Searching (Sub-)Strings

UIf Leser

This Lecture

e Exact substring search
— Nalve
— Boyer-Moore

e Searching with profiles
— Sequence profiles

— Ungapped approximate search
— Statistical evaluation of search results

UIf Leser: Introduction to Bioinformatics

Searching / Comparing Strings

e Exact matching
— Given strings p and t: Find all occurrences of sin t
— Given a set P and t: Find all occurrences of any peP in t

e Approximate matching
— Given p and t: Find all approximate occurrences of p in t
— Given p and t: Find p’, t' such that p’ is similartot’ and p’ is a
substring of p and t’ is a substring of t

— Given p and a set of strings T
e Find all teT that are similar to p
e Find all teT containing a t’ similar to a p’ contained in p

e Many more variants ...

UIf Leser: Introduction to Bioinformatics

Applications

e Given strings p and t: Find all occurrences of pint

— Restriction enzyme cut positions; fixed patterns in gene structure;
seeds for approximate searching

e Glven a set P and t: Find all occurrences of any peP int
— Same with multiple patterns / enzymes

e Given p and t: Find all approximate occurrences of p in t
— Less conserved patterns; read mapping; TF binding sites

e Given p and t: Find p’, t’ such that p’ similar to t" and p’ is a
substring of s and t’ is a substring of t
— Local alignment; homologous genes; cross-species searches

UIf Leser: Introduction to Bioinformatics

Strings

e A string (or sequence) p is an ordered list of characters
from an alphabet £
— |s] is the length of p
1] Is the character at position i in p (starting from 1)
1..]] 1s the substring from position | to position j in p
1..]] iIs an empty string if i > |
1..1] is a prefix of p ending at position |
— pli..] is a suffix of p starting at position i
e Alphabet
— Usually: Z={A, C, G, T}
— Often, we need blanks: ¥'={A,C, G, T, }

e Lower/upper case: P may denote a set of strings, or a
sequence of characters (a string)

- P
- P
- P
P

UIf Leser: Introduction to Bioinformatics

Exact Matching

e Given P, T with |P] << |T|
e Find all occurrencesof PIn T

e Example of application: Restriction enzymes
— Cut at precisely defined sequence motifs of length 4-10

— Are used to generate fragments (for later sequencing)
— Example: Eco RV - GATATC

tcagcttactaattaaaaattctttctagtaagtgctaagatcaagaaaataaattaaaaataatggaacatggcacattttcctaaactcttcacagattgctaatgat
tattaattaaagaataaatgttataattttttatggtaacggaatttcctaaaatattaattcaagcaccatggaatgcaaataagaaggactctgttaattggtactat
tcaactcaatgcaagtggaactaagttggtattaatactcttttttacatatatatgtagttattttaggaagcgaaggacaatttcatctgctaataaagggattacga
aaaactttttaataacaaagttaaataatcattttgggaattgaaatgtcaaagataattacttcacgataagtagttgaagatagtttaaatttttctttttgtattac
ttcaatgaaggtaacgcaacaagattagagtatatatggccaataaggtttgctgtaggaaaattattctaaggagatacgcgagagggcttctcaaatttattcagaga
tggatgtttttagatggtggtttaagaaaagcagtattaaatccagcaaaactagaccttaggtttattaaagcgaggcaataagttaattggaattgtaaaafatatet
aattcttcttcatttgttggaggaaaactagttaacttcttaccccatgcagggccatagggtcgaatacgatctgtcactaagcaaaggaaaatgtgagtgtagacttt
aaaccatttttattaatgactttagagaatcatgcatttgatgttactttcttaacaatgtgaacatatttatgcgattaagatgagttatgaaaaaggcgaatatatta
ttcagttacatagagattatagctggtctattcttagttataggacttttgacaagatagcttagaaaataagattatagagcttaataaaagagaacttcttggaatta
gctgcctttggtgcagectgtaatggectattggtatggctccagettactggttaggttttaatagaaaaattccccatgattgctaattatatctatecctattgagaaca
acgtgcgaagatgagtggcaaattggttcattattaactgctggtgctatagtagttatccttagaaagatatataaatctgataaagcaaaatcctggggaaaatattg
ctaactggtgctggtagggtttggggattggattatttcctctacaagaaatttggtgtttactfatatecttataaataatagagaaaaaattaataaagatgatat

UIf Leser: Introduction to Bioinformatics

How to do it?

e The straight-forward way (naive algorithm)
— We use two counter: t, p
— One (outer, t) runs through T
— One (inner, p) runs through P
— Compare characters at position T[t+p-1] and P[p]

for t = 1 to |T|
match := true;
p :=1;
while ((match) and (p <= [|P]))
if (T[t + p — 1] <> P[p]) then
match := false;

else

end while;
1T (match) then
-> OUTPUT t

end for;

UIf Leser: Introduction to Bioinformatics

Examples

Typical case Worst case
T ctg ag atcg CJQ ta T dddddaddadddadadadad
P ga%?ggc P aaaaat
g g%g atC aaaaat
gagatc aaaaat
gag%g%c aaaaat
gatatc
gatatc

e How many comparisons do we need in the worst case?
e talways runs through T
e p runs through the entire P for every position in t (worst case)
e Thus: O(|P|*|T))
e Alot: |T|=250M (chromosome), |P|=250 (exon) => ~62E9 ops

UIf Leser: Introduction to Bioinformatics

Other Algorithms

e Exact substring search has been researched for decades
— Boyer-Moore, Z-Box, Knuth-Morris-Pratt, Karp-Rabin, Shift-AND, ...
— All have WC complexity O(|P| + |T|)

— Real performance depends a lot on size of alphabet and
composition of strings (most have strengths in certain settings)

e One simple and popular algorithm: Boyer-Moore
— We present a simplified form
— BM is among the fastest algorithms in practice

e Much better performance if T can be preprocessed
— Best algorithms reach O(|P|)

UIf Leser: Introduction to Bioinformatics

This Lecture

e Exact substring search
— Nalve
— Boyer-Moore

e Searching with profiles
— Sequence profiles

— Ungapped approximate search
— Statistical evaluation of search results

UIf Leser: Introduction to Bioinformatics

Boyer-Moore Algorithm

e R.S. Boyer /J.S. Moore. ,,A Fast String Searching Algorithm*,
Communications of the ACM, 1977

e Main idea
— Again, we use two counters (inner loop, outer loop)
— Inner loop runs from right-to-left

— If we reach a mismatch, we know
e The character in T we just haven't seen
— This is captured by the bad character rule
e The suffix in P we just have seen
— This is captured by the good suffix rule

e Use this knowledge to make longer shifts in T

UIf Leser: Introduction to Bioinformatics

Bad Character Rule

e Setting 1
— We are at position t in T and compare right-to-left
— Let i by the position of the first mismatch in P
e \We saw n-i matches before
— Let x be the character at the corresponding pos (t-n+i) in T
— Candidates for matching x in P

e Case 1: x does not appear in P at all — we can move t such that t-n+i
IS not covered by P anymore

T xabxfabzzabwzzbzzb T xabxfabzzabwzzbzzb
P abwxyabzz P abwxyabzz
— —
What next?

UIf Leser: Introduction to Bioinformatics

Bad Character Rule 2

e Setting 2
— We are at position t in T and compare right-to-left
— Let i by the position of the first mismatch in P
— Let x be the character at the corresponding pos (t-n+i) in T
— Candidates for matching x in P

e Case 1: x does not appear in P at all

e Case 2: Let j be the right-most appearance of x in P with j<i — we can
move t such that j and i align

T xabxkabzzabwzzbzzb T xabxkabzzabwkzbzzb

P abzwyabzz P ab abzz
1 —
| What next? I

UIf Leser: Introduction to Bioinformatics

Bad Character Rule 3

e Setting 3
— We are at position t in T and compare right-to-left
— Let i by the position of the first mismatch in P
— Let x be the character at the corresponding pos (t-n+i) in T
— Candidates for matching x in P
e Case 1: x does not appear in P at all

e Case 2: Let j be the right-most appearance of x in P with j<i
e Case 3: As case 2, but j>i — we need some more knowledge

T xXabxkabzzabwizhbzzb
P abzwyalzz

_

UIf Leser: Introduction to Bioinformatics

Preprocessing 1

e In case 3, there are some “x” right from position |
— For small alphabets (DNA), this will almost always be the case
— Thus, case 3 is the usual one

e These “x” are Irrelevant — we need the right-most x left of |

e This can (and should!) be pre-computed
— Build a two-dimensional array A[|2]|,|P]]
— Run through P from left-to-right (pointer i)
— If character c appears at position i, set all A[c,j]:=i for all j>=i
— Possible in O(]JA]); negligible because P is small
— Constant lookup time during search

UIf Leser: Introduction to Bioinformatics

(Extended) Bad Character Rule

e Simple, effective for larger alphabets

e For random DNA, average shift-length is ~2
— Expected distances to the next match using EBCR
— Per position in t, the expected length of the match also is ~2
— Thus, we expect ~ 2*|T|/2 = |T| comparisons

e \Worst-Case complexity?

UIf Leser: Introduction to Bioinformatics

(Extended) Bad Character Rule

e Simple, effective for larger alphabets

e For random DNA, average shift-length is ~2
— Expected distances to the next match using EBCR
— Per position in t, the expected length of the match also is ~2
— Thus, we expect ~ 2*|T|/2 = |T| comparisons

e \Worst-Case complexity?

T 99999999999 |

9999999999¢
9999999999¢
9999999999¢

9999999999¢

UIf Leser: Introduction to Bioinformatics

Good-Suffix Rule

e Recall: If we reach a mismatch, we know ...
— The character in T we just haven't seen
— The suffix in P we just have seen

e Good suffix rule
— We have just seen some matches in P; let this suffix be S

— Where else does S appear in P?

— If we know the right-most appearance S’ of S in P, we can
Immediately align S’ with the current match in T

— If S does not appear at least twice in P, we shift t by |P|- |S|+1

—

UIf Leser: Introduction to Bioinformatics

Good-Suffix Rule — One Improvement

e Actually, we can do a little better
e Not all S* are of interest to us

Bl s B s B s B s

e We only need S’ whose next character to the left is not y
 Why don‘t we directly require that this character is x?

UIf Leser: Introduction to Bioinformatics

Complete Algorithm

t :=1;
while (t<=|T]-|P]) do \\ outer loop
p 1= |PI;
match := true;
while (match and p>=1) do \\ i1nner loop
it (T[t+p]=P[p]) then p := p-1 \\ matching chars
else match := false; \\ mismatch
end while;
1T match then print t; \\ complete match
compute shift s; using BCR(t,p);
compute shift s, using GSR(t,p);
t = t + max(s;, S,); \\ shift maximal
end while;

UIf Leser: Introduction to Bioinformatics

GSR Preprocessing

e We need to find all occurrences of all suffixes of P iIn P with
restrictions on the character left of the suffix

e Could be computed using naive algorithm for each suffix
e Or, more complicated, in linear time (not this lecture)
e Runtime negligible since we assume P being short

UIf Leser: Introduction to Bioinformatics

Concluding Remarks

e \Worst-case complexity of Boyer-Moore is O(|P|*|T])
— WC complexity can be reduced to linear (not this lecture)

e Empirical runtime is sub-linear

— The larger the alphabet (with roughly equal character frequencies),
the faster

e Faster variants
— Often, using the GSR does not pay off

— BM-Horspool: Instead of looking at the mismatch character x,
always look at the symbol in T aligned to the last position of P

e Generates longer shifts on average (i is maximal)
e In practice, also naive algorithm is quite competitive for
random strings and non-trivial alphabets (not for DNA)
— Empirical results much better than worst-case estimations

UIf Leser: Introduction to Bioinformatics

Example

[Eacrins| | CIIEICENS

I GSR wins I c

JCEE B

I GSR wins I

cabaabgbaa

. Match . Good suffix clabjaabjghb aE

. Mismatch . Ext. Bad character

UIf Leser: Introduction to Bioinformatics

This Lecture

e Exact substring search

e Searching with profiles
— Splicing
— Position Specific Weight Matrices
— Likelihood scores

UIf Leser: Introduction to Bioinformatics

Approximate Search (First Step)

e Requiring an exact match is too strict in most
bioinformatics applications
— Sequencing errors, mutations, individual differences, ...

e More often, one Is Interested in matches similar to P
e Many definitions of “similar” are possible

e Now: Position Specific Weight Matrices (PSWM)
— Also called profiles
— Powerful tool with many bioinformatics applications

— We develop the idea using an example taken from Spang et al.
“Genome Statistics”, Lecture 2004/2005, FU Berlin

UIf Leser: Introduction to Bioinformatics

Splicing

 Not all DNA of a “gene” Is translated into amino acid
e Splicing: Removal of introns
e Alternative splicing: Removal of some exons

Introns Gene

ONAEET BT T

B e

Exons

mRNA

Transcription, elimi-
nation of intron
transcript segments,
and splicing of exons

mRNA 1) mBRNA

Figure 13.3 Protein A Protein B

UIf Leser: Introduction to Bioinformatics

Diversity

e From a gene with n exons, alternative
splicing can create 2"-1 proteins

e Example: Troponin T (muscle protein)
— 18 exons
— 64 different known isoforms
— 10 exons present in all isoforms

NI
IIRERNNRTIRTIN]

1001 R

| SR TR [) 1 IR

| ECRRRRRH]

i

| A 1T

L 1 |
R

e Source: Eurasnet, ,Alternative Splicing*

UIf Leser: Introduction to Bioinformatics

Recognizing Splice Sites

e A special enzyme (spliceosome) very precisely recognizes
exon-intron boundaries in MRNA

e Spliceosome recognizes certain sequence motifs

e How are these motifs characterized? Can we find them?
— Very often, introns start with GT and end with AG
— But that is not specific enough - why?
— In random sequences, we expect a GT (AG) at every 16t position

— Thus, the average distance between a GT and an AG is 16, and we
find such pairs very often

— But: Introns typically are larger than 100 bases

UIf Leser: Introduction to Bioinformatics

Context of a Splice Site

CTCCGAAGTAGGATT CTCCGAAGTAGCATT
TCAGAAGGTGAGGGC TCAGAAGGTGACGGC
TTGGAAGGTTCGCAG TTGGAAGGTTCGCAG
TACTCAGGTACTCAC TACTCAGGTACTCAC
CGCCCAGGTGACCGG CGCCCLGGTGACCGG
AGAAAGAGTAAGCTC AGAAAGAGTAAGCTC
CAATGCTGTATGTGT CAATGCTGTATCETGET
GGTCTCGGTAACTGC GGTCTCGGTAACTGC
CCTGCTGGTAAGGCC CCTGCTGGTAACGCC
TGTTGCGGTAGGTCC TGTTGCGGTAGETCC

e Observing real splice sites, we find no crisp context
e But: columns are not composed at random
e How can we capture and quantify this knowledge?

UIf Leser: Introduction to Bioinformatics

Vizualization: Sequence Logos

e Very popular

e Based on information content of each base at each position
— Which, in turn, is based on the entropy of the columns

CTCCGAAGTAGGATT
TCAGAAGGTGAGGGC
TTGGAAGGTTCGCAG
TACTCAGGTACTCAC
CGCCCAGGTGACCGG

AGAAAGAGTAAGCTC A C
o ©

CAATGCTGTATGTGT - _ == o —— ==
- = = = g

—
—

GGTCTCGGTAACTGC 5

webloga. berdusley adu

CCTGCTGGTARAGGCC

TGTTGCGGTAGGTCC

UIf Leser: Introduction to Bioinformatics

Position-Specific Weight Matrices

DONOR FREQUENCY MATRIX from http://gencmiec.sanger.ac.uk/spldb/SpliceDB.html
1 2 3 4 5 6 7 8 9

34.08 60.386 9.14 0.00 0.00 52,57 71.26 7.08 15.98
36.24 12.890 3.27 0.00 0.00 2.82 7.56 5.50 16.46
18.31 12.48 80.34 100.00 0.00 41.94 11.7¢& B1.35 20.90
11.38 14.25 7.24 0.00 100.00 2.55 9.29 5.88 46.16

H om0

e Count in every column the frequencies of all bases
e Store the relative frequencies in an array of size |P|*|2]|
— With |P| being the size of the context around the splice sites

e At “GT”, all values except one are 0% and one is 100%
— Actually, GT is not perfectly conserved in real sequences

e In random sequences, all values should be 25%

UIf Leser: Introduction to Bioinformatics

Scoring with a PSWM

e Eventually, we want to find potential splice sites in a
genome G (e.g. to do gene prediction)

e \We need a way to decide, given a sequence S and a PSWM
A (both of the same length): Does S match A?
— We devise a function assigning a score to S given A
— With this function, we score all subsequences of length |A] in G
— Subsequences above a given threshold are considered candidates

e \We give this question a probabillistic interpretation

— Assume, for each column, a dice which four faces; each face is
thrown with probability equal to the relative frequencies as given in
the PSWM A for this column

— What is the probability that this dice generates S?

UIf Leser: Introduction to Bioinformatics

Examples

e |In random sequences, all values in A are 25%, and all
possible S would get the same probability: ¥lS|

® Ealjt 1 2 3 4 g & 7 B a

34.08 60.36 9.14 0.00 0.00 52.57 71.26 7.08 15.98
36.24 12.90 3.27 0.00 0.00 2.82 7.56 5.50 16.4¢6
18.31 12.48 80.34 100.00 0.00 41.94 11.76 81.35 20.90
11.38 14.25 T.24 0.00 100.00 2.55 9.29 5.88 46.1¢

= I T

— P(AAGGTAAGT) ~ 0.3*0.6*0.8*1*1*0.5*0.7*0.8*0.5 ~ 0.023
— P(CCCGTCCCC) ~ 0.4*0.1*0.03*1*1*0.02*0.08*0.05*0.2 ~ 3E-8
— P(AGTCTGAAG) ~ 0.3*0.1*0.1*0*1*0.4*0.7*0.07*0.2 =0

— 18t sequence matches A much better than the second
— 3" sequence hints towards overfitting

UIf Leser: Introduction to Bioinformatics

This Lecture

e Exact substring search

e Searching with profiles
— Splicing
— Position Specific Weight Matrices
— Likelihood scores

UIf Leser: Introduction to Bioinformatics

| am not Convinced (yet)

e |s S actually a match for A?

e We need to quantify the “goodness” of a score
— By comparing it to other / best / worst scores
e QObservations

— The first match on the previous slide is about as good as it can get:
Best possible sequence has a score of 0.025 (compared to 0.023)

— If match S is not a splice site, it is an “ordinary” sequence. How
likely is it that S is generated under this zero model (2)?

e “Zero model” often means: Equal probability for all bases

— Could include species bias, coding region bias, CpG island bias, ...
e p(S|’zero”) = ¥4° ~ 3.8E-6

— Thus, is it much more likely (app. 6000 times more likely) that S

was generated under the A model than that is was generated
under the Z model

UIf Leser: Introduction to Bioinformatics

Likelihood (Odds) Ratios

e Glven two models A, Z. The likelihood ratio score of a
sequence S is the ratio of p(S|A) / p(S|2)

1 2 3 4 5 6 7 8 9

— Score(AAGGTACGT) —_~ 6000 A 34.08 60.36 9.14 0.00 0.00 52.57 71.26 7.08 15.98
C 36.24 12.90 3.27 0.00 0.00 2.82 7.56 5.50 16.46

_ SCOre(CCCGTCCCC) —_ 1/140 G 18,31 12.48 80.34 100.00 0.00 41.94 11.76 81.35 20.90
T 11.38 14.25 7.24 0.00 100.00 2.55 9.29 5.88 46.16

— score(CTGGTCCGA) ~ 3
— score(TCCGTCCCC) <1

P (AAGGTACGT) = 0.34*0.6*0.8*1*1*0.53*0.71*0.81*0.46 =0.023

P (CCCGTCCCC) = 0.3670.13*0.03*1*170.0370.08*0.05*0.16 =2.7e-08
P (CTGGTCCGA) ~ 0.36*0.14*0.8*1*1*0.03*0.08*0.81*0.16 =1.25€-05
P (TACCTCCGT) =0

B W N =

e Also called odds score
— This is just one (popular) method for computing a “goodness”

UIf Leser: Introduction to Bioinformatics

Matching with a PSWM

e Glven genome G, models A and Z, and a threshold t: Find
all S in G with likelihood(S)>t

e Method: For all S with |S|=]A|, compute likelihood (S)
— This requires ~|G|*|A| divisions and multiplications
— Divisions can be saved easily (how?)

UIf Leser: Introduction to Bioinformatics

Numeric trick

e Values get quite small (close to 0) for longer A
e This yields problems with numeric stability in programs

e Better: Compute log-likelihood score s’=log,(score(...))
— Also faster: Replaces multiplication with addition
— Pre-compute divisions

P(S|Z) P(S, | Z.)*..* p(S, 1Z,)

=log POEIA)T, Iog[PS, | A”)j
p(S;[Z:) PGS, 1Z,)

(S = log p(S|A)]:Iog[p(sl|A1>*...*p(sn|An)]

UIf Leser: Introduction to Bioinformatics

Beware

e Assume a highly conserved motif A of length 8
— The chance that an arbitrary S, |S|=8, matches A is only 0.000015
— But: |G]=3.000.000.000
— Only by change, we will have ~45,000 perfect matches
— This applies even if we set the threshold at maximum
— Help: For |A|=16, we expect less than 1 match by chance

e Generally: Number of false hits depend on the threshold t
— Higher t: Stricter search, less false hits, but may incur misses
— Lower t: Less strict, less misses, but more false hits

e Note: A match is an hypothesis calling for further analysis
— By additional knowledge (e.g.: is S part of a gene?)
— By experimentation (e.g.: can we find an isoform spliced at S)?

UIf Leser: Introduction to Bioinformatics

Pattern Matching

e \We discussed exact matching and matching with a PSWM

e But motifs also may look quite differently
— Motifs (domains) in protein sequences
— Some important positions and much “glue” of unspecified length
— Pattern here may be: [AV].*FGKG[SIV]2.*[LI]...
— Which positions in S should we compare to which columns in P?
— How can we derive a specific pattern P from S;-S;?

- | —
S M---AIDE----NKQKAL . GQ--KQFGKGS IIMRLGEDR-SMDVET ISTGSLSLDI
S,2 MSDN--—=——-- KKQQALELALKQ I -KQFGKGS IMKLGDG-ADHSIEAIPSGSIALDI
Sz M=——-AINTDTSGKQKALTMVINQIERSFGKGV IMRLGDA-TRMRVET ISTGALTLDL
Spt M DRQKALEAAVSQ--RAFGKGS IIM-LGGKD---ETEVVSTRILGLDV
Sgi M==———- DE---NKKRAL LGQ I -KQFGKGVSMRMGDHE-RQAIPAISTGSLGLDI
S MD————————— -—K-EKSFGKGS IMRMGEE-VVEQVEVIPTGS IA---
L L

UIf Leser: Introduction to Bioinformatics

Further Reading

e On string matching algorithms
— Gusfield

e On sequence logos and TFBS-identification
— Christianini & Hahn, chapter 10
— Merkl & Waack, chapter 10

UIf Leser: Introduction to Bioinformatics

	Foliennummer 1
	This Lecture
	Searching / Comparing Strings
	Applications
	Strings
	Exact Matching
	How to do it?
	Examples
	Other Algorithms
	This Lecture
	Boyer-Moore Algorithm
	Bad Character Rule
	Bad Character Rule 2
	Bad Character Rule 3
	Preprocessing 1
	(Extended) Bad Character Rule
	(Extended) Bad Character Rule
	Good-Suffix Rule
	Good-Suffix Rule – One Improvement
	Complete Algorithm
	GSR Preprocessing
	Concluding Remarks
	Example
	This Lecture
	Approximate Search (First Step)
	Splicing
	Diversity
	Recognizing Splice Sites
	Context of a Splice Site
	Vizualization: Sequence Logos
	Position-Specific Weight Matrices
	Scoring with a PSWM
	Examples
	This Lecture
	I am not Convinced (yet)
	Likelihood (Odds) Ratios
	Matching with a PSWM
	Numeric trick
	Beware
	Pattern Matching
	Further Reading

