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Abstract. Disjoint NP-pairs are a well studied complexity theoretic
concept with important applications in cryptography and propositional
proof complexity. In this paper we introduce a natural generalization of
the notion of disjoint NP-pairs to disjoint k-tuples of NP-sets for k > 2.
We define subclasses of the class of all disjoint k-tuples of NP-sets. These
subclasses are associated with a propositional proof system and possess
complete tuples which are defined from the proof system.

In our main result we show that complete disjoint NP-pairs exist if and
only if complete disjoint k-tuples of NP-sets exist for all £ > 2. Further,
this is equivalent to the existence of a propositional proof system in which
the disjointness of all k-tuples is shortly provable. We also show that a
strengthening of this conditions characterizes the existence of optimal
proof systems.

1 Introduction

During the last years the theory of disjoint NP-pairs has been intensively studied.
This interest stems mainly from the applications of disjoint NP-pairs in the field
of cryptography [9, 16] and propositional proof complexity [18, 13]. In this paper
we investigate a natural generalization of disjoint NP-pairs: instead of pairs we
consider k-tuples of pairwise disjoint NP-sets. Concepts such as reductions and
separators are smoothly generalized from pairs to k-tuples.

One of the major open problems in the field of disjoint NP-pairs is the ques-
tion, posed by Razborov [19], whether there exist disjoint NP-pairs that are
complete for the class of all pairs under suitable reductions. Glaer et al. [6]
gave a characterization in terms of uniform enumerations of disjoint NP-pairs
and also proved that the answer to the problem does not depend on the re-
ductions used, i.e. there are reductions for pairs which vary in strength but are
equivalent with respect to the existence of complete pairs.

The close relation between propositional proof systems and disjoint NP-pairs
provides a partial answer to the question of the existence of complete pairs.
Namely, the existence of optimal propositional proof systems is a sufficient con-
dition for the existence of complete disjoint NP-pairs. This result is already
implicitly contained in [19]. However, Glafier et al. [7] construct an oracle rela-
tive to which there exist complete pairs but optimal proof systems do not exist.



Hence, the problems on the existence of optimal proof systems and of complete
disjoint NP-pairs appear to be of different strength.

Our main contribution in this paper is the characterization of these two prob-
lems in terms of disjoint k-tuples of NP-sets. In particular we address the question
whether there exist complete disjoint k-tuples under different reductions. Con-
sidering this problem it is easy to see that the existence of complete k-tuples
implies the existence of complete I-tuples for | < k: the first [ components of a
complete k-tuple are complete for all [-tuples. Conversely, it is a priori not clear
how to construct a complete k-tuple from a complete [-tuple for I < k. There-
fore it might be tempting to conjecture that the existence of complete k-tuples
forms a hierarchy of assumptions of increasing strength for greater k. However,
we show that this does not happen: there exist complete disjoint NP-pairs if
and only if there exist complete disjoint k-tuples of NP-sets for all £ > 2, and
this is even true under reductions of different strength. Further, we prove that
this is equivalent to the existence of a propositional proof system in which the
disjointness of all k-tuples with respect to suitable propositional representations
of these tuples is provable with short proofs. We also characterize the existence
of optimal proof systems with a similar but apparently stronger condition.

We achieve this by extending the connection between proof systems and NP-
pairs to k-tuples. In particular we define representations for disjoint k-tuples of
NP-sets. This can be done on a propositional level with sequences of tautologies
but also with first-order formulas in arithmetic theories. To any propositional
proof system P we associate a subclass DNPPy(P) of the class of all disjoint
k-tuples of NP-sets. This subclass contains those k-tuples for which the disjoint-
ness is provable with short P-proofs. We show that the classes DNPP(P) possess
complete tuples which are defined from the proof system P. Somewhat surpris-
ingly, under suitable conditions on P these non-uniform classes DNPP(P) equal
their uniform versions which are defined via arithmetic representations. This en-
ables us to further characterize the existence of complete disjoint k-tuples by a
condition on arithmetic theories.

The paper is organized as follows. In Sect. 2 we recall some relevant definitions
concerning propositional proof systems and disjoint NP-pairs. We also give a very
brief description of the correspondence between propositional proof systems and
arithmetic theories. This reference to bounded arithmetic, however, only plays
a role in Sect. 5 where we analyse arithmetic representations. The rest of the
paper and in particular the main results in Sect. 6 are fully presented on the
propositional level.

In Sect. 3 we define the basic concepts such as reductions and separators that
we need for the investigation of disjoint k-tuples of NP-sets.

In Sect. 4 we define propositional representations for k-tuples and introduce
the complexity classes DNPPy(P) of all disjoint k-tuples of NP-sets that are
representable in the system P. We show that these classes are closed under
our reductions for k-tuples. Further, we define k-tuples from propositional proof
systems which serve as hard languages for DNPP(P). In particular we generalize



the interpolation pair from [18] and demonstrate that even these generalized
variants still capture the feasible interpolation property of the proof system.

In Sect. 5 we define first-order variants of the propositional representations
from Sect. 4. We utilize the correspondence between proof systems and bounded
arithmetic to show that a k-tuple of NP-sets is representable in P if and only if
it is representable in the arithmetic theory associated with P. This equivalence
allows easy proofs for the representability of the canonical k-tuples associated
with P, thereby improving the hardness results for DNPPg(P) from Sect. 4 to
completeness results for proof systems corresponding to arithmetic theories.

The main results on the connections between complete NP-pairs, complete
k-tuples and optimal proof systems follow in Sect. 6.

Due to space limitations we only sketch proofs or omit them in this extended
abstract. The complete paper is available as a technical report [2].

2 Preliminaries

Propositional Proof Systems. Propositional proof systems were defined in
a very general way by Cook and Reckhow in [5] as polynomial time functions P
which have as its range the set of all tautologies. A string = with P(7) = ¢ is
called a P-proof of the tautology ¢. By P F<,, ¢ we indicate that there is a P-
proof of ¢ of length < m. If @ is a set of propositional formulas we write P -, @
if there is a polynomial p such that P <) ¢ forall o € . If & = {@, [n > 0}
is a sequence of formulas we also write P k. ¢,, instead of P -, @.

Proof systems are compared according to their strength by simulations intro-
duced in [5] and [14]. Given two proof systems P and S we say that S simulates
P (denoted by P < S) if there exists a polynomial p such that for all tautologies
¢ and P-proofs 7 of ¢ there is a S-proof n’ of ¢ with || < p(|n]). If such
a proof 7’ can even be computed from 7 in polynomial time we say that S p-
simulates P and denote this by P <, S. A proof system is called (p-)optimal if
it (p-)simulates all proof systems. Whether or not optimal proof systems exist
is an open problem posed by Krajicek and Pudldk [14].

In [3] we investigated several natural properties of propositional proof sys-
tems. We will just define those which we need in this paper. We say that a
propositional proof system P is closed under substitutions by constants if there
exists a polynomial ¢ such that P k<, ¢(Z,7) implies P F<y,) ©(a,y) for all
formulas ¢(Z,9) and constants @ € {0,1}/?. We call P efficiently closed under
substitutions by constants if we can transform any P-proof of a formula ¢(z, g) in
polynomial time to a P-proof of ¢(a, y). A system P is closed under disjunctions
if there is a polynomial ¢ such that P <, ¢ implies P F<gnijp)) @ V ¢ for
arbitrary formulas . Similarly, we say that a proof system P is closed under
conjunctions if there is a polynomial g such that P <, @A) implies P F< i) ¢
and P F<g(m) ¥, and likewise P F<y, ¢ and P bF<y, ¥ imply P E<gomyn) @AY
for all formulas ¢ and . As with closure under substitutions by constants we
also consider efficient versions of closure under disjunctions and conjunctions.



Propositional Proof Systems and Arithmetic Theories. In Sect. 5 we will
use the correspondence of propositional proof systems to theories of bounded
arithmetic. Here we will just briefly introduce some notation and otherwise re-
fer to the monograph [11]. To explain the correspondence we have to translate
first-order arithmetic formulas into propositional formulas. An arithmetic for-
mula in prenex normal form with only bounded existential quantifiers is called a
X% formula. These formulas describe NP-predicates. Likewise, IT?-formulas only
have bounded universal quantifiers and describe coNP-predicates. A X%- or ITV-
formula ¢(x) is translated into a sequence ||p(z)||™ of propositional formulas
containing one formula per input length for the number x. We use |¢(x)|| to
denote the set {||p(2)]|™ | n > 1}.

The reflection principle for a propositional proof system P states a strong
form of the consistency of the proof system P. It is formalized by the VII}-
formula

REN(P) = (Vm) (Vo) Prfp(m, p) — Taut(yp)

where Prfp and Taut are suitable arithmetic formulas describing P-proofs and
tautologies, respectively. A proof system P has the reflection property if P |,
IREN(P)||™ holds.

In [15] a general correspondence between arithmetic theories T and propo-
sitional proof systems P is introduced. Pairs (T, P) from this correspondence
possess in particular the following two properties:

1. Let o(z) be a II’-formula such that 7' (Vz)p(z). Then there exists a
polynomial time computable function f that on input 1™ outputs a P-proof

of [lp()[|".
2. T+ RFN(P) and if T+ RFN(Q) for some proof system @, then @ <, P.

We call a proof system P regular if there exists an arithmetic theory T' such that
properties 1 and 2 are fulfilled for (T, P). Probably the most important example
of a regular proof system is the extended Frege system EF that corresponds to
the theory S3. This correspondence was established in [4] and [15].

Disjoint NP-Pairs. A pair (A, B) is called a disjoint NP-pair if A, B € NP
and AN B = (). The pair (A, B) is called p-separable if there exists a polynomial
time computable set C' such that A C C and BNC = (). Grollmann and Selman
[9] defined the following reduction between disjoint NP-pairs (A, B) and (C, D):
((A, B) <, (C, D)) if there exists a polynomial time computable function f such
that f(A) C C and f(B) C D. This variant of a many-one reduction for pairs
was strengthened by Kébler et al. [10] to: (A, B) <, (C, D) if there exists a
function f € FP such that f~1(C) = A and f~1(D) = B.

The link between disjoint NP-pairs and propositional proof systems was es-
tablished by Razborov [19], who associated a canonical disjoint NP-pair with
a proof system. This canonical pair is linked to the automatizablility and the
reflection property of the proof system. Pudldk [18] introduced an interpolation
pair for a proof system P which is p-separable if and only if the proof system P



has the feasible interpolation property [12]. In [1] we analysed a variant of the in-
terpolation pair. More information on the connection between disjoint NP-pairs
and propositional proof systems can be found in [18,1, 3, 8].

3 Basic Definitions and Properties

Definition 1. Let k > 2 be a number. A tupel (A, ..., Ax) is a disjoint k-tuple
of NP-sets if all components Ay,..., Ax are nonempty languages in NP which
are pairwise disjoint.

We generalize the notion of a separator of a disjoint NP-pair as follows:

Definition 2. A function f : {0,1}* — {1,...,k} is a separator for a dis-
joint k-tuple (A1,..., Ax) if a € A; implies f(a) =i for i = 1,...,k and all
a € {0,1}*. For inputs from the complement A1 U---U Ay the function f may
answer arbitrarily. If (A, ..., Ag) is a disjoint k-tuple of NP-sets that has a
polynomial time computable separator we call the tuple p-separable, otherwise
p-inseparable.

Whether there exist p-inseparable disjoint k-tuples of NP-sets is certainly a
hard problem that cannot be answered with our current techniques. At least we
can show that this question is not harder than the previously studied question
whether there exist p-inseparable disjoint NP-pairs.

Theorem 3. The following are equivalent:

1. For all numbers k > 2 there exist p-inseparable disjoint k-tuples of NP-sets.

2. There exists a number k > 2 such that there exist p-inseparable disjoint
k-tuples of NP-sets.

3. There exist p-inseparable disjoint NP-pairs.

Proof. The implications 1 = 2 and 3 = 1 are immediate. To prove 2 = 3
let us assume that all disjoint NP-pairs are p-separable. To separate a k-tuple
(Aq,..., Ay) for some k > 2 we evaluate all separators f; ; for all disjoint NP-
pairs (A;, A;) and output the number ¢ such that we received 1 at all evaluations
fij- If no such ¢ exists, then we know that the input is outside A; U --- U Ay,
and we can answer arbitrarily. O

Let us pause to give an example of a disjoint k-tuple of NP-sets that is
derived from the Clique-Colouring pair (cf. [18]). The tuple (C4,...,C)) has
components C; that contain all ¢ + 1-colourable graphs with a clique of size i.
Clearly, the components C; are NP-sets which are pairwise disjoint. This tuple
is also p-separable, but to devise a separator for (C1,...,Cy) is considerably
simpler than to separate the Clique-Colouring pair: given a graph G we output
the maximal number i between 1 and k such that G contains a clique of size i.
For graphs with n vertices this number i can be computed in time O(n*).

Candidates for p-inseparable tuples arise from one-way functions. Let X =
{a1,...,ar} be an alphabet of size k¥ > 2. To an injective one-way function



f X" — X* we assign a disjoint k-tuple (A1(f),..., Ax(f)) of NP-sets with
components

Ai(f) ={(y,3) | Fz)f(2) = y and z; = a;}

where x; is the j-th letter of x. This tuple is p-inseparable if f has indeed the
one-way property.

Next we define reductions for k-tuples. We will only consider variants of
many-one reductions which are easily obtained from the reductions <, and <j
for pairs.

Definition 4. A k-tupel (A1,...,Ay) is polynomially reducible to a k-tupel
(Bi,...,By), denoted by (Ai,...,Ar) <p (Bi1,...,By), if there exists a poly-
nomial time computable function f such that f(A;) C B; fori = 1,... k. If
additionally f(A1U---UAg) € By U---U By holds, then we call the reduction
performed by f strong. Strong reductions are denoted by <.

From <, and <, we define equivalence relations =, and =, and call their
equivalence classes degrees.

Following common terminology we call a disjoint k-tuple of NP-sets <,-complete
if every disjoint k-tuple of NP-sets <,-reduces to it. Similarly, we speak of <-
complete tuples.

In the next theorem we separate the reductions <, and <, on the domain of
all p-separable disjoint k-tuples of NP-sets:

Theorem 5. For all numbers k > 2 the following holds:

1. All p-separable disjoint k-tuples of NP-sets are <,-equivalent. They form the
minimal <,-degree of disjoint k-tuples of NP-sets.

2. If P # NP, then there exist infinitely many <s-degrees of p-separable disjoint
k-tuples of NP-sets.

Proof. Part 1 is easy. For part 2 we use the result of Ladner [17] that there exist
infinitely many different <P -degrees of NP-sets assuming P # NP. Therefore
Ladner’s theorem together with the following claim imply part 2.

Claim: Let (Aq,...,Ag) and (B, ..., By) be p-separable disjoint k-tuple of NP-
sets . Let further By U---U By # 0. Then (Ay,...,Ax) <s (Bi,...,Bg) if and
only if A, <P B, foralli=1,... k. O

4 Disjoint k-Tuples from Propositional Proof Systems

In [3] we defined propositional representations for NP-sets as follows:

Definition 6. Let A be a NP-set over the alphabet {0,1}. A propositional rep-
resentation for A is a sequence of propositional formulas @, (Z,q) such that:

1. ©n(Z,y) has propositional variables T and y such that T is a vector of n
propositional variables.
2. There exists a polynomial time algorithm that on input 1™ outputs v, (T, 7).



3. Leta € {0,1}". Then a € A if and only if ©,(a,q) is satisfiable.

Once we have propositional descriptions of NP-sets we can now represent
disjoint k-tuples of NP-sets in propositional proof systems.

Definition 7. Let P be a propositional proof system. A k-tuple (A1,..., Ax) of
NP-sets is representable in P if there exist propositional representations ¢! (Z,4")
of A; fori=1,...,k such that for each 1 < i < j < k the formulas ©',(Z,7")
and @I (Z,77) have only the variables T in common, and further

Pr. N 6@ ) Vv-el@ ) .
1<i<j<k

By DNPPy(P) we denote the class of all disjoint k-tuples of NP-sets which
are representable in P.

For DNPP3(P) we will also write DNPP(P). In [3] we have analysed this
class for some standard proof systems. As the classes DNPP(P) provide natural
generalizations of DNPP(P) we have chosen the same notation for the classes
of k-tuples. The next proposition shows that these classes are closed under the
reductions <, and <;.

Proposition 8. Let P be a proof system that is closed under conjunctions and
disjunctions and that simulates resolution. Then for all numbers k > 2 the class
DNPP(P) is closed under <.

Now we want to associate tuples of NP-sets with proof systems. It is not clear
how the canonical pair could be modified for k-tuples but the interpolation pair
[18] can be expanded to a k-tuple (I1(P),...,I;(P)) by

L(P) ={(¢1,..., ¢k m) | Var(p;) N Var(p) =0 for all 1 < j <1<k,
—p; € SAT and P(m) = /\ ©; Vo)

1<<1<k

fori=1,...,k, where Var(y) denotes the set of propositional variables occurring
in . This tuple still captures the feasible interpolation property of the proof
system P as the next theorem shows.

Theorem 9. Let P be a propositional proof system that is efficiently closed
under substitutions by constants and conjunctions. Then (I1(P),...,I(P)) is
p-separable if and only if P has the feasible interpolation property.

Searching for canonical candidates for hard tuples for the classes DNPP(P)
we modify the interpolation tuple to the following tuple (U1 (P), ..., Ui (P)) with

Ui(P) = {(¢1,..., ¢k, 1™) | Var(p;) N Var(g;) =0 forall 1 < j <1 <k,

—p; € SAT and P F<,, /\ ©; Vot
1<j<i<k

for : = 1,...,k. The next theorem shows that for all reasonable proof systems
P these tuples are hard for the classes DNPP(P).



Theorem 10. Let P be a proof system that is closed under substitutions by
constants. Then (U1(P),...,Ur(P)) is <s-hard for DNPP(P) for all k > 2.

Proof. Let (Aj,...,Ag) be a disjoint k-tuple of NP-sets and let ¢! (z,3') be
propositional representations of A; for i =1, ..., k such that we have polynomial
size P-proofs of
N @7 Vel @ ) -
1<i<j<k

Then the <;-reduction from (A4y,..., Ax) to (U1(P),...,Ux(P)) is performed by

a = (ﬁ‘P\la\ (a,g"),..., ﬁ‘P\ka\ (a, "), 1P(|a|))

for some suitable polynomial p. O

5 Arithmetic Representations

In [19] and [1] arithmetic representations of disjoint NP-pairs were investigated.
These form a uniform first-order counterpart to the propositional representations
introduced in the previous section. We now generalize the notion of arithmetic
representations to disjoint k-tuples of NP-sets.

Definition 11. A XY-formula ¢ is an arithmetic representation of an NP-set
A if for all natural numbers a we have N = ¢(a) if and only if a € A.

A disjoint k-tuple (A1, ..., Ag) of NP-sets is representable in an arithmetic
theory T if there are X%-formulas ¢1(x), . .., ¢r(x) representing Ay, ..., Ay such
that T = (Vo) A< j<i ~0i(®) V —pj(z). The class DNPPy(T') contains all dis-
joint k-tuples of NP-sets that are representable in T.

We now show that the classes DNPP(T") and DNPP(P) coincide for regular
proof systems P corresponding to the theory 7T'.

Theorem 12. Let P > EF be a regqular proof system which is closed under
substitutions by constants and conjunctions and let T 2 Si be a theory corre-
sponding to T. Then we have DNPPy(P) = DNPPy(T) for all k > 2.

At first sight Theorem 12 might come as a surprise as it states that the non-
uniform and uniform concepts equal when representing disjoint k-tuples of NP-
sets in regular proof systems. Uniform representations of k-tuples are translated
via ||.|| to non-uniform representations in a straightforward manner. For the
transformation of propositional representations into first-order formulas it is,
however, necessary to essentially change the representations of the components.

We now observe that the k-tuples that we associated with a proof system P
are representable in P if the system is regular.

Lemma 13. Let P be a regular proof system. Then for all numbers k > 2 the
k-tuples (I1(P), ..., Ix(P)) and (U1 (P),...,Ux(P)) are representable in P.



Proof. We choose straightforward arithmetic representations for the components
U;(P) and I;(P). Using the reflection principle of P we can prove the disjointness
of the components of the U- and I-tuples in the theory T associated with P,
from which the lemma follows by Theorem 12. a

With this lemma we can improve the hardness result of Theorem 10 to a
completeness result for regular proof systems. Additionally, we can show the
<s-completeness of the interpolation tuple for DNPP(P):

Theorem 14. Let P > EF be a reqular proof system that is efficiently closed
under substitutions by constants. Then for all k > 2 the tuples (U1(P), ..., Uk(P))
and (I1(P),...,Ix(P)) are <s-complete for DNPP(P). In particular we have
(UL(P),...,Ux(P)) =5 (I1(P),..., I(P)).

This theorem is true for EF as well as for all extensions EF + ||®|| of the
extended Frege system for polynomial time sets @ of true IT¢-formulas. The
equivalence of the interpolation tuple and the U-tuple for strong systems as
stated in Theorem 14 might come unexpected as the first idea for a reduction
from the U-tuple to the I-tuple probably is to generate proofs for /\1§j<l§k Y
@1 at input (e1, ..., @k, 1"™). This, however, is not possible for extensions of EF,
because a reduction from (Ui (P),...,Ux(P)) to (I1(P),...,Ix(P)) of the form
(P15 0k, 1™) = (o1, ..., @k, ™) implies the automatizability of the system P.
But it is known that automatizability fails for strong systems P > EF under
cryptographic assumptions [16, 18].

6 On Complete Disjoint k-Tuples of NP-Sets

In this section we will study the question whether there exist complete disjoint
k-tuples of NP-sets under the reductions <, and <,. We will not be able to
answer this question but we will relate it to the previously studied questions
whether there exist complete disjoint NP-pairs or optimal propositional proof
systems. The following is the main theorem of this section:

Theorem 15. The following conditions are equivalent:

For all numbers k > 2 there exists a <s-complete disjoint k-tuple of NP-sets.
For all numbers k > 2 there exists a <,-complete disjoint k-tuple of NP-sets.
There exists a <p-complete disjoint NP-pair.

There exists a number k > 2 such that there exists a <,-complete disjoint
k-tuple of NP-sets.

There exists a propositional proof system P such that for all numbers k > 2
all disjoint k-tuples of NP-sets are representable in P.

6. There exists a propositional proof system P such that all disjoint NP-pairs
are representable in P.

™o o~

“

Proof. (Sketch) The proof is structured as follows: 1 = 2 = 3 = 6 = 1 and
3 & 4,5 < 6. Apparently, items 1 to 4 are conditions of decreasing strength.



For the implication 3 = 6 assume that (A4, B) is a <,-complete pair. We choose
some representations ¢, and v, for A and B, respectively. Using Proposition 8
we can show that all disjoint NP-pairs are representable in the proof system
EF+ {_'(Pn V =y, | n > 0}'

The most interesting part of the proof is the implication 6 = 1. Assuming
that all pairs are representable in the proof system P we first choose a sys-
tem () > P with sufficient closure properties. Then for each disjoint k-tuple
(Aq,..., Ag) all pairs (A;, A;) are representable in (). However, we might need
different representations for the sets A; to prove the disjointness of all these pairs.
For example proving A; N As = () and A; N A3 = () might require two different
representations for A;. For this reason we cannot simply reduce (A, ..., Ag) to
(U1(Q), ..., Uk(Q)). But we can reduce (41, ..., Ag) to a suitable modification
of the U-tuple of @, thereby showing the < -completeness of this tuple. ad

Using Theorem 12 we can also characterize the existence of complete disjoint
k-tuples of NP-sets by a condition on arithmetic theories, thereby extending the
list of characterizations from Theorem 15 by the following item:

Theorem 16. The conditions 1 to 6 of Theorem 15 are equivalent to the exis-
tence of a finitely axiomatized arithmetic theory in which all disjoint k-tuples of
NP-sets are representable for all k > 2.

In Theorem 15 we stated that the existence of complete disjoint NP-pairs
is equivalent to the existence of a proof system P in which every NP-pair is
representable. By definition this condition means that for all disjoint NP-pairs
there exists a representation for which the disjointness of the pair is provable
with short P-proofs. If we strengthen this condition by requiring that this is
possible for all disjoint NP-pairs and all representations we arrive at a condition
which is strong enough to characterize the existence of optimal proof systems.

Theorem 17. The following conditions are equivalent:

1. There exists an optimal propositional proof system.

2. There exists a propositional proof system P such that for all k > 2 the system
P proves the disjointness of all disjoint k-tuples of NP-sets with respect to all
representations, i.e. for all disjoint k-tuples (A1,...,Ax) of NP-sets and all
representations @, ... o8 of Ay, ..., Ay, we have P I, Ni<icj<r =t V=l

3. There exists a propositional proof system P that proves the disjointness of
all disjoint NP-pairs with respect to all representations.

Proof. (Sketch) For the implication 1 = 2 let P be an optimal proof system. For
all choices of representations of k-tupels the sequence of tautologies expressing
the disjointness of the tupel can be generated in polynomial time. Therefore
these sequences have polynomial size P-proofs.

For 3 = 1 we use the following fact: if optimal proof systems do not exist,
then every proof system P admits hard sequences of tautologies, i.e. the sequence
can be generated in polynomial time but does not have polynomial size P-proofs.
Given a proof system P and an NP-pair (A4, B) we code these hard tautologies

10



into propositional representations of A and B and obtain representations for
which P does not prove the disjointness of (A4, B). a

As an immediate corollary to Theorems 15 and 17 we get a strengthening
of a theorem of Kobler, Messner and Toran [10], stating that the existence of
optimal proof systems implies the existence of <;-complete disjoint NP-pairs:

Corollary 18. If there exist optimal propositional proof systems, then there ex-
ist <s-complete disjoint k-tuples of NP-sets for all numbers k > 2.
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