
Algorithms and Data Structures

Ulf Leser

One Problem, Four Algorithms

Ulf Leser: Alg&DS, Summer Semester 2015 2

Content of this Lecture

• The Max-Subarray Problem
• Naïve Solution
• Better Solution
• Best Solution

Ulf Leser: Alg&DS, Summer Semester 2015 3

Where is the Sun?

Source: http://www.layoutsparks.com

Ulf Leser: Alg&DS, Summer Semester 2015 4

How can we find the Sun Algorithmically?

• Assume pixel (RGB) representation
• The sun obviously is bright
• RGB colors can be transformed

into brightness scores
• The sun is the brightest spot

– Compute an average brightness
for the entire picture

– Subtract this from each brightness
value (will yield negative values)

– Find the shape (spot) such that the sum of its brightness
values is maximal

Ulf Leser: Alg&DS, Summer Semester 2015 5

Size of the Spot not Pre-Determined

Ulf Leser: Alg&DS, Summer Semester 2015 6

Example (Shapes: only Rectangles)

1 6 8 6 5 3

7 9 5 4 2 2

2 7 6 3 2 1

1 3 0 0 0 1

2 4 8 8 3 2

3 7 9 8 8 3

-3 2 4 2 1 -1

3 5 1 0 -2 -2

-2 3 2 -1 -2 -3

-3 -1 -4 -4 -4 -3

-2 0 4 4 -1 -2

-1 3 5 4 4 -1

Avg. ~4

-3 2 4 2 1 -1

3 5 1 0 -2 -2

-2 3 2 -1 -2 -3

-3 -1 -4 -4 -4 -3

-2 0 4 4 -1 -2

-1 3 5 4 4 -1

-3 2 4 2 1 -1

3 5 1 0 -2 -2

-2 3 2 -1 -2 -3

-3 -4 -4 -4 -3 -3

-2 0 4 4 -1 -2

-1 3 5 4 4 -1

-3 2 4 2 1 -1

3 5 1 0 -2 -2

-2 3 2 -1 -2 -3

-3 -4 -4 -4 -3 -3

-2 0 4 4 -1 -2

-1 3 5 4 4 -1

Ulf Leser: Alg&DS, Summer Semester 2015 7

Simpler Problem

• This is a bit complicated

– Which shapes?
– Shape should not be too big (sun is small compared to sky)

• What if the sun is almost filling the picture?

– Maximal sum of scores or maximal average score?
– (see very last slide)

• We look at a simpler problem: Max Subarray
– Where is the sun?

Ulf Leser: Alg&DS, Summer Semester 2015 8

Max-Subarray Problem

• Definition (Max-Subarray Problem)

Assume an array A of integers. Find the subarray A* of A
such that the sum s* of the values in A* is maximal over
all subarrays of A. If s*<0, return 0.

• Remarks
– We only want the maximal value, not the borders of A*
– Cells may have positive or negative values (or 0)
– Length of the subarray A* is not fixed (shape of spot)

-2 0 4 3 4 -6 -1 12 -2 0 15

Ulf Leser: Alg&DS, Summer Semester 2015 9

A Greedy Solution

• Promising start point: Find maximal value in array A
• Greedy: Expand in both directions until sum decreases
• Complexity?

Ulf Leser: Alg&DS, Summer Semester 2015 10

A Greedy Solution

• Promising start point: Find maximal value in array A
• Greedy: Expand in both directions until sum decreases
• Complexity? (Let n=|A|)

– O(n) to find maximal value
– O(n) expansion steps in worst case
– O(n) together

• Do we optimally solve our problem?

Ulf Leser: Alg&DS, Summer Semester 2015 11

A Greedy Solution

• Promising start point: Find maximal value in array A
• Greedy: Expand in both directions until sum decreases
• Complexity? (Let n=|A|)

– O(n) together

• Do we optimally solve our problem?

-2 0 4 3 4 -3 -1 12 2 -1 1

-2 0 4 3 4 -3 -1 12 2 -1 1

-2 0 4 3 4 -3 -1 12 2 -1 1

Ulf Leser: Alg&DS, Summer Semester 2015 12

A Greedy Solution

• Promising start point: Find maximal value in array A
• Greedy: Expand in both directions until sum decreases
• Complexity? (Let n=|A|)

– O(n) together

• Do we optimally solve our problem?

• First step may already be wrong

-2 0 4 3 4 -3 -1 12 2 -1 1

-2 0 4 3 4 -3 -1 12 2 -1 1

-2 0 4 3 4 -3 -1 12 2 -1 1

-2 0 4 3 4 -6 -6 10 -6 -1 1

Ulf Leser: Alg&DS, Summer Semester 2015 13

Content of this Lecture

• The Max-Subarray Problem
• Naïve Solution
• Better Solution
• Best Solution

Ulf Leser: Alg&DS, Summer Semester 2015 14

Naive Solution: Look at all Subarrays

A: array_of_integer;
n := |A|;
m := 0;
for i := 1 … n do
 for j := i … n do
 s := 0;
 for k := i … j do
 s := s + A[k];
 end for;
 if s>m then
 m := s;
 end if;
 end for;
end for;
return m;

• i: Every start point of an array
• j: Every end point of an array
• k: Compute the sum of the

values between start and end

Ulf Leser: Alg&DS, Summer Semester 2015 15

Illustration

-2 0 4 3 4 -3 -1 12 2 -1 1

…

…

…

A: array_of_integer;
n := |A|;
m := 0;
for i := 1 … n do
 for j := i … n do
 s := 0;
 for k := i … j do
 s := s + A[k];
 end for;
 if s>m then
 m := s;
 end if;
 end for;
end for;
return m;

i=1

i=2

i=3

j=1..n

j=2..n

j=3..n

Ulf Leser: Alg&DS, Summer Semester 2015 16

Complexity

• Complexity?
• Outmost loop: n times
• j-loop: n times (worst-case)
• Inner loop: n times
• Together: O(n3)
• But: We are summing up the

same numbers again and again
• We perform redundant work
• More clever ways?

A: array_of_integer;
n := |A|;
m := 0;
for i := 1 … n do
 for j := i … n do
 s := 0;
 for k := i … j do
 s := s + A[k];
 end for;
 if s>m then
 m := s;
 end if;
 end for;
end for;
return m;

Ulf Leser: Alg&DS, Summer Semester 2015 17

Exhaustive Solution

-2 0 4 3 4 -3 -1 12 2 -1 1

…

…

• First sum: A[1]
• Second: A[1]+A[2]
• 3rd: A[1]+A[2]+A[3]
• 4th: …

• Every next sum is the

previous sum plus the
next cell

• How can we reuse the
previous sum?

Ulf Leser: Alg&DS, Summer Semester 2015 18

Exhaustive Solution, Improved

• Every next sum is the
previous sum plus the
next cell

• Complexity: O(n2)

A: array_of_integer;
n := |A|;
m := 0;
for i := 1 … n do
 s := 0;
 for j := i … n do
 s := s + A[j];
 if s>m then
 m := s;
 end if;
 end for;
end for;
return m;

Ulf Leser: Alg&DS, Summer Semester 2015 19

Content of this Lecture

• The Max-Subarray Problem
• Naïve Solution
• Better Solution
• Best Solution

Ulf Leser: Alg&DS, Summer Semester 2015 20

Observation

• We optimized computation of sums in the j/k looks
• We still compute many sums multiple times – across i’s

-2 0 4 3 4 -3 -1 12 2 -1 1

…

…

Ulf Leser: Alg&DS, Summer Semester 2015 21

Divide and Conquer

• We can break up our problem into smaller ones by looking
only at parts of the array

• One scheme: Assume A=A1|A2
– With “|” meaning array concatenation and |A1|=|A2|(+0/1)

• The max-subarray (msa) of A …
– either lies in A1 – can be found by solving msa(A1)
– or in A2 – can be found by solving msa(A2)
– or partly in A1 and partly in A2

• Can be solved by summing-up the msa’s in A1/A2 that align with the
right/left end of A1/A2

• We divide the problem into smaller ones and create the
“bigger” solution from the “smaller” solutions

Ulf Leser: Alg&DS, Summer Semester 2015 22

Algorithm (for simplicity, assume |A|=2x for some x)

function msa (A: array_of_int) {
 n := |A|;
 if (n=1) then
 if A[1]>0 then
 return A[1]
 else
 return 0;
 end if;
 m := n/2;
 A1 := A[1…m];
 A2 := A[m+1…n];
 l1 := rmax(A1);
 l2 := lmax(A2);
 m := max(msa(A1),
 l1+l2,
 msa(A2));
 return m;
}

function rmax (A: array_of_int){
 n := |A|;
 s := 0;
 m := 0;
 for i := n .. 1 do
 s := s + A[i];
 if s>m then
 m := s;
 end if;
 end for;
 return m;
}

Ulf Leser: Alg&DS, Summer Semester 2015 23

Example

-2 3 1 3 4 -3 -4 2

-2 3 1 3 4 -3 -4 2

-2 3 1 3 4 -3 -4 2

• Solution: max(7,7+4,4)

• Left array: max(3,3+4,4)
• Right array: max(4,1+0,2)

• Left-most: max(0,0+3,3)
• …

rmax=7 lmax=4

rmax=3
rmax=1

lmax=4 lmax=0

Ulf Leser: Alg&DS, Summer Semester 2015 24

Complexity

• This time it is not so easy …
• Complexity of lmax / rmax?

function rmax (A: array_of_int){
 n := |A|;
 s := 0;
 m := 0;
 for i := n .. 1 do
 s := s + A[i];
 if s>m then
 m := s;
 end if;
 end for;
 return m;
}

Ulf Leser: Alg&DS, Summer Semester 2015 25

Complexity

• This time it is not so easy …
• Complexity of lmax / rmax?

– O(n)

• Function msa
– Let T(n) be the number of

steps necessary to execute
the algorithm for |A|=n

• In each level, n’=n/2
• The two sub-solutions

require T(n’) each

– This yields: T(n) ~ O(1)+O(n)+O(n)+T(n/2)+T(n/2)

function msa (A: array_of_int) {
 n := |A|;
 if (n=1) then
 if A[1]>0 then
 return A[1]
 else
 return 0;
 end if;
 m := n/2; # …
 A1 := A[1…m];
 A2 := A[m+1…n];
 l1 := rmax(A1);
 l2 := lmax(A2);
 m := max(msa(A1),l1+l2,msa(A2));
 return m;
}

Ulf Leser: Alg&DS, Summer Semester 2015 26

Complexity

• This time it is not so easy …
• Complexity of lmax / rmax?

– O(n)

• Function msa
– Let T(n) be the number of

steps necessary to execute
the algorithm for |A|=n

• In each level, n’=n/2
• The two sub-solutions

require T(n’) each

– This yields: T(n) ~ O(1)+O(n)+T(n/2)+T(n/2)

function msa (A: array_of_int) {
 n := |A|;
 if (n=1) then
 if A[1]>0 then
 return A[1]
 else
 return 0;
 end if;
 m := n/2; # …
 A1 := A[1…m];
 A2 := A[m+1…n];
 l1 := rmax(A1);
 l2 := lmax(A2);
 m := max(msa(A1),l1+l2,msa(A2));
 return m;
}

Ulf Leser: Alg&DS, Summer Semester 2015 27

Complexity

• For constants c1, c2

• T(n) = 2*T(n/2)+c1*n
• Further: T(1) = c2

function msa (A: array_of_integer) {
 n := |A|;
 if (n=1) then
 if A[1]>0 then
 return A[1]
 else
 return 0;
 end if;
 m := n/2; # Assume even sizes
 A1 := A[1…m];
 A2 := A[m+1…n];
 l1 := rmax(A1);
 l2 := lmax(A2);
 m := max(msa(A1), l1+l2, msa(A2));
 return m;
}

Ulf Leser: Alg&DS, Summer Semester 2015 28

Complexity

• For constants c1, c2

• T(n) = 2*T(n/2)+c1*n
• Further: T(1) = c2

• Iterative substitution:
T(n)= 2*T(n/2)+c1n =
 = 2(2T(n/4)+c1n/2)+c1n = 4T(n/4)+c1n+c1n =
 = 4(2T(n/8)+c1n/4)+2c1n = 8T(n/8)+3c1n = …

2log(n)*c2 + c1n*log(n) =

c2n+c1n*log(n) = O(n*log(n))

function msa (A: array_of_integer) {
 n := |A|;
 if (n=1) then
 if A[1]>0 then
 return A[1]
 else
 return 0;
 end if;
 m := n/2; # Assume even sizes
 A1 := A[1…m];
 A2 := A[m+1…n];
 l1 := rmax(A1);
 l2 := lmax(A2);
 m := max(msa(A1), l1+l2, msa(A2));
 return m;
}

Ulf Leser: Alg&DS, Summer Semester 2015 29

Same Problem, Different Algorithms

• Naive: O(n3)
• Less naive, still redundant: O(n2)
• Divide & Conquer: O(n*log(n))

• The problem: O(n)

Ulf Leser: Alg&DS, Summer Semester 2015 30

Content of this Lecture

• The Max-Subarray Problem
• Naïve Solution
• Better Solution
• Linear Solution

Ulf Leser: Alg&DS, Summer Semester 2015 31

Let‘s Think again – More Carefully

• Let‘s use another strategy for dividing the problem
• Let‘s look at the solutions for A[1], A[1..2], A[1…3], …
• What can we say about the msa for Ai+1=A[1…i+1], given

the msa of Ai=A[1…i]?

-2 0 4 3 4 -3 -1 6

Ulf Leser: Alg&DS, Summer Semester 2015 32

Let‘s Think again – More Carefully

• Let‘s use another strategy for dividing the problem
• Let‘s look at the solutions for A[1], A[1..2], A[1…3], …
• What can we say about the msa for Ai+1=A[1…i+1], given

the msa of Ai=A[1…i]?

• msa(Ai+1) is …
– either somewhere within Ai, which means the same as msa(Ai)
– or is formed by rmax(Ai)+A[i+1]

• Thus: Keep msa and rmax while scanning once through A

-2 0 4 3 4 -3 -1 6

Ulf Leser: Alg&DS, Summer Semester 2015 33

Algorithm & Complexity

• Obviously: O(n)
• Asymptotically optimal

– We only look a constant number
of times at every element of A

– But we need to look at least
once at every element of A

– Thus, the problem is Ω(n)

• Example of dynamic
programming: Build larger
solutions from smaller ones

A: array_of_integer;
rmax:= 0;
m := 0;
for i:= 1 to n do
 rmax := max(A[i],
 rmax+A[i]);
 m := max(rmax, m);
end for;

Ulf Leser: Alg&DS, Summer Semester 2015 34

Example

-2 3 1 3 4 -3 -4 2 -2 -2

-2 3 1 3 4 -3 -4 2 7 7

-2 3 1 3 4 -3 -4 2 11 11

-2 3 1 3 4 -3 -4 2 8 11

-2 3 1 3 4 -3 -4 2 4 11

-2 3 1 3 4 -3 -4 2 6 11

-2 3 1 3 4 -3 -4 2 4 4

-2 3 1 3 4 -3 -4 2 3 3

rmax m

Ulf Leser: Alg&DS, Summer Semester 2015 35

Optimization Problems

• Optimization – find the best among all possible solutions
• Issues

– Find solutions: Simple here, but sometimes hard
– Score solutions: Simple here, but sometimes hard
– Search space pruning: Do we need to look at all possible solutions?

• Typical pattern
– Enumerate solutions in a systematic manner
– Often generates a tree of partial and finally complete solutions
– Prune parts of the search space where no optimal solution can be
– If possible, stop early

Ulf Leser: Alg&DS, Summer Semester 2015 36

Types of Algorithms

• Different fundamental patterns (non exhaustive list)
– Greedy: Find some promising start point and expand aggressively

until a complete solution is found
• Usually fast, but usually doesn’t find the optimal solution

– Exhaustive: Test all possible solutions and find the one that is best
• Sometimes the only choice if optimality is asked for

– Divide & Conquer: Break your problem into smaller ones until these
are so easy that they can be solved directly; construct solutions for
“bigger” problems from these small solutions

– Dynamic programming
– Backtracking
– …

Ulf Leser: Alg&DS, Summer Semester 2015 37

Types of Algorithms

• For the max subarray problem

– Greedy: O(n), but wrong
– Exhaustive: O(n3)

• With pruning O(n2)

– Divide & Conquer: O(n*log(n))
– Dynamic programming: O(n)
– Backtracking
– …

• Notes
– No sharp way to differentiate alg patterns – just ideas
– Usually there are many greedy, many exhaustive, many … solutions

Ulf Leser: Alg&DS, Summer Semester 2015 38

Exemplary Questions

• Give an optimal algorithm for the max-subarray problem

and prove its optimality
• Assume the max-subarray problem with the additional

restriction that the length of sub-array must be short-or-
equal a constant k. Give a linear algorithm solving this
problem.

• Give an algorithm for the max-subarray problem in 2D,
where |A| is quadratic and the subarray must be a square.
Analyze its worst-case complexity.
– Hint: For improvements, store intermediate results

	Foliennummer 1
	Content of this Lecture
	Where is the Sun?
	How can we find the Sun Algorithmically?
	Size of the Spot not Pre-Determined
	Example (Shapes: only Rectangles)
	Simpler Problem
	Max-Subarray Problem
	A Greedy Solution
	A Greedy Solution
	A Greedy Solution
	A Greedy Solution
	Content of this Lecture
	Naive Solution: Look at all Subarrays
	Illustration
	Complexity
	Exhaustive Solution
	Exhaustive Solution, Improved
	Content of this Lecture
	Observation
	Divide and Conquer
	Algorithm (for simplicity, assume |A|=2x for some x)
	Example
	Complexity
	Complexity
	Complexity
	Complexity
	Complexity
	Same Problem, Different Algorithms
	Content of this Lecture
	Let‘s Think again – More Carefully
	Let‘s Think again – More Carefully
	Algorithm & Complexity
	Example
	Optimization Problems
	Types of Algorithms
	Types of Algorithms
	Exemplary Questions

