eingereicht von: Claudia Stripf
geb. am 07. Juni 1972 in Karlsruhe

GEOMETRY-BASED AND TEXTURE-BASED VISUALIZATION
OF SEGMENTED TENSOR FIELDS

Diplomarbeit

Humboldt-Universitidt zu Berlin
Mathematisch-Naturwissenschaftliche Fakultat 11
Institut fiur Informatik

Berlin, den 1. August 2011

Erstgutachter:
Prof. Dr. Peter Eisert

Zweitgutachter:
Dr. Ingrid Hotz

Table of Contents

1 Challenges in Tensor Field Visualization and Related Work
1.1 Introduction

1.2 Mathematical Fundamentals
1.2.1 Notation
1.2.2 What is a Tensor?
1.2.3 Properties of Tensors, their Decomposition and Important Qual-
ities
1.2.4 Tensors and their Application
1.2.5 Topology and Singularities

1.3 Topology Extraction and Segmentation
1.3.1 Topology Extraction
1.3.2 Segmentation

1.4 Related Work
1.4.1 Related Visualization Concepts
1.4.2 Related Methodological Work

1.5 A System for Visual Data Analysis — Amira

1.6 Preview

2 Conceptual Details and Implementation

2.1 Data Structures and Requirements
2.1.1 Data Structure
2.1.2 Requirements and Pre-processing

2.2 Transformation of Eigenvalues
2.2.1 The Metric

2.3 Topology-based and Segmentation-based Glyph Placement
2.3.1 The Algorithm
2.3.2 Implementation
2.3.3 Parameters
2.3.4 Constraints

2.4 Texturization of Segmented Tensor Fields

=W =

© I &~

13
13
15

16
16
19

20
21

23

24
24
25

26
27

28
28
32
34
36

37

TABLE OF CONTENTS

2.4.1 Fundamentals

2.4.2 The Algorithm

2.4.3 Implementation

2.4.4 Blur by Fractional Anisotropy or Shear Stress
2.4.5 Constraints

3 Analysis of Geometry-based and Texture-based Visualization of Tensor Fields
3.1 Datasets

3.2 Results
3.2.1 Geometry-based Visualization of Segmented Tensor Fields
3.2.2 Texture-based Visualization of Segmented Tensor Fields
3.2.3 Texture Design and Input Pattern Frequency

3.3 Discussion
3.3.1 Mutual Agreement and Differences of the Visualization Methods
3.3.2 Evaluation of the Visualization Methods

3.4 Conclusion

3.5 Future Work

A Pseudo-Code
A.1 Pre-processing

A.2 Topology-based and Segmentation-based Glyph Placement

B Shaders
B.1 Texturization of Segmented Tensor Fields

References

37
40
47
48
48

51
51
52

54
99

60
61
62

63
64

67
67
69

70
70

75

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

Geometry-based and texture-based tensor field visualization
Deformation

Tensor interpolation

Divergence and vorticity

Vector fields

Critical points

Degenerate points

Topology

Half-sectors

Cells defined by topological skeleton

Segmentation

LIC

HyperLIC

Physically-based methods for tensor field visualization
Amira

Outline of the cells of the segmentation
Pre-processing
Transfer functions

Visualization of the two key steps for computing the center of area

Signed area of triangles

Partitioning of a polygon

Topological graph with barycentroids I
Characteristic cells

Topological graph with barycentroids II
Topological graph with barycentroids I11
Potential

OpenGL programmable render pipeline
Texture mapping

Computation of the texture coordinates
Texture mapping for triangles
Two-point load with texture mapping I
Two-point load with texture mapping II
Adaptive pattern scaling I1

Adaptively scaled pattern

© 00 W

25
26
27
29
31
31
33
34
35
36
37
38
39
41
41
43
43
46
49

LIST OF FIGURES

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Outline of two cubic domains with loads applied
Segmentation-based and topology-based glyph placement I
Segmentation-based glyph placement 11

Comparison of shaders I

Comparison of shaders 11

Two-point load with adaptively scaled pattern
Experimental results I

Blur by fractional anisotropy

Blur by shear

One-point load rendered with two different input pattern.
Two-point load rendered with a bidirectional input pattern.
Experimental results II

Geometry-based and texture-based tensor field visualization

52
53
o4
95
95
56
o7
o8
o8
99
60
61
62

Zusammenfassung

Tensoren werden hdaufig verwendet uwm physikalische und mechanische Phd-
nomene zu beschreiben. Der Begriff der Tensoren wurde in der Physik
eingefihrt und spdter vor allem im Bereich der Tensoralgebra mathema-
tisch prazisiert. Tensoren sind in verschiedenen wissenschaftlichen Berei-
chen geldufig, z. B. der Medizin, der Geologie, der Physik und der Mecha-
nik. Dennoch sind Tensoren aufgrund threr Komplexitdit oft nur schwer zu
analysieren und interpretieren, dies hat zur Entwicklung der Tensorfeld-
visualisierung gefihrt. Die Tensorfeldvisualisierung ist ein Teilgebiet der
wissenschaftlichen Visualisierung. Deren Methoden konzentrieren sich vor
allem auf die Visualisierung skalarer Werte und Vektorfelder. Diese Me-
thoden miissen fiir die Tensorfeldvisualisierung erweitert werden, da Ten-
soren mehr Informationen codieren. Die Bedeutung der einzelnen Kompo-
nenten eines Tensors ist ohne Kontext nicht offensichtlich. Vielmehr bildet
ein Tensor eine Einheit, welche als Ganzes analysiert werden muss. Dies
kann durch eine Analyse der Invarianten eines Tensors durchgefiihrt wer-
den, z. B. der Eigenwerte und Eigenvektoren. Der Schwerpunkt in dieser
Arbeit liegt auf Spannungstensoren aus der Mechanik.

In dieser Arbeit wurden zwei verschiedene Visualisierungsmethoden fir
zweidimensionale segmentierte Tensorfelder entwickelt. Eine diskrete Vi-
sualisierungsmethode, welche die Spannungen im Tensorfeld anhand von
geometrischen Objekten sichtbar macht, und eine stickweise kontinuier-
liche Visualisierungsmethode, welche die Spannungen im Tensorfeld an-
hand von Texturen veranschaulicht. Bei der Segmentierung des Tensor-
feldes werden Regionen mit dhnlichen Eigenschaften extrahiert. Diese Re-
gionen sind als Zellen gegeben und dienen als Grundlage fir die Visua-
lisierungen. Die Aufgabe der Visualisierung mittels geometrischer Objek-
te ist es, lokale Reprisentanten in den Zellen zu platzieren, so dass die
Eigenschaften des Tensorfeldes deutlich werden. Um diese Figenschaften
zu, visualisieren, werden die Figenwerte auf ein beschrinktes positives In-
tervall abgebildet. Dieser Ansatz ist eine Modifikation der in der Tensor-
feldvisualisierung bekannten Methode des ,,glyph placement®. Im Gegensatz
zur diskreten Visualisierung des Tensorfeldes mittels geometrischer Ob-
jekte liefert der texturbasierte Ansatz eine stickweise kontinuierliche Vi-
sualisierung. Die charakteristischen Merkmale wie Druck und Zug werden
dabei durch Texturen wider gegeben. Dabet wird einerseits eine Eingabe-
textur nach dem zugrunde liegenden Figenvektorfeld ausgerichtet, anderer-
seits durch die transformierten Eigenwerte skaliert und auf die einzelnen
Zellen aufgetragen.

Beide Visualisierungsmethoden werden anhand von zwet simulierten Bei-
spielen demonstriert und miteinander verglichen.

Abstract

Tensors are commonly used to describe physical and mechanical phenom-
ena. The concept of tensors was introduced in physics and later refined in
mathematics, especially in the field of tensor algebra. Tensors are used in
different scientific areas, for example medicine, geology, physics and me-
chanics. However, due to the inherent complexity of tensor data, analysis
and interpretation is often difficult; this has led to the development of ten-
sor data visualization methods. Tensor field visualization is a sub-branch
of scientific visualization. Scientific visualization focuses on scalar-based
and vector-based methods. For tensor field visualization these methods are
extended, as tensors are multivariate by nature and encode more infor-
mation. The meaning of individual components of a tensor is not obvious
without context; a tensor forms one entity that must be analyzed as a whole.
The tensor invariants, e.q. eigenvalues and eigenvectors, provide a useful
means of analysis. The focus in this thesis is on stress and strain tensors.

This work is concerned with two different visualization approaches for 2D
segmented tensor fields. Based on a pre-computed segmentation of the orig-
inal tensor field, a geometry-based discrete visualization and a piecewise
continuous texture-based visualization are presented. The segmentation of
the tensor field allows extraction of regions with similar properties. These
regions are given as explicit cells and serve as the basis for the visualiza-
tion. The task of the geometry-based visualization approach is to place a
geometric icon in each extracted cell. The icon represents chosen tensor
characteristics for the extracted cell. In order to visualize these charac-
teristics, the eigenvalues are transformed to a restricted positive interval.
This approach is a modification of glyph placement, which is a well-known
in tensor field visualization method. In contrast to discrete visual repre-
sentation of the tensor field by glyphs, texture-based visualization provides
a piecewise continuous representation. The characteristic features of the
tensor field - regions and directions of compressive and expansive forces -
are represented by textures. An input texture pattern is aligned according
to the eigenvector field, scaled by the transformed eigenvalues and mapped
onto each cell.

As proof of concept, the methods developed in this thesis are applied to
synthetic datasets and the visualization approaches are compared.

vii

Chapter 1

Challenges in Tensor Field
Visualization and Related Work

1.1 Introduction

The word tensor and the concept of tensor analysis were introduced in the middle of
the nineteenth century. Tensor fields or stress tensors are common terms to describe
physical and mechanical phenomena and quantities. The visualization of for example
stress and strain tensor fields is used to gain more insight into structure and tool
strain. Since tensors extend the concept of scalars, geometric vectors and matrices
to higher orders, tensors and tensor fields encode information of higher complexity.
A tensor can be represented by a multi-dimensional array of numerical values, with
respect to a given frame of reference.

The goal of tensor field visualization is to render a given dataset in order that
the characteristics of the tensor field can be recognized. One basic approach is to
depict the tensor dataset based on scalar visualization techniques. In doing so, every
numerical value of the multi-dimensional array in a tensor dataset will be displayed as
a separate scalar field; however, this approach is accompanied by a loss of important
information and coherencies. Visualizations based on a eigendecomposition display
more characteristic information, in particular they are invariant under a change of the
reference frame. By means of the eigendecomposition the eigenvalues and eigenvectors
of a tensor can be determined. The eigenvectors form a local coordinate system, in
which the quantity encoded by the tensor reaches extremal values. These extremal
values are called the eigenvalues. The eigenvalues and eigenvectors describe the tensor
completely and they provide a basis for many of the tensor field visualization meth-
ods. For 2D tensor fields, a common approach is to observe the minor and major
eigenvalues and the corresponding eigenvectors as separate "vector fields". Tensor
field visualizations have to extend scalar and vector based visualization approaches,
because tensors extend the concept of scalars and geometric vectors. The challenge in
tensor field visualization is to encode complex data such that the important features
and coherencies of tensor fields can be displayed, moreover the focus of the observer

1.1 INTRODUCTION

can be directed to specific characteristics, which would not have been visible by a
scalar-based or vector-based visualization method.

In order to reduce the amount of data that is necessary to encode the infor-
mation of a tensor dataset, recent research has focused on a segmentation of tensor
fields [3, 23, 27]. One possible approach for the segmentation is to consider the topo-
logical structure. This segmentation aggregates regions of similar behavior of the
tensor field in a given domain. They are bounded by the tensor lines of the minor
and major eigenvector fields. The starting point for the work presented here is the
segmentation algorithm presented by Auer et al. [3]. Most of the extracted regions
are curvilinear cells with specific characteristics. These specific characteristics are the
motivation for a new geometry-based and texture-based visualization approach.

One simple and fast way to encode the tensor data in a discrete manner is
glyph placement. In glyph placement the tensor dataset values are mapped onto
geometric icons. A geometric icon (glyph) reflects various attributes of the tensor.
These attributes can be mapped onto location, direction, orientation, size and color.
Glyph placement is a discrete visualization method and cannot convey information
about every point. Texture-based tensor field visualization concepts, in contrast,
present the information of the tensor field to the observer in a piecewise continuous
signal by the use of textures. A well-known texture-based visualization method is
tensor line integral convolution (LIC), which encodes the direction of single eigenvector
fields.

In our framework the extracted cells of the segmentation are used for both glyph
placement and texturization. Due to the simplification and classification of the tensor
field into characteristic regions we are able to encode more information in a single
visualization pass as a single glyph represents a whole region. The similar structure
of the extracted segments is the primary the reason for the texture mapping. Most of
the cells have three or four corner points, only few of them are of higher complexity.
Moreover, the segmentation inherently provides the parametrization for the texture
mapping.

The realization of our framework deals with different challenges with regard to
the field of visualization and uses the methods of computer graphics. The task is to
evolve a different geometry-based and texture-based visualization method, founded
on a given segmentation. For the discrete, geometry-based approach, the center of
each arbitrary shaped planar cell has to be computed. This is achieved according the
algorithm developed by Rustamov et al. [22]. For the piecewise continuous texture-
based visualization method the algorithm presented by Hummel et al. [18] is extended.
In contrast to Hummel, the illustrative rendering of integral surfaces is applied to
tensor fields. Therefore, the texture coordinates of every extracted cell, which takes
into account the shape of the polygon and the information about the bounding tensor
lines, require computation. Moreover, the framework presented here explores and
evaluates the practice of different texture patterns. The input pattern can either be
procedural or originate from an arbitrary texture image. Figure 1.1 shows an example
of the geometry-based and texture-based visualization approach developed in this

diploma thesis.

(b)

Figure 1.1
Tensor field visualization: (a) geometry-based and (b) texture-based.

The visualization methods presented here are implemented in Amira [25], a
software system for visual data analysis. These methods are demonstrated by means
of two mechanical examples, the one-point load and the two-point load. The one-
point load displays the stress in a 3D-volume due to pressure. The two-point load
displays the stress in a 3D-volume due to pressure and strain. At the beginning of
the thesis a brief overview of the mathematical fundamentals of tensors, tensor fields
and tensor field segmentation is given. The "Related Work" section reviews well-
known tensor field visualization concepts. The geometry-based and texture-based
visualization methods, which are founded on a given segmentation, form the main
part. An evaluation of the developed tensor field visualization methods concludes
this diploma thesis; in particular, the advantages and drawbacks of the visualization
methods are discussed, and ideas for possible improvements are suggested.

1.2 Mathematical Fundamentals

Tensors have a long tradition in physics, engineering, and mathematics. In the next
section, a brief overview of tensors and their properties is given. Since the underlying
mathematics is very complex and beyond the scope of this work the interested reader
is referred to the subject literature for further information [1, 14, 10]. This work is
restricted to an intuitive but still very common definition. This will familiarize the
reader with the theory that is necessary to understand tensor field visualization.

1.2 MATHEMATICAL FUNDAMENTALS

1.2.1 Notation

If not other specified the following notation holds for the work presented here. For
tensors T as well as for matrices M bold capital letters are used; I refers to the identity
matrix. We use ¥ and @ when referring to a directional vector, for eigenvectors we
use v and w to signify the property of bidirectionality. Greek letters (i.e. o) denote
scalars — particularly, Ai,..., A, denote the eigenvalues. Lower case letters from the
middle of the alphabet are used for integers (i, j, k, [, m,n). Furthermore, lower case
letters from the end of the alphabet are used for real numbers (r, s,t, x,y).

1.2.2 What is a Tensor?

Physicists and engineers may give a different answer to the question: What is a ten-
sor? The differing definitions of tensors describe the entity from different perspectives;
moreover, they reflect the importance of tensors in various application areas. The the-
sis presented here uses the definition of a tensor as numerical array — a definition that
remains popular in many physics and engineering text books. For further definitions,
the interested reader is referred to subject literature |1, 14, 10].

Tensor as Multidimensional Array

As mentioned above, tensors extend the concept of scalar values, geometric vectors and
matrices. Such a tensor T can be described by a multi-dimensional array of numerical
values. A scalar is a zeroth-order tensor and a vector is a first-order tensor. A k x k
matrix T can describe a second-order tensor. In general, an order-n tensor can be
described by an n-dimensional array of k components with respect to a given reference
frame. The matrix can be interpreted as a multilinear mapping from 7" : R xR" — R:

T(¥, @) =4 - T -, (1.1)

where - is the standard matrix multiplication.

1.2.3 Properties of Tensors, their Decomposition and Important Qual-
ities

In a tensor field or tensor data set, every point in the domain corresponds to a tensor.
Most of the tensor field visualization applications deal with second-order tensors. The
two mechanical examples used to evaluate and demonstrate the developed visualiza-
tion concept are three dimensional tensor fields: two cubic domains with different
loads applied. For the segmentation the dimension is reduced by slicing. Therefore,
in the following chapters of this work a tensor alludes to a 2-dimensional symmetric
second-order tensor. This holds in particular for the this section, which describes the
properties of symmetric second-order tensors.

1.2.3 Properties of Tensors, their Decomposition and Important Qualities

Tensor Invariance

Tensors are not dependent on a special reference frame. They are invariant under
coordinate transformations. A tensor can be transformed from one coordinate system
into another. Particularly, this means that the tensor components change according
to the transformation laws; however, the characteristics of the tensor stay the same.

Symmetry

A two-dimensional second-order tensor S is called symmetric if the corresponding
matrix is symmetric. For a second order tensor S this is S(v, W) = S(w, ¥) for all v, €
V', where V' is an two-dimensional vector space. A tensor A is called antisymmetric if
the sign changes when exchanging two adjacent arguments. For a second-order tensor
A this is A(V,w) = —A(w, ?) for all v,% € V. Every tensor can be decomposed into
a symmetric and antisymmetric part T =S + A, where S = 1/2(T + T?) and A =
1/2(T — T*). The symmetric part describes the deformation and the antisymmetric
part refers to the rotation.

Eigendecomposition and Diagonalization

Eigendecomposition reveals the internal structure, the variance in the data structure
of T. Such an eigendecomposition represents T in terms of its eigenvalues and eigen-
vectors.

2
T=> A @0 ! (1.2)
=1

T is fully described by its eigenvalues A1, Ay and corresponding eigenvectors 01, Vs,
such that T -v; = A\ -17{, T - v = A9 -vg and always A\; > Ao. They can be computed
by solving the characteristic equation:

det(T — M) = 0 (1.3)

The eigenvectors give the direction of extremal variation of the quantity encoded
by the tensor of a given point; the eigenvalues give the values of those extremal
variation. The notation v and w implies the fact that the eigenvectors have no
orientation. For symmetric tensors the eigenvalues are real and the eigenvectors are
mutually orthogonal. The eigenvectors form a basis for the diagonal representation
of the tensor. The eigenvectors that correspond to the larger eigenvalue A1 are called
major eigenvectors. The eigenvectors that correspond to the smaller eigenvalue Ay are
called minor eigenvectors.

1® denotes the outer product, with (vl) ® <w1> = (v1w1 v1w2>
v2 wa v2wW1 V2W2

1.2 MATHEMATICAL FUNDAMENTALS

Definiteness
Tensors can be distinguished by their definiteness. A tensor T is called

positive definite, if ZT TZ > 0, for all non-zero # € R2.

negative definite, if ZTT# < 0, for all non-zero # € R2.

positive semi-definite, if 1 TZ > 0, for all non-zero ¥ € R2.

negative semi-definite, if 7 TZ < 0, for all non-zero ¥ € R2.
If none of the characteristics applies, the tensor is called indefinite. For positive
definite tensors A; > 0. For positive semi-definite tensors A; > 0. For the evaluation
of the work presented here stress and strain tensors are used, which are symmetric,

but in general not positive semi-definite. Examples of positive semi-definite tensors
are diffusion and deformation tensors.

Polar Decomposition

For a positive definite tensor T, e.g.a diffusion tensor, the polar decomposition is
useful. The polar decomposition decomposes the transformation represented by T
into two stages: a rotation R and a right stretch U or a left stretch V.

T=R-U=V-R (1.4)

If the tensor is symmetric and positive definite, the tensor is called stretch. If the
tensor is orthogonal with the determinant equal to one, the tensor is called rotation.

Anisotropy and Isotropy

Anisotropy is the property of being direction dependent, i.e. an anisotropic medium
exhibits different properties along different directions, whereas an isotropic medium
exhibits the same property in all directions around a given point. A tensor T can be
decomposed into an isotropic and anisotropic or deviatoric part

T— %tr(T)-HD. (1.5)

The isotropic part represents a direction independent transformation, i.e. uniform scal-
ing or uniform pressure. The deviatoric part represents the distortion. The anisotropy
can be displayed by scalar visualization methods. To express the anisotropy several
measures have been proposed. A common measure in context of diffusion tensors is
the fractional anisotropy introduced in [5]

paz fLVZimi- (1.6)

2 /\2+A2 '

1.2.4 Tensors and their Application

and the relative anisotropy also introduced in 5]

RA—= /1) 2zl (1.7)

2)\1+)\2 '

where p = 1/2(A\; + A\2) is the mean diffusivity.

Shear Stress

Stress is a measure of internal forces acting within a tensor field. These internal forces
are a reaction to external forces applied to a medium. Concerning the whole tensor
field, directions of cutting planes that exhibit the maximum tangential or maximum
shear stress are of special interest. The directions as well as the magnitude are of
importance for failure analysis. Different shape descriptors and failure models describe
the magnitude of shear stress. Similar to anisotropy, these models encode scalar tensor
field information and can be visualized by scalar tensor field visualization methods.
The magnitude of shear stress can be computed by the following formula:

o=A—A2. (1.8)

1.2.4 Tensors and their Application

Due to the well-founded mathematical framework, tensors are used in a variety of
application areas. This section introduces commonly used types of tensors. The goal
of this section is not to give a complete overview of all tensors. and their application
areas. Rather, several common kinds of tensors are singled out, along with examples
of their application and characteristic properties.

Diffusion Tensors

Medicine is one example of the use of diffusion tensors. A diffusion tensor describes the
anisotropic diffusion behavior of water molecules in tissue for example when studying
the control nervous system. Considering the whole diffusion tensor field, one is typi-
cally interested in the regions with high anisotropy, since the anisotropy is high in the
direction of the neuronal fibers. These are regions with strongest diffusion. With this
characteristic of the diffusion tensor field it is possible to examine the fibrous structure
of the underlying tissue. This can give physicians information concerning the diseases
and abnormalities of the central nervous system. A diffusion tensor contains the fol-
lowing information: the principal diffusion direction, its strength and its anisotropy.
The rate of diffusion is the same in directly opposing directions. This means that in
regard to the properties of a diffusion tensor it is symmetric and positive semi-definite.

Curvature and Metric Tensor

In geometrical applications curvature and metric tensors are often used. A curvature
tensor describes the change in the surface normal of a geometric object in any given

1.2 MATHEMATICAL FUNDAMENTALS

direction. Often the user is interested in the principal curvature direction and its
extremes. This information can be extracted by eigendecomposition; the eigenvec-
tors describe the direction of maximal and minimal curvature, and the corresponding
eigenvalues give the quantities of the curvature. The sign of the eigenvalues encode
whether the surface is locally convex, concave or saddle shaped. Particularly, the
characteristic properties of curvature tensors are symmetry and indefiniteness.

In geometry metric tensors are used to measure angles and the length of vec-
tors, independently to a given reference frame. This encodes the commonly known
dot product. Like curvature tensors, the metric tensors are symmetric; however, in
Euclidian space the metric tensors are positive definite.

Stress and Strain Tensors

Stress and strain tensors are commonly used in mechanical engineering. Together,
they specify the behavior of a continuous medium under load, giving information about
a material’s stability. Stress tensors encode information about the stress within the
volume of a specific material under certain external loads: its direction, its strength,
its anisotropy and its compressive or tensile forces, which can be distinguished by
the sign of the eigenvalues. In mechanical engineering, negative eigenvalues refer to
compressive forces and positive eigenvalues refer to tensile forces. Therefore, stress
and strain tensors are symmetric but in general not positive semi-definite. Figure 1.2
shows the deformation of a unit probe under influence of a stress tensor [16].

w. i -~

Figure 1.2
Deformation of a unit probe for a force parallel to eigenvector in direction w; [16]. Image
courtesy Hotz.

Tensor Field and Tensor Interpolation

In a tensor field or tensor dataset over a given domain D C R? a matrix T(p) corre-
sponds to every point p € D. However, such a sampled dataset on a given domain or
grid describes an intrinsically continuous quantity. To reconstruct or approximate the
continuous function an interpolation scheme is necessary. Especially, for performing

1.2.5 Topology and Singularities

the segmentation, the basis of our tensor field visualization framework, one has to
adaptively refine the given tensor dataset. For these newly inserted grid points the
tensor values have to be interpolated. Common interpolation schemes can be divided
into two groups: tensor interpolation is applied to single components of the tensor
and interpolation schemes that use the tensor invariants, i.e. the eigenvalues and the
eigenvectors. The first interpolation scheme has the drawback that the invariants of
a tensor are in general not linear. More advanced algorithms have been presented
in [2, 21| to preserve the features of the tensor data. In the given segmentation
and presented visualization framework the tensor data are interpolated by the latter
method [17]. The method presented by Hotz et al. [17] decouples the direction and the
shape; particularly, this has the advantage that the interpolation is shape-preserving
(see Figure 1.3).

Figure 1.3
Comparison between (a) linear component-wise interpolation and (b) shape-preserving linear
tensor interpolation based on the tensor invariants. Image courtesy Hotz.

1.2.5 Topology and Singularities

Topology extraction is a method that separates a scalar, vector or tensor field into
regions with qualitatively homogenous behavior. The topology is a graph with nodes
and connecting edges. This leads to a topological skeleton of the field, concerning the
eigenvector directions, and gives a global overview.

Vector Field Topology and Singularities

One way of starting to understand the topology of tensor fields is to look at the
topology of stationary vector fields. For convenience a 2D vector field is defined as a

1.2 MATHEMATICAL FUNDAMENTALS

mapping f : D — R?, where D is a subset of R?.

The flow behavior can be classified by the important quantities divergence and
vorticity (see Figure 1.4). The divergence is the magnitude of a source or sink at a
given point in a vector field. The vorticity is the tendency for elements of a vector
field to rotate.

e "A positive divergence at p denotes that mass would spread from p outward.
Positive divergence points are called sources" [26].

e "A negative divergence at p denotes that mass gets sucked into p. Negative
divergence points are called sinks" [26].

Figure 1.4
(a) Source point, (b) sink point and (c¢) hight-vorticity field. From [26].

Such a vector field can be displayed by placing a line glyph, with the direction
and magnitude of the vector, at the position p of a given Domain D. These glyphs can
be seen as "trajectories over a short time interval At" [26]. Stream objects visualize
such trajectories over a longer period of time. These stream objects or stream lines
show the flow of a vector field, and the stream line in a given location p is tangent
to the vector at p. A formal definition is given in [26]. An integral curve or stream
line "is the curved path that an imaginary particle would pass over a given integral
interval 7" and a given start location or seed py" [26], i.e. from a source to a sink. This
leads to the formal definition of stream lines [26]:

T

S ={p(r),7€[0,T]},p(1) = /t:O U(p)dt ,where p(0) = po and ¥ = (vy,v2) (1.9)

This equation can be numerically solved, for example, by Euler integration, by dis-
cretizing the time ¢ and replacing the integral with the finite sum

- T/At
/ v(p)dt = Z U(p;)dt ,where p; = pi—1 + vi—1At. (1.10)
=0 i=0

The resulting stream line is approximated by a piecewise-linear curve or poly-line.
Stream lines of a vector field are depicted in Figure 1.5.

10

1.2.5 Topology and Singularities

saddle

source

saddle
saddle

source

(a) (b)

Figure 1.5
Outline of two different vector fields: (a) stream lines and (b) topology.

@ 3 W WK

(a) (b) (c) (d)
Figure 1.6

Examples of first-order critical points: (a) center, (b) saddle point, (¢) source and (d) sink.

Critical points in a vector field are singularities in the field such that ¢(p) = 0.
Critical Points of a vector field can be classified by the eigenvalues of the Jacobian?

matrix J at a position P:
Ovg Ovg
0 0
J(P) = (3@ &f’y) . (1.11)

ox oy

An overview of the first-order critical points is given in Figure 1.6.

Separatrices are distinguished stream lines that separate a vector field into
regions with similar behavior.

The topology of a vector field (Figure 1.5(b)) is a graph with the critical points
as nodes and the separatrices as edges. This means that in the topological graph or

2n x m-Matrix of all first-order partial derivatives of a differentiable function f : R® — R™

11

1.2 MATHEMATICAL FUNDAMENTALS

structure of a vector field a stream line from the inside of one extracted region cannot
cross a separatrix and enter another extracted region.

Tensor Field Topology and Singularities

To review Section 1.2.4, in a tensor field or tensor dataset a matrix T(p) corresponds
to every point p € D, where D C R?. Tensors can be described by their invariants:
the eigenvalues and eigenvectors. The eigenvector fields can be integrated. Integrating
these two eigenvector fields yields two orthogonal families of continuous curves, the
tensor lines. These tensor lines are used for the topology-based segmentation, which
is introduced later in this chapter.

Degenerate points in a tensor fields correlate to critical points in vector
fields. These singularities are points where the eigenvalues are equal to each other,
hence the eigenvectors are no longer defined uniquely. In a tensor field there are two
kinds of elementary degenerate points: wedges and trisectors (see Figure 1.7). These
elementary degenerate points can combine to form more, generally unstable structures
in a tensor field — such as saddles, nodes, centers or foci. For further details the reader
is referred to [13].

VW W

(a) (b)

Figure 1.7
First-order degenerate points: (a) two types of wedge points and (b) trisector

Separatrices are distinguished tensor lines that separate the domain into re-
gions with qualitatively homogenous eigenvector behavior. In a tensor field we have to
distinguish between two classes of separatrices, one for the major eigenvector field and
one for the minor eigenvector field. Similar to vector fields, a tensor line belonging to
the major or minor eigenvector cannot cross the corresponding separatrix and enter
into another extracted cell.

Similar to vector fields, the structure of a tensor field is defined by its topology.
The topology of a tensor field gives global information about the tensor field. Distin-
guished points (degenerate points) and distinguished tensor lines (separatrices) form
the skeleton for the topological structure. In one extracted region of the topological
structure all tensor lines have a similar behavior. When computing the topological
graph and the segmentation, the tensor lines must be computed. In the algorithm
used for this framework, the tensor lines are computed by a Runge Kutta 4" order
integration scheme. The step size for the integration is adapted to the change of the
eigenvector field.

12

1.3 Topology Extraction and Segmentation

As an input for the geometry-based or texture-based approach presented here, either
the topological graph or the extracted segmentation is used. The topology extraction
and segmentation used in this framework is based on the approach presented by Auer
et al. [3]. In [3], the topological structure of both eigenvector fields are taken into
account. These extracted topologies are based on distinguished points, the so called
degenerate points, and connecting edges, the separatrices. The topological graphs of
both eigenvector fields are combined.

(a) (b)

Figure 1.8
Topological skeleton of the major (red) and minor (blue) eigenvector field: (a) one-point load
and (b) two-point load.

1.3.1 Topology Extraction

Separatrices exhibit certain characteristic behaviors in the vicinity of a degenerate
point. Accordingly, one can distinguish between basic sectors with similar proper-
ties. In particular, they enter a degenerate point radially, constitute the edges of the
topological graph and, moreover, depict the base for the segmentation. The neighbor-
hood of a degenerate point and the nearby separatrices are characterized by a number
of half-sectors. One can distinguish between three different sector types of similar
characteristic behavior; hyperbolic, parabolic and elliptic sectors (see Figure 1.9):

- Hyperbolic sector — the tensor lines never reach the degenerate point
- Parabolic sector — the tensor lines end at the degenerate point

- Elliptic sector — all tensor lines begin and end at the same degenerate point

13

1.3 TOPOLOGY EXTRACTION AND SEGMENTATION

elliptic
- elliptic

- concentric

Figure 1.9
Half-sectors in the vinicity of degenerate points. Image courtesy Auer.

The topology extraction in this thesis only makes use of the separatrices that bound
hyperbolic sectors.

()

Figure 1.10
Cells defined by topological skeleton: (a) regular cell without degenerate points, (b) hyperbolic
sector, (c) parabolic sector and (d) elliptic sector. Image courtesy Hotz.

The resulting topology extraction (see Figure 1.8 for the two- and one-point
load), is composed of the topological skeleton of the major and minor eigenvalue field,
the red and blue tensor lines, with the following four characteristics (cells contain-
ing degenerate lines were not taken into consideration, they can exhibit even more
complicated structures).

1. Cells without degenerate points
— quadrangle with alternating red and blue tensor lines; all "angles are orthog-
onal" [3] (see Figure 1.10(a))

2. Cells with one degenerate point lying on a hyperbolic sector
— quadrangle with alternating red and blue tensor lines; "the angle at the

14

1.3.2 Segmentation

degenerate point is in general not orthogonal" [3] (see Figure 1.10(b))

3. Cells with one degenerate vertex lying on a parabolic sector
— triangular shape (see Figure 1.10(c))

4. Cells lying on a elliptic sector
— "cells with either two or three vertices are possible" [3] (see Figure 1.10(d))

1.3.2 Segmentation

The topological graph can be further adaptively refined to achieve a pre-determined
resolution, accuracy and uniformity of the segmentation. This adaptive refinement
workflow involves both subdivision and merging of cells, based on scalar invariants as
similarity or dissimilarity measurements. These scalar invariants can be, for example,
the anisotropy or shear stress. In the segmentation approach implemented in Amira
several dissimilarities measures are combined. The final extracted segmentation can
be considered as a "visualization of glyphs in the form of tiles" [3]. The geometry of
the tiles or cells exhibits statistic similarities. Most of the cells exhibit triangular and
quadrangular structures; however, other geometric structures appear mostly on the
borders of the tensor field or in regions that contain degenerate points.

(a) (b)

Figure 1.11
The bounding major tensor lines of the cells are marked in red and the bounding minor tensor
line are marked in blue: (a) segmentation of the one-point load and (b) the two-point load.

15

1.4 RELATED WORK

1.4 Related Work

Often the tensor field visualization methods arise from vector field visualization. These
methods frequently concentrate only on the eigenvectors and neglect important quan-
tities of the tensor, for example the eigenvalues or the anisotropy of a tensor field.
Furthermore, these visualization methods are not able to provide an intuitive physical
interpretation. A lot of researchers focussed on diffusion tensor field visualization;
however, often these methods are not appropriate for other contexts. In the following
section the visualization concepts related to the framework developed in this thesis
are introduced.

1.4.1 Related Visualization Concepts

Among the different visualization concepts for tensors one can distinguish between
local and global visualization concepts. Geometric objects, for examples glyphs and
tensor splats |6] provide local methods. These can display the local tensor properties
very well, but they have the drawback that they cannot display coherencies between
the sampled data points. Local methods fail to provide a global overview. Global
visualization methods, on the other hand, are more appropriate if one wants to display
an overview and emphasize regional coherency; however, often they are restricted to
scalar-valued or vector-valued features. Line integral convolution (LIC) [8] is a global
visualization method for vector fields. HyperLIC [28] adapted the LIC algorithm to
tensor fields. Hotz et al. [16] extended both algorithms, with the focus on the physical
interpretation of tensor fields.

Geometry-Based Visualization Concepts

One basic approach of tensor field visualization is using glyphs. A glyph is a geo-
metric shape that represents the tensor at a given point. One simple example for
a glyph is an ellipsoid. The glyph is aligned to the eigendirections and scaled ac-
cording to the corresponding eigenvalues. Other examples are cuboids, cylinders and
superquadrics [4]. Although the glyphs represent the invariants of the tensor it is
difficult to obtain a global overview of the complete tensor field. The choice of the
geometry determines the tensor information that can be encoded. One problem is the
trade-off between the sampling density and the glyph geometry or, in other words, the
trade-off between the clarity of perception and the information content. Hence, the
choice of the geometry should be connected to the glyph placement algorithm and the
sampling density. To avoid cluttering and occlusion in dense glyph visualization the
glyphs are scaled down. Therefore, dense glyph visualization should use less complex
geometries, whereas the visualization of selected regions (probing) can use more elab-
orate geometries. Complex glyphs, encoding more features than the basic invariants,
were introduced by Leeuw et al. [12] in the context of flow probes.

For stress and strain tensors the visualization goal is to encode compressive and
expansive forces. They are encoded in the sign of the eigenvalues. A simple method

16

1.4.1 Related Visualization Concepts

to depict compressive and expansive forces is to encode them in the color of the
glyph surface. Other approaches normalize the eigenvalues or apply a positive-definite
metric to the shape descriptor of the geometry. Such a metric maintains the physical
meaning of the tensors [16]. Glyph-based visualization methods are very well-known
and commonly used in tensor field visualization, although there are a lot of unsolved
problems: cluttering and occlusion, the sign of the eigenvalues demands special glyph
design or eigenvalue mapping, and the perception of the encoded information depends
on the sampling density. The information of a single glyph can be depicted very well;
in contrast, the global information, the coherency between single values of the glyphs,
cannot be displayed.

The basic idea of tensor splats [6] is to employ flat, planar icons that are able
to encode the same information as ellipsoids. In contrast to ellipsoids, the icons
have a color value, an opacity value and fade out smoothly. Thus, visual clutter is
reduced and regions of interest are emphasized. For example, for diffusion tensors the
anisotropy can be encoded in the opacity. Regions of high opacity emphasize highly
anisotropic regions. The color can be assigned with respect to eigenvalues.

The advantages of glyphs and tensor lines, which follow the eigenvector direc-
tions, are combined in hyperstreamlines. Hyperstreamlines are stream lines or stream
tubes constructed from one eigenvector field; the other eigenvectors are encoded in
the cross section. For further details the interested reader is referred to [26], as they
are mainly used in 3D volumes.

Texture-Based Visualization Concepts

LIC was introduced by Cabral et al. [8]; it is a concept from vector field visualization,
where the stream lines or flow from a vector field are displayed as a texture. The
stream lines of a vector field and a filter kernel with a noise texture provide the input
for the texture generation. The input texture is convolved with a filter kernel along a
stream line of a vector field. The texture color at a pixel is computed by convolving
the kernel, i.e. gray values of a noise texture, along the stream line. In so doing, the
uncorrelated gray values of the filter kernel correlate in the direction of the vector field.
The original algorithm has the drawback of redundant computation; however, the LIC
algorithm was developed further into the FastLIC algorithm by Stalling and Hege [24].
The LIC algorithm can also be applied to tensor fields, the minor or major eigenvector
field. The disadvantage of this method is that one can only display one eigenvector
field, the minor or major vector field, in one single render pass. Furthermore, the
anisotropy cannot be displayed.

The drawbacks of vector field visualization methods, particularly the LIC al-
gorithm, can be avoided by the use of HyperLIC developed by Zheng and Pang [28|.
HyperLIC depicts the direction of one eigenvector field as well as the anisotropy. In-
stead of computing a 1D convolution, a 2D convolution is performed. Thereby, the
color value of a given pixel is computed by convolving the kernel along the trajectory
of the major and minor eigenvector field. The size of the integration interval is de-
termined by the ratio between the eigenvalues. Subsequently, the computed integral

17

1.4 RELATED WORK

Figure 1.12
LIC: a) wedgepoint b) trisector. Image courtesy Brefler.

is arithmetically averaged. Anisotropic regions are convolved with a narrow kernel.
These regions show similar results to those results computed by the LIC algorithm;
they show one eigendirection. Isotropic regions, in contrast, are convolved with a
broad or square kernel; these regions are blurred (see Figure 1.13). HyperLIC has
the drawback that regions with opposite eigenvalue signs are illustrated as isotropic
regions. In Amira a module for LIC and HyperLIC was implemented by Brefler |7].

A physically-based method for tensor field visualization was introduced by Hotz
et al. [16]. This method provides a continuous representation of the tensor field and
emphasizes the physical meaning of the tensor field, the regions of expansion and
compression. Initially, a positive definite metric is defined, which preserves the topo-
logical structure of the tensor field. This metric maps the eigenvalues onto a restricted
interval. Afterwards, for every eigenvector field an LIC-image is computed; however,
instead of using white noise texture, a texture that resembles a piece of fabric is
used. This kernel texture has several free parameters that encode properties of the
metric. The texture is stretched and compressed according to the values resulting
from the metric. Finally, the two LIC-images are overlaid. The resulting image
(Figure 1.14) displays the eigendirections and, moreover, compression and expansion,
which is strictly restricted to the sign of the eigenvalues. Animating the free param-
eters of the metric can enhance the impression of stretching and compression. For
further details the interested reader is referred to [16].

18

1.4.2 Related Methodological Work

(a) (b)

Figure 1.13
HyperLIC: a) wedgepoint b) trisector. Image courtesy Brefler.

(a)

Figure 1.14
Physically-based methods for tensor field visualization: (a) one-point load and (b) two-point
load. Image courtesy Hotz.

1.4.2 Related Methodological Work

A segmentation of tensor fields yields regions with similar tensor characteristics. The
cells of the segmentation can be considered as planar glyphs of arbitrary shape; how-

19

1.5 A SYSTEM FOR VISUAL DATA ANALYSIS — AMIRA

ever, these cells can also be used for an improved glyph placement or as a basis for
texture mapping.

Computing the Barycentroid

A natural method of segmentation-based glyph placement is to place the glyph in
the center of the cell. For planar convex polygons the center of mass is inside the
cell; however, for planar non-convex polygons the center of mass may lie outside
the cell. To overcome this problem, Rustamov et al. [22] proposed an algorithm for
computing the center of arbitrary shaped polygons, the barycentroid. This algorithm is
based on a new metric, the interior distance. The barycentroid captures the semantic
center of the shape is defined as the point for which the average interior distance
is minimal. Further details of the algorithm and the implementation used in the
framework presented here are given in Section 2.3.

Adaptive Texture Scaling

For the texture mapping, the parameterization is specified by the segmentation, and
a texture is generated that encodes the characteristics of the given tensor cell, i.e. the
eigendirections, the eigenvalues and anisotropy. Hummel et al. [18] developed an algo-
rithm for texture generation that conveys the local direction of a vector field without
distorting the texture. This texturing approach uses a single input texture or pattern
and adjusts the sampling frequency. Thereby, anisotropic stretching of the texture
coordinates can be compensated. Furthermore, the image-space pattern density of
the surface is independently preserved from the size of the patches or cells. Further
details of the algorithm and the implementation used in the framework presented here
are given in Section 2.4.

1.5 A System for Visual Data Analysis — Amira

The visualization methods presented in this thesis have been developed as a module
for the software Amira [25]. Amira is an interactive system for data analysis and
visualization. Figure 1.15 shows the user interface of Amira. The user can load data
and modules into the pool (left upper view) and make connections. In the view below
the user can see and modify the settings of the module. The main view (right upper
view) displays the result rendered by the selected visualization module. Additional
information is displayed in the console (right lower view). Modules for Amira are
implemented in C++, and can be extended with many third party libraries. In the
modules presented here, the third party libraries MATLAB, Openlnventor, CGAL
and OpenGL have been used.

20

e L T R]

Ll E 8 =2

B Onpley complentyy [—F——————— 01 =2

& Calormage o OROOCOOHE N o (e

Ptk = | ’ﬂ..*mum‘“"'-m""m"’“m
=3

Figure 1.15
Highly interactive system for data analysis and visualization: Amira.

1.6 Preview

This chapter introduced the reader to the notation used in this thesis, the mathemat-
ical fundamentals of tensors and tensor fields, as well as to commonly known concepts
of tensor field visualization and related works. Chapter 2 starts with a specification
of the requirements and data structures and provides details of the implementation.
These details are discussed in two sections: one for the geometry-based and one for the
texture-based visualization approach. Each section concludes with a reflection of the
constraints. In Chapter 3 the visualization methods implemented are analyzed and
evaluated. At the beginning of Chapter 3, the datasets that have been used for the
development and evaluation of the framework are described. Subsequently, the results
are presented. In addition, the input texture design is discussed and the geometry-
based and texture-based visualization approach are compared. The conclusion places
these visualizations developed here in the context of related works, which have been
introduced in this chapter. The last chapter ends with a preview of future work.

21

Chapter 2

Conceptual Details and
Implementation

As introduced in the first chapter, the starting point of the developed visualization
methods is a topological graph or a segmentation (see Figure 1.8 and Figure 1.11).
The topological graph aggregates regions with qualitatively homogenous eigenvector
behavior. The segmentation aggregates regions with qualitatively homogenous eigen-
vector and eigenvalue behavior. The cells of the topological graph or segmentation
are passed to the visualization module in an Amira unique data structure. For the
discrete, geometry-based approach, the center of each arbitrary shaped planar cell
is computed. This is achieved according the algorithm developed by Rustamov et
al. [22]. In doing so, choosing global parameters and requirements for all cells posed
a challenge. For the piecewise continuous texture-based visualization method the al-
gorithm presented by Hummel et al. [18] is applied to tensor fields. Furthermore, the
algorithm is extended by additional parameters: the transformed eigenvalues. The
transformed eigenvalues are used to visualize the physical behavior of the tensor field
— regions of expansive and compressive forces. Since the original eigenvalues can
exhibit very small negative and very large positive values, the eigenvalues must be
transformed to a restricted positive interval. This is achieved by a metric defined by
Hotz et al. [16]: eigenvalues below a determined threshold refer to compressive forces
and eigenvalues above a determined threshold refer to expansive forces. Moreover,
the framework presented here explores and evaluates the practice of different input
texture pattern designs (see Section 3.2.3).

Initially in this chapter, the data structures, the requirements and the trans-
formation of the eigenvalues, which is used in the implementations, are explained.
Later the concepts and the details of the implemented visualizations are given (see
Section 2.3 and 2.4). The data structure forms the interface between computing the
segmentation and the visualization methods presented here. The requirements specify
the properties our segmentation needs to fulfill. The conceptual idea of each visual-
ization method is introduced at the beginning of the sections on the geometry-based
and texture-based visualization. Thereafter, the key steps of the algorithms are ex-

23

2.1 DATA STRUCTURES AND REQUIREMENTS

plained in detail. The implementation summarizes these key steps. The sections of the
geometry-based and texture-based visualization approach conclude with a discussion
of constraints.

2.1 Data Structures and Requirements

The topological graph or segmentation of a two-dimensional slice of the 3D tensor
field is computed with an Amira segmentation module developed by Auer et al. [23].
The output of the segmentation is a set of cells, which are bounded by tensor lines.
Dependent on the specific segmentation criteria the size and the shape of the cells
may be very different. Cells that are not adjacent to degenerate points or the domain
boundary have four corner points and are bounded by two major and minor tensor
lines segments. Cells adjacent to degenerate points can have more general shapes.
The treatment of these cells is especially challenging because they do not follow a
predefined pattern. The boundaries of the extracted cells, are stored in an Amira
specific data structure and can be passed to other modules. Furthermore, the orig-
inal tensor data for both visualization approaches is provided in a data structure.
The texture-based visualization approach requires also some input patterns. More
details are given later in Section 2.4, when the implementation of the texturization of
segmented tensor fields is discussed.

2.1.1 Data Structure

A data structure provides the input for the geometry-based as well as the texture-based
visualization module. This data structure stores the information of the topological
graph or segmentation. The information stored is: an array with all vertices, the
cell boundaries, and for each vertex an array with additional information. The cell
boundaries are passed as poly-lines, where the data structure stores the indices of
vertices for each poly-line. The first entry of the data array, which is attached for
each vertex, stores the information about the vertex itself. Only one of the following
can apply for a vertex (see Figure 2.3.2):

1. the vertex is a simple corner point (this implies so tensor line information is
provided),

2. the vertex is a degenerate point (this implies the vertex is also a corner point),

3. the vertex lies on the boundary of the domain and no tensor line information is
provided, or

4. the vertex is a point inside an edge and belongs to a minor or major tensor line.

The second entry of the data array stores information about the shape of the poly-
line, namely the number of corner points. The third entry of the data array stores
information about the tensor line which the vertex belongs to: a major or a minor

24

2.1.2 Requirements and Pre-processing

corner vertex

deg. point

vertex inside edge

® corner vertex
e degenerate point

® border vertex

Figure 2.1
Outline of the cells of the segmentation: degenerate points, vertices, corners and tensor lines.

tensor line. These information are important for the texturization, as the input texture
pattern has to be aligned according to the major and minor tensor lines and the texture
coordinates are computed according to the shape of the cells.

The data structure for the discrete tensor field, which is independent from the
data structure of the segmentation, is based on a triangulated lattice. For each grid
point a tensor is given. Within this lattice the tensor field can be reconstructed
continuously by linear interpolation (see Section 1.2.4 for details of the tensor inter-
polation). For placement of glyphs in the topological graph or in the segmentation,
this data structure is evaluated at the computed barycentroids. For the texture-based
visualization approach, a tensor for each vertex is computed.

2.1.2 Requirements and Pre-processing

As introduced in Section 1.2.5, the tensor lines of the segmentation are computed by an
integration scheme with an adapted step size. This leads to irregular distances between
the vertices of the poly-lines; however, the results of both visualization approaches
depend strongly on the sampling of the poly-lines. In particular, the topological

25

2.2 TRANSFORMATION OF EIGENVALUES

graph of the tensor field consists of arbitrary shaped polygons. In order to compute
the center of the area of each polygon and to place a representative glyph inside the
cell, the bounding poly-lines need to be finely and equidistantly sampled; furthermore,
equidistantly and finely sampled poly-lines of the segmentation also improve the result
of the texture mapping. In addition, double vertices are removed.

To obtain finely and equidistantly sampled cells a pre-processing step is per-
formed. Vertices on a bounding poly-line are removed where they are too close to their
neighbors and form an approximately straight line with the preceding and following
vertices. This pruning of the poly-line is controlled by a distance threshold and an
angle criterion. Conversely, new vertices are inserted if two neighboring vertices on
a poly-line are too far away from each other. This is similarly controlled by a min-
imum distance threshold. Figure 2.2 shows the poly-lines of the boundaries before
and after pre-processing. The pseudo-code for the pre-processing can be found in the
Appendix A.1.

\ SN
% —
= < = v
- \\SE \

Poly-lines of the topology graph: (a) before and (b) after the preprocessing.

2.2 Transformation of Eigenvalues

To review Section 1.2.4 regarding stress and strain tensor fields, positive eigenvalues
correspond to tensile forces and negative eigenvalues correspond to compressive forces.
Based on this observation Hotz et al. [16] have defined a metric which preserves the
tensor field topology. This metric is used to transfer the eigenvalues into a restricted
positive interval. This is required as the eigenvalues can exhibit very small negative
and very large positive values. These transformed eigenvalues are used to encode the
characteristic properties of the tensor data into the glyphs or textures.

26

2.2.1 The Metric

2.2.1 The Metric

This section summarizes the eigenvalues transformation, as introduced by Hotz et
al. [16]. The function F, which defines the metric, transfers "positive eigenvalues
to eigenvalues greater than a and negative eigenvalues to eigenvalues smaller than a
but larger than zero" [16]. Following the notation introduced by Hotz et al. [16], the
transfer function can be defined by the scalars a, ¢ and the function f

F\)=a+o-f(\). (2.1)

The region where the sign changes is of special interest. The function should have
"a large slope in the neighborhood of zero" [16] (see Figure 2.3). The slope can be
adjusted by a parameter. In the following, the functions f used in the texurization
and geometry-based approach presented here are introduced.

20

0,51

10
5
0
5

10

Figure 2.3
Functions f used in the metric: (a) arctangent (red), logarithmic (blue), hyperbolic tangent
(green) and (b) non-symmetric function with different slopes ¢ =3 (red) and ¢ = 1 (blue).

- "Anti-symmetric functions f: f(—=A) = —f(A\)" [16]:

1. Logarithmic function

log(c-A+1),for A >0

(2.2)
—log(l—c-A), for A\ <0

f(xe) —{

27

2.3 TOPOLOGY-BASED AND SEGMENTATION-BASED GLYPH PLACEMENT

The resulting metric should be positive definite. Therefore, o < a/log(c -
Amaz + 1) is limited.

2. Asymptotic functions

f(A;¢) = arctan(c- A) , (2.3)

f(A;¢) = tanh(c- A) (2.4)

where o0 < 2a/7 (for Equation (2.3)) and o < a (for Equation (2.4)) are
independent of A,uz-

- Hotz et al. have also defined an exponential function, which takes into account
the "nonlinear perception of texture attributes" [16]. The function is defined as

F()\) = a-exp(o-arctan(c- \)) . (2.5)

Here o is not limited.

For all four examples, the constant ¢ € R adjusts the slope at the zero crossing. For
high values of ¢, the function becomes steeper. o € R is the scale factor and a € R is
the offset. For further details on the properties of the metric, the interested reader is
referred to [16].

2.3 Topology-based and Segmentation-based Glyph
Placement

The goal of the topological-based and segmentation-based glyph placement is to find
one local exponent which displays the characteristics of the extracted cell. As ex-
plained in the previous chapter the characteristics of the tensor field — the eigenvec-
tors and eigenvalues of the major and minor eigenvector field — are similar inside each
extracted cell. Hence, the stress and strain in the tensor field can be discretely visu-
alized by representative glyphs. The density of the glyphs depends on the topological
graph and the segmentation, respectively. The glyphs are displayed with an Amira
glyph display tool.

2.3.1 The Algorithm

Since the algorithm for placing the glyph should work for the topological graph as well
as the segmentation the center of area of each arbitrary shaped cell must be computed.
The center of mass p. of a polygon P can be defined as

De = ;//P (i) dzdy | (2.6)

where A is the area of the polygon. The center of mass of a polygon is the point
where the average Euclidian distance to the boundary points is minimal. This center

28

2.3.1 The Algorithm

of mass may lie outside the cell. An algorithm for computing the barycentroid of
arbitrary shaped polygons was presented by Rustamov et al. [22]. This algorithm is
based on an interior distance measurement. The barycentroid has the characteristic
that it captures the semantic center of the polygon and lies inside the polygon. For
convex polygons the barycentroid is equal to the center of mass. The barycentroid is
the point where the average interior distance to the boundary points is minimal. For
computing the barycentroid, the boundary vertices are mapped into high-dimensional
space in such a way that the pairwise boundary distance is preserved, and computing
the barycentroid is equal to minimize a potential with respect to p. See Figure 2.4(b)
for a potential plot. The potential is defined by the following formula:

U*(p) = wi(p)" Adi(p) , (2.7)

whereas, W(p) are the weights of the barycentric coordinates of a given point
p within the polygon and A denotes the Gram matriz' of the embedded vertices (U
In simplified terms, the Gram matrix implicitly provides the distance information of
the boundary vertices and the shape information of the polygon is provided by the
barycentric weights.

Figure 2.4
Visualization of the two key steps for computing the center of area of a polygon: (a) embedding
of polygon into high-dimensional space and (b) visualization of isolines of U(-). From [22].

Embedding

For computing the Gram matrix, the boundary vertices are embedded into high-
dimensional space in a way that the pairwise distances are preserved (see Fig-
ure 2.4(a)). This section outlines the embedding into high-dimensional space as de-
veloped by Rustamov et al. [22]. For convenience and clarity, the summary of the
embedding follows partly literally the original publication, since this algorithm is not
the main focus of this work. The diffusion distance [9] is such an embedding of the

'The Gram matriz contains the dot-product of the embedded vertices a;; = (v}, v})

29

2.3 TOPOLOGY-BASED AND SEGMENTATION-BASED GLYPH PLACEMENT

boundary vertices into high-dimensional space. The diffusion distance is computed us-
ing the Laplace-Beltrami operator of the form M~'L, where L is the cotangent Lapla-
cian of the polygon vertices and M the diagonal matrix that contains the "voronoi
area" of the polygon vertices. To obtain the Laplace matrix L for two-dimensional
polygons the stencil [-1/d~,1/d~ + 1/d*,—1/d"] at each vertex is used [22].
obtain the diagonal matrix M, Rustamov defines the “voronoi area” of each vertex as
(d* +d~)/2, where d* and d~ are the distances to the two neighbors of the current
vertex [22]. The Laplace matrix L and the diagonal matrix M with the “voronoi area”
provide the input for the eigendecomposition of the generalized eigenvalue problem
Lo, = A\yMoy,.
The embedding can be computed according to the following formula:

v (eikltgﬁl (’UZ‘), €7A2t¢2(vi), ce efA"t(f)n(’Ui)) e R", (28)

where n is the number of vertices, ¢ (v;) is the it entry of the eigenvector ¢,
and the squared diffusion distance is given by the squared Euclidian distance between
the embedded vertices.

(v, v) = > e (Gr(v:) — dr(v))? - (2.9)
k=1

Our implementation follows the instruction of Rustamov such that the eigenval-
ues are ordered in non-decreasing order and the eigenvectors are normalized to have
the unit M-norm with ¢ Mgy = 1.

Only a limited number of eigenvalues are necessary to approximate the exact
embedding. The eigenvectors have to satisfy e ! > ¢, where e = 1075 and the time
scale parameter t is proportional to the first non-zero eigenvalue — the first eigenvalue
should be zero — (t = (8Ag)~!) [11, 22]. Thus, the high dimensional space has m
dimensions with m < n, where n is the number of vertices. For further details the
interested reader is referred to Rustamov et al. [22].

Barycentric Coordinates of Arbitrary Shaped Polygons

For minimizing the potential, the column vector wW(p) = (wi(p), wa(p),...,wn(p))
with the weights of the normalized barycentric coordinates of a given point p with
respect to an arbitrary shaped polygon is computed. This section summarizes the
fundamentals of computing the barycentric coordinates of arbitrary shaped polygons
and provides the details of the implementation. For convenience and clarity, the
summary of the algorithm follows partly literally the original publication as presented
by Hormann and Floater [15]. In particular, this holds for the notation.

U is an arbitrary shaped planar polygon with n > 3 distinct vertices vy, ..., v,
and without intersecting or open edges. For ¢ = 1,...,n the Euclidian distance
between any vertex v and v; is defined as r;(v) = |lv; — v|| and «;(v) denotes the

30

2.3.1 The Algorithm

signed angle in the triangle [v,v;, v;11] at the vertex v. By implication, the signed
areas of the triangles (see Figure 2.5) [v,v;,viy1] and [v,v;_1,v;41] are given by [15]

A;(v) = ri(v)riz1(v)sin(a;(v))/2 (2.10)

B;(v) = ri—1(v)rip1(v)sin(a;—1(v) + a;(v)) /2 (2.11)

Figure 2.5
Notation used for angles, areas and distances, from [15].

A;i(v), —B;(v) and A;_i(v) are the homogenous barycentric coordinates of v
with respect to the triangle A; = [v;—1,v;, v;+1]. B;i(v) becomes negative if v is inside
the triangle and positive if v is outside the triangle A; = [v;_1,v;, vi1+1]; however, all
barycentric coordinates must be positive for a point v inside triangle A; and B;(v)
must be negative for a point v outside triangle A\;. Therefore, the sign of B;(v) must
be flipped.

Figure 2.6
Partitioning of a polygon. From [15].

To generalize the homogenous coordinates of triangles to polygons, the poly-
gon can be split into a triangle partitioning (see Figure 2.6) and the homogenous

31

2.3 TOPOLOGY-BASED AND SEGMENTATION-BASED GLYPH PLACEMENT

coordinates of a vertex v with respect to all triangles Aq,..., /A, of the polygon
are considered. For each vertex v; three coordinates are given, one for each triangle
ANi—1,/\; and A;y1. Hormann defines

wi(v) = bifl(U>Ai(U) — bl(’U)Bl(U) + bprl(U)Ai,l(’U) (2.12)

where b; : R> — R is an arbitrarily chosen weight function and, moreover, he
shows that the functions w; are homogenous barycentric coordinates. The homogenous
barycentric coordinates are normalized by the weight

ri

Ai A7

b =

In our framework this particular choice of b; is implemented. This leads to the
equation

_ ric1(v)Ai(v) = 7i(v) Bi(v) + riga(v) Aimi(v)

wi(v) = A A . (2.13)

For further details on the mathematical properties of the barycentric coordi-
nates the interested reader is referred to Hormann and Floater [15]. Now, computing
the barycentric weights of a given point p with respect to the polygon with n > 3
distinct vertices vy, ..., v, is straightforward and follows the pseudo-code, see Algo-
rithm 3 in Appendix A.2.

The Gradient descent

The barycentric weights are not defined for points on the boundaries of the poly-lines,
since for these points the denominator in Equation (2.13) becomes zero. Therefore,
an initial point inside the polygon has to be found for the gradient decent. The initial
point, the Gram matrix and the vertices provide the input for minimizing the potential
with respect to p. For the evaluation of the potential, the barycentric weights of each
point p are computed. This step is repeated until the difference between the newly
computed potential and the potential of the previous step is below a given tolerance
threshold or a maximal number of updates is reached. Otherwise, p is updated until
the potential reaches a minimum.

2.3.2 Implementation

The reader should be familiar by now with the requirements for computing the
barycentroid (Algorithm 4 in Appendix A.2 shows the pseudo-code). Particularly,
this means computing the Gram matrix of the embedded vertices and the barycentric
weights in order to minimize the potential. In the following a step-by-step illustration
of our implementation is given. This summarizes the embedding.

Since computing the Gram matrix and minimizing the potential is expensive,
each polygon is tested to see if it is convex or non-convex. If the polygon is convex, the

32

2.3.2 Implementation

barycentroid is equal to the center of mass and only the center of mass is computed;
this can be approximated by the following formula:

n .
D= i1 Vi : (2.14)
n

where vy, ..., v, are the vertices of the polygon. Since the boundaries are finely and
equidistantly sampled this is reasonable accurate. If the polygon is non-convex, the
following steps are performed. The Laplacian matrix L and the matrix with the
"voronoi area" M are computed. These matrices provide the input for computing
the embedded vertices. For the embedding, the eigenvalues and eigenvectors are then
computed by solving the general eigenvalue problem Lo = A\zM¢ with MATLAB.
As suggested by Rustamov, the resulting eigenvectors are normalized to unit M-
norm. Then, the embedded vertices are computed according to formula 2.8. For the
Gram matrix A, the dot-product of the embedded vertices is computed. Then the
potential (see Equation (2.7)) with the Gram matrix is minimized with respect to p.
For the gradient descent, the barycentric weights of each point p is computed and
the potential is evaluated until it reaches a minimum (see Section 2.3.1). Figure 2.3.2
shows the topological graph with the barycentroids and Figure 2.3.2 shows a close-up
of characteristic cells.

After the barycentroids are computed, the glyphs are placed at the correspond-
ing point. The glyphs are rotated into the coordinate system defined by the eigenvec-
tors and the axes are scaled according to the mapped eigenvalues and colored by the
selected color scheme. The results are shown in Section 3.2.1.

Figure 2.7
Topological graph with barycentroids based on two different slices of the two-point load: (a)
slice 2 and (b) slice 1.

33

2.3 TOPOLOGY-BASED AND SEGMENTATION-BASED GLYPH PLACEMENT

Figure 2.8
Characteristic cells.

2.3.3 Parameters

This section presents some examples of computing the barycentroids for the cells of
the topological graph as well as for the segmentation. Particularly, experiences imple-
menting the algorithm and the impact of the requirements and different parameters
are discussed: the quality of the polygon sampling and the parameters chosen for the
gradient descent. Thereby, some requirements and parameters have a greater effect
on the result, whereas the influence of other parameters and requirements on the re-
sult may be neglected, as they do not discernibly influence the result. Furthermore,
choosing global parameters and requirements for all cells posed a challenge. Some
parameter and requirements give very good results for a single cell; however, they
yield poor result for other cells.

Sampling

It was found that the sampling of the boundaries is crucial. The boundaries of the
polygons must be finely and equidistantly sampled. It is not enough to provide solely
the corner information for a polygon. Long edges have to be sampled and vertices have
to be added. Conversely, vertices that are too close to each other have to be removed.
Closely spaced vertices make the computation of the Laplace operator inaccurate.
Further details are discussed in Section 2.3.4.

Figure 2.9 shows the barycentroids placed in the topological graph with two
different pre-processing parameters (see Algorithm 1 and 2 in Appendix A.1). The
pre-processing of the boundaries for the red spheres is performed with an angle thresh-
old parameter of 175 ° and a sampling distance parameter of 0.5 %. The pre-processing

34

2.3.3 Parameters

of the boundaries for the blue spheres is performed with an angle threshold parameter
of 165° and a sampling distance parameter of 1.25%. The percentages are based on
the maximum side length of the domain.

—
%

D
7

(b)

Figure 2.9
Topological graph with barycentroids, computed with different boundary sampling parame-
ters: dense sampling (red spheres), sparse sampling (blue spheres)

Gradient Descent

For the gradient descent, five parameters may be adjusted. Most of the parameters
can be neglected because they do not perceptibly influence the result; however, the
initial point and the initial explore step are crucial in regard to the quality of the
result. The initial explore step is the initial step width for the gradient descent. This
step width is gradually scaled down until it reaches the final explore step. As the initial
point for the gradient descent, the center of mass may be chosen for most cells. If the
center of mass is outside the polygon, a heuristic is used to find an initial point inside
the polygon. For the heuristic used in the visualization framework, the poly-lines
are iteratively scaled down in a way that the center of mass is only computed for a
part of the polygon area. This is repeated until the newly computed center of mass is
inside the polygon and an initial point for the gradient descent is found. The heuristic
performs well for the poly-lines of our segmentation as well as the topological graph;
however, the heuristic may not work in general for all arbitrary shaped polygons. The
initial explore step is critical for larger cells. A value of 10 % gives good results for
most cells (see Figure 2.7(b)). Figure 2.10 shows a comparison of both results. The
remaining parameters are less critical. For completeness, the remaining parameters
are set to the following values: the final explore step is set to 0.01 %, the tolerance

35

2.3 TOPOLOGY-BASED AND SEGMENTATION-BASED GLYPH PLACEMENT

threshold is set to 1e—04 % and the maximal number of updates is set to 1000. The
percentages are based on the maximum side length of the domain.

Figure 2.10
Topological graph with barycentroids, computed with different gradient descent parameters:
intial explore step 1%(red spheres) and intial explore step 10 %.(blue spheres)

2.3.4 Constraints

As discussed in the previous section, the parameters of the gradient descent as well
as the sampling of the polygon boundaries are crucial for computing the potential
and the barycentroid. Pre-processing for the potential plots discussed in this section
was performed with an angle threshold parameter of 165° and a sampling distance
parameter of 1.25% of the maximum side length of the domain.

Numerical Inaccuracies

Figure 2.11 shows the potential of three cells. The one-dimensional Laplace oper-
ator provides the distance information for the polygon. The shape information is
supplied by the barycentric weights. The potential decreases rapidly from the bound-
ary to the center; however, this potential shows an extended area of minimal values
(see Figure 2.11(a)). This makes the computation of the potential vulnerable to nu-
merical inaccuracies that may occur while computing the Gram matrix. To review
Section 2.3.1, the eigenvalues are ordered in an ascending order and the first eigen-
value should be zero. A measurement of these inaccuracies can be defined by the
mean squared difference between the first eigenvalue and zero. The mean squared er-
ror increases if the sampling of the boundaries exposes irregularities. For computing

36

the Laplace matrix the inverse distance to the neighboring vertices is used. Therefore,
computing the Laplace matrix becomes unstable if the distance between two vertices
is too small. This is observable in outliers in the potential.

(a)

Figure 2.11
Potential plot of different cells. Red refers to large values and blue refers to small values of
the potential. The potential shows an extended area where the values are small.

2.4 Texturization of Segmented Tensor Fields

As introduced in Chapter 1, the texturization of tensor fields is based on a given seg-
mentation of stress and strain tensor fields. The tensor data and two input patterns
(one for the major tensor field and one for the minor tensor field) are required. In
most of the visualization examples discussed in Chapter 3, directional input texture
patterns are used, where an input pattern with vertical stripes corresponds to the
major eigenvector field and an input pattern with horizontal stripes corresponds to
the minor eigenvector field. This has the advantage that the (s, t) unit square texture
coordinates are only computed once, as the major and minor eigenvector fields are
orthogonal to each other. The input texture pattern exerts an important influence
on the resulting visualization. In particular, the frequency and direction of the input
pattern is crucial in regard to the information that is perceptible in the visualization.
Some algorithms only allow low frequency input patterns, whereas other algorithms
demand input patterns with a higher frequency. The texture design is discussed in
Section 3.2.3. A chosen pattern texture may be mapped onto the cells of the seg-
mentation in such a way that the expansive and compressive forces encoded by the
tensor are visualized. This is achived by scaling the pattern according to the trans-
formed eigenvalues. By default, both eigenvector fields are superimposed; however
the user has the option to observe the eigenvector fields separately, apply additional
color information and perform a post-processing filter.

2.4.1 Fundamentals

This section provides the reader with the methodological fundamentals of the texture-
based visualization approach: the basics of the OpenGL Shading Language (GLSL)

37

2.4 TEXTURIZATION OF SEGMENTED TENSOR FIELDS

and texture mapping. Texture mapping can be either performed in the OpenGL
fixed function pipeline or with OpenGL Shading Language (GLSL). To keep the code
consistent, the framework presented here uses only GLSL.

OpenGL Shading Language

Primitive Vertex Primitive
Processing Shader Assembly
Fragment
Shader
N Apha Depth S
Test Stencil
Blend

Figure 2.12
OpenGL programmable render pipeline

Rasterizer ._

Dither Frame Buffer

GLSL is a high level C/C++ like programming language for short programs
on the graphic card. Figure 2.12 shows a simplified diagram of the programmable
OpenGL pipeline. This render pipeline is explained according to the publication
presented by Marroquim and Maximo [20]. The graphics pipeline is responsible for
transforming geometric primitives into a raster image. The primitives are usually
described as a set of triangles with connected points, the primitive vertices. They
undergo transformations which map their object coordinates into the camera’s co-
ordinate system. The vertex shader operates on these transformed vertices. It is
executed by the call glDrawArrays. If a vertex shader is used, all per-vertex oper-
ations of the OpenGL fixed function pipeline will be replaced. Then, the primitive
vertices are assembled according to their connectivity. The rasterizer computes the
pixels of the image. For each pixel, one fragment is created. Each fragment has in-
terpolated attributes from its primitive vertices such as color, normals and texture
coordinates. The fragment shader operates on these fragments, which are produced
by the rasterization. If a fragment shader is used, all per-fragment operations of the
OpenGL fixed function pipeline will be replaced. At the end of this render pipeline,
different tests are performed (alpha test, depth test, etc.) before the image is ren-
dered into the frame buffer. The frame buffer is a memory buffer that provides the
color information of every pixel on the screen. The content of the frame buffer can

38

2.4.1 Fundamentals

be either directly rendered to the screen or saved in an OpenGL frame buffer object.
This content of the frame buffer object can be used as a texture for further render
stages. In the texturization framework presented here, frame buffer objects are used
for a post-processing filter. For further details the interested reader is referred to [20].

GLSL supports five different build-in types: int, float, double, bool and sampler.
For the first four types, vectors are available. Different types of matrices exist for floats
and doubles. Samplers represent textures. For a full list of build-in types and GLSL
build-in functions see [19]. Code B.1 in Appendix B shows a simple vertex shader and
a fragment shader for texture mapping.

Texture Mapping

In 3D graphics texture mapping is a well-known technique. Texture mapping is the
process that maps a geometric point in space, i.e. a point on a surface to a color value
in the texture domain. Two steps are performed (see Figure 2.13):

1. the point on the geometry is mapped on the unit square and

2. the point in the unit square is mapped to a texture of arbitrary size.

texture

polygon unit square

(1.0, 1.0)

+

(0.0, 0.0)

Figure 2.13
Texture mapping

For texture mapping the cells are triangulated. This triangulation provides
the polygonal surface for the texture mapping. For each polygonal surface the (s,t)
unit square texture coordinates are computed and specified per vertex. The texture
coordinates are linearly interpolated across the fragments, which are produced by
the rasterizer. Thereafter, a point (s,t) on the unit square corresponds to a point
on the texture (which is of size (w,h)), so that the color value is the texture pixel

39

2.4 TEXTURIZATION OF SEGMENTED TENSOR FIELDS

(s-w,t-h). Since the continuous texture coordinates do not always conform to an
unambiguous discrete point of the texture, interpolation can be performed. The inter-
polation method can be set in OpenGL (GL NEAREST, GL LINEAR, etc.). The
texture coordinates are not restricted to the interval [0,1]. If the texture coordi-
nates exceed the interval [0, 1], the wrap parameter for texture mapping can be set in
OpenGL (GL _CLAMP, GL _REPEAT, etc.). For the framework developed here, the
wrap parameter is set to GL__ REPEAT. This ignores the integer part of the texture
coordinates. Only the fractional part is used, which creates a repeating pattern.

2.4.2 The Algorithm

Roughly, the shading of the segmentation is based on two different approaches. The
first approach encodes the pattern repetition in the texture coordinates. The texture
coordinates are scaled by a factor. This factor is computed by the side length and
the average of the eigenvalues for the cell. The second approach extends the pattern
scaling algorithm presented by Hummel et al. [18|. This is achieved by adding two
parameters to the algorithm, namely the transformed eigenvalues. The input pattern
can be additionally scaled by the metric. Therefore, the transformed eigenvalues are
passed to the shader for each vertex of the triangulated cell and are interpolated for
each fragment produced by the rasterizer. In addition to the existing texture color,
further color information can by applied. This makes it possible to direct the focus of
the observer to different features of the tensor field. At the end of the render pipeline,
an optional post-processing filter can be applied. The post-processing filter blurs the
textured tensor field by the fractional anisotropy (see Equation (1.6)) or shear stress
(see Equation (1.8)).

Computation of the Texture Coordinates

As explained in Section 1.3.2, the given cells of the segmentation exhibit similarities:
most of the cells are triangular or rectangular in shape. In the vicinity of degenerate
points more complicated structures are possible. In these regions the eigenvector
behavior may expose irregularities. These cells are either not textured or just textured
with a noise pattern to provide the color information.

The segmentation of the tensor field is computed with an Amira segmentation
module and passed to the visualization framework in an Amira specific data structure.
Due to dangling nodes during the segmentation, some mis-classifications can occur:
regular cells, which are not located in the neighborhood of degenerate points, are clas-
sified as pentagons or hexagons. The algorithm for computing the texture coordinates
has to intercept these mis-classifications.

To review Section 2.1.1: the data structure provides the vertices of each poly-
line and further information for each vertex. This information is available for the
texture mapping. The input texture pattern must be parallel aligned according to
the tensor lines. This can be done by different mappings of the boundary vertices
to the unit square texture coordinates. Rectangular polygons are bounded by four

40

2.4.2 The Algorithm

Figure 2.14
Computation of the texture coordinates: two rectangular cells with vertices vy, ..., v, and
(s,t) texture coordinates. One cell starts with a major tensor line and the other cell starts

with a minor tensor line.
alternating edges. A polygon can either start with an edge belonging to a minor or
to a major tensor line. There are two possible classifications 2:

1. 0101 (the first edge of the rectangular cell belongs to the minor tensor field) or

2. 1010 (the first edge of the rectangular cell belongs to the major tensor field).

Figure 2.15
Texture mapping for triangle: triangle with code 100.

Triangles are bounded by three edges. They exhibit more classification possibilities:

- triangles with two edges belonging to minor tensor lines and one edge belonging
to a major tensor line:

210" represents a minor tensor line and "1" represents a major tensor line.

41

2.4 TEXTURIZATION OF SEGMENTED TENSOR FIELDS

1. 100 (the first edge of the triangular cell belongs to the major tensor field),

2. 010 (the first edge of the triangular cell belongs to the minor tensor field)
or

3. 001 (the first edge of the triangular cell belongs to the minor tensor field).

- triangles with two edges belonging to major tensor lines and one edge belonging
to a minor tensor line:

1. 011 (the first edge of the triangular cell belongs to the minor tensor field),

2. 101 (the first edge of the triangular cell belongs to the major tensor field)
or

3. 110 (the first edge of the triangular cell belongs to the major tensor field).

The texture coordinates for one edge are then computed, according to the classifica-
tion code, as the ratio between the total edge length and the integrated edge length
for vertex v; of the current edge. Figure 2.14 depicts the texture mapping for two
rectangular cells and Figure 2.15 depicts the texture mapping for a triangle.

Falsely classified pentagons and hexagons are converted to rectangles. For ver-
tices that are neither degenerate points nor corner points, unique tensor line infor-
mation is provided and stored as color information. If one corner point lies between
two such interior edge vertices, the corner point is retained if the color of the tensor
line changes. Otherwise, the corner point is discarded and converted to an interior
edge vertex. If the corner point lies between one or two other corner points (this
can happen if the boundaries a sparsely sampled), the tensor line information for the
preceding and following edges is taken into account.

Scaling of the Texture Coordinates

The user can select different visualization methods. According to the selected method
the texturization framework makes use of different kinds of texture coordinates:

1. (s,t) unit square texture coordinates. Figure 2.16(a) shows the texture mapping
with unit square texture coordinates.

2. The (s,t) unit square texture coordinates are multiplied by the factors n and
m: (s-n,t-m). The factors n and m depend on a global user determined
minimum side length threshold. The lengths of opposing edges are averaged
and the factors n and m for the texture coordinates are computed by rounding
the fractions:

n = [averageEdgeLengthl/minSideLength| and (2.15)

m = [average Edge Length2/minSideLength] . (2.16)

42

2.4.2 The Algorithm

AT iy
@\&\““{.,‘:-....w; -,:

L

7,
//’ f

b Y
Y
N2

7
(2

J;/
%

/i #-'lu'
i
2 _a"i',yﬁ },'

)

4,

.|I"
:,0,

At

lff; .-5(,"
1y e
Wi 7
"-*{-'f:g’,f

,J'

g
144
J'.rf{f i

(a)

Figure 2.16
Major eigenvector field with texture mapping:

(b) with scaled texture coordinates.

Figure 2.17
The major eigenvector field is texturized with texture coordinates that are scaled by the
eigenvalues: the pattern repetition (a) visualizes the major eigenvalues and (b) the metric of

the major eigenvector field.

Here the texture coordinates exceed the values of the interval [0,1]. The pat-
tern is repeated and the cells are tiled by the pattern. This method can display

43

2.4 TEXTURIZATION OF SEGMENTED TENSOR FIELDS

the underlying tensor lines, without the information of the eigenvalues. Fig-
ure 2.16(b) shows the texture mapping with scaled texture coordinates.

3. The (s,t) unit square texture coordinates are multiplied by two scale factors
scaleFactorl and scaleFactor2 (s - scaleFactorl,t - scaleFactor2). This time
the scale factors depend on the factors n and m (see above), a user determined
threshold for the maximum number of pattern repetitions and the average of
the mapped eigenvalues, which are given for each vertex of the polygon:

scaleFactorl = n + |mazNumPattern — 61] and (2.17)

scaleFactor2 = m + |maxNumPattern — 03] (2.18)

where 6; is the average of the major transformed eigenvalues of the polygon,
0, is the average of the minor transformed eigenvalues of the polygon and
maxNumPattern > mcw(él,ég) is the maximum number of pattern repeti-
tions. Again, the texture coordinates exceed the values of the interval [0, 1]
and the pattern is repeated. This method is used to display the information of
the compressive and expansive forces. Thus the physical behavior in the tensor
field is visualized. For compressive forces (the transfer function maps the orig-
inally negative eigenvalues to small values of the metric) the pattern is scaled
down and repeated often. Expansive forces are encoded in larger patterns (see
Figure 2.17(a)). The user also has the option of visualizing the metric (see Fig-
ure 2.17(b)). In contrast to the visualized physical behavior, small eigenvalues
are visualized in larger patterns with less pattern repetitions. This is achieved
by computing the scale factors with the following formulas:

scaleFactorl = n + |6;] and (2.19)

scaleFactor2 = m + |6y] . (2.20)

The texture mapping with these different kinds of texture coordinates exhibits
unsteady transitions between the cells. This problem is reasonable since the focus of
this work is to visualize the characteristics of the tensor field: the direction of the
eigenvector fields, compressive and expansive forces. Nevertheless, this drawback is
discussed in the next chapter.

Shaders

The framework allows the user to select a shader. By default both eigenvector fields
are displayed; however, the user has the option of fading out the eigenvector fields
with a corresponding blend factor. The blend factors range from 0.0 to 1.0. By default
they are set to 1.0. These blend factors enable the user to observe the eigenvector
fields separately. In the following, details of the implemented shaders are presented:

44

2.4.2 The Algorithm

1. The code of the first GLSL shader — in the following this shader is referred to
as the default shader — extends the code B.1 in the appendix by an additional
texture, color information for the two eigenvector fields and one blend factor for
each eigenvector field. The first input texture is provided for the major eigen-
vector field; the second input texture is provided for the minor eigenvector field.
For each eigenvector field color information is computed: the rgb-color values
of the texture pixels are multiplied with the corresponding rgb-color values of
the selected color mapping as explained in the next section. The alpha value
of the textures is multiplied with the corresponding blend factor. Finally, the
color information for the two eigenvector fields is linearly blended. The code B.3
for this shader can be found in Appendix B.1. The default shader is used for
texture mapping with the scaled texture coordinates (see Figure 3.5(b)).

2. The second shader is based on the publication presented by Hummel et al. [18].
In the following, the implementation is briefly explained. For a pattern " P(s,t)
over the unit square", two "resolution levels /5 and [; are computed" [18] ac-
cording to the following formulas:

ls =logy 75 and Iy = logy 7y (2.21)

where 75 or 71 is "the variation in texture coordinates in image-space at a pixel
(i,7)" [18]. They are "determined by the image-space partial derivative of the
texture coordinates (s,t) at pixel (i,7)" [18] as

7s(i,J) = \/(2?)2 + (§§>2 and (2.22)
7e(i,) = \/<gj>2 + ((?;)2 : (2.23)

"If either of 75 or 74 doubles, the pattern frequency in the corresponding direction
must be halved to yield the same image-space frequency" [18]. To evaluate the
partial derivatives of the texture coordinates, the GLSL build-in functions dFdx
and dFdy are used. Then, the "frequency-adjusted pattern P is defined by the
evaluation of P" [18] through a texture lookup.

By, (s,t) == P(s- 270 270 (2.24)

The texture lookup is performed with the GLSL build-in function texture2D
and returns a rgba-color value. A bilinear interpolation can be applied between
neighboring resolution levels, i.e. different rgba-color values

C(S7t) - (1 - l~5) ’ <(1 - l;) ’ lesJ [1¢] (S7t> + l~t) PUSJ [1¢] (S,t))

. o o (2.25)
o (=) Py (5.0 + b P (1))

45

2.4 TEXTURIZATION OF SEGMENTED TENSOR FIELDS

where . .
le =15 — |ls] , Iy = 1y — 1]

"denote the fractional parts of Is and ;" [18], with ls,l; € R. For further
details see [18]. Figure 2.18 shows the adaptive pattern scaling. The code
for the adaptive pattern shader B.4 can be found in Appendix B.1. Similar
to the default shader, color information and blending are applied to the texel
values. The user can select between two versions of the adaptive pattern shader,
with or without bilinear interpolation. The advantages and drawbacks of both
versions are discussed in Section 3.2.2. These shaders are used to render the
eigenvector field directions. Figure 3.4(b) shows the adaptively scaled pattern

with interpolation.
\ | [f}}/"'

Figure 2.18

"Strong anisotropic surface texture coordinate stretching is addressed by an adap-
tive pattern: (a) regular stripe pattern and (b) adaptive stripe pattern" [18]. Image
from [18].

3. The previous shader is extended by scaling the pattern according to the trans-
formed eigenvalues. Instead of Equation (2.22) and Equation (2.23), the fre-
quency of the pattern is computed with the following formulas:

7s(i,J) = J (W) + (5(8(5—?1)> and (2.26)
(ir) —J (“t 5?”) " (‘5(’5522)) , (227

46

2.4.3 Implementation

where A; and Ao are the transformed eigenvalues. Again, color information and
blending are applied and the user may select between two versions of the adap-
tive pattern shader, with or the without bilinear interpolation. These shaders
are used to display the tensor line directions and the physical behavior (see
Figure 3.6).

Color Mapping

The user can select between different color modes. For the color modes 3 — 6, a color
map (color table) can be selected and be modified. The range of the mapped values
can either be set by the user or be adjusted to the maximum and minimum values
of the selected color mode. According to the selected color mode the focus of the
observer is directed to different features of the tensor field. The color information is
passed to the shader (see Section 2.4.2) and applied according to the following color
schemes:

1. no color (all rgh-color values are set to 1.0),

2. color by tensor field (the eigenvector field is displayed in red and the minor
eigenvector field is displayed in blue),

3. color by eigenvalues (the magnitude of the eigenvalues is mapped to a rgb-color
value),

4. color by transformed eigenvalues (the magnitude of the transformed eigenvalues
is mapped to a rgb-color value),

5. color by fractional anisotropy (the magnitude of the fractional anisotropy is
mapped to a rgb-color value) and

6. color by shear stress (the magnitude of the shear stress is mapped to a rgb-color
value).

For a given color input parameter, the rgb-color value is determined by a color table
lookup. Thereby, the input color parameter is restricted to the range of the color
table, which can be determined by the user. If the input color parameter is below
or above this range, the input parameter is clamped to the minimum and maximum
values of the color table, and the corresponding rgb-color value is returned.

2.4.3 Implementation

The reader should be familiar by now with the single steps that are necessary for
the texturization. For texture mapping the poly-lines of the segmentation are tri-
angulated. This is performed with the CGAL constrained Delaunay triangulation
algorithm. The CGAL constrained Delaunay algorithm triangulates the convex hull
of polygons. For non-convex polygons, triangles outside the boundary must be re-
moved. For the triangulation, each triangle is tested to see if it is inside or outside

47

2.4 TEXTURIZATION OF SEGMENTED TENSOR FIELDS

the boundary. Then, triangles outside the boundary are removed. After the trian-
gulation, the texture coordinates are computed and, if required, scaled according to
the selected method. Thereafter, the attributes for the shader are set: namely, the
texture coordinates, the transformed eigenvalues and the color values. Finally, the
shader is activated to the user selection and the image is rendered. The user has the
option to blur the rendered image by the fractional anisotropy or shear stress (see
Section 2.4.4).

2.4.4 Blur by Fractional Anisotropy or Shear Stress

An optional post-processing filter may be applied to the texturization. To do so, the
texturized eigenvector field is rendered into a frame buffer object. The frame buffer
object stores the rendered image and an additional post-processing step applies the
blur according to the fractional anisotropy or shear stress. Three different textures
are passed to the GLSL post-shader:

- an image texture (the content of the frame buffer object),
- a Gauss kernel and
- a texture with the normalized inverse fractional anisotropy or shear stress.

The fragments of the image texture are convolved with the Gauss kernel, where the
size of the Gauss kernel is a linear combination of a global user determined factor
and the texture lookup of the fractional anisotropy or shear stress. For blurring by
fractional anisotropy, isotropic regions are convolved with a larger kernel, whereas
anisotropic regions are convolved with a smaller kernel. Thus, isotropic regions —
regions in the vicinity of degenerate points — are blurred. These are regions where
the difference between the eigenvalues is small and the directional behavior of the
eigenvector fields can be unstable.

2.4.5 Constraints

The quality of the texturization depends strongly on the OpenGL linear texture coor-
dinate interpolation and the triangulation which is used. Furthermore, the adaptive
pattern shader presented by Hummel et al. [18] was designed for highly sampled
surfaces. With low polygonal surfaces, the discrete steps of the scaled pattern get
visible and the OpenGL linear texture coordinate interpolation is perceptible (see
Figure 2.19). Adaptively scaling the pattern with the shader depends on the following
factors: the cell sizes, the input pattern frequency, the zoom level, the image size and
the transformed eigenvalues. In particular, the discrete steps of the adaptively scaled
pattern by the eigenvalues are noticeable in regions where the magnitude of the eigen-
values for an eigenvector field exhibit a high range of variation. The zoom level and
the size of the rendered image are crucial factors influencing the result, as computa-
tion of the discrete resolution levels depends on the image-space partial derivatives (as
explained in Section 2.4.2). The impact of the input pattern frequency and cell size is

48

2.4.5 Constraints

S

(a)

Figure 2.19

| i)

G
\ I, /
\“ Nz

(b)

Sphere with adaptively scaled stripe pattern: (a) high resolution triangulation and (b) low

resolution triangulation.

discussed in Section 3.2.3. For displaying the physical behavior different approaches
have been presented. All approaches have the drawback that the minimum pattern
frequency and maximum pattern frequency for encoding the physical behavior of the
tensor field are restricted to a small range. Furthermore, if the eigenvector field is tex-
tured with a directional stripe pattern, unsteady transitions emerge between the cells.
This impact, which depends on the algorithm used, can be reduced and is discussed

in the next chapter.

49

Chapter 3

Analysis of Geometry-based and
Texture-based Visualization of
Tensor Fields

In this chapter, the results of the developed visualization approaches are presented and
evaluated by means of two simulated datasets. Firstly, these datasets are introduced.
This is followed by the results of the developed visualization approaches. The results
are presented in two subsections, one for the geometry-based visualization and one for
the texture-based visualization. The texture-based visualization offers the user various
possibilities to observe the tensor fields, which focus on different features. These can
be, for example, the direction of the major or minor eigenvector field, the magnitude
of the eigenvalues and the anisotropy or shear stress. The design of the input texture
pattern has a broad impact on the resulting visualization. The input texture pattern
design is discussed in an exemplary fashion. The discussion ends with a comparison
of the geometry-based and texture-based visualization approaches. The conclusion of
this chapter places the work presented in the context of related works, which have
been introduced in the first chapter. Finally, suggestions for further improvements
are made.

3.1 Datasets

As explained in Chapter 1 material properties in mechanical engineering such as stress
and strain can be described by stress tensors. For the evaluation and development of
the geometry-based and texture-based visualization approaches presented here, two
simulated tensor datasets are used: the one-point load and the two-point load. The
one-point load is a solid block given as a cubic volume with a single load applied to it.
The two-point load is a solid block given as a cubic volume with two loads of opposing
sign applied to it. A Finite Element Method (FEM) generates the two datasets. The
FEM approach uses a mesh discretization of the domain, the so-called elements. The
3D stress examples are generated on a discrete domain with 10 x 10 x 10 elements. For

51

3.2 RESULTS

topological extraction and segmentation, slicing the 3D stress tensor field reduces the
dimension by one. Figure 3.1 shows an outline of the cubic domain with two different
load cases applied.

(a) (b)

Figure 3.1
Two cubic domains with loads applied: (a) one-point load and (b) two-point load.

3.2 Results

This section presents the results of the developed visualization frameworks. Firstly,
geometry-based visualization of the topological graph and the segmentation are pre-
sented. This is followed by texture-based visualization, which is only applied to the
segmentation. In most of the examples, the cells that contain one or more degen-
erate points are not textured because in those cells the tensor line behavior exhibit
irregularities. Degenerate points are marked as black spheres.

3.2.1 Geometry-based Visualization of Segmented Tensor Fields

In Figure 3.2, different examples of the two-point load are displayed: the segmentation-
based and topology-based glyph placement. For computing the barycentroids, a pre-
processing of the poly-lines was performed with a sampling distance parameter of
1.25 % of the maximal side length of the domain and an angle threshold parameter of
165°. The glyphs are placed at the pre-computed barycentroids and scaled according
to the transformed eigenvalues. For the eigenvalue transformation a logarithmic func-
tion was used (see Equation (2.2)) with the following parameters: a = 1.5, ¢ = 1.0
and o = 0.1. The color for all three examples is applied according to the major
eigenvalues. The upper left circle shows expansive forces while the lower right circle

52

3.2.1 Geometry-based Visualization of Segmented Tensor Fields

1500

Figure 3.2

Segmentation-based and topology-based glyph placement: (a) segmentation without merged
cells, (b) segmentation with merged cells and (c) topological graph. The color information is
applied according to the major eigenvalues: (d) color map

shows compressive forces. The cell size is a crucial factor in regard to the perception
of the information encoded in the glyphs. This is especially noticeable in the glyph
placement based on the topology extraction example (see Figure 3.2(c)). There, the
cells exhibit irregular shapes and sizes. The geometric icons overlap if the extracted
cells are very small. Conversely, the glyphs are widely spaced if the extracted cells
are large.

53

3.2 RESULTS

1500

(a)

Figure 3.3

One-point load with geometry-based visualization: the color is applied according to (b) the
major eigenvalues and (d) the fractional anisotropy. Color map (a) ranging from —1500 to
1500 and (c) ranging from 0.0 to 1.0.

Figure 3.3 depicts two examples of the one-point load. In Figure 3.3(b), the
color is applied according to the major eigenvalues. In the second example 3.3(d),
the color information corresponds to the difference between the major and minor
eigenvalues, as does the shape of the glyphs. Isotropic glyphs are encoded in yellow,
which corresponds to spherical geometries. Anisotropic glyphs are encoded in red,
which results in well-marked ellipses.

3.2.2 Texture-based Visualization of Segmented Tensor Fields

For the texturization, input patterns for the major and minor eigenvector field must be
provided. In most of the visualization examples directional input texture patterns are
used, where an input pattern with vertical stripes corresponds to the major eigenvector
field and an input pattern with horizontal stripes corresponds to the minor eigenvector
field. The declaration of the input pattern is restricted to a single eigenvector field if
the input pattern is specified in the figures.

Directional Information of the Eigenvector Field

Three different visualizations of the direction of the minor eigenvector field are shown
in Figure 3.4. As an input texture, different stripe patterns with an alpha channel
were used. Pattern repetition is performed by scaling the texture coordinates as
explained in Section 2.4.2 (see Figure 3.5(b)); the side length threshold is set to
1.25% of the maximal side length of the domain. The averaging of opposing edges
and the rounding of the fractions (see Equations (2.15) and (2.16)) results in unsteady

54

3.2.2 Texture-based Visualization of Segmented Tensor Fields

N—r’

BN

|

pffit %
el ‘
(a) (c)
Figure 3.4
Comparison of different tensor line shaders I: (a) input pattern and (b) adaptive pattern
shader with interpolated resolution levels and (c) adaptive pattern shader without interpo-
lated resolution levels. Both shaders are used with the unit square texture coordinates.

N —
D

(

=~

iz =

Comparison of different tensor line shaders II: (a) input pattern and (b) texture mapping
rendered with scaled texture coordinates and "the default shader".

transitions between some cells; however, this impact strongly depends on the user
determined minimum side length threshold. Figure 3.4(b) shows the adaptively scaled
pattern with interpolation between the resolution levels, as presented by Hummel et
al. [18], and Figure 3.4(c) shows the adaptively scaled pattern without interpolation.
Without interpolation the rendered image is "sharper"; however, unsteady transition
between different resolution levels emerge. With interpolation some of these unsteady
transitions can be compensated. The user decides which algorithm is appropriate for
a particular application.

55

3.2 RESULTS

Directional and Physical Behavior of the Eigenvector Field

RS
L s —
— _,’
. -'\....--_““_":f/ £

o

i (“\u\\%::_—c:t%\ééé
W@
(b)

Figure 3.6

Major and minor eigenvector field with textures applied: (a) displays the major eigenvector
field and (b) displays the minor eigenvector field. The pattern is adaptively scaled by the
corresponding eigenvalues and the color visualizes the metric.

Figure 3.6 depicts a modified version of the adaptively scaled pattern (see
Shader B.5 in Appendix B). The pattern is scaled by an additional factor: the trans-
formed eigenvalues. The eigenvalues are transformed with a transfer function based
on the hyperbolic tangent (see Equation (2.4)) with ¢ = 0.1, a = 3.0 and 0 = 0.5. The
transformed eigenvalues range from 2.5 to 3.5. The transformed eigenvalues are used
to scale the input texture pattern according to Equation (2.26) and Equation (2.27).
Transformed eigenvalues smaller than 3.0 refer to compressive forces. This results in a
higher frequency pattern, which is displayed in green. Transformed eigenvalues larger
than 3.0 refer to expansive forces. This results in a lower frequency pattern, which is
displayed in red.

Experimental Result

In the following, an experimental results is discussed. This texturization approach
visualizes effectively the stress in the volume; however, the symmetric input pattern
— a circle — is distorted by the shape of the cell, which is not connected to the internal
forces acting in the tensor field. The texture coordinates are scaled by the trans-
formed eigenvalues, they exceed the range from 0.0 to 1.0 and the pattern is repeated.
The texture mapping is performed with the default shader. Figure 3.7 shows two
superpositions of both eigenvector fields. The same input texture pattern — a white
circle with an alpha channel — is used for both eigenvector fields. Color is applied

56

3.2.2 Texture-based Visualization of Segmented Tensor Fields

(c)

Figure 3.7

The pattern scaling is encoded in the texture coordinates: (a) the pattern is scaled down and
repeated often for large values of the transformed eigenvalues and (b) large patterns refer
to large values of the transformed eigenvalues. Color is applied according to the fractional
anisotropy: (c) color map.

according to the fractional anisotropy. Red indicates anisotropic regions. In these
regions, patterns with different sizes and margins for the major and minor eigenvector
field are superimposed. Blue indicates isotropic regions. In these regions, patterns for
the major eigenvector field coincide patterns for the minor eigenvector field. In both
examples the hyperbolic tangent is used as a transfer function. In Figure 3.7(a), the
parameters for the transfer function are set to the following values: ¢ = 0.1, 0 = 0.75
and a = 1.0. In Figure 3.7(b), the parameters for the transfer function are set to the
following values: ¢ = 0.1, ¢ = 1.5, a = 0.0 and the user determined threshold for
the maximum number of pattern repetitions is set to four (see Equation (2.19) and
Equation (2.20)).

Anisotropy and Shear Stress

Figure 3.8 shows post-processing filtering by a superposition of both eigenvector fields.
The major and minor eigenvector fields are shaded with an eigenvalue scaled pattern
(Shader B.5 in Appendix B) and colored by the fractional anisotropy. The resulting
image is blurred by the fractional anisotropy. The blur emphasizes regions where the
magnitude of the eigenvalues is almost the same. These isotropic regions do not exhibit
a distinctive directional behavior and the stripe pattern frequency is approximately
the same. Unblurred, anisotropic regions (colored in red) indicate a difference between
the magnitude of the eigenvalues. This difference is observable in a different pattern
frequency of the major and minor eigenvector field.

Regions with a high shear stress are of special importance in engineering. These
are regions where the material tends to fail. Figure 3.9 shows a superposition of both
tensor fields, which are blurred colored by the shear stress magnitude. Regions with a

57

3.2 RESULTS

0.71

Figure 3.8

Superposition of both eigenvector fields blurred by fractional anisotropy: (a) displays the one-
point load and (b) displays the two-point load. Color is applied according to the fractional
anisotropy: (¢) color map.

9.48

(b) (©)

Figure 3.9
Superposition of both eigenvector fields blurred by shear stress: (a) displays the one-point
load and (b) displays the two-point load. Color is applied according to the shear stress: (c)
color map.

low shear stress are blurred, as they are of less interest. In doing so, the focus of the
observer is directed to the regions of interest, i.e. regions with high shear stress, and
information of less interest is de-emphasized. The mapped texture is scaled according
to side length of the cells, shaded with the default shader and displays the directional
behavior of the eigenvector fields.

58

3.2.3 Texture Design and Input Pattern Frequency

3.2.3 Texture Design and Input Pattern Frequency

As noted previously, the input pattern frequency is critical in regard to the resulting
visualization. For the default shader with scaled texture coordinates, a pattern with
low frequency should be chosen, i.e. a pattern with one stripe. Otherwise, if the input
pattern frequency is too high, aliasing artifacts arise. For scaling of the pattern with
the shader (where the unit square texture coordinates are used), a dense input pattern
should be chosen; however, this input pattern frequency depends on the zoom level
and image size. If the pattern frequency is too low for the zoom level only a small
cutout of the texture is mapped onto the cell. As a result, the original pattern is no
longer discernible anymore. In the following section, texture design and input pattern
frequency are discussed.

(c)

Figure 3.10

One-point load rendered with two different input pattern: (a) high frequency input pattern
used (b) for the visualization and (c¢) low frequency input pattern used (d) for the visualization.
The alpha channel of the input pattern is marked in a lighter red. Color is applied according
to the transformed major eigenvalues.

Figure 3.10 shows the impact of input pattern frequency (see Shader B.5).
Both images are rendered with an adaptively scaled pattern, the same image size and
the same zoom level, while the input pattern is different. In the first example, an
input pattern with a high frequency is used. The input pattern is aligned according
to the tensor lines of the major eigenvector field; the original stripe pattern is well
perceptible. The second example is rendered with a low frequency pattern. Partic-
ularly in the center of the image, where the cells are small, only a small cutout of
the input texture is used. There, the texturization acts more like a rendering of ex-
pressive brushstrokes with random placement. The directions of the tensor lines are
hardly perceptible. Therefore, the physical characteristics of the tensor field are only
reflected in the colorization.

For the majority of the examples presented in this work, the major and minor
eigenvector fields are separately discussed. In Figure 3.11 a bidirectional input texture
pattern is used. The bidirectional weave pattern is distorted and aligned according to

59

3.3 DISCUSSION

Figure 3.11

Two-point load rendered with a bidirectional input pattern: (a) bidirectional input pattern,
(a) mapped into tensor field (the pattern is scaled according to the zoom level) and (c¢) mapped
into the tensor field (the pattern is scaled by the transformed eigenvalues and the zoom level).

the tensor field. The directional behavior of both eigenvector fields can be displayed
without a superposition of the minor and major eigenvector field. The frequency of
the input pattern is different in the s and ¢ directions. For this input pattern, the
direction with the higher frequency dominates when the user observes the rendering.

Another proposal for texture mapping was to design a directional input noise
pattern to overcome the problem of unsteady transitions between the cells of the seg-
mentation and the different resolution levels of the adaptively scaled pattern. The
problem of unsteady transitions is only reduced and at a closer look they are still
perceptible. Figure 3.12 displays the results of the rendering. If only one eigenvector
field is displayed, the direction of the eigenvector field is effectively visualized. The di-
rectional behavior of the tensor field is no longer readily visible when both eigenvector
fields are superimposed and the rendered image appears very noisy.

3.3 Discussion

Although the physical world is three-dimensional, two-dimensional tensor field visu-
alizations are still of interest. They might be used to explore the data by slicing. The
two-dimensional tensor field visualization methods presented here are able to visual-
ize internal forces acting in the tensor field and slice analysis is a step on the way
to understand three-dimensional visualization. The visualizations give an impression
of the stress distribution, its directions and strength; however, they demand a degree
of experience of the observer. In the following the geometry-based and texture-based
approaches are compared by means of an example. In addition, the advantages and
drawbacks of each method are discussed.

60

3.3.1 Mutual Agreement and Differences of the Visualization Methods

1500

(d) (e)

Figure 3.12

Two-point load rendered with a directional input noise pattern: (a) input pattern, (b) minor
eigenvector field, (c) major eigenvector field and (d) superposition of both eigenvector fields.
Color is applied according to the eigenvalues: (d) color map.

3.3.1 Mutual Agreement and Differences of the Visualization Methods

The geometry-based visualization and several results of the texture-based visualization
have been presented to the reader. To summarize the visualization methods devel-
oped in this thesis, Figure 3.13 shows a comparison of the developed visualizations.
Texture-based visualization is able to render the directions of the eigenvector fields
and the eigenvalues. Furthermore, the anisotropy is implicitly encoded in the render-
ing by a different pattern density. The texture-based visualization gives a good global
overview of the directions of the tensor lines; however, as discussed in Section 2.4.5,
pattern scaling by the eigenvalues is restricted to only few discrete resolution levels.
In the geometry-based approach, the glyphs are scaled according to the eigenvalues.
The magnitude of these eigenvalues is reflected in the size and shape of the glyphs.
Color can represent the magnitude of the major or minor eigenvalues. In contrast
to texture-based visualization, the direction of the eigenvector field is not perceptible

61

3.3 DISCUSSION

1500

Figure 3.13

Tensor field visualization: texture-based (a) major eigenvector field, (b) superposition of
both eigenvector fields and (d) geometry-based visualization. Color is applied according to
the eigenvalues: (c) color map.

due to the discrete nature of the glyphs, but the glyphs are continuously scaled by
the transformed eigenvalues.

3.3.2 Evaluation of the Visualization Methods

As mentioned before, the quality of the topological-based and segmentation-based
glyph placement depends strongly on the quality of the tiling. Furthermore, regions
with dense sampling and large glyphs are emphasized. For computing the barycentroid
according to the algorithm presented by Rustamov et al. [22] an eigendecomposition
and gradient descent must be computed. These are expensive computations regard-
ing the runtime, which strongly depend on the sampling of the topological graph or
segmentation; however, for placing the glyphs in the segmentation a sparse sampling

62

is sufficient (see Section 3.2.1). Computing the centers of convex cells according to
Equation (2.14) optimizes the performance.

Geometry-based visualization must always address the trade-off between glyph
size and distance between the glyphs. In contrast, texture-based visualization methods
are able to give a piecewise continuous overview and the appearance of the rendering
can be easily modified by the input texture. As presented in the section "Results", the
texture-based visualization method developed here offers the user various possibilities
for manipulating the rendering.

The texture must be mapped onto the cells in such a way that the input texture
pattern is aligned parallel to the bounding tensor lines of the cells. This texture
mapping results in unsteady transitions between the cells, and this problem may be
reduced but not eliminated; when the user zooms in these transitions are perceptible.
If the scaled texture coordinates are used with the default shader, the shape of the
cells distorts the texture. In particular, this holds if the texture coordinates are scaled
by the transformed eigenvalues. Anisotropic distortion of the cells may be addressed
by adaptively scaling the pattern. Furthermore, the range for encoding the physical
behavior of the tensor field in the image-space pattern frequency is restricted to a
small interval.

Despite the drawbacks discussed, the texture-based visualization is able to dis-
play a reasonable overview of the direction of the eigenvector fields and to visualize
different characteristics of the tensor field. Furthermore, the observer can interac-
tively fade in and out the eigenvector field of interest and change the color map. In
contrast to other texture-based visualization methods, which only take into account
the local directional behavior, the global directional behavior is addressed due to the
parameterization provided by the segmentation.

3.4 Conclusion

The purpose of this thesis was to develop a geometry-based and texture-based visual-
ization framework for segmented tensor fields. The given topology-based segmentation
provides the input for the visualization. For the geometry-based approach one local
exponent is placed into the center of the each extracted cell. Since the cells are non-
convex, this is achieved by computing the barycentroid based on an interior distance
measurement. The information that is encoded in this discrete visualization approach
depends strongly on the sampling, i.e. the quality of the segmentation. Dependent on
the scaling and coloring of the glyphs, various properties of the tensor field may be
emphasized.

For the piecewise continuous texture-based visualization approach, the texture
coordinates are computed in such a way that the input texture pattern is aligned
according to the direction of the eigenvector fields. The user may explore both eigen-
vector fields at a time or fade in and out one eigenvector field, which is of special
interest. The compressive and expansive forces of the tensor field are encoded in the
pattern density. In addition, the user has more options to explore the tensor field:

63

3.5 FUTURE WORK

to select a color mode or blur the tensor field by the fractional anisotropy or by the
shear stress.

The information encoded in the texture-based visualization approach is similar
to HyperLIC [28] or the physical based rendering [16] introduced in Section 1.4.1.
HyperLIC visualizes the direction of one eigenvector field and the anisotropy. The
physical based visualization provides information on the directions of both eigenvec-
tor fields and the expansive and compressive forces. The anisotropy is implicitly
encoded in the line density of the texture. This information is also encoded in the
newly developed framework; however, the minimum pattern frequency and maximum
pattern frequency for encoding the physical behavior of the tensor field are restricted
to a small range. Furthermore, in the vicinity of degenerate points and at the borders
of the domain the directional behavior is not unambiguously defined. In most of the
examples these cells are not textured.

To summarize, the framework developed here joins a segmentation-based visu-
alization approach to the well-known existing visualization concepts for tensor fields.
Compared to existing tensor field visualization methods the user has more options
to change the appearance of the rendering. These options are for example different
shaders, different input texture patterns, different color modes and de-emphasizing
regions of less interest by blur.

3.5 Future Work

In Section 2.3.4, the constraints on computing the barycentroids were discussed. In
our framework a slight noise in the potential was observable if the poly-line of the cell
boundary exhibits irregularities in the sampling. Either the sampling of the boundaries
may be improved or a different method for the gradient descent should be used, which
is not sensitive to outliers in the potential.

As mentioned in Section 2.4.5, adaptive pattern scaling is vulnerable to the
input pattern frequency, the zoom level and the image size. Since the image size
is determined by the settings of the software module this aspect can be neglected.
In our framework, several input textures with a determined pattern frequency have
been used. One possible improvement would be to replace this input texture by a
procedural texture, where the pattern frequency depends on the zoom level. Initially,
the whole tensor field is displayed. Hence, a procedural input texture with a higher
frequency would be necessary. When the user zooms in the texture should be replaced
by a texture with a lower frequency.

Furthermore, edges of the extracted cells follow the tensor lines. These tensor
lines are in general not straight. The texture is mapped onto the triangulated cells in
a piecewise linear fashion due to the OpenGL linear texture coordinate interpolation.
This is observable at high zoom levels. An adaptive supersampling and refinement
of the triangulation of the extracted cells, which depend on the zoom level, would
improve this artifact.

For the texture mapping, the cells are triangulated with the CGAL constrained

64

Delaunay triangulation. This triangulation is unable to cope with self-intersecting
cells. In the vicinity of degenerate points, triangular shaped cells occur that taper.
These polygons may have self-intersections. In the framework discussed here, these
self-intersections could be removed by pre-processing. A triangulation algorithm that
can cope with self-intersecting arbitrary shaped polygons would make the framework
more robust.

65

Appendix A

Pseudo-Code

A.1 Pre-processing

Algorithm 1 addEqualDistanceToEdge(samplingDistance)

fori=1—ndo
if : = n then

Vi+1 = Vo
end if
if i =1 then
Vi1 1= Uy
end if

vector := vj41 — v;
distance := vector.length()
if distance > samplingDistance then
added :=1
normVector := vector.normalize()
numVertices := floor(distance/samplingDistance)
samplingLength := distance/numVertices + 1
while added < numVertices do
newPoint := v; + added * samplingLength * normV ector
addToPolyline(newPoint)
added = added + 1
end while
end if
ti=1+4+1
end for

67

A.1 PRE-PROCESSING

Algorithm 2 pruneEdge(angleT hreshold, samplingDistance)

fori=1—ndo
if i = n then

Vit+1 1= Vo
end if
if i =1 then
Uprev ‘= Un
end if

vectorl := v — v

vector 1= Vprey — V;

angle := get Angle(vectorl,vector2)

distance := length(Vprey, Vit1)

if angle > angleThreshold and distance < samplingDistance then
removeFromPolyLine(v;)

else
Uprev = U;

end if

1:=1+1

end for

68

A.2 Topology-based and Segmentation-based Glyph
Placement

Algorithm 3 computeBarycentricWeights(p)

fori=1—ndo
if i = n then

Vi+1 1= Vo
end if
if i =1 then
Vi—1 = Up
end if

Ai = getSignedArea(vi, p, vit1)
AiM := getSignedArea(vi—1,p, v;)
Bi := getSignedArea(vi—1,p, vit1)
ri := length(p — v;)
riM = length(p — v;_1)
riP = length(p — vi+1)
wi = (riM « Ai — i« Bi+riP « AiM)/(AiM % A7)
sumW = sumW + wi
1:=1+1

end for

fori=1—ndo
wi = wi/sumW

end for

Algorithm 4 computeCenterOfArea(vertices)

n := vertices.size()
if n > 2 then
if polygonIsConvex(vertices) then
centerO f Area := computeCenterO f Gravity(vertices)
else
initPoint := findInitial Point(vertices)
laplacian := computeStencil Laplacian(vertices)
voronoiArea := computeV oronoi Area(vertices)
gram = compute EmbeddedGramM ariz(laplacian, voronoiArea)
centerO f Area := minimizePotential (init Point, gram, vertices, tolerance,
initial ExploreStep, final ExploreStep, maxUpdates)
end if
end if

Appendix B

Shaders

B.1 Texturization of Segmented Tensor Fields

1 // Vertex shader
2 void main()
3
4 gl FrontColor = gl Color;
5 gl TexCoord [0] = gl MultiTexCoord0;
6 gl Position = ftransform () ;
7)
8
9 // Fragment shader
10 uniform sampler2D texture;
11
12 void main()
13 {
14 gl FragColor = texture2D (texture , gl TexCoord[0].st);
15}
Listing B.1
Plain shader for texture mapping
1 // Vertex shader
2 in vecd4d texCoordl;
3 in vec4d texCoord2;
4 in vec4d color;
5 in vec4 color2;
6
7 varying vec4d varyTexCoordl;
8 varying vec4d varyTexCoord2;
9
10 varying vec4 varyColorl;
11 varying vec4 varyColor2;
12
13 void main()
14 {
15 varyTexCoordl = texCoordl;
16 varyTexCoord2 = texCoord2;

fun
&

18 varyColorl = color;

19 varyColor2 = color2;

20

21 gl FrontColor = vec4(1.0);
22 gl Position = ftransform () ;
23}

Listing B.2
Vertex shader used in the texture-based visualization approach

1 // Fragment shader

2 uniform sampler2D texturel;

3 uniform sampler2D texture2;

4

5 varying vec4d varyTexCoordl;

6 varying vec4d varyTexCoord2;

7

8 varying vec4d varyColorl;

9 varying vec4d varyColor2;

10

11 uniform float blendl;

12 uniform float blend2;

13

14 void main()

15

16 vecd texelOl = texture2D (texturel, varyTexCoordl.st);
17 vecd texel02 = texture2D (texture2, varyTexCoord2.st);
18

19 vecd cl = vec4d(texelOl.rgb * varyColorl.rgb, texelOl.a * blendl);
20 vecd c2 = vecd(texel02.rgb x varyColor2.rgb, texel02.a * blend2);
21

22 gl FragColor = mix(cl, c2, texel02.a * blend2);

23}

Listing B.3

Fragment shader of the default shader used in the texture-based visualization approach

1 // Fragment shader

2 uniform sampler2D texturel;
3 uniform sampler2D texture?2;
4

5 varying vec4d varyTexCoordl;
6 varying vec4d varyTexCoord?2;
7

8 varying vec4d varyColorl;

9 varying vec4d varyColor2;

10

11 uniform float blendl;

12 uniform float blend2;

13

14 uniform vec2 texSize;

15

16 vec2 texLookUpO1;

17 vec2 texLookUp02;

18 vec2 texLookUp03;

19 vec2 texLookUp04;

20

21 vecd getTexelValue(vecd texCoord, sampler2D texture)

B.1 TEXTURIZATION OF SEGMENTED TENSOR FIELDS

22 |

23 vec2 texLookUp = texCoord.st;

24

25 float dsx = dFdx(texCoord.s * texSize.x);

26 float dsy = dFdy(texCoord.s % texSize.y);

27

28 float dtx = dFdx(texCoord.t % texSize.x);

29 float dty = dFdy(texCoord.t % texSize.y);

30

31 float tau_s = sqrt(dsx * dsx + dsy * dsy);

32 float tau_t = sqrt(dtx * dtx + dty * dty);

33

34 float 1s = log2(tau_s);

35 float 1t = log2(tau_t);

36

37 texLookUp01l = vec2(texLookUp.s * exp2(—floor(ls)),

38 texLookUp.t * exp2(—floor(1lt)));

39 texLookUp02 = vec2(texLookUp.s * exp2(—floor(ls)),

40 texLookUp.t * exp2(—ceil(1t)));

41 texLookUp03 = vec2(texLookUp.s #* exp2(—ceil(1ls)),

42 texLookUp.t * exp2(—floor(1t)));

43 texLookUp04 = vec2(texLookUp.s % exp2(—ceil(1ls)),

44 texLookUp.t * exp2(—ceil(1t)));

45

46 float 1ls_frac = 1ls — floor (1ls);

47 float 1lt_frac = 1t — floor (1t);

48

49 vecd texel = (1.0 — 1ls_frac)

50 * ((1.0 — lt_frac) * texture2D (texture, texLookUpO1l)
51 + 1lt_frac * texture2D (texture, texLookUp02))
52 + ls_frac * ((1.0 — 1lt_frac) = texture2D (texture, texLookUp03)
53 + 1lt_frac * texture2D (texture, texLookUp04));
54

55 return texel;

56}

57

58 void main ()

59 {

60 vecd texell = getTexelValue(varyTexCoordl, texturel);
61 vecd texel2 = getTexelValue (varyTexCoord2, texture2);
62

63 vecd cl = vec4d(texell.rgb % varyColorl.rgb, texell.a % blendl);
64 vecd c2 = vecd(texel2.rgb x varyColor2.rgb, texel2.a * blend2);
65

66 gl FragColor = mix(cl, c2, texel2.a * blend2);

67 }

Listing B.4

Fragment shader of adaptive pattern shader with linear interpolation of the discrete resolution
levels

1 // Fragment shader

2 uniform sampler2D texturel;

3 uniform sampler2D texture2;

4

5 varying vecd4d varyTexCoordl;

6 varying vec4d varyTexCoord2;

7

8 varying vec4 varyColorl;

9 varying vec4d varyColor2;

72

varying vec2 varyEvals;

uniform float blendl;
uniform float blend2;

uniform vec2 texSize;
vec2 texLookUpO1l;
vec2 texLookUp02;
vec2 texLookUp03;
vec2 texLookUpO4;

vecd getTexelValue(vecd texCoord, sampler2D texture)

{
vec2 texLookUp = texCoord.st;
float mEV1 = varyEvals.s;
float mEV2 = varyEvals.t;
float dsx = dFdx(texCoord.s % texSize.x * mEV1);
float dsy = dFdy(texCoord.s * texSize.y * mEV1);
float dtx = dFdx(texCoord.t * texSize.x * mEV2);
float dty = dFdy(texCoord.t * texSize.y * mEV2);
float tau_s = sqrt(dsx * dsx + dsy * dsy);
float tau_t = sqrt(dtx * dtx + dty * dty);
float 1s = log2(tau_s);
float 1t = log2(tau_t);
texLookUp01l = vec2(texLookUp.s * exp2(—floor(ls)),
texLookUp.t #* exp2(—floor(1lt)));
texLookUp02 = vec2(texLookUp.s * exp2(—floor(1ls)),
texLookUp.t % exp2(—ceil(1t)));
texLookUp03 = vec2(texLookUp.s x exp2(—ceil(ls)),
texLookUp.t #* exp2(—floor(1lt)));
texLookUp04 = vec2(texLookUp.s * exp2(—ceil(1ls)),
texLookUp.t % exp2(—ceil(1t)));
float 1s_frac = 1ls — floor(1ls);
float 1lt_frac = 1t — floor (1t);
vecd texel = (1.0 — 1ls_frac)
* ((1.0 — 1t_frac) * texture2D (texture, texLookUpO1l)
+ lt_frac * texture2D (texture, texLookUp02))
+ ls_frac * ((1.0 — 1t_frac) * texture2D (texture, texLookUp03)
+ 1lt_frac * texture2D (texture, texLookUp04));
return texel;
}
void main ()
{

vecd texell = getTexelValue (varyTexCoordl, texturel);
vecd texel2 = getTexelValue (varyTexCoord2, texture2);

vecd cl = vec4d(texell.rgb x varyColorl.rgb, texell.a % blendl);
vecd c2 = vecd(texel2.rgb x varyColor2.rgb, texel2.a % blend2);

gl FragColor = mix(cl, c2, texel2.a * blend2);

73

B.1 TEXTURIZATION OF SEGMENTED TENSOR FIELDS

72

}

Listing B.5

Fragment shader that

interpolation)

_
H O © 0 N O O A W N

BB R R R R R R R R W W W W W W W W W W NN N NN NN NN = e e e e e e
© 00 N O Uk WO O 0N O0RWN OO0 O ORWNEO© N OO W N

//Fragment shader

uniform sampler2D image; //content of the OpenGL frame buffer
uniform sampler2D gaussTexture;

uniform sampler2D faTexture;

uniform vec2 texSize;
uniform float filterScale;
uniform float faFactor;

vecd convoluteWithGaussKernel ()

{

}

vec4d sum = vecd (0.0,0.0,0.0,0.0);
float gaussValue;

float gaussSum;

float x, y;

float gaussStepX, gaussStepY;

vec3 currentFa = vec3(texture2D (faTexture, gl TexCoord[0].st));
float k = currentFa.x x faFactor;

float fs = filterScale;

vec2 offset = vec2(1.0 / texSize.x, 1.0 / texSize.y);

for (y = k; y > —k; y——)

{
for (x = —k; x < k; x++)
{
// the center element is at (0.5, 0.5) of the Gauss texture
gaussStepX = (1.0 / k % 2.0) * x;
gaussStepY = (1.0 / k x 2.0) * y;
gaussValue = (texture2D (gaussTexture,
vec2 (gaussStepX, gaussStepY))).r;
gaussSum += gaussValue;
vecd texel = texture2D (image |,
gl TexCoord [0].st + vec2(x,y) * fs * offset);
sum +— gaussValue * texel;
}
}

return sum/gaussSum;

void main ()

{

vecd texel = convoluteWithGaussKernel ();

gl FragColor = texel;

Listing B.6
Fragment shader for post-processing

74

scales the pattern by the transformed eigenvalues (with linear

References

[1]

2]

3]

4]

15]

[6]

7]

18]

19]

[10]

R. Abraham, J. E. Marsden, and R. Ratiu. Manifolds, Tensor Analysis and
Applications. Springer-Verlag New York, Inc., USA, 2nd edition, 1988.

A. Aldroubi and P. Basser. "Reconstruction of Vector and Tensor Fields From
Sampled Discrete Data", 1999.

C. Auer, J. Sreevalsan-Nair, V. Zobel, and I. Hotz. "2D Tensor Field Segmen-
tation". In Scientific Visualization: Interactions, Features, Metaphors, volume 2
of Dagstuhl Follow-Ups. 2009.

A. H. Barr. "Superquadrics and Angle-preserving Transformations". I[EEE Com-
put. Graph. Appl., 1:11-23, 1981.

P. J. Basser and C. Pierpaoli. "Microstructural and Physiological Features of
Tissues Elucidated by Quantitative-Diffusion-Tensor MRI". Journal of Magnetic
Resonance, Series B, 111(3):209-219, 1996.

W. Benger and H.-C. Hege. "Tensor Splats". In Visualization and Data Analysis,
pages 151-162, 2004.

D. Brefler. "Texturbasierte Methoden zur Visualisierung von Tensorfeldern",
2010. Bachelorarbeit.

B. Cabral and L. C. Leedom. "Imaging Vector Fields Using Line Integral Con-
volution". In Proceedings of the 20th annual conference on Computer graphics
and interactive techniques, SIGGRAPH 93, pages 263-270, New York, NY, USA,
1993. ACM.

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, F. Warner, and S. Zucker.
"Geometric Diffusions as a Tool for Harmonic Analysis and Structure Definition
of Data: Diffusion maps". In Proceedings of the National Academy of Sciences,
pages 7426-7431, 2005.

D. A. Danielson. Vectors and Tensors in Engineering and Physics. Addison-
Wesley Publishing Company, Boston, MA, USA, 2nd edition, 1997.

75

REFERENCES

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

F. de Goes, S. Goldenstein, and L. Velho. "A Hierarchical Segmentation of Artic-
ulated Bodies". In Proceedings of the Symposium on Geometry Processing, SGP
08, pages 1349-1356, Aire-la-Ville, Switzerland, 2008. Eurographics Association.

W. C. de Leeuw and J. J. van Wijk. "A Probe for Local Flow Field Visualization".
In Proceedings of the jth conference on Visualization ’93, VIS '93, pages 39-45,
Washington, DC, USA, 1993. IEEE Computer Society.

T. Delmarcelle and L. Hesselink. "The Topology of Symmetric, Second-order
Tensor Fields". In VIS ’94: Proceedings of the conference on Visualization ’94,
pages 140-147, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

H. Hagen and C. Garth. "An Introduction to Tensors". In Visualization and
Processing of Tensor Fields, Mathematics and Visualization, pages 3-13. Springer
Berlin Heidelberg, 2006.

K. Hormann and M. S. Floater. "Mean Value Coordinates for Arbitrary Planar
Polygons". ACM Transactions on Graphics, 25:1424-1441, 2006.

I. Hotz, L. Feng, H. Hagen, B. Hamann, B. Jeremic, and K. Joy. "Physically
Based Methods for Tensor Field Visualization". In Proceedings of IEEE Visual-
ization 2004, pages 123-130. IEEE Computer Society Press, 2004.

I. Hotz, J. Sreevalsan-Nair, H. Hagen, and B. Hamann. "Tensor Field Recon-
struction Based on Eigenvector and Eigenvalue Interpolation". In Scientific Vi-
sualization: Advanced Concepts, Dagstuhl Follow-Ups, pages 110-123. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

M. Hummel, C. Garth, B. Hamann, H. Hagen, and K. I. Joy. "IRIS: Illustra-
tive Rendering for Integral Surfaces". IEEE Transactions on Visualization and
Computer Graphics, 16:1319-1328, 2010.

J. Kessenich, D. Baldwin, and R. Rost. "The OpenGL Shading Language Version
4.10", 2010. http://www.opengl.org/documentation/glsl/.

R. Marroquim and A. Maximo. "Introduction to GPU Programming with GLSL".
In Proceedings of the 2009 Tutorials of the XXII Brazilian Symposium on Com-
puter Graphics and Image Processing, SIBGRAPI-TUTORIALS ’09, pages 3-16,
Washington, DC, USA, 2009. IEEE Computer Society.

M. Moakher and P. Batchelor. "Symmetric Positive-definite Matrices: From
Geometry to Applications and Visualization". In Visualization and Processing of
Tensor Fields, pages 285-298. Springer Berlin Heidelberg, 2006.

R. M. Rustamov, Y. Lipman, and T. Funkhouser. "Interior Distance Using
Barycentric Coordinates". In SGP ’09: Proceedings of the Symposium on Geom-
etry Processing, pages 1279-1288, Aire-la-Ville, Switzerland, 2009. Eurographics
Association.

76

REFERENCES

[23] J. Sreevalsan-Nair, C. Auer, B. Hamann, and I. Hotz. "Eigenvector-based In-
terpolation and Segmentation of 2D Tensor Fields". In Topological Methods in
Visualization. Theory, Algorithms, and Applications (TopoInVis 2009), 2010.

[24] D. Stalling and H.-C. Hege. "Fast and Resolution Independent Line Integral
Convolution". In Proceedings of the 22nd annual conference on Computer graphics
and interactive techniques, SIGGRAPH 95, pages 249-256, New York, NY, USA,
1995. ACM.

[25] D. Stalling, M. Westerhoff, and H.-C. Hege. "Amira: a Highly Interactive Sys-
tem for Visual Data Analysis". In The Visualization Handbook, pages T49-767.
Elsevier, 2005.

[26] A. C. Telea. Data Visualization. A K Peters, Wellesley, MA, USA, 1st edition,
2007.

[27] X. Tricoche, G. Scheuermann, H. Hagen, and S. Clauss. "Vector and Tensor
Field Topology Simplification, Tracking, and Visualization". In PhD. thesis,
Schriftenreihe Fachbereich Informatik (3), Universitit, pages 107-116, 2002.

[28] X. Zheng and A. Pang. "HyperLIC". In Proceedings of the 14th IEEE Visual-
ization 2003 (VIS'03), VIS 03, pages 33—, Washington, DC, USA, 2003. IEEE
Computer Society.

7l

Selbstdandigkeitserklarung

Ich erklére hiermit, dass ich die vorliegende Arbeit selbsténdig und nur unter Verwen-
dung der angegebenen Quellen und Hilfsmittel angefertigt habe.

Berlin, den 1. August 2011

