) + \ell(u, v) = dist(s, v).$$

Aus dem Beweis folgt zudem, dass nach Relaxation aller Kanten eines kürzesten s-v-Weges W (in der Reihenfolge, in der die Kanten in W durchlaufen werden) den Wert dist(s,v) hat. Dies gilt auch für den Fall, dass zwischendurch noch weitere Kantenrelaxationen stattfinden.

3.6.1 Der Bellman-Ford-Algorithmus

Diese Variante prüft in n-1 Iterationen jeweils alle Kanten auf Relaxation. Sind in der n-ten Runde noch weitere Relaxationen möglich, muss ein negativer Kreis existieren. Die Laufzeit ist offensichtlich $\mathcal{O}(nm)$ und die Korrektheit folgt leicht durch Induktion über die minimale Anzahl von Kanten eines kürzesten s-t-Weges. Zudem wird bei jeder Relaxation einer Kante (u,v) der Vorgänger u im Feld $\mathsf{parent}(v)$ vermerkt, so dass sich ein kürzester Pfad von s zu allen erreichbaren Knoten (bzw. ein negativer Kreis) rekonstruieren lässt.

Algorithmus $BF(V, E, \ell, s)$

```
\begin{array}{lll} & \text{for all } v \in V \text{ do} \\ 2 & \text{g}(v) := \infty \\ 3 & \text{parent}(v) := \text{nil} \\ 4 & \text{g}(s) := 0 \\ 5 & \text{for } i := 1 \text{ to } n-1 \text{ do} \\ 6 & \text{for all } (u,v) \in E \text{ do} \\ 7 & \text{if } \text{g}(u) + \ell(u,v) < \text{g}(v) \text{ then} \\ 8 & \text{g}(v) := \text{g}(u) + \ell(u,v) \end{array}
```

```
parent(v) := u
for all (u,v) \in E do
if g(u) + \ell(u,v) < g(v) then
error(es gibt einen negativen Kreis)
```

3.6.2 Der Bellman-Ford-Moore-Algorithmus

Die BFM-Variante prüft in jeder Runde nur diejenigen Kanten (u,v) auf Relaxation, für die g(u) in der vorigen Runde erniedrigt wurde. Dies führt auf eine deutliche Verbesserung der durchschnittlichen Laufzeit. Wurde nämlich g(u) in der (i-1)-ten Runde nicht verringert, dann steht in der i-ten Runde sicher keine Relaxation der Kante (u,v) an. Es liegt nahe, die in der nächsten Runde zu prüfenden Knoten u in einer Schlange Q zu speichern. Dabei kann mit u auch die aktuelle Rundenzahl i in Q gespeichert werden. In Runde 0 wird der Startknoten s in Q eingefügt. Können in Runde n immer noch Kanten relaxiert werden, so bricht der Algorithmus mit der Fehlermeldung ab, dass negative Kreise existieren. Da die BFM-Variante die Kanten in derselben Reihenfolge relaxiert wie der BF-Algorithmus, führt sie auf dasselbe Ergebnis.

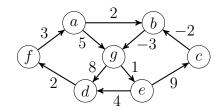
Algorithmus BFM (V, E, ℓ, s)

```
for all v \in V do
      g(v) := \infty, parent(v) := nil, inQueue(v) := false
   g(s) := 0, Init(Q), Enqueue(Q, (0, s)), inQueue(s) := true
   while (i, u) := \mathsf{Dequeue}(Q) \neq \mathsf{nil} and i < n do
      inQueue(u) := false
5
      for all v \in N^+(u) do
6
        if g(u) + \ell(u, v) < g(v) then
           g(v) := q(u) + \ell(u, v)
8
           parent(v) := u
9
           if inQueue(v) = false then
10
             Enqueue(Q, (i+1, v))
11
```

```
inQueue(v) := true
if i = n then
error(es gibt einen negativen Kreis)
```

Für kreisfreie Graphen lässt sich eine lineare Laufzeit $\mathcal{O}(n+m)$ erzielen, indem die Nachfolger in Zeile 6 in topologischer Sortierung gewählt werden. Dies bewirkt, dass jeder Knoten höchstens einmal in die Schlange eingefügt wird.

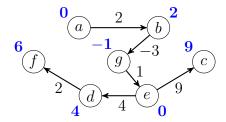
Beispiel 54. Betrachte untenstehenden kantenbewerteten Digraphen mit dem Startknoten a.



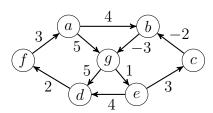
Die folgende Tabelle zeigt jeweils den Inhalt der Schlange Q, bevor der BFM-Algorithmus das nächste Paar (i,u) von Q entfernt. Dabei enthält jeder Eintrag (i,u,v,g) neben der Rundenzahl i und dem Knoten u auch noch den parent-Knoten v und den g-Wert g von u, obwohl diese nicht in Q gespeichert werden.

```
 \begin{array}{c|c} & & & & \\ \hline | (0,a, \textit{nil}, 0) \\ & & & \\ \hline | (1,b,a,2) \\ | (1,g,a,5) \\ \hline | (1,g,b,-1) \\ | (2,e,g,0) \\ | (3,f,d,9) \\ | (3,f,d,9) \\ | (3,c,d,9) \\ | (3,c,d,9) \\ | (3,d,e,4) \\ \hline | (3,d,e,4) \\ \hline | (4,f,d,6) \\ \hline \end{array}
```

Die berechneten Entfernungen mit den zugehörigen parent-Pfaden sind in folgendem Suchbaum widergegeben:



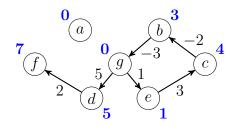
Als nächstes betrachten wir den folgenden Digraphen:



Da dieser einen negativen Kreis enthält, der vom Startknoten aus erreichbar ist, lassen sich die Entfernungen zu allen Knoten, die von diesem Kreis aus erreichbar sind, beliebig verkleinern.

$$\begin{array}{c|c} & \uparrow \\ & |(0,a,\textit{nil},0)| \\ & \uparrow \\ & |(1,b,a,4)| \\ & |(1,g,a,5)| |(1,g,b,1)| \\ & |(2,d,g,6)| \\ & |(2,e,g,2)| |(2,e,g,2)| \\ & |(3,f,d,8)| |(3,f,d,8)| \\ & |(3,c,e,5)| \\ & |(4,b,c,3)| \\ & |(5,g,b,0)| \\ & |(6,d,g,5)| \\ & |(6,e,g,1)| |(2,e,g,1)| \\ & |(7,f,d,7)| |(7,f,d,7)| \\ & |(7,c,e,4)| \end{array}$$

Da nun der Knoten f mit der Rundenzahl i=n=7 aus der Schlange entnommen wird, bricht der Algorithmus an dieser Stelle mit der Meldung ab, dass negative Kreise existieren. Ein solcher Kreis (im Beispiel: g, e, c, b, g) lässt sich bei Bedarf anhand der parent-Funktion aufspüren, indem wir den parent-Weg zu f zurückverfolgen: f, d, g, b, c, e, g.



3.7 Berechnung von allen kürzesten Wegen

Sei G = (V, E) ein endlicher Digraph mit $V = \{1, \ldots, n\}$. Weiter sei ℓ eine Funktion, die jeder Kante $(i, j) \in E$ einen Kostenwert $\ell(i, j)$ zuweist. Für einen Weg $W = (v_1, v_2, \ldots, v_{k-1}, v_k)$ heißen v_2, \ldots, v_{k-1} innere Knoten von W. Bezeichne $\mathbf{d}_k(i, j)$ die Länge eines kürzesten Weges von i nach j, der mindestens eine Kante durchläuft und dessen inneren Knoten alle aus der Menge $\{1, \ldots, k\}$ stammen. Dann gilt

$$\mathbf{d}_0(i,j) = \begin{cases} \ell(i,j), & (i,j) \in E, \\ \infty, & \text{sonst.} \end{cases}$$

und

$$\mathsf{d}_k(i,j) = \min \big\{ \mathsf{d}_{k-1}(i,j), \mathsf{d}_{k-1}(i,k) + \mathsf{d}_{k-1}(k,j) \big\}.$$

3.7.1 Der Floyd-Warshall-Algorithmus

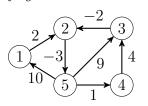
Der Algorithmus von Floyd-Warshall berechnet nichttriviale kürzeste Wege zwischen je zwei Knoten unter der Voraussetzung, dass kein Kreis eine negative Länge hat.

Algorithmus Floyd-Warshall (V, E, ℓ)

```
\begin{array}{lll} & \text{for } i := 1 \ \text{to} \ n \ \text{do} \\ & \text{for } j := 1 \ \text{to} \ n \ \text{do} \\ & \text{if } (i,j) \in E \ \text{then } \mathsf{d}_0(i,j) := \ell(i,j) \ \text{else } \mathsf{d}_0(i,j) := \infty \\ & \text{for } k := 1 \ \text{to} \ n \ \text{do} \\ & \text{for } i := 1 \ \text{to} \ n \ \text{do} \\ & \text{for } j := 1 \ \text{to} \ n \ \text{do} \\ & \text{d}_k(i,j) = \min \left\{ \mathsf{d}_{k-1}(i,j), \mathsf{d}_{k-1}(i,k) + \mathsf{d}_{k-1}(k,j) \right\} \end{array}
```

Die Laufzeit ist offenbar $\mathcal{O}(n^3)$. Da die d_k -Werte nur von den d_{k-1} -Werten abhängen, ist der Speicherplatzbedarf $\mathcal{O}(n^2)$. Die Existenz negativer Kreise lässt sich daran erkennen, dass mindestens ein Diagonalelement $\mathsf{d}_k(i,i)$ einen negativen Wert erhält.

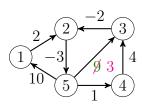
Beispiel 55. Betrachte folgenden kantenbewerteten Digraphen:



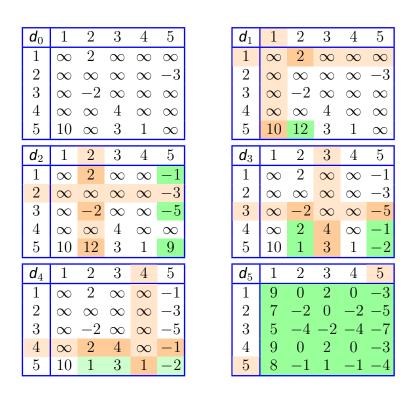
d_0	1	2	3	4	5
1	∞	2	∞	∞	∞
2	∞	∞	∞	∞	-3
3	∞	-2	∞	∞	∞
4	∞	∞	4	∞	∞
5	10	∞	9	1	∞
d_2	1	2	3	4	5
1	∞	2	∞	∞	-1
2	∞	∞	∞	∞	-3
3	∞	-2	∞	∞	-5
4	∞	∞	4	∞	∞
5	10	12	9	1	9
d_4	1	2	3	4	5
1	∞	2	∞	∞	-1
2	∞	∞	∞	∞	-3
3	∞	-2	∞	∞	-5
4	∞	2	4	∞	-1
5	10	3	5	1	0

d_1	1	2	3	4	5
1	∞	2	∞	∞	∞
2	∞	∞	∞	∞	-3
3	∞	-2	∞	∞	∞
4	∞	∞	4	∞	∞
5	10	12	9	1	∞
d_3	1	2	3	4	5
1	∞	2	∞	∞	-1
2	∞	∞	∞	∞	-3
3	∞	-2	∞	∞	-5
4	∞	2	4	∞	-1
5	10	7	9	1	4
d_5	1	2	3	4	5
1	9	2	4	0	-1
2	7	0	2	-2	-3
3	5	-2	0	-4	-5
4	9	2	4	0	-1
4	U				

Als nächstes betrachten wir folgenden Digraphen:



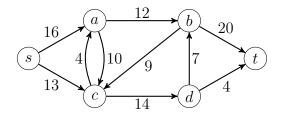
3 Graphalgorithmen 3.8 Flüsse in Netzwerken



Definition 56.

- a) Ein Netzwerk N = (V, E, s, t, c) besteht aus einem gerichteten Graphen G = (V, E) mit einer Quelle $s \in V$ und einer Senke $t \in V$ sowie einer Kapazitätsfunktion $c : V \times V \to \mathbb{N}$.
- b) Alle Kanten $(u, v) \in E$ müssen positive Kapazität c(u, v) > 0 und alle Nichtkanten $(u, v) \notin E$ müssen die Kapazität c(u, v) = 0 haben.

Die folgende Abbildung zeigt ein Netzwerk N.



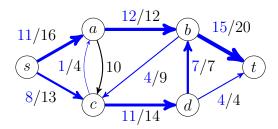
Definition 57. Ein **Fluss** für N ist eine Funktion $f: V \times V \to \mathbb{Z}$ mit

- $f(u,v) \le c(u,v)$, "Kapazitätsbedingung"
- f(u,v) = -f(v,u), "Symmetriebedingung"
- Für alle $u \in V \{s, t\} : \sum_{v \in V} f(u, v) = 0.$

, Kontinuit "atsbedingung ``

Die **Größe** von f ist $|f| = \sum_{v \in V} f(s, v)$.

Die Symmetriebedingung impliziert, dass f(u, u) = 0 für alle $u \in V$ ist, d.h. G ist schlingenfrei. Die folgende Abbildung zeigt einen Fluss f für das Netzwerk N.



Wie lässt sich für einen Fluss f in einem Netzwerk N entscheiden, ob er vergrößert werden kann? Diese Frage lässt sich leicht beantworten, falls f der konstante Nullfluss f=0 ist: In diesem Fall genügt es, in G=(V,E) einen Pfad von s nach t zu finden. Andernfalls können wir zu N und f ein Netzwerk N_f konstruieren, so dass f genau dann vergrößert werden kann, wenn sich in N_f der Nullfluss vergrößern lässt.

◁