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Content of this Lecture 

 
 
 

• Cost estimation 
• Uniform distribution 
• Histograms 
• Sampling 
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Cost Estimation 

• Rule-based optimizer 
– Transformations depend only on query and schema information, 

but not on the actual data 
– No notion of “cost” 

• Cannot differentiate join order 
• Cannot decide on access path selection / index usage … 

• Cost-based optimizer 
– Estimate the cost of each operation in a QEP 
– Approached by estimating size of intermediate results  

• Cost estimation required for 
– Choosing best implementation for each operations 
– Finding best plan for entire query 

• Operations have non-local side-effects, especially order 
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Example 

• Assume 3300 products, prices between 0-1000 Euro, 1M 
sales, index on sales.p_id and product.id 

• Assuming uniform distribution 
– Price range is 0-1000 => selectivity of condition is 9/10 

• Expect 9/10*3300 ~ 3000 products 

– Choose BNL, hash, or sort-merge join (depending on buffer 
available) 

SELECT * 
FROM  product p, sales S 
WHERE  p.id=s.p_id and  
 p.price>100 
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Example 

• Using histograms 
– Assume 10 buckets 
– We infer: Selectivity of condition is 5/3300 ~ 0,0015 
– Choose index-join: scan p, collect id of selected products,  use 

index on sales.p_id to access sales 

• Note: We are making another assumption – which? 
– Maybe people mostly buy expensive goods? 
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Cost Estimation 

• We approach cost estimation bottom-up 
• Start by building a model of relations  

– Model should be much smaller than relation 
– Should allow for accurate predictions for all possible operations 

• Selection, projection, group-by, … 
• We will have to make some compromises 

– Should be consistent – same estimates for different ways of 
implementing the same subquery 

– Model should be easy to maintain when data changes 
– Model should be generated quickly 
– Models need to be stored and accessed efficiently  
– Models must be easily creatable (better: derivable) for intermediate 

relations during query processing 
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Example 

 
• Simple approach: count for each relation, (min, max) for 

each attribute in each relation 
– Generation requires only one pass  

• Beware: Count usually cannot be derived from used space 

– Data inserts possible in constant time 
• Update/delete: Exact models may require finding new min / max 
• Alternative: Ignore update/delete, accept errors 

– Storing requires only a few bytes per attribute 
• More for string attributes 
• Need not always be exact: “zz” instead of “zweifel”, E3 instead of 975 

– Estimating effect of join not easy, other operations are easy 
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CUSTOMER 

ACCOUNT 

σAge>80 

⋈ 

Example 

σName<Mater 

Name(1000, Aare, Zyte) 
Age(1000, 18, 98) 

 Acc#( 1000, 1, 123456) 

Name(500, Aare, Mater) 
Age(500, 18, 98) 

 Acc#( 500, 1, 123456) 

Name(112, Aare, Mater) 
Age(112, 80, 98) 

Acc#( 112, 1, 123456) 

Acc#( 2000, 1, 123456) 

Sel: 50% 

Sel: 1/(98-18)*18= 22,5% 

Independence assumption: 
112*2000/123456~2 

Acc#( 2, 1, 123456) 

Certainly wrong.  
Consider PK/FK constraints 

SELECT C.name, A.balance 
FROM   customer C, account A 
WHERE  C.acc# = A.acc# AND 
       C.name < “Mater” AND 
       C.age > 80 
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Types of Models for One Attribute 

 
• Option 1: Uniform distribution of values and statistical 

independence of different attributes 
– Very small model (e.g. count, max, min), simple to build 
– Simple improvement: Also store number of distinct values 
– Arbitrarily bad predictions if assumption violated 
– Cannot capture correlated attributes 

• SELECT C.name, C.address FROM customer C, account A 
WHERE  C.acc# = A.acc# AND C.age<19 AND A.balance>100.000 
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Types of Models II 

 
• Option 2: Known standard distribution 

– Normal, Poisson, Zipf, … 
– Can be characterized by few parameters (mean, stddev, …) 
– Very small model, can be very accurate 

• Weight of persons, number of sales per product, … 

– But: How should the DB know which distribution is the right one? 
• Must be specified by developer 

– Often difficult to propagate through query plans 
• Normal distribution after SELECT is not normal anymore 

– Only used for special cases 
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Types of Models III 

 
• Option 3: Approximation of concrete distribution by 

histograms 
– Parameterized size, quite simple to build 
– Independent of underlying distribution 
– Accuracy depends on type and size (and timeliness) 
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Obtaining Model Parameters 

 
 

• Exhaustive analysis 
– Even O(|R|) might be too expensive for very large relations 

• Sampling 
– Use a representative subset of tuples of a relation 

• Choose subset at random 
• Not so easy to chose a truly random samples 

– Accuracy depends on sampling method and size (and timeliness) 
– Examples later 
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Important Note 

 
• Derived estimations need not be exact 

– Should only help to discern good transformations from bad ones 
– Order of alternatives matter, not concrete cost 

• Estimates are often very bad (orders of magnitude) 
– Especially when data deviates from assumptions of the model 
– Still, resulting plans might be very good 

• Trade-off: Accuracy of model-derived estimates versus 
effort to maintain models 
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Content of this Lecture 

 
 
 
 

• Cost estimation 
• Uniform distribution 
• Histograms 
• Sampling 
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Rules of Thumb 

• Definition 
– The selectivity of a relational operation is the fraction of tuples of 

the input that will be in the output 

• We discuss impact of each relational operation on 
parameters of a simple model assuming uniform 
distributions 
– S will denote the result of a (unary, binary) operation 

• For relation R and attribute A, our model consists of 
– V(R, A) be number of distinct values of A 
– max(R, A), min(R, A) be the maximal/minimal value of A 

• Values that do exist “now”, not maximal / minimal possible values 

– |R| be the number of tuples in R 
– Note: R may be an intermediate result 
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Size after a Selection 

 
• We assume min≤const≤max 
• Selection of the form “A=const” 

– |S| = |R| / v(R,A) 
– v(S,A) = 1; max(S,A)=min(S,A)=const 

• Selection of the form “A<const” (or “A ≤ ≥ > const”) 
– |S| = |R| / (max-min) * (const-min) 
– v(S,A) = v(R,A) / (max-min) * (const-min) 
– min(S,A) = min; max(S,A)=const 
– Alternative: |S| = |R| / k (e.g. k=10,15,…) 

• Idea: With such queries, one usually searches for outliers 
• Very rough estimate, but requires no knowledge of values in A at all 
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Size of a Selection II 

 
 

• Selection of the form “A≠const” 
– |S| = |R| * (v(R,A)-1)/v(R,A) 

• We assume that const exists as value in A 

– v(S,A)=v(R,A) 
• But we don’t know! Be careful 

– min(S,A)=min, max(S,A)=max 
– Alternative: |S| = |R| 
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Complex Selections 

 
 

• Selection of the form “Aθc1 ∧ Bθc2 ∧ …” 
– Assumption: Statistical independence of values  
– Total selectivity is sel(c1) * sel(c2) * … 
– v, min, max are adapted iteratively for each single condition 

• Selection of the form “Aθc1 ∨ Bθc2 ∨ …” 
– Rephrase into ¬ (¬(Aθc1) ∧ ¬(Bθc2) ∧ … ) 
– Selectivity is 1- (1-sel(c1))*(1-sel(c2))*…) 

• Selectivity of A=10 ∧ A>10 ? 
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Projection and Distinct 

 
• Selectivity of distinct 

– |S| = v(R,A) 
– v(S,A)=v(R,A), min(S,A)=min, max(S,A)=max 

• Selectivity of projection 
– Is 1 under BAG semantics 
– Is same as selectivity of distinct under SET semantics 
– Caution 

• In real life, we need to estimate the size of the intermediate relation in 
bytes 

• This requires number of tuples and size of tuples 
• We ignore(d) this issue 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 20 

DISTINCT and GROUP-BY 

 
• Selectivity of grouping 

– Same as selectivity of distinct on group attributes 

• Selectivity of SELECT DISTINCT A,B,C FROM … 
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Projection and Distinct 

 
• Selectivity of grouping 

– Same as selectivity of distinct on group attributes 

• Selectivity of SELECT DISTINCT A,B,C FROM … 
– Not easy: We need to know correlations of values 
– Clearly, 0 < |S| < v(R,A) * v(R,B) * v(R,C) 
– Suggestion: |S| = min( ½*|R|, v(R,A)*v(R,B)*v(R,C)) 

• Alternative 
– Multi-dimensional histograms (later) 
– Note: A, B here may have completely different domains, in a join 

the domains of the joined attributes must be the same 
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Selectivity of Joins 

 
• Consider join R⋈AT (or σR.A=T.A (R x T)) 
• Size of product is |R|*|T|, but selectivity of the join? 

– Need to know about correlations of values in different relations 
– Similar problem as for … DISTINCT A,B,C …, 

• Suggestions 
– Option 1: We join a PK with a FK 

• Thus, if v(R,A)<v(T,A), T.A is PK in T and R.A is FK 
– Or vice versa 

• Each FK “finds” its PK 
• Thus: |S|=|R|, max(S,A)=max(R,A), min(S,A)=min(R,A), 

v(S,A)=v(R,A) 
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Selectivity of Joins 

• Option 2: Assume that value sets are similar  
– Assumption: Users don’t join independent attributes 
– Thus, most (all) tuples will find a join partner 
– Thus, each tuple from T will join with app. |R|/v(R,A) tuples from R 
– Symmetrically, each tuple from R will join with app. |T|/v(T,A) 

tuples from T 
– Thus, we expect |T|*|R|/v(R,A) or |R|*|T|/v(T,A)  
– Typical solution: |S| = |R|*|T| /(max(v(T,A), v(R,A)) 
– |R|<|T|: v(S,A)=v(R,A), min(S,A)=min(R,A), max(S,A) = max(R,A) 
– Can (and should) be refined by also considering value ranges 

• What about R⋈R.A<T.BT ? 
– For each value T.B, estimate which fraction of R has smaller values 

in R.A 
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Remarks 

 
 

• We did not discuss effects on other attributes: Home work 
– For instance: Assuming statistical independence, a condition 

“age<19” does not change min(R,name) or max(R,name) 
– But: “SELECT name, sum(price) as x FROM products GROUP BY 

product.name” yields v(S,name)=v(P,name), but introduces a new 
column x whose model must be estimated 
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Content of this Lecture 

 
 
 

• Cost estimation 
• Uniform distribution 
• Histograms 
• Sampling 
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Histograms 

• Real data is rarely uniformly distributed 
– Nor Poisson, normal, Zipf, … 

• Solution: Histograms [for single attributes] 
– Partition the (current) value range into buckets 
– Count frequency of tuples in each bucket (i.e. range) 
– During cost estimation, approximate frequency of a single value or 

a range by averaging over all values in a bucket 
• I.e., make uniform distribution assumption inside each bucket 

• Advantage 
– Lower errors due to smaller ranges for uniformity assumption 
– Hope: Frequencies vary less inside smaller ranges 
– Histograms do not help in case of extremely distorted distributions 
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Issues  

 
 
 

• We must think about 
– How should we chose the borders of buckets? 
– What do we store for each bucket (could be more than count)? 
– How do we keep buckets up-to-date? 
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Distribution 

• Assume normal distribution of weights   
– Spread: 120-40=80, mean: 80, stddev: 12; 100000 people 

• Uniform distribution: 100000/80=1250 for each possible weight 
• Leads to large errors in almost all possible query ranges 
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Equi-Width Histograms 

• Fix number of buckets 
• Borders are equi-distant (border values need not be stored) 
• In each bucket, assume average frequency inside bucket 

0

500

1000

1500

2000

2500

3000

3500

40 47 54 61 68 75 82 89 96 10
3

11
0

11
7

Normal distribution
Equi-width



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 30 

Equi-Width Histograms 2 

• Bucket counts can be computed by scanning relation once 
• Remaining error depends on 

– Number of buckets (more buckets -> less errors, but more space) 
– Distribution of values in each bucket 
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Equi-Depth 

• Fix number b of buckets 
• Chose borders such that frequency of values in each 

bucket is approximately equal 
– If one value more frequent than |R|/b - use other histograms 
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Equi-Depth 

• Buckets have varying sizes (borders need to be stored) 
• Better fit to data 
• Computation?  

– Sort all values, then jump in equally wide steps 
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Example 

• Query: Number of people with weight in  [65-70] 
– Real value: 11603 
– Uniform distribution: (70-65+1)*1250 = 7500 

• Error: 4103 ~ 35% 

– Equi-width histogram 
• Range 60-69 has average 1469 
• Range 70-79 has average 2926 
• Estimation: 5*1469 + 1*2926 = 10271  

– Error: 1332 ~ 11% 
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Example cont’d 

• Query: Number of people with weight between 65-70 (incl) 
– Real value: 11603 
– Uniform distribution: (70-65+1)*1250 = 7500 

• Error: 4103 ~ 35% 

– Equi-depth histogram 
• Range 65-69 has average 1850 
• Range 70-73 has average 2581 
• Estimation: 5*1850 + 1*2581 = 11831  
• Error: 228 ~ 2% 

• Error depends on concrete value or range 
• In general, equi-depth histograms are considered more 

accurate than equi-width histograms  
– But more costly to build and maintain 
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Other: Serial Histograms 

• Sort values by frequency and build buckets as ranges of 
frequencies (rare values, less rare values, …) 

• Frequency ranges of different buckets do not overlap 
• Better fit, but values in buckets must be stored explicitly 

– There are no consecutive ranges any more 

• Range queries must find their values in all buckets 

Value 1 2 3 4 5 6 7 

Cnt 12 92 10 180 22 20 80 

18
0 

92
 

80
 

22
 

Bucket 1 2 3 

Values 4 2,5,7 1,3,6 

Total cnt 180 194 42 

σ2 0 ~1400 ~28 
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Other: V-Optimal Histograms 

• Sort values by frequency and build buckets such that 
weighted variance is minimized in each bucket 
– Explicitly considers the expected error 

• Provably best class of histograms for “average” queries 
– But costly to generate and maintain 
– Best known algorithm is O(b*n2) (n: n# values, b: n# buckets) 

Value 1 2 3 4 5 6 7 

Cnt 12 92 10 180 22 20 80 

18
0 
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80
 

22
 

Bucket 1 2 3 

Values 4 2,5 1,3,6,7 

Total cnt 180 172 64 

σ2 0 ~72 ~35 
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Other Types of Histograms 

• End-biased histograms 
– Sort values by frequency and build singleton buckets for largest / 

smallest frequencies plus one bucket for all other values 
– Simple form of serial histograms, quite effective for many real-

world data distributions (e.g. Zipf-like distributions) 

• “Commercial systems seem mostly to use equi-depth and 
compressed histograms (mixture of equi-depth and end-
biased histograms)” 

Ioannidis, Y. (2003). "The history of histograms (abridged)". VLDB 
Ioannidis / Christodoulakis (1993). "Optimal Histograms for Limiting Worst-Case Error 
Propagation in the Size of Join Results.“, TODS 
Ioannidis / Poosala (1995). "Balancing Histogram Optimality and Practicality for Query Result 
Size Estimation." SIGMOD Record 
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Content of this Lecture 

 
 
 

• Cost estimation 
• Uniform distribution 
• Histograms 

– Types of histograms 
– Joins, construction, maintenance 

• Sampling 
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Histograms for Join Estimation 

• Assume sales and reclamations  
– And a slightly strange query, not passing along PK/FK constraints 
– Probably a mistake? But the DB must execute (and optimize) it 

anyway! 

SALES 
salesID 

productID 
… 

CLAIM 
salesID 

productID 
… 

20K tuples 

3K different  
values 

250 different 
values 

380 tuples 

SELECT  count(*)  
FROM  sales S, reclamation R 
WHERE S.productID=R.productID; 
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Example without Histograms 

• Without histograms, assuming uniform distribution 
– Recall join-formula 
– Gives |S|*|R|/(max (v(R,productID), v(S,productID))) ~ 2500 

 
 

SALES 
salesID 

productID 
… 

RECLAIM 
salesID 

productID 
… 

20K tuples 

3K different  
values 

250 different 
values 

380 tuples 
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Example with Histograms 

Range B.pID R.pID 

0-499 7000 300 

-999 450 60 

-1499 2650 0 

-1999 4900 0 

-2499 100 20 

-2999 4900 0 

SALES 
salesID 

productID 
… 

RECLAIM 
salesID 

productID 
… 

20K tuples 

3K different  
values 

250 different 
values 

380 tuples 

• Uniform distribution within buckets 
– And uniform distribution of distinct values 

• Better: Store cnt of distinct value per bucket 

– (7000*300/500)+(450*60/500)+…~ 4200 

• More complicated if bucket borders  
do not coincide 
– Which usually is the case for equi-depth 

histograms 
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Histograms and Complex Conditions 

 
• We only considered histograms for single attributes 
• How to apply for complex conditions? 

– People with weight<30 and age<25 ? 
– People with income>1M and tax depth<500K ? 
– Until now, we assumed statistical independence of attributes 
– Better estimates require conditional distributions 
– But: Combinatorial explosion of the number of combinations 

• Plus: Could be connected by AND, OR, AND NOT, … 

• Multidimensional histograms 
– Active research area 
– Need sophisticated storage structures – multidimensional indexes 
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Building Histograms 

 
 

• Usually, computing histograms requires scanning a table 
– Potentially for each attribute 

• Cannot be done before each query – offline statistics 
• Indexes can help 

– Statistics such as min, max are directly obtainable from a B+ index 
– Inner nodes of B+ trees ~ equi-depth histograms 
– But we rarely have indexes on all attributes of a relation 
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Maintaining Histograms 

• Idea: Compute once and maintain 
• Equi-width histograms 

– Assumption: Number of buckets and min/max does not change 
– Then everything is simple; increase/ decrease frequencies in bucket 

upon insert/delete/update 
– (Gross) Changes in min/max: Rebuild histogram 

• Equi-depth histograms 
– Changes in data may influence borders of buckets 
– Option 1: Proceed as for equi-width, accept intermediate 

inequalities in bucket frequencies 
• … and regularly re-compute entire histogram 

– Option 2: Implement complex bucket merging/ splitting procedures 
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Maintaining Histograms on Request 

 
• Compute only on user request 

– Administrator needs to trigger re-computation of (all, table-wise, 
attribute-wise, …) statistics from time to time  

– Otherwise, query performance may degrade 
– Both cases (new or outdated statistics) may lead to unpredictable 

changes in query behavior 
• To prevent, Oracle provides “query outlines” 

• Automatically maintaining statistics is a active research 
topic 
– General trend: Reduce total cost of ownership 
– Self-optimizing, self-maintaining, zero-administration, … 
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Content of this Lecture 

 
 
 

• Cost estimation 
• Uniform distribution 
• Histograms 
• Sampling 
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Sampling 

• Scanning a table for computing a histogram is expensive 
• But we actually only need to estimate the distribution 

– Histograms are estimates anyway 

• Solution: Use a sample of the data 
– If chosen randomly, sample should have same distribution as full 

data set 
– For large data sets, usually, a 1-10% sample suffices  

• Also useful for approximate COUNT, AVG, SUM, etc.  
– Approximate query processing: Much faster answers in much less 

time with minimal error 
– Requires estimation of maximal error (confidence values) 
– Again: Very active research area (“Taming the terabyte”) 
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Problems with Sampling 

 
 

• How do we get a random 10% sample? 
– Reading first 10% of rows is a very bad idea 
– Reading a row from 10% of the blocks is about as slow as reading 

the entire table (sequential reads!) 

• Option: Reservoir sampling: Explicitly store and maintain a 
sample 

• Sampling must be a build-in database operator; 
impossible to emulate efficiently 


	Foliennummer 1
	Content of this Lecture
	Cost Estimation
	Example
	Example
	Cost Estimation
	Example
	Example
	Types of Models for One Attribute
	Types of Models II
	Types of Models III
	Obtaining Model Parameters
	Important Note
	Content of this Lecture
	Rules of Thumb
	Size after a Selection
	Size of a Selection II
	Complex Selections
	Projection and Distinct
	DISTINCT and GROUP-BY
	Projection and Distinct
	Selectivity of Joins
	Selectivity of Joins
	Remarks
	Content of this Lecture
	Histograms
	Issues 
	Distribution
	Equi-Width Histograms
	Equi-Width Histograms 2
	Equi-Depth
	Equi-Depth
	Example
	Example cont’d
	Other: Serial Histograms
	Other: V-Optimal Histograms
	Other Types of Histograms
	Content of this Lecture
	Histograms for Join Estimation
	Example without Histograms
	Example with Histograms
	Histograms and Complex Conditions
	Building Histograms
	Maintaining Histograms
	Maintaining Histograms on Request
	Content of this Lecture
	Sampling
	Problems with Sampling

