
Searching (Sub-)Strings

Ulf Leser

Ulf Leser: Introduction to Bioinformatics 2

This Lecture

• Exact substring search
– Naïve
– Boyer-Moore

• Searching with profiles
– Sequence profiles
– Ungapped approximate search
– Statistical evaluation of search results

Ulf Leser: Introduction to Bioinformatics 3

Searching / Comparing Strings

• Exact matching

– Given strings p and t: Find all occurrences of s in t
– Given a set P and t: Find all occurrences of any p∈P in t

• Approximate matching
– Given p and t: Find all approximate occurrences of p in t
– Given p and t: Find p’, t’ such that p’ is similar to t’ and p’ is a

substring of p and t’ is a substring of t
– Given p and a set of strings T

• Find all t∈T that are similar to p
• Find all t∈T containing a t’ similar to a p’ contained in p

• Many more variants …

Ulf Leser: Introduction to Bioinformatics 4

Applications

• Given strings p and t: Find all occurrences of p in t

– Restriction enzyme cut positions; fixed patterns in gene structure;
seeds for approximate searching

• Given a set P and t: Find all occurrences of any p∈P in t
– Same with multiple patterns / enzymes

• Given p and t: Find all approximate occurrences of p in t
– Less conserved patterns; read mapping; TF binding sites

• Given p and t: Find p’, t’ such that p’ similar to t’ and p’ is a
substring of s and t’ is a substring of t
– Local alignment; homologous genes; cross-species searches

Ulf Leser: Introduction to Bioinformatics 5

Strings

• A string (or sequence) p is an ordered list of characters
from an alphabet Σ
– |s| is the length of p
– p[i] is the character at position i in p (starting from 1)
– p[i..j] is the substring from position i to position j in p
– p[i..j] is an empty string if i > j
– p[1..i] is a prefix of p ending at position i
– p[i..] is a suffix of p starting at position i

• Alphabet
– Usually: Σ={A, C, G, T}
– Often, we need blanks: Σ’={A, C, G, T, _}

• Lower/upper case: P may denote a set of strings, or a
sequence of characters (a string)

Ulf Leser: Introduction to Bioinformatics 6

tcagcttactaattaaaaattctttctagtaagtgctaagatcaagaaaataaattaaaaataatggaacatggcacattttcctaaactcttcacagattgctaatgat
tattaattaaagaataaatgttataattttttatggtaacggaatttcctaaaatattaattcaagcaccatggaatgcaaataagaaggactctgttaattggtactat
tcaactcaatgcaagtggaactaagttggtattaatactcttttttacatatatatgtagttattttaggaagcgaaggacaatttcatctgctaataaagggattacga
aaaactttttaataacaaagttaaataatcattttgggaattgaaatgtcaaagataattacttcacgataagtagttgaagatagtttaaatttttctttttgtattac
ttcaatgaaggtaacgcaacaagattagagtatatatggccaataaggtttgctgtaggaaaattattctaaggagatacgcgagagggcttctcaaatttattcagaga
tggatgtttttagatggtggtttaagaaaagcagtattaaatccagcaaaactagaccttaggtttattaaagcgaggcaataagttaattggaattgtaaaagatatct
aattcttcttcatttgttggaggaaaactagttaacttcttaccccatgcagggccatagggtcgaatacgatctgtcactaagcaaaggaaaatgtgagtgtagacttt
aaaccatttttattaatgactttagagaatcatgcatttgatgttactttcttaacaatgtgaacatatttatgcgattaagatgagttatgaaaaaggcgaatatatta
ttcagttacatagagattatagctggtctattcttagttataggacttttgacaagatagcttagaaaataagattatagagcttaataaaagagaacttcttggaatta
gctgcctttggtgcagctgtaatggctattggtatggctccagcttactggttaggttttaatagaaaaattccccatgattgctaattatatctatcctattgagaaca
acgtgcgaagatgagtggcaaattggttcattattaactgctggtgctatagtagttatccttagaaagatatataaatctgataaagcaaaatcctggggaaaatattg
ctaactggtgctggtagggtttggggattggattatttcctctacaagaaatttggtgtttactgatatccttataaataatagagaaaaaattaataaagatgatat

Exact Matching

• Given P, T with |P| << |T|
• Find all occurrences of P in T
• Example of application: Restriction enzymes

– Cut at precisely defined sequence motifs of length 4-10
– Are used to generate fragments (for later sequencing)
– Example: Eco RV - GATATC

Ulf Leser: Introduction to Bioinformatics 7

How to do it?

• The straight-forward way (naïve algorithm)
– We use two counter: t, p
– One (outer, t) runs through T
– One (inner, p) runs through P
– Compare characters at position T[t+p-1] and P[p]
 for t = 1 to |T|

 match := true;
 p := 1;
 while ((match) and (p <= |P|))
 if (T[t + p – 1] <> P[p]) then
 match := false;
 else
 p := p + 1;
 end while;
 if (match) then
 -> OUTPUT t
end for;

Ulf Leser: Introduction to Bioinformatics 8

Examples

ctgagatcgcgta
gagatc
gagatc
gagatc
gagatc
gagatc
gatatc

gatatc

T
P

gatatc

Worst case

aaaaaaaaaaaaaa

aaaaat
aaaaat
aaaaat
aaaaat

 ...

T
P

Typical case

• How many comparisons do we need in the worst case?
• t always runs through T
• p runs through the entire P for every position in t (worst case)
• Thus: O(|P|*|T|)
• A lot: |T|=250M (chromosome), |P|=250 (exon) => ~62E9 ops

Ulf Leser: Introduction to Bioinformatics 9

Other Algorithms

• Exact substring search has been researched for decades

– Boyer-Moore, Z-Box, Knuth-Morris-Pratt, Karp-Rabin, Shift-AND, …
– All have WC complexity O(|P| + |T|)
– Real performance depends a lot on size of alphabet and

composition of strings (most have strengths in certain settings)

• One simple and popular algorithm: Boyer-Moore
– We present a simplified form
– BM is among the fastest algorithms in practice

• Much better performance if T can be preprocessed
– Best algorithms reach O(|P|)

Ulf Leser: Introduction to Bioinformatics 10

This Lecture

• Exact substring search
– Naïve
– Boyer-Moore

• Searching with profiles
– Sequence profiles
– Ungapped approximate search
– Statistical evaluation of search results

Ulf Leser: Introduction to Bioinformatics 11

Boyer-Moore Algorithm

• R.S. Boyer /J.S. Moore. „A Fast String Searching Algorithm“,

Communications of the ACM, 1977
• Main idea

– Again, we use two counters (inner loop, outer loop)
– Inner loop runs from right-to-left
– If we reach a mismatch, we know

• The character in T we just haven’t seen
– This is captured by the bad character rule

• The suffix in P we just have seen
– This is captured by the good suffix rule

• Use this knowledge to make longer shifts in T

Ulf Leser: Introduction to Bioinformatics 12

Bad Character Rule

• Setting 1
– We are at position t in T and compare right-to-left
– Let i by the position of the first mismatch in P

• We saw n-i matches before

– Let x be the character at the corresponding pos (t-n+i) in T
– Candidates for matching x in P

• Case 1: x does not appear in P at all – we can move t such that t-n+i
is not covered by P anymore

xabxfabzzabwzzbzzb
abwxyabzz

T
P

xabxfabzzabwzzbzzb
abwxyabzz

T
P

What next?

Ulf Leser: Introduction to Bioinformatics 13

Bad Character Rule 2

• Setting 2
– We are at position t in T and compare right-to-left
– Let i by the position of the first mismatch in P
– Let x be the character at the corresponding pos (t-n+i) in T
– Candidates for matching x in P

• Case 1: x does not appear in P at all
• Case 2: Let j be the right-most appearance of x in P with j<i – we can

move t such that j and i align

xabxkabzzabwzzbzzb
abzwyabzz

T
P

xabxkabzzabwzzbzzb
abzwyabzz

T
P

What next? j i

Ulf Leser: Introduction to Bioinformatics 14

Bad Character Rule 3

• Setting 3
– We are at position t in T and compare right-to-left
– Let i by the position of the first mismatch in P
– Let x be the character at the corresponding pos (t-n+i) in T
– Candidates for matching x in P

• Case 1: x does not appear in P at all
• Case 2: Let j be the right-most appearance of x in P with j<i
• Case 3: As case 2, but j>i – we need some more knowledge

xabxkabzzabwzzbzzb
abzwyabzz

T
P

Ulf Leser: Introduction to Bioinformatics 15

Preprocessing 1

• In case 3, there are some “x” right from position i

– For small alphabets (DNA), this will almost always be the case
– Thus, case 3 is the usual one

• These “x” are irrelevant – we need the right-most x left of i
• This can (and should!) be pre-computed

– Build a two-dimensional array A[|∑|,|P|]
– Run through P from left-to-right (pointer i)
– If character c appears at position i, set all A[c,j]:=i for all j>=i
– Possible in O(|A|); negligible because P is small
– Constant lookup time during search

Ulf Leser: Introduction to Bioinformatics 16

(Extended) Bad Character Rule

• Simple, effective for larger alphabets
• For random DNA, average shift-length is ~2

– Expected distances to the next match using EBCR
– Per position in t, the expected length of the match also is ~2
– Thus, we expect ~ 2*|T|/2 = |T| comparisons

• Worst-Case complexity?

Ulf Leser: Introduction to Bioinformatics 17

(Extended) Bad Character Rule

ggg T
P aggggggggggg

aggggggggggg
aggggggggggg
aggggggggggg

ggg ggg ggg

• Simple, effective for larger alphabets
• For random DNA, average shift-length is ~2

– Expected distances to the next match using EBCR
– Per position in t, the expected length of the match also is ~2
– Thus, we expect ~ 2*|T|/2 = |T| comparisons

• Worst-Case complexity?

Ulf Leser: Introduction to Bioinformatics 18

Good-Suffix Rule

• Recall: If we reach a mismatch, we know …
– The character in T we just haven’t seen
– The suffix in P we just have seen

• Good suffix rule
– We have just seen some matches in P; let this suffix be S
– Where else does S appear in P?
– If we know the right-most appearance S’ of S in P, we can

immediately align S’ with the current match in T
– If S does not appear at least twice in P, we shift t by |P|- |S|+1

T

P S y

x S

S‘

x S

S y S‘

Ulf Leser: Introduction to Bioinformatics 19

Good-Suffix Rule – One Improvement

• Actually, we can do a little better
• Not all S‘ are of interest to us

• We only need S‘ whose next character to the left is not y
• Why don‘t we directly require that this character is x?

T

P S y

x S

S‘

x S

S y S‘ ≠y

Ulf Leser: Introduction to Bioinformatics 20

Complete Algorithm

t := 1;
while (t<=|T|-|P|) do \\ outer loop
 p := |P|;
 match := true;
 while (match and p>=1) do \\ inner loop
 if (T[t+p]=P[p]) then p := p-1 \\ matching chars
 else match := false; \\ mismatch
 end while;
 if match then print t; \\ complete match
 compute shift s1 using BCR(t,p);
 compute shift s2 using GSR(t,p);
 t := t + max(s1, s2); \\ shift maximal
end while;

Ulf Leser: Introduction to Bioinformatics 21

GSR Preprocessing

• We need to find all occurrences of all suffixes of P in P with
restrictions on the character left of the suffix

• Could be computed using naïve algorithm for each suffix
• Or, more complicated, in linear time (not this lecture)
• Runtime negligible since we assume P being short

Ulf Leser: Introduction to Bioinformatics 22

Concluding Remarks

• Worst-case complexity of Boyer-Moore is O(|P|*|T|)
– WC complexity can be reduced to linear (not this lecture)

• Empirical runtime is sub-linear
– The larger the alphabet (with roughly equal character frequencies),

the faster

• Faster variants
– Often, using the GSR does not pay off
– BM-Horspool: Instead of looking at the mismatch character x,

always look at the symbol in T aligned to the last position of P
• Generates longer shifts on average (i is maximal)

• In practice, also naïve algorithm is quite competitive for
random strings and non-trivial alphabets (not for DNA)
– Empirical results much better than worst-case estimations

Ulf Leser: Introduction to Bioinformatics 23

Example
b b b b b b b b b c c c a a a a a a a a a g g g g g c g b b c a a a b c a

b b b b b b b b b c c c a a a a a a a a a g g g g g c g b b c a a a b c a

b b b b b b b b b c c c a a a a a a a a a g g g g g c g b b c a a a b c a

b b b b b b b b b c c c a a a a a a a a a g g g g g c g b b c a a a b c a

b b b b b b b b b c c c a a a a a a a a a g g g g g c g b b c a a a b c a

Match

Mismatch

Good suffix

Ext. Bad character

b b b c a a a a a g GSR wins

b b b c a a a a a g GSR wins

b b b c a a a a a g

b b b c a a a a a g EBCR wins

b b b c a a a a g a

Ulf Leser: Introduction to Bioinformatics 24

This Lecture

• Exact substring search
• Searching with profiles

– Splicing
– Position Specific Weight Matrices
– Likelihood scores

Ulf Leser: Introduction to Bioinformatics 25

Approximate Search (First Step)

• Requiring an exact match is too strict in most

bioinformatics applications
– Sequencing errors, mutations, individual differences, …

• More often, one is interested in matches similar to P
• Many definitions of “similar” are possible
• Now: Position Specific Weight Matrices (PSWM)

– Also called profiles
– Powerful tool with many bioinformatics applications
– We develop the idea using an example taken from Spang et al.

“Genome Statistics”, Lecture 2004/2005, FU Berlin

Ulf Leser: Introduction to Bioinformatics 26

Splicing

• Not all DNA of a “gene” is translated into amino acid
• Splicing: Removal of introns
• Alternative splicing: Removal of some exons

Ulf Leser: Introduction to Bioinformatics 27

Diversity

• From a gene with n exons, alternative
splicing can create 2n-1 proteins

• Example: Troponin T (muscle protein)
– 18 exons
– 64 different known isoforms
– 10 exons present in all isoforms

• Source: Eurasnet, „Alternative Splicing“

Ulf Leser: Introduction to Bioinformatics 28

Recognizing Splice Sites

• A special enzyme (spliceosome) very precisely recognizes

exon-intron boundaries in mRNA
• Spliceosome recognizes certain sequence motifs
• How are these motifs characterized? Can we find them?

– Very often, introns start with GT and end with AG
– But that is not specific enough - why?
– In random sequences, we expect a GT (AG) at every 16th position
– Thus, the average distance between a GT and an AG is 16, and we

find such pairs very often
– But: Introns typically are larger than 100 bases

Ulf Leser: Introduction to Bioinformatics 29

Context of a Splice Site

• Observing real splice sites, we find no crisp context
• But: columns are not composed at random
• How can we capture and quantify this knowledge?

Ulf Leser: Introduction to Bioinformatics 30

Vizualization: Sequence Logos

• Very popular
• Based on information content of each base at each position

– Which, in turn, is based on the entropy of the columns

Ulf Leser: Introduction to Bioinformatics 31

Position-Specific Weight Matrices

• Count in every column the frequencies of all bases
• Store the relative frequencies in an array of size |P|*|∑|

– With |P| being the size of the context around the splice sites

• At “GT”, all values except one are 0% and one is 100%
– Actually, GT is not perfectly conserved in real sequences

• In random sequences, all values should be 25%

Ulf Leser: Introduction to Bioinformatics 32

Scoring with a PSWM

• Eventually, we want to find potential splice sites in a
genome G (e.g. to do gene prediction)

• We need a way to decide, given a sequence S and a PSWM
A (both of the same length): Does S match A?
– We devise a function assigning a score to S given A
– With this function, we score all subsequences of length |A| in G
– Subsequences above a given threshold are considered candidates

• We give this question a probabilistic interpretation
– Assume, for each column, a dice which four faces; each face is

thrown with probability equal to the relative frequencies as given in
the PSWM A for this column

– What is the probability that this dice generates S?

Ulf Leser: Introduction to Bioinformatics 33

Examples

• In random sequences, all values in A are 25%, and all
possible S would get the same probability: ¼|S|

• But

– P(AAGGTAAGT) ~ 0.3*0.6*0.8*1*1*0.5*0.7*0.8*0.5 ~ 0.023
– P(CCCGTCCCC) ~ 0.4*0.1*0.03*1*1*0.02*0.08*0.05*0.2 ~ 3E-8
– P(AGTCTGAAG) ~ 0.3*0.1*0.1*0*1*0.4*0.7*0.07*0.2 = 0

– 1st sequence matches A much better than the second
– 3rd sequence hints towards overfitting

Ulf Leser: Introduction to Bioinformatics 34

This Lecture

• Exact substring search
• Searching with profiles

– Splicing
– Position Specific Weight Matrices
– Likelihood scores

Ulf Leser: Introduction to Bioinformatics 35

I am not Convinced (yet)

• Is S actually a match for A?
• We need to quantify the “goodness” of a score

– By comparing it to other / best / worst scores

• Observations
– The first match on the previous slide is about as good as it can get:

Best possible sequence has a score of 0.025 (compared to 0.023)
– If match S is not a splice site, it is an “ordinary” sequence. How

likely is it that S is generated under this zero model (Z)?
• “Zero model” often means: Equal probability for all bases

– Could include species bias, coding region bias, CpG island bias, …

• p(S|”zero”) = ¼9 ~ 3.8E-6

– Thus, is it much more likely (app. 6000 times more likely) that S
was generated under the A model than that is was generated
under the Z model

Ulf Leser: Introduction to Bioinformatics 36

Likelihood (Odds) Ratios

• Given two models A, Z. The likelihood ratio score of a

sequence S is the ratio of p(S|A) / p(S|Z)

– score(AAGGTACGT) ~ 6000
– score(CCCGTCCCC) ~ 1/140
– score(CTGGTCCGA) ~ 3
– score(TCCGTCCCC) < 1

• Also called odds score
– This is just one (popular) method for computing a “goodness”

Ulf Leser: Introduction to Bioinformatics 37

Matching with a PSWM

• Given genome G, models A and Z, and a threshold t: Find
all S in G with likelihood(S)>t

• Method: For all S with |S|=|A|, compute likelihood (S)
– This requires ~|G|*|A| divisions and multiplications
– Divisions can be saved easily (how?)

Ulf Leser: Introduction to Bioinformatics 38

Numeric trick

• Values get quite small (close to 0) for longer A
• This yields problems with numeric stability in programs
• Better: Compute log-likelihood score s’=log2(score(…))

– Also faster: Replaces multiplication with addition
– Pre-compute divisions









++










=











=








=

)|(
)|(log...

)|(
)|(

log

)|(*...*)|(
)|(*...*)|(

log
)|(
)|(log)('

1

1

1

1

1

1

1

1

nn

nn

nn

nn

ZSp
ASp

ZSp
ASp

ZSpZSp
ASpASp

ZSp
ASpSs

Ulf Leser: Introduction to Bioinformatics 39

Beware

• Assume a highly conserved motif A of length 8
– The chance that an arbitrary S, |S|=8, matches A is only 0.000015
– But: |G|=3.000.000.000
– Only by change, we will have ~45,000 perfect matches
– This applies even if we set the threshold at maximum
– Help: For |A|=16, we expect less than 1 match by chance

• Generally: Number of false hits depend on the threshold t
– Higher t: Stricter search, less false hits, but may incur misses
– Lower t: Less strict, less misses, but more false hits

• Note: A match is an hypothesis calling for further analysis
– By additional knowledge (e.g.: is S part of a gene?)
– By experimentation (e.g.: can we find an isoform spliced at S)?

Ulf Leser: Introduction to Bioinformatics 40

Pattern Matching

• We discussed exact matching and matching with a PSWM
• But motifs also may look quite differently

– Motifs (domains) in protein sequences
– Some important positions and much “glue” of unspecified length
– Pattern here may be: [AV].*FGKG[SIV]2.*[LI]…
– Which positions in S should we compare to which columns in P?
– How can we derive a specific pattern P from S1-S6?

S1: M---AIDE----NKQKALAAALGQ--KQFGKGSIMRLGEDR-SMDVETISTGSLSLDI
S2: MSDN--------KKQQALELALKQI-KQFGKGSIMKLGDG-ADHSIEAIPSGSIALDI

S3: M----AINTDTSGKQKALTMVLNQIERSFGKGVIMRLGDA-TRMRVETISTGALTLDL
S4: M-----------DRQKALEAAVSQ--RAFGKGSIM-LGGKD---ETEVVSTRILGLDV
S5: M------DE---NKKRALAAALGQI-KQFGKGVSMRMGDHE-RQAIPAISTGSLGLDI

S6: MD---------------------K-EKSFGKGSIMRMGEE-VVEQVEVIPTGSIA---

Ulf Leser: Introduction to Bioinformatics 41

Further Reading

• On string matching algorithms
– Gusfield

• On sequence logos and TFBS-identification
– Christianini & Hahn, chapter 10
– Merkl & Waack, chapter 10

	Foliennummer 1
	This Lecture
	Searching / Comparing Strings
	Applications
	Strings
	Exact Matching
	How to do it?
	Examples
	Other Algorithms
	This Lecture
	Boyer-Moore Algorithm
	Bad Character Rule
	Bad Character Rule 2
	Bad Character Rule 3
	Preprocessing 1
	(Extended) Bad Character Rule
	(Extended) Bad Character Rule
	Good-Suffix Rule
	Good-Suffix Rule – One Improvement
	Complete Algorithm
	GSR Preprocessing
	Concluding Remarks
	Example
	This Lecture
	Approximate Search (First Step)
	Splicing
	Diversity
	Recognizing Splice Sites
	Context of a Splice Site
	Vizualization: Sequence Logos
	Position-Specific Weight Matrices
	Scoring with a PSWM
	Examples
	This Lecture
	I am not Convinced (yet)
	Likelihood (Odds) Ratios
	Matching with a PSWM
	Numeric trick
	Beware
	Pattern Matching
	Further Reading

