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One Problem, Four Algorithms 
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Content of this Lecture 

 
 
 

• The Max-Subarray Problem 
• Naïve Solution 
• Better Solution 
• Best Solution 
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Where is the Sun? 

Source: http://www.layoutsparks.com 
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How can we find the Sun Algorithmically? 

• Assume pixel (RGB) representation 
• The sun obviously is bright 
• RGB colors can be transformed 

into brightness scores 
• The sun is the brightest spot 

– Compute an average brightness  
for the entire picture 

– Subtract this from each brightness  
value (will yield negative values) 

– Find the shape (spot) such that the sum of its brightness 
values is maximal 
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Size of the Spot not Pre-Determined 
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Example (Shapes: only Rectangles) 

1 6 8 6 5 3 

7 9 5 4 2 2 

2 7 6 3 2 1 

1 3 0 0 0 1 

2 4 8 8 3 2 

3 7 9 8 8 3 

-3 2 4 2 1 -1 

3 5 1 0 -2 -2 

-2 3 2 -1 -2 -3 

-3 -1 -4 -4 -4 -3 

-2 0 4 4 -1 -2 

-1 3 5 4 4 -1 

Avg. ~4 

-3 2 4 2 1 -1 

3 5 1 0 -2 -2 

-2 3 2 -1 -2 -3 

-3 -1 -4 -4 -4 -3 

-2 0 4 4 -1 -2 

-1 3 5 4 4 -1 

-3 2 4 2 1 -1 

3 5 1 0 -2 -2 

-2 3 2 -1 -2 -3 

-3 -4 -4 -4 -3 -3 

-2 0 4 4 -1 -2 

-1 3 5 4 4 -1 

-3 2 4 2 1 -1 

3 5 1 0 -2 -2 

-2 3 2 -1 -2 -3 

-3 -4 -4 -4 -3 -3 

-2 0 4 4 -1 -2 

-1 3 5 4 4 -1 
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Simpler Problem 

 
• This is a bit complicated 

– Which shapes? 
– Shape should not be too big (sun is small compared to sky) 

• What if the sun is almost filling the picture? 

– Maximal sum of scores or maximal average score? 
– (see very last slide) 

• We look at a simpler problem: Max Subarray 
– Where is the sun? 
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Max-Subarray Problem 

 
• Definition (Max-Subarray Problem) 

Assume an array A of integers. Find the subarray A* of A 
such that the sum s* of the values in A* is maximal over 
all subarrays of A. If s*<0, return 0. 

• Remarks 
– We only want the maximal value, not the borders of A* 
– Cells may have positive or negative values (or 0) 
– Length of the subarray A* is not fixed (shape of spot) 

 

-2 0 4 3 4 -6 -1 12 -2 0 15 
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A Greedy Solution 

• Promising start point: Find maximal value in array A 
• Greedy: Expand in both directions until sum decreases 
• Complexity? 
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A Greedy Solution 

• Promising start point: Find maximal value in array A 
• Greedy: Expand in both directions until sum decreases 
• Complexity? (Let n=|A|) 

– O(n) to find maximal value 
– O(n) expansion steps in worst case 
– O(n) together 

• Do we optimally solve our problem? 
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A Greedy Solution 

• Promising start point: Find maximal value in array A 
• Greedy: Expand in both directions until sum decreases 
• Complexity? (Let n=|A|) 

– O(n) together 

• Do we optimally solve our problem? 

-2 0 4 3 4 -3 -1 12 2 -1 1 

-2 0 4 3 4 -3 -1 12 2 -1 1 

-2 0 4 3 4 -3 -1 12 2 -1 1 
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A Greedy Solution 

• Promising start point: Find maximal value in array A 
• Greedy: Expand in both directions until sum decreases 
• Complexity? (Let n=|A|) 

– O(n) together 

• Do we optimally solve our problem? 
 

 
 

 
• First step may already be wrong 

 

-2 0 4 3 4 -3 -1 12 2 -1 1 

-2 0 4 3 4 -3 -1 12 2 -1 1 

-2 0 4 3 4 -3 -1 12 2 -1 1 

-2 0 4 3 4 -6 -6 10 -6 -1 1 
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Content of this Lecture 

 
 
 

• The Max-Subarray Problem 
• Naïve Solution 
• Better Solution 
• Best Solution 
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Naive Solution: Look at all Subarrays 

A: array_of_integer; 
n := |A|; 
m := 0; 
for i := 1 … n do 
  for j := i … n do 
    s := 0; 
    for k := i … j do  
      s := s + A[k]; 
    end for; 
    if s>m then 
      m := s; 
    end if; 
  end for; 
end for; 
return m; 

 
 
 

• i: Every start point of an array 
• j: Every end point of an array 
• k: Compute the sum of the 

values between start and end 
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Illustration 

-2 0 4 3 4 -3 -1 12 2 -1 1 

… 

… 

… 

A: array_of_integer; 
n := |A|; 
m := 0; 
for i := 1 … n do 
  for j := i … n do 
    s := 0; 
    for k := i … j do  
      s := s + A[k]; 
    end for; 
    if s>m then 
      m := s; 
    end if; 
  end for; 
end for; 
return m; 

i=1 

i=2 

i=3 

j=1..n 

j=2..n 

j=3..n 
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Complexity 

 
• Complexity? 
• Outmost loop: n times 
• j-loop: n times (worst-case) 
• Inner loop: n times 
• Together: O(n3) 
• But: We are summing up the 

same numbers again and again 
• We perform redundant work 
• More clever ways? 

A: array_of_integer; 
n := |A|; 
m := 0; 
for i := 1 … n do 
  for j := i … n do 
    s := 0; 
    for k := i … j do  
      s := s + A[k]; 
    end for; 
    if s>m then 
      m := s; 
    end if; 
  end for; 
end for; 
return m; 
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Exhaustive Solution 

-2 0 4 3 4 -3 -1 12 2 -1 1 

… 

… 

• First sum: A[1] 
• Second: A[1]+A[2] 
• 3rd: A[1]+A[2]+A[3] 
• 4th: … 

 
• Every next sum is the 

previous sum plus the 
next cell 

• How can we reuse the 
previous sum? 
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Exhaustive Solution, Improved 

 
 
 

• Every next sum is the 
previous sum plus the 
next cell 

• Complexity: O(n2) 

A: array_of_integer; 
n := |A|; 
m := 0; 
for i := 1 … n do 
  s := 0;  
  for j := i … n do 
    s := s + A[j]; 
    if s>m then 
      m := s; 
    end if; 
  end for; 
end for; 
return m; 
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Content of this Lecture 

 
 
 

• The Max-Subarray Problem 
• Naïve Solution 
• Better Solution 
• Best Solution 
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Observation 

• We optimized computation of sums in the j/k looks 
• We still compute many sums multiple times – across i’s 

-2 0 4 3 4 -3 -1 12 2 -1 1 

… 

… 
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Divide and Conquer 

• We can break up our problem into smaller ones by looking 
only at parts of the array 

• One scheme: Assume A=A1|A2 
– With “|” meaning array concatenation and |A1|=|A2|(+0/1) 

• The max-subarray (msa) of A … 
– either lies in A1 – can be found by solving msa(A1) 
– or in A2 – can be found by solving msa(A2) 
– or partly in A1 and partly in A2 

• Can be solved by summing-up the msa’s in A1/A2 that align with the 
right/left end of A1/A2  

• We divide the problem into smaller ones and create the 
“bigger” solution from the “smaller” solutions 
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Algorithm (for simplicity, assume |A|=2x for some x) 

function msa (A: array_of_int) { 
  n := |A|; 
  if (n=1) then 
    if A[1]>0 then 
      return A[1] 
    else 
      return 0; 
  end if; 
  m := n/2;     
  A1 := A[1…m]; 
  A2 := A[m+1…n]; 
  l1 := rmax(A1); 
  l2 := lmax(A2); 
  m := max(msa(A1), 
           l1+l2,  
           msa(A2)); 
  return m; 
} 

function rmax (A: array_of_int){ 
  n := |A|; 
  s := 0; 
  m := 0; 
  for i := n .. 1 do 
    s := s + A[i]; 
    if s>m then 
      m := s; 
    end if; 
  end for; 
  return m; 
} 
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Example 

-2 3 1 3 4 -3 -4 2 

-2 3 1 3 4 -3 -4 2 

-2 3 1 3 4 -3 -4 2 

 
• Solution: max(7,7+4,4) 

 
 

• Left array: max(3,3+4,4) 
• Right array: max(4,1+0,2) 

 
 

• Left-most: max(0,0+3,3) 
• … 

rmax=7 lmax=4 

rmax=3 
rmax=1 

lmax=4 lmax=0 
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Complexity 

• This time it is not so easy … 
• Complexity of lmax / rmax? 

 

function rmax (A: array_of_int){ 
  n := |A|; 
  s := 0; 
  m := 0; 
  for i := n .. 1 do 
    s := s + A[i]; 
    if s>m then 
      m := s; 
    end if; 
  end for; 
  return m; 
} 
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Complexity 

• This time it is not so easy … 
• Complexity of lmax / rmax?  

– O(n) 

• Function msa 
– Let T(n) be the number of  

steps necessary to execute  
the algorithm for |A|=n 

• In each level, n’=n/2 
• The two sub-solutions  

require T(n’) each 

– This yields: T(n) ~ O(1)+O(n)+O(n)+T(n/2)+T(n/2) 
 

function msa (A: array_of_int) { 
  n := |A|; 
  if (n=1) then 
    if A[1]>0 then 
      return A[1] 
    else 
      return 0; 
  end if; 
  m := n/2;    # … 
  A1 := A[1…m]; 
  A2 := A[m+1…n]; 
  l1 := rmax(A1); 
  l2 := lmax(A2); 
  m := max(msa(A1),l1+l2,msa(A2)); 
  return m; 
} 
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Complexity 

• This time it is not so easy … 
• Complexity of lmax / rmax?  

– O(n) 

• Function msa 
– Let T(n) be the number of  

steps necessary to execute  
the algorithm for |A|=n 

• In each level, n’=n/2 
• The two sub-solutions  

require T(n’) each 

– This yields: T(n) ~ O(1)+O(n)+T(n/2)+T(n/2) 
 

function msa (A: array_of_int) { 
  n := |A|; 
  if (n=1) then 
    if A[1]>0 then 
      return A[1] 
    else 
      return 0; 
  end if; 
  m := n/2;    # … 
  A1 := A[1…m]; 
  A2 := A[m+1…n]; 
  l1 := rmax(A1); 
  l2 := lmax(A2); 
  m := max(msa(A1),l1+l2,msa(A2)); 
  return m; 
} 
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Complexity 

 
 

• For constants c1, c2 

• T(n) = 2*T(n/2)+c1*n 
• Further: T(1) = c2 

 

function msa (A: array_of_integer) { 
  n := |A|; 
  if (n=1) then 
    if A[1]>0 then 
      return A[1] 
    else 
      return 0; 
  end if; 
  m := n/2;    # Assume even sizes 
  A1 := A[1…m]; 
  A2 := A[m+1…n]; 
  l1 := rmax(A1); 
  l2 := lmax(A2); 
  m := max( msa(A1), l1+l2, msa(A2)); 
  return m; 
} 
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Complexity 

 
 

• For constants c1, c2 

• T(n) = 2*T(n/2)+c1*n 
• Further: T(1) = c2 

• Iterative substitution: 
T(n)= 2*T(n/2)+c1n = 
       = 2(2T(n/4)+c1n/2)+c1n   = 4T(n/4)+c1n+c1n = 
       = 4(2T(n/8)+c1n/4)+2c1n = 8T(n/8)+3c1n = …  

 
2log(n)*c2 + c1n*log(n) = 

c2n+c1n*log(n)  = O(n*log(n)) 

function msa (A: array_of_integer) { 
  n := |A|; 
  if (n=1) then 
    if A[1]>0 then 
      return A[1] 
    else 
      return 0; 
  end if; 
  m := n/2;    # Assume even sizes 
  A1 := A[1…m]; 
  A2 := A[m+1…n]; 
  l1 := rmax(A1); 
  l2 := lmax(A2); 
  m := max( msa(A1), l1+l2, msa(A2)); 
  return m; 
} 



Ulf Leser: Alg&DS, Summer Semester 2015       29 

Same Problem, Different Algorithms 

 
 

• Naive:      O(n3) 
• Less naive, still redundant:   O(n2) 
• Divide & Conquer:    O(n*log(n)) 

 
• The problem:     O(n) 
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Content of this Lecture 

 
 

• The Max-Subarray Problem 
• Naïve Solution 
• Better Solution 
• Linear Solution 
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Let‘s Think again – More Carefully 

• Let‘s use another strategy for dividing the problem 
• Let‘s look at the solutions for A[1], A[1..2], A[1…3], … 
• What can we say about the msa for Ai+1=A[1…i+1], given 

the msa of Ai=A[1…i]? 
 

-2 0 4 3 4 -3 -1 6 
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Let‘s Think again – More Carefully 

• Let‘s use another strategy for dividing the problem 
• Let‘s look at the solutions for A[1], A[1..2], A[1…3], … 
• What can we say about the msa for Ai+1=A[1…i+1], given 

the msa of Ai=A[1…i]? 
 
 
 

• msa(Ai+1) is … 
– either somewhere within Ai, which means the same as msa(Ai) 
– or is formed by rmax(Ai)+A[i+1] 

• Thus: Keep msa and rmax while scanning once through A 
 

-2 0 4 3 4 -3 -1 6 
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Algorithm & Complexity 

 
• Obviously: O(n) 
• Asymptotically optimal 

– We only look a constant number 
of times at every element of A 

– But we need to look at least 
once at every element of A 

– Thus, the problem is Ω(n) 

• Example of dynamic 
programming: Build larger 
solutions from smaller ones 

A: array_of_integer; 
rmax:= 0; 
m := 0; 
for i:= 1 to n do 
  rmax := max( A[i],  
               rmax+A[i]);  
  m := max( rmax, m); 
end for; 
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Example 

-2 3 1 3 4 -3 -4 2 -2 -2 

-2 3 1 3 4 -3 -4 2 7 7 

-2 3 1 3 4 -3 -4 2 11 11 

-2 3 1 3 4 -3 -4 2 8 11 

-2 3 1 3 4 -3 -4 2 4 11 

-2 3 1 3 4 -3 -4 2 6 11 

-2 3 1 3 4 -3 -4 2 4 4 

-2 3 1 3 4 -3 -4 2 3 3 

rmax  m 
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Optimization Problems 

 
• Optimization – find the best among all possible solutions 
• Issues 

– Find solutions: Simple here, but sometimes hard 
– Score solutions: Simple here, but sometimes hard 
– Search space pruning: Do we need to look at all possible solutions? 

• Typical pattern 
– Enumerate solutions in a systematic manner 
– Often generates a tree of partial and finally complete solutions 
– Prune parts of the search space where no optimal solution can be 
– If possible, stop early 
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Types of Algorithms 

• Different fundamental patterns (non exhaustive list) 
– Greedy: Find some promising start point and expand aggressively 

until a complete solution is found 
• Usually fast, but usually doesn’t find the optimal solution 

– Exhaustive: Test all possible solutions and find the one that is best 
• Sometimes the only choice if optimality is asked for 

– Divide & Conquer: Break your problem into smaller ones until these 
are so easy that they can be solved directly; construct solutions for 
“bigger” problems from these small solutions 

– Dynamic programming 
– Backtracking 
– … 
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Types of Algorithms 

 
• For the max subarray problem 

– Greedy:     O(n), but wrong 
– Exhaustive:    O(n3) 

• With pruning   O(n2) 

– Divide & Conquer:  O(n*log(n)) 
– Dynamic programming:  O(n) 
– Backtracking 
– … 

• Notes 
– No sharp way to differentiate alg patterns – just ideas 
– Usually there are many greedy, many exhaustive, many … solutions 
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Exemplary Questions 

 
• Give an optimal algorithm for the max-subarray problem 

and prove its optimality 
• Assume the max-subarray problem with the additional 

restriction that the length of sub-array must be short-or-
equal a constant k. Give a linear algorithm solving this 
problem. 

• Give an algorithm for the max-subarray problem in 2D, 
where |A| is quadratic and the subarray must be a square. 
Analyze its worst-case complexity. 
– Hint: For improvements, store intermediate results 
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