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Fig. 1. The object’s appearance is manipulated by projecting a new texture on its surface (left). The projector-camera system captures
the moving object and estimates the object pose (highlighted by green contour) from projection distortions. The projected image can be
corrected to generate a matching projection again.

Abstract— Shader lamp systems augment the real environment by projecting new textures on known target geometries. In dynamic
scenes, object tracking maintains the illusion if the physical and virtual objects are well aligned. However, traditional trackers based on
texture or contour information are often distracted by the projected content and tend to fail. In this paper, we present a model-based
tracking strategy, which directly takes advantage from the projected content for pose estimation in a projector-camera system. An
iterative pose estimation algorithm captures and exploits visible distortions caused by object movements. In a closed-loop, the corrected
pose allows the update of the projection for the subsequent frame. Synthetic frames simulating the projection on the model are
rendered and an optical flow-based method minimizes the difference between edges of the rendered and the camera image. Since
the thresholds automatically adapt to the synthetic image, a complicated radiometric calibration can be avoided. The pixel-wise
linear optimization is designed to be easily implemented on the GPU. Our approach can be combined with a regular contour-based
tracker and is transferable to other problems, like the estimation of the extrinsic pose between projector and camera. We evaluate our
procedure with real and synthetic images and obtain very precise registration results.

Index Terms—Projector-camera systems, projector-camera calibration, shader lamp systems, object tracking, object registration,
spatial augmented reality, projection mapping.

1 INTRODUCTION

Projector-camera systems are a useful tool to perform projection map-
ping and to present information directly matched with the local envi-
ronment. This is beneficial in different contexts for example to allow
robots to project their intentions spatially correct into working envi-
ronments [1], to enhance medical procedures by projecting aditional
information [6, 7], or to improve interaction with objects with spa-
tial user interfaces [16] e.g. in industrial visual inspection scenarios
(Fig. 2). In contrast to glasses-based systems, multiple people can
see the projection at once without the need for a wearable hardware.
The spreading of mobile projector systems has been increasing over
the last years and currently pico projectors are even integrated into
mobile phones. Laser projectors or LCoS projectors with laser light
source overcome the limitation of depth of field and generate a focus
free image [10]. Also 3D printers and low cost 3D scanners gained
popularity and allow digitalization of objects and reproduce mockups,
which can be used for spatial AR applications in the creative industry
by e.g. designers or architects [19]. For the perfect illusion that the
projection sticks to the surface, a precise alignment between real and
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virtual objects is extremely important. Hence, in dynamic scenes, an
accurate 6D pose tracking is needed and the generated image has to be
updated accordingly. Usually if a naturally textured object is moved
by a specific transformation, the same transformation is applied on all
its texture points and is visible in the next camera frame. However,
the projected texture underlies a certain delay, since it slides over the
object surface, when the object is moved. This generates a perspective
distortion, which contradicts with the assumptions made by feature or
contour-based object trackers and prevents correct pose estimation.

Our tracking system directly integrates this observation in the pose
estimation and does not need extra hardware besides a camera and a
projector. We follow the principle of model-based analysis-by-synthesis
and generate a digital image of the object from the point of view of
the camera. The projector is simulated by projective texture mapping
[8], allowing a simulation of the movement of the object under the
projection. Our main contribution is the derivation of a motion model
describing the relation between the movement of a projected point
on the image sensor and the movement of the object in 3D space.
We embed the model in a robust pose estimation system and present
solutions to make the virtual and the real image comparable. Iteratively
the object pose is optimized to minimize the difference between the
real observation and rendered expectation. Distortions of the projection
are thereby used for tracking and compensated at the same time. Fig.
1 shows that our method can augment a dynamically moving object
with a shader lamp projection by using exclusively the image of the
projection captured with a normal camera. In order to optimize the
object pose a very precise projector-camera calibration is needed. As an
extension of our method, a new formulation of the optical flow model
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Fig. 2. Example application of projection mapping in an industrial sce-
nario. The menu structure on the table is duplicated on the surface of
the workpiece. By using the projection distortion-based tracking the
projection can be used for object tracking.

allows to optimize the pose of the projector relative to the camera,
given a known object pose. Only small modifications of the previously
described formulation are needed to do this, with the effect, that a
calibration refinement of projector-camera systems can be substantially
simplified. Furthermore, the accuracy of the projection on real-world
objects is maximized.

The remainder of this paper is structured as follows. In Chapter 2
the principle is put into context of the current state-of-the-art. Chapter
3 deals with the mathematical background and describes the implemen-
tation of our approach. Chapter 4 describes the extended calibration as
well as a possible combination with a traditional contour-based tracker.
To evaluate the object tracking in Chapter 5, we use a simulation with
synthetic images, but also test the pose estimation for real sequences. A
motorized linear translation stage allows to create a valid ground truth
movement.

2 RELATED WORK

In this paper, we follow the shader lamps paradigm by Raskar et al.
[22]. The appearance of a real object, with known 3D geometry, is
manipulated by rendering a synthetic image of the object from the point
of view of the projector. Using shader lamps in dynamic environments
and the related sensing and tracking has been addressed in different
ways in literature over the last years but still faces several challenges.

Raskar et al. [21] use fiducial markers to detect the 3D pose of objects
with a projector-camera system and to dynamically adapt the projection
with respect to the object geometry. Also, recent approaches [2, 18]
make use of fiducials printed directly on the object surface. While
the markers are optimized for high-speed tracking [18] and strategies
are presented to diminish their visibility for the human eye with the
projector [2], every object has to be carefully designed and prepared to
be suitable for tracking.

Hashimoto et al. [11] make the projection invisible for the camera
sensor by capturing with an infrared (IR) camera. In this way, it is
possible for them to use a classical tracking approach, which is not
irritated by the projection. Also, the dynamic face projection system of
Bermano et al. [5] uses an IR image to track facial movements. Beside
the need for a special hardware, in spatial augmented reality (AR)
scenarios sensors working with short-wave illumination often establish
gesture and person recognition. This leads to an interference in the
image of the IR-camera, which can potentially disturb the tracking.

In contrast to this, other approaches [14, 15] use depth sensors,
which are not distracted by a projection in the visible spectrum and
estimate the object pose by aligning the object directly to the captured
pointcloud with the iterative closest point (ICP) algorithm and a particle
filter. Because of the limited resolution of those sensors, the accuracy
of the alignment between the real object and the projection is reduced
compared to an image-based approach [11].
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Fig. 3. Geometry of a projector-camera system. The expected object
pose (orange) differs from the observed object pose (green). The trans-
formation (∆R, ∆t) is estimated from the displacement in image space,
which is related to v′ and d.

Closed-loop approaches capture the projection with a camera and
correct the projection in order to improve the matching between pro-
jected content and real world. Audet et al. [3] introduce to use the
projection for image alignment by modelling the light emitted by the
projector and reflected into the camera. Zheng et al. [32] elaborate on
the closed-loop concept and extend it to different AR paradigms, but as
well as Audet et al. they do the alignment only for 2D targets.

Resch et al. [23] present a closed-loop tracking approach for 3D
objects. They use discrete feature point correspondences between the
projector image and the captured camera image. The 2D-2D features
are triangulated to reconstruct 3D points, which are then registered
to the point cloud of the reference model. To allow the optimization
algorithm to converge stably, a large number of feature point correspon-
dences is needed.

In this work, we also focus on the task of estimating a 3D pose of an
object in a closed-loop fashion, but combine it with the alignment meth-
ods as given by Audet et al. [3]. We follow an analysis-by-synthesis
approach and use synthetically generated images of the projection on
the reference surface [9]. We iteratively correct the object pose to
simulate the appearance of the mismatched projection with the renderer,
which at the same time leads to the observed pose offset. Compared to
the approach of Resch et al. [23], our approach does not rely on point
feature correspondence but instead minimizes the image difference
between simulation and camera image. A radiometric calibration is
omitted by the usage of edge images. Since we do not have to transform
the model to a point cloud, but instead use the rendered images directly,
the density of the mesh sampling does not limit the distance between
target object and camera.

3 ESTIMATION OF OBJECT MOVEMENT

The motion model describes how an image point projected onto a
known 3D object moves in the image space of a camera if the object
changes its 3D pose. This results in six degrees of freedom to be
estimated, three for the translation and three for the rotational offset.
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3.1 Motion Model
We assume that the projector is oriented towards an arbitrary object
and that the intrinsic parameters of the projector and the camera and
the extrinsic parameters between the devices are known. The pinhole
camera model describes the camera as well as the projector, which
is seen as an inverted camera. Each point p = [px, py, pz]

T on the
object surface and the corresponding surface normal n describe a plane.
The following equations assume that this plane approximates the local
environment of the point, meaning that the model is valid on locally
smooth surface patches and special treatment is needed at steep edges.

For each pixel (X1,Y1) in the camera image, a viewing ray is defined
by the direction

v = [−X1−ux

fx
,
Y1−uy

fy
,−1]T (1)

with fx, fy being the scaled horizontal and vertical focal length and ux,
uy the pixel position of the principal point. The extrinsic parameters
of the projector-camera system transform the point to the projector
coordinate system, where it is back projected to the image plane of the
projector leading to the viewing direction v′ of the projector.
Assuming that the movement of the object between two successive
video frames is small, the change of orientation can be approximated
by a linearized rotation matrix

∆R =

 1 −∆rz ∆ry
∆rz 1 −∆rx
−∆ry ∆rx 1

 (2)

with three degrees of freedom. The offset ∆t of the object center t,
describes the change of object translation. This results in a movement
of the projection on p by the distance d in direction of the projector’s
light beam. The ray will intersect the plane through the moved point at

p̂ = p+v′d (3)

with v′ being the view vector of the projector in the camera coordinate
system. In general, a plane is defined by all 3D points x fulfilling the
equation (x−p0) ·n = 0 , where p0 is an arbitrary point on the plane.
If a 3D transformation with ∆t, ∆R is applied on the object, we get

(x− (∆R(p− t)+ t+∆t))T
∆Rn = 0 (4)

To find the intersection with the transformed plane and the viewing ray,
we set x = p̂ in Eq. (4). In the next step, we solve the equation for d.

d =
(∆R(p− t)+∆t− (p− t))T ∆Rn

v′T ∆Rn
(5)

Given p̂ from Eq. (3), a new pixel coordinate (X2,Y2) of the point in
the camera image is calculated by

X2 =− fx
p̂x

p̂z
+ux Y2 = fy

p̂y

p̂z
+uy (6)

if the position of the object is translated with ∆t and rotated with ∆R.
Fig. 3 visualizes the model. The object movement has the effect, that a
projector ray intended to hit the object at p meets it approximately at p̂,
which is directly related to the movement of the point in image space.

3.2 Flow-based Pose Estimation
In this section, the motion of the object, whose 3D shape and normals
are known by a mesh or CAD-model, is estimated by evaluating spatial
and temporal image gradients. This leads to a set of linear equations
[26] to calculate the pose offset values ∆t, ∆r from a known initial
pose. The extension of optical flow for a projector has been described
as illumination flow before [29], but has not been explicitly solved for
the pose parameters.

The image I1 of the actual projection is captured by the camera.
Image Î1 of the projection on a known initial object pose is either the

previous image in a tracking sequence or synthetically generated. A
motion compensation minimizes the displacement error (um,vm) =
(X1−X2,Y1−Y2) between Î1 and I1. By using the first order Taylor
expansion, the projection of a point to the sensor can be expressed as

p̂x

p̂z
≈ px

pz
+

b
pz(nT v′)

(∆rT h+∆tT n)

p̂y

p̂z
≈

py

pz
+

c
pz(nT v′)

(∆rT h+∆tT n)
(7)

with
b = v′x− v′z

px

pz
, c = v′y− v′z

py

pz
, h = p×n

The general optical flow constraint equation [12] involving the partial
derivatives of Î1 in horizontal and vertical direction and the temporal
difference is

∂ Î1

∂ X̂1
um +

∂ Î1

∂Ŷ1
vm ≈ Î1− I1 . (8)

Combining Eq. (8) and (7) results in a linear equation with a =
(a0,a2, . . .a5) and six unknown motion parameters ∆t and ∆r

a
(

∆r
∆t

)
= Î1− I1 . (9)

One equation is formulated for each pixel corresponding to the projec-
tion in Î1. The set of equations forms an overdetermined system which
can be solved in a least squares sense or with a robust estimator. The
six coefficients are defined as

a =

(
1

pz(nT v′)

(
− fxb

∂ Î1

∂ X̂1
+ fyc

∂ Î1

∂Ŷ1

))(
h
n

)T
. (10)

When the system of equations is solved, the linearized rotation ∆R is
concatenated with the previous rotation. The translation offset ∆t can
simply be added to the previous value. Additionally, a smoothness term
including a damping factor can be added to the system to temporally
smooth the rotation and reduce jitter between frames.

Limitations Related to the aperture problem of optical flow [4],
ambiguities in the pose estimation arise for certain object shapes. If
the illuminated object is a perfect sphere, a rotation around its center
will not change the appearance of the projection in the camera image
and therefore no pixel can give information about rotation of the object.
The distortion of an image projected on a flat surface only provides
information about three degrees of freedom, since the in-plane trans-
lation und rotation can’t be recognized from it [9]. A cylinder can be
moved along its axis, without changing the local appearance of the
projection. A more complex object shape helps to prevent ambiguities,
since differently orientated regions provide different hints about the
movement and allow the unique determination of all motion parameters.
A combination with projection-independent terms (see Section 4.2)
also prevents ambiguous situations.

3.3 Implementation Details
In our analysis-by-synthesis approach, the image Î1 synthetically sim-
ulates the projection on the object at time t− 1, while I1 is captured
by the camera at time t. If a motion between t−1 and t has occurred,
the projection does not match perfectly with the expected appearance
simulated in Î1. The goal of the optimization is to alter the object pose
while keeping the last projector image to synthesize the appearance
of the camera image, by using the calculations given in Section 3.2.
When projecting on a real-world surface, environmental conditions as
illumination, scene, camera and projector characteristics, influence the
captured image. In order to keep the simulation simple and allow a fast
computation of the 6-DoF pose, we transform both image into binary
edge images and minimize the image difference between those.

To account for different image characteristics we apply adaptive
thresholds. First, the simulated image of the projection without any
background information serves as a reference. The magnitude of the
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Fig. 4. Visualization of the effect of the adaptive thresholding. The figure
shows the camera image (top left), the simulated projection and the
detected edges using a global threshold (top right), the edges from the
camera image using the same global threshold (bottom left) and the
edges from the camera image using adaptive thresholds (bottom right).
In the bottom row a further example is shown.

Sobel filtered image is binarized with a fixed threshold. While doing
this, an NxN grid is laid over the image and in each tile, the number of
edge pixels is counted. During edge detection in the camera image the
same grid is laid over the image and an individual binarization threshold
is found for each tile, leading to approximately the same number of
edge pixels. Fig. 4 shows the effect of this operation. The adaptive
thresholds ensure that the same amount of information is present in
both images, even if there are contrast and illumination variations. With
the binarization we achieve a comparable value range for the optical
flow.

Both images are blurred with a 7x7 box filter to spatially extend the
edges. The gradients between the two images is then computed in x,
y direction and temporally in t direction. The equation system is built
up pixel-wise, whereby three filters are applied to decide whether an
equation is added to the system or not.

1. Equations can only be created in regions where a depth value
is available in Î1 because this information is necessary for the
calculation.

2. Pixels, which are close to the geometric borders of the object
are ignored, since the assumption of locally planar regions is not
valid at the object border. To do so, we render a separate image
containing the geometrical object contour and edges, spatially
extend them and ignore all values in overlapping regions.

3. Pixels at positions with steep angles between viewing ray of the
projector and the surface normal are ignored, since the intensity
of the projection vanishes there.

An iteratively reweighted least squares (IRLS) scheme [31] makes
the calculation robust against outliers. Outliers occur e.g. if a part of
the object is occluded, if the object has a texture, which remains visible
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Fig. 5. The visualization of the graphics pipeline shows the closed-loop
principle. The final object pose serves as input for the projection in the
following frame. The camera image is captured after the projection is
visible.

under the projection or if there are strong reflections or overexposure
not visible in the synthetic image. As proposed by Sun et al. [27], we
use the robust Charbonnier penalty p(x) =

√
x2 + ε2 with a small ε

(e.g. ε = 0.001) to weight the equations individually. Iterating two or
three times using the residual error of the previous iteration to calculate
the weights stabilizes the pose estimation.

To overcome bigger differences between two frames, we use an im-
age pyramid and render a new synthetic image for each lower pyramid
level, where the last result serves as starting pose. The optimal depth
for the pyramid depends on the amount of detail in the projection in
relation to the size of the object in the image. If the texture is very de-
tailed and the image is scaled down too much, the pose estimation can
become unstable in the smallest pyramid level, propagating the error
to higher pyramid levels. Instead of minimizing the image too much,
we recommend to improve processing speed and synchronization, as
proposed in Section 3.6.

3.4 Graphics Pipeline
All synthetic images are rendered with OpenGL. The projection is
displayed in fullscreen window on the projector. The pose estimation
uses the simulation of the projection in the camera frame. It is rendered
in an offscreen buffer, which is utilized and updated every iteration of
the computation.

If the pose of the object is known in the camera coordinate system,
the corresponding projection can be created following the shader lamps
principle [22]. The object is visualized from the point of view of the
projector. In the first step, the projection is also rendered in an offscreen
buffer and a depth buffer-based mask removes artifacts at the object
contour by applying a morphological erosion on the object border [13].

The created image as well as the depth buffer information is stored
as a texture and is used during the simulation of the projection from
the point of view of the camera. Before projecting the image, a radial
lens distortion of the projector can be compensated by pre-distorting
the image.

We apply projective texture mapping [8] to simulate the projection
on the object surface and incorporate shadow maps to reproduce self-
occlusions, which make the projection invisible at parts of the object.
Furthermore, z-buffer and surface normals are needed for the pose
estimation. The simulated image is decomposed into one image show-
ing only the object surface with ambient illumination and one image
showing only the reflected projector light on the object surface. In sum,
both images simulate the appearance of the projection on the object.
Fig. 5 shows the whole rendering pipeline and stresses the closed-loop
principle.

3.5 Initialization
Initially, the tracker requires a start pose close to the actual pose to
achieve convergence of the estimation. Since the rendered image is
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directly compared to the camera image, an overlap at the blurred edges
is needed. The required accuracy of the initial pose depends on the
number of pyramid levels and the size of the box filter used to blur the
image.

Our pose initialization requires that there is no shader lamp projec-
tion covering the object and is based on a contour-based tracker [28].
Along a scanline perpendicular to the object contour, local maxima of
the gradient of the corresponding grayscale profile are searched. By
this means, we find 2D-2D correspondences and minimize the distance
along the normal at the contour point. Combined with a refinement
based on the model-based rigid body motion estimation from Stein-
bach et al. [26] and the IRLS scheme the estimation becomes stable
and accurate. The length of the scanline (e.g. 50 pixel in all pyramid
levels) is bigger than the size of the box filter. While still having a
local tracker, it is possible to deal with larger pose offsets than with the
projector-based approach alone.

If the initial pose is completely unknown, machine learning-based
pose estimation methods as Pose-CNN [30] achieve state-of-the-art
results, but also cannot deal with an interfering projection.

Additionally we estimate the scene illumination and the brightness
of the projection to make the simulated images appear similar to the
camera image. Since we compare the edge images with adaptive thresh-
olds, a simple approximation model is sufficient and only gray scale
images are used. We use Lambert illumination model to describe the
brightness for points on the object.

IPro jO f f = (ID ·max{nTl,0}+ IA) · (cO f f + cOb j) (11)

Because the object is already registered, the normal direction n
and the brightness in the image IPro jO f f are known. In addition, the
approximate object color cOb j or its texture brightness is predetermined.
The ambient intensity IA, the diffuse intensity ID, the direction of light l
and an additive brightness offset cO f f are estimated by solving a linear
system with one equation per pixel of the object surface.

To estimate the brightness of the projector, we project a white texture
on the object. The intensity in the camera image IPro jOn is influenced by
the cosine between the surface normal and the direction of the projector
light v′ and linearly attenuated by the distance between the point and
the projector ‖p′‖.

IPro jOn = IPro jO f f +
IP ·max{nTv′,0}

‖p′‖
(12)

The brightness of the projector IP is calculated with a linear equation
system and one equation per pixel. Example results of the illumination
estimation are shown in Fig. 6.

3.6 Synchronization and Timing

We intentionally limit ourselves to use off-the-shelf hardware and omit
expensive and inconvenient hardware-based synchronization. Petković
et al. [20] propose a method to achieve 30 fps tracking with simple
software synchronization, which is also applicable for the described
tracker if the following attributes are fulfilled by hard- and software.
Here tD is the sum of input lag of the projector and the delay of the
camera trigger, and tR is the frame readout time measured in advance.

1. Frames are displayed in sync with the vertical blank interrupt.

2. If a time-multiplexing projector is used, the exposure time of the
camera tE is set to the exact rotation time of the color wheel.

3. It is possible to trigger the camera with an accurate software
trigger with a delay of tD after the last frame has been displayed.

4. The time tE + tR + tD is smaller than 33.33 ms.

5. The preparation time of one frame, including pose estimation and
the generation of a new projector image is smaller than 33.33 ms.

Fig. 6. Comparison of camera images (top row) and images with a
rendered overlay (bottom row) during initial illumination estimation using
an object with known texture. The estimated ambient illumination (left)
and the estimated projector brightness (middle) allow the simulation of a
texture projection (right).

OpenGL natively supports Requirement 1. Requirement 2 as well
as 3 are default features of most machine vision cameras. To fulfill
requirement 4 the projector used in our experiments is too slow, since it
runs at 60 Hz, forcing tE to be 16.66 ms and its input lag is longer than
the allowed time interval as well. A projector running at 120 Hz with an
input lag below the given thresholds is needed for 30 fps tracking [20].
However, this is true for a lot of consumer devices. Theoretically, the
object moves under the projection during the exposure time. This can
cause motion blur in the image of the projection. It could either be
modelled mathematically to support the tracking [25] or minimized by
the usage of a high-speed camera capturing each position of the color
wheel separately. So far, we have not experienced this type of blur to
be a problem, so both is not covered by this paper.

Our algorithm is designed to use only small image filters and local
pixel-wise operations. This makes it portable to a graphics processing
unit (GPU) to fulfill requirement 5. Building up the equation system
can be realized with compute shaders using standard OpenGL. Our cur-
rent CPU implementation takes about 100 ms to process one frame with
a resolution of 1224x1024 pixels, including the intermediate download-
ing of images from the graphics card to the CPU, using two pyramid
levels and three iterations of the IRLS. We also created a GPU im-
plementation which fulfills requirement 5 with the same settings on
an Nvidia GeForce GTX TITAN graphics card. Including the time to
upload the texture to the GPU initially, we reduce the processing time
by a factor of four.

4 EXTENSIONS

The projection-based tracking offers possibilities to be transferred to dif-
ferent problems and extended with additional constraints as described
below.

4.1 Calibration and Refinement of Extrinsic Parameters
We calibrated the projector-camera system with the method of Moreno
et al. [17]. For our test projector, it requires to project a sequence of
44 gray-code patterns on a static checkerboard pattern. This sequence
is caputed for different checkerboard orientations, resulting in several
hundred pictures for one calibration. If the setup changes, the process
has to be repeated. A model-based approach has been presented by
Resch et al. [24] before, using also gray-code patterns and similarity
ICP. However, with slight modifications of the equations given in 3.2
our method can be adapted to refine the extrinsic parameters of the
projector-camera system, given an accurately known pose of a 3D
object. In contrast to other methods, the shader lamp projection is
directly integrated in the estimation without the need for additional
patterns and allows a fast recalibration.
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Fig. 7. Refining the extrinsic pose between projector and camera (right)
improves the alignment between captured projection and simulation,
compared to the result after the initial calibration (left).

In the new model, the translation offset of the projector relative to
the camera is ∆tP and the rotation offset is ∆RP. We reformulate the
motion model given in 3.1, whereby this time the viewing ray v′ of the
projector is rotated and the translation offset is directly added to p.

p̂ = p+∆tP +d∆RPv′ (13)

Corresponding to Eq. (5), the distance d is

d =
(p− tp−∆tP)

T n
(∆Rpv′)T n

. (14)

We construct a linear equation system and using the values a =
(a0,a2, . . .a5) to derive the unknown motion parameters.

a =
fx
pz

∂ Î1

∂ X̂1

(
u1 +

b
nT v′

(
h
n

))
−

fy
pz

∂ Î1

∂Ŷ1

(
u2 +

c
nT v′

(
h
n

))
(15)

with

u1 =
(
v′y

px
pz
−v′x

px
pz
− v′z v′y −1 0 px

pz

)T

u2 =
(

v′y
py
pz
+ v′z −v′x

py
pz
−v′x 0 −1 py

pz

)T

Furthermore, b and c are calculated as in Eq. (7) and h = −(v×n).
Besides interchanging the equations, the pipeline from the previous
chapter remains unchanged. Potentially, all objects suited for tracking
can become calibration targets, provided that the object pose can be
estimated very accurately with the method from Section 3.5 and that
the intrinsic parameters as well as the approximate extrinsic parameters
are known. For focus-free projectors (laser scanning or laser + LCoS),
the focus is fixed and intrinsic parameters are not influenced if the
projector-camera setup changes. We recommend to use a texture with
sharp edges when doing the recalibration. Using an object which fills
a large part of the image and which extends in z-direction helps the
estimation to converge. Also the full resolution without subsampling
and reduced ambient light help to obtain stable results.

Fig. 7 shows a difference image between the rendered image and
camera image after a calibration with the method of Moreno et al. [17]
and after our refinement. The improved alignment between expectation
and observation also stabilizes the tracking, since the simulation can
better predict the actual image.

4.2 Combination with a Contour-based Tracker
Besides the computational simplicity of the direct pose offset computa-
tion with a linear system, another advantage is that the system can be
extended with more equations describing other motion models. If the
motion parameters are the unknowns in the equations, additional con-
strains can be added to the optimization. We exploited this and allow a
combination of the projection-based approach with the model-based
rigid body tracking equations [26]. The synthetic image containing

the geometrical object contour used only for filtering in the previous
chapter can be fed into the algorithm from Section 3.3. Now the op-
tical flow is additionally computed between the contour image and a
binarized Sobel image with thresholds adapting to this contour image.
Therefore, the equation system includes a further condition to fit the
object contour to contours in the image. This prevents ambiguous
configurations where a projection on the object appears similar in the
camera frame under different object poses.

The usefulness of the combined model depends on the visibility of
the actual object contour in the image. It is influenced by ambient light
and the character of the projected content. Especially, if the projector
illuminates only a part of the object the contour can provide useful
information.

5 RESULTS

In dynamic closed-loop shader lamp scenes, the projected image is
affected by the previously estimated pose. The following camera frame
in turn contains this projection. Hereby, recording a test sequence of a
moving object and evaluating this sequence with varying parameters
is hindered. To prove the functionality of our approach, synthetic
sequences allow the creation of repeatable tests with easily adjustable
parameters. Since the synthetic tests run in an idealized environment
and not all physical parameters of light and material can be model,
tests with real data are essential too. We decided to use a motorized
linear stage to produce reproducible object movements. This allows
comparing various parameter settings with ground truth data. During
the evaluation, we use the CPU version of our algorithm.

5.1 Synthetic Data
We create a synthetic test environment to simulate the tracking. A target
object is placed in a 3D scene and a texture projection on the object is
simulated. The objects moves on a specific path and the initial pose and
the corresponding projection are known. For following frames, the pose
to create the projection is estimated from a synthesized camera image
showing the previous projection on the moved object. Thus, effects like
drift over time can be simulated. The virtual projector-camera system
uses calibration and illumination parameters from the real data test.
The system is placed inside a textured, cube shaped box, serving as
background. If the object moves, a part of the projected texture misses
the target object and hits the background object, simulating the delay
in the closed-loop approach. The rest of the projection is perspectively
distorted by the object surface.

For synthetic tests, we utilize the well known Stanford Bunny model.
We have chosen two different textures to texturize the model during
the tests, reproducing different spatial AR scenarios. Both textures
cover the object surface evenly with a detailed pattern. Generally, the
accuracy of the estimation depends both on the level of detail in the
texture as well in object shape and these two factors can compensate
for each other to a certain degree (see Section 3.2).

Texture 1 contains white dummy text on a black background. Text
projection is crucial for AR assistance scenarios, where additional
information has to be placed on the object surface.

Texture 2 is a colored geometric pattern, as it could be found in
design mockups or art installations. Compared to the first texture there
are no black areas and the projector light illuminates the whole object.

Additionally the model is textured, as shown on the left side of Fig.
6. This introduces another difficulty, since in the adaptive edge image
contours not related to the projection can appear.

To test the projector-based tracking two experiments are conducted
with synthetic data. For both experiments, in one iteration 100 different
sequences of random movements are simulated. The initial distance
between object and camera is 0.7 meter. The initial orientation is chosen
randomly for each sequence. The target pose differs randomly from the
initial pose, whereby the absolute sum of the translation offsets along
the axes is fixed to be m cm or n degrees for the rotation respectively.

Experiment 1 tests the tracking quality for small pose offsets be-
tween frames and a continuous motion. To move the object to the target
pose we linearly interpolate the movement over f frames. We calculate
the root mean square error (RMSE) of the motion parameters for each
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Fig. 8. Example result of Experiment 2. Initially (left) a big part of the
projection misses the object. In the fifth frame (middle) the matching
has already improved. After 12 frames (right) the projection perfectly
matches the object shape.

sequence independently to judge the tracking quality. The translation
error terr and the rotation error rerr are the mean of the absolute errors
for rx, ry, rz (degree, euler angles) or tx, ty, tz (mm) respectively. Fur-
thermore, a sequence is considered as valid if its RMSE of rerr and
terr is smaller than 5 degrees or 5 mm. The other sequences where
higher error values indicate a drifting pose over time are considered as
outliers in the following. We want to measure the tracking quality for
all sequences in which our algorithm is able to track the object to the
end of the sequence and state the average error values over all valid
sequences in Table 1. For each texture, the last column shows how
many out of 100 sequences were considered as valid.

Test Texture 1 Texture 2
m n f terr rerr valid terr rerr valid
6 60 60 0.08 0.20 100 0.27 0.54 97
6 60 30 0.10 0.25 100 0.31 0.66 94
6 60 15 0.14 0.38 98 0.55 1.06 75

Table 1. Results of Experiment 1 with two textures. The values under
rerr, terr are the mean of the RMSE calculated over all valid sequences.

In the first iteration of the test, a movement of 60 degrees and 6
cm is distributed over 60 frames. In iteration two and three, the speed
is doubled by using 30 or 15 frames respectively for the movement.
It is observable that the estimated orientation is very precise for the
slowest movement for both textures. For Texture 2, which is more
detailed than Texture 1, the RMSE is higher but still below one mm and
one degree. Even if the speed is quadrupled the rerr exceed this mark
only minimally. The outliers arise because larger objects movements
can lead to a sticking to a local minimum. Since the object is moving
continuously, an error can increase over time, especially if the texture is
very detailed in relation to the camera resolution. This can be avoided
by giving the algorithm more time to converge as we show in the next
experiment.

Experiment 2 tests the ability to cope with larger pose offsets. Like
in the first experiment, a random target pose is calculated, whereas
this time the objects jumps to the target abruptly. In the following, f
frames are allowed for the tracker to converge to the visible pose. Here
for each frame an updated projector image is generated and virtually
projected. Fig. 8 shows input images in course of one successfully
converging sequence. In this test, only the error of the last frame of
each sequence is relevant, so rerr and terr are averaged over those final
errors instead of calculating the RMSE of the sequence.

Test Texture 1 Texture 2
m n f terr rerr valid terr rerr valid
1 10 20 0.04 0.13 100 0.19 0.34 96
2 20 20 0.06 0.17 94 0.07 0.20 81

Table 2. Results of Experiment 2 with two textures. The values under rerr,
terr are the mean of the final errors calculated for each valid sequence
individually.
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Fig. 9. Trajectory of the object during test with motorized linear translation
stage. The object moves following increasing numbers. The side length
of the cube is 5 cm.

As shown in Table 2, an abrupt movement bigger than the largest
movement between two frames in experiment 1 can be compensated if
the algorithm iterates longer and has more time to converge. Due to the
iterative pose improvement, the quality of the outcome is not effected
by the initial offset in case of convergence. The second row shows
that the number of invalid tests increases again after a large distance is
exceeded. Offsets in that magnitude can be avoided in practice by the
previously described initialization process.

5.2 Real Data
In this section, the tracking is evaluated on real data. We test three
approaches in presence of a shader lamp projection. The first uses the
projection-based algorithm, the second uses a contour-based tracker,
ignoring the projection (described in Section 3.5), the third uses the
combined approach from Section 4.2.

Our tests system consists of a Basler ace acA2440-75uc camera
with a Kowa LM12SC objective and a Cremotech Laser Beam Pro
C200. The devices area rigidly mounted on a tray with a baseline of
approximately 15 cm. It is calibrated, by starting with the classical
method [17] with a stereo reprojection error of 0.489 pixel, followed
by an iterative refinement of the extrinsic parameters. The distance
between projector and target object is 0.7 meter.

The linear stage allows movements along the three coordinate axes.
Even though only a translation is applied on the objects, all six degrees
of freedom are estimated throughout the tests. Fig. 9 shows the trajec-
tory along which the objects are moved. A top-down view on the test
setup, as well as the two target objects with the applied projection are
shown in in Fig. 10. In the experiments, 3D-printed, uniformly white
spare parts of industrial workpieces serve as test objects.

Initially the object is placed on the platform and the method from
Section 3.5 provides an estimation of the illumination and an accurate
start pose. Then the shifting unit moves 5 cm along its x-axis and also
at this position a pose estimation is performed carefully. The object is
placed on the platform with its y-axis pointing upwards. The x-axis
direction and the up-vector allow us to determine the orientation of the
global coordinate system of the translation stage in relation to object
orientation.

Besides interchanging the two textures from the synthetic test, we
test the tracking in presence and in absence of ambient illumination.
The ambient illumination increases the visibility of the object contour,
demanding more robustness during pose estimation. Apart from that,
it also allows to use the combined approach. The contour-based pose
estimation is tested with and without shader lamp illumination. The
moving speed of each axis is 5 mm per second. If two or three axes
move at once (green and red lines in Fig. 9), the speed of the object
increases accordingly. In the test, the translation error is the distance
between the currently estimated position and the trajectory. The rota-
tional error is the absolute difference between the estimated rotation
and the initial rotation.

The obtained error values for Object 1 are summarized in Table
3. Using Texture 1, it can be tracked throughout the whole trajectory
with (Proj. + Amb.) and without (Proj.) ambient illumination. The
RMSE of the translation is below 1 mm and even smaller than for the
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Fig. 10. First row: Visualization of the test setup. The target object is
placed on a motorized linear translation stage (left) and is illuminated
by the projector-camera system (right). Second row: Object 1 (left) and
Object 2 (right), each illuminated two different textures.

contour-based approach without an active projection (1.29 mm). In
addition, the rotation error is smaller than one degree. The translation
error of the combined approach (Comb. + Amb.) differs minimally,
but the rotation is slightly more stable (compared to Proj. + Amb). The
contour-based tracker only works without shader lamp illumination
and otherwise drifts after reaching position four on the path (Cont. +
Amb.).

For Texture 2, the tracking can be successfully maintained over the
complete sequences with and without ambient illumination. We observe
that the diagonal movements introduce a small rotational error, which is
automatically recovered after reaching a turning point. Interestingly the
recovery works better for the approach using only the projection, than
for the combined approach, which fails during the last movement. Even
if the projection is slightly off, a large part of the object is covered under
the projection, providing enough information to estimate the correct
movement direction. The bright border of the projection introduces an
error in the contour-based terms.

Texture 1 Texture 2
Test terr rerr terr rerr
Proj. 0.78 0.45 0.99 0.51

Proj. + Amb. 0.84 0.97 1.16 0.95
Comb. + Amb. 0.85 0.79 fails after Pos. 7
Cont. + Amb. fails after Pos. 4 fails after Pos. 4

Table 3. RMSE of rotation and translation (rerr, terr) for the first object in
presence of shader lamp illumination.

Object 2 has a cylindrical shape and it is not as wide as the first
object. A larger part of the projection misses the object for a movement
of the same size. Using Texture 1, the object can be tracked with
the projector-based model with and without ambient illumination. A
constant offset is observable during the movement from position 4 to
5. The offset is not present using the combined tracker. The offset can
be explained by the approximately cylindrical shape of the object. A
movement of the object exactly along the main axis of a cylinder will
not change the image of the projection locally in the camera image and
an error tends to be introduced in that direction. Using the additional
contour equations restricts this false estimation. For Texture 2, this
phenomenon also arises. Maintaining the tracking till the end of the
sequence without the contour terms is possible if we reduce to speed to
4mm per second (terr = 3.32, rerr = 1.83). This is not necessary using
the combined approach. Still the obtained errors are lower (terr = 1.46,
rerr = 0.67). Fig. 11 shows the correcting effect of the combined

Fig. 11. The estimated pose (green line) drifts along the main axis
of a cylindrical object during a tracking sequence for the projection-
based tracking (left). The combined tracking approach (right) resolves
ambiguities.

approach. As expected, the tracking fails if the projector-based terms
are ignored.

While we performed all experiments with two pyramid levels and a
maximum resolution of 1224x1024, we also tested to use only one or
three pyramid levels. For three levels, the large amount of texture detail
in relation to the size of the object in the image (especially if the object
is far away from the camera) causes pose instabilities in the coarsest
resolution. On the other hand, the highest resolution alone only allows
the compensation of small offsets. If the input image is subsampled
to a resolution of 612∗512, larger offsets can be compensated, but the
pose is not as accurate as for two levels. Therefore, the chosen settings
are a good compromise between speed and accuracy.

In conclusion, we can say that the projection-based approach is
suitable to precisely track objects with different geometric shape, illu-
minated with different textures. The experiments show that the registra-
tion is possible in cases where a purely contour-based tracker fails. Due
to the repeatable movement with the linear stage, we could identify
situations where the combined tracker using projection and contour
leads to an additional benefit.

A video showing that our approach is able to track a manually moved
object is part of the supplementary material. The hand of the user
introduces a partial occlusion of the projection and the free movement
covers rotations as well as translations. For slow movements, as shown
in the video, the CPU implementation is sufficient. To track faster
movements, more frames per second have to be evaluated, for example
by using a GPU variant of the algorithm (see Section 3.6) in future
work.

6 CONCLUSION

In this work, we presented a new approach for pose estimation of 3D
objects by directly aligning a simulated image of a spatial AR projec-
tion with the camera image. The appearance of dynamically moving
objects can be manipulated using a shader lamp projection, while at
the same time the distortion of the projection is used for pose estima-
tion. We derived the necessary motion model and presented an optical
flow-based pose estimation algorithm making use of the principle. We
omitted a radiometric calibration by using binary edge images with
adaptive thresholds and a very fast initial illumination estimation. The
developed linear optimization algorithm can be extended to optimize
the pose of the projector instead of the pose of the object. This al-
lows a fast refinement of the extrinsic parameters of a projector-camera
system, using a reference model with known 3D shape. A refinement
of the intrinsic parameters of the projector using more input poses is
an interesting topic for future research. We have proven in tests with
synthetic and real data, that the algorithm is suitable to track mov-
ing objects with and without ambient illumination and with different
projected textures. Many AR applications in industry and design can
potentially benefit from the presented techniques, already in the current
state of development. In future, we want to invest time in improving the
real-time performance of our implementation and further explore the
possibilities of combining the projection distortion-based estimation
with other motion models.
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